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A SOBOLEV SPACE THEORY FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS WITH TIME-FRACTIONAL

DERIVATIVES

BY ILDOO KIM1, KYEONG-HUN KIM2 AND SUNGBIN LIM

Korea University

In this article, we present an Lp-theory (p ≥ 2) for the semi-linear
stochastic partial differential equations (SPDEs) of type

∂α
t u = L(ω, t, x)u + f (u) + ∂

β
t

∞∑
k=1

ˆ t

0

(
�k(ω, t, x)u + gk(u)

)
dwk

t ,

where α ∈ (0,2), β < α + 1
2 and ∂α

t and ∂
β
t denote the Caputo derivatives

of order α and β, respectively. The processes wk
t , k ∈ N = {1,2, . . .}, are

independent one-dimensional Wiener processes, L is either divergence or
nondivergence-type second-order operator, and �k are linear operators of or-
der up to two. This class of SPDEs can be used to describe random effects on
transport of particles in medium with thermal memory or particles subject to
sticking and trapping.

We prove uniqueness and existence results of strong solutions in appro-
priate Sobolev spaces, and obtain maximal Lp-regularity of the solutions. By
converting SPDEs driven by d-dimensional space–time white noise into the
equations of above type, we also obtain an Lp-theory for SPDEs driven by
space–time white noise if the space dimension d < 4−2(2β −1)α−1. In par-
ticular, if β < 1/2 + α/4 then we can handle space–time white noise driven
SPDEs with space dimension d = 1,2,3.
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1. Introduction. In this article, we present a Lp (or Sobolev) theory for the
time-fractional SPDEs of nondivergence type

∂α
t u = [

aijuxixj + biuxi + cu + f (u)
]

+ ∂
β
t

ˆ t

0

[
σ ijkuxixj + μikuxi + νku + gk(u)

]
dwk

s

(1.1)

as well as of divergence type

∂α
t u = [

Dxi

(
aijuxj + biu + f i(u)

) + cu + h(u)
]

+ ∂
β
t

ˆ t

0

[
σ ijkuxixj + μikuxi + νku + gk(u)

]
dwk

s .
(1.2)

Here, α ∈ (0,2) and β < α + 1/2. The equations are interpreted by their integral
forms (see Definition 2.5), and the solutions are understood in the sense of tem-
pered distributions. The notation ∂

γ
t denotes the Caputo derivative of order γ (see

Section 2). The coefficients aij , bi , c, σ ijk , μik and νk are functions depending on
(ω, t, x) ∈ 
 × [0,∞] × R

d , and the nonlinear terms f , f i , h and gk depend on
(ω, t, x) and the unknown u. The indices i and j go from 1 to d and k runs through
{1,2,3, . . .}. Einstein’s summation convention on i, j and k is assumed through-
out the article. By having infinitely many Wiener processes in the equations, we
can cover SPDEs for measure valued processes, for instance, driven by space–time
white noise (see Section 7.3).

While the classical heat equation ∂tu = �u describes the heat propagation in
homogeneous mediums, the time-fractional diffusion equation ∂α

t u = �u, α ∈
(0,1), can be used to model the anomalous diffusion exhibiting subdiffusive be-
havior, due to particle sticking and trapping phenomena [21, 24]. The fractional
wave equation ∂α

t u = �u, α ∈ (1,2) governs the propagation of mechanical diffu-
sive waves in viscoelastic media [20]. The fractional differential equations have
an another important issue in the probability theory related to non-Markovian
diffusion processes with a memory [22, 23]. However, so far, the study of time-
fractional partial differential equations is mainly restricted to deterministic equa-
tions. For the results on deterministic equations, we refer the reader, for example,
to [28, 35] (L2-theory), [34] (Lp-theory) and [5, 13, 26] [Lq(Lp)-theory]. Also
see [4] for BUC1−β([0, T ];X)-type estimates, [6] for Schauder estimates, [37]
for DeGirogi–Nash-type estimate and [36] for Harnack inequality. We also re-
fer to recent books [38, 39] which handle various aspect of fractional differential
equations.

The main goal of this article is to provide a stochastic counterpart of Lp-theory
[5, 13, 26, 28, 34, 35] on the deterministic equations. Note that if α = β = 1 then



TIME FRACTIONAL SPDE 2089

(1.1) and (1.2) are classical second-order SPDEs of nondivergence and divergence
types. The time-fractional SPDEs of type (1.1) and (1.2) naturally appear when
one models the anomalous diffusion under random environments, for instance,
they can be used to describe the heat diffusion under random environments in a
material having finite diffusion speed. See, for example, [3] for a detailed deriva-
tion. As shown in [3], the condition β < α + 1/2 is necessary to make sense of the
equations.

To the best of our knowledge, [7–9] first introduced the mild solutions to time-
fractional SPDEs. The authors in [7–9] applied H∞-functional calculus technique
to obtain a sharp Lp(Lq)-regularity for the mild solution to the integral equation

(1.3) U(t) + A

ˆ t

0
(t − s)α−1U(s) ds =

ˆ t

0
(t − s)β−1G(s)dWs,

where A is the generator of a bounded analytic semigroup on Lq and assumed to
admit a bounded H∞-calculus on Lq . Actually, due to Lemma 2.2(iii), equation
(1.3) is similar to our equations, but it is much simpler than ours because for in-
stance the operator A in (1.3) is independent of (ω, t), and equation (1.3) contains
only an additive noise. We also refer to a recent article [3], where an L2-theory
for time-fractional SPDEs is presented under the extra condition α,β ∈ (0,1). As
usual, L2-theory is more or less elementary due to the integration by parts, Itô’s
formula and the Parseval’s identity.

In this article, we prove that for any γ ∈ R and p ≥ 2, under a minimal regularity
assumption (depending on γ ) on the coefficients and the nonlinear terms, equation
(1.1) with zero initial condition has a unique H

γ+2
p -valued solution, and for this

solution the following estimate holds:

(1.4) ‖u‖
H

γ+2
p (T )

≤ N
(∥∥f (0)

∥∥
H

γ+2
p (T )

+ ∥∥g(0)
∥∥
H

γ+c′0
p (T ,l2)

)
,

where H
ν
p(T ) = Lp(
 × [0, T ];Hν

p), Hν
p(T , l2) = Lp(
 × [0, T ];Hν

p(l2)) and

c′
0 >

(2β−1)+
α

=: c0 if β = 1/2, and c′
0 = c0 if β �= 1/2. The result for γ ≤ 0 is

needed to handle SPDEs driven by space-time white noise with the space dimen-
sion d < 4 − 2(2β − 1)α−1. For divergence-type equation (1.2), we prove unique-
ness, existence and a version of (1.4) for γ = −1.

To obtain the above results, we exploit an analytic approach. For the maximal
Lp-regularity of solutions, we control the sharp functions of derivatives of the so-
lutions in terms of the maximal functions of free terms f , h and g, and then apply
Hardy–Littlewood theorem and Fefferman–Stein theorem. The main obstacle of
this procedure is the nonintegrability of derivatives of kernels related to the repre-
sentation of solutions. This difficulty does not appear when α = β = 1.

Our main results, Theorem 2.3 and Theorem 2.2, substantially improve the re-
sults of [7–9] in the sense that (i) we study the strong solutions (not mild solution),
(ii) our coefficients depend not only on x but also on (ω, t), and are merely mea-
surable in (t,ω), (iii) we have multiplicative noises in the equations, that is, the
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second- and lower-order derivatives of solutions appear in the stochastic part of
our equations, (iv) nonlinear terms are also considered, (v) we do not impose the
lower bound of β and there is no restriction on γ and (vi) we also cover SPDEs
driven by space–time white noise with space dimension d < 4 − 2(2β − 1)α−1.

This article is organized as follows. In Section 2, we present some preliminaries
on the fractional calculus and introduce our main results. We prove a parabolic
Littlewood–Paley inequality for a model time-fractional SPDE in Section 3. The
unique solvability and a priori estimate for the model equation are obtained in
Section 4. We prove Theorems 2.3 and 2.2 in Sections 5 and 6, respectively. In
Section 7, we give an application to SPDE driven by space-time white noise.

Finally, we introduce some notation used in this article. We use “:=” to denote
a definition. As usual, Rd stands for the d-dimensional Euclidean space of points
x = (x1, . . . , xd), Br(x) := {y ∈ R

d : |x − y| < r}, and Br := Br(0). N denotes
the natural number system and C indicates the complex number system. For i =
1, . . . , d , multi-indices a = (a1, . . . ,ad), ai ∈ {0,1,2, . . .} and functions u(x), we
set

uxi = ∂u

∂xi
= Diu, Da

xu = D
a1
1 · · ·Dad

d u, |a| = a1 + · · · + ad .

We also use the notation Dm
x for a partial derivative of order m with respect to x. By

C∞
c (Rd;H), we denote the collection of H -valued smooth functions having com-

pact support in R
d , where H is a Hilbert space. In particular, C∞

c := C∞
c (Rd;R).

S(Rd) denotes the Schwartz class on R
d . For p ≥ 1 and a normed space F by

Lp(O;F), we denote the set of F -valued Lebesgue measurable function u on O
satisfying

‖u‖Lp(O;F) :=
(ˆ

O

∥∥u(x)
∥∥p
F dx

)1/p

< ∞.

We write Lp(O) = Lp(O;R) and Lp = Lp(Rd). Generally, for a given mea-
sure space (X,M,μ), Lp(X,M,μ;F) denotes the space of all F -valued Mμ-
measurable functions u so that

‖u‖Lp(X,M,μ;F) :=
(ˆ

X

∥∥u(x)
∥∥p
F μ(dx)

)1/p

< ∞,

where Mμ denotes the completion of M with respect to the measure μ. If there
is no confusion for the given measure and σ -algebra, we usually omit the measure
and the σ -algebra. We denote by

F(f )(ξ) = 1

(2π)d/2

ˆ
Rd

e−iξ ·xf (x) dx,

F−1(g)(x) := 1

(2π)d/2

ˆ
Rd

eiξ ·xg(ξ) dξ,
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the Fourier and the inverse Fourier transforms of f in R
d , respectively. 	a
 is the

greatest integer which is less than or equal to a, whereas �a� denotes the smallest
integer which is greater than or equal to a. a ∧ b := min{a, b}, a ∨ b := max{a, b},
a+ := a ∨ 0, and a− := −(a ∧ 0). If we write N = N(a, b, . . .), this means that
the constant N depends only on a, b, . . . . Throughout the article, for functions
depending on (ω, t, x), the argument ω ∈ 
 will be usually omitted.

2. Main results. First, we introduce some elementary facts related to the
fractional calculus. We refer the reader to [2, 11, 25, 29] for more details. For
ϕ ∈ L1((0, T )) and n = 1,2, . . . , define nth order integral

In
t ϕ(t) :=

ˆ t

0

(
In−1ϕ

)
(s) ds

(
I 0
t ϕ := ϕ

)
.

In general, the Riemann–Liouville fractional integral of the order α ≥ 0 is defined
as

Iα
t ϕ := 1

�(α)

ˆ t

0
(t − s)α−1ϕ(s) ds, 0 ≤ t ≤ T .

By Jensen’s inequality, for p ∈ [1,∞],
(2.1)

∥∥Iα
t ϕ

∥∥
Lp(0,T ) ≤ N(T ,α)‖ϕ‖Lp(0,T ).

Thus Iα
t ϕ(t) is well-defined and finite for almost all t ≤ T . This inequality shows

that if 1 ≤ p < ∞ and ϕn → ϕ in Lp([0, T ]), then Iαϕn also converges to Iα
t ϕ in

Lp([0, T ]). The inequality for p = ∞ implies that if fn(ω, t) converges in proba-
bility uniformly on [0, T ] then so does Iα

t fn.
Using Fubini’s theorem, one can easily show for any α,β ≥ 0,

(2.2) Iα
t I

β
t ϕ = I

α+β
t ϕ (a.e.) t ≤ T .

It is known that if p > 1
α

and α − 1
p

/∈ N then (see [29], Theorem 3.6)∥∥Iα
t ϕ

∥∥
C

α− 1
p ([0,T ]) ≤ N(p,T ,α)‖ϕ‖Lp(0,T ).(2.3)

Let α ≥ 0, ϕ ∈ Cα([0, T ]), and m be the maximal integer such that m < α. It is
also known that, for any β ≥ 0 (see [29], Theorem 3.2)

(2.4)

∥∥∥∥∥Iβ
t

(
ϕ −

m∑
k=0

ϕ(k)(0)

k! tk

)∥∥∥∥∥
Cα+β([0,T ])

≤ N(β)

∥∥∥∥∥ϕ −
m∑

k=0

ϕ(k)(0)

k! tk

∥∥∥∥∥
Cα([0,T ])

if either α + β /∈N or α,β ∈ N∪ {0}.
Next, we introduce the fractional derivative Dα

t , which is (at least formally) the
inverse operator of Iα

t . Let α ≥ 0 and 	α
 = n−1 for some n ∈ N. Then obviously

n − 1 ≤ α < n, n − α ∈ (0,1].
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For a function ϕ(t) which is (n − 1)-times differentiable and ( d
dt

)n−1In−α
t ϕ is

absolutely continuous on [0, T ], the Riemann–Liouville fractional derivative Dα
t

and the Caputo fractional derivative ∂α
t are defined as

(2.5) Dα
t ϕ :=

(
d

dt

)n(
In−α
t ϕ

)
,

and

∂α
t ϕ := D

α−(n−1)
t

(
ϕ(n−1)(t) − ϕ(n−1)(0)

)
.

By (2.2) and (2.5), for all α,β ≥ 0,

Dα
t I

β
t ϕ =

{
D

α−β
t ϕ : α > β,

I
β−α
t ϕ : α ≤ β,

(2.6)

and Dα
t D

β
t = D

α+β
t . Using (2.2)–(2.6), one can check

∂α
t ϕ = Dα

t

(
ϕ(t) −

n−1∑
k=0

tk

k!ϕ
(k)(0)

)
.(2.7)

Thus if ϕ(0) = ϕ(1)(0) = · · · = ϕ(n−1)(0) = 0 then Dα
t ϕ = ∂α

t ϕ and by (2.7) and
(2.4),

(2.8)

∥∥∂β
t ϕ

∥∥
Cα−β([0,T ]) ≤ ∥∥I 	β
+1−β

t ϕ
∥∥
C	β
+1−β+α([0,T ])

≤ N‖ϕ‖Cα([0,T ]) ∀β ≤ α,

where either α − β /∈ N or α,β ∈ N∪ {0}.

REMARK 2.1. Banach space valued fractional calculus can be defined as
above on the basis of Bochner’s integral and Pettis’s integral; see, for example,
[1] and the references therein.

Let (
,F ,P ) be a complete probability space and {Ft , t ≥ 0} be an increasing
filtration of σ -fields Ft ⊂ F , each of which contains all (F ,P )-null sets. We
assume that an independent family of one-dimensional Wiener processes {wk

t }k∈N
relative to the filtration {Ft , t ≥ 0} is given on 
. By P , we denote the predictable
σ -field generated by Ft , that is, P is the smallest σ -field containing every set
A × (s, t], where s < t and A ∈ Fs .

For p ≥ 2 and γ ∈ R, let H
γ
p = H

γ
p (Rd) denote the class of all tempered distri-

butions u on R
d such that

(2.9) ‖u‖H
γ
p

:= ∥∥(1 − �)γ/2u
∥∥
Lp

< ∞,

where

(1 − �)γ/2u =F−1((
1 + |ξ |2)γ /2F(u)

)
.
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It is well known that if γ = 1,2, . . . , then

Hγ
p = Wγ

p := {
u : Da

xu ∈ Lp

(
R

d)
, |a| ≤ γ

}
, H−γ

p = (
H

γ
p/(p−1)

)∗
.

For a tempered distribution u ∈ H
γ
p and φ ∈ S(Rd), the action of u on φ (or the

image of φ under u) is defined as

(u,φ) = (
(1 − �)γ/2u, (1 − �)−γ /2φ

) =
ˆ
Rd

(1 − �)γ/2u · (1 − �)−γ /2φ dx.

