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UNIQUENESS OF GIBBS MEASURES FOR CONTINUOUS
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We formulate a continuous version of the well-known discrete hardcore
(or independent set) model on a locally finite graph, parameterized by the
so-called activity parameter λ > 0. In this version the state or “spin value”
xu of any node u of the graph lies in the interval [0,1], the hardcore con-
straint xu + xv ≤ 1 is satisfied for every edge (u, v) of the graph, and the
space of feasible configurations is given by a convex polytope. When the
graph is a regular tree, we show that there is a unique Gibbs measure associ-
ated to each activity parameter λ > 0. Our result shows that, in contrast to the
standard discrete hardcore model, the continuous hardcore model does not
exhibit a phase transition on the infinite regular tree. We also consider a fam-
ily of continuous models that interpolate between the discrete and continuous
hardcore models on a regular tree when λ = 1 and show that each member of
the family has a unique Gibbs measure, even when the discrete model does
not. In each case the proof entails the analysis of an associated Hamiltonian
dynamical system that describes a certain limit of the marginal distribution at
a node. Furthermore, given any sequence of regular graphs with fixed degree
and girth diverging to infinity, we apply our results to compute the asymp-
totic limit of suitably normalized volumes of the corresponding sequence of
convex polytopes of feasible configurations. In particular this yields an ap-
proximation for the partition function of the continuous hard core model on
a regular graph with large girth in the case λ = 1.

1. Introduction.

1.1. Background and motivation. The (discrete) hardcore model, also com-
monly called the independent set model, is a widely studied model in statistical
mechanics, as well as combinatorics and theoretical computer science. The model
defines a family of probability measures on configurations on a finite or infinite
(but locally finite) graph G, parameterized by the so-called activity λ > 0. On a
finite graph G with node set V and edge set E, the hardcore probability measure
with parameter λ > 0 is supported on the collection of independent sets of the
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graph G, and the probability of an independent set I ⊂ V is proportional to λ|I |,
where |I | denotes the size of the independent set. Equivalently, the hardcore prob-
ability measure can be thought of as being supported on the set of configurations
x = (xu, u ∈ V ) ∈ {0,1}V that satisfy the hardcore constraint xu +xv ≤ 1 for every
edge (u, v) ∈ E, with the probability of any feasible configuration x being propor-
tional to λ

∑
u xu . The equivalence between the two formulations follows from the

observation that given any hardcore configuration x, the set I = {u ∈ V : xu = 1}
is an independent set, and

∑
u∈V xu = |I |. The constructed probability measure is

a Gibbs measure in the sense that it satisfies a certain spatial Markov property [2,
8, 17]. On an infinite graph G the definition of the hardcore Gibbs measure is no
longer explicit. Instead, it is defined implicitly as a measure that has certain speci-
fied conditional distributions on finite subsets of the graph, given the configuration
on the complement. Thus, in contrast to the case of finite graphs, on infinite graphs
neither existence nor uniqueness of a Gibbs measure is a priori guaranteed. While
existence can be generically shown for a large class of models, uniqueness may fail
to hold. When there are multiple Gibbs measures for some parameter, the model is
said to exhibit a phase transition [8, 17].

The standard discrete hardcore model on a regular tree is known to exhibit a
phase transition. Indeed, it was shown in [11, 19, 21] that there is a unique hard-
core Gibbs measure on an infinite (� + 1)-regular tree T� (i.e., a tree in which
every node has degree �+1) if and only if λ ≤ λc(�) := ��/(�−1)�+1. In par-
ticular for λ in this range, the model exhibits a certain correlation decay property,
whereas when λ > λc(�) the model exhibits long-range dependence. Roughly
speaking, the correlation decay property says that the random variables Xu and
Xv , distributed according to the marginal of the Gibbs measure at nodes u and v,
respectively, become asymptotically independent as the graph-theoretic distance
between u and v tends to infinity. This property is known to be equivalent to
uniqueness of the Gibbs measure [8, 17]. The phase transition result above was
recently extended to a generalization of the hardcore model which is defined on
configurations x ∈ {0,1, . . . ,M}V , for some integer M , that satisfy the hardcore
constraint xu + xv ≤ M for (u, v) ∈ E; the usual hardcore model is recovered by
setting M = 1. Specifically, it was shown in [6, 15] that the model on T� exhibits
phase coexistence for all sufficiently high λ, and the point of phase transition was
identified asymptotically, as � tends to infinity. The original model and its recent
generalizations are also motivated by applications in the field of communications
[11, 13, 15] in addition to the original statistical physics motivation.

The phase transition property on the infinite tree is known to be related to the
algorithmic question of computing the partition function (or normalizing constant)
associated with a Gibbs measure on a finite graph. Although the latter computa-
tion problem falls into the so-called #P-complete algorithmic complexity class for
many models (including the standard hardcore model), there exist polynomial time
approximation algorithms, at least for certain models and corresponding ranges of
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parameters. More precisely, when the underlying parameters are such that the cor-
responding Gibbs measure is unique, a polynomial time approximate computation
of the corresponding partition function has been shown to be possible for several
discrete models including the hardcore model [1, 20], matching model [3, 10], col-
oring model [1, 7] and some general binary models (models with two spin values)
[12]. For some models, including the standard hardcore and matching models, ap-
proximate computation has been shown to be feasible whenever the model is in
the uniqueness regime. For some other problems, including counting the number
of proper colorings of a graph, an approximation algorithm has been constructed
only for a restricted parameter range, although it is conjectured to exist whenever
the model is in the uniqueness regime. Furthermore, the converse has also been
established for the hardcore model and some of its extensions. Specifically, it was
shown in [18] that for certain parameter values for which there are multiple Gibbs
measures, approximate computation of the partition function in polynomial time
becomes impossible, unless P = NP. This link between the phase transition prop-
erty on the infinite regular tree T� and hardness of approximate compution of the
partition function on a graph with maximum degree � + 1 is conjectured to exist
for general models.

1.2. Discussion of results. In light of the connection between phase transitions
and hardness of computation mentioned above, an interesting problem to consider
is the problem of computing the volume of a (bounded) convex polytope obtained
as the intersection of finitely many half-spaces. It is known that, while this vol-
ume computation problem is #P-hard [5], it admits a randomized polynomial time
approximation scheme [4] regardless of the parameters of the model. In fact such
an algorithm exists for computing the volume of an arbitrary convex body, subject
to minor regularity conditions. This motivates the investigation of this problem
from the phase transition perspective by considering a model in which the parti-
tion function is simply the volume of a polytope. Toward this goal we introduce
the continuous hardcore model on a finite graph G, which defines a measure that
is supported on the following special type of polytope:

P(G) = {
x = (xu, u ∈ V ) : xu ≥ 0, xu + xv ≤ 1,∀u ∈ V, (u, v) ∈ E

}
,(1.1)

where V and E are, respectively, the vertex and edge set of the graph G. P(G)

is the linear programming relaxation of the independent set polytope of the graph,
and we refer to it as the linear programming (LP) polytope of the graph G. The
continuous hardcore model with parameter λ = 1 is simply the uniform measure
on P(G), and the associated partition function is equal to the volume of the convex
polytope P(G).

As in the discrete case, the continuous hardcore model defines a one-parameter
family of probability measures indexed by the activity λ > 0 (see Section 2 for
a precise definition). We consider this model on an infinite regular tree T�. Our
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main result (Theorem 3.1) is that, unlike the standard hardcore model, the contin-
uous hardcore model on an infinite regular tree never exhibits a phase transition.
Namely, for every choice of � and λ, there is a unique Gibbs measure for the
continuous hardcore model on T� with activity λ. This result provides support
for the conjecture that the link between the phase transition property and hardness
of approximate computation of the partition function is indeed valid for general
models, including those in which the spin values, or states of vertices, are continu-
ous rather than discrete. Moreover, in Theorem 3.3 we characterize the cumulative
distribution function of the marginal at any node of the continuous hardcore Gibbs
measure (with parameter λ = 1) on the infinite regular tree as the unique solution to
a certain ordinary differential equation (ODE). An analogous result is conjectured
to hold for general λ > 0 (see Conjecture 5.2).

We extend our result further by considering a natural interpolation between
the standard two-state hardcore and the continuous hardcore models when λ = 1.
Here, in addition to the hardcore constraint, the spin values xu are further restricted
to belong to [0, ε] ∪ [1 − ε,1] for some fixed parameter ε ∈ (0,1/2). In a sense
made precise in Section 1.2, when ε → 1/2, one obtains the continuous hardcore
model and, as ε → 0, it more closely resembles the two-state hardcore model. We
establish, perhaps surprisingly, that the model has a unique Gibbs measure for any
positive value ε > 0 (see Theorem 3.4), even when the discrete-hard core model
(formally corresponding to ε = 0) has multiple Gibbs measures. The same argu-
ment does not easily extend to the case of general λ, and we leave this case open
for further exploration.

Our last result (Theorem 3.5) concerns the computation of the volume of the LP
polytope of a regular locally tree-like graph in the limit, as the number of nodes
and girth of the graph goes to infinity. This result parallels some of the develop-
ments in [1], where it is shown that the partition functions associated with the stan-
dard hardcore model defined on a sequence of increasing regular locally tree-like
graphs, with growing girth and after appropriate normalization, have a limit, and
this limit coincides for all regular locally tree-like graphs with degree � + 1 when
the model is in the uniqueness regime for the tree T�, namely, when λ < λc(�).
We establish a similar result here, showing that the sequence of partition functions
associated with the continuous hardcore model on a sequence of increasing regular
graphs with large girth, after appropriate normalization, has a well-defined limit.
We establish a corresponding approximation result for the continuous hardcore
model, which is valid for all λ > 0, since, as shown in Theorem 3.1, the continu-
ous hardcore model has a unique Gibbs measure for every λ. For the case λ = 1,
when combined with our characterization of the Gibbs measure in Theorem 3.3,
this provides a fairly explicit approximation of the normalized volume of the LP
polytope of a regular graph with large girth.

