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A SOBOLEV SPACE THEORY FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS WITH TIME-FRACTIONAL
DERIVATIVES

BY ILDOO KiM!, KYEONG-HUN KIM? AND SUNGBIN LIM
Korea University

In this article, we present an L,-theory (p > 2) for the semi-linear
stochastic partial differential equations (SPDEs) of type

00t
3% = L(w, t,x)u+ fu)+ 3P Z/ (A, 1, x)u + gFu)) dwk,
k=170

where o € (0,2), B <a + % and 9% and B,ﬁ denote the Caputo derivatives

of order o and B, respectively. The processes wf, ke N={1,2,...}, are
independent one-dimensional Wiener processes, L is either divergence or
nondivergence-type second-order operator, and AX are linear operators of or-
der up to two. This class of SPDEs can be used to describe random effects on
transport of particles in medium with thermal memory or particles subject to
sticking and trapping.

We prove uniqueness and existence results of strong solutions in appro-
priate Sobolev spaces, and obtain maximal L -regularity of the solutions. By
converting SPDEs driven by d-dimensional space—time white noise into the
equations of above type, we also obtain an L p-theory for SPDEs driven by
space—time white noise if the space dimensiond < 4 —2(28 — Da~ 1. In par-
ticular, if 8 < 1/2 + /4 then we can handle space—time white noise driven
SPDEs with space dimensiond = 1,2, 3.
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1. Introduction. In this article, we present a L, (or Sobolev) theory for the
time-fractional SPDEs of nondivergence type

3%u=[a"uyi; +buy+cu+ fu]

(1.1) . :
+ 8;3/ [0 u i+ ™ u i+ vhu + g* ()] dwf
0

as well as of divergence type

Ofu=[Dyi(a”u,; +bu+ f(w)+cu+h)]
(1.2) . ) o k
+9; /0 [OJJ Uyixi +/’Ll Uyi+vu+g (u)]dwq

Here, o € (0,2) and 8 < «a + 1/2. The equations are interpreted by their integral
forms (see Definition 2.5), and the solutions are understood in the sense of tem-
pered distributions. The notation 3" denotes the Caputo derivative of order y (see
Section 2). The coefficients a'/, b', ¢, o'/ k. [Lik and V¥ are functions depending on
(w,t,x) € 2 x[0,00] x R4, and the nonlinear terms f, fi, h and gk depend on
(w, t, x) and the unknown u. The indices i and j go from 1 to d and k runs through
{1,2,3,...}. Einstein’s summation convention on i, j and k is assumed through-
out the article. By having infinitely many Wiener processes in the equations, we
can cover SPDEs for measure valued processes, for instance, driven by space—time
white noise (see Section 7.3).

While the classical heat equation d;u = Au describes the heat propagation in
homogeneous mediums, the time-fractional diffusion equation d9fu = Au, o €
(0, 1), can be used to model the anomalous diffusion exhibiting subdiffusive be-
havior, due to particle sticking and trapping phenomena [21, 24]. The fractional
wave equation d7u = Au, a € (1, 2) governs the propagation of mechanical diffu-
sive waves in viscoelastic media [20]. The fractional differential equations have
an another important issue in the probability theory related to non-Markovian
diffusion processes with a memory [22, 23]. However, so far, the study of time-
fractional partial differential equations is mainly restricted to deterministic equa-
tions. For the results on deterministic equations, we refer the reader, for example,
to [28, 35] (La-theory), [34] (L ,-theory) and [5, 13, 26] [L, (L ,)-theory]. Also
see [4] for BUC_g([0, T']; X)-type estimates, [6] for Schauder estimates, [37]
for DeGirogi—Nash-type estimate and [36] for Harnack inequality. We also re-
fer to recent books [38, 39] which handle various aspect of fractional differential
equations.

The main goal of this article is to provide a stochastic counterpart of L ,-theory
[5, 13, 26, 28, 34, 35] on the deterministic equations. Note that if « = 8 = 1 then
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(1.1) and (1.2) are classical second-order SPDEs of nondivergence and divergence
types. The time-fractional SPDEs of type (1.1) and (1.2) naturally appear when
one models the anomalous diffusion under random environments, for instance,
they can be used to describe the heat diffusion under random environments in a
material having finite diffusion speed. See, for example, [3] for a detailed deriva-
tion. As shown in [3], the condition 8 < « 4 1/2 is necessary to make sense of the
equations.

To the best of our knowledge, [7-9] first introduced the mild solutions to time-
fractional SPDEs. The authors in [7-9] applied H *°-functional calculus technique
to obtain a sharp L ,(L)-regularity for the mild solution to the integral equation

t t
(1.3) U(t)+A/ (t—s)“‘_lU(s)a’s:/ (t — )P G(s)d Wy,
0 0

where A is the generator of a bounded analytic semigroup on L, and assumed to
admit a bounded H*°-calculus on L,. Actually, due to Lemma 2.2(iii), equation
(1.3) is similar to our equations, but it is much simpler than ours because for in-
stance the operator A in (1.3) is independent of (w, t), and equation (1.3) contains
only an additive noise. We also refer to a recent article [3], where an L,-theory
for time-fractional SPDEs is presented under the extra condition «, 8 € (0, 1). As
usual, Ly-theory is more or less elementary due to the integration by parts, It6’s
formula and the Parseval’s identity.

In this article, we prove that for any y € R and p > 2, under a minimal regularity
assumption (depending on y) on the coefficients and the nonlinear terms, equation

(1.1) with zero initial condition has a unique H ,’,/ *2_valued solution, and for this
solution the following estimate holds:

(1.4) g2y < N(Lf O ez ) + 20 “Hf,*”f’ . 12)),

where H;(T) =L, x[0,T]; Hl‘j), H};(T’ l)) =L,(2x[0,T]; Hl‘j(lg)) and

ch> HDe —: o if B=1/2, and ¢ = co if B # 1/2. The result for y <0 is
needed to handle SPDEs driven by space-time white noise with the space dimen-
siond <4 —2(28 — 1)a~'. For divergence-type equation (1.2), we prove unique-
ness, existence and a version of (1.4) for y = —1.

To obtain the above results, we exploit an analytic approach. For the maximal
L ,-regularity of solutions, we control the sharp functions of derivatives of the so-
lutions in terms of the maximal functions of free terms f, 4 and g, and then apply
Hardy-Littlewood theorem and Fefferman—Stein theorem. The main obstacle of
this procedure is the nonintegrability of derivatives of kernels related to the repre-
sentation of solutions. This difficulty does not appear when o« = 8 = 1.

Our main results, Theorem 2.3 and Theorem 2.2, substantially improve the re-
sults of [7-9] in the sense that (i) we study the strong solutions (not mild solution),
(ii) our coefficients depend not only on x but also on (w, t), and are merely mea-
surable in (¢, ®), (iii) we have multiplicative noises in the equations, that is, the
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second- and lower-order derivatives of solutions appear in the stochastic part of
our equations, (iv) nonlinear terms are also considered, (v) we do not impose the
lower bound of 8 and there is no restriction on y and (vi) we also cover SPDEs
driven by space—time white noise with space dimension d <4 —2(28 — Da ™!,
This article is organized as follows. In Section 2, we present some preliminaries
on the fractional calculus and introduce our main results. We prove a parabolic
Littlewood—Paley inequality for a model time-fractional SPDE in Section 3. The
unique solvability and a priori estimate for the model equation are obtained in
Section 4. We prove Theorems 2.3 and 2.2 in Sections 5 and 6, respectively. In
Section 7, we give an application to SPDE driven by space-time white noise.
Finally, we introduce some notation used in this article. We use “:=" to denote
a definition. As usual, R? stands for the d-dimensional Euclidean space of points
x=(x1,...,xq), Br(x):={y e R?: |x — y| < r}, and B, := B,(0). N denotes
the natural number system and C indicates the complex number system. For i =

1,...,d, multi-indices a = (ay, ..., aq), a; € {0, 1,2, ...} and functions u(x), we
set
o du A _ Pl ag _
”xl—axi—Dzu, Diu=D; ---D,u, lal=a; +---+a4.

We also use the notation D" for a partial derivative of order m with respect to x. By
Ccx (R?: H), we denote the collection of H -valued smooth functions having com-
pact support in R?, where H is a Hilbert space. In particular, CX:=CxX (R%; R).
S(R?) denotes the Schwartz class on R?. For p > 1 and a normed space F by
L,(O; F), we denote the set of F-valued Lebesgue measurable function u# on O
satisfying

» 1/p
lull L0y = (/O||u(x)||Fdx> - 00,

We write L,(0) = L,(O;R) and L, =L p(]Rd). Generally, for a given mea-
sure space (X, M, ), L,(X, M, u; F) denotes the space of all F-valued M#-
measurable functions u so that

I/p
vt = / o) < e,
X
where M* denotes the completion of M with respect to the measure p. If there

is no confusion for the given measure and o -algebra, we usually omit the measure
and the o -algebra. We denote by

1 A
_ —i&-x
F(HE) = )il /Rde f(x)dx,

1 .
F o) = o [ s de,
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the Fourier and the inverse Fourier transforms of f in R¢, respectively. |a] is the
greatest integer which is less than or equal to a, whereas [a] denotes the smallest
integer which is greater than or equal to a. a A b := min{a, b}, a vV b := max{a, b},
ar:=aVv0,and a_ := —(a A0). If we write N = N(a, b, ...), this means that
the constant N depends only on «, b, .... Throughout the article, for functions
depending on (w, t, x), the argument w € 2 will be usually omitted.

2. Main results. First, we introduce some elementary facts related to the
fractional calculus. We refer the reader to [2, 11, 25, 29] for more details. For
oeLi((0,T))andn =1,2, ..., define nth order integral

row= [ s (10=g)

In general, the Riemann-Liouville fractional integral of the order « > 0 is defined
as

I :=—/ t—5)""p(s)ds, 0<t<T.
! ['(a) Jo
By Jensen’s inequality, for p € [1, oo],

(2.1 [ If‘QDHLp(o,T) < N(T,)ll¢llL,©.1)-

Thus I¥¢(t) is well-defined and finite for almost all # < T'. This inequality shows
thatif 1 < p < oo and ¢, — ¢ in L ,([0, T]), then 1%¢, also converges to I*¢ in
L, ([0, T]). The inequality for p = oo implies that if f,(w, ) converges in proba-
bility uniformly on [0, 7'] then so does I/ f,,.

Using Fubini’s theorem, one can easily show for any «, 8 > 0,

2.2) 1P =1y (ae)t<T.

It is known that if p > é and @ — % ¢ N then (see [29], Theorem 3.6)

(2.3) | 770 oy = N(p,T,a)ll¢llL,o.1)-

Let o >0, ¢ € C*([0, T]), and m be the maximal integer such that m < «. It is
also known that, for any g > 0 (see [29], Theorem 3.2)

m (k)
¢ (0)
1f ((p -2 Tt") <N(@B)
k=0 : ce+B([0,T])
if eithera + 8 ¢ Nora, 8 € NU {0}
Next, we introduce the fractional derivative Df*, which is (at least formally) the
inverse operator of /*. Let« > 0 and |«a] =n — 1 for some n € N. Then obviously

<o<’<>(0)

(pzk.

2.4)

cx([o,1D

n—1<a<n, n—ae0,1].
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For a function ¢(¢) which is (n — 1)-times differentiable and (%)”_11,”_“(,0 is
absolutely continuous on [0, T'], the Riemann—Liouville fractional derivative D
and the Caputo fractional derivative 0 are defined as

4\
(2.5) DYy = (E) (I %),
and

ofe =D " V(") — "D 0).
By (2.2) and (2.5), for all ¢, 8 > 0,

and DY Df = D;Hﬁ . Using (2.2)—(2.6), one can check

n—1 tk
2.7) op=D{ <¢(t) =y =W (0>>.
k!
k=0
Thus if (0) = ¢ (0) = --- = =D (0) = 0 then D¥¢p = 3% and by (2.7) and
(2.4),
B LBI+1-8
2.8) “ O (p“CD‘*ﬁ([O,T]) = H 1, QOHCLﬂHl*ﬂJra([O’T])

<Nle¢llceqo.ry VB =Za,
where either « — 8 ¢ N or o, € NU {0}.

