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CUTOFF PHENOMENON FOR THE ASYMMETRIC SIMPLE
EXCLUSION PROCESS AND THE BIASED CARD SHUFFLING
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Université Paris-Dauphine and IMPA

We consider the biased card shuffling and the Asymmetric Simple Ex-
clusion Process (ASEP) on the segment. We obtain the asymptotic of their
mixing times: our results show that these two continuous-time Markov chains
display cutoff. Our analysis combines several ingredients including: a study
of the hydrodynamic profile for ASEP, the use of monotonic eigenfunctions,
stochastic comparisons and concentration inequalities.

1. Introduction. The relaxation to equilibrium for particle systems is a sub-
ject that has given rise to a rich literature. The phenomenon has been studied from
different viewpoints: importance was first given to the problem of the evolution of
the particle density on a macroscopic space scale and an adequate time scale, which
is usually referred to as hydrodynamic limits (see [17] for a detailed account on the
subject as well as references), but the modern theory of Markov chains highlighted
another aspect of the problem, which is how the equilibrium state is approached in
terms of distance between probability measures, or the mixing time problem [25].

While hydrodynamic limits are now fairly well understood for the simplest
particle systems (exclusion process, zero range, etc.), there are still some funda-
mental questions on the mixing time that remain unsolved. In particular, it is be-
lieved that for many particle systems, convergence to equilibrium occurs abruptly,
a phenomenon known as cutoff (see [25], Chapter 18, for an introduction to cutoff
and examples of Markov chains with cutoff). Until now, this has been rigorously
proved to hold only for some specific cases among which the simple (symmet-
ric) exclusion process on the complete graph [12] or in one-dimensional graphs
(segment and circle) [20, 21].

In many other cases, a weaker version of the statement, called pre-cutoff, has
been proved (see below for a precise definition). This includes for instance the
process which is the focus of this paper: the Asymmetric Simple Exclusion Process
(ASEP) on the segment [4] (and also more recently [15]).

The ASEP can be defined as follows: k particles on a segment of length N

jump independently with rate p > 1/2 to the right and q = (1 − p) to the left.
A restriction is added: each site can be occupied by at most one particle, so that
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every jump which yields a configuration that violates this restriction is canceled.
We also study the biased card shuffling which is a walk on the symmetric group
from which the ASEP can be obtained as a projection; this Markov chain also
displays pre-cutoff.

While it has been known, since a counterexample was proposed by Aldous in
2004 (see [25], Figure 18.2) that it is possible to have pre-cutoff without cutoff, it
is a folklore conjecture in the field that all “reasonable” Markov chains with pre-
cutoff should in fact have cutoff, thus providing many open problems (see [25],
Section 23.2).

The main achievement of this paper is to show that indeed cutoff holds for the
ASEP and to identify the asymptotic behavior for the mixing time. This solves a
question which had been left open since the publication of [4]. We prove that the
mixing time corresponds exactly to the time at which the particle density stabilizes
to the equilibrium profile: this underlines the connection between hydrodynamic
limits and mixing times (which was already underlined in the symmetric case; see,
for example, [21, 22]). We also derive a similar result for the biased card shuffling.

Note that while the hydrodynamic limit for the asymmetric exclusion process
on the full line has been well understood for many years [29] (also [3, 26, 30] for
the special “wedge” initial condition), the presence of boundary conditions makes
the problem more delicate to analyze, and a substantial part of our paper is devoted
to the analysis of the scaling limits of two quantities associated with the ASEP:

• the particle density (which had been analyzed in the small biased case by
one of the authors [18]),

• the positions of the leftmost particle and the rightmost empty site (which,
depending on the initial condition, may or may not coincide with what is suggested
by the limit of the particle density).

2. Model and results.

2.1. Biased card shuffling. Given N ∈ N and p ∈ (1/2,1], we set q = 1 − p

and consider the following continuous time Markov chain on the set of permu-
tations of N cards labeled from one to N . Each pair of adjacent cards is chosen
at rate one: then, with probability p (corresponding to an independent Bernoulli
random variable) we arrange the cards such that the lower card comes before the
higher card and with probability q we arrange them so that the higher card comes
first.

A configuration of cards can be represented by an element σ of the symmetric
group SN : for every i ∈ �1,N �, σ(i) (we use the notation �a, b� = [a, b] ∩ Z)
denotes the label of the card at position i. The dynamics presented above then
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corresponds to the Markov process on SN with the following generator:

LNf (σ) :=
N−1∑
i=1

(p1{σ(i+1)<σ(i)} + q1{σ(i+1)>σ(i)})
[
f (σ ◦ τi)) − f (σ)

]

=
N−1∑
i=1

p
[
f

(
σ i,+) − f (σ)

] + q
[
f

(
σ i,−) − f (σ)

]
.

(1)

In the expression above, τi denotes the transposition (i, i + 1) and σ i,+, σ i,− de-
note the elements of SN which satisfy the following property:⎧⎪⎪⎨⎪⎪⎩

σ i,±(j) = σ(j) ∀j ∈ �1,N � \ {i, i + 1},
σ i,+(i) < σ i,+(i + 1),

σ i,−(i) > σ i,−(i + 1).

Note that either σ i,+ or σ i,− is equal to σ so that the choice of a pair of cards does
not always imply a modification of the permutation.

As p > q , this way of shuffling cards favors permutations which are more “or-
dered.” More precisely, if we let D(σ) denote the minimal number of adjacent
transpositions needed to obtain σ starting from the identity permutation [the graph
distance between σ and the identity in the Cayley graph of SN with generator
(τi)

N−1
i=1 ], then one can check that the equilibrium measure is given by

πN(σ) := λ−D(σ)∑
σ ′∈SN

λ−D(σ ′) ,

where λ = p/q . The detailed balance condition is easy to check with the relation

D(σ) := ∑
i<j

1{σ(i)>σ(j)}.

In the particular case p = 1, the parameter λ equals +∞ and the equilibrium mea-
sure πN is a Dirac measure at the identity permutation.

We denote the process starting from initial condition ξ ∈ SN by σ
ξ
t and let Q

ξ
t

denote the distribution of σ
ξ
t at time t .

Recall that the total variation distance between two probability measures α and
β on some discrete space 	 is defined by

‖α − β‖TV := 1

2

∑
x∈	

∣∣α(x)− β(x)
∣∣ = max

A⊂	

[
α(A) − β(A)

]
= inf

X1∼α
X2∼β

P (X1 �= X2),

where the infimum is taken over all couplings that give distribution α to X1 and β

to X2. The fact that the three definitions are equivalent is a standard property; see,
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for example, [25], Section 4.1. Using standard terminology, we define the (worst-
case) total-variation distance to equilibrium by

dN(t) := max
ξ∈SN

∥∥Q
ξ
t − πN

∥∥
TV,

and the corresponding mixing time by

T N
mix(ε) := inf

{
t ≥ 0 : dN(t) < ε

}
.

A notion very much related to mixing time is that of cutoff, which designates a
form of abrupt convergence to equilibrium for Markov chain. For an arbitrary se-
quence of Markov chains, cutoff is said to hold if, for all ε > 0,

lim
N→∞

T N
mix(ε) − T N

mix(1 − ε)

T N
mix(1/4)

= 0.

If supε∈(0,1) lim supN→∞(T N
mix(ε)−T N

mix(1−ε))/T N
mix(1/4) < ∞, we say that pre-

cutoff holds.
We define gapN to be the spectral gap for this Markov chain. Recall that for a

continuous time reversible, irreducible Markov chain with generator L on a finite
state space, the spectral gap is simply defined as the smallest positive eigenvalue of
−L ([25], Section 20.3). The spectral gap controls the asymptotic rate of conver-
gence to equilibrium (see [25], Corollary 12.6), in the case of our Markov chains
this gives

(2) lim
t→∞

1

t
logdN(t) =−gapN .

Our main result is the following.

THEOREM 1. We have for every p ∈ (1/2,1] and ε ∈ (0,1),

lim
N→∞

T N
mix(ε)

N
= 2

p − q
.

Moreover, we have for every value of N and p,

(3) gapN = (
√

p −√
q)2 + 4

√
pq sin

(
π

2N

)2
.

Let us stress that another proof of (3) provided by Levin and Peres in [24] ap-
peared while we were in the process of writing the present paper.

REMARK 1. Note that gapN coincides with the spectral gap of the biased walk
with transition rates p and q on the segment (and this will also be the case for
the ASEP). This result is reminiscent of Aldous’ spectral gap conjecture, now a
theorem proved by Caputo, Liggett and Richthammer [10], which states that the
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spectral gap for the interchange process on an arbitrary graph equals that of the
corresponding random walk. However, let us stress that the biased card shuffling
is not an interchange process, and that our results cannot be deduced from the one
in [10].

REMARK 2. Observe that gapN T N
mix(ε) →∞ as N →∞, and recall that this

condition is necessary (but not sufficient) for having a pre-cutoff; see [25], Sec-
tion 18.3.

Note that intuitively, as the shuffle tends to order the pack, the worst initial
condition should be the permutation σmax defined by

(4) σmax : i �→ N + 1 − i.

Our proof implies indeed that this is asymptotically the case.

2.2. Asymmetric simple exclusion process. Given k ∈ �1,N − 1�, we obtain
another Markov process if we decide to follow only the positions of the cards
labeled from N − k + 1 to N , that is if we consider the image of (σt )t≥0 by the
transformation

(5) σ �→ 1�N−k+1,N � ◦ σ.

(Our choice of following the particles with higher rather than lower labels may
seem unnatural, but is driven by the fact that we want the particles to drift to the
right.)

It is not difficult to check that the process obtained via this transformation is
indeed Markov. A more intuitive description is the following. Consider k particles
on the segment IN := �1,N � which are initially placed on k distinct sites. The
particles perform independent, continuous time, random walks on IN with jump
rate p to the right and q to the left (a particle at site 1, resp. N , is not allowed to
jump to its left, resp., right): however, if a particle tries to jump on an occupied
site, the jump is cancelled.

Denoting the presence of particle by 1’s and their absence by 0’s, the space of
configurations associated to this process is given by

	0
N,k =

{
η ∈ {0,1}IN :

N∑
i=1

η(i) = k

}
.

We denote the evolving particle system by (ηξ (t, ·))t≥0 where ηξ (t, x) equals 1
if there is a particle at site x at time t , and 0 otherwise while ξ underlines the
dependence on the initial condition. The law of ηξ (t) is denoted by P

ξ
t . Now if we

set for η ∈ 	0
N,k ,

(6) A(η) :=
(

N∑
i=1

η(i)(N − i)

)
− k(k − 1)

2
,
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then the equilibrium measure πN,k for the dynamics is simply the image of πN by
the transformation (5), namely

(7) πN,k(η) := λ−A(η)∑
η′∈	0

N,k
λ−A(η′) .

We also define the associated distance to equilibrium and mixing time to be re-
spectively

dN,k(t) := max
ξ∈	0

N,k

∥∥P
ξ
t − πN,k

∥∥
TV,

T
N,k
mix (ε) := inf

{
t ≥ 0 : dN(t) < ε

}
.

We are going to compute the mixing time for the system in the limit where k/N

tends to α ∈ [0,1]. Even though we allow the values 0 and 1 for α, we always
impose k ≥ 1 and k ≤ N − 1 in order to exclude settings where the state-space
becomes trivial (#	0

N,k = 1). We use the notation

lim
N→∞
k/N→α

J (k,N) = l,

to express that the limit of the real valued function J (k,N) is l for all sequences
such that k/N tends to α, or in other words,

lim
ε→0

lim sup
N→∞

sup
k∈�1,N−1�
|k/N−α|≤ε

∣∣J (k,N) − l
∣∣ = 0.

THEOREM 2. We have for every p ∈ (1/2,1], every α ∈ [0,1] and every ε ∈
(0,1),

lim
N→∞
k/N→α

T
N,k
mix (ε)

N
= (

√
α +√

1 − α)2

p − q
.

Moreover, for every N , every k ∈ �1,N − 1� and every p, we have

(8) gapN,k = (
√

p −√
q)2 + 4

√
pq sin

(
π

2N

)2
.

By symmetry, an analogous result holds for the case p ∈ [0,1/2). The behavior
of the system for p = 1/2 is very different and was the object of a particular study
[20] where it is shown that cutoff holds on the time scale N2 logN confirming a
conjecture of Wilson [32].

REMARK 3. We have mentioned that it was sufficient to consider the case
p ∈ (1/2,1]. Let us also mention that for the proof of Theorem 2, we only need to
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treat the case α ≤ 1/2 (and in all the paper we apply this restriction). These two
facts are consequences of well-known symmetry considerations, which we detail
here for the sake of completeness.

For the biased card shuffling, we can notice [recall (4)] that given ξ ∈ SN ,
σ

ξ
t ◦ σmax is a card shuffling with bias (1 − p) and initial condition ξ ◦ σmax:

the distance to equilibrium is left unchanged under permutation of the state space
and, therefore, the mixing time is invariant upon reversing the bias.