We now comment on the proof technique underlying our result. To establish
uniqueness of the Gibbs measure, we establish the correlation decay property. Un-
like for the discrete hardcore model, establishing correlation decay for continuous
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models is significantly more challenging technically, since it involves analyzing re-
cursive maps on the space of absolutely continuous (density) functions rather than
one-dimensional or finite-dimensional recursions, and the function obtained as the
limit of these recursive maps is characterized as the solution to a certain nonlin-
ear second-order ordinary differential equation (ODE) with boundary conditions
rather than as the fixed point of a finite-dimensional map. The direct approach of
establishing a contraction property, which is commonly used in the analysis of
discrete models, appears unsuitable in our case. Instead, establishing existence,
uniqueness and the correlation decay property entails the analysis of this ODE.
A key step that facilitates this analysis is the identification of a certain Hamilto-
nian structure of the ODE. This can be exploited, along with certain monotonicity
properties, to establish uniqueness of the Gibbs measure. Characterization of the
unique marginal distribution at a node requires additional work, which is related to
establishing uniqueness of the solution to this ODE with suitable boundary condi-
tions, and involves a detailed sensitivity analysis of a related parameterized family
of ODEs.

1.3. Outline of paper and common notation. The remainder of the paper is
organized as follows. In Section 2 we precisely define the continuous hardcore
model and a family of related models. Then, in Section 3 we state our main re-
sults. In Section 4 we prove our main results, Theorems 3.1 and 3.4 on correlation
decay (and hence uniqueness of the Gibbs measure) for the continuous hardcore
model and its ε-interpolations for ε ∈ (0,1/2]. In Section 5.1 we characterize the
marginal distribution of the unique Gibbs measure for the continuous hardcore
model with λ = 1 as the unique solution to a certain nonlinear ODE. The conjec-
tured characterization for λ 	= 1 is described in Section 5.2. In Section 6 we prove
our result regarding the volume of the LP polytope of a regular graph with large
girth.

In what follows, given a set A, we let IA denote the indicator function of the
set A—IA(x) = 1 if x ∈ A and IA(x) = 0, otherwise and when A is finite, let
|A| denote its cardinality. For a ∈ [0,1], let δa denote the Dirac delta measure
at a, let dx denote one-dimensional Lebesgue measure, and given x = {xu,u ∈
V }, let dx denote |V |-dimensional Lebesgue measure. Also, for any subset A ⊂
V , let xA represent the vector (xu, u ∈ A). Let R and R+ denote the sets of real
and nonnegative real numbers, respectively. Given any subset S of J -dimensional
Euclidean space R

J , let B(S) represent the collection of Borel subsets of S. For
conciseness, given a measure μ on B(R), for intervals [a, b], we will use B[a, b]
and μ[a, b] to represent B([a, b]) and μ([a, b]), respectively.

2. A family of hardcore models. Let G be a simple undirected graph with
finite node set V = V (G) and edge set E = E(G), and recall the associated LP
polytope defined in (1.1). We now introduce the continuous hardcore model on
the finite graph G associated with any parameter λ > 0. In fact we will introduce a
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more general family of hardcore models that will include both the discrete and con-
tinuous hardcore models in a common framework and allow us to also interpolate
between the two. Any model in this family is specified by a finite Borel measure
μ on [0,1], which we refer to as the “free spin measure” for the model. The free
spin measure μ represents the weights the model puts on different states or spin
values when the graph G is a single isolated vertex; specific examples are provided
below. Given a free spin measure μ on the Borel sets B[0,1] of [0,1] and k ∈ N,
let μ⊗k represent the product measure on B([0,1]k) with identical marginals equal
to μ.

DEFINITION 2.1. The hardcore model corresponding to the graph G= (V ,E)

and free spin measure μ is the probability measure P = PG,μ given by

P(A) := 1

Z
μ⊗|V |(A), A ∈ B(P),(2.1)

where P = P(G) is the LP polytope defined in (1.1), and Z is the partition function
or normalization constant given by

Z := μ⊗|V |(P).(2.2)

The measure P is well defined as long as Z > 0. Since the hypercube {x : 0 ≤
xu ≤ 1/2,∀u ∈ V } is a subset of P(G) for every graph G, a simple sufficient
condition for this to hold is that the free spin measure satisfies μ[0,1/2] > 0. This
will be the case in all the models we study.

We now describe the free spin measure associated with specific models. For
λ > 0, the free spin measure of the two-state hardcore model with activity λ is
given by μ = μ

(2)
λ ,

μ
(2)
λ (B) := λδ1(B) + δ0(B), B ∈ B[0,1].(2.3)

The measure μ
(2)
λ in (2.3) is discrete, supported on {0,1} and gives weights λ and 1

to the values 1 and 0, respectively, and the corresponding P
G,μ

(2)
λ

defines the stan-

dard (discrete) hardcore model with parameter λ > 0. This model was generalized
to an (M + 1)-state hardcore model, for some integer M ≥ 1, in [6, 15]. Given a
parameter λ > 0, the free spin measure associated with a rescaled version of the
latter model (that has support [0,1]) is

μ
(M+1)
λ (B) =

M∑
i=0

λiδ i
M

(B), B ∈ B[0,1].(2.4)

The case M = 1 then recovers the standard (two-state) hardcore model.
We now define the continuous hardcore model on G with parameter λ > 0 to be

the measure P
λ
G

:= PG,νλ
, where the free spin measure νλ takes the form

νλ(B) :=
∫
B

λx dx, B ∈ B[0,1].(2.5)
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Despite the similarity in the definitions in (2.5) and (2.4), an important difference
is that while μ

(2)
λ is discrete, νλ in (2.5) is absolutely continuous with respect to

Lebesgue measure. In fact, when λ = 1, the free spin measure is just the uniform
distribution on [0,1]; the corresponding Gibbs measure is simply the uniform mea-
sure on the polytope P , and Z is the volume of the polytope P , as already men-
tioned in Section 1.2. For each activity parameter λ > 0, we also introduce a family
of models, indexed by ε ∈ (0,1/2), which we refer to as the ε-continuous hardcore
model that interpolate between the discrete and continuous hardcore models with
the same activity parameter. For λ > 0 and ε ∈ (0,1/2), the free spin measure of
the ε-continuous hardcore model with activity parameter λ is given by

(2.6) νε
λ(B) := 1

2ε

∫
B

λx(
I[0,ε](x) + I[1−ε,1](x)

)
dx, B ∈ B[0,1].

We now clarify the precise sense in which this interpolates between the discrete
and continuous models. Given probability measures {πε} and π on B[0,1], recall
that πε is said to converge weakly to π as ε → ε0, if for every bounded continuous
function f on [0,1], ∫

[0,1] f (x)πε(dx) → ∫
[0,1] f (x)π(dx) as ε → ε0. For any

λ > 0, when ε ↑ 1/2, νε
λ converges weakly to νλ, the free spin measure of the

continuous hardcore model with parameter λ > 0, as in (2.5), whereas as ε ↓ 0,
νε
λ converges weakly to μ

(2)
λ , the corresponding free spin measure of the two-state

hardcore model as in (2.3).
Given any hardcore model on a finite graph G with free spin measure μ, we

let X = (Xu,u ∈ V ) denote a random element distributed according to PG,μ and
refer to Xu as the spin value at u. Recall that given a subset S of nodes in V (G),
we use XS = (Xu,u ∈ S) to denote the natural projection of X to the coordinates
corresponding to S. The constructed hardcore probability distributions PG,μ are
Markov random fields, or Gibbs measures, in the sense that they satisfy the fol-
lowing spatial Markov property. Given any subset S ⊂ V , let ∂S denote the set of
nodes u in V \ S that have neighbors in S, that is, for which (u, v) ∈ E for some
v ∈ S. Then, for every vector x = (xu, u ∈ V ) ∈ P(G) that lies in the support of
P = Pμ,G, we have

P(xS |xV \S) = P(xS |x∂S).

Namely, the joint probability distribution of spin values Xu associated with nodes
u ∈ S, conditioned on the spin values at all other nodes of the graph, is equal to
the joint distribution obtained on just conditioning on spin values at the boundary
of S. Of course such a conditioning should be well defined which is easily seen to
be the case for the hardcore models we consider.

3. Main results. We now turn to the setup related to the main results in the
paper. We first recall some standard graph-theoretic notation. For every node u ∈
V , N (u) = NG(u) denotes the set of neighbors of u, namely, the set {v : (u, v) ∈
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E}. The cardinality of N (u) is called the degree of the node u and is denoted by
�(u). A leaf is a node with degree 1. Given a positive integer �, a graph is called
�-regular if �(u) = � for all nodes of the graph. The graph theoretic distance
between nodes u and v is the length of a shortest path from u to v measured in
terms of the number of edges on the path. Namely, it is the smallest m such that
there exist nodes u0 = u,u1, . . . , um = v such that (ui, ui+1), i = 0,1, . . . ,m − 1
are edges. A cycle is a path u0 = u,u1, . . . , um such that m ≥ 3, um = u0, and
all u1, . . . , um are distinct. The girth g = g(G) of the graph G is the length of a
shortest cycle.

Let Tn,� denote a rooted regular tree with degree � + 1 and depth n, which
is a finite tree with a special vertex called the root node, in which every node
has degree � + 1 except for the root node, and the leaves which is the collection
of nodes that are at a graph-theoretic distance n from the root node and denoted
∂Tn,�. Each leaf has degree 1, and the root has degree �. Note that ∂Tn,� is also
the boundary of the remaining nodes of Tn,� (which we refer to as internal nodes).
Fix λ > 0 and let Pn,�,λ represent the (continuous) hardcore distribution on Tn,�

with parameter λ > 0, corresponding to the free spin measure νλ in (2.5). We
denote the (cumulative) distribution function of the marginal of Pn,�,λ at the root
node by Fn,�,λ(·). Clearly, Fn,�,λ(·) is absolutely continuous, and we denote its
density by fn,�,λ(·). Given an arbitrary realization of spin values at the boundary
x∂Tn,�

, we also let Fn,�,λ(·|x∂T�,n
) denote the cumulative distribution function of

the conditional distribution of Pn,�,λ at the root given x∂Tn,�
. It can be shown (see

(4.2) with μ = νλ) that for n ≥ 2, Fn,�,λ(·|x∂T�,n
) has a density, which we denote

by fn,�,λ(x|x∂Tn,�
). In particular for x ∈ [0,1],

Fn,�,λ(x) =
∫ x

0
fn,�,λ(t) dt, Fn,�,λ(x|x∂T�,n

) =
∫ x

0
fn,�,λ(t |x∂T�,n

) dt.

We now state our first main result which is proved in Section 4.5. For any ab-
solutely continuous function F we let Ḟ denote the derivative of F which exists
almost everywhere. Also, for any real-valued function g on [0,∞) and compact
set K ⊂ [0,∞) we let ‖g(·)‖K := supx∈K |g(x)|.