REMARK 2.1. Banach space valued fractional calculus can be defined as
above on the basis of Bochner’s integral and Pettis’s integral; see, for example,
[1] and the references therein.

Let (2, .#, P) be a complete probability space and {.%;, t > 0} be an increasing
filtration of o-fields .%; C %, each of which contains all (%, P)-null sets. We
assume that an independent family of one-dimensional Wiener processes {wf} keN
relative to the filtration {.%;, t > 0} is given on Q2. By P, we denote the predictable
o-field generated by .%;, that is, P is the smallest o-field containing every set
A x (s,1], where s <t and A € .Z;.

Forp>2andy eR,let H) = H 1),/ (R?) denote the class of all tempered distri-
butions # on R such that

2.9) lull gy = (1= 2)7ul,, < oo,
where

(1= A Pu=F Y1+ P Fu)).
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It is well known thatif y =1, 2, ..., then
. . d -
HY =W} :={u:Djue Ly(R),|al <y}, H,Y =(H) 0, 1)"

For a tempered distribution u € H ,),' and ¢ € S(RY), the action of u on ¢ (or the
image of ¢ under u) is defined as

(u, @) = ((1 — A 2u, (1 — A)TV%¢) :/ A=A)"%u-1 =AY ?pdx.
]Rd

Let [ denote the set of all sequences a = (a!, a2, .. .) such that

~ 12
laly, :== <Z|ak]2> < o0.
k=1

By H ,’,/ (h)y=H ,),' (]Rd, [2), we denote the class of all /;-valued tempered distribu-
tions v = (v', v2,...) on R such that

1ol g7y = 11 = 20| |, < o0
We introduce stochastic Banach spaces:
H%(T)2=LP(QX [0, T],P; H}j) IL,p(T)zH?,(T),

For instance, u € H}/,(T) if and only if u is an H,J,/ -valued P4P*d!_measurable
process defined on 2 x [0, T'] such that

T 1/p
o p
lllg () = <E/0 ”u”H,Z dt) < o0.

Here, P4P*d g the completion of P w.r.t. dP x dt. We write g € Hg°(T, [») if
g* =0 for all sufficiently large k, and each g* is of the type

g5, ) =3 1, (g™ (),

i=1

where 7; < T are stopping times with respect to .%; and g'¥ € C & (R4). It is known
[16], Theorem 3.10, that HF° (T, ) is dense in ]HI}/,(T, [) for any y. We use U,‘f’y

H[)7/+(2—2/(Olp))+

to denote the family of -valued .#p-measurable random variables

ug such that

. p l/p
”’/‘OHU;‘-V = (E”u0|lHy+(2—2/(ap))+) <00,
p

where (2 —2/(ap))+ = |2—2/(01P)|;'2—2/(al7) )

(i) and (iii) of Lemma 2.2 below are used, for example, when we apply 1/
and DY to the time-fractional SPDEs, and (ii) can be used in the approximation
arguments.
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LEMMA 2.2. (i) Leta>0and h € L2(2 x [0, T], P; Io). Then the equality

(2.10) 1“(2 -hk(s)dw’s‘>(t)=Z(l“/.hk(s)dwf)(t)
k=10 0

k=1

holds for allt <T (a.s.) and also in Ly(2 x [0, T]), where the convergence of the

series in both sides is understood in probability sense.
(i1) Suppose a = 0 and h,, — h in Lo(2 x [0, T, P; l2) as n — oo. Then

g(la/olhﬁdwf)(t)ﬁ i(l“/o hk dwk >(z)

k=1

in probability uniformly on [0, T].
(iii) If @ > 1/2 and h e HP (T, I2), then

(1“ Z/ h* (s) dw* )(r) = Z/ )21 hk (s) dw*
=1
(a.e)on 2 x[0,T].
PROOF. See Lemmas 3.1 and 3.3 of [3]. O

REMARK 2.3. By [16], Remark 3.2, for any g € HZ(T, b)) and ¢ € Cfo(Rd)

T
(2.11) E[Zk:/o (gk,qb)zds} sN(p,d))Ilgllﬁly,(T,lz)-

Thus if g, —> g in HY »(T, o), then (g,,¢) — (g,¢) in Lo(2 x [0,T],P; ).
Therefore, one can apply Lemma 2.2(ii) with h,(¢) = (g,(¢,-),¢) and h(t) =

(g(t7 ')’ ¢)

Letae(0,2),ﬂ<a+%andset
A :=max([a], [B]).

DEFINITION 2.4. Define
HYPHT) = HL (T N {u: I8 u € Ly(Q: C([0, T HY))),
that is, u € HZH(T) iff u e HZH(T) and /2%y has a Hg—valued continuous
version ]I{\_“u. The norm in ’HZH(T) is defined as

_ 1/p
el = a2y + (EggHHA “uit.)5,) "
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DEFINITION 2.5. Let u € H%IH(T), f e HX(T), g € H(T, L), ug €
Up™, and vy € Ug_l’y“ for some y; € R (i = 1,2, 3,4). We say that u satisfies

t
o) O%u(t,x) = f(t,x) + af/o g5 (s, x) dwk, te€(0,T],
u(0, ) =uog, o:u (0, ) = vy (ifa>1)
if for any ¢ € S(RY) the equality
(IA%ue) — I (uo + tvolg=1), )
(2.13) © ot
— M)+ S I /0 (655, ). ) dwt
k=1

holds for all ¢ € [0, T'] (a.s.) [see Remark 2.8 for an equivalent version of (2.13)].
In this case, we say (2.12) holds in the sense of distributions. We say u [or(2.12)]
has zero initial condition if (2.13) holds with ug = vg = 0.

Below we discuss how the space Ug’y is chosen and show why (2.13) is an
appropriate interpretation of (2.12).

REMARK 2.6. In this article, we always assume #(0) = 14~10;u(0) = 0. The
space U,,” is defined for later use. It turns out that for the solution to the equation
3fM=AM, t>0; u(0, -) = uo, lg>10u(0, ) = 1g>1v0,

we have, for any y € R and « > 0,
I|MI|LP((O,T),H};+2) S N(”u()”Ug,V/ + 10l>] ||UOI|U;(*]YV/)’

where y' =y + klg=1,2.

REMARK 2.7. If « =8 =1, then A =1 and (2.13) coincides with classical
definition of the weak solution [16], Definition 3.1.

REMARK 2.8. (i) Let u, f, g, up, and vy be given as in Definition 2.5. We
claim that (2.13) holds for all + < T (a.s.) if and only if the equality

0 t

Q2.14) (@) —uo—1v0la=1,) = I (f (D), ¢) + > 17 7° / (g"(5), §) duwh
k=1 0

holds for almost all # < T (a.s.). Indeed, applying DtA_“ to (2.13) and using (2.6),

we get equality (2.14) for almost all + < T (a.s.). Here, I,a_ﬁ = D,ﬂ_a if e <B.

Note that if @ < B, the last term of (2.14) makes sense due to Lemma 2.2(iii) and

the assumption 8 — « < 1/2. For the other direction, we apply I,A_“ to (2.14) and
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get (2.13) for all < T (a.s.). This is because (]I,A_“u, ¢) is continuous in ¢ by the
assumption u € HZIH(T).
Also, taking DY to (2.14), we formally get a distributional version of (2.12):

t
((’if’u,qb)=(f(t),<]§)-i—8t’3/0(gk,qﬁ)dwic (ae)t <T.

(ii) Let B8 < 1/2 and u(0) = 14~ 1u’(0) = 0. Denote

— 1 4
0=ty 2 [ =9 dul,
ra—-g ; 0 ’
Then from (2.14) and Lemma 2.2(iii) it follows that the equality

(), ¢) =12 (f() + f(1), D)

holds for almost all # < T' (a.s.). Therefore, (2.13) holds for all # < T (a.s.) with
f + f and O in place of f and g, respectively.

To use some deterministic results later in this article, we show our interpretation
of (2.12) coincides with the one in [13, 34, 35]. In the following remark, u is not
random and y; =y = y.

REMARK 2.9. Denote Hj,"*(T) = L,,([0, T]: H} ™) and L,(T) = H)(T).

We denote by HZ:)6+2(T) the completion of C2°((0, co) x R9) with the norm

—_ . a.
| - “HZ'VH(T) = ”Hf,“(T) + || 9; HH%(T)'
That is, u € HZ’,’(;H(T) if and only if there exists a sequence u, € C2°((0, 00) x
R9) such that [u, — gy )
H)(T), whose limit is defined as 8% u.
The following two statements are equivalent:

— 0 and f, := 0/u, is a Cauchy sequence in

o u e HYYA(T) and 9%u = f in HY(T).

e uc ’HZH(T), fe H%(T), and u satisfies 9/ u = f with zero initial condition
in the sense of Definition 2.5.

First, let u € Hz”gH(T) and 97u = f in H}',(T). Take u,, and f,, as above. Then
since uy,, f, € C([0,T]; H},’), we have

un@) = I fu®) V1 <T,
and letting n — oo we conclude

(2.15) u(t)y=1I7f(t) (ae)t <T.
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Taking 72~ to both sides of (2.15) and recalling A > 1, one easily finds that
1A%y has an H,’,’ -valued continuous version. Therefore, by Remark 2.8, u €
H%H(T) and it satisfies 9/u = f with the zero initial condition in the sense of
Definition of 2.5.

Next, let u € H%H(T) satisfy 97u = f in the sense of Definition of 2.5 with
zero initial condition. Then by (2.14),

u()=1I17f(@t) inHIRY)  (ae)tel0,T].

Extend u so that u(t) = 0 for t < 0. Take n € C2°((1,2)) with the unit integral,
and denote 1, (1) =~ 'n(t/¢),

t
u® (1) 1=u*ns(t)l=/u(S)ns(t—S)dS=/ u(S)ne(r —s)ds,
R 0

and f¢ := f xn.. Note u®() =0 for t < &, and thus u® € C"([0, T];H,J,/)
for any n. Multiplying by a smooth function which equals one for ¢+ < T and
vanishes for + > T + 1, we may assume u® € CZ°((0, 00); H};). Obviously,
*u® = f* in H),;(T), |u® — ””H{,”(T) — 0 and || f¢ — f||H;;7(T) —0ase|0.
Next, choose a smooth function ¢(x) € C2°(B1(0)) with unit integral, and de-
note u®%(t,x) = u® x §79¢(-/8) = 67 [paut(t, )¢ ((x — y)/(S)dy and define
&% similarly. Then we still have ofu® 8 = &9 For any ¢ > 0, choose ¢ and
) ,0
§ so that ||u®° — u ”H,V,“ + ||8"‘(u8 —u )”H%(T) < ¢’. After this, multi-
&,8

(1)
plying by appropriate smooth cut-off functions of x, we can approximate u
and f &3 with functions in C2°((0,00) x R?) and, therefore, we may assume

uS, f53 € C2((0,00) x RY). Thus it follows that u € H’3 () and it satis-
fies 07u = f as the limit in H, »(T).

THEOREM 2.1. (i) For any y,v € R, the map (1 — A)"/?: H%H —

7-[}/,_”+2(T) is an isometry.

(i) Letu € Hy+2(T) satisfy (2.12). Then
E sup |14 *u(t, )H" < NE[u©|? ) + lo=1E[3u©) |,
(2.16) t=T ' '
+ ”f”]HI}’,(T) + ||g||H%(T’12)),
where N=N(, p, T).
(iii) HZH(T) is a Banach space.
(iv) Let 6 := min{l, o, 2(a — B) + 1}. Then there exists a constant N =

N(d,a,B,p,T) so that for all t < T and u € HZH(T) satisfying (2.12) with
the zero initial condition,

(2.17) el <N /(t T Mgy ) + 180Gy 1)) @5
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PROOF. (i) For any u € H} 2(T), (1 — A)"2IAu is an H)"*-valued
continuous version of (1 — A)"/2 IIA_“u. Thus it is obvious.