Let l2 denote the set of all sequences a = (a1, a2, . . .) such that

|a|l2 :=
( ∞∑

k=1

∣∣ak
∣∣2)1/2

< ∞.

By H
γ
p (l2) = H

γ
p (Rd, l2), we denote the class of all l2-valued tempered distribu-

tions v = (v1, v2, . . .) on R
d such that

‖v‖H
γ
p (l2)

:= ∥∥∣∣(1 − �)γ/2v
∣∣
l2

∥∥
Lp

< ∞.

We introduce stochastic Banach spaces:

H
γ
p(T ) := Lp

(

 × [0, T ],P;Hγ

p

)
, Lp(T ) = H

0
p(T ),

H
γ
p(T , l2) := Lp

(

 × [0, T ],P;Hγ

p (l2)
)
, Lp(T , l2) = H

0
p(T , l2).

For instance, u ∈ H
γ
p(T ) if and only if u is an H

γ
p -valued PdP×dt -measurable

process defined on 
 × [0, T ] such that

‖u‖
H

γ
p(T ) :=

(
E

ˆ T

0
‖u‖p

H
γ
p

dt

)1/p

< ∞.

Here, PdP×dt is the completion of P w.r.t. dP × dt . We write g ∈ H
∞
0 (T , l2) if

gk = 0 for all sufficiently large k, and each gk is of the type

gk(t, x) =
n∑

i=1

1(τi−1,τi ](t)gik(x),

where τi ≤ T are stopping times with respect to Ft and gik ∈ C∞
c (Rd). It is known

[16], Theorem 3.10, that H∞
0 (T , l2) is dense in H

γ
p(T , l2) for any γ . We use U

α,γ
p

to denote the family of H
γ+(2−2/(αp))+
p -valued F0-measurable random variables

u0 such that

‖u0‖U
α,γ
p

:= (
E‖u0‖p

H
γ+(2−2/(αp))+
p

)1/p
< ∞,

where (2 − 2/(αp))+ = |2−2/(αp)|+2−2/(αp)
2 .

(i) and (iii) of Lemma 2.2 below are used, for example, when we apply Iα
t

and Dα
t to the time-fractional SPDEs, and (ii) can be used in the approximation

arguments.
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LEMMA 2.2. (i) Let α ≥ 0 and h ∈ L2(
 × [0, T ],P; l2). Then the equality

(2.10) Iα

( ∞∑
k=1

ˆ ·

0
hk(s) dwk

s

)
(t) =

∞∑
k=1

(
Iα

ˆ ·

0
hk(s) dwk

s

)
(t)

holds for all t ≤ T (a.s.) and also in L2(
 × [0, T ]), where the convergence of the
series in both sides is understood in probability sense.

(ii) Suppose α ≥ 0 and hn → h in L2(
 × [0, T ],P; l2) as n → ∞. Then

∞∑
k=1

(
Iα

ˆ ·

0
hk

n dwk
s

)
(t) −→

∞∑
k=1

(
Iα

ˆ ·

0
hk dwk

s

)
(t)

in probability uniformly on [0, T ].
(iii) If α > 1/2 and h ∈ H

∞
0 (T , l2), then

∂

∂t

(
Iα

∞∑
k=1

ˆ ·

0
hk(s) dwk

s

)
(t) = 1

�(α)

∞∑
k=1

ˆ t

0
(t − s)α−1hk(s) dwk

s

(a.e.) on 
 × [0, T ].

PROOF. See Lemmas 3.1 and 3.3 of [3]. �

REMARK 2.3. By [16], Remark 3.2, for any g ∈ H
γ
p(T , l2) and φ ∈ C∞

c (Rd)

(2.11) E

[∑
k

ˆ T

0

(
gk,φ

)2
ds

]
≤ N(p,φ)‖g‖2

H
γ
p(T ,l2)

.

Thus if gn → g in H
γ
p(T , l2), then (gn,φ) → (g,φ) in L2(
 × [0, T ],P; l2).

Therefore, one can apply Lemma 2.2(ii) with hn(t) = (gn(t, ·), φ) and h(t) =
(g(t, ·), φ).

Let α ∈ (0,2), β < α + 1
2 and set

� := max
(�α�, �β�).

DEFINITION 2.4. Define

Hγ+2
p (T ) := H

γ+2
p (T ) ∩ {

u : I�−αu ∈ Lp

(

;C([0, T ];Hγ

p

))}
,

that is, u ∈ Hγ+2
p (T ) iff u ∈ H

γ+2
p (T ) and I�−αu has a H

γ
p -valued continuous

version I
�−α
t u. The norm in Hγ+2

p (T ) is defined as

‖u‖Hγ+2
p (T )

:= ‖u‖
H

γ+2
p (T )

+
(
E sup

t≤T

∥∥I�−αu(t, ·)∥∥p

H
γ
p

)1/p
.
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DEFINITION 2.5. Let u ∈ Hγ1+2
p (T ), f ∈ H

γ2
p (T ), g ∈ H

γ3
p (T , l2), u0 ∈

U
α,γ4
p , and v0 ∈ U

α−1,γ4
p for some γi ∈ R (i = 1,2,3,4). We say that u satisfies

∂α
t u(t, x) = f (t, x) + ∂

β
t

ˆ t

0
gk(s, x) dwk

s , t ∈ (0, T ],

u(0, ·) = u0, ∂tu(0, ·) = v0 (if α > 1)

(2.12)

if for any φ ∈ S(Rd) the equality(
I
�−α
t u(t) − I�−α

t (u0 + tv01α>1), φ
)

= I�
t

(
f (t, ·), φ) +

∞∑
k=1

I
�−β
t

ˆ t

0

(
gk(s, ·), φ)

dwk
s

(2.13)

holds for all t ∈ [0, T ] (a.s.) [see Remark 2.8 for an equivalent version of (2.13)].
In this case, we say (2.12) holds in the sense of distributions. We say u [or(2.12)]
has zero initial condition if (2.13) holds with u0 = v0 = 0.

Below we discuss how the space U
α,γ
p is chosen and show why (2.13) is an

appropriate interpretation of (2.12).

REMARK 2.6. In this article, we always assume u(0) = 1α>1∂tu(0) = 0. The
space U

α,γ
p is defined for later use. It turns out that for the solution to the equation

∂α
t u = �u, t > 0; u(0, ·) = u0, 1α>1∂tu(0, ·) = 1α>1v0,

we have, for any γ ∈ R and κ > 0,

‖u‖
Lp((0,T ),H

γ+2
p )

≤ N
(‖u0‖

U
α,γ ′
p

+ 1α>1‖v0‖
U

α−1,γ ′
p

)
,

where γ ′ = γ + κ1β=1/2.

REMARK 2.7. If α = β = 1, then � = 1 and (2.13) coincides with classical
definition of the weak solution [16], Definition 3.1.

REMARK 2.8. (i) Let u, f , g, u0, and v0 be given as in Definition 2.5. We
claim that (2.13) holds for all t ≤ T (a.s.) if and only if the equality

(2.14)
(
u(t) − u0 − tv01α>1, φ

) = Iα
t

(
f (t), φ

) +
∞∑

k=1

I
α−β
t

ˆ t

0

(
gk(s), φ

)
dwk

s

holds for almost all t ≤ T (a.s.). Indeed, applying D�−α
t to (2.13) and using (2.6),

we get equality (2.14) for almost all t ≤ T (a.s.). Here, I
α−β
t := D

β−α
t if α ≤ β .

Note that if α ≤ β , the last term of (2.14) makes sense due to Lemma 2.2(iii) and
the assumption β − α < 1/2. For the other direction, we apply I�−α

t to (2.14) and
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get (2.13) for all t ≤ T (a.s.). This is because (I�−α
t u,φ) is continuous in t by the

assumption u ∈ Hγ1+2
p (T ).

Also, taking Dα
t to (2.14), we formally get a distributional version of (2.12):

(
∂α
t u,φ

) = (
f (t), φ

) + ∂
β
t

ˆ t

0

(
gk,φ

)
dwk

t (a.e.) t ≤ T .

(ii) Let β < 1/2 and u(0) = 1α>1u
′(0) = 0. Denote

f̄ (t) = 1

�(1 − β)

∑
k

ˆ t

0
(t − s)−βgk(s) dwk

s .

Then from (2.14) and Lemma 2.2(iii) it follows that the equality(
u(t), φ

) = Iα
t

(
f (t) + f̄ (t), φ

)
holds for almost all t ≤ T (a.s.). Therefore, (2.13) holds for all t ≤ T (a.s.) with
f + f̄ and 0 in place of f and g, respectively.

To use some deterministic results later in this article, we show our interpretation
of (2.12) coincides with the one in [13, 34, 35]. In the following remark, u is not
random and γ1 = γ2 = γ .

REMARK 2.9. Denote Hγ+2
p (T ) = Lp([0, T ];Hγ+2

p ) and Lp(T ) = H0
p(T ).

We denote by Hα,γ+2
p,0 (T ) the completion of C∞

c ((0,∞) ×R
d) with the norm

‖ · ‖
Hα,γ+2

p (T )
:= ‖ · ‖

Hγ+2
p (T )

+ ∥∥∂α
t ·∥∥Hγ

p(T ).

That is, u ∈ Hα,γ+2
p,0 (T ) if and only if there exists a sequence un ∈ C∞

c ((0,∞) ×
R

d) such that ‖un − u‖
Hγ+2

p (T )
→ 0 and fn := ∂α

t un is a Cauchy sequence in

Hγ
p(T ), whose limit is defined as ∂α

t u.
The following two statements are equivalent:

• u ∈ Hα,γ+2
p,0 (T ) and ∂α

t u = f in Hγ
p(T ).

• u ∈ Hγ+2
p (T ), f ∈H

γ
p(T ), and u satisfies ∂α

t u = f with zero initial condition
in the sense of Definition 2.5.

First, let u ∈ Hα,γ+2
p,0 (T ) and ∂α

t u = f in Hγ
p(T ). Take un and fn as above. Then

since un,fn ∈ C([0, T ];Hγ
p ), we have

un(t) = Iα
t fn(t) ∀t ≤ T ,

and letting n → ∞ we conclude

(2.15) u(t) = Iα
t f (t) (a.e.) t ≤ T .
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Taking I�−α to both sides of (2.15) and recalling � ≥ 1, one easily finds that
I�−αu has an H

γ
p -valued continuous version. Therefore, by Remark 2.8, u ∈

Hγ+2
p (T ) and it satisfies ∂α

t u = f with the zero initial condition in the sense of
Definition of 2.5.

Next, let u ∈ Hγ+2
p (T ) satisfy ∂α

t u = f in the sense of Definition of 2.5 with
zero initial condition. Then by (2.14),

u(t) = Iα
t f (t) in Hγ

p

(
R

d)
(a.e.) t ∈ [0, T ].

Extend u so that u(t) = 0 for t < 0. Take η ∈ C∞
c ((1,2)) with the unit integral,

and denote ηε(t) = ε−1η(t/ε),

uε(t) := u � ηε(t) :=
ˆ
R

u(s)ηε(t − s) ds =
ˆ t

0
u(s)ηε(t − s) ds,

and f ε := f � ηε . Note uε(t) = 0 for t < ε, and thus uε ∈ Cn([0, T ];Hγ
p )

for any n. Multiplying by a smooth function which equals one for t ≤ T and
vanishes for t > T + 1, we may assume uε ∈ C∞

c ((0,∞);Hγ
p ). Obviously,

∂α
t uε = f ε in Hγ

p(T ), ‖uε − u‖
Hγ+2

p (T )
→ 0 and ‖f ε − f ‖Hγ

p(T ) → 0 as ε ↓ 0.

Next, choose a smooth function ζ(x) ∈ C∞
c (B1(0)) with unit integral, and de-

note uε,δ(t, x) = uε ∗ δ−dζ(·/δ) = δ−d
´
Rd uε(t, y)ζ((x − y)/δ) dy and define

f ε,δ similarly. Then we still have ∂α
t uε,δ = f ε,δ . For any ε′ > 0, choose ε and

δ so that ‖uε,δ − uε‖
Hγ+2

p (T )
+ ‖∂α

t (uε,δ − uε)‖Hγ
p(T ) ≤ ε′. After this, multi-

plying by appropriate smooth cut-off functions of x, we can approximate uε,δ

and f ε,δ with functions in C∞
c ((0,∞) × R

d) and, therefore, we may assume

uε,δ, f ε,δ ∈ C∞
c ((0,∞) × R

d). Thus it follows that u ∈ Hα,γ+2
p,0 (T ) and it satis-

fies ∂α
t u = f as the limit in Hγ

p(T ).

THEOREM 2.1. (i) For any γ, ν ∈ R, the map (1 − �)ν/2 : Hγ+2
p →

Hγ−ν+2
p (T ) is an isometry.

(ii) Let u ∈ Hγ+2
p (T ) satisfy (2.12). Then

E sup
t≤T

∥∥I�−αu(t, ·)∥∥p

H
γ
p

≤ N
(
E

∥∥u(0)
∥∥p

H
γ
p

+ 1α>1E
∥∥∂tu(0)

∥∥p

H
γ
p

+ ‖f ‖
H

γ
p(T ) + ‖g‖

H
γ
p(T ,l2)

)
,

(2.16)

where N = N(d,p,T ).
(iii) Hγ+2

p (T ) is a Banach space.
(iv) Let θ := min{1, α,2(α − β) + 1}. Then there exists a constant N =

N(d,α,β,p,T ) so that for all t ≤ T and u ∈ Hγ+2
p (T ) satisfying (2.12) with

the zero initial condition,

(2.17) ‖u‖p

H
γ
p(t)

≤ N

ˆ t

0
(t − s)θ−1(‖f ‖p

H
γ
p(s)

+ ‖g‖p

H
γ
p(s,l2)

)
ds.
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PROOF. (i) For any u ∈ Hγ+2
p (T ), (1 − �)ν/2

I
�−α
t u is an H

γ−ν+2
p -valued

continuous version of (1 − �)ν/2I�−α
t u. Thus it is obvious.

(ii) Due to (i), we may assume that γ = 0. Take a nonnegative function
ζ ∈ C∞

c (Rd) with unit integral. For ε > 0, define ζε(x) = ε−dζ(x/ε), and for tem-
pered distributions v on R

d put v(ε)(x) := v ∗ ζε(x). Note that for each t ∈ (0, T ),
u(ε)(t, x) is an infinitely differentiable function of x. By plugging ζε(· − x) in
(2.13) in place of φ, for any x,(

I
�−αu

)(ε)
(t, x)

= I�
t f (ε)(t, x) + I

�−β
t

ˆ t

0
g(ε)k(s, x) dwk

s ∀t ≤ T (a.s.)
(2.18)

Observe that

E sup
t≤T

∥∥I�
t f (ε)(t, ·)∥∥p

p ≤ NE

ˆ T

0

∥∥f (ε)(s, ·)∥∥p
p ds.(2.19)

Also, by (2.1), the Burkholder–Davis–Gundy inequality, and the Hölder inequality,

E sup
t≤T

∥∥∥∥I�−β
t

∑
k

ˆ t

0
g(ε)k(s, ·) dwk

s

∥∥∥∥p

p

≤ N

ˆ
Rd

E sup
t≤T

∣∣∣∣∑
k

ˆ t

0
g(ε)k(s, x) dwk

s

∣∣∣∣p dx

≤ NE

ˆ T

0

∥∥g(ε)(s, ·)∥∥p
Lp(l2)

ds.

(2.20)

Thus from (2.18),

E sup
t≤T

∥∥(
I
�−α
t u

)(ε)
(t, ·)∥∥p

p ≤ N
(∥∥f (ε)

∥∥p
Lp(T ) + ∥∥g(ε)

∥∥p
Lp(T ,l2)

)
≤ N

(‖f ‖p
Lp(T ) + ‖g‖p

Lp(T ,l2)

)
.

