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SEPARATING CYCLES AND ISOPERIMETRIC INEQUALITIES IN
THE UNIFORM INFINITE PLANAR QUADRANGULATION1

BY JEAN-FRANÇOIS LE GALL AND THOMAS LEHÉRICY

Université Paris-Sud

We study geometric properties of the infinite random lattice called the
uniform infinite planar quadrangulation or UIPQ. We establish a precise form
of a conjecture of Krikun stating that the minimal size of a cycle that separates
the ball of radius R centered at the root vertex from infinity grows linearly
in R. As a consequence, we derive certain isoperimetric bounds showing that
the boundary size of any simply connected set A consisting of a finite union
of faces of the UIPQ and containing the root vertex is bounded below by a
(random) constant times |A|1/4(log |A|)−(3/4)−δ , where the volume |A| is
the number of faces in A.

1. Introduction. In recent years, much work has been devoted to discrete and
continuous models of random geometry in two dimensions. Two of the most pop-
ular discrete models are the uniform infinite planar triangulation (or UIPT), which
was introduced by Angel and Schramm [1, 2] and in fact motivated much of the
subsequent work, and the uniform infinite planar quadrangulation (or UIPQ). In the
present work, we concentrate on the UIPQ, although we believe that our methods
can be adapted to give similar results for the UIPT. Roughly speaking, the UIPQ
is a random infinite graph embedded in the plane, such that all faces (connected
components of the complement of edges) are quadrangles, possibly with two edges
glued together. See Figure 4 below for an illustration of what the UIPQ may look
like near its root vertex. We study certain geometric properties of the UIPQ, con-
cerning the existence of “small” cycles that separate a large ball centered at the
root vertex from infinity, with applications to isoperimetric inequalities.

The starting point of our work is a conjecture of Krikun in the paper [13] which
provided the first construction of the UIPQ as the local limit of uniform planar
quadrangulations with a fixed number of faces (another construction was suggested
by Chassaing and Durhuus [3], and the equivalence between the two approaches
was established by Ménard [19]; see also [9] for a third construction). Denote the
UIPQ by P , and, for every integer r ≥ 1, let Br(P) stand for the ball of radius
r centered at the root vertex, which is defined as the union of all faces that are
incident to at least one vertex whose graph distance from the root is at most r −

Received October 2017.
1Supported by the ERC Advanced Grant 740943 GEOBROWN.
MSC2010 subject classifications. Primary 05C80; secondary 60D05.
Key words and phrases. Uniform infinite planar quadrangulation, separating cycle, isoperimetric

inequality, truncated hull, skeleton decomposition.

1498

http://www.imstat.org/aop/
https://doi.org/10.1214/18-AOP1289
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


SEPARATING CYCLES AND ISOPERIMETRIC INEQUALITIES 1499

FIG. 1. A schematic “cactus” representation of the UIPQ. The root vertex is denoted by ρ and the
vertical coordinate corresponds to the graph distance from ρ. The shaded part is the hull B•

r (P).

1. The complement of the ball Br(P) is in general not connected, but there is a
unique unbounded component, whose boundary is called the exterior boundary of
the ball. The set inside the exterior boundary, which may be obtained by filling
in the “bounded holes” of the ball, is called the (standard) hull of radius r and
will be denoted by B•

r (P). It is known that the size of the exterior boundary, that
is, the number of edges in this boundary, grows like r2 when r → ∞: See [8]
for more precise asymptotics obtained both for the UIPT and the UIPQ. On the
other hand, Krikun constructed a cycle that separates the ball Br(P) from infinity
and whose size grows linearly in r when r is large. Here, we say that a cycle C
made of edges of the UIPQ separates a finite set A of vertices from infinity if
A does not intersect C but any path from a vertex of A to infinity intersects C
(see Figure 1 for a schematic illustration). Krikun conjectured that the cycle he
constructed is essentially the shortest possible, meaning that the minimal size of a
cycle that separates the ball Br(P) from infinity must be linear in r . A weak form
of this conjecture was derived in [6], but the results of this paper did not exclude
the possibility that a ball could be separated from infinity by a small cycle lying
“very far away” from the ball.

The following theorem provides quantitative estimates that confirm Krikun’s
conjecture.

THEOREM 1. For every integer R ≥ 1, let L(R) be the smallest length of a
cycle separating BR(P) from infinity:
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(i) For every δ < 2, there exists a constant Cδ such that, for every R ≥ 1, for
every ε ∈ (0,1),

P
(
L(R) ≤ εR

)≤ Cδε
δ.

(ii) There exist constants C and λ > 0 such that, for every a > 0 and R ≥ 1,

P
(
L(R) ≥ aR

)≤ Ce−λa.

Part (ii) of the theorem is proved by using the separating cycle introduced by
Krikun and sharpening the estimates in [13]. So the most interesting part of the
theorem is part (i). We believe that our condition δ < 2 is close to optimal, in
the sense that, for R large, P(L(R) ≤ εR) should behave like ε2, possibly up to
logarithmic corrections. At the end of Section 4, we provide a short argument
showing that the probability P(L(R) ≤ εR) is bounded below by Const.ε3 when
R is large.

The proof of part (i) relies on a technical estimate which is of independent inter-
est and that we now present. We first label vertices of the UIPQ by their distances
from the root vertex, and for every integer r ≥ 1, we say that a face of the UIPQ
is r-simple if the labels of the vertices incident to this face take the three val-
ues r − 1, r, r + 1 (note that there are faces such that labels of incident vertices
take only two values, these faces are called confluent in [4]). In each r-simple
face, we draw a “diagonal” connecting the two corners labeled r (these two cor-
ners may correspond to the same vertex), and such diagonals, which are not edges
of the UIPQ, are called r-diagonals. Then there is a “maximal” cycle made of
r-diagonals, which is simple and such that the labels of vertices lying in the un-
bounded component of the complement of this cycle are at least r + 1. We denote
this maximal cycle by Cr , and, for 1 ≤ r < r ′, we define the annulus C(r, r ′) as
the part of the UIPQ between the cycles Cr and Cr ′ . See Section 2 below for more
precise definitions. Note that the cycles Cr are not made of edges of the UIPQ in
contrast with the separating cycles that we consider in Theorem 1 and in the next
proposition.

PROPOSITION 2. Let β ∈ (0,3). There exists a constant C ′
β such that, for

every integer r ≥ 1 and for every integer n ≥ 1, the probability that there exists a
cycle of the UIPQ of length smaller than r , which is contained in C(nr, (n + 2)r),
does not intersect C(n+2)r , and disconnects the root vertex from infinity, is bounded
above by C′

βn−β .

The condition that the cycle does not intersect C(n+2)r is included for technical
convenience, and could be removed from the statement.

The proof of Proposition 2 relies on a “skeleton decomposition” of the UIPQ,
which is already presented in the work of Krikun [13]. Our presentation is however
different from the one in [13] and better suited to our purposes. We introduce and
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use the notion of a truncated quadrangulation, which is basically a planar map with
a boundary, where all faces (distinct from the distinguished one) are quadrangles,
except for those incident to the boundary, which are triangles (see Section 2.1 for
precise definitions). The annulus C(r, r ′) can be viewed as a truncated quadrangu-
lation of the cylinder of height r ′ − r . Our motivation for introducing truncated
quadrangulations comes from the fact that they allow certain explicit calculations
in the UIPQ. For every integer r ≥ 1, we define the “truncated hull” of radius r

of the UIPQ, which is basically the part of the UIPQ inside the maximal cycle Cr

(see Section 2.2 for a precise definition). This truncated hull is different from the
standard hull B•

r (P) introduced above, which had been considered in [7, 8] in par-
ticular, but it is essentially the same object as the hull defined in [13]. It turns out
that it is possible to compute the law of the truncated hull in a rather explicit man-
ner (Corollary 8) and in particular the law of the perimeter of the hull has a very
simple form (Proposition 11). These calculations make heavy use of the skeleton
decomposition of the UIPQ, and more generally of the similar decomposition for
truncated quadrangulations of the cylinder. This decomposition involves a forest
structure, which was already described by Krikun [13], Section 3.2, and is similar
to the one for triangulations that was discovered in [14] and heavily used in the
recent work [5] dealing with first-passage percolation on the UIPT.

Given the forest structure associated with a truncated quadrangulation of the
cylinder, the idea of the proof of Proposition 2 is as follows. One first observes that,
with high probability, there exist, for some δ > 0, more than nδ trees with maximal
height in the forest coding the annulus C(nr, (n+ 2)r). For each of these trees, one
can find a vertex on the cycle Cnr (the interior boundary of the annulus) which
is connected to the exterior boundary C(n+2)r by a path of length 2r . Assuming
that there is a cycle of length r in the annulus that disconnects the root vertex
from infinity, it follows that any two of these particular vertices of Cnr can be
connected by a path staying in the annulus with length at most 5r . Results of
Curien and Miermont [10] about the graph distances between boundary points in
infinite quadrangulations with a boundary, show that this cannot occur except on a
set of small probability.

Our lower bounds on the minimal size of separating cycles lead to interesting
isoperimetric inequalities showing informally that the size of the boundary of a
simply connected set which is a finite union of faces and contains the root vertex
must be at least of the order of the volume raised to the power 1/4. The fact that
we cannot do better than the power 1/4 follows from part (ii) in Theorem 1, since
it is well known [3, 7, 8] that the volume of the ball, or of the standard hull, of
radius r is of order r4. We refer to [17], Chapter 6, for a thorough discussion of
isoperimetric inequalities on infinite graphs.

Let K denote the collection of all simply connected compact subsets of the plane
that are finite unions of faces of the UIPQ (including their boundaries) and contain
the root vertex. For A ∈ K, the volume of A, denoted by |A|, is the number of faces
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of the UIPQ contained in A, and the boundary size of A, denoted by |∂A|, is the
number of edges in the boundary of A.