(i1) Due to (i), we may assume that y = 0. Take a nonnegative function
{eCx (R?) with unit integral. For ¢ > 0, define ¢;(x) = s_dg“(x/e), and for tem-
pered distributions v on R4 put v® (x) := v * £, (x). Note that for each 7 € (0, T),
u® (¢, x) is an infinitely differentiable function of x. By plugging . (- — x) in
(2.13) in place of ¢, for any x,

(HAfau)(s) (f, X)

(2.18) . ,
=IA O, x)+ 1, ‘ﬁ/ g%, x)dwk Vi <T (as.)
0
Observe that
T
(2.19) Esup| I (1, )| < NE/ | s, 9D ds.
t<T 0

Also, by (2.1), the Burkholder—-Davis—Gundy inequality, and the Holder inequality,
t
A—
P [ et
v Y0

t p
Z/o g(g)k(s,x)dwf‘ dx
k

E sup

t<T

p
p

(2.20) <N E sup
R4 t<T

T
<NE [ g6l ds.

Thus from (2.18),

Esup| (HrA_a”)(g)(f’ ')”2 <N(|f® H{,,(T) +g® ||£p(T,12))
(2.21) =T

< N(IFIE, o)+ 18IE, 1)

By considering (I ~%u)® — (I*~%u)®) instead of (I2~%u)(®), we easily see that
(Hf\fau)(s) is a Cauchy sequence in L, (£2; C([0,T]; L,)). Let u be the limit in
this space. Then since (]I,A_"‘u)(s) converges to A%y in L,(T), we conclude
=T, and get (2.16) by considering the limit of (2.21) as ¢ — 0 in the space
L,(€2;C(0,TI; Lp)).

(iii) By (2.1), 12 "%u, converges to I/ %u in H}/,H(T) if u, converges to
u in HY (). Moreover, both H}, (T and L ,(Q; C([0, T]; H})) are Banach
spaces. Therefore, HZH(T) is a Banach space.

(iv) As in the proof of (ii), we only consider the case y = 0. By (2.14), for each
x € R? (as.)

t
u® @, x) =1 (1, x) +1,"“ﬁ/ g%, x)dwt  (ae)rel0,TI.
0
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Note
1 FONE o S NI FOUIE O S NIFIFIE, (@ Vielo, T,
By Lemma 2.2 and the stochastic Fubini theorem (note if @ < f then we define

177 = 2 [Py for each x (as.),

' t
Vo, x) = Itaﬂ/ g(g)k(s, x)dwi‘ = c(a, ,8)/ (t — s)“_ﬁg(g)k(s, x) dwf
0 0

for almost all ¢ € [0, T']. Thus by the Burkholder—Davis—Gundy inequality and the
Holder inequality, forany ¢t < T,

t
”vS”Iﬁp(z) SNE/O /Rd(lsz(“_ﬂm(|g(8)|122(-,x))(s))”/zdxds

2(a— 1
< NI glf ),
Observe that fors <t < T,
(t =) (1 —)?@P < N@ —5)7!,

where N depends on «, 8 and T'. Thus, forany t <T
2(a—p)+1
[N oy = NIFUFIE, )@ + NPT (1))@

< NIP(IFIE, ) + SIE 1)) -

The claim of (iv) follows from Fatou’s lemma. [

Assumption 2.10 below will be used for both divergence-type and non-
divergence-type equations. As mentioned before, the argument w is omitted for
functions depending on (w, t, x).

ASSUMPTION 2.10. (i) The coefficients a'/, b, c, olik, Mik’ vk are P ®
B(R?)-measurable.

(i) The leading coefficients a'/ are continuous in x and piecewise continuous
in ¢ in the following sense: there exist stopping times 0 =19 <71 < T2 < --- <
M, = T such that

My
(2.22) al(t,x)=> " ai t, ) (g,_, 510,

n=l1

where each a,ij are uniformly continuous with respect to (¢, x), that is, for any
& > 0, there exists a § > 0 such that

lald (t,x) —d (s, y)| <& Yo € Q
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whenever [(¢, x) — (s, y)| <.
(iii) There exists a constant &g € (0, 1] so that for any n, w, ¢, x

(2.23) Solel* <al(r,x)E'e) <8, 5> VEERY,

|bi(t,x){ + |c(t,x)| + |oij(t,x)|lz + |;Li(t,x)|l2 + |v(t,x)}12 < 80_1.
(v) 6k =0if B > 1/2,and u'* =0if B > 1/2+ /2 forevery i, j, k, w, t, x.

Recall fora e R, a4 :=a Vv 0. For « € (0, 1), denote

2B—-1)
(2.24) cozco(a,ﬂ):%, ch=colic) =co+xlp=1)2.

Note that ¢, € [0, 2) because 8 < o + % and co=c,=0if p <1/2.

REMARK 2.11. (i) Assumption 2.10(iv) is made on the basis of the model
equation

t

0% = (Au+ f)dt + a,ﬂ/ ghdut, u(0) = ly=1u'(0) =0,
0

for which the following sharp estimate holds (see Lemma 3.5 and Theorem 4.1):

forany y e Rand x > 0,

(2.25) et ggye2 7y < (0 f Ty + ||8||H;+66(T,12))'

Thus to have H ,),/ *2_valued solutions, we need f € ]I-]I;(T) and g € H%—HO(T, D).
In particular, if 8 < 1/2 then the solution is twice more differentiable than g. This
enables us to have the second derivatives of solutions in the stochastic parts of
equations (1.1) and (1.2).

(i1) For the solution of stochastic heat equation du = Audt + g(u) dW; (this is
the case when o = 8 = 1), the solution is once more differentiable than g (i.e.,
VullL, ~ ligllL,), and if g contains any second-order derivatives of u then one
cannot control Vu and any other derivatives of u.

REMARK 2.12.  Due to (2.25), we need ¢, > cq if g = 1/2. This is why in
Assumption 2.14 below we impose extra smoothness on the coefficients and free
terms of the stochastic parts when 8 = 1/2.

To describe the regularity of the coefficients, we introduce the following space
introduced, for example, in [16]. Fix ; > 0, and for each r > 0, let

Loo(RY): r=0,
B = C’_l’l(Rd): r=1,2,3,...,
C r+81(Rd) : otherwise,
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where C"191(R?) and C"~11(R?) are the Holder space and the Zygmund space,
respectively. We also define the space B” () for [>-valued functions using | - |;, in
place of | - |.

It is well known (e.g., [16], Lemma 5.2) that for any y € R, u € Hl’,/ and a €
BI7!,

(2.26) laull gy < N(d. p. 81, y)lal g llull .
and similarly for any b € B/V!(l»),
(2.27) 1bull 1 4,y < N(d. p. 81, ) 1B gy lull -

The following assumption is only for the divergence-type equation. We use the
notation f'(u), h(u), and g(u) to denote f*(t,x,u), h(t,x,u), and g(¢, x, u), re-
spectively. Take ¢, from (2.24) and note ¢;, — 1 < 1.

ASSUMPTION 2.13. (i) There exists a « € (0, 1) so that for any u € HL(T),

flaw) eLp(T),  hw) eH,(T), g e Hj;é‘l(T, b).
(ii) For any € > 0, there exists K| = K{(¢) so that
| £ = £, + 1he - w =k 0] g,

tu)—gl(t, -, g
(2.28) + g, u) — g( U)HH,;) o

= éllu — vl + Killu —vlir,

forallu,v e H; and w, t.
(ii1) There exists a constant K, > O such that

o (¢, ')‘B'(lz) e .)‘3‘067”(12) + |v(, ')‘B“‘f)’”(lz) <K, Vi, j,w,t.
Note that (2.28) is certainly satisfied if f?(v), #(v) and g(v) are Lipschitz con-

tinuous with respect to v in their corresponding spaces uniformly on w and ¢.

Indeed, if g(v) is Lipschitz continuous then using ¢;, — 1 < 1 and an interpolation

inequality (see, e.g., [32], Section 2.4.7), we get for any & > 0,

lg) —g@)| 4  =Nlu—vl 4
H H

/
o
X () »

= éllu —vllg) + K@)llu —vllz,.

Finally, we give our main result for divergence equation (1.2).
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THEOREM 2.2. Let p > 2. Suppose that Assumptions 2.10 and 2.13 hold.
Then divergence-type equation (1.2) with the zero initial condition has a unique
solution u € H},(T) in the sense of Definition 2.5, and for this solution we have

229)  ullayry < NSO, oy + 1O g1 ) + 180 HHC(/),I(T)),

where the constant N depends only on d, p, o, B, x, 80, 61, K1, Ky and T .

: : . 2
Next, we introduce our result for nondivergence equation. To have H ,’,’ *2_valued
solution we assume the following conditions.

ASSUMPTION 2.14. (i) There exists a k € (0, 1) so that for any u € H%H(T),

+ /
f) eHy(T), g eHy (T, h).
(i1) There exists a constant K3 so that for any w, ¢, i, j,
(2.30) @' (&, ) gyt + B2, )] i1 + e (@, )| g < K,
and
o (t, ')|B"’”6‘(12) + | (2, ')|BW+”6|(12) + |v(z, '){B"’*Cé‘(lz) < Kj.
(iii) For any € > 0, there exists a constant K4 = K4(¢) > 0 such that

2.31) [7@.0) = £l + g0 =50 1y 00

<eéllu— vlngu + Kallu = vl gy,
forany u, v € H,’,’+2 and w, t.

See [16] for some examples of (2.31). Here, we introduce only one nontrivial
example. Let y +2 —d/p > n for some n € {0,1,2,...} and fo = fo(x) € H;/.
Take

f () = fo(x)sup| Diul.
X
Take a8 > 0o that y +2—d/p —n > 8. Using a Sobolev embedding H}, **~* ¢
Cr+2=0=d/p c C", we get forany u, v € H},’Jrz and ¢ > 0,
| £@) = f )| gy < 11 foll gy sup| DY (u = v))|
X
= N|M - U|Cn
= Nllu = vll yy2-s
< ellu = vll e + K () Ju = vl gy

Here is our main result for nondivergence equation (1.1).
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THEOREM 2.3. Let y € R and p > 2. Suppose that Assumptions 2.10 and
2.14 hold. Then nondivergence-type equation (1.1) with zero initial condition has
a unique solution u € H%+2(T) in the sense of Definition 2.5, and for this solution

(2.32) lllygy oy < NSO gy ) + [8© ||H[y)+cg)(T7 W)

where the constant N depends only on d, p, o, B, k, 89, 61, K3, K4 and T .

3. Parabolic Littlewood-Paley inequality. In this section, we obtain a sharp
L ,-estimate for solutions to the model equation

t
3.1) agu=Au+af’/ g dwk.
0

For this, we prove the parabolic Littlewood—Paley inequality related to the equa-
tion. For the classical case « = 8 = 1, we refer to [12, 15, 17].
Consider the fractional diffusion-wave equation

(3.2) 3%u(t,x)=Au(t,x),  u© =ug,  lgo1u'(0)=0.

By taking the Fourier transform and the inverse Fourier transform with respect to
x, we formally find that u(#) = p(¢) * ug is a solution to this problem if p(z, x)
satisfies

0
(3.3) 9 F(p)=—IF(p), F(p)0,8) =1, 1a>1f(a—€)(0,5)=0-

It turns out that (see [10, 14] or Lemma 3.1 below) there exists a function p(z, x),
called the fundamental solution, such that it satisfies (3.3). It is also true that p
is infinitely differentiable in (0, 00) x R? \ {0} and lim,_,o 2% = 0 if x # 0.
Define

_|pen: azp
(3.4) Go,p(t, X) -—{Df—ap(t’x): o < B,

and

q(t7x) = Qa,l(tvx)-

Note that g4, g is well-defined due to above mentioned properties of p. Moreover,
DP ™ p(t,x) =3P~ p(t, x) since p(0,x) =0 if x #0.

In the following lemma, we collect some important properties of p(¢, x), g(t, x)
and gy (1, x) taken from [10] and [14].
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LEMMA 3.1. Lerd €N, a €(0,2), f<a+ 1, andy €10,2).

(1) There exists a fundamental solution p(t,x) satisfying above mentioned
properties. It also holds that for all t # 0 and x # 0,

op(t, x)
ot

and for each x #£ 0, %p(l, x) — 0ast | 0. Moreover, %p(t, ) is integrable in RY
uniformly ont € [e, T] for any ¢ > 0.
(i1) Ifn <3, Diq(t,-) is integrable in R< uniformly ont € [, T for any & > 0.