THEOREM 3.1. For every � ≥ 1 and λ > 0, there exists a nondecreasing func-
tion F�,λ with F�,λ(0) = 0 that is continuously differentiable on (0,∞) and sat-
isfies, for any compact subset K ⊂ [0,1],

lim
n→∞ sup

∥∥Fn,�,λ(·|x∂T�,n
) − F�,λ(·)

∥∥[0,1] = 0,(3.1)

lim
n→∞ sup

∥∥Ḟn,�,λ(·|x∂T�,n
) − Ḟ�,λ(·)

∥∥
K = 0,(3.2)

where the supremum is over all boundary conditions x∂T�,n
∈ [0,1]|∂T�,n|.
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REMARK 3.2. The relation (3.1) of Theorem 3.1 implies that the cumulative
distribution function of the marginal distribution at the root is asymptotically in-
dependent from the boundary condition. In particular the model exhibits the corre-
lation decay property regardless of the values of � and λ (which implies no phase
transition). In fact it follows from Theorem 3.1 that there exists a unique Gibbs
measure on the infinite (�+ 1)-regular tree, that this measure is translation invari-
ant and its marginal distribution function at any node is equal to F�,λ. Relation
(3.2) shows that the decay of correlations property extends to the marginal density.

Next, we provide a more explicit characterization of the marginal distribution
function F�,λ in the special case λ = 1 which is the quantity of interest for com-
puting the volume of the polytope P(G). We show that this limit is the unique
solution to a certain first-order ODE.

THEOREM 3.3. For λ = 1 and � ≥ 1, there exists a unique C = C�,1 > 0
such that the ODE

(3.3) Ḟ (z) = C
(
1 − F�+1(z)

)�/(�+1)
, z ∈ (0,∞),

with boundary conditions

(3.4) F(0) = 0 and inf
{
t > 0 : F(t) = 1

} = 1,

has a solution. Moreover, the ODE (3.3)–(3.4) with C = C�,1 has a unique solu-
tion F̄�,1. Furthermore, F̄�,1 = F�,1, where F�,1 is the limit distribution function
of Theorem 3.1.

The proof of Theorem 3.3 is given in Section 5.1. In fact we believe a general-
ization is possible to all λ > 0. Specifically, as stated in Conjecture 5.2 at the end
of Section 5.1, we believe F�,λ also admits a characterization in terms of a differ-
ential equation, although a more complicated second-order nonlinear differential
equation, but we defer the validation of such a conjecture to future work.

The behavior of the continuous hardcore model described above should be
contrasted with that of the discrete hardcore model for which, as discussed in
the Introduction, the phase transition point on a (� + 1)-regular tree is λc =
��/(� − 1)�+1. In particular when � ≥ 5, λc < 1 and so the discrete hardcore
model on the tree with λ = 1 admits multiple Gibbs measures. This raises the
natural question as to what happens for the ε-interpolated model, with free spin
measure νε

1 , as in (2.6). It is natural to expect that this model would behave just
like the standard hardcore model with λ = 1 for sufficiently small ε. Somewhat
surprisingly, we show that this is not the case. By establishing a correlation decay
property similar to that described in Remark 3.2, in Theorem 3.4 we show that
there is a unique Gibbs measure for the ε-interpolated model for every positive ε,
no matter how small.
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THEOREM 3.4. For every � ≥ 1, and ε ∈ (0,1/2), let F
(ε)
n,� denote the cu-

mulative distribution of the marginal of the Gibbs measure PT�,n,νε
1

at the root of

T�,n. Then there exists a nondecreasing continuous function F
(ε)
� with F

(ε)
� (z) = 0

for z ≤ 0, F
(ε)
� (z) = 1 for z ≥ 1, that satisfies

lim
n→∞ sup

∥∥F (ε)
n,�(·|x∂T�,n

) − F
(ε)
� (·)∥∥[0,1] = 0,(3.5)

where the supremum is over all boundary conditions x∂T�,n
∈ [0,1]|∂T�,n|.

We now turn to the implications of our results for volume computation. Specif-
ically, applying Theorem 3.1, we are able to compute asymptotically the volume
of the LP polytope associated with any regular graph that is locally tree-like (i.e.,
with large girth). The proof of Theorem 3.5 is given in Section 6.2.

THEOREM 3.5. Fix λ > 0 and � ≥ 1, and let F�,λ be as in Theorem 3.1. Let
Gn, n ≥ 1, be a sequence of �-regular graphs with g(Gn) → ∞, and let ZGn,λ

be the associated partition function as defined by (2.2) with μ = μλ in (2.1) and
P = P(Gn). Then

lim
n→∞

lnZGn,λ

|V (Gn)| = − ln
∫

0≤x≤1
λxF�

�−1,λ(1 − x)dx

− �

2
ln

∫
0≤x≤1

Ḟ�−1,λ(x)F�−1,λ(1 − x)dx.

(3.6)

Combining Theorem 3.5 with Theorem 3.3, we see that in the special case λ =
1, the volume ZGn,1 of the polytope P(Gn) satisfies

lim
n→∞

lnZGn,1

|V (Gn)| = γ,

where γ , which stands for the right-hand side of (3.6) with λ = 1, takes the form

γ = − ln
∫ 1

0
F̄ �

�−1,1(1 − x)dx

− �

2
ln

∫ 1

0

(
1 − F̄ �−1

�−1,1(x)
)�−1

� F̄�−1,1(1 − x)dx,

where F̄�−1,1 is the unique solution to (3.3)–(3.4) with C = C�,1, as identified in
Theorem 3.3

This result provides a fairly explicit expression for the exponential limit of the
volume of such a polytope, via the solution F̄�−1,1 of the ODE which can be
computed, for example, numerically. A similar expression for general λ would be
obtained if Conjecture 5.2 were shown to be valid.
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4. Analysis of continuous hardcore models. For ease of exposition, we fix
� ≥ 1 and for each n ≥ 1 use the notation Tn and Pn in place of Tn,� and
P(Tn,�), respectively. Also, in order to present a unified proof of Theorems 3.1
and 3.4 to the extent possible, we will first fix any spin measure μ that is abso-
lutely continuous with respect to Lebesgue measure, let m denote its density, and
let Fn and fn, respectively, denote the cumulative distribution function and den-
sity of the marginal at the root node of the hardcore model on Tn with free spin
measure μ. Also, in analogy with the definitions in Section 3, let Fn(·|x∂Tn

) and,
for n ≥ 2, fn(·|x∂Tn

) denote the corresponding conditional distribution functions
and density given the boundary condition x∂Tn

∈ [0,1]|∂Tn|. Also, let Zn denote
the corresponding hardcore partition function (2.2).

The proof of Theorem 3.1 entails several steps. First, in Section 4.1 we estab-
lish a monotonicity result, which allows one to only consider the cases when the
boundary condition x∂Tn

is the vector of zeros or is the vector of ones. Then, in
Sections 4.2 and 4.3, we derive iterative formulas for F2n and F2n+1 and show
that each of these sequences is pointwise monotonic in n and thus converge to
limiting functions Fe and Fo, respectively. In Section 4.4 we characterize Fe and
Fo in terms of certain ODEs and also identify a certain Hamiltonian structure
that leads to an invariance property in the particular case of the continuous and
ε-interpolated models. Finally, in Section 4.5 we use this invariance property to
prove Theorems 3.1 and 3.4.

4.1. Monotonicity property. Given a spin measure μ, let 0∂Tn
and 1∂Tn

, re-
spectively, be the boundary condition corresponding to setting the values for the
leaves of Tn to be all zeros and all ones. In Lemma 4.1 we state a monotonicity
property for general models having discrete or continuous free spin measure. This
property is well known for the special case of the standard (two-state) hardcore
model and was further extended in [6], Lemma 2.2, to the multi-state hardcore
model with free-spin measure νM+1

λ in (2.4) for any integer M ≥ 1. For complete-
ness, the proof of Lemma 4.1 is provided in Appendix A.

LEMMA 4.1. For n ≥ 1, every boundary condition x∂Tn
and every z ∈ [0,1],

Fn(z|0∂Tn
) ≥ Fn(z|x∂Tn

) ≥ Fn(z|1∂Tn
),

when n is even, and

Fn(z|0∂Tn
) ≤ Fn(z|x∂Tn

) ≤ Fn(z|1∂Tn
),

when n is odd.

4.2. A recursion for the marginal distribution functions. We now derive iter-
ative formulas for the functions Fn. Let T0 denote the trivial tree consisting of an
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isolated vertex. Then, from (2.5), Z0 := μ[0,1], where μ is the free spin measure,
and the associated distribution function F0 takes the form

F0(z) = μ[0, z]
μ[0,1] , z ∈ [0,1].(4.1)

LEMMA 4.2. Given any free spin measure μ, for every n ≥ 1, Fn(z) = 0 for
z ≤ 0, Fn(z) = 1 for z ≥ 1, Fn is nondecreasing on (0,1) and the following prop-
erties hold:

1. For z ∈ [0,1], Fn(z|0∂Tn
) = Fn−1(z), and Fn+1(z|1∂Tn

) = Fn−1(z).
2. Moreover,

Fn(z) = Z�
n−1

Zn

∫
[0,z]

F�
n−1(1 − xu0)μ(dxu0), z ∈ [0,1].(4.2)

3. Furthermore, ∫
[0,1]

F�
n−1(1 − t)μ(dt) = Zn

Z�
n−1

(4.3)

and

lim inf
n→∞

Z�
n−1

Zn

> 0.(4.4)

PROOF. The values of Fn on (−∞,0] and [1,∞) and the monotonicity of Fn

follow immediately from the fact that Fn is the cumulative distribution function of
a random variable with support in [0,1]. Next, given the boundary condition 0∂Tn

,
the hardcore constraints xu +xv ≤ 1 for every leaf node u and its parent v, reduces
to the vacuous constraint xv ≤ 1. Thus, the boundary condition 0∂Tn

translates to a
free boundary (no boundary) condition on the tree Tn−1. Similarly, the boundary
condition 1∂Tn

forces xv to be zero for every parent v of a leaf of the tree Tn which
in turn translates into a free boundary condition for the tree Tn−2. This proves the
first assertion of the lemma.