As a consequence, for ξ ∈ 	0
N,k , the process η

ξ
t ◦σmax is an ASEP with opposite

bias, and by the same argument as above, we find that the mixing time is invariant
under p �→ 1 − p. Moreover if 1 − ξ denotes the configuration where zeros and
ones are swapped, then 1− ξ ∈ 	0

N,N−k and 1− η
ξ
t is an ASEP with opposite bias

and complementary density of particles. Hence, the mixing time is invariant under
the map k �→ N − k.

2.3. Mixing time from an arbitrary initial condition. Instead of the worst-case
total-variation distance to equilibrium, we can also consider the total-variation dis-
tance to equilibrium starting from a given configuration ξN ∈ 	0

N,k :

dξN (t) := ∥∥P
ξN
t − πN,k

∥∥
TV,

and the associated notion of mixing time

T
ξN

mix(ε) := inf
{
t ≥ 0 : dξN (t) < ε

}
.

We will show that asymptotically, the mixing time depends on three character-
istics of ξN : The initial location of the leftmost particle, the initial location of the
rightmost empty site and the initial empirical density of particles (a probability dis-
tribution on the interval). We thus introduce the following notation, for ξ ∈ 	0

N,k :

�N(ξ) = min
{
x ∈ �1,N � : ξ(x) = 1

}
,

rN(ξ) = max
{
x ∈ �1,N � : ξ(x) = 0

}
.

(9)

As when properly renormalized, �N , rN and the particle density all belong to com-
pact sets, from any sequences kN (and ξN,N ≥ 1), one can extract a subsequence
along which the three quantities converge. Hence, without loss of generality, we
will assume (when k/N → α > 0) that there exist �, r ∈ [0,1] and ρ0 ∈ L∞([0,1])
such that

lim
N→∞

�N(ξN)

N
= �, lim

N→∞
rN(ξN)

N
= r,

lim
N→∞

1

N

N∑
x=1

ξN(x)δx/N(dy) = ρ0(y)dy.

(10)
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The convergence to ρ0 is meant to hold in the weak topology, that is, for any
continuous function ϕ ∈ C([0,1]) we have

(11) lim
N→∞

1

N

N∑
x=1

ξN(x)ϕ(x/N) =
∫
[0,1]

ρ0(x)ϕ(x)dx.

Note that we necessarily have
∫

ρ0(x)dx = α. In the case where the limit of k/N

vanishes, we only require convergence for �N as the other two are trivial.
We prove that under these conditions and provided that � < r , the mixing time

starting from ξN also displays cutoff on scale N . More precisely, we have the
following.

THEOREM 3. Assuming that the sequence (ξN,N ≥ 1) of initial conditions
satisfies (10), we have, for all ε ∈ (0,1),

lim
N→∞

T
ξN

mix(ε)

N
= 1

p − q
max(tρ0,1 − α − �, r − 1 + α),

where tρ0 is a function of the initial density.
In the case where k/N → 0 and limN→∞ �N(ξN)/N = �, we have

lim
N→∞

T
ξN

mix(ε)

N
= 1 − �

p − q
.

The definition of tρ0 is given in Section 4.1 where we introduce the scaling limit
for the process of empirical densities: it corresponds to the time needed by this
scaling limit (the solution of the Burgers equation) to reach its steady state.

REMARK 4. At the cost of introducing some extra notation, we could also
state (and prove in the same manner) a counterpart of Theorem 3 for the biased
card shuffling: as for the worst-initial condition case, the mixing time simply cor-
responds to the maximal mixing time of all the associated ASEP projections.

2.4. Some connections with the literature. Benjamini et al. [4] showed that the
mixing time of the biased card shuffling is at most of order N (or rather N2 in the
discrete time setup considered therein; see also [15]). As a lower bound matching
up to a constant ( (1−α)N

p−q
) can be obtained by bounding the travel time for the

leftmost particle to come to equilibrium (this argument is given in details in [24],
Section 5, in the case of small bias), this established pre-cutoff.

As shown in [24] and in the present work, the mixing time for the ASEP and the
biased card shuffling is proportional to (p−q)−1N whenever p > 1/2 is fixed. On
the other hand when p = 1/2, we know since Wilson [32], that the mixing time
is order N2 logN . A natural question which was answered by Levin and Peres in
[24] is: if the asymmetry scales down to zero, how is the expression for the mixing
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time modified? The answer, which is given in [24], is that the expression for the
mixing time depends on the amount of asymmetry distinguishing between three
cases: (p − q) ≥ N−1 logN , (p − q) ∈ [N−1,N−1 logN ] and (p − q) ≤ N−1.
For each of them, an expression for the mixing time is given and pre-cutoff is
proved.

As cutoff holds in both the symmetric and the fully asymmetric cases, it is
tempting to conjecture that it should hold for all regimes in between. This problem
is the object of a work in preparation [19].

Let us conclude by mentioning the references [6, 16] where other types of bi-
ased adjacent transpositions are considered: therein, the asymmetry is not fixed but
depends on the values of σ(i) and σ(i + 1). For some families of processes of this
type, rapid mixing (i.e., mixing in polynomial time) is shown. It seems that the
question of cutoff is largely open for this type chain.

2.5. Organization of the paper. In Section 3, we introduce alternative descrip-
tions of the ASEP and biased card shuffling in terms of height functions, and we
present some monotonicity properties for the dynamics. This is classical in the
study of particle systems and ubiquitous in the literature (see [30] for an early ref-
erence). Then we present a proof of the identification of the spectral gap using the
discrete Hopf–Cole transform. Finally, we also treat in that section the particular
case of the TASEP (ASEP with p = 1).

In Section 4, we present results (proved in subsequent sections) for the limiting
behavior of the particle density (the hydrodynamic limit) and the positions of the
leftmost particle and rightmost empty site. Using these results and the materials on
the spectral gap, we prove all our main theorems.

In Section 5, we prove the hydrodynamic result by extending the arguments
developed in [18] to the constant biased case. Finally, in Section 6 we prove the
results concerning convergence of the positions of the leftmost particle and the
rightmost empty site by combining hydrodynamic limit estimates with coupling
with a stationary variant of ASEP with a finite number of particles on the infinite
line.

Sections 4, 5 and 6 are mostly independent and each of them can be read sepa-
rately.

3. Technical preliminaries.

3.1. Notation. In some proofs, it is easier to deal with the following alternative
notion of distance to equilibrium:

(12) d̄(t) := max
ξ,ξ ′∈	

∥∥P
ξ
t − P

ξ ′
t

∥∥
TV.

This does not raise any issue since the triangle inequality ensures that

d(t) ≤ d̄(t) ≤ 2d(t).
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We use the same superscript as for d(t) when using the notation d̄(t) for one of
the Markov chain introduced above.

3.2. Height function, monotone coupling. A classical and convenient equiv-
alent description of the particle system is given by the height function obtained
through the mapping η �→ h(η) defined by

∀x ∈ �0,N �, h(η)(x) :=
x∑

y=1

(
2η(y)− 1

)
.

We let 	N,k := h(	0
N,k) be the set of all such discrete height functions [which hap-

pen to be discrete bridges from (0,0) to (N,2k −N)]. We denote by (hξ (t, ·))t≥0
the dynamics on the height function: as η �→ h(η) is injective, this contains the
same information as the original dynamics and in particular is Markovian.

For the record, let us write the generator of the height-function dynamics. For
f : 	N,k →R,

(13) LN,kf (ξ) :=
N−1∑
x=1

p
[
f (ξx)− f (ξ)

] + (1 − p)
[
f

(
ξx) − f (ξ)

]
,

where the configurations ξx and ξx are respectively defined by⎧⎪⎪⎨⎪⎪⎩
ξx(y) = ξx(y) = ξ(y) for y ∈ �0,N � \ {x},
ξx(x) = max

(
ξ(x + 1), ξ(x − 1)

) − 1,

ξx(x) = min
(
ξ(x + 1), ξ(x − 1)

) + 1.

In words, this simply means that local maxima (resp., minima) flip into local min-
ima (resp., maxima) at rate p (resp., q); see Figure 1.

Similarly, as in (5), we define a function hk that maps SN to 	N,k , by setting

(14) hk(σ )(x) :=
x∑

i=1

(2 1{σ(i)≥N−k+1} − 1).

Note that the knowledge of all the height functions hk(σ ), k ∈ �1,N − 1� is suffi-
cient to recover σ completely:

(15) σ(x) = N − k + 1 ⇔
{
hk(σ )(x) − hk(σ )(x − 1) = 1, and

hk−1(σ )(x) − hk−1(σ )(x − 1) =−1.

Hence σ �→ (hk(σ ))N−1
k=1 is injective.

The representation offers a very convenient framework to introduce an order on
the state-space. The relation “≥” is defined on 	N,k ×	N,k , as follows:

(16) {ξ1 ≥ ξ2} ⇔ {∀x ∈ �0,N �, ξ1(x) ≥ ξ2(x)
}
.



CUTOFF FOR THE ASEP 1551

FIG. 1. An example of height function with k = 6 particles over N = 14 sites. The interface lives
within the grey rectangle.

The maximal element, which we denote by ∧, corresponds to the configuration
where all particles are on the left, and the minimal element ∨ corresponds to that
where all particles are on the right. Even though this is not apparent in the notation,
these two elements depend on k: we believe this will never raise any confusion in
the sequel as the value k will always be clear from the context.

These orders on the spaces 	N,k induce an order on the group of permutations
SN also denoted by “≥” via the following relation:

{σ1 ≥ σ2} ⇔ {∀k ∈ �1,N − 1�, hk(σ1) ≥ hk(σ2)
}
.

The minimal element is the identity id and the maximal one is the permutation
σmax defined in (4).

These orders are natural to consider since they are in some sense preserved by
the dynamics. It is indeed a classical result that we can construct a grand coupling
that preserves the order in the following sense.

PROPOSITION 5. There exists a coupling of the processes (σ
ξ
t )t≥0 starting

from ξ ∈ SN which satisfies{
ξ ≥ ξ ′} ⇒ {∀t ≥ 0, σ

ξ
t ≥ σ

ξ ′
t

}
.

For any k ∈ �1,N − 1�, there exists a coupling of the processes (hξ (t, ·))t≥0 start-
ing from ξ ∈ 	N,k such that{

ξ ≥ ξ ′} ⇒ {∀t ≥ 0, hξ (t, ·) ≥ hξ ′
(t, ·)}.
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We include a proof of this result in Appendix A for completeness. Note that only
the coupling for the card shuffling needs to be constructed since its projection (5)
yields an order preserving coupling on 	N,k . Dynamics with such order preserving
property are usually called attractive. In the rest of the paper, unless it is specified
otherwise, we always work with such a grand coupling and use P to denote the
associated probability distribution.

3.3. Identification of the spectral gap. A tool which provides an intuition for
identifying the spectral gap as well as the eigenfunctions of the generator LN,k is
the celebrated discrete Hopf–Cole transform, which was originally introduced by
Gärtner [14] to derive the hydrodynamic limit of the process in a weakly asym-
metric regime (when p − 1/2 scales like 1/N ). Let us recall that the continuous
Hopf–Cole transform u �→ V (u) defined by V (u)(t, x) := ecu(t,x) allows us to map
the nonlinear parabolic PDE

∂tu = 1

2
∂2
xu− c

2

[
1 − (∂xu)2]

,

onto the linear parabolic PDE

∂tV = 1

2
∂2
xV − c2

2
V.

Note that, usually, the transformation which is considered is rather V (u)(t, x) :=
ec[u(t,x)+ c

2 t], but in our case we prefer not to have any time dependence in the
expression.

Here, in analogy if one sets uξ (t, x) := E[hξ (t, x)], then it is not difficult to
check from the expression (13) of the generator LN,k that for all x ∈ �1,N − 1�
we have

∂tu
ξ (t, x) = 1

2
�uξ(t, x)− (p − q)E[1{hξ (t,x+1)=hξ (t,x−1)}],

where the discrete Laplace operator is defined by

�f (x) = f (x + 1) − 2f (x) + f (x − 1), x ∈ �1,N − 1�.

The second term is the discrete analogue of [1 − (∂xu)2] (∂xu being replaced by
the mean slope on the interval [x − 1, x + 1]). This equation is nonlinear in u.

In order to obtain a linear equation, we perform a discrete Hopf–Cole trans-
form. Due to discretization effects, u �→ e2(p−q)u is not the right transformation to
consider. Additionally, we have to take care of the boundary conditions. We set

ζx(ξ) = λ
1
2 ξ(x) and Ṽ (t, x) = E

[
ζx

(
hξ (t, ·))]

.

A computation yields that for all x ∈ �1,N − 1�,

LN,k(ζx)(ξ) =√
pq�

(
λ

1
2 ξ(x)) − �λ

1
2 ξ(x),
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where

(17) � := (
√

p −√
q)2.

As
√

pq� − � is a linear operator on RZ, it commutes with expectation. This
immediately implies that for x ∈ �1,N − 1� and t ≥ 0 we have{

∂t Ṽ (t, x) = (
√

pq� − �)Ṽ (t, x), x ∈ �1,N − 1�,

Ṽ (t,0) = 1, Ṽ (t,N) = λ
2k−N

2 .

Finally, to deal with the boundary conditions, we let aN,k(x) be the solution of the
following system:{

(
√

pq� − �)a(x) = 0, x ∈ �1,N − 1�,

a(0) = 1, a(N) = λ
2k−N

2 .