(2.21)

By considering (I�−α
t u)(ε) − (I�−α

t u)(ε
′) instead of (I�−α

t u)(ε), we easily see that
(I�−α

t u)(ε) is a Cauchy sequence in Lp(
;C([0, T ];Lp)). Let ū be the limit in
this space. Then since (I�−α

t u)(ε) converges to I
�−αu in Lp(T ), we conclude

ū = I
�−αu, and get (2.16) by considering the limit of (2.21) as ε → 0 in the space

Lp(
;C([0, T ];Lp)).

(iii) By (2.1), I�−α
t un converges to I�−α

t u in H
γ+2
p (T ) if un converges to

u in H
γ+2
p (T ). Moreover, both H

γ+2
p (T ) and Lp(
;C([0, T ];Hγ

p )) are Banach

spaces. Therefore, Hγ+2
p (T ) is a Banach space.

(iv) As in the proof of (ii), we only consider the case γ = 0. By (2.14), for each
x ∈ R

d (a.s.)

u(ε)(t, x) = Iα
t f (ε)(t, x) + I

α−β
t

ˆ t

0
g(ε)k(s, x) dwk

s (a.e.) t ∈ [0, T ].
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Note ∥∥Iα
t f (ε)

∥∥p
Lp(t) ≤ NIα

t

∥∥f (ε)
∥∥p
Lp(·)(t) ≤ NIα

t ‖f ‖p
Lp(·)(t) ∀t ∈ [0, T ].

By Lemma 2.2 and the stochastic Fubini theorem (note if α < β then we define
I

α−β
t = ∂

∂t
I

α+1−β
t ), for each x (a.s.),

vε(t, x) := I
α−β
t

ˆ t

0
g(ε)k(s, x) dwk

s = c(α,β)

ˆ t

0
(t − s)α−βg(ε)k(s, x) dwk

s

for almost all t ∈ [0, T ]. Thus by the Burkholder–Davis–Gundy inequality and the
Hölder inequality, for any t ≤ T ,

∥∥vε
∥∥p
Lp(t) ≤ NE

ˆ t

0

ˆ
Rd

(
I 2(α−β)+1
s

(∣∣g(ε)
∣∣2
l2
(·, x)

)
(s)

)p/2
dx ds

≤ NI
2(α−β)+1
t

(‖g‖p
Lp(·,l2)

)
(t).

Observe that for s ≤ t ≤ T ,

(t − s)α−1 + (t − s)2(α−β) ≤ N(t − s)θ−1,

where N depends on α, β and T . Thus, for any t ≤ T∥∥u(ε)
∥∥p
Lp(t) ≤ NIα

t

(‖f ‖p
Lp(·)

)
(t) + NI

2(α−β)+1
t

(‖g‖p
Lp(·,l2)

)
(t)

≤ NIθ
t

(‖f ‖p
Lp(·) + ‖g‖p

Lp(·,l2)
)
(t).

The claim of (iv) follows from Fatou’s lemma. �

Assumption 2.10 below will be used for both divergence-type and non-
divergence-type equations. As mentioned before, the argument ω is omitted for
functions depending on (ω, t, x).

ASSUMPTION 2.10. (i) The coefficients aij , bi , c, σ ijk , μik , νk are P ⊗
B(Rd)-measurable.

(ii) The leading coefficients aij are continuous in x and piecewise continuous
in t in the following sense: there exist stopping times 0 = τ0 < τ1 < τ2 < · · · <

τM0 = T such that

(2.22) aij (t, x) =
M0∑
n=1

aij
n (t, x)1(τn−1,τn](t),

where each a
ij
n are uniformly continuous with respect to (t, x), that is, for any

ε > 0, there exists a δ > 0 such that∣∣aij
n (t, x) − aij

n (s, y)
∣∣ ≤ ε ∀ω ∈ 
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whenever |(t, x) − (s, y)| ≤ δ.
(iii) There exists a constant δ0 ∈ (0,1] so that for any n, ω, t , x

(2.23) δ0|ξ |2 ≤ aij
n (t, x)ξ iξ j ≤ δ−1

0 |ξ |2 ∀ξ ∈ R
d,

∣∣bi(t, x)
∣∣ + ∣∣c(t, x)

∣∣ + ∣∣σ ij (t, x)
∣∣
l2 + ∣∣μi(t, x)

∣∣
l2

+ ∣∣ν(t, x)
∣∣
l2 ≤ δ−1

0 .

(iv) σ ijk = 0 if β ≥ 1/2, and μik = 0 if β ≥ 1/2 + α/2 for every i, j , k, ω, t , x.

Recall for a ∈ R, a+ := a ∨ 0. For κ ∈ (0,1), denote

(2.24) c0 = c0(α,β) = (2β − 1)+
α

, c′
0 = c′

0(κ) = c0 + κ1β=1/2.

Note that c′
0 ∈ [0,2) because β < α + 1

2 , and c0 = c′
0 = 0 if β < 1/2.

REMARK 2.11. (i) Assumption 2.10(iv) is made on the basis of the model
equation

∂α
t u = (�u + f̃ ) dt + ∂

β
t

ˆ t

0
gk dwk

s , u(0) = 1α>1u
′(0) = 0,

for which the following sharp estimate holds (see Lemma 3.5 and Theorem 4.1):
for any γ ∈ R and κ > 0,

(2.25) ‖u‖
H

γ+2
p (T )

≤ c
(‖f̃ ‖

H
γ
p(T ) + ‖g‖

H
γ+c′0
p (T ,l2)

)
.

Thus to have H
γ+2
p -valued solutions, we need f̃ ∈ H

γ
p(T ) and g ∈ H

γ+c′
0

p (T , l2).
In particular, if β < 1/2 then the solution is twice more differentiable than g. This
enables us to have the second derivatives of solutions in the stochastic parts of
equations (1.1) and (1.2).

(ii) For the solution of stochastic heat equation du = �udt + g(u)dWt (this is
the case when α = β = 1), the solution is once more differentiable than g (i.e.,
‖∇u‖Lp ≈ ‖g‖Lp ), and if g contains any second-order derivatives of u then one
cannot control ∇u and any other derivatives of u.

REMARK 2.12. Due to (2.25), we need c′
0 > c0 if β = 1/2. This is why in

Assumption 2.14 below we impose extra smoothness on the coefficients and free
terms of the stochastic parts when β = 1/2.

To describe the regularity of the coefficients, we introduce the following space
introduced, for example, in [16]. Fix δ1 > 0, and for each r ≥ 0, let

Br :=

⎧⎪⎪⎨
⎪⎪⎩

L∞
(
R

d) : r = 0,

Cr−1,1(
R

d) : r = 1,2,3, . . . ,

Cr+δ1
(
R

d) : otherwise,
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where Cr+δ1(Rd) and Cr−1,1(Rd) are the Hölder space and the Zygmund space,
respectively. We also define the space Br(l2) for l2-valued functions using | · |l2 in
place of | · |.

It is well known (e.g., [16], Lemma 5.2) that for any γ ∈ R, u ∈ H
γ
p and a ∈

B |γ |,

(2.26) ‖au‖H
γ
p

≤ N(d,p, δ1, γ )|a|B |γ |‖u‖H
γ
p
,

and similarly for any b ∈ B |γ |(l2),

‖bu‖H
γ
p (l2)

≤ N(d,p, δ1, γ )|b|B |γ |(l2)‖u‖H
γ
p
.(2.27)

The following assumption is only for the divergence-type equation. We use the
notation f i(u), h(u), and g(u) to denote f i(t, x, u), h(t, x, u), and g(t, x, u), re-
spectively. Take c′

0 from (2.24) and note c′
0 − 1 < 1.

ASSUMPTION 2.13. (i) There exists a κ ∈ (0,1) so that for any u ∈H
1
p(T ),

f i(u) ∈ Lp(T ), h(u) ∈ H
−1
p (T ), g(u) ∈ H

c′
0−1

p (T , l2).

(ii) For any ε > 0, there exists K1 = K1(ε) so that∥∥f i(t, ·, u) − f i(t, ·, v)
∥∥
Lp

+ ∥∥h(t, ·, u) − h(t, ·, v)
∥∥
H−1

p (l2)

+ ∥∥g(t, ·, u) − g(t, ·, v)
∥∥
H

c′0−1
p (l2)

≤ ε‖u − v‖H 1
p

+ K1‖u − v‖Lp

(2.28)

for all u, v ∈ H 1
p and ω, t .

(iii) There exists a constant K2 > 0 such that∣∣σ ij (t, ·)∣∣B1(l2)
+ ∣∣μi(t, ·)∣∣

B
|c′0−1|

(l2)
+ ∣∣ν(t, ·)∣∣

B
|c′0−1|

(l2)
≤ K2 ∀i, j,ω, t.

Note that (2.28) is certainly satisfied if f i(v), h(v) and g(v) are Lipschitz con-
tinuous with respect to v in their corresponding spaces uniformly on ω and t .
Indeed, if g(v) is Lipschitz continuous then using c′

0 − 1 < 1 and an interpolation
inequality (see, e.g., [32], Section 2.4.7), we get for any ε > 0,∥∥g(u) − g(v)

∥∥
H

c′0−1
p (l2)

≤ N‖u − v‖
H

c′0−1
p

≤ ε‖u − v‖H 1
p

+ K(ε)‖u − v‖Lp .

Finally, we give our main result for divergence equation (1.2).



2102 I. KIM, K.-H. KIM AND S. LIM

THEOREM 2.2. Let p ≥ 2. Suppose that Assumptions 2.10 and 2.13 hold.
Then divergence-type equation (1.2) with the zero initial condition has a unique
solution u ∈ H1

p(T ) in the sense of Definition 2.5, and for this solution we have

(2.29) ‖u‖H1
p(T ) ≤ N

(∥∥f i(0)
∥∥
Lp(T ) + ∥∥h(0)

∥∥
H

−1
p (T )

+ ∥∥g(0)
∥∥
H

c′0−1
p (T )

)
,

where the constant N depends only on d , p, α, β , κ , δ0, δ1, K1, K2 and T .

Next, we introduce our result for nondivergence equation. To have H
γ+2
p -valued

solution we assume the following conditions.

ASSUMPTION 2.14. (i) There exists a κ ∈ (0,1) so that for any u ∈ H
γ+2
p (T ),

f (u) ∈H
γ
p(T ), g(u) ∈ H

γ+c′
0

p (T , l2).

(ii) There exists a constant K3 so that for any ω, t , i, j ,

(2.30)
∣∣aij (t, ·)∣∣B |γ | + ∣∣bi(t, ·)∣∣B |γ | + ∣∣c(t, ·)∣∣B |γ | ≤ K3,

and ∣∣σ ij (t, ·)∣∣
B

|γ+c′0|
(l2)

+ ∣∣μi(t, ·)∣∣
B

|γ+c′0|
(l2)

+ ∣∣ν(t, ·)∣∣
B

|γ+c′0|
(l2)

≤ K3.

(iii) For any ε > 0, there exists a constant K4 = K4(ε) > 0 such that∥∥f (t, u) − f (t, v)
∥∥
H

γ
p

+ ∥∥g(t, u) − g(t, v)
∥∥
H

γ+c′0
p (l2)

≤ ε‖u − v‖
H

γ+2
p

+ K4‖u − v‖H
γ
p
,

(2.31)

for any u, v ∈ H
γ+2
p and ω, t .

See [16] for some examples of (2.31). Here, we introduce only one nontrivial
example. Let γ + 2 − d/p > n for some n ∈ {0,1,2, . . .} and f0 = f0(x) ∈ H

γ
p .

Take

f (u) = f0(x) sup
x

∣∣Dn
xu

∣∣.
Take a δ > 0 so that γ + 2 − d/p −n > δ. Using a Sobolev embedding H

γ+2−δ
p ⊂

Cγ+2−δ−d/p ⊂ Cn, we get for any u, v ∈ H
γ+2
p and ε > 0,∥∥f (u) − f (v)

∥∥
H

γ
p

≤ ‖f0‖H
γ
p

sup
x

∣∣Dn
x(u − v)

∣∣
≤ N |u − v|Cn

≤ N‖u − v‖
H

γ+2−δ
p

≤ ε‖u − v‖
H

γ+2
p

+ K(ε)‖u − v‖H
γ
p
.

Here is our main result for nondivergence equation (1.1).
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THEOREM 2.3. Let γ ∈ R and p ≥ 2. Suppose that Assumptions 2.10 and
2.14 hold. Then nondivergence-type equation (1.1) with zero initial condition has
a unique solution u ∈ Hγ+2

p (T ) in the sense of Definition 2.5, and for this solution

(2.32) ‖u‖
H

γ+2
p (T )

≤ N
(∥∥f (0)

∥∥
H

γ
p(T ) + ∥∥g(0)

∥∥
H

γ+c′0
p (T ,l2)

)
,

where the constant N depends only on d , p, α, β , κ , δ0, δ1, K3, K4 and T .

3. Parabolic Littlewood–Paley inequality. In this section, we obtain a sharp
Lp-estimate for solutions to the model equation

(3.1) ∂α
t u = �u + ∂

β
t

ˆ t

0
gk dwk

s .

For this, we prove the parabolic Littlewood–Paley inequality related to the equa-
tion. For the classical case α = β = 1, we refer to [12, 15, 17].

Consider the fractional diffusion-wave equation

(3.2) ∂α
t u(t, x) = �u(t, x), u(0) = u0, 1α>1u

′(0) = 0.

By taking the Fourier transform and the inverse Fourier transform with respect to
x, we formally find that u(t) = p(t) ∗ u0 is a solution to this problem if p(t, x)

satisfies

(3.3) ∂α
t F(p) = −|ξ |2F(p), F(p)(0, ξ) = 1, 1α>1F

(
∂p

∂t

)
(0, ξ) = 0.

It turns out that (see [10, 14] or Lemma 3.1 below) there exists a function p(t, x),
called the fundamental solution, such that it satisfies (3.3). It is also true that p

is infinitely differentiable in (0,∞) × R
d \ {0} and limt→0

∂np(t,x)
∂tn

= 0 if x �= 0.
Define

(3.4) qα,β(t, x) :=
{
I

α−β
t p(t, x) : α ≥ β,

D
β−α
t p(t, x) : α < β,

and

q(t, x) := qα,1(t, x).

Note that qα,β is well-defined due to above mentioned properties of p. Moreover,

D
β−α
t p(t, x) = ∂

β−α
t p(t, x) since p(0, x) = 0 if x �= 0.

In the following lemma, we collect some important properties of p(t, x), q(t, x)

and qα,β(t, x) taken from [10] and [14].
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LEMMA 3.1. Let d ∈ N, α ∈ (0,2), β < α + 1
2 , and γ ∈ [0,2).

(i) There exists a fundamental solution p(t, x) satisfying above mentioned
properties. It also holds that for all t �= 0 and x �= 0,

(3.5) ∂α
t p(t, x) = �p(t, x),

∂p(t, x)

∂t
= �q(t, x),

and for each x �= 0, ∂
∂t

p(t, x) → 0 as t ↓ 0. Moreover, ∂
∂t

p(t, ·) is integrable in R
d

uniformly on t ∈ [ε, T ] for any ε > 0.
(ii) If n ≤ 3, Dn

xq(t, ·) is integrable in R
d uniformly on t ∈ [ε, T ] for any ε > 0.

(iii) There exist constants c = c(d,α) and N = N(d,α) such that if |x|2 ≥ tα ,∣∣p(t, x)
∣∣ ≤ N |x|−d exp

{−c|x| 2
2−α t−

α
2−α

}
.(3.6)

(iv) It holds that

F
{
Dσ

t qα,β(t, ·)}(ξ) = tα−β−σEα,1+α−β−σ

(−|ξ |2tα)
,(3.7)

where Ea,b(z), a > 0, is the Mittag-Leffler function defined as

Ea,b(z) :=
∞∑

k=0

zk

�(ak + b)
, z ∈ C.