(iii) There exist constants ¢ = c(d,«) and N = N(d, o) such that if x| > 19,

(3.5) A7 p(t,x) = Ap(t, x), = Aq(t, x),

(3.6) |p(t,x)| < Nix| ™ exp{—clx|Zar 25 ],

(iv) It holds that
(3.7) F{D{ qo,p(t, )} (&) = 1“7 P~ Eq 1 1a—p—o (- 1EP1%),
where E, ,(z), a > 0, is the Mittag-Leffler function defined as

o0 k

é
Eqp(@)=) ———, zeC.
= T(ak +b)

(v) There exists a constant N = N, y, a, B) such that
D7 (=8)qa,(1, 0| + DY (= 8)?81qa,5(1, )]
< N(lx| =277 A x| 777)
ifd>?2,and
D7 (—=8) 24,51, 0)| + | DY (=2)"?8,qa,5(1, )]
< N({Ix|"7 (1 +1n|x|1,=1)} A lx]7177)
if d = 1. Furthermore, for each n € N,

39 | DY D (=AY e, (1, )| + | DY DY (=8 810 p (1, x)|
<NW,y,a,B,n) (x| 427 A x|,

(vi) The scaling properties hold:
_ad _a
(3.9) Gup(t,x) =172 Pgy g(1,x177),

a(d

__ad+ty) _ _a
(3.10) D? (=AY 2qu p(t,x) =17 2 T PDI(—AYPqy p(1,x17 7).

PROOF. (i), (ii), (iii) and (v) are easily obtained from Theorem 2.1 and Theo-
rem 2.3 of [14]. The proof of (iv) can be found in Section 6 of [14]. For the scaling
property (vi), see [14], (5.2). U

The following result is well known, for instance, if « € (0, 1]. For the complete-
ness of the article, we give a proof.
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COROLLARY 3.2. Let f € C3(RY). Then
/ pt,x—y)f(y)dy
R4
converges to f(x) uniformly ast | 0.
PROOF. By (3.7), for any ¢ > 0,
/d p(t, y)dy =Fp(0) = Eq1(0) = 1.
R

Also (3.9) shows that || p(z, -)[| 1, (ray 18 @ constant function of 7. For any § > 0,

‘/ p(t.x — ) f)dy — f(x)
Rd
_ \/ Pt (= y) — f(x))dy'
Rd
< /| 8|p(t,y)(f(x —y) = f(x))|dy
yl<

" /| e = = ]y
y|>

=:Z(8) + T ().

Since f € Cg(Rd), for any ¢ > 0, one can take a small § so that Z(§) < ¢. More-
over, due to (3.6), for fixed § > 0, J(8) — 0 as ¢ | 0. The corollary is proved.
O

In the remainder of this section, we restrict the range of 8 so that

1 1
(3.11) §<,8<oz+§.

Thus by (2.24), we have

c1i=2—ch=2— € (0,2).

26 — 1
o

In the following section (i.e., Section 4), we prove that if g € HSO(T, [») then
the unique solution (in the sense of Definition 2.4) to equation (3.1) with the zero
initial condition is given by the formula

t
(3.12) u:/o /qua,,g(t—s,x—y)gk(s,y)dydwf.
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By Burkholder—Davis—Gundy’s inequality,

| (—a)?u Iz, )

T t
< NE —A) 2, (1 — s,
(3.13) = /Rd/o [/0 ( Rd( )M Ga,p(t —s

2

r/2
X —y)g(s,y)dy> dS} dtdx.

1)
Our goal is to control the right-hand side of (3.13) in terms of gL, (r.1,)- For

this, we introduce some definitions as follows. Let H be a Hilbert space. For g €
Cfo(]RdH; H), define

Tfﬁfg(s,')(x) = /Rd Ga,p(t —s,x —y)g(s,y)dy.

Note that, due to Lemma 3.1(v), (—A)“1/2gq g(t, ) € L1(RY) for all # > 0. There-
fore, for any t > s

(—A)2T P o(s, ) € Li(R?: H)
and

(—A)12T P g (s, ) (x)

z/Rd(—A)C‘/zqa,,s(t —5,x — )g(s, y)dy.

We also define the sublinear operator 7 as

¢ ., ) 12
Te(t,x) = [/ (= 2) 2T P g s, -)(x)ers] ,

where | - |y denotes the given norm in the Hilbert space H. T is sublinear due to
the Minkowski inequality

(3.14) If + 8l Ly((—co.t: 1) = Nl La((—00.00: ) + 181l Loy ((—00.0): H)-
Now we introduce a parabolic version of Littlewood—Paley inequality. The
proof is given at the end of this section.

THEOREM 3.1. Let H be a separable Hilbert space, p € [2,00), T €
(—00, 00], and a € (0,2). Assume that (3.11) holds. Then for any g € CSO(R‘HI;
H),

T T
(3.15) / / |7'g(t,x)|pdtdx§N/ / |g(t, x)| dt dx,
R4 J—o0 R4 J—o0

where N=N(, p,«, B).
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REMARK 3.3. By Theorem 3.1, the operator 7 can be continuously extended
onto L p(Rd“; H). We denote this extension by the same notation 7T .

REMARK 3.4. Take u and g from (3 12). Extend g(¢) =0 for ¢t < 0. Note that

the right-hand side of (3.13) is Ef]Rd f |Tg(t,x)|Pdt dx. Thus, using (3.15)
(actually Remark 3.3) for each @ and taklng the expectation, we get

[~ 2ullf 7y < NISIE, 7.1y

First, we prove Theorem 3.1 for p = 2. The following lemma is a slight ex-
tension of [3], Lemma 3.8, which is proved only for « € (0, 1) with constant N
depending also on T. For the proof, we use the following well-known property
of the Mittag-Leffler function: if @ € (0,2) and b € C, then there exist positive
constants ¢ = e(«) and C = C(«, b) such that

(3.16) |Eap@|<C(IAIIT), 7 —e<]aga)] <.
See [28] for the proof of (3.16, Lemma 3.1).

LEMMA 3.5. Suppose that the assumptions in Theorem 3.1 hold. Then for any
T € (—o0, 00] and g € C° (R H),

T T
(3.17) / / | Tg(t, x)|*dt dx §N/ / |g(t,x)|3, dt dx,
R? J—oc0 R4 J—o0
where N = N(d, p, a, B) is independent of T .

PROOF. Step 1. First, assume g(t, x) = 0 for ¢ < 0. In this case, we may as-
sume 7 > 0 because the left-hand side of (3.17) is zero if T < 0.

We prove (3.17) for T = 1. Since g(¢, x) =T g(t, x) = 0 for t < 0, by Parseval’s
identity and (3.7),

1
/d/ |Tg(t, x)[* dt dx
Ré¢ J —o00

1 pt
=/ / | EP et =5 N O F | Fleds £l d dsdi

/€|< / | Fig)(s. )]

(/ PP Bt 5 ) ) s d

/| 1/ Fle)s. O
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(/ &2 1P Eq 1 —pra (—1E]*1Y)] dt)dsds

<N/ / lg(t, x)|dedt
+N/ /|f{g}(s,s)|§,
E1>1J0

1
x ( / |s|2”|z°‘ﬂEa,l_,a+a<—|s|2ta)|2dt> ds de,

where the last inequality is due to (3.16) and the condition @ — 8 > —1/2. Thus to
prove our assertion for 7 = 1 we only need to prove

1
Sgp(1|$|zl|§|zcl e B (lePr) P ) < o

By (3.16), if |£]| > 1 (recall we assumed 8 > 1/2 in this section),

1
£ Pl /0 1B Eq 1 e (—1EP1%) 2 di

3
stm/
0

_py4 281 _
< NIEPO27a) + Nig P (18
<3N.

Therefore, the case T =1 is proved.
For arbitrary T > 0, we use (3.10), which implies

(Ao g(T(t —5), x)

—2/e 1 =B |2

e g [

|| =2/

—1)

(3.18)

a(d+c])

=T~ e (A2, p(t —s5, T 2x),
and consequently
(3.19) Te(Tt,x)=Tg(t, T 2x),
where g(t,x) = g(Tt, T%x). By using the result proved for T =1,

T 1
/ / |Tg(t,x)|2dtdx=T1+%/ / |T&(t, x)|*dt dx
R4 J—o0 R4 J—o0
1
SNT”"%”/ / 3¢, x) 2 dr dx
Re J -0
T
=N/ / |g(t,x)|2dtdx.
Re J—o0
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Thus (3.17) holds for all T > 0 with a constant independent of T'. It follows that
(3.17) also holds for T = oc.

Step 2. General case. Take a € R so that g(¢, x) = 0 for t < a. Then obviously,
for g(t,x) := g(t +a, x) we have g(t) = 0 for + <0. Thus it is enough to apply
the result for Step 1 with g and 7 — a in place of g and T, respectively. [

For a real-valued measurable function # on R9, define the maximal function

M, h(x) :=sup h(y)|dy
* r=0 | Br(x)] B,(x)| |
= sup][ [h(y)|dy.
r>0J B, (x)
The Hardy-Littlewood maximal theorem says
(3.20) ||Mxh||L1,(Rd) <N, P)”h”LP(Rd) Vp>1.

For a function A(¢, x), set
Mh(t, x) = M (h(t, 1)) (x),
M;h(t, x) = M, (h(-, X)) (1),
and
MM, h(t, x) = M; (MhA(-, x))(1).

To evaluate M, M, h(¢, x), we first fix ¢ and estimate (M, A (¢, -)) (x). After this, we
fix x and regard (Ml A(¢,-))(x) as a function of ¢ only to estimate the maximal
function with respect to 7.

Denote

(3.21) Qo :=[-24,0] x [-1, 11"

LEMMA 3.6. Let g € Cfo(Rd“; H) and assume that g = 0 outside of
[—4#%,4%] x Bsg. Then for (1, x) € Qo,

/ | Tg(s, y)lzds dy < NMM,|g|% (1, x),
Qo
where N =N(d, a, B).

PROOF. By Lemma 3.5,

0
/ITg(s,y)Izdsdys/ 2/ |g(s, )5, dyds.
Qo —4a J B3y

For any (t,x) € Qo and y € Bsg, since |x — y| < x| + |y| < /d +3d < 4d, we
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0 0
/ 2/ Ig(s,y)ﬁfddeS/ 2/ lg(s, V)|3 dy ds
—4a J B3y —4a J|x—y|<4d

0
< N/42 I\\/Jlx|g(s,x)|i,ds

obtain

< NM, M, |g|%(t, x).

The lemma is proved. [J

Here is a generalization of Lemma 3.6.

LEMMA 3.7.  Let g € C°(R**Y; H) and assume that g(t, x) = 0 for |t| > 43,
Then for any (t, x) € Qo,

/Q | Tg(s.y) > dsdy < N(d. o, BYM M, |g[3, (2, x).
0

PROOF. Take ¢ € C° (R?) such that ¢ =11in Byy and ¢ = 0 outside Bsg.
Recall that 7 is a sublinear operator and, therefore,

Te<T@e)+T(1-0)g).
Since T (¢g) can be estimated by Lemma 3.6, we may assume that g(¢, x) = 0 for
X € By Let0>s>r > —4s. Then by (3.10),

(=) 2T o )

OlCl

<(s—r)"FHep-7
(3.22) x /Rd\(—A)c'/zqa,ﬂ(l, s —r)"5y)||etry — )|, dz
= (s —_ r)_%_%

8 /de—mmzqa,ﬁ(l, (s —r) " 2y)||g(r,y — 2| dz.