We can check that V (t, x) = Ṽ (t, x) − aN,k(x) satisfies for all t ≥ 0 and x ∈
�0,N �, {

∂tV (t, x) = (
√

pq� − �)V (t, x), x ∈ �1,N − 1�,

V (t,0) = V (t,N) = 0.

This equation allows us to identify some eigenfunctions of LN,k by considering
the decomposition of V on a basis of eigenfunctions of

√
pq�− �. If one sets for

j = 1, . . . ,N − 1

f
(j)
N,k(ξ) :=

N−1∑
x=1

sin
(

xjπ

N

)(
λ

1
2 ξ(x) − aN,k(x)

)
,

then the projection of the equation at time zero on the j th Fourier mode yields

LN,kf
(j)
N,k(ξ) =√

pq

N−1∑
x=1

sin
(

xjπ

N

)
�

(
λ

1
2 ξ − aN,k

)
(x)− �f

(j)
N,k(ξ).

Using discrete integration by parts twice (which do not yield boundary terms since
both functions vanish at 0 and N ), and using the fact that sin(

·jπ
N

) is an eigenfunc-
tion for �, we obtain that

N−1∑
x=1

�

(
sin

( ·jπ

N

))
(x)

(
λ

1
2 ξ(x) − aN,k(x)

) = 2
(

cos
(

jπ

N

)
− 1

)
f

(j)
N,k(ξ),

and thus

(18) LN,kf
(j)
N,k =−(

� + γ
(j)
N

)
f

(j)
N,k,

where

γ
(j)
N = 2

√
pq

(
1 − cos

(
jπ

N

))
= 4

√
pq

[
sin

(
jπ

2N

)]2
.
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Of course, except in the special cases k = 1 or k = N −1, this is far from providing
a complete basis of eigenfunctions [there are a total of

(N
k

)
of them], but this will

turn out to be sufficient to identify the spectral gap.
First, and this is the most obvious part, considering the case j = 1 (which min-

imizes the quantity � + γ
(j)
N ) and setting fN,k := f

(1)
N,k and γN := γ

(1)
N , we obtain

an upper bound on the spectral gap. This is valid for the ASEP, but also for the
biased card shuffling as fN,k ◦ hk [recall (14)] is an eigenfunction for LN . Thus
we have

gapN,k ≤ � + γN and gapN ≤ � + γN .

To prove that this eigenvalue really corresponds to the spectral gap an important
observation is that fN,k is an increasing function on 	N,k in the following sense:

∀ξ, ξ ′ ∈ 	N,k,
{
ξ ≤ ξ ′} ⇒ {

fN,k(ξ) ≤ fN,k

(
ξ ′)}

.

In [9], Section 2.7, it is shown that for a reversible attractive dynamics (see Propo-
sition 5) with a maximal and a minimal element, the eigenfunction corresponding
to the spectral gap is increasing. As it is quite difficult for two increasing functions
to be orthogonal this indicates that � + γN has to be the spectral gap. We prove
it in the next section by making use of the monotone coupling. This is in fact a
classical computation for attractive systems (see, e.g., [32], Section 3.1) but we
shall include it in full for the sake of completeness.

3.4. Squeezing with monotone coupling. Let us start with the case of ASEP
with k particles. Recall that P is an order preserving coupling, and that ∨ and
∧ denote the minimal and maximal configurations, respectively. Order-preserving
implies in particular that once the dynamics starting from the two extremal height
functions merge, the value of hξ (t, ·) is the same for all ξ ∈ 	N,k ,

(19)
{
h∨(t, ·) = h∧(t, ·)} ⇒ {∀ξ �= ξ ′, hξ (t, ·) = hξ ′

(t, ·)}.
Using this, we consider ξ, ξ ′ ∈ 	N,k which maximizes the total variation distance
at time t [recall (12)] and argue as follows:

(20) d̄N,k(t) =
∥∥P

ξ
t − P

ξ ′
t

∥∥
TV ≤ P

(
hξ (t, ·) �= hξ ′

(t, ·)) ≤ P
(
h∨

t �= h∧
t

)
.

Using the monotonicity of fN,k , and the Markov inequality, we obtain that the
quantity above is smaller than

(21) P
(
fN,k

(
h∧

t

) ≥ fN,k

(
h∨

t

) + δmin(fN,k)
) ≤ E[fN,k(h

∧
t ) − fN,k(h

∨
t )]

δmin(fN,k)
,

where

δmin(fN,k) = min
ξ,ξ ′∈	N,k

ξ≥ξ ′ and ξ �=ξ ′

(
fN,k(ξ) − fN,k

(
ξ ′))

.
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By (18), we deduce that

(22)

dN,k(t) ≤ d̄N,k(t) ≤ E[fN,k(h
∧
t ) − f (h∨

t )]
δmin(fN,k)

= fN,k(∧)− fN,k(∨)

δmin(fN,k)
e−(γN+�)t .

In view of (2), this implies that gapN,k ≥ (γN + �) so that we conclude that (8)
holds.

Let us mention here that, for all k,N ,

(23) δmin(fN,k) = min
x∈�1,N−1�

sin
(

xπ

N

)
(λ− 1)λ∨(x) ≥ (λ− 1)

N
λ

k−N
2 .

Regarding (3), we observe as above that for all ξ, ξ ′ ∈ SN which maximize the
total variation distance at time t , we have

(24) d̄N (t) = ∥∥Q
ξ
t −Q

ξ ′
t

∥∥
TV ≤ P

(
σ

ξ
t �= σ

ξ ′
t

)
.

By injectivity of the height function [recall (15)], we have

P
(
σ

ξ
t �= σ

ξ ′
t

) = P
(∃k ∈ �1,N − 1�, hk

(
σ

ξ
t

) �= hk

(
σ

ξ ′
t

))
≤

N∑
k=1

P
(
hk

(
σ

ξ
t

) �= hk

(
σ

ξ ′
t

))
.

(25)

Then repeating (19) and (22), it follows that each term in the last sum is smaller
than (fN,k(∧) − fN,k(∨))e−(γN+�)t , which allows us to conclude that (3) holds.

To conclude, let us remark that the above method provides us a quantitative
upper-bound on the mixing time, but that it does not allow to identify the right
constant. More precisely (details are left to the reader), we have

d̄N,k(t) ≤ CλNλN/2e−(γN+�)t , d̄(t) ≤ CλN
2λN/2e−(γN+�)t ,

for some constant Cλ > 0 depending on λ. This gives an upper bound (which
perhaps surprisingly does not depend on k) of order (logλ)

2�
N for both mixing times.

While this is the right order of magnitude for the mixing time, the constant in
front is not optimal. However, it can be remarked that for vanishing asymmetry,
it gets asymptotically close to the right one for the case of biased shuffle or when
k = N/2.

3.5. The special case of p = 1: TASEP. Let us make some comments here
about the case p = 1 for which Theorem 2 is a simple consequence of the work of
[30]. In that case, the system is mixed when hξ (t, ·) hits the lowest configuration
∨ (in particular by monotonicity ∧ is the worst configuration to start with).
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Another remark is that h∧(t, ·) can be coupled with a TASEP dynamics on the
infinite line with height function h∧,∞(t, ·) starting from∧

∞
(x) := x1{x≤k} + (2k − x)1{x>k},

in such a way that for all t and x

(26) h∧(t, ·) := max
(∨

(x), h∧,∞(t, ·)
)
.

Hence we have when p = 1

dN,k(t) = P

[
h∧(t, ·) �= ∨]

= P
[
h∧,∞(t,N − k) > −(N − k)

]
.

Then it follows from [30], Theorem 1, that when k/N → α, the limit is one if
one chooses t = N [(√α + √

1 − α)2 − ε] and the limit is zero if t = N [(√α +√
1 − α)2 + ε], thus yielding Theorem 2.
Since the work of Rost, much more detailed results have in fact been obtained

about the scaling for h∧,∞(t, ·) and its fluctuations are known ([13], Equation
(3.7)), to be described by the Airy2 process. This information allows us to de-
duce that when k = N/2, dN,N/2(t) drops from one to zero in a time window of
order N1/3 and even to identify the limit of dN,N/2(2N +N1/3u), as a function of
u that can be expressed in terms of the distribution of the Airy2 process.

An important thing to keep in mind is that a coupling such as (26) does not
exist when p < 1, the reason being that the boundary condition have the effect of
pushing h(t, ·) in the upward direction. This is what makes the analysis of ASEP
more difficult, and the main reason why the question of cutoff has been open for
more than a decade. While we do believe that the statement about the N1/3 cutoff
window and profile should remain valid when p ∈ (0,1), and also for every α ∈
(0,1), they remain at this stage, challenging conjectures.

4. Getting the mixing times from scaling limits. In the present section, we
show how to reduce the proof of the mixing time for both processes to a scal-
ing limit statement about the positions of the leftmost particle and the rightmost
empty site (Proposition 9). The underlying idea is that the contraction inequality
derived from the eigenfunction fN,k , while not providing a sharp estimate on the
mixing time, allows us to prove that once the system is macroscopically close to
equilibrium, it mixes rapidly.

4.1. The hydrodynamic profile. Let ξN be a sequence of elements of
⋃

k 	0
N,k

and let us define the associated sequence of empirical densities

ρN
t (dy) = 1

N

N∑
x=1

ηξN

(
Nt

p − q
, x

)
δx/N(dy).
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Notice that ρN
t belongs to the convex set M of measures on [0,1] with total-mass

at most 1. We endow this set with the topology of weak convergence; see (11).
We assume that ρN

0 converges weakly to some limiting density ρ0: this is
a harmless assumption since the sequence ρN

0 is tight. As 〈ρN
0 , ϕ〉 ≤ 1

N
×∑N

x=1 ϕ(x/N) for any ϕ ∈ C([0,1],R+), it is simple to check that ρ0 necessar-
ily belongs to the dual of L1, namely to L∞, and satisfies ρ0(x) ∈ [0,1] for almost
every x ∈ [0,1]. We also let hξN (t, x) be the associated height function, and we
define uN(t, x) = 1

N
h( N

p−q
t, xN) for all t ≥ 0 and x ∈ [0,1].

THEOREM 4. The sequence ρN converges in distribution in the Skorohod
space D(R+,M) toward the unique entropy solution of the inviscid Burgers’ equa-
tion with zero-flux boundary conditions:⎧⎪⎪⎨⎪⎪⎩

∂tρ =−∂x

(
ρ(1 − ρ)

)
t > 0, x ∈ (0,1),

ρ(t, x)
(
1 − ρ(t, x)

) = 0 t > 0, x ∈ {0,1},
ρ(0, ·) = ρ0(·).

(27)

Furthermore, the sequence uN converges in D(R+,C([0,1])) toward the inte-
grated solution u(t, x) = ∫ x

0 (2ρ(t, y)− 1)dy.

The Skorohod spaces denote the spaces of cadlag functions and are endowed
with the Skorohod topology; see Billingsley [7].

REMARK 6. Note that intuitively u should be the solution of the following
equation: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu =−1

2

(
1 − (∂xu)2)

t > 0, x ∈ (0,1),

u(0, ·) = 0 and u(1, ·) = 2α − 1 t > 0, x ∈ {0,1},
u(0, ·) =

∫ ·
0

(
2ρ(t, y)− 1

)
dy.

(28)

However, the precise connection between (27) and (28) has not been established
in the literature. So we stick to the problem (27) formulated in terms of particle
density, as it is sufficient to our purpose.

REMARK 7. All the solutions of (27) obtained in Theorem 4 stabilize in finite
time to an equilibrium profile, given by 1[1−α,1] where α = ∫

[0,1] ρ0(x)dx. Indeed,
the explicit solution starting from

∧
stabilizes in finite time and stays above any

other solution, by monotonicity of the particle system. We define thus

(29) tρ0 := inf
{
t > 0|ρ(t, ·) = 1[1−α,1]

}
.

This is the quantity involved in the expression of the mixing time in Theorem 3.
Note that while in the extremal case described in Theorem 2, the mixing time
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coincides with N(p − q)−1tρ0 for ρ0 := 1[0,α], this is not always the case when
starting from an arbitrary condition as the position of the leftmost particle and
rightmost empty site can, in some cases, take a longer time to reach equilibrium
than ρ.

The precise definition of the entropy solutions of (27) as well as the proof of the
convergence is postponed to Section 5.

Let us describe the scaling limit of the height function starting from the maximal
element

∧
. This object is relevant only when the density of particle α is strictly

positive: at the end of the present subsection, we introduce the relevant quantities
when α = 0. For α ∈ (0,1/2], we define

∨
α : [0,1] → R,

∧
α : [0,1] → R which

correspond to the extremal macroscopic states,∨
α

(x) := max
(−x, x − 2(1 − α)

)
,

∧
α

(x) := min(x,2α − x),

and let gα :R+ × [0,1]→R be defined as follows:

g0
α(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
α − t

2
− (x − α)2

2t
if |x − α| ≤ t,

α∧
(x) if |x − α| ≥ t,

gα(t, x) := max
(∨

α

(x), g0
α(x, t)

)
.

As a consequence of Theorem 4, we obtain the following statement.