(v) There exists a constant N = N(d, γ,α,β) such that∣∣Dσ
t (−�)γ/2qα,β(1, x)

∣∣ + ∣∣Dσ
t (−�)γ/2∂tqα,β(1, x)

∣∣
≤ N

(|x|−d+2−γ ∧ |x|−d−γ )
if d ≥ 2, and ∣∣Dσ

t (−�)γ/2qα,β(1, x)
∣∣ + ∣∣Dσ

t (−�)γ/2∂tqα,β(1, x)
∣∣

≤ N
({|x|1−γ (

1 + ln |x|1γ=1
)} ∧ |x|−1−γ )

if d = 1. Furthermore, for each n ∈ N,∣∣Dσ
t Dn

x(−�)γ/2qα,β(1, x)
∣∣ + ∣∣Dσ

t Dn
x(−�)γ/2∂tqα,β(1, x)

∣∣
≤ N(d, γ,α,β,n)

(|x|−d+2−γ−n ∧ |x|−d−γ−n)
.

(3.8)

(vi) The scaling properties hold:

qα,β(t, x) = t−
αd
2 +α−βqα,β

(
1, xt−

α
2
)
,(3.9)

Dσ
t (−�)γ/2qα,β(t, x) = t−σ− α(d+γ )

2 +α−βDσ
t (−�)γ/2qα,β

(
1, xt−

α
2
)
.(3.10)

PROOF. (i), (ii), (iii) and (v) are easily obtained from Theorem 2.1 and Theo-
rem 2.3 of [14]. The proof of (iv) can be found in Section 6 of [14]. For the scaling
property (vi), see [14], (5.2). �

The following result is well known, for instance, if α ∈ (0,1]. For the complete-
ness of the article, we give a proof.
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COROLLARY 3.2. Let f ∈ C2
0(Rd). Then

ˆ
Rd

p(t, x − y)f (y) dy

converges to f (x) uniformly as t ↓ 0.

PROOF. By (3.7), for any t > 0,
ˆ
Rd

p(t, y) dy = Fp(0) = Eα,1(0) = 1.

Also (3.9) shows that ‖p(t, ·)‖L1(R
d ) is a constant function of t . For any δ > 0,∣∣∣∣

ˆ
Rd

p(t, x − y)f (y) dy − f (x)

∣∣∣∣
=

∣∣∣∣
ˆ
Rd

p(t, y)
(
f (x − y) − f (x)

)
dy

∣∣∣∣
≤
ˆ

|y|<δ

∣∣p(t, y)
(
f (x − y) − f (x)

)∣∣dy

+
ˆ

|y|>δ

∣∣p(t, y)
(
f (x − y) − f (x)

)∣∣dy

=: I(δ) +J (δ).

Since f ∈ C2
0(Rd), for any ε > 0, one can take a small δ so that I(δ) < ε. More-

over, due to (3.6), for fixed δ > 0, J (δ) → 0 as t ↓ 0. The corollary is proved.
�

In the remainder of this section, we restrict the range of β so that

(3.11)
1

2
< β < α + 1

2
.

Thus by (2.24), we have

c1 := 2 − c′
0 = 2 − 2β − 1

α
∈ (0,2).

In the following section (i.e., Section 4), we prove that if g ∈ H
∞
0 (T , l2) then

the unique solution (in the sense of Definition 2.4) to equation (3.1) with the zero
initial condition is given by the formula

(3.12) u =
ˆ t

0

ˆ
Rd

qα,β(t − s, x − y)gk(s, y) dy dwk
s .
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By Burkholder–Davis–Gundy’s inequality,∥∥(−�)c1/2u
∥∥p
Lp(T )

≤ NE

ˆ
Rd

ˆ T

0

[ˆ t

0

(ˆ
Rd

(−�)c1/2qα,β(t − s,

x − y)g(s, y) dy

)2

l2

ds

]p/2
dt dx.

(3.13)

Our goal is to control the right-hand side of (3.13) in terms of ‖g‖Lp(T ,l2). For
this, we introduce some definitions as follows. Let H be a Hilbert space. For g ∈
C∞

c (Rd+1;H), define

T
α,β
t−s g(s, ·)(x) :=

ˆ
Rd

qα,β(t − s, x − y)g(s, y) dy.

Note that, due to Lemma 3.1(v), (−�)c1/2qα,β(t, ·) ∈ L1(R
d) for all t > 0. There-

fore, for any t > s

(−�)c1/2T
α,β
t−s g(s, ·) ∈ L1

(
R

d;H )
and

(−�)c1/2T
α,β
t−s g(s, ·)(x)

=
ˆ
Rd

(−�)c1/2qα,β(t − s, x − y)g(s, y) dy.

We also define the sublinear operator T as

T g(t, x) :=
[ˆ t

−∞
∣∣(−�)c1/2T

α,β
t−s g(s, ·)(x)

∣∣2
H ds

]1/2
,

where | · |H denotes the given norm in the Hilbert space H . T is sublinear due to
the Minkowski inequality

(3.14) ‖f + g‖L2((−∞,t);H) ≤ ‖f ‖L2((−∞,t);H) + ‖g‖L2((−∞,t);H).

Now we introduce a parabolic version of Littlewood–Paley inequality. The
proof is given at the end of this section.

THEOREM 3.1. Let H be a separable Hilbert space, p ∈ [2,∞), T ∈
(−∞,∞], and α ∈ (0,2). Assume that (3.11) holds. Then for any g ∈ C∞

c (Rd+1;
H),

(3.15)
ˆ
Rd

ˆ T

−∞
∣∣T g(t, x)

∣∣p dt dx ≤ N

ˆ
Rd

ˆ T

−∞
∣∣g(t, x)

∣∣p
H dt dx,

where N = N(d,p,α,β).
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REMARK 3.3. By Theorem 3.1, the operator T can be continuously extended
onto Lp(Rd+1;H). We denote this extension by the same notation T .

REMARK 3.4. Take u and g from (3.12). Extend g(t) = 0 for t ≤ 0. Note that
the right-hand side of (3.13) is E

´
Rd

´ T

−∞ |T g(t, x)|p dt dx. Thus, using (3.15)
(actually Remark 3.3) for each ω and taking the expectation, we get∥∥(−�)c1/2u

∥∥p
Lp(T ) ≤ N‖g‖p

Lp(T ,l2)
.

First, we prove Theorem 3.1 for p = 2. The following lemma is a slight ex-
tension of [3], Lemma 3.8, which is proved only for α ∈ (0,1) with constant N

depending also on T . For the proof, we use the following well-known property
of the Mittag-Leffler function: if α ∈ (0,2) and b ∈ C, then there exist positive
constants ε = ε(α) and C = C(α,b) such that

(3.16)
∣∣Eα,b(z)

∣∣ ≤ C
(
1 ∧ |z|−1)

, π − ε ≤ ∣∣arg(z)
∣∣ ≤ π.

See [28] for the proof of (3.16, Lemma 3.1).

LEMMA 3.5. Suppose that the assumptions in Theorem 3.1 hold. Then for any
T ∈ (−∞,∞] and g ∈ C∞

c (Rd+1;H),

(3.17)
ˆ
Rd

ˆ T

−∞
∣∣T g(t, x)

∣∣2 dt dx ≤ N

ˆ
Rd

ˆ T

−∞
∣∣g(t, x)

∣∣2
H dt dx,

where N = N(d,p,α,β) is independent of T .

PROOF. Step 1. First, assume g(t, x) = 0 for t ≤ 0. In this case, we may as-
sume T > 0 because the left-hand side of (3.17) is zero if T ≤ 0.

We prove (3.17) for T = 1. Since g(t, x) = T g(t, x) = 0 for t ≤ 0, by Parseval’s
identity and (3.7),

ˆ
Rd

ˆ 1

−∞
∣∣T g(t, x)

∣∣2 dt dx

=
ˆ 1

0

ˆ t

0

ˆ
Rd

|ξ |2c1
∣∣F{

qα,β(t − s, ·)}(ξ)
∣∣2∣∣F{g}(s, ξ)

∣∣2
H dξ ds dt

≤
ˆ

|ξ |≤1

ˆ 1

0

∣∣F{g}(s, ξ)
∣∣2
H

×
(ˆ 1

s

|ξ |2c1
∣∣tα−βEα,1−β+α

(−|ξ |2tα)∣∣2 dt

)
ds dξ

+
ˆ

|ξ |≥1

ˆ 1

0

∣∣F{g}(s, ξ)
∣∣2
H
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×
(ˆ 1

s

|ξ |2c1
∣∣tα−βEα,1−β+α

(−|ξ |2tα)∣∣2 dt

)
ds dξ

≤ N

ˆ 1

0

ˆ
Rd

∣∣g(t, x)
∣∣2
H dx dt

+ N

ˆ
|ξ |≥1

ˆ 1

0

∣∣F{g}(s, ξ)
∣∣2
H

×
(ˆ 1

s

|ξ |2c1
∣∣tα−βEα,1−β+α

(−|ξ |2tα)∣∣2 dt

)
ds dξ,

where the last inequality is due to (3.16) and the condition α − β > −1/2. Thus to
prove our assertion for T = 1 we only need to prove

sup
ξ

(
1|ξ |≥1|ξ |2c1

ˆ 1

0

∣∣tα−βEα,1−β+α

(−|ξ |2tα)∣∣2 dt

)
< ∞.

By (3.16), if |ξ | ≥ 1 (recall we assumed β > 1/2 in this section),

|ξ |2c1

ˆ 1

0

∣∣tα−βEα,1−β+α

(−|ξ |2tα)∣∣2 dt

≤ N |ξ |2c1

ˆ |ξ |−2/α

0
t2(α−β) dt + N |ξ |2c1

ˆ 1

|ξ |−2/α

∣∣∣∣ tα−β

|ξ |2tα
∣∣∣∣2 dt

≤ N |ξ |2(c1−2+ 2β−1
α

) + N |ξ |2c1−4(|ξ |2(
2β−1

α
) − 1

)
≤ 3N.

Therefore, the case T = 1 is proved.
For arbitrary T > 0, we use (3.10), which implies

(3.18)
(−�)c1/2qα,β

(
T (t − s), x

)
= T − α(d+c1)

2 +α−β(−�)c1/2qα,β

(
t − s, T − α

2 x
)
,

and consequently

(3.19) T g(T t, x) = T g̃
(
t, T − α

2 x
)
,

where g̃(t, x) = g(T t, T
α
2 x). By using the result proved for T = 1,ˆ

Rd

ˆ T

−∞
∣∣T g(t, x)

∣∣2 dt dx = T 1+ αd
2

ˆ
Rd

ˆ 1

−∞
∣∣T g̃(t, x)

∣∣2 dt dx

≤ NT 1+ αd
2

ˆ
Rd

ˆ 1

−∞
∣∣g̃(t, x)

∣∣2 dt dx

= N

ˆ
Rd

ˆ T

−∞
∣∣g(t, x)

∣∣2 dt dx.
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Thus (3.17) holds for all T > 0 with a constant independent of T . It follows that
(3.17) also holds for T = ∞.

Step 2. General case. Take a ∈ R so that g(t, x) = 0 for t ≤ a. Then obviously,
for ḡ(t, x) := g(t + a, x) we have ḡ(t) = 0 for t ≤ 0. Thus it is enough to apply
the result for Step 1 with ḡ and T − a in place of g and T , respectively. �

For a real-valued measurable function h on R
d , define the maximal function

Mxh(x) := sup
r>0

1

|Br(x)|
ˆ

Br(x)

∣∣h(y)
∣∣dy

= sup
r>0

 
Br(x)

∣∣h(y)
∣∣dy.

The Hardy–Littlewood maximal theorem says

(3.20) ‖Mxh‖Lp(Rd ) ≤ N(d,p)‖h‖Lp(Rd ) ∀p > 1.

For a function h(t, x), set

Mxh(t, x) = Mx

(
h(t, ·))(x),

Mth(t, x) = Mt

(
h(·, x)

)
(t),

and

MtMxh(t, x) = Mt

(
Mxh(·, x)

)
(t).

To evaluate MtMxh(t, x), we first fix t and estimate (Mxh(t, ·))(x). After this, we
fix x and regard (Mxh(t, ·))(x) as a function of t only to estimate the maximal
function with respect to t .

Denote

(3.21) Q0 := [−2
2
α ,0

] × [−1,1]d .

LEMMA 3.6. Let g ∈ C∞
c (Rd+1;H) and assume that g = 0 outside of

[−4
2
α ,4

2
α ] × B3d . Then for (t, x) ∈ Q0,ˆ

Q0

∣∣T g(s, y)
∣∣2 ds dy ≤ NMtMx |g|2H (t, x),

where N = N(d,α,β).

PROOF. By Lemma 3.5,
ˆ

Q0

∣∣T g(s, y)
∣∣2 ds dy ≤

ˆ 0

−4
2
α

ˆ
B3d

∣∣g(s, y)
∣∣2
H dy ds.

For any (t, x) ∈ Q0 and y ∈ B3d , since |x − y| ≤ |x| + |y| ≤ √
d + 3d ≤ 4d , we
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obtain ˆ 0

−4
2
α

ˆ
B3d

∣∣g(s, y)
∣∣2
H dy ds ≤

ˆ 0

−4
2
α

ˆ
|x−y|≤4d

∣∣g(s, y)
∣∣2
H dy ds

≤ N

ˆ 0

−4
2
α

Mx

∣∣g(s, x)
∣∣2
H ds

≤ NMtMx |g|2H (t, x).

The lemma is proved. �

Here is a generalization of Lemma 3.6.

LEMMA 3.7. Let g ∈ C∞
c (Rd+1;H) and assume that g(t, x) = 0 for |t | ≥ 4

2
α .

Then for any (t, x) ∈ Q0,ˆ
Q0

∣∣T g(s, y)
∣∣2 ds dy ≤ N(d,α,β)MtMx |g|2H(t, x).

PROOF. Take ζ ∈ C∞
c (Rd) such that ζ = 1 in B2d and ζ = 0 outside B3d .

Recall that T is a sublinear operator and, therefore,

T g ≤ T (ζg) + T
(
(1 − ζ )g

)
.

Since T (ζg) can be estimated by Lemma 3.6, we may assume that g(t, x) = 0 for

x ∈ B2d . Let 0 > s > r > −4
2
α . Then by (3.10),∣∣(−�)c1/2T

α,β
s−r g(r, ·)(y)

∣∣
H

≤ (s − r)−
αd
2 +α−β− αc1

2

×
ˆ
Rd

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 y

)∣∣∣∣g(r, y − z)
∣∣
H dz

= (s − r)−
αd
2 − 1

2

×
ˆ
Rd

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 y

)∣∣∣∣g(r, y − z)
∣∣
H dz.

(3.22)

To proceed further, we use the following integration by parts formula: if F and
G are smooth, then for any 0 < ε < R < ∞,ˆ

ε≤|η|≤R

F(η)G
(|η|)dη

= −
ˆ R

ε

G′(ρ)

[ˆ
|η|≤ρ

F (η)dη

]
dρ

+ G(R)

ˆ
|η|≤R

F(η)dη − G(ε)

ˆ
|η|≤ε

F (η) dη.

(3.23)
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Indeed, (3.23) is obtained by applying integration by parts toˆ R

ε

G(ρ)
d

dρ

(ˆ
Bρ(0)

F (z) dz

)
dρ =

ˆ R

ε

G(ρ)

(ˆ
∂Bρ(0)

F (s) dSρ

)
dρ

=
ˆ

R≥|z|≥ε

F (z)G
(|z|)dz.