THEOREM 3. Let δ > 0. Then

inf
A∈K

|∂A|
|A| 1

4 (log |A|)− 3
4 −δ

> 0 a.s.

The exponent 3
4 in the statement of the theorem is presumably not the optimal

one. Our method involves estimates for the tail of the distribution of the volume
of the hull B•

r (P), which are derived from a first moment bound (Proposition 15).
We expect that these estimates can be improved, leading to a better value of the
exponent of log |A| (the results of Riera [20] for the Brownian plane suggest that
one should be able to replace 3

4 by 1
2 in the statement of the theorem). On the

other hand, one cannot hope to replace |A| 1
4 (log |A|)− 3

4 −δ by |A| 1
4 in the theorem:

Simple zero-one arguments using the separating cycles introduced by Krikun [13]

(see Section 2.4 below) show that there exist sets A such that the ratio |∂A|/|A| 1
4

is arbitrarily small.
Still we can state the following proposition.

PROPOSITION 4. Let ε > 0. There exists a constant cε > 0 such that, for every
integer n ≥ 1, the property

|∂A| ≥ cεn
1/4 for every A ∈ K such that |A| ≥ n,

holds with probability at least 1 − ε.

As an immediate consequence of Proposition 4, we also get that, for every ε > 0
and every M > 1, we can find a constant cε,M > 0 such that, for every integer
n ≥ 1,

P

(
inf

A∈K,n≤|A|≤Mn

|∂A|
|A| 1

4

≥ cε,M

)
≥ 1 − ε.

Indeed, we just have to take cε,M = cε/M
1/4, with the notation of Proposition 4.

But, as explained after the statement of Theorem 3, we cannot lift the constraint
n ≤ |A| ≤ Mn in the last display.

The proofs of both Theorem 3 and Proposition 4 rely on Theorem 1 and on the
fact that the volume of the hull of radius r is of order r4. Assuming that |∂A| is
small, then either the root vertex is sufficiently far from ∂A, which implies that
a large ball centered at the root vertex is disconnected from infinity by the small
cycle ∂A (so that we can use the estimate of Theorem 1) or the root vertex is close
to ∂A, but then it follows that the whole set A is contained in the standard hull
of radius (approximately) equal to the distance from the root vertex to ∂A, which
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implies that the volume of A cannot be too big (at this point of the argument, in
the proof of Theorem 3, we need estimates for the tail of the distribution of the
volume of hulls).

The paper is organized as follows. Section 2 presents a number of preliminar-
ies, concerning truncated quadrangulations, their relations with the UIPQ and their
skeleton decompositions, and a number of related calculations. As mentioned ear-
lier, this section owes a lot to the work of Krikun [13], and in particular we make
use of enumeration results derived in [13]. One additional motivation for deriving
the results of Section 2 in a somewhat more precise form than in [13] is the fact
that we plan to use these results in a forthcoming work [16] on local modifications
of distances in the UIPQ, in the spirit of [5]. Proposition 2 is proved in Section 3,
and part (i) of Theorem 1 easily follows from this proposition. Section 4 is devoted
to the proof of part (ii) of Theorem 1. This proof relies on the explicit calculation
of the distribution of the number of trees with maximal height in the forest coding
the annulus C(r, r ′) (Proposition 14). This calculation is also used to give an easy
lower bound for the probability P(L(R) ≤ εR). Section 5 contains the proof of
Proposition 4 and Theorem 3. An important ingredient of the proof of Theorem 3
is Proposition 15, which provides a first moment bound for the volume of hulls.
Finally, the Appendix gives the proof of a technical lemma stated at the end of
Section 2, which plays an important role in Section 3.

2. Preliminaries.

2.1. Truncated quadrangulations. We will consider truncated quadrangula-
tions. Informally, these are quadrangulations with a simple boundary, where the
quadrangles incident to the boundary are replaced by triangles. A more precise
definition is as follows.

DEFINITION 2.1. Let p ≥ 1 be an integer. A truncated quadrangulation with
boundary size p is a planar map M having a distinguished face f with a simple
boundary of size p such that:

• Each edge of the boundary of f is incident both to f and to a triangular face
of M and these triangular faces are distinct.

• All faces other than f and the triangular faces incident to the boundary of f
have degree 4.

It will be convenient to view truncated quadrangulations as drawn in the plane
in such a way that the distinguished face is the unbounded face. With this conven-
tion, we will always assume that a truncated quadrangulation is rooted and, unless
otherwise specified, that the root edge lies on the boundary of the distinguished
face and is oriented clockwise. See Figure 2 for an example. Faces distinct from
the distinguished face are called inner faces, and vertices that do not lie on the
boundary of the distinguished face are called inner vertices.
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FIG. 2. A truncated quadrangulation with boundary size 9, 8 inner vertices and 16 inner faces.

Notice that, when p ≥ 2, any of the triangular faces incident to the boundary of
f must be nondegenerate (i.e., its boundary cannot contain a loop). Furthermore,
a simple argument shows that each of these triangular faces is incident to an inner
vertex. The last property clearly also holds if p = 1. Hence a truncated quadran-
gulation with boundary size p ≥ 1 must have at least one inner vertex.

We notice that our truncated quadrangulations with boundary size p are in one-
to-one correspondence with the “quadrangulations with a simple boundary” of size
2p considered by Krikun [13] (starting from the latter, we just “cut” the boundary
quadrangles along the appropriate diagonals to get a truncated quadrangulation). If
we add an extra vertex v∗ inside the face f, then draw an edge from each vertex of
the boundary of f to v∗, and finally remove all edges of the boundary of f, we get a
plane quadrangulation and hence a bipartite graph: In particular, it follows that, if
v and v′ are two adjacent inner vertices of M, their distances from the boundary
differ by 1. This observation will be useful later.

For integers n ≥ 1 and p ≥ 1, we let Qtr
n,p be the set of all (rooted) truncated

quadrangulations with boundary size p and n inner faces.
We need another definition.

DEFINITION 2.2. Let h,p, q ≥ 1 be positive integers. A truncated quadran-
gulation of the cylinder of height h with boundary sizes (p, q) is a planar map Q
having two distinguished faces fb and ft such that:

• The face fb (called the bottom face) has a simple boundary of size p, which
is called the bottom cycle, and the face ft (called the top face) has a simple bound-
ary of size q , which is called the top cycle.

• Each edge of the bottom cycle (resp., of the top cycle) is incident both to
fb (resp., to ft ) and to a triangular face of Q and these triangular faces are distinct.

• All faces other than fb, ft , and the triangular faces incident to the bottom
and top cycles, have degree 4.



SEPARATING CYCLES AND ISOPERIMETRIC INEQUALITIES 1505

FIG. 3. A truncated quadrangulation Q of the cylinder of height 3 with boundary sizes (5,7).The
two dotted cycles represent ∂1Q and ∂2Q, respectively (see Section 2.3 below for the definition of
∂kQ).

• Every vertex of the top cycle is at graph distance exactly h from the bottom
cycle, and every edge of the top cycle is incident to a triangular face containing a
vertex at graph distance h − 1 from the bottom cycle.

By definition, the inner faces of Q are all faces except the two distinguished
ones. The last assertion of Definition 2.2 shows that the top face and the bottom
face do not play a symmetric role. We will implicitly assume that truncated quad-
rangulations of the cylinder of height h are drawn in the plane so that the top face
is the unbounded face, and that they are rooted in such a way that the root edge
lies on the bottom cycle and is oriented clockwise. See Figure 3 for an example.

In a way similar to the truncated quadrangulations of Definition 2.1, the trian-
gular face associated with an edge of the bottom cycle must contain a vertex which
does not belong to this cycle. The same holds for the top cycle—this is obvious
from the last assertion of Definition 2.2.

2.2. Truncated quadrangulations in the UIPQ. Let us now explain why the
definitions of the previous section are relevant to our study of the UIPQ. We label
vertices of the UIPQ by their graph distance from the root vertex. Then the labels
of corners incident to a face (enumerated in cyclic order along the boundary of
the face) are of the type k, k − 1, k, k − 1 or k, k + 1, k, k − 1 for some integer
k ≥ 1, and the face is called k-simple in the second case. Fix an integer r ≥ 1.
For every r-simple face, we draw a diagonal between the two corners labeled r in
this face, and these diagonals are called r-diagonals. If v is a vertex incident to an
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FIG. 4. The UIPQ near the root vertex. Figures correspond to graph distances from the root vertex.
The dashed lines show the cycles made of r-diagonals, for r = 2, and the cycle in thick dashed lines
is the maximal one. The shaded part is the standard hull of radius 2. Note that the standard hull
contains the truncated hull of the same radius, which is the part delimited by the maximal cycle.

r-diagonal (equivalently, if v has label r and is incident to an r-simple face), then
a simple combinatorial argument shows that the number of r-diagonals incident to
v is even—to be precise, we need to count this number with multiplicities, since
r-diagonals may be loops. It follows that the collection of all r-diagonals can be
obtained as the union of a collection of disjoint simple cycles (disjoint here means
that no edge is shared by two of these cycles). See Figure 4 for an example.

LEMMA 5. There is a unique simple cycle made of r-diagonals such that the
unbounded component of the complement of this cycle contains no r-diagonal and
no vertex at distance less than or equal to r from the root vertex. This cycle will be
called the maximal cycle made of r-diagonals and will be denoted by Cr .