We now establish the second part of the lemma. Let u0 denote the root of the
tree Tn and note that for every n ≥ 1, letting x = (xu, u ∈ V (Tn)), we have for
every z ∈ [0,1],

Fn(z) = 1

Zn

(
μ⊗|V (Tn)|){x ∈Pn : xu0 ≤ z}.(4.5)

Now, let u1, . . . , u� denote the children of the root u0. Each child ui is the root of a
tree Ti

n−1 that is an isomorphic copy of Tn−1. The constraint x ∈Pn translates into
the constraints xu0 + xui

≤ 1, i = 1,2, . . . ,� plus the condition that the natural
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restriction x
T

i
n−1

of x to the subtree T
i
n−1 lies in P i

n−1 := P(Ti
n−1). Since these

subtrees are nonintersecting, we obtain(
μ⊗|V (Tn)|){x ∈ Pn : xu0 ≤ z}

=
∫ z

0
dμ(xu0)

∏
1≤i≤�

(
μ

⊗|V (T i
n−1)|){x ∈ P i

n : xui
≤ 1 − xu0

}
.

(4.6)

Now, for each 1 ≤ i ≤ �, we recognize the identity

1

Zn−1

(
μ

⊗|V (T i
n−1)|){x ∈ P i

n : xui
≤ 1 − xu0

} = Fn−1(1 − xu0).

Combined with (4.6) and (4.5), this yields (4.2).
Setting Fn(1) = 1 in (4.2), we obtain (4.3). Furthermore, since Fn−1 is bounded

by 1 and μ is a finite Borel measure, (4.3) implies that supn
Zn

Z�
n−1

≤ μ[0,1] < ∞
which yields (4.4). �

Combining Lemma 4.1 and the first part of Lemma 4.2, we now obtain a differ-
ent monotonicity result along certain subsequences.

COROLLARY 4.3. For every free spin measure μ, for n ≥ 1 and z ∈ [0,1],
F2n+1(z) ≤ F2n−1(z) and F2n(z) ≥ F2n−2(z). Furthermore, for every n1, n2 ∈ Z+,
with F2n1+1(z) ≥ F2n2(z).

PROOF. Once again, let u0 denote the root of the tree Tn, and label its chil-
dren as u1, . . . , u�. Consider the random vector X chosen according to the hard-
core measure P = PTn,μ, and let P∂Tn

denote the marginal of P on the leaves ∂Tn.
Then, Fn is the cumulative distribution function of the marginal at the root, that is,
Fn(z) = P(Xu0 ≤ z). Thus, for every odd n ≥ 3, using Lemma 4.1 for the inequal-
ity and Lemma 4.2(1) for the last equality below, we have

Fn(z) = P(Xu0 ≤ z) =
∫

x∂Tn∈[0,1]|∂Tn|
P(Xu0 ≤ z|X∂Tn

= x∂Tn
)P∂Tn

(dx∂Tn
)

≤ P(Xu0 ≤ z|1∂Tn
)

= Fn−2(z).

Similarly, for every even n we obtain Fn(z) ≥ Fn−2(z) for every z. Finally, to es-
tablish the last inequality, suppose first that n1 ≥ n2. Then, since the first assertion
of the lemma implies F2n1(z) ≥ F2n2(z), by a similar derivation we have

F2n1+1(z) =
∫

x∂T2n1+1

P(Xu0 ≤ z|X∂T2n1+1 = x∂T2n1+1)P∂T2n1+1(dx∂T2n1+1)

≥ P(Xu0 ≤ z|0∂T2n1+1)
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= F2n1(z)

≥ F2n2(z).

Conversely, if n1 < n2, then 2n1 + 1 ≤ 2n2 − 1, and we use instead

F2n2(z) =
∫

x∂T2n2

P(Xu0 ≤ z|X∂T2n2
= x∂T2n2

)P∂T2n2
(dx∂T2n2

)

≤ P(Xu0 ≤ z|0∂T2n2
)

= F2n2−1(z)

≤ F2n1+1(z). �

4.3. A convergence result. The monotonicity result of Corollary 4.3 allows us
to argue the existence of the following pointwise limits: for z ∈ [0,1],

Fo(z) := lim
n→∞F2n+1(z), Fe(z) := lim

n→∞F2n(z).(4.7)

Also, note that by Corollary 4.3, for z ∈ [0,1],
1 ≥ F2n+1(z) ≥ Fo(z) ≥ Fe(z) ≥ F2n(z) ≥ 0.(4.8)

Clearly, Fo and Fe are measurable and bounded. So, we can define

Co :=
(∫

[0,1]
F�

o (1 − t)μ(dt)

)−1
(4.9)

and

Ce :=
(∫

[0,1]
F�

e (1 − t)μ(dt)

)−1
.(4.10)

Note that by (4.7), since μ is a finite Borel measure, the dominated convergence
theorem, (4.3) and (4.4) imply

Co = lim
n→∞

(∫
[0,1]

F�
2n+1(1 − t)μ(dt)

)−1
= lim

n→∞
Z�

2n+1

Z2n+2
> 0.(4.11)

Moreover, by (4.8) the dominated convergence theorem and (4.3) we have

Ce = lim
n→∞

(∫
[0,1]

F�
2n(1 − t)μ(dt)

)−1
= lim

n→∞
Z�

2n

Z2n+1
.(4.12)

The first equality above, together with (4.8) and (4.1), also show that

C−1
e ≥ 1

(μ[0,1])�
∫
[0,1]

(
μ[0,1 − t])�μ(dt) ≥ (μ[0,1/2])�+1

(μ[0,1])� .(4.13)

We now derive an analogue of (4.2) for the limits Fo and Fe and strengthen the
convergence in (4.7).



GIBBS MEASURES FOR CONTINUOUS HARDCORE MODELS 1963

COROLLARY 4.4. Suppose the free spin measure μ satisfies μ[0,1/2] > 0.
Then, Ce,Co ∈ (0,∞), Fo(0) = Fe(0) = 0, Fo(1) = Fe(1) = 1 and for z ∈ [0,1],

Fo(z) = Ce

∫ z

0
F�

e (1 − t)μ(dt),(4.14)

Fe(z) = Co

∫ z

0
F�

o (1 − t)μ(dt).(4.15)

Moreover, we also have

lim
n→∞

∥∥F2n+1(·) − Fo(·)
∥∥[0,1] = 0,

lim
n→∞

∥∥F2n(·) − Fe(·)
∥∥[0,1] = 0.

Finally, suppose μ has density m and that I is an open set of continuity points
of m. Then m, Fn, Fo and Fe are continuously differentiable on I and, for every
compact subset K ⊂ I ,

lim
n→∞

∥∥Ḟ2n+1(·) − Ḟo(·)
∥∥
K = 0,

lim
n→∞

∥∥Ḟ2n(·) − Ḟe(·)
∥∥
K = 0.

PROOF. The values of Fo and Fe at 0 and 1 follow directly from the corre-
sponding values of Fn from Lemma 4.2 and (4.7). Since (4.8) implies Co ≤ Ce,
the estimates (4.11) and (4.13) imply that as long as μ[0,1/2] > 0, both Co and
Ce lie in (0,∞). For z ∈ [0,1], let F ∗

o (z) and F ∗
e (z) equal the right-hand sides of

(4.14) and (4.15), respectively. Taking limits on both sides of (4.2) along odd n

and using (4.7), (4.12) and the dominated convergence theorem, we obtain (4.14).
The relation (4.15) is obtained analogously, using (4.11) instead of (4.12). The lat-
ter relations show that Fo and Fe are continuous. Since they are also pointwise
monotone limits of the sequences F2n+1 and F2n, respectively (see Corollary 4.3
and (4.7)), by Dini’s theorem, the convergence is in fact uniform.

We now prove the last property of the lemma, even though we do not use it in
the sequel. Suppose μ has density m that is continuous on I . Then, (4.1) and (4.2)
show that for every n, Fn is absolutely continuous and Ḟn(z) = Z−1

n Z�
n−1F

�
n−1(1−

z)m(z), from which it follows that Ḟn is continuous on I . Likewise, the continuous
differentiability of Fo and Fe on I can be deduced from (4.14) and (4.15). The
uniform convergence of the derivatives on any compact subset K ⊂ I is a direct
consequence of (4.2), (4.14)–(4.15) and the uniform convergence of {F2n+1} to Fo

and {F2n} to Fe. �

REMARK 4.5. We now claim (and justify below) that to prove the correlation
decay property in Theorems 3.1 and 3.4, it suffices to show (for the respective
models) that Ce = Co. Indeed, by Lemma 4.1, Lemma 4.2(1) and (4.7), to show
correlation decay is equivalent to showing Fo = Fe. Now, by (4.8) we have Fo(z) ≥
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Fe(z) for every z ∈ [0,1]. Hence, if Ce = Co = C, then by (4.14)–(4.15), we have
for z ∈ [0,1],

Fo(z) = C

∫
[0,z]

F�
e (1 − t)μ(dt) ≤ C

∫
[0,z]

F�
o (1 − t)μ(dt) = Fe(z).

Together with the observation that F0(z) ≤ Fz(z), this implies Fo = Fe.

4.4. Differential equations for Fo and Fe. To show Ce = Co, we first derive
some differential equations for the functions Fo and Fe. The first result of this
section is as follows.

PROPOSITION 4.6. Suppose the free spin measure μ is absolutely continuous
with density m and satisfies μ[0,1/2] > 0. Let I be any nonempty open set in [0,1]
that is symmetric in the sense that x ∈ I implies 1 − x ∈ I . If m is continuously
differentiable and strictly positive on I , then on I the function Fo, defined in (4.7),
is twice continuously differentiable and satisfies

(4.16) F̈o(z) = ṁ(z)

m(z)
Ḟo(z) − CoC

1
�
e �

(
m(z)

) 1
� m(1 − z)

(
Ḟo(z)

)�−1
�

(
Fo(z)

)�
,

PROOF. Relations (4.14) and (4.15) of Corollary 4.4 imply that Fo and Fe

are absolutely continuous with density CeF
�
e (1 − ·)m(·) and CoF

�
o (1 − ·)m(·),

respectively. Now, if m is continuous on I , then clearly these densities are con-
tinuous, and so Fo and Fe are continuously differentiable on I . If I is symmetric,
then Fo(1−·) and Fe(1−·) are also continuously differentiable and so, if m is con-
tinuously differentiable on I , then Fo and Fe are twice continuously differentiable
on I and for z ∈ I ,

F̈o(z) = Ceṁ(z)F�
e (1 − z) − Cem(z)�F�−1

e (1 − z)Ḟe(1 − z).