Observe that if (s, y) ∈ Q0 and ρ > 1, then

(3.24) |x − y| ≤ 2d, Bρ(y) ⊂ B2d+ρ(x) ⊂ B(2d+1)ρ(x),

whereas if ρ ≤ 1 then for z ∈ Bρ(0), |y − z| ≤ √
d + 1 ≤ 2d , and thus

g(r, y − z) = 0. Therefore, by (3.23) and (3.8),

(s − r)−
αd
2 − 1

2

ˆ
Rd

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 y

)∣∣∣∣g(r, y − z)
∣∣
H dz

≤ N(s − r)−
αd
2 − 1

2 − α
2

ˆ ∞

1

(
(s − r)−

α
2 ρ

)−d−1−c1

[ˆ
|z|≤ρ

∣∣g(r, y − z)
∣∣
H dz

]
dρ

≤ N(s − r)α−β

ˆ ∞

1
ρ−d−1−c1

[ˆ
|z|≤ρ

∣∣g(r, y − z)
∣∣
H dz

]
dρ

≤ N(s − r)α−β

ˆ ∞

1
ρ−1−c1

[ 
B3ρ(x)

∣∣g(r, z)
∣∣
H dz

]
dρ

≤ N(s − r)α−β
Mx |g|H(r, x).

Then due to the fact that (Mx |g|H )2 ≤Mx |g|2H ,ˆ
Q0

∣∣T g(s, y)
∣∣2 ds dy =

ˆ
Q0

ˆ s

−∞
∣∣(−�)c1/2T

α,β
s−r g(r, ·)(y)

∣∣2
H dr ds dy

≤ N

ˆ
Q0

ˆ s

−4
2
α

[
Mx |g|2H (r, x)(s − r)2(α−β)]dr ds dy

≤ N

ˆ 0

−4
2
α

(ˆ 0

r

(s − r)2(α−β) ds

)
Mx |g|2H(r, x) dr

≤ NMtMx |g|2H(t, x).

The lemma is proved. �

LEMMA 3.8. Let g ∈ C∞
c (Rd+1;H) and assume g(t, x) = 0 outside of

(−∞,−3
2
α ) × B3d . Then for any (t, x) ∈ Q0,ˆ

Q0

∣∣T g(s, y)
∣∣2 ds dy ≤ NMtMx |g|2H (t, x),

where N = N(d,α,β).
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PROOF. Note that g(s, ·) = 0 for s ≥ −3
2
α . Recalling (3.10), we have∣∣T g(s, y)

∣∣2
≤
ˆ s

−∞
∣∣(−�)c1/2T

α,β
s−r g(r, ·)(y)

∣∣2
H dr

=
ˆ −3

2
α

−∞

∣∣∣∣(s − r)−
αd
2 − 1

2

×
ˆ
Rd

(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)
g(r, y − z) dz

∣∣∣∣2
H

dr

≤
ˆ −3

2
α

−∞
(s − r)−αd−1

×
[ˆ

Rd

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣∣∣g(r, y − z)
∣∣
H dz

]2
dr.

If |z| ≥ 4d , then g(r, y − z) = 0 since y ∈ Q0 and |y − z| ≥ |z| − |y| ≥ 3d . There-
fore, by Minkowski’s inequality and Lemma 3.1,ˆ

[−1,1]d

∣∣∣∣
ˆ
Rd

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣∣∣g(r, y − z)
∣∣
H dz

∣∣∣∣2 dy

≤
ˆ

[−1,1]d

∣∣∣∣
ˆ

|z|≤4d

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣∣∣g(r, y − z)

∣∣∣∣
H

dz|2 dy

≤
(ˆ

|z|≤4d

[ˆ
[−1,1]d

∣∣g(r, y − z)
∣∣2
H dy

]1/2∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣dz

)2

≤
(ˆ

|z|≤4d

[ˆ
B5d (0)

∣∣g(r, y)
∣∣2
H dy

]1/2∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣dz

)2

≤ NMx |g|2H(r, x)

(ˆ
|z|≤4d

∣∣(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣dz

)2

≤ N(s − r)α(d+ĉ−2)
Mx |g|2H (r, x),

where ĉ ∈ (1,2) if c1 = 1 and d = 1, and otherwise ĉ = c1. Since |s − r| ∼ |r| for
r < −3

2
α and −2

2
α < s < 0, we haveˆ

Q0

∣∣T g(s, y)
∣∣2 ds dy =

ˆ 0

−2
2
α

ˆ
[−1,1]d

∣∣T g(s, y)
∣∣2 dy ds

≤ N

ˆ 0

−2
2
α

ˆ −3
2
α

−∞
(s − r)α(ĉ−2)−1

Mx |g|2H (r, x) dr ds
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≤ N

ˆ −3
2
α

−∞
Mx |g|2H (r, x)

dr

|r|α(2−ĉ)+1

≤ N

ˆ −3
2
α

−∞

(ˆ 0

−r

Mx |g|2H(s, x) ds

)
dr

|r|α(2−ĉ)+2

≤ NMtMx |g|2H (t, x)

ˆ ∞

3
2
α

dr

rα(2−ĉ)+1

≤ NMtMx |g|2H (t, x).

The lemma is proved. �

LEMMA 3.9. Let g ∈ C∞
c (Rd+1;H) and assume that g(t, x) = 0 outside of

(−∞,−3
2
α ) × Bc

2d . Then for any (t, x) ∈ Q0,ˆ
Q0

ˆ
Q0

∣∣T g(s, y) − T g(r, z)
∣∣2 ds dy dr dz ≤ NMtMx |g|2H(t, x),

where N = N(d,α,β).

PROOF. Due to Poincaré’s inequality, it is enough to show

(3.25)
ˆ

Q0

(∣∣∣∣ ∂

∂s
T g

∣∣∣∣2 + |DyT g|2
)

ds dy ≤ NMtMx |g|2H(t, x).

Because of the similarity, we only prove

(3.26)
ˆ

Q0

|DyT g|2 ds dy ≤ NMtMx |g|2H (t, x).

Note that since g(s, ·) = 0 for s ≥ −3
2
α ,

DxT g(t, x) = Dx

[ˆ −3
2
α

−∞
∣∣(−�)c1/2T

α,β
t−s g(s, ·)(x)

∣∣2
H ds

]1/2

≤
[ˆ −3

2
α

−∞
∣∣Dx(−�)c1/2T

α,β
t−s g(s, ·)(x)

∣∣2
H ds

]1/2
,

where the above inequality is from Minkowski’s inequality; recall (3.10). Thus for
any (s, y) ∈ Q0,∣∣DyT g(s, y)

∣∣2

≤
ˆ −3

2
α

−∞
∣∣Dy(−�)c1/2T

α,β
s−r g(r, ·)(y)

∣∣2
H dr
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=
ˆ −3

2
α

−∞

∣∣∣∣(s − r)−
αd
2 − 1

2 − α
2

×
ˆ
Rd

Dx(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)
g(r, y − z) dz

∣∣∣∣2
H

dr

≤
ˆ −3

2
α

−∞
(s − r)−αd−1−α

×
[ˆ

Rd

∣∣Dx(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣∣∣g(r, y − z)
∣∣
H dz

]2
dr.

Since g(r, y − z) = 0 if |z| ≤ d and y ∈ [−1,1]d ,ˆ
Q0

∣∣DyT g(s, y)
∣∣2 ds dy

≤
ˆ

Q0

ˆ −4
2
α

−∞
(s − r)−α(d+1)−1

×
[ˆ

|z|≥d

∣∣Dx(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣

× ∣∣g(r, y − z)
∣∣
H dz

]2
dr ds dy.

Let (t, x) ∈ Q0. By using (3.23) and Lemma 3.1(v),
ˆ

|z|≥d

∣∣Dx(−�)c1/2qα,β

(
1, (s − r)−

α
2 z

)∣∣∣∣g(r, y − z)
∣∣
H dz

≤ N(s − r)−
α
2

ˆ ∞

d

(
(s − r)−

α
2 ρ

)−d−c1−ε
(ˆ

Bρ(y)

∣∣g(r, z)
∣∣
H dz

)
dρ

≤ N(s − r)
α
2 (d+c1+ε−1)

Mx

∣∣g(r, x)
∣∣
H ,

where ε ∈ [0,2] is taken so that c1 + ε ∈ (1,2). Therefore,ˆ
Q0

∣∣DyT g(s, y)
∣∣2 ds dy

≤ N

ˆ 0

−2
2
α

[ˆ −3
2
α

−∞
(s − r)α(c1+ε−2)−1

Mx

∣∣g(r, x)
∣∣2
H dr

]
ds

≤ N

ˆ −3
2
α

−∞

(ˆ 0

−r

Mx

∣∣g(r, x)
∣∣2
H ds

)
|r|α(c1+ε−2)−2 dr
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≤ NMtMx

∣∣g(t, x)
∣∣2
H

ˆ ∞

3
2
α

rα(c1+ε−2)−1 dr

≤ NMtMx

∣∣g(t, x)
∣∣2
H .

Thus (3.26) and the lemma are proved. �

For a measurable function h(t, x) on R
d+1, we define the sharp function

h#(t, x) = sup
Q

 
Q

∣∣h(r, z) − hQ

∣∣dr dz,

where

hQ =
 

Q

h(s, y) dy ds

and the supremum is taken over all Q ⊂ R
d+1 containing (t, x) of the form

Q = QR(s, y), R > 0

= (
s − R

2
α /2, s + R

2
α /2

) × (
y1 − R/2, y1 + R/2

) × · · ·
× (

yd − R/2, yd + R/2
)
.

By the Fefferman–Stein theorem,

(3.27) ‖h‖Lp(Rd+1) ≤ N
∥∥h#∥∥

Lp(Rd+1), p > 1.

Also note that for any c ∈ R, 
Q

∣∣h(r, z) − hQ

∣∣2 dr dz

=
 

Q

∣∣∣∣
 

Q

(
h(r, z) − h(s, y)

)
ds dy

∣∣∣∣2 dr dz ≤ 4
 

Q

∣∣h(r, z) − c
∣∣2 dr dz.

(3.28)

PROOF OF THEOREM 3.1. If p = 2, (3.15) follows from Lemma 3.5. Hence
we assume p > 2.

First, we prove for each Q = QR(s, y) and (t, x) ∈ Q,

(3.29)
 

Q

∣∣T g − (T g)Q
∣∣2 dr dz ≤ NMtMx |g|2H(t, x).

Note that for any h0 ∈ R and h ∈ R
d ,

T g(t − h0, x − h)

=
[ˆ t−h0

−∞
∣∣(−�)c1/2T

α,β
t−h0−sg(s, ·)(x − h)

∣∣2
H ds

]1/2
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=
[ˆ t−h0

−∞

∣∣∣∣(−�)c1/2
ˆ
Rd

qα,β(t − h0 − s, x − h − y)g(s, y) dy

∣∣∣∣2
H

ds

]1/2

=
[ˆ t

−∞

∣∣∣∣(−�)c1/2
ˆ
Rd

qα,β(t − s, x − y)ḡ(s, y) dy

∣∣∣∣2
H

ds

]1/2

= T ḡ(t, x),

where ḡ(s, y) := g(s −h0, y −h). This shows that to prove (3.29) we may assume

(s + R
2
α , y) = (0,0).

Also, due to [3.18) (or (3.19)],

T g
(
c

2
α ·, c·)(t, x) = T g

(
c

2
α t, cx

)
.

Since dilations do not affect averages, it suffices to prove (3.29) with R = 2, that
is,

Q = Q0 = [−2
2
α ,0

] × [−1,1]d .

Now we take a function ζ ∈ C∞
c such that ζ = 1 on [−3

2
α ,3

2
α ], ζ = 0 outside of

[−4
2
α ,4

2
α ], and 0 ≤ ζ ≤ 1. We also choose a function η ∈ C∞

c (Rd) such that η = 1
on B2d , η = 0 outside of B3d , and 0 ≤ η ≤ 1. Set

g1(t, x) = gζ, g2 = g(1 − ζ )η, g3 = g(1 − ζ )(1 − η).

Observe that g = g1 + g2 + g3 and

(−�)c1/2T
α,β
t−s g1(s, y) = ζ(s)(−�)c1/2T

α,β
t−s g(s, y),

T g ≤ T g1 + T (g2 + g3),(3.30)

T g3 ≤ T (g2 + g3) ≤ T g.(3.31)

(3.30) is because T is sublinear [see (3.14)], and (3.31) comes from the facts g3 =
(1 − η)(g2 + g3), g2 + g3 = (1 − ζ )g, |1 − η(s)| ≤ 1, and |1 − ζ(s)| ≤ 1. Hence
for any constant c,

(3.32) |T g − c| ≤ |T g1| +
∣∣T (g2 + g3) − c

∣∣
and

(3.33)
∣∣T (g2 + g3) − c

∣∣ ≤ |T g2| + |T g3 − c|.
Indeed, (3.32) is from (3.30) if c ≤ T g, and if c > T g then it follows from T (g2 +
g3) ≤ T g. Similarly, (3.33) is obvious if c ≤ T (g2 + g3), and c > T (g2 + g3) we
use T g3 ≤ T (g2 + g3).

Therefore, for any c ∈ R,∣∣T g(s, y) − c
∣∣ ≤ ∣∣T g1(s, y)

∣∣ + ∣∣T (g2 + g3)(s, y) − c
∣∣

≤ ∣∣T g1(s, y)
∣∣ + ∣∣T g2(s, y)

∣∣ + ∣∣T g3(s, y) − c
∣∣,
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and by (3.28) 
Q0

∣∣T g(s, y) − (T g)Q0

∣∣2 ds dy

≤ 4
 

Q0

∣∣T g(s, y) − c
∣∣2 ds dy

≤ 16
 

Q0

∣∣T g1(s, y)
∣∣2 ds dy + 16

 
Q0

∣∣T g2(s, y)
∣∣2 ds dy

+ 16
 

Q0

∣∣T g3(s, y) − c
∣∣2 dy ds.

Note g1 and g2 satisfy the conditions of Lemma 3.7 and 3.8, respectively, and thus 
Q0

∣∣T g1(s, y)
∣∣2 ds dy +

 
Q0

∣∣T g2(s, y)
∣∣2 ds dy

≤ N
(
MtMx |g1|2H (t, x) +MtMx |g2|2H(t, x)

) ≤ NMtMx |g|2H(t, x).

The second inequality above is due to |gi | ≤ |g| (i = 1,2,3).
Taking c = (T g3)Q0 , we get

(3.34)

 
Q0

∣∣T g3(s, y) − (T g3)Q0

∣∣2 ds dy

≤
 

Q0

 
Q0

∣∣T g3(s, y) − T g3(r, z)
∣∣2 dr dz ds dy.

Note also, on Q0, T g3 does not depend on the values of g3(t, x) for t > 0. Hence
the above two integrals do not change if we replace g3 by g3ξ , where ξ ∈ C∞(R)

so that 0 ≤ ξ ≤ 1, ξ = 1 for t ≤ 1, and ξ = 0 for t ≥ 22/α . Now it is easy to check
that g3ξ satisfies the assumptions of Lemma 3.9, and therefore the right-hand side
of (3.34) is controlled by

MtMx |g3ξ |2H (t, x) ≤MtMx |g|2H(t, x).

Hence (3.29) is finally proved.
We continue the proof of the theorem. By (3.29) and Jensen’s inequality,

(T g)#(t, x) ≤ N
(
MtMx |g|2H(t, x)

)1/2
.

Therefore, by the Fefferman–Stein theorem ([31], Theorem 4.2.2) and the Hardy–
Littlewood maximal theorem ([31], Theorem 1.3.1),

‖T g‖Lp(Rd+1) ≤ N
∥∥(T g)#∥∥

Lp(Rd+1)

≤ N
∥∥MtMx |g|2H

∥∥1/2
Lp/2(R

d+1)
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≤ N
∥∥Mx |g|2H

∥∥1/2
Lp/2(R

d+1)

≤ N
∥∥|g|H

∥∥
Lp(Rd+1).

This proves the theorem if T = ∞. Note that if T < ∞ the left-hand side of (3.15)
does not depend on the value of g for t ≥ T . Take ξ̃ ∈ C∞(R) such that 0 ≤ ξ̃ ≤ 1,
ξ̃ = 1 for t ≤ T and ξ̃ = 0 for t ≥ T + ε, ε > 0. Then it is enough to apply the
result for T = ∞ with gξ̃ . Since ε > 0 is arbitrary the theorem is proved. �

4. Model equation. Let α ∈ (0,2) and β ∈ (−∞, α + 1
2). In this section, we

obtain the uniqueness, existence, and sharp estimate of strong solutions to the
model equation

(4.1) ∂α
t u(t, x) = �u(t, x) + ∂

β
t

ˆ t

0
gk(s, x) dwk

s , t > 0

with the zero initial condition u(0, x) = 0 [additionally ∂tu(0, x) = 0 if α > 1].
The following lemma is used to estimate solutions to the equation when β <

1/2.