PROOF. It suffices to verify that the root vertex lies inside a bounded com-
ponent of the complement of some cycle made of r-diagonals (this cycle may be
taken to be simple and then satisfies the properties stated in the lemma). To this
end, consider a geodesic γ from the root vertex to infinity and write vr , respec-
tively, vr−1, vr+1, for the unique vertex of γ at distance r , resp. r − 1, r + 1, from
the root vertex. Also write vrvr−1, respectively, vrvr+1, for the edge of γ incident
to vr and vr−1, respectively, to vr and vr+1. Let k1, resp. k2, denote the number
of r-diagonals incident to vr that lie between vrvr+1 and vrvr−1, respectively, be-
tween vrvr−1 and vrvr+1, when turning around vr in clockwise order (self-loops
are counted twice). An easy combinatorial argument shows that both k1 and k2 are
odd. It follows that there must exist a cycle made of r-diagonals that starts with an
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edge lying between vrvr+1 and vrvr−1 (in clockwise order) and ends with an edge
lying between vrvr−1 and vrvr+1. Simple topological considerations now show
that the root vertex, and in fact the whole geodesic path γ up to vertex vr−1 must
lie in a bounded component of the complement of this cycle. �

If we now add all edges of Cr to the UIPQ and then remove all edges that lie in
the unbounded component of the complement of Cr , we get a truncated quadran-
gulation in the sense of Definition 2.1 (with the minor difference that, assuming
that we keep the same root as in the UIPQ, the root edge does not belong to the
boundary of the distinguished face). This truncated quadrangulation is called the
truncated hull of radius r and is denoted by Htr

r . Its boundary size (the length of
Cr ) is called the perimeter of the hull and denoted by Hr . Notice that, by construc-
tion, any vertex belonging to the boundary of the distinguished face is at distance
exactly r from the root vertex. Furthermore, for any vertex v of the UIPQ that does
not belong to Htr

r (equivalently, that lies in the unbounded component of the com-
plement of Cr ) there exists a path going from v to infinity that visits only vertices
with label at least r . This property follows from the fact that any two points of Cr

are connected by a path that visits only vertices with label at least r .
We may and will sometimes view the truncated hull Htr

r as a quadrangulation of
the cylinder: To this end, we just split the root edge into a double edge, and insert
a loop (based on the root vertex) inside the resulting 2-gon. This yields a truncated
quadrangulation of the cylinder of height r with boundary sizes (1,Hr), whose top
cycle is Cr . The root edge is the inserted loop as required in our conventions. See
Figure 5 for an illustration.

Similarly, if 1 ≤ r < r ′, we can consider the part of the UIPQ that lies between
the cycles Cr and Cr ′ . More precisely, we add all edges of Cr and Cr ′ to the UIPQ
and then remove all edges that lie either inside the cycle Cr or outside the cycle Cr ′ .

FIG. 5. Viewing the hull Htr
r as a quadrangulation of the cylinder: The root edge is split in a double

edge, and a loop is inserted inside the resulting 2-gon.
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This gives rise to a quadrangulation of the cylinder of height r ′ − r whose bottom
cycle and top cycle are Cr and Cr ′ , respectively (we in fact need to specify the root
edge on the bottom cycle, but we will come back to this later). By definition, this
is the annulus C(r, r ′). We can extend this definition to r = 0: The annulus C(0, r ′)
is just the truncated hull Htr

r ′ viewed as a quadrangulation of the cylinder (we can
also say that it is the part of the UIPQ that lies between the cycles C0 and Cr ′ , if C0
consists of the loop added as explained above).

As an important remark, we note that the truncated hull of radius r is quite
different from the (usual) hull of radius r considered, for example, in [7, 8], which
is denoted by B•

r (P) and is obtained by filling in the bounded holes in the ball of
radius r (recall that the ball of radius r ≥ 1 is obtained as the union of all faces
incident to at least one vertex whose graph distance from the root vertex is at most
r − 1). To avoid any ambiguity, the hull B•

r (P) will be called the standard hull of
radius r . The truncated hull can be recovered from the standard hull by considering
the maximal cycle made of r-diagonals as explained above. On the other hand,
the standard hull is “bigger” than the truncated hull: To recover the standard hull
from the truncated hull, we need to add the triangles incident to r-diagonals that
have been cut when removing the unbounded component of the complement of
the maximal cycle, but also to fill in the bounded holes that may appear when
adding these triangles (see Figure 4 for an example). For future use, we notice
that the boundary of the standard hull B•

r (P) is a simple cycle, and that the graph
distances of vertices in this cycle to the root vertex alternate between the values r

and r + 1: Those vertices at graph distance r also belong to the cycle Cr , but in
general there are other vertices of Cr that do not belong to the boundary of B•

r (P)

(see Figure 4).

2.3. The skeleton decomposition. We will now describe a decomposition of
quadrangulations of the cylinder in layers. This is essentially due to Krikun [13]
and very similar to the case of triangulations, which is treated in [5, 14]. For this
reason, we will skip some details.

Let us fix a quadrangulation Q of the cylinder of height h ≥ 2 with boundary
sizes (p, q). Assign to each vertex a label equal to its distance from the bottom
boundary. Let k ∈ {1,2, . . . , h − 1}, and consider all diagonals connecting corners
labeled k in k-simple faces (defined in exactly the same manner as in the previous
section for the UIPQ). As in the case of the UIPQ described above, these diagonals
form a collection of cycles, and there is a maximal cycle which is simple and
has the property that the unbounded component of the complement of this cycle
contains no vertex with label less than or equal to k. Define the hull Hk(Q) by first
adding to Q the edges of this maximal cycle and then removing all edges that lie in
the unbounded component of the complement of the maximal cycle. We obtain a
quadrangulation of the cylinder of height k with boundary sizes (p, qk), where qk

denotes the size of the maximal cycle. We write Htr
k (Q) for this quadrangulation
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of the cylinder, and ∂kQ for its top cycle, so that qk = |∂kQ|. See Figure 3 for the
cycles ∂kQ in a particular example.

Suppose now that we add to Q all diagonals drawn in the previous procedure,
for every 1 ≤ k ≤ h − 1 (in other words, we add the cycles ∂kQ for every 1 ≤ k ≤
h − 1), and write Q• for the resulting planar map (whose faces, except for the two
distinguished faces of Q, are either quadrangles or triangles). For every 1 ≤ k ≤ h,
the kth layer of Q is obtained as the part of Q• that lies between the cycles ∂k−1Q
and ∂kQ, where by convention ∂0Q is the bottom cycle of Q and ∂hQ is the top
cycle. We can view this layer as a quadrangulation of the cylinder of height 1 with
boundary sizes (|∂k−1Q|, |∂kQ|) (except that we have not specified the choice of
the root edge—we will come back to this later in the case of interest to us).

We will now introduce an unordered forest F(Q) of (rooted) plane trees that in
some sense describes the configuration of layers. First, note that, for every 1 ≤ k ≤
h, each edge of ∂kQ is incident to a unique triangle of Q• whose third vertex lies
on ∂k−1Q [when k = h, this is a consequence of the last assertion of Definition 2.2,
and when k < h this follows from the way we constructed the triangles incident
to the top boundary of Htr

k (Q)]. We call such triangles downward triangles of
Q• (see the left side of Figure 6). The forest F(Q) consists of exactly q trees,
each tree being associated with an edge of ∂hQ. The vertex set of the forest is
the collection of all edges of ∂kQ, for 0 ≤ k ≤ h. The genealogical relation is
specified as follows: The roots of the trees are the edges of ∂hQ, and, for every
k ∈ {0, . . . , h−1}, an edge e of ∂kQ is a “child” of an edge e′ of ∂k+1Q if and only
if the downward triangle associated with e′ (i.e., containing e′ in its boundary) is
the first one that one encounters when turning around ∂k−1Q in clockwise order,
starting from the middle of the edge e. This definition should be clear from the
right side of Figure 6. Notice that edges of ∂kQ correspond to vertices of the forest
F(Q) at generation h − k, for every 0 ≤ k ≤ h. The planar structure of each tree
in the forest is obviously induced by the planar structure of Q; see again Figure 6.

We note that the root edge of Q is a vertex of F(Q) at generation h and belongs
to one of the trees of F(Q), which we denote by τ1. We may then write τ2, . . . , τq

for the other trees of of F(Q) listed in clockwise order from τ1. Without risk of
confusion, we keep the notation F(Q) for the ordered forest (τ1, . . . , τq).

The ordered forest F(Q) characterizes the combinatorial structure of the down-
ward triangles in Q. To determine Q completely, one also needs to specify the
way “slots” between two successive downward triangles in a given layer are filled
in. More precisely, let e be an edge of ∂kQ, for some 1 ≤ k ≤ h, and let ẽ be the
edge of ∂kQ preceding e in clockwise order (we discuss below the case when there
is only one edge in ∂kQ). The part of the kth layer of Q between the downward
triangle associated with ẽ and the downward triangle associated with e produces
a slot with perimeter ce + 2, where ce is the number of children of e in the forest
F(Q). This slot is said to be associated with e (it is also incident to a unique vertex
v of ∂kQ). See the left side of Figure 7 for an illustration. If ce = 0, it may happen
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FIG. 6. On the left side, the downward triangles, in white, and the slots, in light grey, in the trun-
cated quadrangulation of Figure 3. Notice that each edge incident to two downward triangles has
been split in a double edge, to emphasize the fact that this creates a slot which is a two-gon (whose
filling leads to gluing the two sides of the two-gon in Figure 3). On the right side, the red dashed
lines are the edges of the trees τ1, . . . , τ7 of the forest coding the configuration of downward trian-
gles (notice that τ3, τ4, τ7 are trivial trees consisting only of their root vertex). The roots of the trees
in the forest are the edges of the top cycle, and the trees grow “toward” the bottom cycle.

that the slot is empty, if the downward triangles associated with ẽ and e are adja-
cent. Also notice that when |∂kQ| = 1, the only edge of ∂kQ is a loop, but there
is still an associated slot, which is bounded by the double edge in the boundary of
the downward triangle associated with the unique edge of ∂kQ, and the edges of
∂k−1Q.

