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WEAK TAIL CONDITIONS FOR LOCAL MARTINGALES1

BY HARDY HULLEY AND JOHANNES RUF2

University of Technology Sydney and London School of Economics
and Political Science

The following conditions are necessary and jointly sufficient for an arbi-
trary càdlàg local martingale to be a uniformly integrable martingale: (A) The
weak tail of the supremum of its modulus is zero; (B) its jumps at the first-exit
times from compact intervals converge to zero in L1 on the events that those
times are finite; and (C) its almost sure limit is an integrable random variable.

1. Introduction. Let (�,F ,F,P) be a filtered probability space with a right-
continuous filtration F = (Ft )t≥0, and let S and Sf denote the families of stop-
ping times and finite-valued stopping times on (�,F ,F,P). Unless indicated oth-
erwise, stochastic processes are defined on (�,F ,F,P) and are adapted to F, and
all stochastic processes are assumed to be real-valued and càdlàg. The family of
local martingales is denoted by Mloc, while M denotes the family of uniformly in-
tegrable martingales.3 Similarly, Mc,loc and Mc denote the families of continuous
local martingales and continuous uniformly integrable martingales, respectively.
The strict inclusion M � Mloc gives rise to the following problem.

PROBLEM 1. Given M ∈ Mloc, formulate necessary and sufficient conditions
for determining whether M ∈ M .

Since M ∈ Mloc is a martingale if and only if Mt := Mt∧· ∈ M , for all t ≥ 0,
any solution to Problem 1 implicitly solves the following problem as well.

PROBLEM 2. Given M ∈ Mloc, formulate necessary and sufficient conditions
for determining whether M is a martingale.
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Problems 1 and 2 have been the focus of a sustained research effort for over
fifty years. Girsanov (1960) set the ball rolling, by enquiring about conditions
for determining whether an exponential local martingale E (L) ∈ Mloc is a (uni-
formly integrable) martingale, for any given L ∈ Mloc. This restricted version of
the problems above derives its importance from the widespread use of equivalent
changes of probability measure in mathematical finance and stochastic control the-
ory, where exponential martingales play the role of density processes. Novikov
(1972) famously demonstrated that E (L) ∈ Mc if

E
(
e

1
2 〈L〉∞)

< ∞,

for all L ∈ Mc,loc, where 〈L〉∞ := 〈L〉∞−, while Kazamaki (1977) demon-
strated that E (L) ∈ Mc if (eLt/2)t≥0 is a uniformly integrable submartingale.
Alternative sufficient (and sometimes also necessary) characterisations of (uni-
formly integrable) exponential martingales were obtained by Lépingle and Mémin
(1978a, 1978b), Okada (1982), Kazamaki and Sekiguchi (1983), Engelbert and
Schmidt (1984), Stummer (1993), Kallsen and Shiryaev (2002), Cheridito, Fil-
ipović and Yor (2005), Protter and Shimbo (2008), Blei and Engelbert (2009),
Mayerhofer, Muhle-Karbe and Smirnov (2011), Mijatović and Urusov (2012), Ruf
(2013b), Larsson and Ruf (2014) and Blanchet and Ruf (2016).

Delbaen and Schachermayer (1995) and Sin (1998) reinforced the importance
of Problem 2 for mathematical finance, by giving examples of models where dis-
counted security prices are strict local martingales under a risk-neutral probability
measure. The observation that fundamental no-arbitrage relationships, such as put-
call parity, are violated in such models attracted a lot of interest, with models of
this type subsequently interpreted as descriptions of asset price bubbles. Prominent
contributions to this literature include Cox and Hobson (2005), Heston, Loewen-
stein and Willard (2007), Jarrow, Protter and Shimbo (2007, 2010), Hulley (2010),
Protter (2013), Ruf (2013a) and Carr, Fisher and Ruf (2014). In this setting, a so-
lution to Problem 2 allows one to distinguish between bubbles and nonbubbles.