COROLLARY 8. Let p ∈ (1/2,1] and α ∈ (0,1/2]. For any ε > 0 and any
T > 0, we have

lim
N→∞P

[
sup

t∈[0,T ]
sup

x∈[0,1]

∣∣∣∣ 1

N
h∧

(
Nt

p − q
,Nx

)
− gα(t, x)

∣∣∣∣ ≤ ε

]
= 0.

Let us introduce �α(t), rα(t) ∈ [0,1], which for t ≤ (
√

α + √
1 − α)2 are the

extremities of the interval on which gα(t, ·) and g0
α(t, x) coincide):

�α(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ α,

(
√

t −√
α)2 if t ∈ (

α, (
√

α +√
1 − α)2)

,

1 − α if t ≥ (
√

α +√
1 − α)2,

and

rα(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t ≤ 1 − α,

1 − (
√

t −√
1 − α)2 if t ∈ (

1 − α, (
√

α +√
1 − α)2)

,

1 − α if t ≥ (
√

α +√
1 − α)2.
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When α = 0, the hydrodynamic limit does not evolve since the system is macro-
scopically at equilibrium at time 0 even though it is far from the microscopical
equilibrium. We introduce

�0(t) = t ∧ 1 and r0(t) = 1, t ≥ 0.

4.2. Scaling limit for rightmost particle and leftmost empty site. We introduce
now the key statements that will allow us to get sharp mixing time estimates: given
ξ ∈ 	N,k , we let �N,k(ξ) and rN,k(ξ) denote the position of the leftmost particle
and the rightmost empty site, respectively (which almost corresponds to the quan-
tities introduced in (9) for ξ ∈ 	0

N,k). In terms of height function, this translates
into

�N,k(ξ) = max
{
x ∈ �0,N � : ξ(x) =−x

}
,

rN,k(ξ) = min
{
x ∈ �0,N � : ξ(x) = x − 2(N − k)

}
.

(30)

We also set

(31) LN,k(t) := �N,k

(
h∧

t

)
and RN,k(t) := rN,k

(
h∧

t

)
.

Our result is the following.

PROPOSITION 9. Let p ∈ (1/2,1] and α ∈ [0,1/2]. For any t ≥ 0 we have the
following convergences in probability:

lim
N→∞
k/N→α

N−1LN,k

(
Nt

p − q

)
= �α(t) and lim

N→∞
k/N→α

N−1RN,k

(
Nt

p − q

)
= rα(t).

Let us stress that in the case where α ∈ (0,1/2], Corollary 8 does not directly
imply Proposition 9. It rather states that �α(t) is the smallest point where the par-
ticle density is nonzero and rα(t) is the largest point where it is not equal to 1 so
that, provided the limit exits in probability, one deduces the upper bound for LN,k

and the lower bound for RN,k :

lim
N→∞
k/N→α

N−1LN,k

(
Nt

p − q

)
≤ �α(t) and lim

N→∞
k/N→α

N−1RN,k

(
Nt

p − q

)
≥ rα(t).

However, it does not give the microscopic information that would be necessary to
obtain the lower bound for LN,k and the upper bound for RN,k . Another important
observation is that this microscopic information is not contained in our proof of
Theorem 4: the technique we use to derive gα(t, x) as a scaling limit, is to show
that the particle density is an entropy solution of the inviscid Burgers’ equation,
and this formulation of the problem does not allow to track the positions of the
leftmost particle and the rightmost empty site.

Let us now introduce

Aε
N,k := {

ξ ∈ 	N,k : ∣∣�N,k(ξ) −N + k
∣∣ ≤ εN and

∣∣rN,k(ξ) −N + k
∣∣ ≤ εN

}
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and

tα,N := N

p − q
(
√

α +√
1 − α)2.

As a direct consequence of Proposition 9, we get the following result.

COROLLARY 10. Let p ∈ (1/2,1] and α ∈ [0,1/2]. We have for any δ ≥ 0
and ε > 0

(32) lim
N→∞
k/N→α

P
(
h∧

(1+δ)tα,N
∈ Aε

N,k

) = 1.

Moreover, for any fixed δ > 0, for ε ≤ ε0(δ), we have

(33) lim
N→∞
k/N→α

P
(
h∧

(1−δ)tα,N
∈ Aε

N,k

) = 0.

Finally, in order to use these results, we need to check that the final positions of
�α , rα correspond indeed to equilibrium. This is a known estimate but we include
a proof for completeness.

LEMMA 11. We have, for all values of N and k,

πN,k

(|�N,k − rN,k| ≥ M
) ≤ λ3−M(M + 1)

(λ − 1)2 .

PROOF. As in [24], Proof of Proposition 11, we rely on the observation that if
�N,k(ξ) = i − 1, rN,k(ξ) = j (not both equal to N − k), then there is a particle at
site i while site j is empty, and therefore, the bijection Ti,j that interchanges the
contents of sites i and j in the particle system, decreases A(ξ) [recall (7)] by an
amount j − i. Thus we have

πN,k(�N,k = i − 1, rN,k = j) ≤ λ−(j−i)
∑

ξ∈	N,k

πN,k

(
Ti,j (ξ)

) ≤ λ−(j−i).

Summing over all possibilities for i and j (at most A possibilities when the gap is
equal to A) this yields

πN,k

(|�N,k − rN,k| ≥ M
) ≤ ∑

A≥M

Aλ−(A−1) = Mλ−(M−1)

(1 − λ−1)
+ λ−M

(1 − λ−1)2 .
�

4.3. The mixing time for ASEP: Proof of Theorem 2. As the case p = 1 was
treated in Section 3.5, we assume here that p ∈ (1/2,1). We have to prove that in
the limit when k/N tends to α, the mixing time is equivalent to tα,N .
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The easiest part is to show that the mixing time is at least tα,N , or more pre-
cisely, that for any δ > 0,

lim
N→∞
k/N→α

dN,k

(
(1 − δ)tα,N

) = 1.

From the definitions of total variation distance and dN,k , we have, for any ε > 0,

dN,k

(
(1 − δ)tα,N

) ≥ πN,k

(
Aε

N,k

) − P∧
(1−δ)tα,N

(
Aε

N,k

)
.

The first probability converges to 1 according to Lemma 11, while the second
converges to zero if ε is sufficiently small according to Corollary 10.

To obtain the other bound on the mixing time, we show that for any δ > 0,

(34) lim
N→∞
k/N→α

dN,k

(
(1 + δ)tα,N

) = 0.

Recall (20) and the monotone grand coupling. We have

dN,k(
(1 + δ)tα,N

) ≤ P
[
h∧

(1+δ)tα,N
�= h∨

(1+δ)tα,N

]
.

The right-hand side is smaller than

P
[
h∧

(1+δ)tα,N
�= h∨

(1+δ)tα,N
|h∧

tα,N
∈ Aε

N,k

] + P
[
h∧

tα,N
/∈ Aε

N,k

]
.

According to (32), the second term vanishes in the limit. Regarding the first term,
using the Markov property and repeating the computation of Section 3.4, we obtain

P
[
h∧

(1+δ)tα,N
�= h∨

(1+δ)tα,N
|h∧

tα,N
, h∨

tα,N

]
≤ E

[fN,k(h
∧
(1+δ)tα,N

) − fN,k(h
∨
(1+δ)tα,N

)

δmin(fN,k)
|h∧

tα,N
, h∨

tα,N

]

≤ fN,k(h
∧
tα,N

)− fN,k(h
∨
tα,N

)

δmin(fN,k)
e−δtα,N (�+γN).

(35)

To conclude, we remark that if one defines ∧ε
N,k to be the maximal element of

Aε
N,k (which is well defined since the maximum of two elements of Aε

N,k is in
Aε

N,k), then for some constant C = Cλ > 0, we have on the event {h∧
tα,N

∈ Aε
N,k},

fN,k

(
h∧

tα,N

) − fN,k

(
h∨

tα,N

) ≤ fN,k

(∧ε
N,k

) − fN,k

(∨)
≤ CNδmin(fN,k)λ

εN,

where we have used (23). Hence we deduce from (35) that

P
[
h∧

(1+δ)tα,N
�= h∨

(1+δ)tα,N
|h∧

tα,N
∈ Aε

N,k

] ≤ CNλεNe−δtα,N (�+γN).

If ε is chosen small compared to δ, this last term tends to zero exponentially fast
and we can conclude that (34) holds.
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4.4. From ASEP to card-shuffle: Proof of Theorem 1. Let σmax
t and σmin

t de-
note the dynamics starting from the maximal [σmax from (4)] and minimal (the
identity) initial conditions. In order to adapt the method used above for the ASEP
we need to control the height functions for all levels k. We extend the definition
(30) to the group of permutations by setting for ξ ∈ SN ,

�N,k(ξ) := �N,k

(
hk(ξ)

)
and rN,k(ξ) := rN,k

(
hk(ξ)

)
.

We also set

Bε
N := {

ξ ∈ SN : ∀k ∈ �1,N − 1�,∣∣�N,k(ξ) −N + k
∣∣ ≤ εN,

∣∣rN,k(ξ) −N + k
∣∣ ≤ εN

}
= {

ξ ∈ SN : ∀k ∈ �1,N − 1�, hk(ξ) ∈ Aε
N,k

}
.

We need the following improvement of Corollary 10. We set

tN := t1/2,N = 2(p − q)−1N.

LEMMA 12. We have, for any ε > 0,

lim
N→∞P

[
σmax

tN
∈ Bε

N

] = 1.

PROOF. Let m > 0 be a fixed integer and fix kN
1 < · · · < kN

m for N ≥ 0, such
that

∀i ∈ �1,m�, lim
N→∞kN

i /N = i

m + 1
.

Set

Bε
N,m := {

ξ ∈ SN : ∀i ∈ �1,m�,∣∣�N,ki
(ξ) −N + ki

∣∣ ≤ (ε/2)N and
∣∣rN,ki

(ξ) −N + ki

∣∣ ≤ (ε/2)N)
}
.

For a given ξ ∈ SN , �N,k(ξ) and rN,k(ξ) are nonincreasing functions of k (when k

increases, only new particles are added). Thus, we have for m ≥ 3ε−1 and N large
enough Bε

N,m ⊂ Bε
N . Consequently,

P
[
σmax

tN
/∈ Bε

N

] ≤ P
[
σmax

tN
/∈ Bε

N,m

] ≤ m∑
i=1

P
[
hk

(
σmax

tN

)
/∈ A

ε/2
N,ki

]

=
m∑

i=1

P
[
h∧

tN
/∈ A

ε/2
N,ki

]
.

Using Corollary 10, and the fact that tN = maxα∈[0,1] tN,α , we can conclude. �
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PROOF OF THEOREM 1. Note that we only need to prove an upper bound
since the lower bound is given by the case α = 1/2 of Theorem 2. We consider
separately the case p = 1 in the next subsection. Recall (24). We have for all δ > 0,

dN

(
(1 + δ)tN

) ≤ P
[
σmax

(1+δ)tN
�= σmin

(1+δ)tN
|σmax

tN
∈ Bε

N

] + P
[
σmax

tN
/∈ Bε

N

]
.

From Lemma 12, the second term goes to zero. To estimate the first one, we use a
conditional version of (25) and (22) and we obtain

P
[
σmax

(1+δ)tN
�= σmin

(1+δ)tN
|σmax

tN
, σmin

tN

]
≤

N∑
k=1

fN,k(hk(σ
max
tN

)) − fN,k(hk(σ
min
tN

))

δmin(fN,k)
e−δtN (�+γN).

(36)

Now if σmax
tN

is in Bε
N then all its projections are in the respective Aε

N,k and thus
(recall that ∧ε

N,k is the maximal element of Aε
N,k)

fN,k

(
hk

(
σmax

tN

)) − fN,k

(
hk

(
σmin

tN

)) ≤ fN,k

(
ε∧

N,k

)
− fN,k

(∨)

≤ CNδmin(fN,k)λ
εN .

Thus taking the conditional expectation and applying Lemma 12 we deduce that
there exists C′ > 0 such that for all N large enough

P
[
σmax

(1+δ)tN
�= σmin

(1+δ)tN
|σmax

tN
∈ Bε

N

] ≤ C′N2λεNe−δtN (�+γN).

The right-hand side tends to zero exponentially fast provided ε is chosen suffi-
ciently small compared to δ. Therefore, we have shown that dN((1+ δ)tN) goes to
0 as N →∞, thus concluding the proof of Theorem 1 in the case p < 1. �

4.5. The case p = 1 for Theorem 1. Unlike for the TASEP, the mixing for the
totally biased card shuffling cannot be obtained directly from [30], Theorem 1.
The reason being that for doing so one would need to know not only the limiting
behavior of the hitting time of

∨
N,k , but also some estimates on the rate of conver-

gence. While this could be achieved by using large deviation results obtained for
the TASEP (see, e.g., [11]), we prefer in this section to show how the case p = 1
can be deduced from p < 1 via approximations. We proceed in two steps.