LEMMA 4.1. Let γ ∈ R, p > 2, β < 1
2 , and g ∈ H

γ
p(T , l2). Then for any t ∈

[0, T ],

E

ˆ t

0

∥∥∥∥∥
∞∑

k=1

∂
β
t

ˆ r

0
gk(s, ·) dwk

s

∥∥∥∥∥
p

H
γ
p

dr ≤ N(d,p,β,T )I
1−2β
t ‖g‖p

H
γ
p(·,l2)(t).

In particular,

E

ˆ t

0

∥∥∥∥∥
∞∑

k=1

∂
β
t

ˆ r

0
gk(s, ·) dwk

s

∥∥∥∥∥
p

H
γ
p

dr ≤ N‖g‖p

H
γ
p(t,l2)

.

PROOF. Due to the isometry (I − �)γ/2 : H
γ
p → Lp , we only need to prove

the case γ = 0. By Lemma 2.2(iii),

∂
β
t

( ∞∑
k=1

ˆ r

0
gk(s, x) dwk

s

)
= 1

�(1 − β)

∞∑
k=1

ˆ t

0
(t − s)−βgk(s, x) dwk

s ,

for almost all t ≤ T (a.s.). By the Burkholder–Davis–Gundy inequality and the
Hölder inequality, for all t ≤ T ,

E

ˆ t

0

∥∥∥∥∥ 1

�(1 − β)

∞∑
k=1

ˆ r

0
(r − s)−βgk(s, ·) dwk

s

∥∥∥∥∥
p

Lp

dr

≤ NE

ˆ
Rd

ˆ t

0

(ˆ r

0
(r − s)−2β

∣∣g(s, x)
∣∣2
l2

ds

)p/2
dr dx
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≤ NE

ˆ
Rd

ˆ t

0

(ˆ r

0
(r − s)

−2β( 2
p
+p−2

p
)∣∣g(s, x)

∣∣2
l2

ds

)p/2
dr dx

≤ NE

ˆ
Rd

ˆ t

0

ˆ r

0
(r − s)−2β

∣∣g(s, x)
∣∣p
l2

ds dr dx

= N

ˆ t

0
(t − s)−2β‖g‖p

Lp(s,l2)
ds

= NI
1−2β
t ‖g‖p

Lp(·,l2)(t).

The lemma is proved. �

A version of Lemma 4.2 can be found in [3] for p = 2 and α,β ∈ (0,1). How-
ever, solution spaces are slightly different and our proof is more rigorous.

LEMMA 4.2. Let g ∈ H
∞
0 (T , l2) and define

u(t, x) :=
∞∑

k=1

ˆ t

0

ˆ
Rd

qα,β(t − s, x − y)gk(s, y) dy dwk
s .(4.2)

Then u ∈ H2
p(T ) and satisfies (4.1) with the zero initial condition in the sense of

distributions (see Definition 2.5).

PROOF. Let (t, x) ∈ [0, T ] ×R
d . Set

v(t, x) :=
∞∑

k=1

ˆ t

0
gk(s, x) dwk

s , w(t, x) := I
α−β
t v(t, x),

where I
α−β
t v = D

β−α
t v if α < β . Note that since g ∈ H

∞
0 (T , l2), by the Kol-

mogorov continuity theorem

v ∈ C1/2−ε([0, T ],Hm
p

)
for any ε > 0 and m. Thus w ∈ Cδ([0, T ],Hm

p ) for some δ > 0 [see (2.8)].
By Fubini’s theorem, if α ≥ β and fractional integration by parts (e.g., [3],

Lemma 2.3) if α < β ,ˆ t

0
Iα−β
s p(s, x − y)

(ˆ t−s

0
gk(r, y) dwk

r

)
ds

=
ˆ t

0
p(t − s, x − y)Iα−β

s

ˆ s

0
gk(r, y) dwk

r ds.

Here, Iα
s p(s, x − y) and I

α−β
s

´ s

0 gk(r, y) dwk
r are used to denote (I

α−β
t p(·, x −

y))(s) and (I
α−β
t

´ ·
0 gk(r, y) dwk

r )(s), respectively. Thus, using the stochastic Fu-
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bini theorem (see [19], Lemma 2.7) we get, for each (t, x) (a.s.),ˆ t

0
u(s, x) ds =

∞∑
k=1

ˆ
Rd

ˆ t

0
Iα−β
s p(s, x − y)

ˆ t−s

0
gk(r, y) dwk

r ds dy

=
∞∑

k=1

ˆ
Rd

ˆ t

0
p(t − s, x − y)Iα−β

s

ˆ s

0
gk(r, y) dwk

r dy ds

=
ˆ t

0

ˆ
Rd

p(t − s, x − y)w(s, y) dy ds.

Due to the continuity with respect to t , for each x we getˆ t

0
u(s, x) ds =

ˆ t

0

ˆ
Rd

p(t − s, x − y)w(s, y) dy ds ∀t ≤ T (a.s.)

and, therefore (a.s.)

u(t, x) = ∂

∂t

ˆ t

0

ˆ
Rd

p(t − s, x − y)w(s, y) dy ds (a.e.) t ≤ T .(4.3)

In other words, the above equality holds (a.e.) on 
 × [0, T ] ×R
d .

Next, we claim that

u(t, x) − w(t, x) =
ˆ t

0

ˆ
Rd

q(t − s, x − y)�w(s, y) dy ds(4.4)

(a.e.) on 
×[0, T ]×R
d . By the definition of the differentiation, for each (ω, t, x),

∂

∂t

ˆ t

0

ˆ
Rd

p(t − s, x − y)w(s, y) dy ds

= lim
h↓0

1

h

ˆ t+h

t

ˆ
Rd

(
p(t + h − s, x − y)

)
w(s, y) dy ds

+ lim
h↓0

ˆ t

0

ˆ
Rd

[
p(t + h − s, x − y) − p(t − s, x − y)

h

]
w(s, y) dy ds.

By the mean value theorem, the integration by parts, and Lemma 3.1(i) and (ii),

lim
h↓0

ˆ t

0

ˆ
Rd

[
p(t + h − s, x − y) − p(t − s, x − y)

h

]
w(s, y) dy ds

= lim
h↓0

ˆ t

0

ˆ
Rd

∂p

∂t
(t + θh − s, x − y)w(s, y) dy ds, θ ∈ (0,1)

= lim
h↓0

ˆ t

0

ˆ
Rd

q(t + θh − s, x − y)�w(s, y) dy ds

=
ˆ t

0

ˆ
Rd

q(t − s, x − y)�w(s, y) dy ds.
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For the last equality above, we used the L1-continuity of the integrable function
[27], Theorem 9.5, which implies that for any f ∈ L1([0, t + ε]), where ε > 0, it
holds that limh→0

´ t

0 |f (s + h) − f (s)|ds = 0.
On the other hand, due to Corollary 3.2,

lim
h↓0

1

h

ˆ t+h

t

ˆ
Rd

p(t + h − s, x − y)w(s, y) dy ds = w(t, x).

Thus (4.4) is proved due to (4.3), and from (4.4), it easily follows that u has a
H 2

p-valued continuous version since g ∈ H
∞
0 (T , l2). It only remains to show that

u satisfies (4.1). By representation formula (4.4), it follows that u − w ∈ Hα,2
p,0(T )

(a.s.), and

∂α
t (u − w) = �(u − w) + �w(t, x)

= �u
(4.5)

in Lp(T ). See Remark 2.9 for spaces Hα,2
p,0(T ) and Lp(T ). Actually in [13],

Lemma 3.5, it is proved that (4.4) gives the unique solution to (4.5) in the space
Hα,2

p,0(T ) if �w is sufficiently smooth. However, one can easily check that this

representation holds even if �w ∈ Lp([0, T ] × R
d) by using an approximation

argument. It follows from (2.14) and Remark 2.9 that for any φ ∈ C∞
c (Rd) (a.s.),(

u(t) − w(t),φ
) = Iα(�u,φ) (a.e.) t ≤ T .

Taking (w(t), φ) to the right-hand side of the equality and using the continuity of
u with respect to t , we get

(
u(t), φ

) = Iα
t (�u,φ) + I

α−β
t

ˆ t

0

(
gk,φ

)
dwk

s ∀t ≤ T (a.s.).

Therefore, u is a solution to (4.1) in the sense of distributions because u itself is
an H 2

p-valued continuous process. The lemma is proved. �

Recall, for κ ∈ (0,1),

c′
0 = c′

0(κ) = (2β − 1)+
α

+ κ1β=1/2 ∈ [0,2).

THEOREM 4.1. Let γ ∈ R and p ≥ 2. Suppose g ∈ H
γ+c′

0
p (T , l2) for some

κ > 0. Then equation (4.1) with zero initial condition has a unique solution u ∈
Hγ+2

p (T ) in the sense of distributions, and for this solution we have

(4.6) ‖u‖Hγ+2
p (T )

≤ N‖g‖
H

γ+c′0
p (T ,l2)

,

where N = N(d,p,α,β, κ, T ). Furthermore, if β > 1/2 then

(4.7) ‖uxx‖Hγ
p(T ) ≤ N

∥∥�c′
0/2g

∥∥
H

γ
p(T ,l2)

,

where N = N(d,p,α,β) is independent of T .



2122 I. KIM, K.-H. KIM AND S. LIM

PROOF. Due to the isometry (I − �)γ/2 : H
γ
p → Lp , we only need to prove

the case γ = 0.
Recall that as discussed in Remark 2.9 for the deterministic case, our sense of

solutions introduced in Definition 2.4 coincides with the one in [13]. Therefore, the
uniqueness result easily follows from the deterministic result ([13], Theorem 2.9,
cf. [34]). Therefore, it is sufficient to prove the existence of the solution and esti-
mates (4.6) and (4.7).

Step 1. First, assume g ∈ H
∞
0 (T , l2). Define

u(t, x) =
∞∑

k=1

ˆ t

0

ˆ
Rd

qα,β(t − s, y)gk(s, x − y)dy dwk
s .

Then by Lemma 4.2, u ∈ H2
p(T ) is a solution to equation (4.1) with the zero

initial condition. Thus we only need to prove the estimates. We divide the proof
according to the range of β .

Case 1: β > 1
2 . Due to the inequality (e.g., p. 41 of [18]),

‖uxx‖Lp(T ) ≤ N‖�u‖Lp(T ),

to get (4.7), it suffices to show

‖�u‖Lp(T ) ≤ N
∥∥�c′

0/2g
∥∥
Lp(T ,l2)

.(4.8)

Denote

v = (−�)c
′
0/2u, ḡ = (−�)c

′
0/2g.

By the Burkholder–Davis–Gundy inequality and Remark 3.3,

‖�u‖p
Lp(T ) = ∥∥(−�)(2−c′

0)/2v
∥∥p
Lp(T )

≤ NE

ˆ T

0

ˆ
Rd

∣∣T ḡ(t, x)
∣∣p dx dt ≤ NE

ˆ T

0

ˆ
Rd

∣∣ḡ(t, x)
∣∣p
l2

dx dt,

where N = N(d,p,α,β).
Next, we prove (4.6). By Theorem 2.1(iv) and (4.8),

‖u‖p
Lp(T ) ≤ N

ˆ T

0
(T − s)θ−1(‖�u‖p

Lp(s) + ‖g‖p
Lp(s,l2)

)
ds

≤ N

ˆ T

0
(T − s)θ−1‖g‖p

H
c′0
p (s,l2)

ds

≤ N‖g‖p

H
c′0
p (T ,l2)

ˆ T

0
(T − s)θ−1 ds

≤ N‖g‖p

H
c′0
p (T ,l2)

.

(4.9)

Combining (4.7), (4.9) and (2.16), we get (4.6).
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Case 2: β < 1
2 . In this case, c′

0 = 0 and we apply the result of the deterministic
equation from [13]. By Remarks 2.8(ii) and 2.9, u satisfies

∂α
t u = �u + f̄

in the sense of [13], Definition 2.4, where

f̄ (t) = 1

�(1 − β)

∑
k

ˆ t

0
(t − s)−βgk(s) dwk

s .

Due to [13], Theorem 2.9, and Lemma 4.1,

‖u‖p

H2
p(T )

≤ N‖f̄ ‖p
Lp(T ) ≤ N‖g‖p

Lp(T ,l2)
,

which together with (2.16) yields (4.6).
Case 3: β = 1

2 . Put δ = κα
2 . Write β̃ = 1

2 + δ and define

v(t, x) =
∞∑

k=1

ˆ t

0

ˆ
Rd

qα,β̃ (t − s, x − y)gk(s, y) dy dwk
s .

Since 0 < δ < α and 1
2 < β̃ < 2, the result from Case 1 with c′

0 = (2β̃ − 1)/α = κ

implies that v ∈ H2
p satisfies

∂α
t v(t, x) = �v(t, x) +

∞∑
k=1

∂
β̃
t

ˆ t

0
gk(s, x) dwk

s ,

with the zero initial condition and

‖v‖H2
p(T ) ≤ N‖g‖

H
c′0
p (T ,l2)

.

Since I δ
t v satisfies (4.1), by the uniqueness of solutions, we conclude that

I δ
t v(t, x) = u(t, x). Therefore,

‖u‖H2
p(T ) = ∥∥I δ

t v
∥∥
H2

p(T ) ≤ N‖v‖H2
p(T ) ≤ N‖g‖

H
c′0
p (T ,l2)

.

Thus, the theorem is proved if g ∈ H
∞
0 (T , l2).

Step 2. For general g ∈ H
c′

0
p (T , l2), take a sequence gn ∈H

∞
0 (T , l2) so that gn →

g in H
c′

0
p (T , l2). Define un as the solution of equation (4.1) with gn in place of g.

Then

‖un‖H2
p(T ) ≤ N‖gn‖

H
c′0
2 (T ,l2)

,(4.10)

‖un − um‖H2
p(T ) ≤ N‖gn − gm‖

H
c′0
p (T ,l2)

.(4.11)
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Thus, un converges to u in H2
p(T ) and u becomes a solution to equation (4.1).

Indeed, to check u is a solution, let φ ∈ S and then we have(
I
�−α
t un(t), φ

)
= I�

t

(
�un(t, ·), φ) +

∞∑
k=1

I
�−β
t

ˆ t

0

(
gk

n(s, ·), φ
)
dwk

s ∀t ≤ T .

Taking the limit and using (4.11) we conclude that I�−αu has a continuous version
and, therefore, the above equality holds for all t ≤ T (a.s.) with u and g in place
of un and gn, respectively. The theorem is proved. �

5. Proof of Theorem 2.3. First, we introduce a version of method of continu-
ity used in this article. Later we will take L0 = � and �0 = 0.

LEMMA 5.1 (Method of continuity). Let L0, L1 be continuous linear opera-
tors from Hγ+2

p (T ) to H
γ
p(T ) and �0, �1 be continuous operators from Hγ+2

p (T )

to H
γ+c′

0
p (T , l2). For λ ∈ [0,1] and u ∈ Hγ+2

p (T ), denote Lλu = λL1u + (1 −
λ)L0u and �λu = λ�1u + (1 − λ)�0u. Suppose that for any f ∈ H

γ
p(T ) and

g ∈ H
γ+c′

0
p (T , l2) the equation

∂α
t u = L0u + f + ∂

β
t

ˆ t

0

(
�k

0u + gk)dwk
s

with zero initial condition has a solution u in Hγ+2
p (T ). Also assume that if u ∈

Hγ+2
p (T ) has zero initial condition and satisfies (in the sense of distributions) the

equation

(5.1) ∂α
t u = Lλu + f + ∂

β
t

ˆ t

0

(
�k

λu + gk)dwk
s ,

then the following “a priori estimate” holds:

‖u‖Hγ+2
p (T )

≤ N0
(‖f ‖

H
γ
p(T ) + ‖g‖

H
γ+c′0
p (T ,l2)

)
,(5.2)

where N0 is independent of λ, u, f , and g. Then for any λ ∈ [0,1], f ∈ H
γ
p(T ),

and g ∈ H
γ+c′

0
p (T , l2) the equation

∂α
t u = Lλu + f + ∂

β
t

ˆ t

0

(
�k

λu + gk)dwk
s(5.3)

with zero initial condition has a unique solution u in Hγ+2
p (T ).