Applying (4.14) and (4.15) again, we also have

Fe(1 − z) = (
Ḟo(z)

) 1
�

(
Cem(z)

)−1
� ,

Ḟe(1 − z) = Com(1 − z)F�
o (z).

Substituting these identities into the previous expression for F̈o, we obtain the
following second-order ODE for Fo on I:

F̈o(z) = ṁ(z)

m(z)
Ḟo(z) − Cem(z)�

(
Cem(z)

)−�−1
�

(
Ḟo(z)

)�−1
� Com(1 − z)

(
Fo(z)

)�

= ṁ(z)

m(z)
Ḟo(z) − CoC

1
�
e �

(
m(z)

) 1
� m(1 − z)

(
Ḟo(z)

)�−1
�

(
Fo(z)

)�
,

for z ∈ I . �
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We now fix λ > 0 and ε ∈ (0,1/2] and specialize to the case when the density
m of the free spin measure has the form

(4.17) m(z) = λz
I(0,ε]∪[1−ε,1)(z), z ∈ [0,1].

Note that the case ε = 1/2 corresponds to the continuous hardcore model. Define

θo := (
λC

1
�
o Ce

) �

�2−1 and θe := (
λC

1
�
e Co

) �

�2−1 .(4.18)

We then have the following result:

PROPOSITION 4.7. Suppose the free spin measure has a density m of the form
(4.17) for some ε ∈ (0,1/2] and λ > 0. Then, Fo is twice continuously differen-
tiable on the intervals (0, ε) and (1 − ε,1) and the function

Rλ(z)
.= λ−z(θeFo(z)

)�+1 + λ− z
�

(
θeḞo(z)

)�+1
�

− (lnλ)λ− z
�+1 θ

�+1
�

e Fo(z)
(
Ḟo(z)

) 1
� ,

is constant on each of the intervals (0, ε) and (1 − ε,1). Moreover, Fo satisfies

(4.19) Ḟo(0+) = Ce, Ḟo(1−) = 0,

and

(4.20) inf
{
t > 0 : Fo(t) = 1

} = 1,

and Rλ satisfies the boundary conditions

(4.21) Rλ(0+) = (θeCe)
�+1
� , Rλ(1−) = λ−1θ�+1

e .

PROOF. Since the the density m in (4.17) is continuously differentiable on the
intervals (0, ε) and (1−ε,1), and the corresponding free spin measure puts strictly
positive mass on [0,1], it follows from Proposition 4.6 that Fo is twice continu-
ously differentiable and satisfies (4.16) on each of those intervals. The proof of the
first assertion of the proposition proceeds in three steps.

Step 1. We first recast the second-order ODE for Fo in (4.16) as a sys-
tem of nonautonomous first-order ODEs. Consider g(z) = (g1(z), g2(z)) :=
(Fo(z), Ḟo(z)) which lies in R

2+ since Fo is nonnegative and nondecreasing. Let
I = (0, ε) ∪ (1 − ε,1) if ε < 1/2, and let I = (0,1) if ε = 1/2. Since m is con-
tinuously differentiable and m(z) = (lnλ)λz on I , Fo satisfies the second-order
ODE in (4.16) which is equivalent to saying that g satisfies the following system
of nonautonomous first-order ODEs on I:

ġ(z) = G
(
g(z), z

) := (
G1

(
g1(z), g2(z), z

)
,G2

(
g1(z), g2(z), z

))
,(4.22)
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where for i = 1,2, Gi : R3+ →R are defined by

G1(y1, y2, z) := y2,(4.23)

G2(y1, y2, z) := (lnλ)y2 − CoC
1
�
e �λ

z
� λ1−zy

�−1
�

2 y�
1 .(4.24)

Step 2. Next, we reparametrize the system of ODEs above to eliminate the
explicit dependence of G2 on z in (4.24). Namely, we reformulate the system
of ODEs as an autonomous system. Consider the transformation � : (g1, g2) �→
(h1, h2) defined by

h1(z) = λ− z
�+1 θeg1(z),(4.25)

h2(z) = λ
− z

�(�+1) θ
1
�
e

(
g2(z)

) 1
� .(4.26)

We now claim that (h1(·), h2(·)) satisfies the following system of ODEs:

ḣ(z) = H
(
h(z)

)
, z ∈ (0,1),(4.27)

where H :R2+ →R
2 is defined by H(y1, y2) := (H1(y1, y2),H2(y1, y2)), with

H1(y1, y2) := − lnλ

� + 1
y1 + y�

2 ,(4.28)

H2(y1, y2) := lnλ

� + 1
y2 − y�

1 .(4.29)

The proof is obtained using a fairly straightforward verification. For z ∈ (0,1), we
have using (4.25)–(4.26), and ġ1(z) = g2(z) from (4.22)–(4.23),

ḣ1(z) = − lnλ

� + 1
λ− z

�+1 θeg1(z) + λ− z
�+1 θeg2(z)

= − lnλ

� + 1
h1(z) + (

h2(z)
)�

.

This verifies (4.28). Similarly, applying (4.22) and (4.24) together with (4.25)–
(4.27) and (4.29), we obtain

ḣ2(z) = − lnλ

�(� + 1)
λ

− z
�(�+1) θ

1
�
e

(
g2(z)

) 1
�

+ λ
− z

�(�+1) θ
1
�
e �−1(

g2(z)
) (1−�)

� (lnλ)g2(z)

− λ
− z

�(�+1) θ
1
�
e �−1(

g2(z)
) (1−�)

� CoC
1
�
e �λ

z
� λ1−z(g2(z)

) (�−1)
�

(
g1(z)

)�
= − lnλ

�(� + 1)
h2(z) + lnλ

�
h2(z) − θ

1
�
e CoC

1
�
e λθ−�

e

(
h1(z)

)�

= lnλ

� + 1
h2(z) − (

h1(z)
)�

,

where the last equality uses definition (4.18) of θe. This verifies (4.29).
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Step 3. Next, we show that the system (4.27)–(4.29) is a Hamiltonian system
of ODEs in the sense that if h(·) = (h1(·), h2(·)) is a solution of (4.27)–(4.29) on
some interval, then the function


 ◦ h(z) = (
h1(z)

)�+1 + (
h2(z)

)�+1 − (lnλ)h1(z)h2(z)

is constant on that interval, where 
 : (y1, y2) �→R is defined by


(y1, y2) := y�+1
1 + y�+1

2 − (lnλ)y1y2.

Indeed, note that on substituting the expressions for ḣ1 and ḣ2 obtained above, we
have on this interval,


̇ ◦ h = (� + 1)h�
1 ḣ1 + (� + 1)h�

2 ḣ2 − (lnλ)(ḣ1h2 + h1ḣ2)

= (� + 1)h�
1

(
− lnλ

� + 1
h1 + h�

2

)
+ (� + 1)h�

2

(
lnλ

� + 1
h2 − h�

1

)

− (lnλ)

(
− lnλ

� + 1
h1 + h�

2

)
h2 − (lnλ)

(
lnλ

� + 1
h2 − h�

1

)
h1

= 0.

The first assertion of the proposition then follows on substituting the definition of
hi and gi , i = 1,2, from Steps 1 and 2 into the expression for 
 ◦ h in Step 3.

Next, note that the boundary conditions in (4.19) follows on substituting the
form (4.17) of μ into (4.14). When combined with the boundary condition
Fo(0+) = Fo(0) = 0 and Fo(1−) = Fo(1) = 1 from Corollary 4.4, this implies
(4.21). Finally, define τ = inf{t > 0 : Fo(t) = 1}. Then, Fo(1) = 1 implies that τ ≤
1, but one must have Ḟo(z) = 0 for z > τ . Thus, to prove (4.20), it suffices to show
that Ḟo(z) > 1 for all z < 1. Now, by (4.14) for z ∈ (0,1), Ḟo(z) = CeF

�
e (1−z)λz.

However, this is strictly positive because by symmetry and (4.19) it follows that
Ḟe(0) = Co > 0, and hence, Fe(1−z) > 0 for all 0 < z < 1. This establishes (4.20)
and concludes the proof. �

4.5. Proof of uniqueness of Gibbs measures. By Remark 4.5, to prove The-
orems 3.1 and 3.4, it suffices to show that the constants Co and Ce in (4.9)
and (4.10), respectively, are equal when m is given by (4.17) with ε = 1/2 and
ε ∈ (0,1/2), respectively. In each case we will use the invariance property in
Proposition 4.7 to establish this equality.

PROOF OF THEOREM 3.1. Set ε = 1/2. Then, m is continuously differentiable
on (0,1), and the function R in Proposition 4.7 is constant on the entire interval

(0,1). Thus, setting R(0+) = R(1−) in (4.21), we conclude that θ
�2−1

�
e = λC

�+1
�

e .
Substituting the value of θe from (4.18) into this equation, one concludes that Co =
Ce which completes the proof. �
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PROOF OF THEOREM 3.4. Now suppose ε ∈ (0,1/2). Then, m is continu-
ously differentiable on the intervals (0, ε) and (1 − ε,1), and so Proposition 4.7
implies

(4.30) R(0+) = R(ε−), and R
(
(1 − ε)+) = R(1−).

On the other hand, since m is zero on (ε,1 − ε), it follows from (4.14)–(4.15) that
both Fo and Fe are constant on (ε,1 − ε). In turn this implies that

Ḟo(ε−) = Ce

2ε
F�

e (1 − ε)λε = Ce

2ε
F�

e (ε)λε = Ḟo

(
(1 − ε)+)

λ2ε−1.

Now, if λ = 1, then these identities and the definition of R imply that R(ε+) =
R((1 − ε)−). Together with (4.30) and (4.21) this implies

(θeCe)
�+1
� = θ�+1

e ⇔ (θe)
�2−1

� = λC
�+1
�

e .

When combined with (4.18), this shows that Ce = Co. �

5. Marginal distributions of the continuous hardcore model.

5.1. The case λ = 1: Proof of Theorem 3.3. Note that the problem concerns
the one-parameter family of ODEs

ḞC(z) = b
(
C,FC(z)

)
,(5.1)

where the parameterized family of drifts b, [0,∞) × [0,1] �→R+ is given by

b(C,y) := C
(
1 − y�+1) �

�+1 .(5.2)

For any fixed C > 0, the function y �→ b(C,y) is a Lipschitz continuous function
on (0,1− δ) for any δ ∈ (0,1). Thus, there exists a unique solution FC to the ODE
(5.1) with boundary condition

(5.3) FC(0) = 0,

on the interval [0, τC − δ), where

τC := inf
{
t > 0 : FC(t) = 1

}
.(5.4)

Here, the infimum over an empty set is taken to be infinity. Since (3.3) implies that
FC is constant after τC (if τC < ∞), by continuity there is a unique continuous
solution FC to (5.1) and (5.3) on [0,∞).