First, given ε sufficiently small (independent of N ), we let (σt )t≥0 and (σ̃t )t≥0
be biased card shuffles with respective asymmetries given by p = 1, and p̃ = 1 −
ε/2, both with initial condition σmax. We denote by π̃N the equilibrium measure
associated to σ̃ . We couple these two processes (using a construction similar to the
one displayed in Appendix A) in such a way that, for all t ≥ 0,

(37) σ̃t ≥ σt .
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Notice that for N sufficiently large, Theorem 1 for p̃ yields that t1 := 2N(1 + 2ε)

is larger than the ε-mixing time of σ̃t . We introduce

B̃N := {
ξ ∈ SN : ∀k ∈ �1,N �,

�N,k(ξ) ≥ N − k −√
N and rN,k(ξ) ≤ N − k +√

N
}
.

As B̃N is a decreasing event, for N large enough we have from (37) and the mixing
estimate for p̃,

(38) P[σt1 /∈ B̃N ] ≤ P[σ̃t1 /∈ B̃N ] ≤ π̃N (SN\B̃N)+ ε ≤ 2ε,

where the last estimate is obtained using Lemma 11 and a union bound over k.
We use then a second coupling for t ≥ t1: Let (σ̂t )t≥t1 be a biased shuffling with

asymmetry p̂ = 1 − N−2 and initial condition σt1 , and coupled with (σt )t≥t1 in a
way such that at all time σ̂t ≥ σmax

t . Also, we let σ̂min
t be a shuffling with bias p̂

starting from the identity at time t1, and couple it in a way such that σ̂t ≥ σ̂min
t . We

set t2 = t1 + εN , and we denote by π̂N the equilibrium measure associated to σ̂ .
We have

dN(t2) = P[σt2 �= id] ≤ P[σ̂t2 �= id] ≤ P[σ̂t2 �= id|σt1 ∈ B̃N ] + P[σt1 /∈ B̃N ].
The second term is smaller than 2ε from (38). The first term can be decomposed
as follows:

P[σ̂t2 �= id|σt1 ∈ B̃N ] ≤ P
[
σ̂t2 �= σ̂min

t2
|σt1 ∈ B̃N

] + P
[
σ̂min

t2
�= id

]
.

Using a stochastic coupling with equilibrium, we see that there exists C > 0 such
that

P
[
σ̂min

t2
�= id

] ≤ π̂N

(
SN \ {id}) ≤ CN−1,

where the last estimate can be deduced from Lemma 11. The other contribution
is bounded using the squeezing argument in (36): if f̂N,k are the eigenfunctions
corresponding to p̂, we have

P
[
σ̂t2 �= σ̂min

t2
|σt1

] ≤ (
N∑

k=1

f̂N,k(hk(σt1))− f̂N,k(hk(id))

δmin(f̂N,k)

)
e−εN(�̂+γN ).

If σt1 ∈ B̃N , then the first factor in the right-hand side is bounded above by NC
√

N

for some constant C, while the second term is smaller than e−εN/2. This allows us
to conclude the proof.

4.6. Proof of Theorem 3. In this subsection we present the modifications
needed to obtain the mixing time starting from some general sequence of initial
conditions (ξN,N ≥ 1) satisfying (10). We focus here on the case α > 0 since
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α = 0 is much simpler and can be immediately adapted from the material in Sec-
tion 6.2. We denote by (h

ξN
t , t ≥ 0) the associated evolving height function, and

we update the notation (31) to fit the initial condition

LN,k(t) := �N,k

(
h

ξN
t

)
and RN,k(t) := rN,k

(
h

ξN
t

)
.

Let (ρ(t, x), t ≥ 0, x ∈ (0,1)) be the hydrodynamic limit obtained in Theorem 4.
Recall the definition of tρ0 (29), and set

�ρ(t) := inf
{
x ∈ [0,1] : ρ(t, x) > 0

}
, rρ(t) := sup

{
x ∈ [0,1] : ρ(t, x) < 1

}
.

Note that for t ≥ tρ0 we have �ρ(t) = rρ(t) = 1 − α [inf and sup have to be inter-
preted as essential extrema here, since ρ(t, ·) is defined in L∞]. We have to prove
the following generalization of Proposition 9.

PROPOSITION 13. Let p ∈ (1/2,1]. For any t ≥ 0, we have the following con-
vergence in probability:

lim
N→∞N−1LN,k

(
Nt

p − q

)
= �ρ(t) ∧ (� + t),

lim
N→∞N−1RN,k

(
Nt

p − q

)
= rρ(t)∨ (r − t).

The asserted mixing time of Theorem 3 is nothing but the first time t ≥ 0 at which
the limits obtained in this proposition reach the value 1 − α. This being given, the
proof presented in Section 4.3 works almost verbatim upon replacing tα,N by

tN = N

p − q
max(tρ,1 − α − �, r − 1 + α).

Indeed, the lower bound follows as a corollary of Proposition 13 and Lemma 11.
Regarding the upper bound in the case p < 1, we first notice that

P
ξN
t − πN,k = ∑

ξ ′∈	N,k

πN,k

(
ξ ′)(

P
ξN
t − P

ξ ′
t

)
,

so that ∥∥P
ξN
t − πN,k

∥∥
TV ≤ πN,k

(
	N,k\Aε

N,k

) + sup
ξ ′∈Aε

N,k

∥∥P
ξN
t − P

ξ ′
t

∥∥
TV.

The first term goes to 0 by Lemma 11. Using the monotonicity under the grand
coupling P at the second line, we bound the second term as follows:

sup
ξ ′∈Aε

N,k

∥∥P
ξN
t − P

ξ ′
t

∥∥
TV ≤ sup

ξ ′∈Aε
N,k

P
[
h

ξN
t �= h

ξ ′
t

]
≤ P

[
h

ξN
t �= h∨

t

] + P
[
h

ξN
t �= h

∧ε
N,k

t

]
.
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Thus it suffices to show that both terms on the right-hand side vanish when t =
tN + δN , for any δ > 0 (notice that tN may be negligible compared to N ). We
write

P
[
h

ξN

tN+δN �= h∨
tN+δN

] ≤ P
[
h

ξN

tN+δN �= h∨
tN+δN |hξN

tN
∈ Aε

N,k

]
+ P

[
h

ξN
tN

/∈ Aε
N,k

]
,

as well as

P
[
h

ξN

tN+δN �= h
∧ε

N,k

tN+δN

] ≤ P
[
h

ξN

tN+δN �= h
∧ε

N,k

tN+δN |hξN
tN

, h
∧ε

N,k

tN
∈ Aε

N,k

]
+ P

[
h

ξN
tN

/∈ Aε
N,k

] + P
[
h
∧ε

N,k

tN
/∈ Aε

N,k

]
.

From there, we can apply the same reasoning as in Section 4.3 to show that these
two terms go to 0 as N goes to ∞. This concludes the proof of Theorem 3 when
p < 1. To treat the case p = 1, one simply has to adapt the arguments presented in
Section 4.5. �

5. Hydrodynamic limit. In this section, we speed up the jump rates by
a factor N/(p − q) in order to simplify the notation. The previous notation
ηξN (tN/(p − q), x) now becomes η(t, x).

The theory of solutions of the Burgers equation with zero-flux boundary con-
ditions was developed in Bürger, Frid and Karlsen [8]. As it is shown in [18],
the unique solution of this PDE coincides with the unique entropy solution of the
Burgers equation with appropriate Dirichlet boundary conditions:⎧⎪⎪⎨⎪⎪⎩

∂tρ =−∂x

(
ρ(1 − ρ)

)
t > 0, x ∈ (0,1),

ρ(t,0) = 0 ρ(t,1) = 1,

ρ(0, ·) = ρ0(·).
(39)

Therefore, we only need to prove convergence toward the latter object.

REMARK 14. As it is explained in [18], the particle system with zero-flux
boundary conditions could essentially be obtained from the system on the whole
line Z where we place only particles after site N (density equal to 1) and no particle
before site 0 (density equal to 0): this provides a heuristic explanation for our
Dirichlet boundary conditions above.

The precise definition of the entropy solution of (39) is the following. Hereafter
〈f,g〉 denotes the L2([0,1],dy) inner product of f and g.

DEFINITION 15. Let ρ0 ∈ L∞([0,1],dy). We say that a function (ρ(t, y), t ≥
0, y ∈ [0,1]) ∈ L∞(R+ × [0,1],dt ⊗ dy) is an entropy solution of the inviscid
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Burgers’ equation (39) if, for all κ ∈ [0,1] and all ϕ ∈ C∞
c (R+ ×R,R+), we have∫ ∞

0

(〈
∂tϕ(t, ·), (

ρ(t, ·)− κ
)±〉 + 〈

∂yϕ(t, ·), h±(
ρ(t, ·), κ)〉

+ ϕ(t,0)(0 − κ)± + ϕ(t,1)(1 − κ)±
)

dt + 〈
ϕ(0, ·), (

ρ(0, ·) − κ
)±〉 ≥ 0,

where h+(r, κ) = 1R+(r − κ)(r(1 − r)− κ(1 − κ)) and h−(r, κ) = h+(κ, r).

For any given initial condition ρ0 ∈ L∞([0,1]), there exists a unique entropy
solution to the inviscid Burgers’ equation with Dirichlet boundary conditions; see
Vovelle [31]. Let us mention that the original construction of entropy solutions is
due to Bardos, Le Roux and Nédélec [2] in the BV setting, and is extended to the
L∞ setting by Otto [28]. One should notice that the solution does not necessarily
satisfy the boundary conditions but instead, satisfies the so-called BLN conditions.
In particular, we do not expect the solution to be equal to 1 at x = 1 for short times
when it starts from

∧
: indeed, it takes a macroscopic time for the rightmost particle

to reach the right boundary and, therefore, the density of particles at x = 1 remains
null for a while.

Let (ξN)N≥1 be a sequence of initial conditions and let h(ξN) be the associated
sequence of height functions. Observe that (uN

0 (x) := 1
N

h(ξN)(xN), x ∈ [0,1]) is
1-Lipschitz so that it is tight in C([0,1]).

LEMMA 16. For any choice of initial conditions, the sequence of processes
ρN and uN are C-tight in D([0,∞),M) and D([0,∞),C([0,1])), respectively.

PROOF. The arguments are standard so we only give a sketch of proof. To
prove tightness of ρN , it suffices to show that

lim
δ↓0

lim
N→∞E

[
sup

s,t≤T ,|t−s|≤δ

∣∣〈ρN
t − ρN

s ,ϕ
〉∣∣] = 0,

for all ϕ ∈ C∞([0,1]). To that end, we write

(40)
〈
ρN

t , ϕ
〉 − 〈

ρN
s ,ϕ

〉 = ∫ t

s
LN 〈

ρN
r ,ϕ

〉
dr +MN

s,t ,

where MN
s,· is a martingale and LN is the sped-up generator of our process. Then

it is simple to bound the two terms on the right-hand side; see, for instance, [29],
Lemma 4.1.

Regarding the tightness of the sequence uN , we first observe that for all t ≥
0, the profiles y �→ uN(t, y) are 1-Lipschitz. Furthermore, for every y ∈ [0,1],
the process t �→ uN(t, y) makes jumps of size at most 2/N and at rate at most
N/(p− q). Using the moments formula for the Poisson r.v., we deduce that for all
m ≥ 1 we have

sup
y∈[0,1]

E
[∣∣uN(t, y)− uN(s, y)

∣∣m] 1
m � |t − s| 1

m

N
m−1
m

+ |t − s|,
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uniformly over all s, t ≥ 0 and all N ≥ 1. Then one defines ūN as the continuous-
time interpolation of uN taken at all times t ∈ Z/N . It is straightforward to check
that ūN is tight using the estimate already obtained on uN . To conclude, we only
need to check that uN and ūN are uniformly close on any given compact space-
time set: this can be done by bounding the moments of the supremum of |uN −
ūN | on boxes of size 1/N × 1/N and then summing over a covering of the given
compact set into such boxes; see, for instance, [5], Lemma 4.7. �

Below we will consider an initial probability measure ιN on
⋃

k 	0
N,k that satis-

fies the following assumption.

ASSUMPTION 1. There exists a piecewise constant function f : [0,1] →
[0,1] such that for all N ≥ 1, ιN = ⊗N

x=1 Be(f (x/N)) where Be(c) denotes the
Bernoulli ±1 distribution with parameter c.

The main step of the proof of Theorem 4 consists in establishing the hydrody-
namic limit starting from elementary initial conditions.

THEOREM 5. We work under Assumption 1 and we let f be the density ap-
pearing therein. The sequence of empirical densities ρN converges in probabil-
ity in the Skorohod space D([0,∞),M) to the deterministic process ρ(t,dy) =
ρ(t, y)dy where (ρ(t, y), y ∈ [0,1], t ≥ 0) is the entropy solution of (39) with ini-
tial condition ρ(0, ·) = f (·).

Given this result, we turn to the proof of Theorem 4.

PROOF OF THEOREM 4. Since we assume that ρN
0 converges weakly to ρ0, it

is not difficult to deduce that

(41) lim
N→∞ sup

y∈[0,1]
∣∣uN

0 (y) − u0(y)
∣∣ = 0,

where u0(y) = ∫ y
0 (2ρ0(x) − 1)dx. Thanks to Lemma 16, we only need to check

that any limiting points ρ of ρN is the entropy solution of the Burgers equation
(39) starting from ρ0 and that any limiting point u of uN is its integrated version.
The latter property is actually simple to establish once we know that ρN converges
to ρ so we concentrate on this convergence.