The boundary of the slot associated with e is of the type pictured in the left side
of Figure 7, where there are ce horizontal edges and the two nonhorizontal edges
are incident to the downward triangles associated with ẽ and e. Strictly speaking,
the random planar map consisting of the part of Q• in the slot is not a truncated
quadrangulation with a boundary, but a simple transformation allows us to view it
as a truncated quadrangulation with a boundary of size cẽ + 1: this transformation,
which involves adding an extra edge, is illustrated in Figure 7 (see also Figure 6
in [13])—to be precise, one should notice that the two vertices a and b in Figure 7
may be the same if all edges of ∂k−1Q have the same “parent” in ∂kQ, but our
interpretation still goes through. There is therefore a one-to-one correspondence
between possible fillings of the slot and such truncated quadrangulations. To make
this correspondence precise, we need a convention for the position of the root: we
can declare that in the filling of the slot, the root edge of the truncated quadran-
gulation corresponds to the added extra edge. We notice that, in the special case
where ce = 0, if the truncated quadrangulation used to fill in the slot is the unique
truncated quadrangulation with boundary size 1 and no quadrangle, this means that
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FIG. 7. On the left side, the shaded part corresponds to the slot associated with an edge e of ∂kQ,
such that ce = 3. This slot is bounded by the two “vertical edges” av and bv (which are incident
to the downward triangles associated with ẽ and e, resp.) and by three diagonals (in dotted lines
between a and b). On the right side, this slot is viewed as a truncated quadrangulation with boundary
size 4 by adding the edge between a and b in dashed lines.

the slot is empty so that two sides of the downward triangles associated with ẽ and
e are glued together.

Following [5], we say that a forest F with a distinguished vertex is (h,p, q)-
admissible if:

(i) the forest consists of an ordered sequence (T1,T2, . . . ,Tq) of q (rooted)
plane trees,

(ii) the maximal height of these trees is h,
(iii) the total number of vertices of the forest at generation h is p,
(iv) the distinguished vertex has height h and belongs to T1.

If F is a (h,p, q)-admissible forest, we write F∗ for the set all vertices of F at
height strictly less than h. We write F◦

h,p,q for the set of all (h,p, q)-admissible
forests.

The preceding discussion yields a bijection between, on the one hand, truncated
quadrangulations Q of the cylinder of height h with boundary sizes (p, q), and, on
the other hand, pairs consisting of a (h,p, q)-admissible forest F and a collection
(Mv)v∈F∗ such that, for every v ∈ F∗, Mv is a truncated quadrangulation with
boundary size cv + 1, if cv stands for the number of children of v in F . We call
this bijection the skeleton decomposition and we say that F is the skeleton of the
quadrangulation Q.

It will also be convenient to use the notation Fh,p,q for the set of all (ordered)
forests, with no distinguished vertex, that satisfy properties (i), (ii), (iii) above. If
F ∈ Fh,p,q , we keep the notation F∗ for the set all vertices of F at height strictly
less than h.

We also set, for every p ≥ 1, h ≥ 1,

F◦
h,p = ⋃

q≥1

F◦
h,p,q, Fh,p = ⋃

q≥1

Fh,p,q .

We conclude this section with a useful observation about connections between
the truncated hull and the standard hull of the UIPQ. Consider two integers u
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and r with 1 ≤ u < r . Recall that the truncated hull Htr
r is viewed as a truncated

quadrangulation of the cylinder of height r , whose top cycle is Cr . Write F◦
(r) for

the skeleton of this truncated quadrangulation, and also consider the cycle ∂uHtr
r ,

which by construction coincides with Cu. Vertices of this cycle are at distance u

from the root vertex of the UIPQ, and may or may not belong to the boundary of
the standard hull of radius u. However, assuming that |Cu| > 1, if a vertex v of the
cycle Cu is such that the parents (in the forest F◦

(r)) of the two edges of Cu = ∂uHtr
r

incident to v are different edges of the cycle Cu+1 = ∂u+1Htr
r , then v must belong

to the boundary of the standard hull of radius u. We leave the easy verification of
this combinatorial fact to the reader. Notice that this is only a sufficient condition
and that vertices of Cu that do not satisfy this condition may also belong to the
boundary of the standard hull of radius u.

2.4. Geodesics in the skeleton decomposition. Consider again a quadrangu-
lation Q of the cylinder of height h ≥ 2 with boundary sizes (p, q). Let v be a
vertex of ∂kQ for some k ∈ {1, . . . , h}. We assume that |∂kQ| ≥ 2. Then v is inci-
dent to two downward triangles which both contain an edge of ∂kQ and a vertex
of ∂k−1Q. Each of these triangles has an edge incident both to v and to a vertex
of ∂k−1Q, and these two edges (which may be the same if the slot incident to v in
the kth layer of Q is empty) are called downward edges from v. If the slot incident
to v is nonempty, we can in fact define the left downward edge by declaring that
it is the first (downward) edge visited when exploring the boundary of the slot in
clockwise order starting from a point of ∂k−1Q, and the other downward edge is
called the right downward edge (of course if the slot is empty, the left and right
downward edges coincide). We leave it to the reader to adapt these definitions in
the case |∂kQ| = 1—in that case the left and right downward edges form a double
edge.

We then define the left downward geodesic from v by saying that we first follow
the left downward edge from v to arrive at a vertex v′ of ∂k−1Q, then the left down-
ward edge from v′ to a vertex v′′ of ∂k−2Q, and so on until we reach the bottom
cycle ∂0Q. Similarly, we define the right downward geodesic from v by choosing
at the first step the right downward edge from v, but then, as previously, following
left downward edges from the visited vertices. See Figure 8 for an illustration.

Let N be the number of trees with maximal height in the skeleton decomposition
of Q. Assume that N ≥ 2, which implies that |∂kQ| ≥ 2 for every k ∈ {0,1, . . . , h}.
Let e be an edge of ∂hQ corresponding to a tree with maximal height, and let
v be the first vertex incident to e in clockwise order around ∂hQ. Then the left
downward geodesic (resp., the right downward geodesic) from v hits the bottom
cycle at a vertex v1 (resp., at v2) such that the edges of the bottom cycle lying
between v1 and v2 in clockwise order are exactly the descendants of e at generation
h in the skeleton decomposition. See Figure 8 for an example. The concatenation
of these two geodesic paths gives a path from v1 to v2 with length 2h. If we vary
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FIG. 8. A portion of a truncated quadrangulation of the cylinder of height 4. The downward trian-
gles are colored in grey, and the associated slots are in white (they should of course be “filled in”
by truncated quadrangulations as explained in the text). Two successive trees with maximal height
in the coding forest are represented in red. The thick black lines are the (left and right) downward
geodesics from the vertices v and v′ of the top cycle associated with the two trees.

the edge e among all roots of trees with maximal height, we can concatenate the
resulting paths to get a cycle C with length 2Nh, such that any path from the
bottom cycle to the top cycle must visit a vertex of C. In particular, if Q is the
annulus C(R,R + h) in the UIPQ, with R ≥ 3, the cycle C disconnects the ball
BR−2(P) [or the hull B•

R−2(P)] from infinity.

2.5. Enumeration. We rely on the results of Krikun [13]. Recall that Qtr
n,p is

the set of all truncated quadrangulations with boundary size p and n inner faces
(this set is empty if n < p).

Section 2.2 of Krikun [13] provides an explicit formula for the generating func-
tion

U(x, y) =
∞∑

p=1

∞∑
n=1

#Qtr
n,pxnyp.

We will not need this formula, but we record the special case

(1) U

(
1

12
, y

)
= 1

24

√
(18 − y)(2 − y)3 − 1

2
+ y

2
− y2

24
,

for 0 ≤ y < 2.
As a consequence of the explicit formula for the generating function U , we

have, for every fixed p ≥ 1,

(2) #Qtr
n,p ∼

n→∞ κpn−5/212n,
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where the constants κp are determined by the generating function

(3)
∞∑

p=1

κpyp = 128
√

3√
π

y√
(18 − y)(2 − y)3

for 0 ≤ y < 2. We again refer to [13], Section 2.2, for these results. From (3) and
standard singularity analysis ([11], Corollary VI.1), we get

(4) κp ∼
p→∞

64
√

3

π
√

2

√
p2−p.

We also note that

κ1 = 32√
3π

.

2.6. The distribution of hulls. Fix integers n and p with n ≥ p. Let Q(n)
p be

uniformly distributed over Qtr
n,p and given with a distinguished vertex chosen uni-

formly at random. Let r ≥ 1. If the height (distance from the boundary) of this
distinguished vertex is at least r + 1, we can make sense of the hull Hr (Q(n)

p ).
To this end, we label each vertex by its graph distance from the boundary of the
distinguished face, and we proceed in a way very similar to the case of the UIPQ
discussed in Section 2.2. We consider all diagonals connecting corners labeled r in
r-simple faces (of type r − 1, r, r + 1, r), and the maximal cycle made of these di-
agonals, which has the property that the connected component of the complement
of this cycle containing the distinguished vertex contains only vertices whose label
is greater than r . We then add to Q(n)

p the edges of this maximal cycle, and remove
all edges lying in the connected component of the complement of this cycle con-
taining the distinguished vertex. In this way, we obtain the hull Hr (Q(n)

p ), and it is

easy to verify that Hr (Q(n)
p ) is a quadrangulation of the cylinder of height r (the

size of its bottom cycle is p). If the height of the distinguished vertex is smaller
than or equal to r , the preceding definition no longer makes sense, but by conven-
tion we define Hr (Q(n)

p ) = † to be some “cemetery point” added to the set of all
quadrangulations of the cylinder of height r .