To proceed further, we use the following integration by parts formula: if F and
G are smooth, then forany 0 < & < R < 00,

/ F)G(Inl) dn
€<[n|<R

R
(323) _ / G/(p)[/ F(n)dn}dp
€ n<p

+G(R) / F(n)dn — G(e) / Fn)dy.
In|<R [n|<e
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Indeed, (3.23) is obtained by applying integration by parts to

R d R
/ G(p)d—</ F(z)dz)dpz/ G(p)(/ F(s)dSp) dp
e P \JB,0) & 9B,(0)

:/ F(2)G(|z]) dz.
R=|z|ze

Observe that if (s, y) € Qo and p > 1, then
(3.24) |x —yl <2d, By(y) C Baa+p(x) C B@d+1)p(x),

whereas if p < 1 then for z € B,(0), |y — z| < +/d + 1 < 2d, and thus
g(r, y — z) = 0. Therefore, by (3.23) and (3.8),

ad 1 o
(s—r)" 272 /Rd|<—A>“/2qa,,s(1, (s —r)"2y)||gr,y — 2)|, dz

o0
<N(s —r)"‘_’g/ p i1 [/ Ig(r,y—Z)IHdZ} dp
1 lzl<p

o0
< N(s -t / p—l—“[][ \g(r,z>|Hdz]dp
1 B3p(x)

< N(s —r)*PM,lglu(r,x).
Then due to the fact that (M, |g|x)? < M, |gl%,

S
/ 'Tg“’y)|2d”y=/ / (=) T g (5 drds dy
Qo Qo J—o0
S
SN/ / 2[Mx|g|%-1(”ax)(s—”)Z(a_ﬂ)]drdsdy
Qo J—4w

0 0
§N/ 2(/ (s—r)2<“—/3)ds>Mx|g|§,(r,x)dr
—4o r

< NM, M, g3 (7, x).

The lemma is proved. [

LEMMA 3.8. Let g € Cé’o(Rd‘H; H) and assume g(t,x) = 0 outside of
(—o0, —3%) X Bsg. Then for any (t, x) € Qo,

. | Tg(s, y)[*dsdy < NM;M,|g|%(t, x),
0

where N =N(d, a, B).
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PROOF. Note that g(s,-) =0 for s > —3%. Recalling (3.10), we have

1 Tg(s, y)|*

S
< / [(=D)2TEE o (r, Y () |5, dr
—0oQ0

2
/_30[

o0
x /d(—A)Cl/an,ﬂ(l, (s—r)"%2)g(r.y —2)dz
R

32
S / (S _ r)—old—l

—00

_ad_ 1
(s—r)y 272

2
dr
H

2
X [/Rd‘(_A)CI/an’ﬂ(l’ (s — ”)_72)||g(r, y— Z)}Hdzi| dr.

If |z] >4d, then g(r,y —z) =0since y € Qo and |y — z| > |z| — |¥| = 3d. There-
fore, by Minkowski’s inequality and Lemma 3.1,
/ (=) g0 (1, s — N7 52) gy — 2 dz
[-1,1]41/Rd
5/ dz dy
[-1,1]4 H

1/2 .
5(/ [/ 1g(r,y—z>|?qdy] K—A)Cl/zqa,ﬁ(l,(s_,»)—QZ)W)
lz]<4d LJ[-1,1]¢

1/2 ) )
= (/ |:/ HE )’)ﬁldy] |(—A)C1/2%,ﬁ(1,(s—r)—7Z)|dZ)
lz|<4d LJ Bs4(0)

sNMngI?H(r,x)</

|z|<4d

< N(s — r)* DM, g1 (r, ),

2
dy

/| | 4d|(_A)Cl/2‘1a,ﬁ(1’ (s —1r)722)||g(ry —2)

2

2
(=AY 2q 4(1, (s — 1)~ %2))| a'z)

where ¢ € (1,2) if c; =1 and d = 1, and otherwise ¢ = c;. Since |s — r| ~ |r| for
2 2
r <—3« and —2« < s <0, we have

0
/ {Tg(s,yﬂzdsdy:/ 2/ | Tg(s,y)|*dyds
Qo —2a J[-1,1]4

2
0 —3a X
SN/ 2/ (s —r)*CD7IM, |g13, (r, x) dr ds
—2a J—00
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2
3

<N M, | g% (r, x)

—0o0

2
—3@ 0
dr
2
v [ ( _er|g|H(s,x)ds)iw(z_é)+2

< NM, M, |g| e
= NM:Milgln .0 [, Zaam

dr
|r|a(2—6)+1

< NM, M, |gl|% (7, x).

The lemma is proved. [J

LEMMA 3.9. Let g€ CSO(]R‘H]; H) and assume that g(t, x) = 0 outside of
(—o0, —3§) x B5,. Then for any (t, x) € Qo,

/Q |'Tg(s, y)—Tg(r, z){2 dsdydrdz < NM;M, |g|%1(t, x),
0
where N =N(d, a, B).

PROOF. Due to Poincaré’s inequality, it is enough to show

(3.25) /Qo<

Because of the similarity, we only prove

9 2
aTg‘ + IDyTg|2> dsdy < NM,M,|g|%(z, x).

(3.26) / D, Tgl?dsdy < NM, Mgl (1. %),
Qo

Note that since g(s, -) =0 for s > —3%,

2
_3&a

« e
DiTg(t,x) = Dy [ / (=) 2T g s, -)(x)|Hds]

—0o0

32 1/2
s[ / |Dx<—A>"l/2T:ﬁfg<s,->(x>|§,ds] ,

—00
where the above inequality is from Minkowski’s inequality; recall (3.10). Thus for
any (s, y) € Qo,

|D,Tg(s, )|

2
3
, 2
5/ Dy (—=A) NPT g (r, ) ()] dr

—0
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2

x/ Da(=AY g0 5(1, (s = )" $2)g(r y — 2)dz| dr
R4 H

2

—_3a
S / (S _ r)—ocd—l—a
—0o0

2
x [Ad‘Dx(_A)cl/ZQa,ﬂ(l’ (s —r)"22)||g(ry — z)|Hdz] dr.

Since g(r,y —z) =0if |z] <d and y € [—1, 114,

/ |DyTg(s, y)|2 dsdy
Qo

2

_4%
<// (s — ry—o@+D=1

Qo J —o0

« [/ Dy (=AY 20 (1, (s — ) %2)|
|z|>d

2
x |g(r,y — z)|Hdz] drdsdy.
Let (¢, x) € Qp. By using (3.23) and Lemma 3.1(v),
/|| d|Dx<—A>“/2qa,,s(1,(s—r)‘%z)|<g<r,y—z)|ydz
zZ|=

sN(s—rY%/d ((s—r)‘gp)d”8(/3()1g(r,1>|HdZ>dp
oy

< N(s —r) 2@+ =DNM |e(r, x)|

where ¢ € [0, 2] is taken so that ¢; + ¢ € (1, 2). Therefore,

/ |DyTg(s, y)|2 dsdy
Qo

2
0 —3@
< N/ 5 [/ (s — r)“(cl+g_2>_11\\/ﬂx|g(r, x)\i, dr] ds
—2a —00

2
—3a 0
< N/ ( M, |g(r, x)|§1 ds) |r|e1te=2=2 g,
—00 -r
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) o
< NM,M,|g(t, x)|5 /2 relate=2-1g,
3o

< NM,M.[g(t, )],
Thus (3.26) and the lemma are proved. [J

For a measurable function (7, x) on R4*!, we define the sharp function
W, x) = sup][ |h(r,2) —ho|drdz,
0 Jo
where
ho :][ h(s,y)dyds
0
and the supremum is taken over all Q C R?*! containing (¢, x) of the form
Q= 0r(s, ), R>0
2 2 1 1
=(s—R«/2,s+Re/2)x(y' —R/2,y +R/2) x ---
< (y! = R/2.y' + R/2).
By the Fefferman—Stein theorem,
(3.27) Il a1y < N||h#||Lp(Rd+1), p>1
Also note that for any ¢ € R,

][ \h(r.2) —ho|*drdz
0
(3.28)

2
I][‘][(h(l’,z)—h(&y))dsdy’ drdz§4][|h(r,z)—c|2drdz.
oo Y

2115

PROOF OF THEOREM 3.1. If p =2, (3.15) follows from Lemma 3.5. Hence

we assume p > 2.
First, we prove for each Q = Qg(s,y) and (¢, x) € Q,

(3.29) ][ |Tg— (Tg)Q|2drdz§NMthlgI%,(t,x).
0

Note that for any hg e R and & € R4,
Tg(t—ho,x —h)

t—ho _ , i
=[[ et e e -nlas)

—0o0
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(/.

t
_ [/ ](—A)“I/z/ Gapt —35,% — ¥)3(s, ¥)dy
—0 Rd

=Tg, x),
where g(s, y) := g(s — ho, y — h). This shows that to prove (3.29) we may assume

(s + Re,y) = (0,0).
Also, due to [3.18) (or (3.19)],

Tg(c%-, c)(t, x) = Tg(c%t, cx).

Since dilations do not affect averages, it suffices to prove (3.29) with R = 2, that
is,

2 12
ds]

0 [ upt—ho=s.x = h =g )dy

2 1/2
ds]
H

H

0= Qo=[-24,0] x [-1, 1].

Now we take a function { € C2° such that { =1 on [—3%, 35], ¢ = 0 outside of
[—4%,4%], and 0 < ¢ < 1. We also choose a function n € Cfo(]Rd) such that n =1
on Byg, n =0 outside of B3z, and 0 < n < 1. Set

g1(t, x) =g¢, g =g =, =g =0 —mn).
Observe that g = g1 + g2 + g3 and

(=D PTE g1 (5, y) = () (= A 2T P g (s, y),

(3.30) Tg<Tg1+T(g2+g3),
(3.31) Tg3<T(g2+8)=Tg.

(3.30) is because T is sublinear [see (3.14)], and (3.31) comes from the facts g3 =

(I—m(g2+83),8+g=>0-7)g, [1 —n(s)| <1, and |1 —Z(s)| = 1. Hence
for any constant c,

(3.32) |Tg—cl<I|Tgil+|T(g+g3) —|
and
(3.33) |T(g2+83) —c| <|Tgal+1|Tg3—cl

Indeed, (3.32) is from (3.30) if ¢ < T g, and if ¢ > T g then it follows from 7 (g2 +
g3) < Tg. Similarly, (3.33) is obvious if ¢ <7 (g2 + g3), and ¢ > T (g2 + g3) we
use 73 < T(g2+ &3).

Therefore, for any c € R,

|Tg(s,y)—c| <|Tgi(s, |+ |T(g2+g3)(s, y) — ¢
<|Tai(s, )|+ |Tgals, )|+

Tg3(s,y)—c

’
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and by (3.28)

][ 1 Tg(s,y) — (T, dsdy
Qo
54][ |’Tg(s,y)—cl2dsdy
Qo

<164+ [Tgi(s.y)| dsdy + 16][ 1 Tga(s. y)|[*dsdy
Qo Qo

+ 167[ |Tg3(s.y) —c|*dyds.
Qo
Note g and g» satisfy the conditions of Lemma 3.7 and 3.8, respectively, and thus

| Tg1(s, )|* ds dy +][ 1T ga(s, y)|[*dsdy
Qo Qo

< N(M,M,|g1|%/(t, x) + MM, |g2]% (¢, x)) < NM; M, |g|% (t, x).

The second inequality above is due to |g;| <|g| (i =1, 2, 3).
Taking ¢ = (7 g3) g,, We get

1 Tg3(s, y) — (Tg3)0,| dsdy

Qo

(3.34)
5][ ][ |Tg3(s»y)—Tg3(7’,z)|2drdzdsdy.
Qo0 J Qo

Note also, on Qg, 7 g3 does not depend on the values of g3(¢, x) for # > 0. Hence
the above two integrals do not change if we replace g3 by g3&, where & € C*°(R)
sothat0<é<1l,f=1fort<1l,and& =0fort > 22/2 Now it is easy to check
that g3& satisfies the assumptions of Lemma 3.9, and therefore the right-hand side
of (3.34) is controlled by

M, M| g3€17; (2, x) < MM |glF; (2, x).