We now show existence of a C > 0 for which the unique solution FC to (5.1)
and (5.3) also satisfies the boundary condition

τC = 1.(5.5)

We fix λ = 1 and � ≥ 1 and consider the continuous hardcore model with pa-
rameter λ and �. From the proof of Theorem 3.1, it follows that the constants
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Co,Ce ∈ (0,∞) defined in (4.9) and (4.10) respectively, are equal. We denote the
common value by C�,1 and let ��,1 denote the corresponding common value of
θe = θo in (4.18). Further, let F�,1 denote the corresponding Fe which coincides
with Fo by Remark 4.5. By Proposition 4.7 we have

(��,1C�,1)
�+1
� = R1(0)

= R1(z)

= (��,1
(
��,1F�,1(z)

)�+1 + (
��,1Ḟ�,1(z)

)�+1
� ,

for every z ∈ (0,1). Noting from (4.18) that ��,1 = C
1

�−1
�,1 and rearranging terms

above, this implies that F�,1 satisfies the ODE (3.3) when C = C�,1. Furthermore,
F�,1(0) = 0 by Corollary 4.4 and hence, F�,1 is the unique solution FC�,1 to (5.1)
and (5.3). Furthermore, it follows from (4.20) that τC�,1 = 1, and thus we have
shown that (5.1), (5.3) and (5.5) are satisfied when C = C�,1.

To prove Theorem 3.3, it only remains to prove that there is a unique constant
C (equal to C�,1) for which the unique solution FC to (5.1) and (5.3) also satisfies
(5.5). Our next result shows that this is the case.

PROPOSITION 5.1. Given C > 0, let FC be the unique solution to (5.1) and
(5.3) on [0,∞), and define τC as in (5.4). The function [0,∞) � C �→ τC is strictly
decreasing and continuous with range R+. In particular there exists a unique C∗ >

0 such that τC∗ = 1.

PROOF. The proof entails two main steps.
Step 1. We show limC↓0 τC = ∞ and limC↑∞ τC = 0.
First, observe that τC ≥ 1/C since F(0) = 0 and Ḟ (z) ≤ C for all z. Thus,

τC → ∞ as C → 0. Next, set σC(0) := 0 and for δ > 0, define

(5.6) σC(δ) := inf
{
z > 0 : FC(z) = 1 − δ

}
.

Observe that the set of such z is nonempty since for every z such that FC(z) < 1−δ

we have the uniform lower bound ḞC(z) > C(1 − (1 − δ)�+1)
�

�+1 > 0. Now, for
z ∈ [σC(1/(n − 1)), σC(1/n)], n−2

n−1 ≤ FC(z) ≤ n−1
n

, and hence,

ḞC(z) = C
(
1 − F�+1

C (z)
)�/(�+1) = C(� + 1)

�
�+1

n
�

�+1

+ o

(
1

n
�

�+1

)
,

where o(ε) represents a quantity that vanishes as ε → 0. Using the identity

1

n − 1
− 1

n
= FC(σC

(
1/(n − 1)

) − FC

(
σC(1/n)

) =
∫ σC(1/n)

σC(1/(n−1))
ḞC(z) dz,

we obtain the estimate

(5.7) σC

(
1

n

)
− σC

(
1

n − 1

)
= (

C(� + 1)
�

�+1 n
�+2
�+1

)−1 + o

(
1

n
�+2
�+1

)
.



1970 D. GAMARNIK AND K. RAMANAN

In turn, since τC = ∑∞
n=1[σC( 1

n
) − σC( 1

n−1)], this implies that

CτC = (� + 1)−
�

�+1

∞∑
n=1

n−�+2
�+1 + o(1) < ∞

which shows that τC → 0 as C → ∞. This concludes the proof of Step 1.
Before proceeding to Step 2, observe that in a similar fashion, for δ ∈

[1/n,1/(n − 1)], we have∑
m≥n

[
σC

(
1

m

)
− σC

(
1

m − 1

)]
≤ τC − σC(δ)

≤ ∑
m≥n−1

[
σC

(
1

m

)
− σC

(
1

m − 1

)]
.

Combining this with the estimate (5.7) and the fact that for both k = n and k =
n + 1 the sum

∑
m≥k m−�+2

�+1 is of the order O(�+1
�+2n− 1

�+1 ), we conclude that

(5.8) τC − σC(δ) = (� + 1)
1

�+1

C(� + 2)
δ

1
�+1 + o

(
δ

1
�+1

)
.

Step 2. We show that C �→ τC is strictly decreasing and continuous.
First, note that for b given in (5.2) we have

∂b

∂C
(C,y) = (

1 − y�+1) �
�+1 ,

∂b

∂y
= −C�

(
1 − y�+1)− 1

�+1 y�.(5.9)

Thus, b is continuously differentiable with bounded partial derivatives on [0,∞)×
[0,1− 1

n
] for every n ∈ N. Then, by standard sensitivity analysis for parameterized

ODEs we know that for every n ∈ N, on [0, σC( 1
n
)], RC(z) := ∂FC(x)/∂C exists

and satisfies

∂RC

∂z
(z) = ∂2FC

∂C∂z
(z) = ∂

∂C
b
(
C,FC(z)

)

= ∂b

∂C

(
C,FC(z)

) + ∂b

∂y

(
C,FC(z)

)∂FC

∂C
(z)

which yields the following first-order inhomogeneous linear ODE for RC :

∂RC

∂z
(z) = ∂b

∂C

(
C,FC(z)

) + ∂b

∂y

(
C,FC(z)

)
RC(z).(5.10)

Moreover, since FC(0) = 0 for all C, RC satisfies the boundary condition

(5.11) RC(0) = 0.

Solving the linear ODE (5.10)–(5.11), we obtain

RC(z) =
∫ z

0
e

∫ z
x

∂b
∂y

(C,FC(t)) dt ∂b

∂c

(
C,FC(x)

)
dx.
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Substituting the partial derivatives of b from (5.9), we have for z ∈ (0, τC),

RC(z) =
∫ z

0
e−C�

∫ z
x (1−(FC(t))�+1)

− 1
�+1 (FC(t))� dt

× (
1 − (

FC(x)
)�+1) �

�+1 dx > 0.

(5.12)

Now, fix n ∈ N, and recall from (5.6) that FC(σC(1/n)) = 1 − 1/n. Since
(C, z) �→ FC(z) is continuously differentiable and, by (5.1)–(5.2) for any fixed

C0 > 0,
∂FC0
∂z

(σC0(1/n)) > 0, it follows from the implicit function theorem that
C �→ σC(1/n) is continuously differentiable and (5.12) then implies that

(5.13)
d(σC(1/n))

dC
< 0.

Now, for any C < ∞, fix C− < C < C+. Then, for all sufficiently large n, it fol-
lows from (5.8) that

τC+ − σC+(1/n) ≤ τC − σC(1/n) ≤ τC− − σC−(1/n).

Since (5.13) implies that σC+(1/n) < σC(1/n) < σC−(1/n), this shows that
τC− > τC > τC+, namely, C �→ τC is strictly decreasing on (0,∞). Finally, to
show that τ is continuous, fix C > 0, and given ε > 0, note that (5.8) shows that
there exists a sufficiently large n, such that for all η < C and C̃ ∈ [C − η,C + η],

∣∣τ
C̃

− σ
C̃
(1/n) − (

τC − σC(1/n)
)∣∣ ≤ ε

2
.

Since, as shown above, C �→ σC(1/n) is continuous (in fact, continuously differen-
tiable), there exists δ < 1 such that whenever |C̃ −C| < δ, |σ

C̃
(1/n)−σC(1/n)| <

ε
2 , and hence, |τ

C̃
− τC | < ε. This shows that C �→ τC is continuous and concludes

the proof of Step 2.
Finally, we note that by Step 1 and the continuity of τC established in Step 2,

{τC,C ∈ (0,∞)} = (0,∞). Since C �→ τC is a strictly decreasing continuous func-
tion by Step 2, this implies the existence of a unique C∗ with τC∗ = 1. This com-
pletes the proof of Proposition 5.2. �

5.2. A conjecture for general λ > 0. Fix λ > 0, � ≥ 1, and let F = F�,λ =
Fo and C = Co = Ce be the limiting function and constant, respectively, from
Theorem 3.1. Then, the free spin measure with density m(z) = λz satisfies the
conditions of Proposition 4.6 with I = (0,1) and so it follows from (4.16) that F

satisfies the second-order ODE

(5.14) F̈ (z) = (lnλ)Ḟ (z) − C
1
�

+1�λ(1−z)λz/�(
Ḟ (z)

)1− 1
� F�(z),
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for z ∈ (0,1). Moreover, Corollary 4.4, (4.19) and (4.20) show that F also satisfies
the boundary conditions

(5.15)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(0) = 0,

inf
{
t > 0 : F(t) = 1

} = 1,

Ḟ (0+) = C,

Ḟ (1) = 0.

We conjecture the following generalization of Theorem 3.3 holds but defer in-
vestigation of its validity to future work.

CONJECTURE 5.2. There exists a unique C�,λ > 0 for which the ODE (5.14)–
(5.15) admits a solution, and F�,λ is a twice continuously differentiable function
that is the unique solution to (5.14)–(5.15) with C = C�,λ.

6. Graphs with large girth. We now switch our focus to the problem of com-
puting the volume of the LP polytope P(G) of a �-regular graph G with large girth
and specifically prove Theorem 3.5 in Section 6.2. The proof approach we use fol-
lows closely the technique used in [1] for the problem of counting the asymptotic
number of independent sets in regular graphs with large girth. First, in Section 6.1
we discuss a certain rewiring technique that allows one to construct (N − 2)-node
regular graph with large girth from an N -node regular graph with large girth by
deleting and adding only a constant number of (specific) nodes and edges.