The next lemma, which is an analog of Lemma 2 in [5], shows that the distribu-
tion of Hr (Q(n)

p ) has a limit when n → ∞. We let Q be a fixed quadrangulation of
the cylinder of height r with boundary sizes (p, q). This quadrangulation is coded
by an (r,p, q)-admissible forest F and a collection (Mv)c∈F∗ , such that, for every
v ∈ F∗, Mv is a truncated quadrangulation with boundary size cv +1. Let Inn(Mv)

denote the number of inner faces of Mv .

LEMMA 6. We have

(5) lim
n→∞P

(
Hr

(
Q(n)

p

)=Q
)= 2qκq

2pκp

∏
v∈F∗

(
θ(cv)

12−Inn(Mv)

Z(cv + 1)

)
,
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where, for every k ≥ 1,

Z(k) =
∞∑

n=k

#Qtr
n,k12−n,

and θ is the critical offspring distribution defined by

θ(k) = 6 · 2kZ(k + 1).

The generating function of θ is given for 0 ≤ y < 1 by

(6) gθ (y) = 1 − 8

(
√

9−y
1−y

+ 2)2 − 1
.

We note that the property Z(k) < ∞ follows from (2).

PROOF. We proceed in a very similar way to the proof of Lemma 2 in [5]. Let
N be the number of inner faces of Q, which is also the total number of vertices of
Q (by Euler’s formula). We observe that the property Hr (Q(n)

p ) = Q holds if and

only if Q(n)
p is obtained from Q by gluing on the top boundary of Q an arbitrary

truncated quadrangulation with boundary size q and n − (N − q) inner faces (for
this gluing to make sense we need to specify an edge of the top boundary of Q,
which can be the root of the first tree in the forest F ), and if the distinguished
vertex of Q(n)

p is chosen among the inner vertices of this truncated quadrangulation.

Noting that Q(n)
p has n + 1 vertices, it follows that

P
(
Hr

(
Q(n)

p

)=Q
)= #Qtr

n−(N−q),q

#Qtr
n,p

× n + 1 − N

n + 1
.

Using (2), we get

(7) lim
n→∞P

(
Hr

(
Q(n)

p

)= Q
)= κq

κp

12−N+q .

Simple combinatorics shows that the number of inner faces of Q can be written
as

(8) N = p + ∑
v∈F∗

(
Inn(Mv) − cv

)
.

So the right-hand side of (7) is also equal to
κq

κp

12q−p
∏

v∈F∗

(
12cv 12−Inn(Mv)

)
.

It is now straightforward to verify that the last quantity is equal to the right-hand
side of (5). Just observe that

12cvZ(cv + 1) = 6cv−1θ(cv)
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and notice that ∑
v∈F∗

(cv − 1) = p − q.

To see that θ is an offspring distribution, we rely on (1), which shows that the
generating function of θ is

gθ (y) :=
∞∑

k=0

θ(k)yk

= 6
∞∑

k=0

∞∑
n=k+1

yk2k12−n#Qtr
n,k+1

= 6

2y
U

(
1

12
,2y

)

= 1

2y

(√
(9 − y)(1 − y)3 − 3 + 6y − y2),

in agreement with Theorem 2 of [13]. Since gθ (1) = 1, θ is a probability distribu-
tion, and the fact that θ is critical is obtained by checking that g′

θ (1) = 1.
Finally, a somewhat tedious calculation shows that the formula for gθ in the last

display is equivalent to the one given in the statement of the lemma. The latter is
more convenient to compute iterates of gθ , as we will see below in formula (15).

�

From the explicit form of gθ , we have

gθ (1 − x) = 1 − x + √
2x3/2 + O

(
x2)

as x ↓ 0. By singularity analysis, it follows that

(9) θ(k) ∼
k→∞

3
√

2

4
√

π
k−5/2.

REMARK. The offspring distribution θ appears in the seemingly different con-
text of labeled trees. Consider a critical Galton–Watson tree with geometric off-
spring distribution with parameter 1/2. Given the tree, assign labels to vertices by
declaring that the label of the root is 0 and that label increments on different edges
are independent and uniformly distributed over {−1,0,1}. Let N be the number
of vertices labeled −1 whose (strict) ancestors all have nonnegative labels. Then
N is distributed according to θ (see [9], Proof of Theorem 5.2). Via Schaeffer’s
bijection relating plane quadrangulations to labeled trees, this interpretation of θ

is in fact closely related to Lemma 6.
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We define, for every p ≥ 1,

(10) h(p) := 1

p
2pκp.

LEMMA 7. Let p ≥ 1. The formula

μr,p(F) := h(q)

h(p)

∏
v∈F∗

θ(cv), F ∈ Fr,p,q, q ≥ 1

defines a probability measure on Fr,p . Consequently, the formula

μ◦
r,p(F) := 2qκq

2pκp

∏
v∈F∗

θ(cv), F ∈ F◦
r,p,q, q ≥ 1

defines a probability measure on F◦
r,p .

PROOF. Let  be the generating function of the sequence (h(k))k≥1,

(x) :=
∞∑

k=1

h(k)xk.

To verify that μr,p defines a probability distribution on the set Fr,p , it is enough to
check that (h(k))k≥1 is an (infinite) stationary measure for the branching process
with offspring distribution θ , or equivalently that, for every 0 < y < 1,

(11) 
(
gθ (y)

)− 
(
gθ (0)

)= (y).

From (3), we get by integration that

∞∑
p=1

κp

xp

p
= 48√

π

(√
18 − x

3(2 − x)
− √

3
)
,

and, for 0 < x < 1,

(x) = 48√
3π

(√
9 − x

1 − x
− 3

)
.

From this explicit formula and (6), the desired identity (11) follows at once.
Once we know that μr,p is a probability distribution on Fr,p , the fact that μ◦

r,p

is a probability distribution on F◦
r,p follows easily. First, note that

μ̃
(
(F, v)

) := 1

p
μr,p(F)

defines a probability distribution on the set of all pairs (F, v) consisting of a forest
F ∈ Fr,p and a distinguished vertex v of F at generation r . Then notice that μ◦

r,p is
just the push forward of μ̃ under the mapping (F, v) → F ′, where F ′ is obtained
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by circularly permuting the trees of F so that v belongs to the first tree of the
forest. This completes the proof. �

Let us consider now the UIPQ. Recall our notation Htr
r for the truncated hull

of radius r , and Hr for the perimeter of Htr
r , which is also the length of the cycle

Cr . For every r,p ≥ 1, let Cr,p be the set of all truncated quadrangulations of the
cylinder of height r with bottom boundary size p and arbitrary top boundary size.
If Q ∈ Cr,p and the size of the top boundary of Q is q , we set

�r,p(Q) = 2qκq

2pκp

∏
v∈F∗

(
θ(cv)

12−Inn(Mv)

Z(cv + 1)

)
,

where (F, (Mv)v∈F∗) is the skeleton decomposition of Q.

COROLLARY 8. �r,p is a probability measure on Cr,p . Furthermore, the dis-
tribution of Htr

r is �r,1.

PROOF. The fact that �r,p is a probability measure on Cr,p readily follows
from the second assertion of Lemma 7, noting that, by the very definition of Z(k),
we have

∞∑
n=1

#Qtr
n,k+1

12−n

Z(k + 1)
= 1.

To get the second assertion of the corollary, let Qn stand for the set of all (rooted)
planar quadrangulations with n faces. Via the transformation that consists in split-
ting the root edge to get a double edge, and then inserting a loop inside the result-
ing 2-gon (as in Figure 5), the set Qn is canonically identified to Qtr

n+1,1. From the
local convergence of planar quadrangulations to the UIPQ [13], we deduce that
the distribution of the hull of radius r in a uniformly distributed quadrangulation
in Qtr

n,1 (equipped with a distinguished uniformly distributed vertex) converges to
the distribution of the hull of radius r in the UIPQ. The second assertion of the
corollary now follows from Lemma 6. �

COROLLARY 9. The distribution of Hr is given by

P(Hr = p) = h(p)

h(1)
Pp(Yr = 1), p ≥ 1,

where (Yn)n≥0 denotes a Galton–Watson branching process with offspring distri-
bution θ that starts from p under the probability measure Pp .

PROOF. Let F◦
(r) be the skeleton of the hull Htr

r viewed as a quadrangulation
of the cylinder of height r . As a direct consequence of the second assertion of
Corollary 8, F◦

(r) is distributed as μ◦
r,1. Define F(r) from F◦

(r) by “forgetting” the
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distinguished vertex and applying a uniform random circular permutation to the
trees in the sequence. Arguing as in the end of the proof of Lemma 7, it follows
that F(r) is distributed according to μr,1.

Since Hr is just the number of trees in the forest F(r), we have

P(Hr = p) = ∑
F∈Fr,1,p

P(F(r) = F) = h(p)

h(1)

∑
F∈Fr,1,p

∏
v∈F∗

θ(cv),

and the desired result follows. �

REMARK. One can interpret the distribution of Hr as the limit when T → ∞
of the distribution at time T − r of a Galton–Watson process X with offspring
distribution θ started from X0 = 1 and conditioned on the event {XT = 1}. This
suggests that one may code the combinatorial structure of downward triangles in
the whole UIPQ (and not only in a hull of fixed radius) by an infinite tree, which
could be viewed as the genealogical tree for a Galton–Watson process with off-
spring distribution θ , indexed by nonpositive integer times and conditioned to be
equal to 1 at time 0. This interpretation will not be needed in the present work and
we omit the details.

Let us now fix integers 0 ≤ u < r . As explained earlier, the annulus C(u, r) is
the part of the UIPQ that lies between the cycles Cu and Cr—recall our convention
for C0 from Section 2.2—and C(u, r) is viewed as a truncated quadrangulation of
the cylinder of height r − u with boundary sizes (Hu,Hr). We now specify the
root edge of C(u, r), by declaring that it corresponds to the root of the tree, in the
skeleton decomposition of Htr

u , that carries the root edge of the UIPQ (of course
when u = 0, the root edge is the unique edge of C0).