TIME FRACTIONAL SPDE 2125

PROOF. The uniqueness easily follows from (5.2). Let J be the set of all λ ∈
[0,1] for which equation (5.3) has a solution in Hγ+2

p (T ) for any f ∈ H
γ
p(T ) and

g ∈ H
γ+c′

0
p (T , l2), by the assumption 0 ∈ J . Thus, to prove the lemma, it suffices

to show that there exists ε > 0 depending only on N0 and the boundedness of the
operators Li and �i (i = 0,1) such that λ ∈ J whenever λ0 ∈ J and |λ − λ0| < ε.

Let λ0 ∈ [0,1] and λ ∈ [0,1]. Fix u0 ∈ Hγ+2
p . By the assumption, we can in-

ductively define un+1 ∈ Hγ+2
p (T ) as the solution to

∂α
t un+1 = Lλ0u

n+1 + (−Lλ0u
n + Lλu

n + f
)

+ ∂
β
t

ˆ t

0

(
�λ0u

n+1 + (−�λ0u
n + �λu

n + gk))dwk
s .

(5.4)

Note that for un+1 − un ∈Hγ+2
p (T ) satisfies

∂α
t

(
un+1 − un)

= Lλ0

(
un+1 − un) + (λ − λ0)(L1 − L0)

(
un − un−1)

+ ∂
β
t

ˆ t

0
�k

λ0

(
un+1 − un) + (λ − λ0)(�1 − �0)

(
un − un−1)

dwk
s .

By a priori estimate (5.2), we have∥∥un+1 − un
∥∥
Hγ+2

p (T )

≤ N0|λ − λ0|(∥∥(L1 − L0)
(
un − un−1)∥∥

H
γ
p(T )

+ ∥∥(�1 − �0)
(
un − un−1)∥∥

H
γ+c′0
p (T ,l2)

)
≤ N |λ − λ0|

∥∥un − un−1∥∥
Hγ+2

p (T )
,

where the second inequality is due to the continuity of operators L0, L1, �0 and
�1. Note that the constant N above does not depend on λ and λ0 as well. Thus, if
εN < 1/2 and |λ − λ0| ≤ ε then un becomes a Cauchy sequence in Hγ+2

p,0 (T ) and,
therefore, the limit u of un becomes a solution to equation (5.3), which is easily
checked by taking the limit in (5.4). The lemma is proved. �

Next, we present an estimate for a deterministic equation of nondivergence type.
We use the space Hα,γ+2

p,0 (T ) introduced in Remark 2.9.

LEMMA 5.2. Let aij be given as in (2.22), that is,

(5.5) aij (t, x) =
M0∑
n=1

aij
n (t, x)1(τn−1,τn](t),
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where τn and a
ij
n are nonrandom, and aij satisfy (2.23) and (2.30) with the con-

stants δ0 and K3 given there. Then for any solution u ∈ Hα,γ+2
p,0 (T ) to the deter-

ministic equation

(5.6) ∂α
t u = aijuxixj + f

in Hγ
p(T ), it holds that

(5.7) ‖u‖
Hγ+2

p (T )
≤ N‖f ‖Hγ

p(T ),

where N depends only on α, p, γ , δ0, K3, T , M0 and the modulus of conti-
nuity of a

ij
n . In particular, N depends on M0 but independent of the choice of

τ1, . . . , τM0−1.

PROOF. If γ = 0, then this lemma is proved in [13], Theorem 2.9, under the
condition that a

ij
n are uniformly continuous with respect to (t, x), but without the

condition |aij |B |γ | ≤ K3. The proof for the case γ �= 0 depends on the one for
γ = 0.

We divide the proof into several steps.
Step 1. Assume that aij are independent of (t, x). In this case, (5.7) holds due

to [13], Theorem 2.9 (or see [34, 35]) if γ = 0. For the case γ �= 0, it is enough to
apply the operator (1 − �)γ/2 to the equation.

We show that (5.7) leads to

(5.8) ‖uxx‖Hγ
p(T ) ≤ N0‖f ‖Hγ

p(T ),

where N0 = N0(α,p, γ, δ0) and thus N0 is independent of T . Obviously, to prove
the independency of T we only need to consider the case γ = 0, and for this
case, it is enough to notice that v(t, x) := u(T t, T α/2x) satisfies ∂α

t v = aij vxixj +
T αf (T t, T α/2x) in Lp(1) and use the result for T = 1.

Step 2 (perturbation in x). Assume that aij are independent of t . Recall we are
assuming

(5.9) sup
i,j,ω

∣∣aij (·)∣∣B |γ | ≤ K3.

In this step, we prove that there exists a positive constant ε1 = ε1(N0), thus which
is independent of T and K3, so that (5.8) holds with new constant N = N(N0,K3)

if

sup
i,j,x,y

∣∣aij (x) − aij (y)
∣∣ ≤ ε1.(5.10)

Set a
ij
0 := aij (0), and rewrite (5.6) as

∂α
t u = a

ij
0 uxixj + f + (

aij − a
ij
0

)
uxixj .
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By the result of Step 1, for each t ≤ T

‖uxx‖Hγ
p(t) ≤ N0

(‖f ‖Hγ
p(t) + ∥∥(

aij − a
ij
0

)
uxixj

∥∥
Hγ

p(t)

)
.(5.11)

By (2.26), ∥∥(
aij − a

ij
0

)
uxixj

∥∥
H

γ
p

≤ N(d, γ )
∣∣aij − a

ij
0

∣∣
B |γ |‖uxx‖H

γ
p
.

It follows from (5.11) that

(5.12) ‖uxx‖Hγ
p(t) ≤ N0‖f ‖Hγ

p(T ) + N0N(d, γ )
∣∣aij (t, ·) − a

ij
0

∣∣
B |γ |‖uxx‖Hγ

p(t).

Hence we get (5.8) with 2N0 in place of N0 if

∣∣aij − a
ij
0

∣∣
B |γ | ≤ 1

2N(d, γ )N0
=: ε2.(5.13)

Now we take ε1 = ε2/2 and assume (5.10) holds. Fix a small constant ρ > 0 so
that ρ(|γ |)∧1K3 ≤ ε2/2, and set

aij
ρ (t, x) := aij (ρx), uρ(t, x) := u

(
ρ

2
α t, ρx

)
, fρ(t, x) := ρ2f

(
ρ

2
α t, ρx

)
.

Note that uρ(t, x) satisfies

∂α
t uρ = aij

ρ (uρ)xixj + fρ, t ≤ ρ−2/αT .

By the definition of B |γ |, (5.9) and the choice of ρ,∣∣aij
ρ (·) − aij

ρ (0)
∣∣
B |γ | ≤ sup

x

∣∣aij − a
ij
0

∣∣ + 1γ �=0ρ
(|γ |)∧1K3 ≤ ε2.

Thus by the above arguments which lead to (5.12) and (5.13), we get for each
t ≤ ρ−2/αT , ∥∥(uρ)xx

∥∥
Hγ

p(t) ≤ 2N0‖fρ‖Hγ
p(t).

Consequently, for each t ≤ T ,

‖uxx‖Hγ
p(t) ≤ N(K3,N0)‖f ‖Hγ

p(t).

As before, this and (2.17) yield (5.7). Before moving to the next step, we empha-
size that we take ε1 = (4N(d, γ )N0)

−1 and, therefore, it does not depend on T

and K3.
Step 3 (partition of unity). We still assume aij is independent of t . Choose a δ1

so that ∣∣aij (x) − aij (y)
∣∣ ≤ ε1

2
(5.14)

whenever |x − y| ≤ 4δ1. For this δ1, take a sequence of functions ζn ∈ C∞
c (Rd),

n ∈N, so that 0 ≤ ζn ≤ 1, the support of ζn lies in Bδ1(xn) for some xn ∈ R
d ,

sup
x∈Rd

∑
n∈N

∣∣Dn
x ζn(x)

∣∣ ≤ M(δ1,n) < ∞
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for any multi-index n ∈ Z
d and

inf
x∈Rd

∑
n∈N

∣∣ζn(x)
∣∣ ≥ ϑ > 0.

It is well known ([16], Lemma 6.7) that for any γ ∈ R and n ∈ N,

‖h‖p

H
γ
p

≤ N
∑
n∈N

‖hζn‖p

H
γ
p

≤ N‖h‖p

H
γ
p
,

∑
n∈N

∥∥uDn
x ζn

∥∥p

H
γ
p

≤ N‖u‖p

H
γ
p
,

(5.15)

where N depend only on d ,γ , M(δ1, n), and ϑ . Take a nonnegative η ∈ C∞
c (Rd)

so that 0 ≤ η ≤ 1, η = 1 on B1, and η = 0 outside B2. Write

un = uζn, ηn(x) = η

(
x − xn

δ1

)

and define

aij
n (x) := ηn(x)aij (x) + (

1 − ηn(x)
)
aij (xn).(5.16)

Then, because ηn = 1 on the support of ζn, un(t, x) satisfies

∂α
t un(t, x) = aij

n (un)xixj + f̄n,

where

f̄n(t, x) := f (t, x)ζn + (
aij
n uxixj ζn − aij

n (un)xixj

)
.

Note that

aij
n uxixj ζn − aij

n (un)xixj = −aij (
2uxi (ζn)xi + u(ζn)xixj

)
.

Due to (5.14), for each x, y ∈ R
d ,∣∣aij

n (t, x) − aij
n (t, y)

∣∣
= ∣∣ηn(x)

(
aij (x) − aij (xn)

) − ηn(y)
(
aij (y) − aij (xn)

)∣∣
≤ ∣∣ηn(x)

(
aij (x) − aij (xn)

)∣∣ + ∣∣ηn(y)
(
aij (y) − aij (xn)

)∣∣ ≤ ε1.

Also note that (a
ij
n ) satisfies the uniform ellipticity condition with the same con-

stant δ0. Therefore, by the result from Step 2 and (5.15), for each t ≤ T ,

‖u‖p

Hγ+2
p (t)

≤ N
∑
n∈N

‖un‖p

Hγ+2
p (t)

≤ N
∑
n∈N

‖f̄n‖p

Hγ
p(t)

≤ N‖u‖p

Hγ+1
p (t)

+ N‖f ‖p

Hγ
p(t)

≤ ε‖u‖p

Hγ+2
p (t)

+ N(ε)‖u‖p

Hγ
p(t)

+ N‖f ‖p

Hγ
p(t)

.

(5.17)
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We take ε = 1/2, and to drop the term ‖u‖Hγ
p(t) above we use (2.17), which implies

‖u‖p

Hγ
p(t)

≤ N

ˆ t

0
(t − s)θ−1∥∥aijuxixj + f

∥∥p

Hγ
p(s)

ds

≤ N

ˆ t

0
(t − s)θ−1(‖u‖p

Hγ+2
p (s)

+ ‖f ‖p

Hγ
p(s)

)
ds

≤ N

ˆ t

0
(t − s)θ−1(‖u‖p

Hγ
p(s)

+ ‖f ‖p

Hγ
p(s)

)
ds,

where the last inequality is due to (5.17). Therefore, by applying fractional Gron-
wall’s lemma ([33], Corollary 2), we obtain (5.7). We remark that up to this step,
the constant N of (5.7) depends only on δ0, p, K3, α, γ , T and the modulus of
continuity of aij .

Step 4 (general case). Recall that in Step 3 we proved the lemma when aij are
independent of t . For the general case, it is enough to repeat Steps 5 and 6 of the
proof of [13], Theorem 2.9. Indeed, in [13] the lemma is proved when γ = 0, and
the proof is first given for time-independent aij , and then this result is extended for
the general case. This method of generalization works exactly same for any γ ∈ R.

�

We continue the proof of Theorem 2.3.

Case A: Linear case. Suppose f and g are independent of u, and bi = c =
μik = νk = 0. To apply the method of continuity, for each λ ∈ [0,1] denote(

a
ij
λ

) = λ
(
aij ) + (1 − λ)Id×d, σ

ijk
λ = λσ ijk,

where Id×d is the d × d-identity matrix. Then

Lλu := λaijuxixj + (1 − λ)�u = a
ij
λ uxixj

and

�k
λu := λσ ijkuxixj = σ

ijk
λ uxixj .

Due to the method of continuity and Theorem 4.1, we only need to prove a priori
estimate (5.2) holds given that a solution u ∈ Hγ+2

p,0 (T ) to equation (5.1) already

exists. Note that for any λ ∈ [0,1] the coefficients a
ij
λ and σλ satisfy the same

conditions assumed for aij and σ ijk , that is, conditions specified in Assumptions
2.10 and 2.13 with the same constants used there. This shows that by considering
a

ij
λ and σλ in place of aij and σ , we only need to prove (5.2) for λ = 1.

By Theorem 4.1, the equation

(5.18) ∂α
t v(t, x) = �v(t, x) +

∞∑
k=1

∂
β
t

ˆ t

0

(
σ ijkuxixj + gk)dwk

s
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has a unique solution v ∈ Hγ+2
p,0 (T ), and moreover, for any t ≤ T ,

(5.19) ‖v‖Hγ+2
p (t)

≤ N‖g‖
H

γ+c′0
p (T ,l2)

+ NI
1−2β
t ‖u‖p

Hγ+2
p (·)(t).

Indeed, (5.19) is obvious if β ≥ 1/2 because σ ijk = 0 in this case. If β < 1/2, then
by Theorem 4.1 and Lemma 4.1, for each t ≤ T ,

‖v‖p

Hγ+2
p (t)

≤ NI
1−2β
t

∥∥σ ijuxixj + g
∥∥p

H
γ
p(·,l2)(t)

≤ NI
1−2β
t ‖u‖p

Hγ+2
p (·)(t) + N‖g‖p

H
γ
p(T ,l2)

.

Note that ū = u − v satisfies the equation

∂α
t ū(t, x) = aij ūxixj (t, x) + aij (t)vxixj (t, x) − �v(t, x) + f (t, x).

By Lemma 5.2,

‖ū‖Hγ+2
p (t)

≤ N
∥∥aij vxixj − �v + f

∥∥
H

γ
p(t)

≤ N‖v‖
H

γ+2
p (t)

+ N‖f ‖
H

γ
p(T ).

(5.20)

Since u = ū + v, the desired estimate follows from (5.19), (5.20) and Gronwall’s
inequality.

Case B: General case. Write

f̄ := biuxi + cu + f (u), ḡk := μikuxi + νku + gk(u).

Note that μik = 0 if c′
0 ≥ 1. Then by (2.26), (2.27) and Assumption 2.14(iii),∥∥f̄ (u) − f̄ (v)
∥∥
H

γ
p

+ ∥∥ḡ(u) − ḡ(v)
∥∥
H

γ+c′0
p (l2)

≤ N
(‖u − v‖

H
γ+1
p

+ ∥∥μi(u − v)xi

∥∥
H

γ+c′0
p (l2)

+ ‖u − v‖
H

γ+c′0
p

)
+ ∥∥f (u) − f (v)

∥∥
H

γ
p

+ ∥∥g(u) − g(v)
∥∥
H

γ+c′0
p (l2)

≤ ε‖u − v‖
H

γ+2
p

+ N‖u − v‖H
γ
p
,

where N depends on d , p, m, κ , K3, K4 and ε. Hence considering f̄ and ḡk in
place of f and gk , we may assume bi = c = μik = νk = 0.