Hence (3.29) is finally proved.
We continue the proof of the theorem. By (3.29) and Jensen’s inequality,

(Tg)* (1. x) < N(M Mgl (1. )2,
Therefore, by the Fefferman—Stein theorem ([31], Theorem 4.2.2) and the Hardy—
Littlewood maximal theorem ([31], Theorem 1.3.1),

#
”Tg”Lp(]Rd+l) < N” (Tg) ”LP(RHH—I)

172

< NIMMelgli ], sy
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1/2

S NHMxlgﬁ—]”Lp/z(RdJrl)

< NH |g|H“L,,(]Rd+1)‘

This proves the theorem if 7 = oco. Note that if 7 < oo the left-hand side of (3 15)
does not depend on the value of g for r > T. Take £ € C®(R) suchthat 0 <& < 1,
E=1fort<T andS_Ofort> T + ¢, ¢ > 0. Then it is enough to apply the
result for T = oo with g&. Since & > 0 is arbitrary the theorem is proved. [J

4. Model equation. Let o € (0,2) and 8 € (—o0,a + %). In this section, we
obtain the uniqueness, existence, and sharp estimate of strong solutions to the
model equation

“4.1) A u(t,x) = Au(t, x)+8’3/ gk s, x)a’w t>0
with the zero initial condition u (0, x) = 0 [additionally d;u (0, x) =0 if o > 1].
The following lemma is used to estimate solutions to the equation when 8 <

1/2.

LEMMA 4.1. Lety eR, p>2,8< %, and g € ]H[%(T, 1p). Then for any t €
[0, T],

p
-2
B [13d [ doaat] ar<nap e mn e, 0
0 llg=1 H)
In particular,
p
/ Zaﬁ/g@,-)dwf dr < Nliglyy 1)
0 llx=1 H)

PROOF. Due to the isometry (I — A)?/?: H,’,/ — L, we only need to prove
the case y = 0. By Lemma 2.2(iii),

o0
B —B k k
0 g (s x)dw (t ) Pg (s, x)dwy,
' (,; F(l -B) = Z ’
for almost all + < T (a.s.). By the Burkholder—Davis—Gundy inequality and the
Holder inequality, for all t < T,

p
dr
Lp

t r ) p/2
§NIE/ / (/ (r—s)_zﬂ|g(s,x)|lzds) drdx
R4 JO 0

— ) Bk . k
F(l—,B)Z (r 5) Pgr(s,)dwy
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t r ) r/2
< NIE/ / (/ (r —s)_zﬂ(l_’+17)|g(s,)c)|l2 ds) drdx
rd Jo \Jo :

t r
SNE/ / / (r—s)_zﬁ]g(s,x)\idsdrdx
R4 Jo JO

t
_N / (t =) PUGN] (s 1y s
0

1-2
=N gl] (.

The lemma is proved. [J

A version of Lemma 4.2 can be found in [3] for p =2 and «, B8 € (0, 1). How-
ever, solution spaces are slightly different and our proof is more rigorous.

LEMMA 4.2.  Let g € Hi°(T, I2) and define
00 t
(4.2) u(t, x) := Z/ / Gup(t — s, x — y)g¥(s, y) dy dwk.
k=170 JRI

Then u € H%(T) and satisfies (4.1) with the zero initial condition in the sense of
distributions (see Definition 2.5).

PROOF. Let (t,x) € [0, T] x R?. Set
0 ot
v(t, x) = Z/ gk(s,x) dwf, w(t,x):= I,aiﬂv(t,x),
k=170

where Ita_ﬁv = ng_av if o < B. Note that since g € Hg°(T, ), by the Kol-
mogorov continuity theorem

veC274([0, T1, H)))

for any ¢ > 0 and m. Thus w € C‘S([O, T], Hg’) for some § > 0 [see (2.8)].
By Fubini’s theorem, if « > B and fractional integration by parts (e.g., [3],
Lemma 2.3) if o < 83,

t 1—s
/ If“%(s,x—y)( / g"(ny)dwf)ds
0 0

t s
:/ p(t—s,x—y)[f‘_ﬁ/ gk (r, y)dwk ds.
0 0

Here, I¢p(s,x — y) and Isa_ﬂ fos gk, y)dwf are used to denote (I,a_ﬁp(‘, X —
y))(s) and (I - fo gk, y)d wf)(s), respectively. Thus, using the stochastic Fu-
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bini theorem (see [19], Lemma 2.7) we get, for each (¢, x) (a.s.),

t 0o t t—s
/ u(s,x)ds:Z/ / I;"’Sp(s,x—y)/ gk(r, y)dwfdsdy
0 =1 /R4 Jo 0

o.¢] t s
:Z/Rd/o p(t—S,x—y)]s“_ﬁ/O gk(r,y)du)’lfdyds
k=1

t
=/ / pt—s,x —y)w(s,y)dyds.
0 Rd

Due to the continuity with respect to ¢, for each x we get
t t
/ u(s,x)ds:/ / pt—s,x—y)w(s,y)dyds Vi <T (as.)
0 0 JRrd

and, therefore (a.s.)
3 t

4.3) u(t,x)= —/ / pt—s,x —y)w(s,y)dyds (ae)t<T.
ot Jo JRrd

In other words, the above equality holds (a.e.) on Q x [0, T'] x R¢.
Next, we claim that

t
4.4) u(t,x)—w(t,x):// gt —s,x—y)Aw(s,y)dyds

(a.e)on 2x[0, T]xRY. By the definition of the differentiation, for each (w, ¢, x),

// pt—s,x —y)w(s,y)dyds

hi0 h
t+h—s,x—y)—plt—s,x—
+lim/ / [p( + S XY m P y)]w(s,y)dyds.
hi0 Jo Jra h
By the mean value theorem, the integration by parts, and Lemma 3.1(i) and (ii),

t
. p(t+h—s,x—y)—p(t—s,x—y)]
1
i .l h s

t+h
=lim — / /p(t—l—h—sx—)’))w(s y)dyds

=1 — — — 1
hli%/ /Rd at(t+9h s, x —y)w(s,y)dyds, 6,1

:lim// gt +06h—s,x —y)Aw(s,y)dyds
hi0 Jo JRrd

t
=// q(t—s,x —y)Aw(s,y)dyds.
0 JRA
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For the last equality above, we used the L{-continuity of the integrable function
[27], Theorem 9.5, which implies that for any f € L{([0, t + €]), where € > 0, it
holds that lim, o [y | f(s +h) — f(s)|ds = 0.

On the other hand, due to Corollary 3.2,

1

t+h
2182/; /de(t—l—h—s,x—y)w(s,y)dyds:w(t,x).

Thus (4.4) is proved due to (4.3), and from (4.4), it easily follows that u has a
H g—valued continuous version since g € HG°(7, [2). It only remains to show that

u satisfies (4.1). By representation formula (4.4), it follows that u — w € H(;:%(T)
(a.s.), and

3 (u—w)=Au—w)+ Aw(t, x)
= Au

4.5)

in L,(T). See Remark 2.9 for spaces HZ”%(T) and L,(T). Actually in [13],
Lemma 3.5, it is proved that (4.4) gives the unique solution to (4.5) in the space
Hz”%(T) if Aw is sufficiently smooth. However, one can easily check that this

representation holds even if Aw € L, ([0, T] x R4) by using an approximation
argument. It follows from (2.14) and Remark 2.9 that for any ¢ € C2° (R?) (a.s.),

(u@®) —w(), ¢) =I1*(Au, $) (ae)t<T.

Taking (w(t), ¢) to the right-hand side of the equality and using the continuity of
u with respect to ¢, we get

t
(), ¢) = I*(Au, $) +1;"ﬂ/0 (&5, ¢)dw Vi <T (as.).

Therefore, u is a solution to (4.1) in the sense of distributions because u itself is
an Hg—valued continuous process. The lemma is proved. [J

Recall, for « € (0, 1),

281
ch=chli) = % +ilp_in€l0,2).

THEOREM 4.1. Let y € R and p > 2. Suppose g € H;JFCO(T, l») for some
k > 0. Then equation (4.1) with zero initial condition has a unique solution u €

7—[%+2(T) in the sense of distributions, and for this solution we have
(4.6) ooy < Vgl sy
where N=N(, p,a, B,k, T). Furthermore, if B > 1/2 then
/2
4.7 ””XXHJHIZ(T) = NH A%/ g”]l—]l}’,(T,lz)’
where N = N(d, p,a, B) is independent of T .
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PROOF. Due to the isometry (I — A)?/2: H,’,’ — L,, we only need to prove
the case y = 0.

Recall that as discussed in Remark 2.9 for the deterministic case, our sense of
solutions introduced in Definition 2.4 coincides with the one in [13]. Therefore, the
uniqueness result easily follows from the deterministic result ([13], Theorem 2.9,
cf. [34]). Therefore, it is sufficient to prove the existence of the solution and esti-
mates (4.6) and (4.7).

Step 1. First, assume g € H§°(T, [2). Define

00 ot
u(t,x):Z/ / qa,ﬁ(t—s,y)gk(s,x—y)dydwf.
k=170 JR

Then by Lemma 4.2, u € ’H?,(T) is a solution to equation (4.1) with the zero
initial condition. Thus we only need to prove the estimates. We divide the proof
according to the range of S.

Case 1: B > % Due to the inequality (e.g., p. 41 of [18]),

lwxxllL, ) < Nl AullL, 7).
to get (4.7), it suffices to show

(4.8) | Aulin, ) < NJAY gy 71
Denote

v= (=AU, g=(-A)g
By the Burkholder-Davis—Gundy inequality and Remark 3.3,

lAul] ) = 1 (=2 20|f )

T T
§NIE/ / {Tg(r,x)V’dxdthE/ / |g(t, x)|}, dxdt,
0 JRA 0 JR4

where N = N(d, p, o, B).
Next, we prove (4.6). By Theorem 2.1(iv) and (4.8),

T
lullf 7y <N /0 (T =" N Aullf g +181F, 5 1)) ds

T
<N [ el s
4.9) 0 HY (s.12)
T 0—1
< Nlgl”, / (T — )"\ ds
H,(T,L) JO
<Nlgl”, .
H,Y (T,1)

Combining (4.7), (4.9) and (2.16), we get (4.6).
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Case 2: B < % In this case, c;, = 0 and we apply the result of the deterministic
equation from [13]. By Remarks 2.8(ii) and 2.9, u satisfies

0%u=Au+f

in the sense of [13], Definition 2.4, where

_ 1 t
F0= g 2 | =5 g e dul.
F(1—p) ; 0 ‘
Due to [13], Theorem 2.9, and Lemma 4.1,
P 104 P
el oy < NUFUE, 7y < NISIE, 1

which together with (2.16) yields (4.6).
Case3: B = % Put § = . Write g = % + & and define

0t
v(t,x):Z// qayg(t—s,x—y)gk(s,y)dydwf.
k=170 JR

Since 0 < § < o and % < B < 2, the result from Case 1 with ch= QB—1D/a=«
implies that v € Hf, satisfies

00 . ot
Bf‘v(t,x)zAv(t,x)—i-ZB,ﬂ/ gk(s,x)dwf,
k=1 0

with the zero initial condition and

v 2 <N c/ :
Iolizz 7y = ”g”H,,O(T,lz)

Since I,‘Sv satisfies (4.1), by the uniqueness of solutions, we conclude that

I,‘Sv(t, x) = u(t, x). Therefore,

5
ullag2 oy = |10 = Nlvllyg @y =Nlgl ¢ -
leell3ez () |47 ”7{%@)— Vll32,ry = ”g”H,,O(T,lz)

Thus, the theorem is proved if g € H§* (T, [2).

Step /2 For general g € H;,O(T, [), take a sequence g, € HSO(T, l») sothat g, —
gin HZO(T, [2). Define u, as the solution of equation (4.1) with g, in place of g.
Then

(4.10) lunllzz )y = Nllgn IIH;(/)(TJZ),

411 tn = umllggry = Nlign = D)’
( ) llun m”?—l],(T)— 1gn gm“HpO(T,lz)
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Thus, u, converges to u in H%(T ) and u becomes a solution to equation (4.1).
Indeed, to check u is a solution, let ¢ € S and then we have

(A%, (1), ¢)

t
= I (Aun(t, -),¢>)+th“‘5/0 (85(s, ), ¢)dw* Vi <T.

k=1

Taking the limit and using (4.11) we conclude that 7%y has a continuous version
and, therefore, the above equality holds for all t < T (a.s.) with u and g in place
of u, and g,, respectively. The theorem is proved. [J

5. Proof of Theorem 2.3. First, we introduce a version of method of continu-
ity used in this article. Later we will take Lo = A and A9 = 0.