In the case where the sequence of initial conditions ρN
0 satisfies Assumption 1,

Theorem 5 yields the convergence of ρN toward the entropy solution of (39). To
extend the scope of this convergence result to a general sequence of initial con-
ditions ξN , we proceed by approximation. Set α = (1 + u0(1))/2, and recall that
u0 is 1 Lipschitz so that ρ0(x) is almost everywhere in [0,1]. Fix ε > 0. One can
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FIG. 2. How to bound u0 by two piecewise affine functions: an important feature of the construction
is that we force the slope of u±0 to be ±1 near the boundary so that the inequality still holds with
high probability when the corresponding microscopic height functions are compared.

find two profiles u
+,ε
0 , u

−,ε
0 which are 1-Lipschitz, start from 0 at 0, are piecewise

affine and satisfy the inequalities (see Figure 2)

(42)

u0(y) − 2ε ≤ u
−,ε
0 (y)

≤ (
u0(y) − ε

) ∨ (−y)∨ (y − 2 + 2α),(
u0(y) + ε

) ∧ y ∧ (2α − y) ≤ u
+,ε
0 (y)

≤ u0(y) + 2ε,

and are such that ‖ρ±,ε
0 −ρ0‖L1 goes to 0 as ε ↓ 0, where ρ

±,ε
0 := (∂yu

±,ε
0 + 1)/2.

Then, for every N ≥ 1 we consider three initial configurations of the ASEP: one
is given by ξN , the two others ξ

±,ε
N are random elements in

⋃
k 	0

N,k with law⊗N
x=1 Be(ρ±,ε

0 (x/N)). We couple these three ASEP in such a way that the order
on the height functions is preserved by the dynamics (similarly as in our grand
coupling). Equation (42) ensures that the probability of the event

h
(
ξ
−,ε
N

)
(t = 0, ·) ≤ h(ξN)(t = 0, ·) ≤ h

(
ξ
+,ε
N

)
(t = 0, ·),

goes to 1 as N → ∞. Therefore, the probability that these inequalities happen at
all times t ≥ 0 goes to 1 as well.

Our convergence result applies to ρ
±,ε
N [which are the empirical densities as-

sociated to h(ξ
±,ε
N )]: the limits ρ±,ε are the solutions of (39) starting from ρ

±,ε
0 .

Let us denote by u±,ε the associated integrated solutions. Our coupling ensures
that any limit point u of the tight sequence uN lies in between these two integrated
solutions. By the L1 contractivity [27], Theorem 7.28, of the solution to (39), one
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deduces that as ε ↓ 0, u±,ε converges to the integrated solution of (39) starting
from u0, thus u coincides with this solution and this concludes the proof. �

We are now left with proving Theorem 5. To that end, it suffices to show that
any limit point of the tight sequence ρN satisfies the entropy inequalities of Def-
inition 15. The usual trick that makes the constant κ appear in these inequalities
is to couple η with another particle system ζ which is stationary with distribution⊗N

x=1 Be(κ). Actually, our boundary conditions complicate the proof and it will
be convenient to consider another particle system which evolves according to the
same dynamics but on the whole line Z.

More precisely, we will consider the process (η, ζ, η̂, ζ̂ ) where each element of
the quadruplet is a process that lives in {0,1}Z and such that the following holds.
The restriction of η to �1,N � is a Markov process evolving according to the ASEP
dynamics considered from the beginning of this paper, while the restriction of η to
Z\�1,N � remains constant. The process ζ remains constant outside �1,N �, while
in �1,N � it undergoes the same dynamics as η except that at site 1 if there is no
particle, then a particle is created at rate N(2p − 1)κ/(p − q) and at site N , if
there is a particle, then it is removed at rate N(2p− 1)(1− κ)/(p− q). Regarding
η̂ and ζ̂ , they evolve according to the ASEP (p, q) on the whole line Z without
any boundary effect: the dynamics is translation invariant.

Let us now explain how the processes are coupled. For all pairs of consecutive
sites in �1,N �, we make the jumps simultaneous for the four particle systems. For
all pairs of consecutive sites in Z\�2,N −1�, we make the jumps simultaneous for
η̂ and ζ̂ . Let us point out that each of these processes is Markov. Instead of writing
down the generator L̃ of the quadruplet acting on a general test function, we restrict
to test functions involving only two of the four processes. We set b(x, y) := x(1−
y). The generator acting on η, ζ is given by

L̃f (η, ζ ) = L̃bulkf (η, ζ )+ L̃bdryf (η, ζ ),

where

L̃bulkf (η, ζ ) = N

p − q

N∑
k,�=1

(p1{�−k=1} + q1{k−�=1})Gk,�(η, ζ ),

where

Gk,�(η, ζ )

:= (
b

(
η(k), η(�)

) ∧ b
(
ζ(k), ζ(�)

))(
f

(
ηk,�, ζ k,�) − f (η, ζ )

)
+ (

b
(
η(k), η(�)

) − b
(
η(k), η(�)

) ∧ b
(
ζ(k), ζ(�)

))(
f

(
ηk,�, ζ

) − f (η, ζ )
)

+ (
b

(
ζ(k), ζ(�)

) − b
(
η(k), η(�)

) ∧ b
(
ζ(k), ζ(�)

))(
f

(
η, ζ k,�) − f (η, ζ )

)
,
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and, using the notation ζ ± δk to denote the particle configuration which coincides
with ζ everywhere except at site k where the occupation is taken to be ζ(k) ± 1,

L̃bdryf (η, ζ ) = N

p − q
(2p − 1)κ

(
1 − ζ(1)

)(
f (η, ζ + δ1)− f (η, ζ )

)
+ N

p − q
(2p − 1)(1 − κ)ζ(N)

(
f (η, ζ − δN) − f (η, ζ )

)
.

The generator acting on η̂, ζ̂ is given by

L̃f (η̂, ζ̂ ) = N

p − q

∑
k,�∈Z

(p1{�−k=1} + q1{k−�=1})Gk,�(η̂, ζ̂ ).

Let us also provide the expression of the generator acting on η, η̂:

L̃f (η, η̂)

= N

p − q

N∑
k,�=1

(p1{�−k=1} + q1{k−�=1})Gk,�(η, η̂)

+ N

p − q

∑
k,�∈Z\�2,,N−1�

(p1{�−k=1} + q1{k−�=1})
(
f

(
η, η̂k,�) − f (η, η̂)

)
.

Let us introduce an initial condition that will be useful in the sequel. Let ιN
be a measure on

⋃
k 	0

N,k that satisfies Assumption 1. Let the restriction of η0 to
�1,N � start with law ιN and let the restriction of ζ0 to �1,N � start with law given
by a product of Bernoulli measures Be(κ). We also let η0(x) = ζ0(x) = 0 for all
x ∈ Z\�1,N �. These two initial conditions are coupled in the following way: for
every x ∈ �1,N �, we have η0(x) ≥ ζ0(x) if and only if f (x/N) ≥ κ , where f is
the density arising in Assumption 1. Additionally, we set η̂0(x) = η0(x) for all
x ∈ Z. Finally, we set ζ̂0(x) = ζ0(x) for all x ∈ �1,N �, and we draw the remaining
values of ζ̂0(·) according to an independent sequence of Be(κ). The law of the
quadruplet starting from this initial condition will be denoted by QN

ιN ,κ .
The first step consists in establishing the entropy inequalities at the microscopic

level. Recall the notation b(x, y) = x(1−y). We define a function Fk,� acting on a
pair of particle systems on Z as follows. We set Fk,�(η, ζ ) = 1 if η(k) ≥ ζ(k) and
η(�) ≥ ζ(�); otherwise we set Fk,�(η, ζ ) = 0. Moreover, we set

H+(η, ζ ) = (
b

(
η(1), η(0)

) − b
(
ζ(1), ζ(0)

))
F1,0(η, ζ ),

H−(η, ζ ) = H+(ζ, η).

We also let

〈f,g〉N := 1

N

∑
k∈Z

f (k)g(k).
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LEMMA 17 (Microscopic inequalities). We work under Assumption 1. For all

ϕ ∈ C∞
c (R+ ×R,R+),

all δ > 0 and all κ ∈ [0,1], we have limN→∞QN
ιN ,κ(Imicro ≥−δ) = 1 where Imicro

denotes either∫ ∞
0

(〈
∂tϕ(t, ·), (

η(t, ·)− ζ(t, ·))±〉
N + 〈

∂xϕ(t, ·),H±(
τ·η(t), τ·ζ(t)

)〉
N

+ (
(0 − κ)±ϕ(t,0) + (1 − κ)±ϕ(t,1)

))
dt + 〈

ϕ(0, ·), (
η(0, ·)− ζ(0, ·))±〉

N,

or ∫ ∞
0

(〈
∂tϕ(t, ·), (

η̂(t, ·)− ζ̂ (t, ·))±〉
N + 〈

∂xϕ(t, ·),H±(
τ·η̂(t), τ·ζ̂ (t)

)〉
N

)
dt

+ 〈
ϕ(0, ·), (

η̂(0, ·) − ζ̂ (0, ·))±〉
N.

PROOF. This is similar to Lemma 2.10 in [18]. Let us recall the main steps
here in the case of (η, ζ ): the case of (η̂, ζ̂ ) is simpler since we do not have to deal
with the boundary terms. First of all, we set

Bt =
∫ t

0

(〈
∂sϕ(s, ·), (

η(s, ·)− ζ(s, ·))±〉
N + L̃

〈
ϕ(s, ·), (

η(s, ·)− ζ(s, ·))±〉
N

)
ds

+ 〈
ϕ(0, ·), (

η(0, ·)− ζ(0, ·))±〉
N.

By definition of the generator, we have the identity〈
ϕ(t, ·), (

η(t, ·)− ζ(t, ·))±〉
N = Bt + Mt,

where M is a mean-zero martingale. A long calculation shows that the term in Bt

involving the generator is bounded by〈
∂xϕ(s, ·),H±(

τ·η(s), τ·ζ(s)
)〉

N + (0 − κ)±ϕ(s,0) + (1 − κ)±ϕ(s,1),

up to a negligible term of order 1/N . Moreover, the Burkholder–Davis–Gundy
inequality allows one to bound the moments of the martingale and to show that they
vanish as N → ∞. Using the fact that ϕ is compactly supported, one gets Bt =
−Mt for t large enough. The assertion of the lemma follows by putting everything
together. �

The next step consists in replacing the microscopic quantities by averages on
boxes of size �. We denote by T�(k) := �k − �, k + �� and we set

MT�(k)f = 1

2� + 1

∑
i∈T�(k)

f (i),
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for any map f : Z → R. The invariance by translation of the dynamics of (η̂, ζ̂ )

ensures that for any A,T > 0 and for any initial condition (η̂0, ζ̂0) such that ζ̂0 is
a product of Be(κ), one has

lim
�→∞ lim

N→∞QN

[∫ T

0

1

N

AN∑
k=−AN

∣∣MT�(k)

(
η̂(t) − ζ̂ (t)

)±
− (

MT�(k)η̂(t) − κ
)±∣∣ dt

]
= 0,

lim
�→∞ lim

N→∞QN

[∫ T

0

1

N

AN∑
k=−AN

∣∣MT�(k)H
±(

η̂(t), ζ̂ (t)
)

− h±(
MT�(k)η̂(t), κ

)∣∣ dt

]
= 0,

(43)

see the arguments on pages 426–427 of Rezakhanlou [29]. These arguments do not
apply anymore to (η, ζ ). However, the next lemma shows that η− η̂ and ζ − ζ̂ are
small in the bulk of the lattice and, therefore, one deduces that (43) also holds with
(η̂, ζ̂ ) replaced by (η, ζ ). In the lemma below, we let Q be the law of the dynamics
starting from some deterministic initial condition (η0, ζ0, η̂0, ζ̂0).

LEMMA 18. There exits a constant C > 0 such that for all ε > 0, we have

lim
N→∞ sup

η0=η̂0∈{0,1}Z
sup

s∈[0,Cε]
Q

[
1

N

∑
x∈[εN,N−εN]

∣∣η(s, x)− η̂(s, x)
∣∣] = 0,

and similarly with (ζ, ζ̂ ).

This lemma is in the spirit of [1], Lemma 3.3.

PROOF. Fix ε > 0. Let ϕ be a function from R+ ×R into R+ such that:

1. ϕ(t, x) = 0 as soon as x /∈ [ε/3,1 − ε/3],
2. ϕ(t, x) > c for all (t, x) ∈ [0,Cε] × [ε,1 − ε] and for some c,C > 0,
3. ∂tϕ + 2|∂xϕ| ≤ 0.

Such a function exists. Take for instance ϕ(t, x) = �(6tε−1 + q(x)) where � :
R → [0,1] is smooth, non-increasing, equal to 1 on R− and to 0 on [1,∞), and
q :R �→ [0,1] is equal to 0 on [ε,1− ε], to 1 on (−∞, ε/3] ∪ [1− ε/3,∞) and is
such that ‖q ′‖∞ ≤ 3ε−1.