For each u ∈ Hγ+2
p (T ), consider the equation

∂α
t v = aij vxixj + f (u) +

∞∑
k=1

ˆ t

0

[
σ ijkvxixj + gk(u)

]
dwk

s
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with zero initial condition. By the result of Case A, this equation admit a unique
solution v ∈Hγ+2

p (T ). By denoting v = Ru, we can define an operator

R : Hγ+2
p (T ) → Hγ+2

p (T ).

By Lemma 2.1(ii), (2.31) and the result of Case A, for each t ≤ T ,

‖Ru −Rv‖p

Hγ+2
p (t)

≤ N0
(∥∥f (u) − f (v)

∥∥p

H
γ
p(t)

+ ∥∥g(u) − g(v)
∥∥p

H
γ+c′0
p (t,l2)

)

≤ N0ε
p‖u − v‖p

Hγ+2
p (t)

+ N1‖u − v‖p

H
γ
p(t)

≤ N0ε
p‖u − v‖p

Hγ+2
p (t)

+ N1

ˆ t

0
(t − s)θ−1‖u − v‖p

Hγ+2
p (s)

ds,

where N1 depends also on ε. Next, we fix ε so that � := N0ε
p < 2−2. Then re-

peating the above inequality and using the identityˆ t

0
(t − s1)

θ−1
ˆ s1

0
(s1 − s2)

θ−1 · · ·
ˆ sn−1

0
(sn−1 − sn)

θ−1 dsn · · · ds1

= {�(θ)}n
�(nθ + 1)

tnθ ,

we get

∥∥Rnu −Rnv
∥∥p

Hγ+2
p (t)

≤
n∑

k=0

(
n

k

)
�n−k(T θN1

)k {�(θ)}k
�(kθ + 1)

‖u − v‖p

Hγ+2
p (t)

≤ 2n�n max
k

[{�−1T θN1�(θ)}k
�(kθ + 1)

]
‖u − v‖p

Hγ+2
p (t)

≤ 1

2n
N2‖u − v‖p

Hγ+2
p (t)

.

For the second inequality above, we use
∑n

k=0
(n
k

) = 2n. It follows that if n is suf-

ficiently large then Rn is a contraction in Hγ+2
p (T ), and this yields all the claims.

The theorem is proved.

6. Proof of Theorem 2.2. We first prove a result for a deterministic equation
of divergence type.

LEMMA 6.1. Let aij be given as (5.5) with nonrandom τn and a
ij
n . Suppose

aij satisfy the uniform ellipticity (2.23) and a
ij
n are uniformly continuous with

respect to (t, x). Then for any solution u ∈ Hα,1
p,0(T ) to the deterministic equation

(6.1) ∂α
t u = Dxi

(
aijuxj + f i) + h
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in H−1
p (T ), it holds that

(6.2) ‖u‖H1
p(T ) ≤ N

(∥∥f i
∥∥

Lp(T ) + ‖h‖H−1
p (T )

)
,

where N depends only on α, p, γ , δ0, T , M0 and the modulus of continuity of a
ij
n .

PROOF. We divide the proof into three steps.
Step 1. Let aij depend only on t . In this case, (6.2) is a consequence of (5.7)

with γ = −1, which is because ‖Dxif i‖
H−1

p
≤ N‖f i‖Lp .

Step 2. We prove there exists ε2 > 0, which depends also on T , such that (6.2)
holds if

(6.3) sup
t,x,y

∣∣aij (t, x) − aij (t, y)
∣∣ ≤ ε2.

Denote a
ij
0 (t) := aij (t,0), and rewrite the equation as

∂α
t u = Dxi

(
a

ij
0 uxi + f̄ i) + h,

where

f̄ i := f i +
d∑

j=1

(
aij − a

ij
0

)
uxj .

Note that a
ij
0 is independent of x. By the result of Step 1, for each t ≤ T ,

‖u‖H1
p(t) ≤ N3

(‖f ‖Lp(t) + ∥∥(
aij − a

ij
0

)
uxj

∥∥
Lp(t) + N‖h‖H−1

p (t)

)
.

Observe that∥∥(
aij (t, ·) − a

ij
0 (t)

)
uxi (t, ·)∥∥Lp

≤ N(d,p) sup
t,x

∣∣aij (t, x) − a
ij
0 (t)

∣∣∥∥u(t, ·)∥∥H 1
p
.

Therefore, our claim follows if (6.3) holds with ε2 = (2N(d,p)N3)
−1.

Step 3. We introduce a partition of unity ζ n as in the proof of Lemma 5.2, and
define η and a

ij
n as in (5.16) so that each (a

ij
n ) satisfies (6.3). Note un(t, x) = uζn

satisfies

∂α
t un = Dxi

(
aij
n un

xj + f̄ n,i) + h̄n,

where

f̄ n,i = f iζ n − aijuζ n
xj , h̄n = hζn − aijuxj ζ

n
xi .

Therefore, using Step 2 and ‖ · ‖
H−1

p
≤ N‖ · ‖Lp , we get

‖u‖p

H1
p(t)

≤ N
∑
n∈N

∥∥un
∥∥p

H1
p(t)

≤ N
∑
n∈N

(∥∥f̄ n
∥∥p

Lp(t) + ∥∥h̄n
∥∥p

H−1
p (t)

)

≤ N
(∥∥f i

∥∥p
Lp(t) + ‖h‖p

H−1
p (t)

) + N‖u‖p
Lp(t) + N

∥∥aijuxj

∥∥p

H−1
p (t)

.
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Here, we claim that for any ε > 0,

(6.4)
∥∥aijuxj

∥∥
H−1

p
≤ ε‖u‖H 1

p
+ N(ε)‖u‖Lp .

Indeed, since aij are uniformly continuous with respect to x uniformly for all t ,
considering appropriate convolution we can take a sequence of C1-functions a

ij
n

which uniformly converges to aij with respect to x uniformly for all t . Thus∥∥aijuxj

∥∥
H−1

p
≤ ∥∥(

aij
n − aij )

uxj

∥∥
H−1

p
+ ∥∥aij

n uxj

∥∥
H−1

p

≤ sup
t,x

∣∣aij
n − aij

∣∣‖ux‖Lp + ∣∣aij
n

∣∣
B1‖ux‖H−1

p
.

This certainly proves (6.4). Taking small ε and using the interpolation ‖u‖Lp ≤
ε′‖u‖H 1

p
+ N(ε′)‖u‖

H−1
p

, we get for each t ≤ T ,

‖u‖p

H1
p(t)

≤ N
∥∥f i

∥∥p
Lp(t) + N‖h‖p

H−1
p (t)

+ N‖u‖p

H−1
p (t)

.

The last term ‖u‖H−1
p (t)

can be easily dropped as before using (2.17) and Gron-
wall’s lemma. The lemma is proved. �

Now we prove Theorem 2.2.
Step 1. Suppose f i , h and g are independent of u and bi = c = νik = 0. In this

case, by the method of continuity and Theorem 4.1 we only need to show a priori
estimate (2.29) holds given that a solution u ∈ H1

p(T ) already exists. See the proof
of Theorem 2.3 for details.

In this case, estimate (2.29) follows from Lemma 6.1 and the arguments in Case
1 of the proof of Theorem 2.3. Indeed, take the function v ∈ H1

p(T ) from (5.18),
which is a solution to

∂α
t v(t, x) = �v(t, x) +

∞∑
k=1

∂
β
t

ˆ t

0

(
σ ijkuxixj + gk)dwk

s .

By (5.19),

‖v‖H1
p(T ) ≤ N‖g‖

H
c′0−1
p (T ,l2)

.

Note that ū := u − v satisfies

∂α
t ū = Dxi

(
aij ūxj + f̄ i) + h, f̄ i := (

aij − δij )
vxj .

Thus one can estimate ‖ū‖H1
p(T ) using Lemma 6.1, and this leads to (2.29) since

u = ū + v.
Step 2. General case. The proof is almost identical to that of Case B of the proof

of Theorem 2.3. We put

f̄ i = biu + f (u),

h̄(u) = cu + h(u),

ḡk = νiku + νku + gk(u).
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Then, as before, one can check these functions satisfy condition (2.28) and, there-
fore, we may assume bi = c = νik = νk = 0. Then, using Step 1, we define the
operator R : H1

p(T ) → H1
p(T ) so that v = Ru is the solution to the problem

∂α
t v = Dxi

(
aij vxi + f i(u)

) + h(u) + ∂
β
t

ˆ t

0

(
σ ijkvxixj + gk(u)

)
dwk

t

with zero initial condition. After this, using the arguments used in the proof of
Theorem 2.3, one easily finds that Rn is a contraction in H1

p(T ) if n is large
enough. This proves the theorem. �

7. SPDE driven by space–time white noise. In this section, we assume

(7.1) β <
3

4
α + 1

2
,

and the space dimension d satisfies

(7.2) d < 4 − 2(2β − 1)+
α

=: d0.

Note d0 ∈ (1,4] due to (7.1). If β < α
4 + 1/2, then one can take d = 1,2,3. Also,

α = β = 1 then d must be 1.
In this section, we study the SPDE,

(7.3) ∂α
t u = (

aijuxixj + biuxi + cu + f (u)
) + ∂

β
t

ˆ t

0
h(u)dBt ,

where the coefficients aij , bi , c are functions depending on (ω, t, x), the functions
f and h depend on (ω, t, x) and the unknown u, and Bt is a cylindrical Wiener
process on L2(R

d).
Let {ηk : k = 1,2, . . .} be an orthogonal basis of L2(R

d). Then (see [16], Sec-
tion 8.3)

dBt =
∞∑

k=1

ηk dwk
t ,

where wk
t := (Bt , η

k)L2 are independent one-dimensional Wiener processes.
Hence one can rewrite (7.3) as

∂α
t u = (

aijuxixj + biuxi + cu + f (u)
) +

∞∑
k=1

∂
β
t

ˆ t

0
gk(u) dwk

t ,

where

gk(t, x, u) = h(t, x, u)ηk(x).
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LEMMA 7.1. Assume

(7.4) κ0 ∈
(

d

2
, d

]
, 2 ≤ 2r ≤ p, 2r <

d

d − κ0
,

and h(x,u), ξ(x) are functions of (x, u) and x, respectively, such that |h(x,u) −
h(x, v)| ≤ ξ(x)|u − v|. For u ∈ Lp(Rd), set gk(u) = h(x,u(x))ηk(x). Then∥∥g(u) − g(v)

∥∥
H

−κ0
p (l2)

≤ N‖ξ‖L2s
‖u − v‖Lp,

where s = r/(r − 1) is the conjugate of r and N = N(r) < ∞. In particular, if
r = 1 and ξ is bounded, then∥∥g(u) − g(v)

∥∥
H

−κ0
p (l2)

≤ N‖u − v‖Lp .

PROOF. It is well known (e.g., [30], p. 132, [18], Exercise 12.9.19) that there
exists a Green function G(x), which decays exponentially fast at infinity and be-
haves like |x|κ0−d so that the equality holds:∥∥g(u) − g(v)

∥∥
H

−κ0
p (l2)

= ‖h̄‖Lp,

where

h̄(x) :=
(ˆ

Rd

∣∣G(x − y)
∣∣2∣∣h(

y,u(y)
) − h

(
y, v(y)

)∣∣2 dy

)1/2

≤
(ˆ

Rd

∣∣G(x − y)
∣∣2ξ2(y)

∣∣u(y) − v(y)
∣∣2 dy

)1/2

=: h̃(x).

By Hölder’s inequality,

∣∣h̃(x)
∣∣ ≤ ‖ξ‖L2s

·
(ˆ

Rd

∣∣G(x − y)
∣∣2r ∣∣u(y) − v(y)

∣∣2r
dy

)1/(2r)

.

Note that ‖G‖L2r
< ∞ since 2r < d

d−κ0
. Therefore, applying Minkowski’s in-

equality, we have

‖h̃‖Lp ≤ N‖ξ‖L2s
‖G‖2r‖u − v‖Lp

≤ N‖ξ‖L2s
‖u − v‖Lp .

The lemma is proved. �

REMARK 7.2. By following the proof of Lemma 7.1, one can easily check
that ∥∥g(u)

∥∥
H

−κ0
p (l2)

≤ N
∥∥h(u)

∥∥
Lp

.
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ASSUMPTION 7.3. (i) The coefficients aij , bi , and c are P ⊗ B(R)-
measurable.

(ii) The functions f (t, x, u) and g(t, x, u) are P ⊗B(Rd ×R)-measurable.
(iii) For each ω, t , x, u and v,∣∣f (t, x, u) − f (t, x, v)

∣∣ ≤ K|u − v|,∣∣h(t, x, u) − h(t, x, v)
∣∣ ≤ ξ(t, x)|u − v|,

where ξ depends on (ω, t, x).

Denote

f0 = f (t, x,0), h0 = h(t, x,0).

THEOREM 7.1. Suppose Assumption 7.3 holds and

‖f0‖
H

−κ0−c′0
p (T )

+ ‖h0‖Lp(T ) + sup
ω,t

‖ξ‖2s ≤ K < ∞,

where κ0 and s satisfy

(7.5)
d

2
< κ0 <

(
2 − (2β − 1)+

α

)
∧ d,

d

2κ0 − d
< s

and c′
0 from (2.24). Also assume that the coefficients aij , bi and c satisfy Assump-

tion 2.10 and (2.30) with γ := −κ0 − c′
0. Then equation (7.3) with zero initial

condition has a unique solution u ∈H2−κ0−c′
0

p (T ), and for this solution we have

‖u‖
H

2−κ0−c′0
p (T )

≤ N‖f0‖
H

−κ0−c′0
p (T )

+ N‖h0‖Lp(T ).

PROOF. We only need to check if the conditions for Theorem 2.3 are satisfied
with γ := −κ0 − c′

0. Since f (u) is Lipschitz continuous, we only check the con-
ditions for gk(u) := h(u)ηk . Let r be the conjugate of s and then 2r < d

d−κ0
due to

the assumption d
2κ0−d

< s. Recall γ is chosen such that γ + c′
0 = −κ0. Thus, By

Lemma 7.1, for any ε > 0,∥∥g(u) − g(v)
∥∥
H

γ+c′0
p (l2)

≤ N‖ξ‖L2s
‖u − v‖Lp

≤ ε‖u − v‖
H

γ+2
p

+ N(ε)‖u − v‖H
γ
p
,

where the second inequality is due to γ +2 > 0, which is equivalent to κ0 +c′
0 < 2.

Therefore, all the conditions for Theorem 2.3 are checked. The theorem is proved.
�
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REMARK 7.4. (i) By (7.2), there always exists κ0 satisfying (7.5).
(ii) The constant 2 − κ0 − c′

0 gives the regularity of the solution u. To see how
smooth the solution is, recall c′

0 = (2β − 1)+/α + κ1β=1/2. It follows

0 < 2 − κ0 − c′
0 <

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 − d

2
− 2β − 1

α
if β > 1/2,

2 − d

2
if β ≤ 1/2.

If ξ is bounded one can take r = 1 and κ0 ≈ d
2 , thus 2 − κ0 − c′

0 can be as close as
one wishes to the above upper bounds.

REMARK 7.5. Take α = 1 and β ≤ 1 so that the integral form of (7.3) be-
comes

u(t, x) =
ˆ t

0

(
aijuxixj + biuxi + cu + f (u)

)
dt + I

1−β
t

ˆ t

0
h(u)dBt .

By the stochastic Fubini theorem, at least formally

I
1−β
t

ˆ t

0
h(u)dBt = 1

�(2 − β)

ˆ t

0
h
(
u(s)

)
(t − s)1−β dBs.

If β = 1, then the classical theory (see, e.g., [16], Section 8) requires d = 1 to
have meaningful solutions, that is, locally integrable solutions. By Theorem 7.1, if
β < 3/4 then it is possible to take d = 1,2,3. This might be because the operator
I

1−β
t gives certain smoothing effect to Bt in the time direction.
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