LEMMA 5.1 (Method of continuity). Let Lo, L1 be continuous linear opera-
tors from HZH(T) to HZ (T) and Ao, A1 be continuous operators from ”H}’,H(T)

to H;JFCO(T, D). For A €[0,1] and u € HZH(T), denote Lyu = ALu + (1 —
M Lou and Ajyu = AAu + (1 — X)Aou. Suppose that for any f € H%(T) and

g€ H;+CO(T, 1) the equation
t
Ofu=Lou+ f+ 8;3/ (Afu + g*)dw*
0

with zero initial condition has a solution u in H%Jr (T). Also assume that if u €

7—[;+2(T) has zero initial condition and satisfies (in the sense of distributions) the
equation

t

(5.1) 0%u =Lw+f+a,ﬁ/ (Afu+ g*)dwt,
0

then the following “a priori estimate” holds:

).

(5.2) ety o2y = NoULf Mgy + 180y

where Ny is independent of A, u, f, and g. Then for any A € [0,1], f € H}/,(T),
and g € HZ+CO(T, lp) the equation

t
(5.3) u=Lu+ f+ 8;3/ (Aku+ g5)dw!
0

with zero initial condition has a unique solution u in H;+ (T).
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PROOF. The uniqueness easily follows from (5.2). Let J be the set of all A €
[0, 1] for }Jvhich equation (5.3) has a solution in H%H(T) for any f € HZ(T) and
g€ H;+CO(T, [), by the assumption 0 € J. Thus, to prove the lemma, it suffices

to show that there exists ¢ > 0 depending only on Ny and the boundedness of the
operators L; and A; (i =0, 1) such that A € J whenever Ao € J and |A — Ag| < €.
Let Ao € [0, 1] and X € [0, 1]. Fix u° € ’HZH. By the assumption, we can in-

ductively define u"*! € ’H;H(T) as the solution to

ataun_H = LAOM”H + (—onu” + Lyu" + f)

(5.4) 5 [
+ at / (A)LOMH—H + (—A)\Oun + A)\Mn + gk))dwf.
0

Note that for u"t! — " € 7—[}/,+2(T) satisfies
8ta (un+1 _ un)

= Ly ("' = u") + (h = ho) (L1 — Lo)(u" —u" ")

t
+ a,ﬁ/ AL " = ")+ (= ho) (A1 — Ag) (" —u" T dwf.
0

By a priori estimate (5.2), we have

+1
[ —u" ||H%+2(T)

< Nolr — 2ol(| (L1 — Lo) (u" — ”n_l)”H,V,(T)
Al — A n_ ,n—l ,
+ ||( 1 0)(“ u )”Hi/;-'—CO(TJZ))

-1
< Np= ol =" i

where the second inequality is due to the continuity of operators Lo, L1, Ag and
A 1. Note that the constant N above does not depend on A and Ag as well. Thus, if

eN < 1/2 and |A — Ag| < ¢ then u,, becomes a Cauchy sequence in HVBZ(T) and,
therefore, the limit # of u" becomes a solution to equation (5.3), which is easily
checked by taking the limit in (5.4). The lemma is proved. [

Next, we present an estimate for a deterministic equation of nondivergence type.
We use the space Hi’gH(T) introduced in Remark 2.9.

LEMMA 5.2. Leta" be given as in (2.22), that is,

My
(5.5) a’(t,x) =" a (t, ) 1,510,

n=1



2126 I. KIM, K.-H. KIM AND S. LIM

where T, and af,j are nonrandom, and a'’ satisfy (2.23) and (2.30) with the con-

stants 8o and K3 given there. Then for any solution u € HZ’)6+2(T) to the deter-
ministic equation

(5.6) Fu=au. .+ f
in HY,(T), it holds that
(5.7 el 2 7y = NSy r)»

where N c_iepends only on a, p, y, 8o, K3, T, My and the modulus of conti-
nuity of ay . In particular, N depends on My but independent of the choice of
Tlyeees TMp—1-

PROOF. If y =0, then this lemma is proved in [13], Theorem 2.9, under the
condition that a,] are uniformly continuous with respect to (¢, x), but without the
condition |a'/| g1 < K3. The proof for the case y # 0 depends on the one for
y =0.

We divide the proof into several steps.

Step 1. Assume that a' are independent of (¢, x). In this case, (5.7) holds due
to [13], Theorem 2.9 (or see [34, 35]) if y = 0. For the case y # 0, it is enough to
apply the operator (1 — A)¥/2 to the equation.

We show that (5.7) leads to

(5.8) letxx e 7y < Noll f gz 7y

where Ng = No(«, p, v, do) and thus Ny is independent of 7. Obviously, to prove
the independency of T we only need to consider the case y = 0, and for this
case, it is enough to notice that v(¢, x) := u(T't, T%/2x) satisfies ofv = a Vyiyj +
T f(Tt, T%2x) in L, (1) and use the result for T = 1.

Step 2 (perturbation in x). Assume that ¢/ are independent of ¢. Recall we are
assuming

(5.9) supla’/ ()| gy < K3.

i,j,w

In this step, we prove that there exists a positive constant &1 = &1 (Ng), thus which
is independent of T and K3, so that (5.8) holds with new constant N = N (Ng, K3)
if

(5.10) sup |a' (x) —a' ()| <ey.
i’j"x?y

Set aéj :=a"(0), and rewrite (5.6) as

y L
u=aguu.,+f~+ @’ —ag)u.
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By the result of Step 1, foreacht < T

(5.11) el oy < No(lF ey + 1@ = ag) Y Ly o)-
By (2.26),
[(a" = ag) Yuyixi | gy < N(@.p)la" = ag | gl l gy -
It follows from (5.11) that
(5:12)  ltxeluy ) < Noll gz cry + NoN (d, v)la 2, ) = ag | i gy -
Hence we get (5.8) with 2Ny in place of Ny if
af)j|3|yl = Wl)’)NO =&

Now we take &1 = &/2 and assume (5.10) holds. Fix a small constant p > 0 so
that p(VDAM K3 < g5/2, and set

(5.13) " —

.. .. 2 2
ag (¢, x) :=a" (px), up(t,x):=u(pet, px), folt,x) = p* f(pt, px).
Note that u, (¢, x) satisfies
Fup=aup) i+ fo.  t=<p °T.
By the definition of B'Y!,(5.9) and the choice of p,
\aij(-) — a;j (0)| giy1 < sup]aij — af)j\ + 1y¢0p(|yl)/\1K3 < &.
X

Thus by the above arguments which lead to (5.12) and (5.13), we get for each
t<pier

=p s

“ (Mp)xx ”H;(t) =< 2N0||fp||HZ(;)'
Consequently, foreach t < T,
”uxx”H%([) < N(K3, NO)”f”H%(;)-

As before, this and (2.17) yield (5.7). Before moving to the next step, we empha-
size that we take ¢ = (4N (d, )/)No)*1 and, therefore, it does not depend on T
and K3.

Step 3 (partition of unity). We still assume a'/ is independent of ¢. Choose a &
so that

(5.14) ld'l (x) — d'l (y)| < %1

whenever |x — y| < 48;. For this §;, take a sequence of functions ¢, € C° (RY),
n € N, so that 0 < ¢, < 1, the support of ¢, lies in B, (x,) for some x, € R4,

sup Y |DYg,(x)| < M(81,m) < o0

xeRY ;,eN
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for any multi-index n € Z¢ and

inf [, (x)| = > 0.
xeRdneN

It is well known ([16], Lemma 6.7) that for any y e R and n € N,

||h||”y <N ||h;n||" <N|h|?
neN

DRl = Nl
> HY
neN

H)’
(5.15)

where N depend only on d,y, M (81, n), and ©. Take a nonnegative n € C° (RY)
sothat 0 <n <1,n=1on By, and n =0 outside B,. Write

X — Xp,
Up = ulp, ﬂn(x)=ﬂ< 5 )

and define
(5.16) a] (x) :=n,(x)a" (x) + (1 — na(x))a” (xa).
Then, because 1, = 1 on the support of ¢,, u, (¢, x) satisfies
0 un (1, %) = af (n) yiyi + fa,
where
Fat.x) = F )00+ (a ui i G0 — ) (un) i)

Note that

i in — a (un) i i = —a" (2ui ()i + u(Gn) i i)-
Due to (5.14), for each x, y € R4,

|lad (¢, x) — d'l (t, y)|
= |na () (@ (x) = a" () — ma () (@7 (y) — a" (x))]
< [ () (@ (x) — a” )| + [1a (0 (@ () — @ (x))| < 1.

Also note that (a,l;j ) satisfies the uniform ellipticity condition with the same con-
stant §g. Therefore, by the result from Step 2 and (5.15), foreacht < T,

iy sz <N 2 Nunligyez ) <N D Wfullgy,

neN neN
(5.17) < N||M||Hy+1 +N||f||Hy(t)
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We take ¢ = 1/2, and to drop the term | u ||Hy o above we use (2.17), which implies

6—1
”u”Hy(z‘)—N/ (t—s) ”a ux x/+f”HV(s)
6—1
S R TP

<N [ =0 ) + 1 Vg ) s

where the last inequality is due to (5.17). Therefore, by applying fractional Gron-
wall’s lemma ([33], Corollary 2), we obtain (5.7). We remark that up to this step,
the constant N of (5.7) depends only on &y, p, K3, o, ¥, T and the modulus of
continuity of a'/.

Step 4 (general case). Recall that in Step 3 we proved the lemma when a'/ are
independent of ¢. For the general case, it is enough to repeat Steps 5 and 6 of the
proof of [13], Theorem 2.9. Indeed, in [13] the lemma is proved when y = 0, and
the proof is first given for time-independent a'/, and then this result is extended for
the general case. This method of generalization works exactly same for any y € R.

O

We continue the proof of Theorem 2.3.

Case A: Linear case. Suppose f and g are independent of u, and bi=c=
w'* = vk = 0. To apply the method of continuity, for each A € [0, 1] denote

(@) = r(a”) + (1 = M) laxa, Uijk = rok,
where 1;x4 is the d x d-identity matrix. Then
Lyu:= Aaijuxixj + (1 —A)Au =aijbtxixj
and
A])iu = hoiky o= o*)tvkux ixi-
Due to the method of continuity and Theorem 4. l we only need to prove a priori
estimate (5.2) holds given that a solution u € HV 0 (T) to equation (5.1) already
exists. Note that for any A € [0, 1] the coefficients aA and o, satisfy the same

conditions assumed for a’/ and o'/*, that is, conditions specified in Assumptions
2.10 and 2.13 with the same constants used there. This shows that by considering

a;f and o, in place of @/ and o, we only need to prove (5.2) for A = 1.
By Theorem 4.1, the equation

o) t -
(5.18) 0%v(1,x) = Av(t,x) + > of / (0*u i + g dw*
k=1 0
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has a unique solution v € H;BZ(T), and moreover, forany t < T,
(5.19) ol ez S NISH yug  +NL " Pull? @
Hp "() — H), 0T 1) HET()

Indeed, (5.19) is obvious if 8 > 1/2 because o7k = 0 in this case. If B < 1/2, then
by Theorem 4.1 and Lemma 4.1, foreach ¢t < T,

p 128 _ij p
v <NI oYu. i j !
Il y2 gy < NI o i + gl 4,y O

®

1-2
<NI ﬂllullf{m(_)(f) + N8l 71,y
, ,

Note that u = u — v satisfies the equation
3%u(t, x) = a it i (t, %) +a’ ()vyi i (t, x) — Av(t, x) + f(t, x).
By Lemma 5.2,

il < Nlaveixi = Av+ f g
(5.20)
< N||v||HIJ;+2(Z) + N||f||HJ;,(T)-

Since u = u + v, the desired estimate follows from (5.19), (5.20) and Gronwall’s
inequality.