6.1. Rewiring. Here, we summarize relevant results from [1], Section 4.3.
Given an N -node �-regular graph G, fix any two nodes u1, u2 such that the graph
theoretic distance between u1 and u2 is at least four. The latter ensures that there
are no edges between the nonoverlapping neighbor sets of u1 and u2, which we de-
note by u1,1, . . . , u1,� and u2,1, . . . , u2,�, respectively. Consider a modified graph
H obtained from G by deleting the nodes u1 and u2 and adding an edge between
u1,i and u2,i for every i = 1, . . . ,�; see Figure 1. The resulting graph H is a �-
regular graph with N − 2 nodes. We call this operation a “rewiring” or “rewire”
operation. In our application the rewiring step will be applied only to pairs of
nodes with distance at least four. Rewiring was used in [14] and [16] in the context
of random regular graphs, and it was performed on two nodes selected randomly
from the graph. Here, as in [1], we will instead rewire on nodes u1 and u2 that are
farthest from each other. As shown in the next result, this will enable us to preserve
the large girth property of the graph for many rewiring steps.

Recall that g(G) denotes the girth of the graph G. We now state Lemma 2 of
[1]. For completeness, we include the proof of this lemma in Appendix B.

LEMMA 6.1. Given an arbitrary N -node �-regular graph G, consider any
integer 4 ≤ g ≤ g(G). If 2(2g + 1)�2g < N , then the rewiring operation can be
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FIG. 1. Rewiring on nodes u1 and u2.

performed for at least (N/2) − (2g + 1)�2g steps on pairs of nodes that are a
distance at least 2g + 1 apart. After every rewiring step the resulting graph is
�-regular with girth at least g.

REMARK 6.2. If the same fixed g ∈ {4, . . . , g(G)} is used at each step, since
every rewiring step reduces the graph by two nodes, we see that after (N/2) −
(2g +1)�2g = N/2−O(1) rewiring steps, the resulting graph is of constant O(1)

size which will have a negligible contribution to the asymptotic formula for the
volume of P(G).

6.2. Proof of Theorem 3.5. Fix λ > 0, � ≥ 1 and let F�,λ be the distribution
function from Theorem 3.1. We fix an arbitrary sequence Gn, n ∈ N, of �-regular
graphs with diverging girth: limn→∞ g(Gn) = ∞. In what follows we adopt the
shorthand notation x ≶ (1 ± ε)y to mean (1 − ε)y ≤ x ≤ (1 + ε)y. The main
technical result underlying our proof of Theorem 3.5 is as follows.

THEOREM 6.3. For every � ≥ 2, ε > 0 and λ > 0, there exists a large enough
integer g = g(ε,�,λ) such that if the rewiring is performed on any �-regular
graph G with girth g(G) ≥ g on two nodes that are at least 2g + 1 distance apart,
then for the resulting graph H, we have

ZG,λ

ZH,λ

≶ (1 ± ε)

(∫ 1

0
λtF�

�−1,λ(1 − t) dt

)−2

×
(∫ 1

0
Ḟ�−1,λ(t)F�−1,λ(1 − t) dt

)−�

.

(6.1)
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We first show how this result implies Theorem 3.5.

PROOF OF THEOREM 3.5. We fix ε > 0 and g = g(ε,�,λ) ≥ 4 as described
in Theorem 6.3. Since g(Gn) → ∞, we have g(Gn) ≥ g for all sufficiently large n.
For t = 1, . . . , Ln := |V (Gn)|/2 − (2g + 1)�2g , let Gn,t be the graph obtained
from Gn,0 := Gn after t rewiring steps. Then, for any λ > 0, trivially we have

ZGn,λ =
( ∏

1≤t≤Ln

ZGn,t−1,λ

ZGn,t ,λ

)
ZGn,Ln,λ

.

For conciseness we introduce the notation

�(�,λ) :=
(∫ 1

0
λtF�

�−1,λ(1 − t) dt

)−2(∫ 1

0
Ḟ�−1,λ(t)F�−1,λ(1 − t) dt

)−�

and note that by Lemma 6.1 and Theorem 6.3, for 1 ≤ t ≤ Ln,

ZGn,t−1,λ

ZGn,t ,λ

≶ (1 ± ε)�(�,λ).

Therefore, we obtain

ZGn,λ ≶ (1 ± ε)Ln�Ln(�,λ)ZGn,Ln ,λ.

Now, recall from Remark 6.2 that the number of nodes, and hence edges, of Gn,Ln

is bounded by a constant that does not depend on n. In turn this implies that
ZGn,Ln ,λ is also bounded by a constant that does not depend on n. Therefore, tak-
ing the natural logarithm of both sides of the last display, dividing by |V (Gn)|,
recalling that Ln = |V (Gn)|/2 − O(1) and taking limits, first as n → ∞ and then
as ε → 0, we obtain (3.6). �

The remainder of this section is devoted to proving Theorem 6.3. Fix an integer
g, consider an arbitrary �-regular graph G with girth g(G) ≥ 2g + 1 and fix any
two nodes u1 and u2 in G that are at least a distance 2g + 1 apart. Fix λ > 0, and
let P = Pμλ,G be the continuous hardcore measure on P(G), and, for any induced
subgraph G̃, let P

G̃
represent the continuous hardcore measure on G̃, and let E and

E
G̃

represent the corresponding expectations. Also, as usual, let X be the random
vector representing spin values at nodes. Moreover, let H be the graph obtained
on rewiring on u1 and u2 and omitting the dependence on λ for conciseness, let
ZG, ZG\{u1,u2} and ZH, respectively, be the partition functions associated with the
continuous hardcore model (with parameter λ) on G, G \ {u1, u2} and H, respec-
tively. Next, for j = 1,2, we denote by uj,1, . . . , uj,� the neighbors of uj in G and
let Tj be the subtree of depth g rooted at uj , and for j = 1,2, let Tj,i denote the
subtree of G \ {u1, u2} rooted at u1,i . Note that (since uj has been removed) uj,i

has � − 1 children, as do each of the other internal nodes of Tj,i . Thus, for every
i, j , Tj,i is isomorphic to Tg−1,�−1, denoted T

j,i ∼ Tg−1,�−1. Finally, recall the
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definition of Fn,� = Fn,�,λ given in Section 4.2. The proof of Theorem 6.3 relies
on two preliminary estimates stated in Lemmas 6.4 and 6.5 below. We first show
that these estimates imply Theorem 6.3 and only then prove the estimates.

LEMMA 6.4.

ZG\{u1,u2}
ZG

= E

[ 2∏
j=1

(∫
t∈[0,1]

λt
�∏

i=1

Fg−1,�−1(1 − t |X∂Tj,i ) dt

)−1]
.(6.2)

LEMMA 6.5.
ZH

ZG\{u1,u2}

= E

[
�∏

i=1

∫
t∈[0,1]

dFg−1,�−1(t |X∂T1,i )Fg−1,�−1(1 − t |X∂T2,i )

]
.

(6.3)

PROOF OF THEOREM 6.3. We first use Theorem 3.1 to approximate the right-
hand sides of (6.2) and (6.3) for large g. Let F�−1 = F�−1,λ be the limit function
in Theorem 3.1. Then, given ε > 0, by Theorem 3.1 and the bounded convergence
theorem, for sufficiently large g and every boundary condition x∂Tj,i ∈ P(∂Tj,i),
1 ≤ i ≤ �, j = 1,2,

1 − ε

8
≤

∫
t∈[0,1] λtF�

�−1(1 − t) dt∫
t∈[0,1] λt

∏�
i=1 Fg−1,�−1(1 − t |x∂Tj,i ) dt

≤ 1 + ε

8
.(6.4)

Next, we observe that Theorem 3.1 implies that the probability measure
dFg−1,�−1(·|x∂T1,i ) converges to the probability measure dF�−1(·) in the Kol-
mogorov distance (and therefore the Lévy distance, which induces weak conver-
gence on R) uniformly with respect to all feasible boundary conditions (see [9],
Chapter 2, for definitions of the Kolmogorov and Lévy distances and the rela-
tion between them). Since, again by Theorem 3.1, Fg−1,�−1(·|x∂T2,i ), g ∈ N is a
sequence of bounded continuous functions that converges uniformly to F�−1(·)
and also uniformly with respect to the boundary condition x∂T2,i ∈ P(∂T2,i); this
shows that there exists g large enough such that

(6.5)
1 − ε

8
≤ (

∫
t∈[0,1] dF�−1(t)F�−1(1 − t))�∏�

i=1
∫
t∈[0,1] dFg−1,�−1(t |x∂T1,i )Fg−1,�−1(1 − t |x∂T2,i )

≤ 1 + ε

8
,

for all boundary conditions x⋃2
j=1 ∂T j . Now, fix ε > 0 sufficiently small such

that (1 − ε) ≤ (1 − ε/8)3 and (1 + ε/8)3 ≤ (1 + ε), and g = g(ε,�,λ) suffi-
ciently large such that (6.4) and (6.5) hold. Given the uniformity in these esti-
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mates with respect to boundary conditions, (6.4) and (6.5) also hold when x is
replaced by X. Now, taking the product of the middle term in (6.4) for j = 1,2
and then taking expectations of the denominator in (6.5), combining this with
(6.2)–(6.3), and using the fact that F�−1 = F�−1,λ is absolutely continuous to
write dF�−1(t) = Ḟ�−1(t) dt , we obtain (6.1). This completes the proof of Theo-
rem 6.3. �

We now turn to the proofs of the lemmas, starting with Lemma 6.4.

PROOF OF LEMMA 6.4. For notational conciseness set G̃ := G \ {u1, u2}.
Then, since u1, u2 are not neighbors, for z1, z2 ≥ 0,

P(Xu1 ≤ z1,Xu2 ≤ z2)

= Z−1
G

∫
xu1∈[0,z1]

λxu1

∫
xu2∈[0,z2]

λxu2

∫
x
G̃

∈P(G̃):xuj,i
+xuj

≤1∀i,j

∏
u∈V (G̃)

λxu dx,

where the range of i, j above is i = 1, . . . ,� and j = 1,2. Then,

∂2

∂z1∂z2
P(Xu1 ≤ z1,Xu2 ≤ z2)

∣∣∣∣
z1↓0,z2↓0

= Z−1
G

∫
x
G̃

∈P(G̃)

∏
u∈V (G̃)

λxu dx
G̃

= Z−1
G

Z
G̃
.

(6.6)

Since the trees T
j , j = 1,2 are nonintersecting and each uj lies in T

j , using the
spatial Markov property in the second equality below, we have

P(Xu1 ≤ z1,Xu2 ≤ z2) = E
[
P(Xu1 ≤ z1,Xu2 ≤ z2|X⋃2

j=1 ∂Tj )
]

= E

[ 2∏
j=1

P(Xuj
≤ zj |X∂Tj )

]
.