Rao (1969) initiated an interesting approach to Problem 1 that focuses on the
weak tails of the suprema of the moduli of local martingales, as well as the
weak tails of their quadratic variations. He considered a continuous martingale
M = (Mt)t≥0 satisfying supt≥0 E(|Mt |) < ∞, in which case Doob’s martingale
convergence theorem ensures that the almost sure limit M∞ := M∞− exists and
satisfies E(|M∞|) < ∞. Let

(1.1) τλ := inf
{
t ≥ 0||Mt | > λ

}
denote the first exit-time from the compact interval [−λ,λ], for all λ ≥ 0. Since
Mτλ := Mτλ∧· is a bounded martingale, and hence also a uniformly integrable mar-
tingale, for all λ ≥ 0, it follows that

E
(
M

τλ

0

) = E
(
Mτλ∞

) = λP
(
sup
t≥0

|Mt | > λ
)

+ E(1{supt≥0 |Mt |≤λ}M∞).
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Finally, an application of the dominated convergence theorem yields

lim
λ↑∞λP

(
sup
t≥0

|Mt | > λ
)

= E(M0) − E(M∞),

whence M ∈ M if and only if limλ↑∞ λP(supt≥0 |Mt | > λ) = 0. Azéma, Gundy
and Yor (1980) derived this result by means of a similar argument. In addition,
they showed that M ∈ M if and only if limλ↑∞ λP(〈M〉1/2∞ ≥ λ) = 0, where
〈M〉∞ := 〈M〉∞−. Novikov (1981) independently obtained the same characterisa-
tions of uniformly integrable martingales, in the context of first-passage problems.
Elworthy, Li and Yor (1997, 1999) and Takaoka (1999) extended the results above,
to obtain weak tail characterisations of uniformly integrable martingales within
the class of continuous local martingales, provided the processes in question sat-
isfy certain integrability requirements. Further generalisations were obtained by
Novikov (1996) and Liptser and Novikov (2006), while Kaji (2007, 2008, 2009)
derived weak tail characterisations of uniformly integrable martingales within the
class of locally square-integrable martingales. Once again, the processes must sat-
isfy a variety of additional integrability conditions in order for the results to be
applicable.

We contribute to the literature surveyed above by presenting three conditions
that are shown to be necessary and jointly sufficient for determining whether an
arbitrary local martingale is a uniformly integrable martingale. As opposed to pre-
vious characterisations of uniformly integrable martingales, which apply only to
specific classes of local martingales, our conditions are universally applicable. As
such, they represent the culmination of a research effort instigated by Girsanov
(1960). In detail, we provide the following solution for Problem 1.

THEOREM 1.1. Let M ∈ Mloc. Then M ∈ M if and only if the following three
conditions hold simultaneously:

lim
λ↑∞

λP
(
sup
t≥0

|Mt | > λ
)

= 0;(A)

lim
λ↑∞ E

(
1{τλ<∞}|�Mτλ |

) = 0; and(B)

E
(

lim
t↑∞

|Mt |
)

< ∞,(C)

where �M := M − M− is the jump process associated with M .

Condition (A) generalises Rao’s 1969 weak tail condition. Several studies
recognise that the jumps of a local martingale M ∈ Mloc must be constrained in
some way, in order for it to be a uniformly integrable martingale [see, e.g., Liptser
and Novikov (2006) and Kaji (2008)]. Condition (B) does this by controlling jumps
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that increase |M|. Together, Conditions (A) and (B) ensure that M∞ := M∞− ex-
ists and satisfies M∞ ∈ R (see Lemma 2.2). When they are combined with Con-
dition (C), it follows that E(|M∞|) < ∞. Ruf (2015) showed that M ∈ M if and
only if E(Mτ ) = E(M0), for all τ ∈ S , and Condition (C) holds. In the presence
of Condition (C), the former criterion (which is too abstract to verify in practice)
is thus equivalent to Conditions (A) and (B) together.

As mentioned previously, a solution for Problem 1 also provides a solution for
Problem 2, since a local martingale is a martingale if and only if it is a uniformly
integrable martingale when stopped at arbitrary deterministic times. Based on this
observation, we obtain the following solution for Problem 2.

COROLLARY 1.2. Let M ∈ Mloc. Then M is a martingale if and only if the
following three conditions hold simultaneously:

lim
λ↑∞

λP
(

sup
s∈[0,t]

|Ms | > λ
)

= 0;(A′)

lim
λ↑∞ E

(
1{τλ≤t}|�Mτλ |

) = 0; and(B′)

E
(|Mt |) < ∞,(C′)

for all t ≥ 0.