Case B: General case. Write
f::biuxi+cu+f(u), g~ :=Mikuxi+vku+gk(u).
Note that u’k =0 if (:6 > 1. Then by (2.26), (2.27) and Assumption 2.14(iii),

| f @) — f) Hy T HORHO] H;,/Hé)(lz)

=< Nl = vll gy + 1w G =00l iy =0l i)
4 2 P

+ 1@ =@y + 80 —g@) ||Hy+06(l )

< ellu = vll ez + Nllu = vl 7.

where N depends on d, p, m, «k, K3_ , K4 andie. Hence considering f and gk in
place of f and g¥, we may assume b’ = ¢ = u'*¥ = vk =0.
For each u € ’H}/,H(T), consider the equation

00 t
dFv=av+ f@+ Y [ [67 v+ g5 w)]dwt
k=170
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with zero initial condition. By the result of Case A, this equation admit a unique
solution v € HZH(T). By denoting v = Ru, we can define an operator

R HYYH(T) > HLTH(T).
By Lemma 2.1(ii), (2.31) and the result of Case A, foreacht < T,

Ru — Rv||?
IRu =Rl iz,

= No(l£ @) = F)|Gy, + e —g(v)||£ﬂly)+cé(t’lz))

_ p

< Noe?llu—v|? .,
HP
! 0—1
+ N t—)" Ny —v|?
) | O( ) IIH%H

where N depends also on ¢. Next, we fix € so that ® := Npe? < 272, Then re-
peating the above inequality and using the identity

t 51 Sn—1
/(r—so"—l/ (S1—S2)9_1---/ (Sn—1 —n)? Vs, - dsy
0 0 0

LN CON

< Noe?|lu — v||” ds,
< No&”|| ||,H%+2 0

( (

’

“Tmo+1)
we get
= (n {rent
Ry — R p < @I’l—k TQN k _ p
=R, < 3 (ot L=
—176 k
<210 max| &L NTOFY, B
- k ko +1) Hy (1)

< lN Il 4
= n 2T O

For the second inequality above, we use > (i) = 2". It follows that if n is suf-

ficiently large then R" is a contraction in 7—[;+2(T), and this yields all the claims.
The theorem is proved.

6. Proof of Theorem 2.2. We first prove a result for a deterministic equation
of divergence type.

LEMMA 6.1. Let a' be given as (5.5) with nonrandom t, and ay . Suppose
a'l satisfy the uniform ellipticity (2.23) and ay; are uniformly continuous with
respect to (t, x). Then for any solution u € HZ’(I)(T) fo the deterministic equation

(6.1) 3%u = Dyi(aVu,; + f1)+h
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in H;l (T), it holds that
(6.2) ”M”H})(T) = N(H f! HLp(T) + ||h||H;1(T)),
where N depends only on o, p, y, 8o, T, My and the modulus of continuity of af,j .

PROOF. We divide the proof into three steps.
Step 1. Let a'/ depend only on 7. In this case, (6.2) is a consequence of (5.7)
with y = —1, which is because || D, || ;-1 < NIl f'llL,,-
p

Step 2. We prove there exists &2 > 0, which depends also on T, such that (6.2)
holds if

(6.3) sup|a’/ (¢, x) —a" (¢, y)| < &2.
t,x,y

Denote a(i)j (t) :==a'/(t,0), and rewrite the equation as
0fu =D, (Clé)jl/ixi + Y +h,

where
d
Note that a(i)j is independent of x. By the result of Step 1, foreacht < T,

el oy < N3(IF Iy + (@ = ag)uglly, o + Nkl )-
Observe that
I (@ (, )—a (t))ux,(t )HL <N, p)sup]a’](t x)—aj(t)H}u(t,-)HH’!.

Therefore, our claim follows if (6.3) holds with e, = 2N (d, p)N3)_1.
Step 3. We introduce a partition of unity " as in the proof of Lemma 5.2, and

define n and @,/ as in (5.16) so that each (a,; ) satisfies (6.3). Note u" (¢, x) = u¢"
satisfies
B = Dl + ) 4
where
o= fiet —alugl, R =he"—aTu

Therefore, using Step 2 and || - 1 <N|-ll,, we get

Il

HMHHI ) — N ZN”un HHI (1)
ne

SN0 + 1)
neN

<N(|f* ||Ili,,(z) + ||h||p— )+ Nully, 0T NaYuy; Hp— '
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Here, we claim that for any ¢ > 0,
(6.4) la"u il 1 < ellul gy + N@)lullL,-

Indeed, since '/ are uniformly continuous with respect to x uniformly for all ,

. . . . . i
considering appropriate convolution we can take a sequence of C!-functions a,]

which uniformly converges to @’/ with respect to x uniformly for all . Thus

a1 = W = @Y g+ i
< suplas/ = a'[llucle, + [af | i Nl g
,X

This certainly proves (6.4). Taking small ¢ and using the interpolation ||u|| L, <
£’||u||H[1) + N(s’)llulal_l, we get foreacht < T,

Nlull”_, .
P IIMIIHEI(I)

can be easily dropped as before using (2.17) and Gron-

letligy o = N, ) + Nl

The last term ||u||H;1(t)

wall’s lemma. The lemma is proved. [J

Now we prove Theorem 2.2.

Step 1. Suppose f', h and g are independent of u and b’ = ¢ = vk = 0. In this
case, by the method of continuity and Theorem 4.1 we only need to show a priori
estimate (2.29) holds given that a solution u € H II,(T) already exists. See the proof
of Theorem 2.3 for details.

In this case, estimate (2.29) follows from Lemma 6.1 and the arguments in Case
1 of the proof of Theorem 2.3. Indeed, take the function v € ‘H },(T) from (5.18),
which is a solution to

) t
rv(t, x) = Av(t, x) + Z 8,'8/ (O’Ukl/txixj + gk) dwf.
k=1 0
By (5.19),

V|lytry <N o .
I ||Hp(T)_ ”g”]HI,,O 1(T’12)

Note that u := u — v satisfies

3%u=D(@ i+ f)+h, — fli=(aV —8V)v,;.
Thus one can estimate ||IZ||H}? (T) using Lemma 6.1, and this leads to (2.29) since
u=1u-+v.

Step 2. General case. The proof is almost identical to that of Case B of the proof
of Theorem 2.3. We put

]Zl = blu + f(u)s
h(u) =cu+ hu),

g" = vk +vFu + gk(u).
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Then, as before, one can check these functions satisfy condition (2.28) and, there-

fore, we may assume bl = ¢ = vk = vk = 0. Then, using Step 1, we define the
operator R : H },(T) — ’H},(T) so that v = Ru is the solution to the problem

t
0% = Dyi(a’ vy + f1w)) + h(u) + o / (0 vy + g5 W) dwf
0
with zero initial condition. After this, using the arguments used in the proof of
Theorem 2.3, one easily finds that R" is a contraction in H},(T) if n is large

enough. This proves the theorem. U

7. SPDE driven by space-time white noise. In this section, we assume

1) B<ats
. < —a _’
4 2
and the space dimension d satisfies
226 -1
(7.2) d<a- 2D _
o

Note dy € (1,4] due to (7.1). If B < % + 1/2, then one can take d =1, 2, 3. Also,
o = B =1 then d must be 1.
In this section, we study the SPDE,

.. . t
(7.3) 0fu=(a"uyi; +b'uyi+cu+ fu)+ 8,’3/ h(u)dB;,
0

where the coefficients a'/, b', ¢ are functions depending on (w, t, x), the functions
f and h depend on (w, t, x) and the unknown u, and B; is a cylindrical Wiener
process on Lz(Rd ).

Let {n*:k=1,2,...} be an orthogonal basis of L,(R¢). Then (see [16], Sec-
tion 8.3)

oo
dB, =Y n*duf,
k=1

where wf = (By, 77k)L2 are independent one-dimensional Wiener processes.

Hence one can rewrite (7.3) as
fu = (a"uyij +b'uyi+cu+ fu)+ Z af/ g* (u) dw*,
k=1 0

where

gk(t, x,u)=h(t, x, u)nk(x).
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LEMMA 7.1. Assume

d d
(7.4) Ko € (—,d], 2<2r<p, 2r < ,

2 d — Ko
and h(x, u), &(x) are functions of (x,u) and x, respectively, such that |h(x,u) —
h(x,v)| <EX)|u—v|. Foru € L,(RY), set g"(u) = h(x, u(x))ni(x). Then

8@ = W) 0 < NUE L llu = vz,

where s =r/(r — 1) is the conjugate of r and N = N (r) < oo. In particular, if
r =1 and & is bounded, then

|8 = 8@ y-v0,) < Nlu = vilz,.
PROOF. It is well known (e.g., [30], p. 132, [18], Exercise 12.9.19) that there

exists a Green function G(x), which decays exponentially fast at infinity and be-
haves like |x|“0~¢ so that the equality holds:

||g(1/l) - g(v) ||HP_K0(12) = ”h”Lp’

where
_ 5 , \12
i) i= ([ |66 =3 Plh(s,u00) =y o) Py )
2.9 ) 1/2
< (/Rd}cu—yn £lut - v Pdy)
=:h(x).
By Holder’s inequality,

. 5 5 1/(2r)
r r
i < el ([ GG =0 ) v dy)
Note that |G|, < oo since 2r < d—on‘ Therefore, applying Minkowski’s in-
equality, we have
ANz, < NIENLy, IGll2rllu —vllz,
< Nl&llzyllu —vliz,.

The lemma is proved. [J

REMARK 7.2. By following the proof of Lemma 7.1, one can easily check
that
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ASSUMPTION 7.3. (i) The coefficients a'/, b', and ¢ are P ® B(R)-
measurable.

(ii) The functions f(z, x, u) and g(¢, x, u) are P ® B(R? x R)-measurable.
(ii1) For each w, t, x, u and v,

|f(t,x,u) — f(,x, v)| < Klu—v]|,
|h(t, x,u) — h(t, x,v)| <&@, x)|u— vl

where & depends on (w, ¢, x).

Denote

fo=f(,x,0), ho=h(t,x,0).

THEOREM 7.1. Suppose Assumption 7.3 holds and

e + || + su < K < o0,
IIfolal =<0 7 lAollL, () w,I;) 16 1125

where ko and s satisfy

<SS

(7.5) §<K0<(2—w)/\d, d

o 20— d

and c;, from (2.24). Also assume that the coefficients a, b’ and c satisfy Assump-
tion 2.10 and (2.30) with y := —kg — c6. Then equation (7.3) with zero initial

.. . . 2—kp—c; . .
condition has a unique solution u € H, O7°0(T), and for this solution we have

”M ||Hi7K07CE)(T) N”f()” 71{0 L‘O( ) + N||h0||Lp(T)~
PROOF. We only need to check if the conditions for Theorem 2.3 are satisfied
with y := —Ko — ¢;. Since f(u) is Lipschitz continuous, we only check the con-

ditions for g k) = = h(u)ni. Let r be the conjugate of s and then 2r < = — due to

the assumption de 7 <. Recall y is chosen such that y + ¢y = —kKo. Thus By
Lemma 7.1, for any ¢ > 0,

u) —g(v J <N Jlu —v
ls@) =g, ricp, < NUENLs h =,
=éllu = vl a2 + N@)llu = vl gy,

where the second inequality is due to y +2 > 0, which is equivalent to ko +¢;, < 2.
Therefore, all the conditions for Theorem 2.3 are checked. The theorem is proved.
O
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REMARK 7.4. (i) By (7.2), there always exists kg satisfying (7.5).
(ii) The constant 2 — ko — c(, gives the regularity of the solution u. To see how
smooth the solution is, recall ¢, = (28 — 1)1 /a + k 1g—1 2. It follows

d 28-1 .
2—5— if B>1/2,
0<2—kp—cy< 4
2—5 iftg<1/2.

If & is bounded one can take r = 1 and o ~ 4 thus 2 — Ko — c(/) can be as close as

2
one wishes to the above upper bounds.

REMARK 7.5. Take o =1 and 8 < 1 so that the integral form of (7.3) be-
comes

t . . t
u(t, x) :/ (@Y uyii +b'uyi+cu+ f(u)dr+ I,l_ﬁ/ h(u)dB;.
0 0

By the stochastic Fubini theorem, at least formally

5 [ I '
1 5/0 h(u)dBtzm/o h(u(s))(t —s)' =P dBy.

If B =1, then the classical theory (see, e.g., [16], Section 8) requires d =1 to
have meaningful solutions, that is, locally integrable solutions. By Theorem 7.1, if
B < 3/4 then it is possible to take d = 1, 2, 3. This might be because the operator

1,17’3 gives certain smoothing effect to B; in the time direction.
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