Now, fix j ∈ {1,2}. Then, Tj is not isomorphic to Tg,�−1, but each of the dis-
joint trees T

j,i , i = 1, . . . ,�, rooted at the corresponding neighbor uj,i of uj are
isomorphic to Tg−1,�−1. Thus, another application of the spatial Markov property
shows that

P(Xuj
≤ zj |X∂Tj ) =

∫
xuj

∈[0,zj ]
λ

xuj

�∏
i=1

P(Xuj,i
≤ 1 − xuj

|∂X∂Tj,i ) dxuj

×
(∫

xuj
∈[0,1]

λ
xuj

�∏
i=1

P(Xuj,i
≤ 1 − xuj

|∂X∂Tj,i ) dxuj

)−1

.
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Taking the derivative with respect to zj , we get

d

dzj

P
(
Xuj

≤ zj |X∂Tj

)∣∣∣∣
zj↓0

=
(∫

t∈[0,1]
λt

�∏
i=1

P(Xuj,i
≤ 1 − t |∂X∂Tj,i ) dt

)−1

=
(∫

t∈[0,1]
λt

�∏
i=1

Fg−1,�−1(1 − t |X∂Tj,i ) dt

)−1
,

where the last equality uses the fact that Tj,i ∼ Tg−1,�−1 and uj,i is its root. The
last four displays, together with the dominated convergence theorem (to justify
interchange of E and differentiation d/dzj ) and (6.6), yield (6.2). �

PROOF OF LEMMA 6.5. Recall that H is the graph obtained from G \ {u1, u2}
by adding edges between u1,i and u2,i for every i = 1, . . . ,�. Thus,

P(H) = {
x ∈ P

(
G \ {u1, u2}) : xu1,i

+ xu2,i
≤ 1,1 ≤ i ≤ �

}
,

and hence,

ZH

ZG\{u1,u2}
= PG\{u1,u2}(Xu1,i

+ Xu2,i
≤ 1,1 ≤ i ≤ �).(6.7)

The right-hand side of (6.7) above can be rewritten as

PG\{u1,u2}(Xu1,i
+ Xu2,i

≤ 1,1 ≤ i ≤ �)

= EG\{u1,u2}
[
PG\{u1,u2}(Xu1,i

+ Xu2,i
≤ 1,1 ≤ i ≤ �|X⋃�

i=1
⋃2

j=1 ∂Tj,i )
]
.

Since u1 and u2 are more than a distance 2g + 1 apart, the trees T
j,i , j = 1,2,

i = 1, . . . ,� are nonintersecting and disconnected in G \ {u1, u2} (see Figure 1).
Therefore, by the spatial Markov property,

PG\{u1,u2}(Xu1,i
+ Xu2,i

≤ 1,1 ≤ i ≤ �|X⋃2
j=1

⋃�
i=1 ∂Tj,i )

=
�∏

i=1

P⋃2
j=1 ∂Tj,i (Xu1,i

+ Xu2,i
≤ 1|X⋃2

j=1 ∂Tj,i )(6.8)

=
�∏

i=1

∫
xu1,i

∈[0,1]
PT1,i (dxu1,i

|X∂T1,i )PT2,i (Xu2,i
≤ 1 − xu1,i

|X∂T2,i ).

Now, each tree T
j,i is a �-regular rooted tree (recall that the nodes u1 and

u2 have been removed) with each node (other than the leaves) having (� − 1)

children and is thus isomorphic to Tg−1,�−1. Therefore, recalling the defini-
tion of Fn,�(·|x∂Tn,�

) = Fn,�,λ(·|x∂Tn,�
) from Section 3, for every x⋃2

j=1 ∂Tj,i ∈
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P(
⋃2

j=1 ∂Tj,i), we have

P⋃2
j=1 ∂Tj,i (Xu1,i

+ Xu2,i
≤ 1|X⋃2

j=1 ∂Tj,i = x⋃2
j=1 ∂Tj,i )

=
∫
xu1,i

∈[0,1]
dFg−1,�−1(xu1,i

|x∂T1,i )Fg−1,�−1(1 − xu1,i
|x∂T2,i ).

Combining the last three displays with (6.7) we obtain (6.3). �

APPENDIX A: PROOF OF MONOTONICITY

PROOF OF LEMMA 4.1. To prove the lemma, it clearly suffices to establish
the following:

CLAIM. For every n and every two boundary conditions x∂Tn
, y∂Tn

∈ [0,1]∂Tn

such that x∂Tn
≤ y∂Tn

coordinate-wise, there exist random variables X and Y such
that P(X ≤ z) = Fn(z|x∂Tn

), P(Y ≤ z) = Fn(z|y∂Tn
), z ∈ [0,1] and almost surely

X ≤ Y when n is even and X ≥ Y when n is odd.

We establish the claim by induction on n and repeatedly use the following ele-
mentary observation regarding the coupling of two random variables with the same
distribution. Given a random variable U with cumulative distribution function F

and two real numbers θ1 < θ2, there exists a probability space and a random vec-
tor (X1,X2) defined on it such that Xi has the distribution of U conditioned on
X ≤ θi , i = 1,2, and X1 ≤ X2 almost surely. In what follows let U be distributed
according to the free spin measure μ. We now prove the claim for n = 1. Given
x∂T1 , y∂T1 , let x̄ = maxi∈∂T1(x∂T1)i and ȳ = maxi∈∂T1(y∂T1)i . Then, by the defi-
nition of the hardcore model, F1(·|x∂T1) is equal to the conditional distribution of
U given U ≤ 1 − x̄ and, likewise, F1(·|x∂T1) is the conditional distribution of U

given U ≤ 1 − ȳ. Since x∂T1 ≤ y∂T1 implies 1 − x̄ ≥ 1 − ȳ, the claim for n = 1
follows from the observation made above.

Now, for the induction step assume the claim holds for n = 1, . . . ,m − 1. Sup-
pose m is even. Consider two copies of the tree Tm with roots u and v, respec-
tively, and label their children as u1, . . . , u�, and v1, . . . , v� respectively. On
these two copies consider two arbitrary boundary conditions x∂Tm

and y∂Tm
re-

spectively, that satisfy x∂Tm
≤ y∂Tm

. For i = 1, . . . ,�, let xi
∂Tm

(respy, yi
∂Tm

) be
the natural restriction of the boundary condition x∂Tm

(respy, y∂Tm
) to the sub-

tree corresponding to ui (respy, vi ), each of which is a copy of the tree Tm−1.
By the inductive assumption, since m − 1 is odd, for each i = 1, . . . ,�, there ex-
ist two coupled random variables Xi and Yi distributed according to Fm(·|xi

∂Tm
)

and Fm(·|yi
∂Tm

) respectively, such that Xi ≥ Yi almost surely. Generate pairs
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(Xi, Yi) independently across i = 1, . . . ,� in this way. Now, let U be a ran-
dom variable distributed according to the free spin measure μ. Then, the ran-
dom variable X distributed according to Fm(·|x∂Tm

) has the conditional distri-
bution of U given U ≤ 1 − max1≤i≤� Xi , integrated over the joint distribution
of X1, . . . ,X�. Similarly, Y distributed according to Fm(·|x∂Tm

) is distributed as
the conditional distribution of U , given U ≤ 1 − max1≤i≤� Yi , integrated over
the joint distribution of Y1, . . . , Y�. Since by construction we have Xi ≥ Yi , then
1 − max1≤i≤� Xi ≤ 1 − max1≤i≤� Yi . Thus, there exists a coupling of X and Y

such that X ≤ Y almost surely. The case of odd m is analyzed similarly, using that
the result holds for all even n < m. Hence, the details are omitted. The claim then
follows by induction. �

APPENDIX B: PROOF OF THE REWIRING LEMMA

PROOF OF LEMMA 6.1. In every step of the rewiring, we delete two nodes
in the graph. Thus, when we perform t ≤ (N/2) − (2g + 1)�2g rewiring steps
sequentially, in the end we obtain a graph with at least N − 2((N/2) − (2g +
1)�2g) = 2(2g + 1)�2g nodes. Suppose that at step t ≤ (N/2) − (2g + 1)�2g

we have a graph Gt that is �-regular and has girth at least g. We claim that the
diameter of this graph is at least 2g + 1. Indeed, if the diameter is smaller than
2g+1, then for any given node v any other node is reachable from v by a path with
length at most 2g, and thus the total number of nodes is at most

∑
0≤k≤2g �k <

(2g + 1)�2g , which is a contradiction, and the claim is established.
Now, given any t ≤ (N/2)− (2g + 1)�2g , suppose the rewiring was performed

at least t steps on pairs of nodes with distance at least 2g + 1 apart. Select any
two nodes u1, u2 in the resulting graph Gt , which are at the distance equal to the
diameter of Gt , and thus are at least 2g + 1 edges apart. We already showed that
the graph Gt+1 obtained by rewiring Gt on v1, v2 is �-regular. It remains to show
it has girth at least g. Suppose, for the purposes of contradiction, Gt+1 has girth ≤
g − 1. Denote by uj,1, . . . , uj,� the � neighbors of uj , j = 1,2. Suppose k ≥ 1 is
the number of newly created edges which participate in creating a cycle with length
≤ g − 1. If k = 1 and u1,j , u2,j is the pair creating the unique participating edge,
then the original distance between u1,j and u2,j was at most g − 2 by following
a path on the cycle that does not use the new edge. But then the distance between
u1 and u2 is at most g < 2g + 1, which gives a contradiction. Now suppose k > 1,
then there exists a path of length at most (g − 1)/k ≤ (g − 1)/2 which uses only
the original edges (the edges of the graph Gt ) and connects a pair v, v′ of nodes
from the set u1,1, . . . , u1,�, u2,1, . . . , u2,�. If the pair is from the same set, say
u1,1, . . . , u1,�, then, since these two nodes are connected to u1, we obtain a cycle
in Gt with length (g−1)/2+2 < g leading to a contradiction (since by assumption
g > 3). If these two nodes are from different sets, for example, v = u1,j , v′ = u2,l ,
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then we obtain that the distance between u1 and u2 in Gt is at most (g−1)/2+2 <

2g + 1 which also leads to a contradiction. So, we conclude that Gt+1 must have
girth at least g, as stated. �
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