The remainder of the article is structured as follows. We prove Theorem 1.1 in
Section 2, after which Section 3 demonstrates the minimality of Conditions (A)–
(C), by presenting three examples of local martingales that are not uniformly inte-
grable martingales due to the selective failure of precisely one of those conditions.

2. The proof of Theorem 1.1. In the lead-up to the proof of Theorem 1.1,
we first explore some of the consequences of Conditions (A)–(C). To begin with,
recall that a continuous local martingale that is stopped when first it leaves a com-
pact interval is a bounded local martingale, and hence also a uniformly integrable
martingale. The following lemma generalises this observation.

LEMMA 2.1. Let M ∈ Mloc satisfy Condition (B). Then Mτλ ∈ M , for all
λ ≥ 0.

PROOF. Condition (B) guarantees the existence of a λ∗ ≥ 0, such that
E(1{τλ<∞}|�Mτλ |) < ∞, for all λ ≥ λ∗, from which it follows that

E
(
sup
t≥0

∣∣Mτλ
t

∣∣) ≤ E
(|M0|) + λ + E

(
1{τλ<∞}|�Mτλ |

)
< ∞,
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for all λ ≥ λ∗. Given λ ≥ λ∗, an application of the dominated convergence theorem
then yields

lim
K↑∞ sup

σ∈Sf

E
(
1{|Mτλ

σ |≥K}
∣∣Mτλ

σ

∣∣) ≤ lim
K↑∞ E

(
1{supt≥0 |Mτλ

t |≥K} sup
t≥0

∣∣Mτλ
t

∣∣)

= 0,

since |Mτλ
σ | ≤ supt≥0 |Mτλ

t |, for all σ ∈ Sf. In other words, Mτλ is a local
martingale belonging to class (D) [see, e.g., Jacod and Shiryaev (2003), Def-
inition I.1.46], and is thus a uniformly integrable martingale [see, e.g., Jacod
and Shiryaev (2003), Proposition I.1.47]. On the other hand, if λ ∈ [0, λ∗], then
τλ ≤ τλ∗ , whence Mτλ = Mτλ∗∧τλ ∈ M , since Mτλ∗ ∈ M and the family of uni-
formly integrable martingales is stable under stopping. �

Next, we establish two useful facts about local martingales for which Condi-
tions (A) and (B) hold, one of which is that such processes possess real-valued
almost-sure limits.

LEMMA 2.2. Let M ∈ Mloc satisfy Conditions (A) and (B). Then

lim
λ↑∞

E
(
1{τλ<∞}

∣∣Mτλ∞
∣∣) = 0.

Moreover, the almost sure limit M∞ := M∞− exists and satisfies M∞ ∈ R.

PROOF. Note that the almost sure limit M
τλ∞ := M

τλ∞− exists and satisfies
M

τλ∞ ∈ R, for all λ ≥ 0, as a result of Lemma 2.1. Now observe that

lim
λ↑∞

E
(
1{τλ<∞}

∣∣Mτλ∞
∣∣)

≤ lim
λ↑∞

E
(
1{τλ<∞}

(|M0| + λ + |�Mτλ |
))

≤ lim
λ↑∞ E

(
1{τλ<∞}|M0|) + lim

λ↑∞
λP

(
sup
t≥0

|Mt | > λ
)

+ lim
λ↑∞ E

(
1{τλ<∞}|�Mτλ |

)
= 0,

by virtue of the dominated convergence theorem and a direct application of Con-
ditions (A) and (B). Given λ ≥ 0, it also follows that

1{τλ=∞}M∞− = 1{τλ=∞}Mτλ∞− = 1{τλ=∞}Mτλ∞ ∈ R,

whence {M∞− ∈ R} ⊇ {τλ = ∞}. Consequently,

P(M∞− ∈ R) ≥ lim
λ↑∞ P(τλ = ∞) = 1,

since Condition (A) implies that limλ↑∞ P(τλ < ∞) = 0. That is to say, the almost
sure limit M∞ := M∞− exists and satisfies M∞ ∈ R. �
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Finally, we establish a convergence result that will be used in the proof of Theo-
rem 1.1 below to show that Conditions (A)–(C) are sufficient for a local martingale
to be a uniformly integrable martingale.