Since η0 = η̂0 and ϕ vanishes on the boundaries, we have〈
ϕ(t, ·), (ηt − η̂t )

±〉
N = I±

t +M±
t ,(44)
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where M±
t is a martingale and

I±
t =

∫ t

0

(〈
∂sϕ(s, ·), (ηs − η̂s)

±〉
N + L̃

〈
ϕ(s, ·), (ηs − η̂s)

±〉
N

)
ds.

Using the computation in the proof of Lemma 17, we obtain

I±
t ≤

∫ t

0

(〈
∂sϕ(s, ·), (ηs − η̂s)

±〉
N + 〈

∂xϕ(s, ·),H±(τ·ηs, τ·η̂s)
〉
N

)
ds

+ CφN−1,

where Cφ is a positive constant which depends only φ and could be made explicit
(we will use the same notation for similar constant, as we do not believe it should
yield confusion).

Let H := H+ + H−. By considering all possible configurations, we can check
that ∣∣H(τkηs, τkη̂s)

∣∣ ≤ ∣∣ηs(k) − η̂s(k)
∣∣ + ∣∣ηs(k + 1) − η̂s(k + 1)

∣∣.
Furthermore, we have

〈
∂sϕ(s, ·), |ηs − η̂s |〉N =

〈
∂sϕ(s, ·), |ηs(·) − η̂s(·)| + |ηs(· + 1) − η̂s(· + 1)|

2

〉
N

+ CφN−1,

uniformly over all s ≥ 0 and all N ≥ 1. Consequently, we get

I+
t + I−

t ≤ CφN−1 +
∫ t

0

〈
∂sϕ(s, ·)

+ 2
∣∣∂xϕ(s, ·)∣∣, |ηs(·)− η̂s(·)| + |ηs(· + 1) − η̂s(· + 1)|

2

〉
N

ds

≤ CφN−1,

uniformly over all t in a compact set. Using the properties of the function ϕ, we
deduce that uniformly over all t ∈ [0,Cε],

Q

[
1

N

∑
x∈[εN,N−εN]

∣∣η(t, x)− η̂(t, x)
∣∣]

≤ 1

c
Q

[〈
ϕ(t, ·), |ηt − η̂t |〉N ]

≤ 1

c
Q

[
M+

t +M−
t

] + CφN−1 ≤ CφN−1,

so that the statement of the lemma follows. �
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LEMMA 19. We work under Assumption 1. For all ϕ ∈ C∞
c (R+ ×R,R+), all

δ > 0 and all κ ∈ [0,1], we have lim�→∞ limN→∞QN
ιN ,κ(Imeso ≥ −δ) = 1 where

Imeso is given by∫ ∞
0

(〈
∂tϕ(t, ·), (

MT�(·)η(t)− κ
)±〉

N + 〈
∂xϕ(t, ·), h±(

MT�(·)η(t), κ
)〉

N

+ (
(0 − κ)±ϕ(t,0)+ (1 − κ)±ϕ(t,1)

))
dt + 〈

ϕ(0, ·), (
MT�(·)η(0)− κ

)±〉
.

PROOF. From Lemma 17 and the smoothness of ϕ, we deduce that

lim
�→∞ lim

N→∞QN
ιN ,κ(Jmicro ≥−δ) = 1,

where Jmicro is given by

∫ ∞
0

(
1

N

N∑
k=1

(
∂tϕ(t, k)MT�(k)

(
η(t)− ζ(t)

)±
+ ∂xϕ(t, k)MT�(k)H

±(
η(t), ζ(t)

))
+ (

(0 − κ)±ϕ(t,0)+ (1 − κ)±ϕ(t,1)
))

dt

+ 1

N

N∑
k=1

ϕ(0, k)MT�(k)

(
η(0)− ζ(0)

)±
.

Since ϕ is compactly supported, we can restrict the time integral to [0, T ] for some
large enough T > 0. The statement of the lemma follows if we are able to show that
as N → ∞ and � → ∞ the QN

ιN ,κ -expectations of the following three quantities
vanish ∫ T

0

1

N

N∑
k=1

∣∣MT�(k)

(
η(t)− ζ(t)

)± − (
MT�(k)η(t)− κ

)±∣∣ dt,

∫ T

0

1

N

N∑
k=1

∣∣MT�(k)H
±(

η(t), ζ(t)
) − h±(

MT�(k)η(t), κ
)∣∣ dt,

1

N

N∑
k=1

∣∣MT�(k)

(
η(0)− ζ(0)

)± − (
MT�(k)η(0)− κ

)±∣∣.
For the third one, it suffices to use the fact that the number of sign changes of
k �→ η(0, k) − ζ(0, k) is uniformly bounded over N ≥ 1 (this is a consequence of
our coupling of the initial conditions). We now concentrate on the convergence of
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the second expression, since the convergence of the first follows from similar argu-
ments. Fix ε > 0. Let (η, ζ, η̂, ζ̂ ) be the process defined previously in this section
except that at every time ti = iCε, i ≥ 1, we reinitialize η̂ and ζ̂ by letting them
be equal to η and ζ at this same time. We let QN be the law of the corresponding
process. Then we write∣∣MT�(k)H

±(
η(t), ζ(t)

) − h±(
MT�(k)η(t), κ

)∣∣
≤ ∣∣MT�(k)H

±(
η(t), ζ(t)

) − MT�(k)H
±(

η̂(t), ζ(t)
)∣∣

+ ∣∣MT�(k)H
±(

η̂(t), ζ(t)
) − MT�(k)H

±(
η̂(t), ζ̂ (t)

)∣∣
+ ∣∣MT�(k)H

±(
η̂(t), ζ̂ (t)

) − h±(
MT�(k)η̂(t), κ

)∣∣
+ ∣∣h±(

MT�(k)η̂(t), κ
) − h±(

MT�(k)η(t), κ
)∣∣,

(45)

and we bound separately the contributions coming from the terms arising on the
right hand side. Notice that (43) still holds for (η̂, ζ̂ ) as long as we apply it to
interval of times of the form [ti , ti+1) (since our modified dynamics coincides with
the original one on these intervals). Therefore, for every i ≥ 0

lim
�→∞ lim

N→∞QN

[∫ ti+1

ti

1

N

N∑
k=1

∣∣MT�(k)H
±(

η̂(t), ζ̂ (t)
)

− h±(
MT�(k)η̂(t), κ

)∣∣ dt

]
= 0,

and we deduce that

lim
�→∞ lim

N→∞QN

[∫ T

0

1

N

N∑
k=1

∣∣MT�(k)H
±(

η̂(t), ζ̂ (t)
) − h±(

MT�(k)η̂(t), κ
)∣∣ dt

]
= 0.

On the other hand, as long as � ≤ εN we write∫ T

0

1

N

N∑
k=1

∣∣MT�(k)H
±(

η(t), ζ(t)
) − MT�(k)H

±(
η̂(t), ζ(t)

)∣∣ dt

� 4εT +
�T/Cε�∑

i=0

∫ ti+1

ti

1

N

N−�εN�∑
k=�εN 

∣∣H±(
τkη(t), τkζ(t)

)
−H±(

τkη̂(t), τkζ(t)
)∣∣ dt.

To bound the second term on the right-hand side, we first notice that there exists
K > 0 such that for any particle configurations η1, η2, η

′
1 and η′

2, we have∣∣H±(η1, η2)− H±(
η′

1, η
′
2
)∣∣ ≤ K

∑
j=0,1

∑
m=1,2

∣∣ηm(j)− η′
m(j)

∣∣.
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Consequently, Lemma 18 ensures that

lim
�→∞ lim

N→∞

�T/ε�∑
i=0

QN

[∫ ti+1

ti

1

N

N−�εN�∑
k=�εN 

∣∣H±(
τkη(t), τkζ(t)

)

−H±(
τkη̂(t), τkζ(t)

)∣∣ dt

]
= 0.

The same argument allows us to control the second term in (45). Regarding the
fourth term, it suffices to use the Lipschitz continuity of h± and Lemma 18. This
concludes the proof. �

PROOF OF THEOREM 5. The two-blocks estimate [29], Lemma 6.6, ensures
that one can replace averages on boxes of size � by averages on boxes of size εN .
Therefore, we deduce that the conclusion of Lemma 19 still holds upon such a
replacement. Finally, one relies on classical arguments to show that this is suffi-
cient to get the entropy inequalities, we refer the interested reader to [18], Proof of
Theorem 2.7, for the details. �

6. Locating the leftmost particle using the hydrodynamic profile. In this
section, we explain how Propositions 9 and 13 can be deduced from the hydro-
dynamic limit of the height function. The case α = 0 is a bit particular as, in that
case, the limit of the height function is trivial under the scaling we consider. We
tackle this case separately in Section 6.2

6.1. Particles performing ASEP on an infinite line. In order to complete the
proof of Propositions 9 and 13, we combine Corollary 8 with a result that controls
the speed of particles in sparse regions: the purpose of the present section is to
expose the latter result.

We consider n particles performing an ASEP on the infinite line Z with asym-
metry (p, q), n ∈ �1,N � and we want to obtain a lower bound on the displacement
of the leftmost particle. We perform this operation in two steps: first, we prove a
concentration result and then we estimate the mean via stochastic comparison with
a system in the stationary state.

In this section, instead of using zeros and ones to denote presence and absence
of particles, we work with the state-space

	n := {
η̂ = (η̂1, . . . , η̂n) ∈ Zn : η̂1 < η̂2 < · · · < η̂n

}
.

With this notation, η̂i denotes the position of the ith particle starting from the left.
For the sake of using stochastic comparisons, we introduce the order

(46) η̂ ≤ η̂′ ⇔ ∀i ∈ �1, n�, η̂i ≤ η̂′
i .

Note that this order is the opposite of the order introduced in (16) at the level of
height functions, but we believe that this will not raise any confusion.
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We let η̂(t) := (η̂1(t), . . . , η̂n(t)) denote the ASEP on Z with jump rates p to
the right and q to the left, and with the initial condition η̂i(0) = i. Its distribution
is denoted by P. Our aim is to show that on “large” time-scales (i.e., larger than
n), the speed of all particles is equal to what it would be in the absence of the
exclusion rule: namely, p−q . The following result is valid for any given sequence
(nN)N≥1 satisfying nN ∈ �1,N �.

PROPOSITION 20. Given K > 0, there exists a constant C(p,K) such that
with high probability

∀t ∈ [0,KN ],∀i ∈ �1, n�,
∣∣η̂i(t) − (p − q)t

∣∣ ≤ C
√

N max
(√

n, (logN)10)
.

6.2. Proof of Proposition 9 case α = 0. We start with the case α = 0 because
it is substantially easier.

In order to obtain an upper bound for LN,k , it is sufficient to say that the position
of the leftmost particle η1 of our original system is stochastically dominated by a
(p, q)-biased simple random walk on the segment (the other k − 1 particles to the
right only slow it down). For the latter process, it is simple to check that, properly
rescaled, it converges to max(t,1) as N →∞.

To obtain a lower bound, let us consider the ASEP η on the segment and the
ASEP η̂ on the full line with n = k. Take η̂i(0) = i for every i ∈ �1, k�. We can
couple the two processes in a way that η(s) ≥ η̂(s) until the time

τ := inf
{
s ≥ 0 : η̂k(s) = N

}
.

Then for any fixed t < 1 and for any ε > 0, Proposition 20 (with n = k) implies
that with high probability η̂k(s) < N for all s < (p − q)−1Nt , and that

η̂1

(
Nt

p − q

)
≥ N(t − ε).

This implies that

η1

(
Nt

p − q

)
≥ N(t − ε).

For t ≥ 1, the argument is essentially the same: one simply has to shift to the
left the initial condition for η̂. Namely, we set η̂i(0) = N(1 − t − ε) + i for ε > 0
small. Then, for all s ∈ [0, (p−q)−1Nt], we have η̂k(s) < N with high probability.
Furthermore, η̂1(

Nt
p−q

) ≥ N(1 − ε) with high probability so that

η1

(
Nt

p − q

)
≥ N(1 − ε),

and the lower bound follows.
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6.3. Proof of Proposition 9 case α > 0. Let us fix some time horizon t .
In the case α > 0, we only need a lower bound on LN,k as the upper bound is

an easy consequence of Corollary 8. We fix δ > 0 small and set n = δN < k. We
want to compare the first n particles of η(t) with an ASEP with n particles on the
infinite line η̂ = (η̂1, . . . , η̂n). If the initial conditions are ordered we can couple η̂

with η in such a way that

(47) ∀i ∈ �1, n�, η̂i(s) ≤ ηi(s),

until the first time that η̂n(s) = ηn+1(s).
Corollary 8 implies that with a probability tending to one we have

(48) ∀s ∈ [0, t], ηn+1

(
Ns

p − q

)
≥ N�α(s).

To ensure that our coupling works until the final time t , we choose the initial
condition for η̂ to be much smaller than that of η. We set

η̂i(0) = N
(
�α(t)− t − ε

) + i.

From Proposition 20, we have w.h.p. for all i ∈ �1, n�,

(49) ∀s ∈
[
0,

Nt

p − q

]
,

∣∣η̂i(s)− (p − q)s − N
(
�α(t)− t − ε

)∣∣ ≤ C
√

δN.

Together with (48), and provided δ is sufficiently small given ε, this implies that
the probability of the event

∀s ∈
[
0,

Nt

p − q

]
, η̂n(s) < ηn+1(s),

goes to 1 as N →∞. Thanks to (47), this implies in turn that w.h.p.