Let F◦
u,r be the skeleton of C(u, r), which is a random element of

⋃
p≥1 F

◦
r−u,p .

It will be convenient to introduce also the forest Fu,r (in
⋃

p≥1 Fr−u,p) obtained
from F◦

u,r by first “forgetting” the distinguished vertex and then applying a uni-
form random circular permutation to the trees in the sequence.

COROLLARY 10. Let p ≥ 1. The conditional distribution of Fu,r knowing that
Hu = p is μr−u,p .

PROOF. Recall the notation F◦
(r),F(r) introduced in the previous proof. We

notice that, if (τ1, . . . , τHr ) are the trees in the forest F◦
(r), the trees in the forest

F◦
u,r are just (τ

[r−u]
1 , . . . , τ

[r−u]
Hr

), where the notation τ
[r−u]
i refers to the tree τi

truncated at generation r − u. It follows that Fu,r can be assumed to be equal to
the forest F(r) truncated at generation r − u. Note that Hu is just the number of
vertices of F(r) at generation r − u.

Let q ≥ 1 and G ∈ Fr−u,p,q . We have

P(Fu,r = G) = ∑
F∈Fr,1:F [r−u]=G

P(F(r) =F),
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using the notation F [r−u] for the forest F truncated at generation r − u. It follows
that

P(Fu,r = G) = h(q)

h(1)

∑
F∈Fr,1:F [r−u]=G

∏
v∈F∗

θ(cv)

= h(q)

h(1)

∏
v∈G∗

θ(cv)
∑

F̃∈Fu,1,p

∏
v∈F̃∗

θ(cv),

where we just use the fact that a forest F ∈ Fr,1 such that F [r−u] = G is obtained
by “gluing” a forest of Fu,1,p to the p vertices of G at generation r − u. As in
Corollary 9 and its proof, we have∑

F̃∈Fu,1,p

∏
v∈F̃∗

θ(cv) = Pp(Yu = 1) = h(1)

h(p)
P(Hu = p).

So we get

P(Fu,r = G) = h(q)

h(p)

∏
v∈G∗

θ(cv) × P(Hu = p) = P(Hu = p)μr−u(G).

This completes the proof. �

2.7. The law of the perimeter of hulls. We give a more explicit formula for the
distribution of Hr .

PROPOSITION 11. We have, for every r ≥ 1 and p ≥ 1,

(12) P(Hr = p) = Krκp(2πr)
p

where

πr = 1 − 8

(3 + 2r)2 − 1
= r(r + 3)

(r + 1)(r + 2)

Kr = 32

3κ1

3 + 2r

((3 + 2r)2 − 1)2

1

πr

= 2

3κ1

2r + 3

r(r + 1)(r + 2)(r + 3)
.

Consequently, there exist positive constants M1,M2 and ρ such that, for every
a > 0, for every integer r ≥ 1,

(13) P
(
Hr ≥ ar2)≤ M1e

−ρa

and

(14) P
(
Hr ≤ ar2)≤ M2a

3/2.

We notice that Kr ∼ (4/(3κ1))r
−3 as r → ∞ and recall that κ1 = 32√

3π
.



SEPARATING CYCLES AND ISOPERIMETRIC INEQUALITIES 1521

PROOF OF PROPOSITION 11. We rely on the formula of Corollary 9. Recall-
ing that (Yn)n≥0 denotes a Galton–Watson branching process with offspring dis-
tribution θ that starts from p under the probability measure Pp , and using formula
(6), we obtain that the generating function of Yr under P1 is

(15) g
(r)
θ (y) = gθ ◦ · · · ◦ gθ︸ ︷︷ ︸

r times

(y) = 1 − 8

(
√

9−y
1−y

+ 2r)2 − 1
.

It follows that

(16) P1(Yr = 0) = g
(r)
θ (0) = 1 − 8

(3 + 2r)2 − 1
= πr,

and

Pp(Yr = 1) = lim
x↓0

1

x

(
Ep

[
xYr

]− Pp(Yr = 0)
)

= lim
x↓0

1

x

(
g

(r)
θ (x)p − g

(r)
θ (0)p

)
= pg

(r)
θ (0)p−1 × 64

3

3 + 2r

((3 + 2r)2 − 1)2

= 64

3
p

3 + 2r

((3 + 2r)2 − 1)2

(
1 − 8

(3 + 2r)2 − 1

)p−1
.

(17)

Since

h(p)

h(1)
= 1

p

2pκp

2κ1
,

Corollary 9 and (17) lead to formula (12). Finally, the bounds (13) and (14) are
simple consequences of this explicit formula and the asymptotics (4) for the con-
stants κp . To derive (13), we observe that we can find a constant η > 0 such that
P(Hr ≥ ar2) is bounded above by a constant times

r−3
∑

p>ar2

√
p × e−ηp/r2 ≤ Cst.r−3

∫ ∞
ar2/2

√
xe−ηx/r2

dx

= Cst. ×
∫ ∞
a/2

√
ye−ηy dy,

and the proof of (14) is even easier just bounding πr by 1. �

2.8. A conditional limit for branching processes. We keep the notation
(Yn)n≥0 for a branching process with offspring distribution θ , which starts at p

under the probability measure Pp .
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LEMMA 12. We have

P1(Yr �= 0) ∼
r→∞

2

r2

and the distribution of r−2Yr under P1(· | Yr �= 0) converges to the distribution
with Laplace transform

1 −
(

1 +
√

2

λ

)−2
.

PROOF. The first assertion is immediate from (16). Next, from (15) and (16),
we have

E1
[
e−λr−2Yr 1{Yr �=0}

]= 8

(3 + 2r)2 − 1
− 8

(

√
1 + 8

1−e−λr−2 + 2r)2 − 1

and it easily follows that

r2

2
E1
[
e−λr−2Yr 1{Yr �=0}

] −→
r→∞ 1 −

(
1 +

√
2

λ

)−2
,

giving the desired result. �

2.9. An estimate on discrete bridges. In this short section, which is indepen-
dent of the previous ones, we state an estimate for discrete bridges, which plays an
important role in the proof of Proposition 2 in the next section.

Let K ≥ 1 be an integer, and let (b(0), b(1), . . . , b(2K)) be a discrete bridge of
length 2K . This means that (b(0), b(1), . . . , b(2K)) is uniformly distributed over
sequences (x0, x1, . . . , x2K) such that x0 = x2K = 0 and |xi − xi−1| = 1 for every
i = 1, . . . ,2K . It will be convenient to define intervals on {0,1, . . . ,2K − 1} in
a cyclic manner: If i, j ∈ {0,1, . . . ,2K − 1}, [i, j ] = {i, i + 1, . . . , j} as usual if
i ≤ j , but [i, j ] = {i, i + 1, . . . ,2K − 1,0,1, . . . , j} if i > j .

Let c > 0 be a fixed constant and let r ≥ 1 be an integer. For every integer k ≥ 2,
we let Pk,K(r) stand for the event where there exist integers 0 ≤ m1 < m2 < · · · <
mk < 2K , such that mi − mi−1 ≥ cr2 for every 2 ≤ i ≤ k, and m1 + 2K − mk ≥
cr2, and, for every i, j ∈ {1, . . . , k},

b(mi) + b(mj ) − 2 max
(

min
�∈[mi,mj ]b(�), min

�∈[mj ,mi ]
b(�)

)
≤ 5r.

LEMMA 13. There exist constants C > 0 and γ ∈ (0,1), which only depend
on c, such that, for every r ≥ 1 and every k ≥ 2,

P
(
Pk,K(r)

)≤ C

k

(
K

r2

)2
γ k.

We postpone the proof to the Appendix.
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3. Lower bound on the size of the separating cycle. In this section, we
prove Proposition 2, and then explain how part (i) of Theorem 1 follows from
this result.

PROOF OF PROPOSITION 2. As a preliminary observation, we note that it is
enough to prove that the stated bound holds for n large enough (and for every
r ≥ 1). Let u and w be two integers with 0 ≤ u < w. Recall the notation Fu,w for
the forest obtained from the skeleton of C(u,w) by forgetting the distinguished
vertex and then applying a uniform random circular permutation to the trees in the
forest. By Corollary 10, we have for every p,q ≥ 1 and F ∈ Fw−u,p,q ,

P(Fu,w = F | Hu = p) = h(q)

h(p)

∏
v∈F∗

θ(cv),

where h is defined in (10). By Corollary 9, we have

h(q)

h(p)
= P(Hw = q)

P(Hu = p)

Pp(Yu = 1)

Pq(Yw = 1)
,

where we must take p = 1 if u = 0. It follows that

P(Fu,w = F) = P(Hw = q)
Pp(Yu = 1)

Pq(Yw = 1)

∏
v∈F∗

θ(cv)

and, therefore,

(18) P(Fu,w = F | Hw = q) = Pp(Yu = 1)

Pq(Yw = 1)

∏
v∈F∗

θ(cv) = ϕu(p)

ϕw(q)

∏
v∈F∗

θ(cv),

with the notation

(19) ϕu(p) = Pp(Yu = 1) = 64

3
p

3 + 2u

((3 + 2u)2 − 1)2 πp−1
u ,

by (17). We will apply formula (18) with u = nr and w = (n + 2)r for integers
n, r ≥ 1.

Let us fix α > 0, β > 0 with α < 2 < β and β − 2 < α. Let c0 > 0 be a constant
whose value will be specified later. Say that a plane tree satisfies property (P )r
if it has at least c0r

2 vertices of generation 2r − 1 that have at least one child at
generation 2r . Thanks to Lemma 12, we can choose the constant c0 > 0 small
enough so that, for every r large enough, the probability for a Galton–Watson tree
with offspring distribution θ to satisfy property (P )r is greater than a0r

−2, for
some other constant a0 > 0. Let δ be another constant, with 0 < δ < α. We write
�n,r for the collection of all forests in⋃

p,q≥1

F2r,p,q
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having at least nδ trees that satisfy property (P )r . Our first goal is to find an upper
bound for

P(Fnr,(n+2)r /∈ �n,r).