LEMMA 2.3. Let M ∈ Mloc satisfy Conditions (A)–(C). Then the almost sure
limit M∞ := M∞− exists and

lim
λ↑∞

E
(∣∣Mτλ∞ − M∞

∣∣) = 0.

PROOF. An application of the dominated convergence theorem gives

E
(

lim
λ↑∞ 1{τλ<∞}

)
= lim

λ↑∞ P(τλ < ∞) = 0,

by virtue of Condition (A), from which it follows that limλ↑∞ 1{τλ<∞} = 0. An-
other application of the dominated convergence theorem then yields

lim
λ↑∞ E

(
1{τλ<∞}|M∞|) = 0,

since Lemma 2.2 and Condition (C) ensure that M∞ := M∞− exists and satisfies
E(|M∞|) < ∞. Finally, we observe that

lim
λ↑∞

E
(∣∣Mτλ∞ − M∞

∣∣) = lim
λ↑∞

E
(
1{τλ<∞}

∣∣Mτλ∞ − M∞
∣∣)

≤ lim
λ↑∞

E
(
1{τλ<∞}

∣∣Mτλ∞
∣∣) + lim

λ↑∞ E
(
1{τλ<∞}|M∞|) = 0,

by virtue of Lemma 2.2 and the previous argument. �

We now prove Theorem 1.1. The first part of the proof shows that every uni-
formly integrable martingale satisfies Conditions (A)–(C), while the second part
uses Lemma 2.3 to demonstrate that any local martingale satisfying those three
conditions is a uniformly integrable martingale.

PROOF OF THEOREM 1.1. (⇒) Suppose M ∈ M , in which case Condi-
tion (C) holds immediately, since the almost sure limit M∞ := M∞− exists and
satisfies E(|M∞|) < ∞. Moreover, |M| is a uniformly integrable submartingale,
which implies that

E
(|M∞|) ≥ E

(|Mτλ |
) = E

(
1{τλ<∞}|Mτλ |

) + E
(
1{τλ=∞}|M∞|)

≥ λP(τλ < ∞) + E
(
1{τλ=∞}|M∞|),(2.1)
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for all λ ≥ 0. Next, by applying the monotone convergence theorem, followed by
Doob’s maximal inequalities, we obtain

E
(

lim
λ↑∞ 1{τλ=∞}

)
= lim

λ↑∞ P(τλ = ∞)

= 1 − lim
λ↑∞ P

(
sup
t≥0

|Mt | > λ
)

≥ 1 − lim
λ↑∞

E(|M∞|)
λ

= 1,

(2.2)

from which limλ↑∞ 1{τλ=∞} = 1 follows. Combining this with (2.1) gives

lim
λ↑∞λP

(
sup
t≥0

|Mt | > λ
)

= lim
λ↑∞λP(τλ < ∞)

≤ E
(|M∞|) − lim

λ↑∞ E
(
1{τλ=∞}|M∞|) = 0,

by an application of the monotone convergence theorem. In other words, Condi-
tion (A) holds. Finally, the inequality |�Mτλ | ≤ 2|Mτλ |, for all λ ≥ 0, together with
the fact that |M| is a uniformly integrable submartingale, yield

lim
λ↑∞ E

(
1{τλ<∞}|�Mτλ |

) ≤ 2 lim
λ↑∞ E

(
1{τλ<∞}|Mτλ |

)
≤ 2 lim

λ↑∞ E
(
1{τλ<∞}|M∞|)

= 2E
(

lim
λ↑∞ 1{τλ<∞}|M∞|

)

= 0,

by virtue of the dominated convergence theorem, since (2.2) implies that
limλ↑∞ 1{τλ<∞} = 0, and E(|M∞|) < ∞. That is to say, Condition (B) holds.