η1

(
Nt

p − q

)
≥ η̂1

(
Nt

p − q

)
,

and thus we deduce from (49) that

η̂1

(
Nt

p − q

)
≥ N

(
�α(t)− ε − C

√
δ
)
.

As both δ and ε can be chosen arbitrarily small, this allows us to conclude.

6.4. Proof of Proposition 13. In that case, the system starts from ξN instead
of

∧
, so we need to adapt the arguments. We treat only the case where the limiting

density α is strictly positive, the case α = 0 being simpler is left to the reader.
Fix t ≥ 0. The proof of the upper bound is simple. Either �ρ(t) > � + t , and then
it suffices to compare LN with a biased (p, q) simple random walk as we did in
Section 6.2. Or �ρ(t) ≤ � + t , and then the upper bound is a consequence of the
hydrodynamic limit stated in Theorem 4. We turn to the proof of the lower bound.
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The arguments are essentially the same as those presented in Section 6.3, let us
spell out the required modifications. The bound in (48) still holds if one replaces
�α(s) by �ρ(s). The initial condition has to be taken as follows:

η̂i(0) = N
([

(�+ t) ∧ �ρ(t)
] − t − ε

) + i.

Since the speed of �ρ is necessarily bounded above by 1, we deduce that w.h.p.,
η̂i(0) ≤ ηi(0) for all i ∈ �1, n�. Then Proposition 20 ensures that

∀s ∈
[
0,

Nt

p − q

]
,

∣∣η̂i(s)− (p − q)s − N
(
(�+ t) ∧ �ρ(t)− t − ε

)∣∣ ≤ C
√

δN.

The rest of the arguments then apply and we deduce that η1(t) ≥ N((� + t) ∧
�ρ(t) − ε − C

√
δ) w.h.p., thus concluding the proof of Proposition 13 in the case

α > 0.

6.5. Proof of Proposition 20. Since the system is ordered, we only need to
prove that the following two inequalities hold w.h.p.:

∀t ∈ [0,KN ], η̂1(t) ≥ (p − q)t −C
√

N max
(√

n, (logN)10)
,

∀t ∈ [0,KN ], η̂n(t) ≤ (p − q)t + C
√

N max
(√

n, (logN)10)
.

(50)

The proof of the second inequality is in fact very similar to the proof of the first
one. Hence we decide to discuss in detail only the case of η̂1 and we explain briefly
the needed modifications for η̂n when they are nontrivial.

The proof of the result is decomposed into two separate statements: first, we
show that η̂1(nt) is concentrated around its mean using a martingale concentration
result from [23], and then we obtain a lower bound on E[η̂1(nt)] by comparing the
system with a stationary one.

LEMMA 21. Under the assumptions above, there exists c > 0 such that for all
n ≥ 2, all t ≥ 0, all i ∈ �1, n� and all u ≥ 0 such that u2/(t (logn)2) > 1, we have

P
[∣∣η̂i(t) −E

[
η̂i(t)

]∣∣ ≥ u
] ≤ 2 exp

(
−c

(
u2

t (logn)2

)1/3)
.

LEMMA 22. With the assumptions above, we have

E
[
η̂1(t)

] ≥ (p − q)t − 2 max(n,
√

tn),

E
[
η̂n(t)

] ≤ (p − q)t + 2 max(n,
√

tn).

We postpone the proofs of the lemmas to the end of the subsection and we
proceed to the proof of (50). Combining the two lemmas, we obtain easily that for
any t ∈ [0,KN ] we have

P
[
η̂1(t) ≤ (p − q)t −C

√
N max

(√
n, (logN)4)] ≤ exp

(−c(logN)2)
,
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for some constants c,C > 0. Hence, the probability that there exists t ∈ {jN−4, j ∈
�1,KN5�} such that

η̂1(t) ≤ (p − q)t −C
√

N max
(√

n, (logN)4)
,

is bounded by KN5 exp(−c(logN)2) which vanishes as N →∞. Then we notice
that the probability that there exists an interval [jN−4, (j + 1)N−4) on which η̂1
makes more than one jump is bounded by a term of order N5 times the probability
that a Poisson clock rings more than once in a time interval of length N−4, that
is, by a term of order N−3. We deduce that the probability that there exists t ∈
[0,KN5] such that

η̂1(t) ≤ (p − q)t −C
√

N max
(√

n, (logN)4) − 1,

is vanishing with N , from which we deduce (50) for η̂1. A very similar argument
yields (50) for η̂n.

PROOF OF LEMMA 21. First, let us consider the case where t is an integer.
Fix i ∈ �1, n�. For such a t , we define the martingale (Mt

s , s ∈ �0, t �) by

Mt
s := E

[
η̂i(t)|Fs

] −E
[
η̂i(t)

]
, Fs := σ

(
η̂(u), u ∈ [0, s]).

We are going to prove tail bounds on the increments of Mt to obtain concentra-
tion. For convenience, we set �Mt

s := Mt
s −Mt

s−1 for any s ∈ �1, t �. We let R̄(s),
respectively, L̄(s), denote the maximal number of jumps to the right, respectively,
left, performed by a particle in the system during the time interval (s − 1, s],

R̄(s) := max
i∈�1,n�

#
{
t ∈ (s − 1, s] : η̂i(t) = η̂i(t−) + 1

} = max
i∈�1,n�

Ri(s),

L̄(s) := max
i∈�1,n�

#
{
t ∈ (s − 1, s] : η̂i(t) = η̂i(t−) − 1

} = max
i∈�1,n�

Li(s).

At time s, we have

η̂(s − 1) − L̄(s) ≤ η̂(s) ≤ η̂(s − 1) + R̄(s),

where for k ∈N and η̂ ∈ 	n,

η̂ + k := (η̂1 + k, . . . , η̂n + k).

Let us now consider two initial conditions given by η̂(s − 1) on the one hand, and
η̂(s)+ L̄(s) on the other hand, and let us run the ASEP dynamics for both systems
for a time length t − s: the two configurations are stochastically ordered, and their
laws coincide with the laws of η̂(t − 1) conditionally given Fs−1 for the first one
and of η̂(t)+ L̄(s) conditionally given Fs for the second one. A similar reasoning
can be applied to η̂(s − 1) and η̂(s)+ R̄(s). Therefore, we get for all t ≥ s

E
[
η̂i(t)|Fs

] ≤ E
[
η̂i(t − 1)|Fs−1

] + R̄(s),

E
[
η̂i(t)|Fs

] ≥ E
[
η̂i(t − 1)|Fs−1

] − L̄(s).
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Furthermore, as we have −Li(t) ≤ η̂i(t)− η̂i(t −1) ≤ Ri(t), and as both variables
Ri(t) and Li(t) are, conditionally to Ft−1 ⊃Fs−1, dominated by Poisson random
variables of parameters p and q , we have for any s ≤ t ,∣∣E[

η̂i(t)|Fs−1
] −E

[
η̂i(t − 1)|Fs−1

]∣∣ ≤ max(p, q) = p.

Then we write ∣∣�Mt
s

∣∣ ≤ ∣∣E[
η̂i(t)|Fs−1

] −E
[
η̂i(t − 1)|Fs−1

]∣∣
+ ∣∣E[

η̂i(t)|Fs

] −E
[
η̂i(t − 1)|Fs−1

]∣∣
≤ p + max

(
R̄(s), L̄(s)

)
.

As R̄(s) and L̄(s) are bounded above by the maxima of n Poisson variables of
mean p and q , we obtain that for any constant cp > 0 there exists C > 0 such that

(51) P
[∣∣�Mt

s

∣∣ ≥ u
] ≤ Cne−cpu, ∀u ≥ 0.

This implies the existence of K > 0, independent of n, such that

E
[
e(logn)−1�Mt

s
] ≤ K.

Hence, we can apply [23], Theorem 3.2 (which is simply Azuma’s inequality
combined with some truncation argument for the increments) to the martingale
(logn)−1Mt

s . More precisely, we apply the bound obtained at the end of the proof
of Theorem 3.2 therein [equation right below (11)] and deduce that the asserted
concentration estimate holds.

So far, we have proven the bound when t ∈ N. To treat the general case t ≥ 0,
it suffices to bound the increment Mt

t −Mt�t�. Inspecting the arguments above, we
observe that (51) still holds in that case, so that the proof carries through. �

PROOF OF LEMMA 22. We notice that adding particles to the right, reducing
the drift of some particles, or changing the initial condition by shifting the parti-
cles to the left have the effect of slowing down η̂1(t) in the sense that the system
obtained after such modifications is dominated by the original one.

We consider more specifically the following modification of the dynamics
which we call η̃:

• η̃n(0) = n and (η̃i+1 − η̃i)i=1,...,n−1 are IID geometric random variables of
parameter μ < 1, that is, P [η̃i+1 − η̃i = k] = (1 − μ)μk−1,

• The jump rate to the left is still q but the jump rate to the right is p for the
first (leftmost) particle, p1 for particles labeled from 2 to n− 1 and p2 for the last
(rightmost) one.

It can be checked that the product of geometric laws with parameter μ is stationary
(but not reversible in general) for the Markov chain [(η̃i+1(t) − η̃i(t))

n−1
i=1 ]t≥0,

provided that

μ(p + q) = μp1 + q = p2 + q.
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Note that this implies p2 ≤ p1 ≤ p, and therefore as we have η̂(0) ≥ η̃(0) this
implies that there exists a coupling such that

(52) ∀t ≥ 0, η̂(t) ≥ η̃(t).

As the increments are stationary, the expected drift of the first particle is the same
as the initial drift, and thus

∀t ≥ 0, ∂tE
[
η̃1(t)

] = pμ − q.

Moreover,

E
[
η̃1(0)

] = 1 − (n− 1)
μ

1 −μ
.

Using (52) this implies that

(53) E
[
η̂1(t)

] ≥ 1 + (pμ − q)t − μ(n− 1)

1 −μ
≥ (p − q)t − (1 − μ)t − n

1 − μ
.

Choosing μ such that 1 − μ = min(1,
√

n/t), we obtain

E
[
η̂1(t)

] ≥ (p − q)t − 2 max(n,
√

nt),

as required.
To establish the asserted result for the rightmost particle, we consider an anal-

ogous system where particle spacings have the same initial distribution (IID geo-
metric random variables with parameter μ), but we fix η̃1(0) = 1 and set the jump
rate to the right to be p4 for the first particle, p3 for the particles with labels from
2 to n− 1 and p for the particle with label n, where

μ(p4 + q) = μp3 + q = p + q.

We can couple η̂ and η̃ in a way such that η̃(t) ≥ η̂(t) for all t ≥ 0. The speed of
the rightmost particle is given by p − μq , and its initial mean is 1 + (n − 1) 1

1−μ
.

Taking 1 −μ = min(1,
√

n/t) yields the bound

E
[
η̂n(t)

] ≤ (p − q)t + 2 max(n,
√

nt),

as required. �

APPENDIX A: GRAND COUPLING

We are given two collections (Pi, i ∈ �1,N − 1�) and (Qi, i ∈ �1,N − 1�) of
independent Poisson processes with jump rates p and q , respectively. The grand
coupling for the biased card shuffling is defined as follows. For any initial condi-
tion ξ ∈ SN , the process σ ξ starts from σ

ξ
0 = ξ and is piecewise constant outside

of the jump times of Pi and Qi . The transition at these latter time are defined as
follows: at every jump time s > 0 of Pi , we place the cards at sites i, i + 1 in
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the increasing order, that is, σ
ξ
s = σ

ξ
s− ◦ τi if σ

ξ
s−(i) > σ

ξ
s−(i + 1) and σ

ξ
s = σ

ξ
s−

otherwise. At every jump time s > 0 of Qi , we place the cards at sites i, i + 1 in
the decreasing order, that is, σ

ξ
s = σ

ξ
s− ◦ τi if σ

ξ
s−(i) < σ

ξ
s−(i + 1) and σ

ξ
s = σ

ξ
s−

otherwise.
Taking the image of this process through the maps hk : SN → 	N,k for k ∈

�1,N −1�, we get a grand coupling of the asymmetric simple exclusion processes.
The dynamics at the level of the height functions can be restated as follows: at a
jump time of Pi , if the height function makes an upwards corner at site i then it
flips into a downwards corner; similarly, at a jump time of Qi , if the height function
makes a downwards corner at site i then it flips into an upwards corner.

Let us check that the dynamics preserves the order. To that end, it suffices to
check that all the transitions do so. Consider a jump time of Pi and suppose we are
given two heights functions h ≤ h′ right before the jump time. If both h and h′ (or
none of them) have an upwards corner at site i, then both flip downwards and the
ordering is preserved. If only h has an upwards corner, then the flip can only make
h smaller and therefore the ordering is also preserved upon the jump. Let us now
suppose that only h′ has an upwards corner at site i. Inspecting the possible shapes
for h at site i, and recalling that the set of possible values for the height function
at a given site i has a span equal to 2 we deduce that necessarily h(i) ≤ h′(i) + 2.
Therefore, after the jump the ordering is still preserved at site i. By symmetry, the
arguments are the same for upwards flips. This concludes the proof.
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