From (13), we have

(20) sup
r≥1

(
max

(
P
(
Hnr > nβr2),P(H(n+2)r > nβr2)))= O

(
e−nε )

as n → ∞, with a constant ε > 0 that depends only on β . On the other hand, by
(14), we have also

(21) P
(
H(n+2)r < nαr2)≤ M2n

3
2 (α−2),

and the constant M2 does not depend on r .
We then restrict our attention to

P
(
Fnr,(n+2)r /∈ �n,r , n

αr2 ≤ H(n+2)r ≤ nβr2,Hnr ≤ nβr2)
= ∑

nαr2≤q≤nβr2

P(H(n+2)r = q)(22)

× P
(
Hnr ≤ nβr2,Fnr,(n+2)r /∈ �n,r |H(n+2)r = q

)
.

Fix q such that nαr2 ≤ q ≤ nβr2. We have

P
(
Hnr ≤ nβr2,Fnr,(n+2)r /∈ �n,r | H(n+2)r = q

)
= ∑

p≤nβr2

P(Hnr = p,Fnr,(n+2)r /∈ �n,r | H(n+2)r = q)(23)

= ∑
p≤nβr2

ϕnr(p)

ϕ(n+2)r (q)

∑
F∈Fp,q,2r\�n,r

∏
v∈F∗

θ(cv)

by formula (18).
For p ≤ nβr2, we first bound the quantity

ϕnr(p)

ϕ(n+2)r (q)
≤ M

p

q

(πnr)
p−1

(π(n+2)r )q−1 ,

where M is a constant and the quantities πr were defined in Proposition 11. Since
πnr ≤ 1, we obtain that

(24)

ϕnr(p)

ϕ(n+2)r (q)
≤ M

p

q
(π(n+2)r )

−q ≤ Mnβ−α exp
(

Aq

n2r2

)
≤ Mnβ−α exp

(
Anβ−2)

with some constant A. On the other hand, the quantity

(25)
∑

p≤nβr2

∑
F∈Fp,q,2r\�n,r

∏
v∈F∗

θ(cv)
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is bounded above by the probability that a forest of q independent Galton–Watson
trees with offspring distribution θ (truncated at level 2r) is not in �n,r . For each
tree in this forest, the probability that it satisfies property (P )r is at least a0/r2.
The quantity (25) is thus bounded above by

P
(
ε1 + · · · + εq < nδ),

where the random variables ε1, ε2, . . . are i.i.d., with P(ε1 = 1) = 1 −P(ε1 = 0) =
a0r

−2. Since q ≥ nαr2 and α > δ, standard estimates on the binomial distribution
show that the quantity in the last display is bounded above by exp(−ã0n

α) for all n

sufficiently large and for every r ≥ 1, with some other constant ã0 > 0. Recalling
(24), we get that the quantity (23) is bounded above for n large by

Mnβ−α exp
(
Anβ−2) exp

(−ã0n
α).

Since β − 2 < α, this shows that the left-hand side of (22) goes to 0 faster than any
negative power of n, uniformly in r ≥ 1.

By combining this observation with (20) and (21), we obtain that, for n large
enough,

(26) P(Fnr,(n+2)r /∈ �n,r) ≤ C ′n
3
2 (α−2)

with a constant C′ independent of r .
Let us argue on the event {Fnr,(n+2)r ∈ �n,r}. If τ is a tree of Fnr,(n+2)r with

height 2r , the vertices of τ at height 2r correspond to consecutive edges of Cnr ,
and if v = v(τ) is the last vertex in clockwise order that is incident to these edges,
we know from Section 2.4 that there is a downward geodesic path from a vertex
ṽ of C(n+2)r (incident to the edge which is the root of τ ) to v, which has length
exactly 2r . Also, by the comments of the end of Section 2.3, we know that v(τ)

belongs to the boundary of the standard hull of radius nr . Moreover, let τ and τ ′
be two distinct trees of Fnr,(n+2)r with height 2r , and assume that they both satisfy
property (P )r . Then the part of the boundary of the standard hull of radius nr

between v(τ) and v(τ ′), in clockwise or in counterclockwise order, must contain
at least c0r

2 vertices: This follows from the definition of property (P )r and the
fact that, with each vertex a of τ (or of τ ′) at generation 2r − 1 having at least
one child at generation 2r we can associate a vertex of the UIPQ—namely, the
last vertex (in clockwise order) incident to the edges that are children of a—which
belongs to the boundary of the standard hull of radius nr , as explained at the end
of Section 2.3.

Write C•
nr for the boundary of the standard hull B•

nr(P) and H •
nr for its perime-

ter (note that H •
nr ≤ 2Hnr ). Also let P•

nr stand for the complement of B•
nr(P) in

the UIPQ, viewed as an infinite quadrangulation with (simple) boundary C•
nr . By

the preceding observations, the property Fnr,(n+2)r ∈ �n,r implies that there are
vertices u1, u2, . . . , uk of C•

nr , with k ≥ nδ , such that, for every 1 ≤ i ≤ k, ui is
at graph distance nr from the root vertex of the UIPQ and is connected to a ver-
tex ũi of C(n+2)r by a path of length 2r , and moreover, if i �= j , ui and uj are
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separated by at least c0r
2 edges of C•

nr . Furthermore, write En,r for the event con-
sidered in Proposition 2: En,r is the event where there exists a cycle γ of length
smaller than r that stays in C(nr, (n + 2)r), does not intersect C(n+2)r , and discon-
nects the root vertex of P from infinity. On the event En,r ∩ {Fnr,(n+2)r ∈ �n,r},
for every i ∈ {1, . . . , k}, the path from ui to ũi must intersect the latter cycle: In-
deed, if we concatenate this path with a geodesic from the root vertex to ui and
then with a path which goes from the vertex ũi to infinity and does not visit ver-
tices at distance smaller than (n + 2)r from the root (see Section 2.2), we get a
path �i from the root vertex to infinity, which must intersect γ . It follows that, for
every i, j ∈ {1, . . . , k}, we can construct a path of length at most 5r between ui

and uj that stays in C(nr, (n + 2)r). Since ui and uj both belong to C•
nr , a simple

combinatorial argument shows that this path can be required to stay in P•
nr .

We then use the fact that, conditionally on H •
nr , P•

nr is an infinite planar quad-
rangulation with a simple boundary of size H •

nr , which is independent of B•
nr(P):

This follows from the spatial Markov property of the UIPQ (we refer to Theorem
5.1 in [2] for the UIPT, and the argument for the UIPQ is exactly the same). For
every even integer m ≥ 2, write P(m) for the UIPQ with simple boundary of length
m (see [10]) and ∂P(m) for the collection of its boundary vertices. Also denote the
graph distance on the vertex set of P(m) by d(m)

gr . Let E (m,n,r)
1 stand for the event

where there are at least k = �nδ� vertices v1, . . . , vk of ∂P(m) such that, if i �= j ,
vi and vj are separated by at least c0r

2 edges of ∂P(m), and moreover

d(m)
gr (vi, vj ) ≤ 5r.

We will verify that sup{P(E (m,n,r)
1 ) : m ≤ 2nβr2} decays exponentially in n uni-

formly in r . Since by previous observations, we know that

P
(
En,r ∩ {Fnr,(n+2)r ∈ �n,r})≤ sup

{
P
(
E (m,n,r)

1

) : m ≤ 2nβr2}
Proposition 2 will follow from the bound (26) [observe that we can choose α > 0
small so that 3

2(2 − α) is as close to 3 as desired].
In order to get the preceding exponential decay, we first replace the UIPQ with

simple boundary P(m) by the UIPQ with general boundary of the same size, which
we denote by P̃(m), and without risk of confusion, we keep the notation d(m)

gr for
the graph distance (see again [10] for the definition of the UIPQ with general
boundary). We write c0, c1, . . . , cm−1 for the “exterior” corners of the boundary
of P̃(m) enumerated in clockwise order starting from the root corner. Consider
the event E (m,n,r)

2 where one can find integers 0 ≤ p1 < p2 < · · · < pk < m, with
k = �nδ�, such that pi+1 −pi ≥ c0r

2 for every 1 ≤ i < k, and p1 +m−pk ≥ c0r
2,

and furthermore

d(m)
gr (cpi

, cpj
) ≤ 5r

whenever i �= j . In order to bound the probability of E (m,n,r)
2 , recall that, from

the results of [10] about infinite planar quadrangulations with a boundary, we can
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assign labels �(0), �(1), . . . , �(m−1) to the corners c0, c1, . . . , cm−1, which corre-
spond to “renormalized” distances from infinity, and are such that �(0) = 0. More-
over, the sequence (�(0), �(1), . . . , �(m)) [with �(m) = 0] is a discrete bridge of
length m, and we have, for every i, j ∈ {0,1, . . . ,m − 1},
(27) d(m)

gr (ci , cj ) ≥ �(i) + �(j) − 2 max
(

min
m∈[i,j ]�(m), min

m∈[j,i]�(m)
)

with the same convention for intervals as in Section 2.9. The bound (27) follows
from the “treed bridge” representation of P̃(m) in [10], Theorem 2, as an instance
of the so-called cactus bound (see [15], Proposition 5.9(ii), for the case of finite
planar quadrangulations, and [12], Lemma 3.7, for the case of finite quadrangula-
tions with a boundary—the proof in our infinite setting is exactly the same). We
can thus apply the bound of Lemma 13 to the bridge (�(0), �(1), . . . , �(m)) to get
that P(E (m,n,r)

2 ) decays exponentially as n → ∞ uniformly in m ≤ 10nβr2 and in
r ≥ 1.