(⇐) Suppose M ∈ Mloc satisfies Conditions (A)–(C), in which case it follows
from Lemma 2.3 that the almost sure limit M∞ := M∞− exists and satisfies

lim
n↑∞ E

(∣∣Mτλn∞ − M∞
∣∣) = 0,

for some increasing sequence (λn)n∈N of positive real numbers satisfying λn ↑ ∞.
Now fix t ≥ 0 and A ∈ Ft , and define

Am := A ∩ {Mt ≥ 0} ∩ {τλm > t},
for each m ∈N. It follows that

lim
n↑∞ E

(
1Am

∣∣Mτλn∞ − M∞
∣∣) = 0,
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for each m ∈ N, whence

E(1AmM∞) = lim
n↑∞ E

(
1AmM

τλn∞
)

= lim
n↑∞ E

(
1AmM

τλn
t

) = lim
n↑∞ E(1AmMt)

= E(1AmMt),

since Mτλn ∈ M , for each n ∈ N, as a consequence of Lemma 2.1, and 1AmM
τλn
t =

1AmMt , for each n ≥ m, by the construction of Am. Combining this with the fact
that limm↑∞ τλm = ∞ gives

E
(
1A∩{Mt≥0}M∞

) = lim
m↑∞ E(1AmM∞)

= lim
m↑∞ E(1AmMt)

= E
(
1A∩{Mt≥0}Mt

)
,

where the first equality follows from the dominated convergence theorem, since
Condition (C) implies that E(|M∞|) < ∞, while the second equality follows from
the monotone convergence theorem. A similar argument reveals that

E
(
1A∩{Mt<0}M∞

) = E
(
Mt1A∩{Mt<0}

)
.

Consequently, E(1AM∞) = E(1AMt), from which we may conclude that M ∈ M ,
since t ≥ 0 and A ∈ Ft were chosen arbitrarily. �

3. Three examples. In this section we construct three examples of local mar-
tingales for which precisely one of Conditions (A)–(C) fails (a different one in
each case), while the other two hold. In each case, Theorem 1.1 legislates that the
process in question cannot be a uniformly integrable martingale. This establishes
the minimality of Conditions (A)–(C).

The first example considers a well-known family of continuous local martin-
gales, namely the family of nonnegative time-homogeneous regular diffusions in
natural scale. Although such processes satisfy Conditions (B) and (C), they cannot
be uniformly integrable martingales, since they do not satisfy Condition (A).

EXAMPLE 3.1 [Condition (A) fails]. Let X = (Xt)t≥0 be a nonnegative time-
homogeneous regular scalar diffusion in natural scale, with state-space [0,∞) or
(0,∞), depending on its behaviour at the origin. Since such a process is continu-
ous, it trivially satisfies Condition (B). Being in natural scale means that the scale
function for X is given by s(x) := x, for all x > 0. This ensures that X is a non-
negative Px -local martingale, for all x > 0, and consequently also a nonnegative
Px -supermartingale. As a result, it satisfies Condition (C). The fact that X is a
nonnegative supermartingale imposes constraints on its behaviour at the origin. In
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particular, the origin is either an absorbing boundary or a natural boundary. In the
former case, the state space of X is [0,∞), while it is (0,∞) in the latter case.
Either way, we observe that

Px

(
sup
t≥0

Xt > λ
)

= Px(τλ < ∞) = lim
l↓0

Px(τλ < τl) = lim
l↓0

s(x) − s(l)

s(λ) − s(l)
= x

λ
,

for all x > 0 and all λ ≥ x, where Px is the probability measure under which
X0 = x.4 Consequently, we obtain

lim
λ↑∞λPx

(
sup
t≥0

Xt > λ
)

= x > 0,

for all x > 0. That is to say, X is not a uniformly integrable martingale, due to the
failure of Condition (A).

Although the example above shows that nonnegative time-homogeneous diffu-
sions in natural scale cannot satisfy Condition (A), they can satisfy Condition (A′).
In other words, nonnegative time-homogeneous diffusions in natural scale can be
(nonuniformly integrable) martingales, by virtue of Corollary 1.2. Kotani (2006)
and Hulley and Platen (2011) derived purely analytical necessary and sufficient
conditions under which such processes are martingales. Those conditions are nat-
urally equivalent to Condition (A′), as demonstrated formally by Hulley and Platen
(2011).

The next example constructs a nonnegative pure-jump martingale that is not
a uniformly integrable martingale, since it satisfies Conditions (A) and (C), but
not Condition (B). Starting with an initial value of one, the process jumps only
at integer-valued times, while remaining constant over the intervening intervals.
Negative jumps take it to zero, where it is absorbed, while the sizes of succes-
sive positive jumps grow combinatorially. To ensure that the resulting process is a
martingale, the probabilities of positive jumps decrease very quickly.

EXAMPLE 3.2 [Condition (B) fails]. Suppose (�,F ,P) supports a sequence
(Yn)n∈Z+ of positive random variables, with Y0 = 1 and

(3.1) P(Yn ∈ dy) := (n + 1)!
n

1(n!,(n+1)!](y)
1

y2 dy,

for all y ∈R+ and each n ∈N, as well as a sequence (ξn)n∈Z+ of Bernoulli random
variables, with ξ0 = 1 and

(3.2) P(ξn = 1|ξ0, . . . , ξn−1, Y0, . . . , Yn−1) := Yn−1

E(Yn)

n−1∏
i=0

ξi,

4There is a slight abuse of notation here in the sense that τλ should be interpreted as the first-exit
time (1.1) with M replaced by X, for any λ ≥ 0.
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for each n ∈ N. Furthermore, we assume that Yn is independent of ξ0, . . . , ξn and
Y0, . . . , Yn−1, for each n ∈ N. The filtration F = (Ft )t≥0 is determined by Ft :=
σ(ξn, Yn|0 ≤ n ≤ �t�), for all t ≥ 0, while the process M = (Mt)t≥0 is specified
by

Mt := Y�t�
�t�∏
i=0

ξi,

for all t ≥ 0. It follows that M is adapted to F, while the boundedness of Yn, for
each n ∈ Z+, ensures that E(|Mt |) < ∞, for all t ≥ 0. Also note that (3.2) implies
that

∏n
i=0 ξi = ξn, for each n ∈ Z+, so that we may write Mt = ξ�t�Y�t�, for all

t ≥ 0. This yields the useful identities

(3.3) 1{Mn>0} = 1{ξn=1} = ξn,

for each n ∈ Z+. It also allows us to rewrite (3.2) as follows:

(3.4) P(ξn = 1|Fn−1) = Mn−1

E(Yn)
,

for each n ∈N. It is now easy to see that M is a martingale, since

E(Mn|Fn−1) = E(ξnYn|Fn−1)

= E
(
ξnE

(
Yn|σ(ξn) ∨ Fn−1

)|Fn−1
)

= E(ξn|Fn−1)E(Yn)

= P(ξn = 1|Fn−1)E(Yn) = Mn−1,

for each n ∈ N, by virtue of (3.3), (3.4) and the fact that Yn is independent of
σ(ξn) ∨ Fn−1. Moreover, since M is nonnegative, Condition (C) holds a fortiori.
Next, we compute the probability that M is strictly positive at any integer-valued
time as follows:

P(Mn > 0) = P(ξn = 1) = E
(
P(ξn = 1|Fn−1)

) = E
(

Mn−1

E(Yn)

)
= 1

E(Yn)
,

for each n ∈ N, with the help of (3.3), (3.4), and the fact that M is a martingale
with M0 = 1. Consequently, given n ∈ N, we obtain

P(Mn > λ) = P(ξnYn > λ) = P(ξn = 1, Yn > λ)

= P(ξn = 1)P(Yn > λ)

= P(Yn > λ)

E(Yn)
,

for all λ ≥ 0, since Yn is independent of ξn. Now, given λ > 1, let n ∈ N be the
unique positive integer such that n! < λ ≤ (n + 1)!. In that case, the previous two
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identities, together with (3.1), give

λP
(
sup
t≥0

|Mt | > λ
)

≤ λ
(
P(Mn > λ) + P(Mn+1 > 0)

)
= λ

(
P(Yn > λ)

E(Yn)
+ 1

E(Yn+1)

)

≤ λP(Yn > λ)

E(Yn)
+ (n + 1)!

E(Yn+1)

= λ

(
(n + 1)!

n

∫ (n+1)!
λ

1

y2 dy

)(
(n + 1)!

n

∫ (n+1)!
n!

1

y
dy

)−1

+ (n + 1)!
(

(n + 2)!
n + 1

∫ (n+2)!
(n+1)!

1

y
dy

)−1

≤ λ

(
(n + 1)!

n

1

λ

)(
(n + 1)!

n
ln(n + 1)

)−1

+ (n + 1)!
(

(n + 2)!
n + 1

ln(n + 2)

)−1

= 1

ln(n + 1)
+ n + 1

(n + 2) ln(n + 2)
<

2

ln(n + 1)
,

by virtue of the inclusion {supt≥0 Mt > λ} ⊆ {Mn > λ} ∪ {Mn+1 > 0}. Conse-
quently,

lim
λ↑∞λP

(
sup
t≥0

|Mt | > λ
)

≤ lim
n↑∞

2

ln(n + 1)
= 0,

which establishes that M satisfies Condition (A). Finally, given n ∈ N, we use the
identities ξ2

n+1 = ξn+1 and ξn+1ξn = ξn+1
∏n

i=0 ξi = ∏n+1
i=0 ξi = ξn+1 to get

E
(
1{τn!<∞}|�Mτn! |

)
= E

(
1{Mn>0}�Mn

) = E(ξn�Mn)

= E
(
ξn(ξnYn − ξn−1Yn−1)

) = E
(
ξn(Yn − Yn−1)

)
= E(Mn) − E

(
P(ξn = 1|Fn−1)Yn−1

) = 1 − E
(

Mn−1

E(Yn)
Yn−1

)

≥ 1 − E
(

Mn−1

E(Yn)
(n − 1)!

)
= 1 − (n − 1)!

E(Yn)

= 1 − (n − 1)! ×
(

(n + 1)!
n

∫ (n+1)!
n!

1

y
dy

)−1
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= 1 − (n − 1)! ×
(

(n + 1)!
n

ln(n + 1)

)−1

= 1 − 1

(n + 1) ln(n + 1)
,

with the help of (3.1), (3.3) and (3.4), and the fact that M is a martingale. Hence,

lim
λ↑∞ E

(
1{τλ<∞}|�Mτλ |

) ≥ 1 − lim
n↑∞

1

(n + 1) ln(n + 1)
= 1,

from which we deduce that M does not satisfy Condition (B). So M is a nonnega-
tive martingale that satisfies Conditions (A) and (C), but not Condition (B), and is
thus not a uniformly integrable martingale.

Finally, we present an example of a continuous local martingale that satisfies
Conditions (A) and (B), but not Condition (C). This elaborates on an example due
to Azéma, Gundy and Yor (1980).

EXAMPLE 3.3 [Condition (C) fails]. Let B be a scalar Brownian motion on
(�,F ,F,P), and suppose the sigma-algebra F0 accommodates a discrete random
variable Y , whose distribution is determined by

P(Y = n) := c

n2 ln(n + 2)
,

for each n ∈N, where

c :=
( ∞∑

i=1

1

i2 ln(i + 2)

)−1

.

Now let

ρ := inf
{
t ≥ 0||Bt | = Y

}
denote the first hitting time of Y by |B|, and note that ρ < ∞. The definition of Y

ensures that

nP(Y ≥ n) = n

∞∑
j=n

c

j2 ln(j + 2)
≤ cn

ln(n + 2)

∞∑
j=n

1

j2

≤ cn

ln(n + 2)

∫ ∞
n−1

1

x2 dx

= cn

(n − 1) ln(n + 2)

≤ 2c

ln(n + 2)
,
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for each n ∈ N. The martingale M := Bρ then satisfies Condition (A), since

lim
λ↑∞λP

(
sup
t≥0

|Mt | > λ
)

= lim
λ↑∞λP

(
sup
t≥0

∣∣Bρ
t

∣∣ > λ
)

= lim
λ↑∞λP

(|Bρ | > λ
) = lim

n↑∞nP(Y ≥ n) = 0.

Moreover, M satisfies Condition (B), by virtue of its continuity. Based on these
observations, Lemma 2.2 ensures that M∞ := M∞− exists and satisfies M∞ =
Bρ = ±Y . However,

E
(|M∞|) = E(Y ) =

∞∑
n=1

c

n ln(n + 2)
= ∞

implies that M does not satisfy Condition (C), which implies that it cannot be a
uniformly integrable martingale.
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