We still need to verify that a similar exponential decay holds if we replace
P(E (m,n,r)

2 ) by P(E (m,n,r)
1 ). To this end, we rely on Theorem 4 of [10], which states

that conditionally on the event where the size of its boundary is equal to m′, the
core of P̃(m) is distributed as P(m′) (the core of P̃(m) is obtained informally by re-
moving the finite “components” of P̃(m) that can be disconnected from the infinite
part by removing just one vertex; see Figure 2 in [10]). Furthermore, the probabil-
ity that the boundary size of the core of P̃(3m) is equal to m is bounded below by
c1m

−2/3 for some constant c1 > 0, as shown in the proof of Theorem 1 of [10].
Noting that the graph distance between two vertices of the core only depends on
the core itself (and not on the finite components hanging off the core), we easily
conclude that

P
(
E (m,n,r)

1

)≤ (
c1m

−2/3)−1
P
(
E (3m,n,r)

2

)
,

and this completes the proof of Proposition 2. �

Let us now explain how part (i) of Theorem 1 is derived from Proposition 2.

PROOF OF THEOREM 1(i). Let R ≥ 1 and let ε ∈ (0,1/2). Without loss of
generality we can assume that εR ≥ 1. Suppose that γ is a cycle separating BR(P)

from infinity, with length smaller than r := �εR�. Also let n = �1/ε� so that nr ≤
R. Then the cycle γ disconnects Bnr(P) from infinity, which also implies that it
disconnects B•

nr(P) from infinity [in particular, γ does not intersect B•
nr(P)]. Let

k ≥ 0 be the first integer such that γ intersects the annulus C((n+k)r, (n+k+1)r).
Then γ is contained in C((n + k)r, (n + k + 2)r) and does not intersect C(n+k+2)r

(otherwise this would contradict the fact that γ has length smaller than r). These
considerations show that the event {L(R) ≤ εR} is contained in the union over k ≥
0 of the events where there exists a cycle of length smaller than r that is contained
in C((n+ k)r, (n+ k + 2)r), does not intersect C(n+k+2)r , and disconnects the root
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vertex from infinity. Hence, if β ∈ (1,3) is given, we deduce from Proposition 2
that

P
(
L(R) ≤ εR

)≤
∞∑

k=0

C′
β(n + k)−β ≤ C̃βn−β+1 = C̃β

(�1/ε�)−β+1
.

The result of Theorem 1(i) follows. �

4. Upper bound on the size of the separating cycle. In this section, we prove
Theorem 1(ii). We recall the notation Fu,w introduced before Corollary 10, for
integers 0 ≤ u < w. We write Nu,w for the number of trees of Fu,w that have
maximal height w − u. As explained in Section 2.4, for every integer R ≥ 3, one
can find a cycle of the UIPT that disconnects the ball BR−2(P) from infinity and
whose length is bounded above by 2RNR,2R . In order to get bounds on NR,2R , we
determine more generally the distribution of Nu,w for any 1 ≤ u < w.

PROPOSITION 14. The generating function of Nu,w is given by

E
[
aNu,w

]= a

(
9 − πw

9 − aπw − (1 − a)πw−u

)1/2( 1 − πw

1 − aπw − (1 − a)πw−u

)3/2
,

where we recall the notation

πk = g
(k)
θ (0) = 1 − 8

(3 + 2k)2 − 1
.

Consequently, Nu,w has the same distribution as 1 + U + V , where U and V

are independent, U follows the negative binomial distribution with parameters
(1

2 ,
πw−πw−u

9−πw−u
) and V follows the negative binomial distribution with parameters

(3
2 ,

πw−πw−u

1−πw−u
).

PROOF. Let q ≥ 1 and first condition on the event Hw = q . By formula (18),

E
[
aNu,w | Hw = q

]= ∑
F∈⋃p≥1 Fw−u,p,q

aNw−u(F) ϕu(Yw−u(F))

ϕw(q)

∏
v∈F∗

θ(cv),

where Yw−u(F) is the number of vertices of the forest F at generation w − u, and
Nw−u(F) denotes the number of trees of this forest with maximal height w − u.
Using the explicit formula (19) for ϕu(p), we get

(28) E
[
aNu,w | Hw = q

]= f (u)

ϕw(q)
Eq

[
Yw−uπ

Yw−u−1
u aNw−u

]
,

where

f (u) = 64

3

3 + 2u

((3 + 2u)2 − 1)2 ,
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and under the probability measure Pq , we consider a forest of q independent
Galton–Watson trees with offspring distribution θ , (Yk)k≥1 denoting the associ-
ated Galton–Watson process.

Let us compute the quantity Eq[Yw−uπ
Yw−u−1
u aNw−u]. To simplify notation, we

set m = w − u. It is convenient to write ξ for a random variable distributed as the
number of vertices at generation m in a Galton–Watson tree with offspring distri-
bution θ conditioned to be nonextinct at generation m. Then a simple argument
shows that

(29) Eq

[
YmπYm−1

u aNm
]=

∞∑
k=1

Pq(Nm = k)kE
[
ξπξ−1

u

](
E
[
πξ

u

])k−1
ak,

and furthermore,

E
[
πξ

u

]= g
(m)
θ (πu) − g

(m)
θ (0)

1 − g
(m)
θ (0)

= πw − πm

1 − πm

, E
[
ξπξ−1

u

]= ġ
(m)
θ (πu)

1 − g
(m)
θ (0)

,

where ġ
(m)
θ stand for the derivative of g

(m)
θ . We are thus led to the calculation of

∞∑
k=1

Pq(Nm = k)k

(
πw − πm

1 − πm

)k−1
ak = aEq

[
Nm

(
a

(
πw − πm

1 − πm

))Nm−1]
.

Since Eq[aNm] = (a(1 − πm) + πm)q and so Eq[NmaNm−1] = q(1 − πm)(a(1 −
πm) + πm)q−1, we easily obtain that the quantities in (29) are equal to

qaġ
(m)
θ (πu)

(
a(πw − πm) + πm

)q−1
.

We substitute this in (28) and then use the formula for the distribution of Hw in
Proposition 11. It follows that

E
[
aNu,w

]= f (u)aġ
(m)
θ (πu)

∞∑
q=1

Kw

ϕw(q)
κqq

(
a(πw − πm) + πm

)q−1
(2πw)q.

To compute the sum of the series in the last display, first note that

q
Kw

ϕw(q)
(2πw)q = 1

κ1
2q−1.

It follows that

E
[
aNu,w

]= f (u)aġ
(m)
θ (πu)

κ1

∞∑
q=1

κq

(
2
(
a(πw − πm) + πm

))q−1

= 32
√

3√
π

f (u)aġ
(m)
θ (πu)

κ1
√

(9 − (a(πw − πm) + πm))(1 − (a(πw − πm) + πm))3



1530 J.-F. LE GALL AND T. LEHÉRICY

by (3). A simple calculation shows that

ġ
(m)
θ (πu) = f (w)

f (u)
.

Recalling that κ1 = 32√
3π

, we get

E
[
aNu,w

]= 3f (w)a
1√

(9 − (a(πw − πm) + πm))(1 − (a(πw − πm) + πm))3

and we just have to note that

f (w) = 1

3

√
(9 − πw)(1 − πw)3,

by an easy calculation. �

REMARK. Certain details of the previous proof could be simplified by using
the interpretation suggested in the remark following Corollary 9.

PROOF OF THEOREM 1(ii). As we already noticed, we have L(R − 2) ≤
2RNR,2R for every R ≥ 3, and we also note that R → L(R) is nondecreasing.
Then the proof boils down to verifying that there exist constants C ′ and λ′ > 0
such that, for every R ≥ 1, E[exp(λ′NR,2R)] ≤ C′. Noting that

π2R − πR

1 − πR

is bounded above by a constant η < 1, this follows from Proposition 14 and the
form of the negative binomial distribution. �

REMARK. We can also use Proposition 14 to get a lower bound on the prob-
ability that is bounded above in Theorem 1(i). From Proposition 14, we have im-
mediately

P(Nu,w = 1) =
(

9 − πw

9 − πw−u

)1/2( 1 − πw

1 − πw−u

)3/2
,

and taking u = R and w = �(1 + ε)R�, we get

P(NR,�(1+ε)R� = 1) −→
R→∞

(
ε

1 + ε

)3
.

Since we know that L(R − 2) ≤ 2εRNR,�(1+ε)R�, we conclude that

lim inf
R→∞ P

(
L(R) ≤ 2εR

)≥
(

ε

1 + ε

)3
,

which should be compared with Theorem 1(i). Note that we get a lower bound
by (a constant times) ε3, whereas the upper bound of Theorem 1(i) gives εδ for
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every δ < 2. It is very plausible that one can refine the preceding argument, by
considering all annuli of the form C�(1+nε)R�,�(1+(n+1)ε)R�, and get also a lower
bound of order ε2 (of course one should deal with the lack of independence of the
variables N�(1+nε)R�,�(1+(n+1)ε)R�).

5. Isoperimetric inequalities. In this section, we prove Theorem 3 and
Proposition 4. We start with the proof of Proposition 4, which is easier.

PROOF OF PROPOSITION 4. We first observe that we can assume that n is
larger than some fixed integer, by then adjusting the constant cε if necessary. In
agreement with the notation of the introduction, write |B•

r (P)| for the number of
faces of the UIPQ contained in the standard hull B•

r (P).
By Theorem 5.1 in [7] (or [8], Section 6.2), we know that r−4|B•

r (P)| converges
in distribution as r → ∞ to a limit which is finite a.s. It follows that we can fix an
integer M > 0 such that, for every r ≥ 1,

(30) P
(∣∣B•

r (P)
∣∣< Mr4)≥ 1 − ε

2
.

On the other hand, for every r ≥ 1 and every integer N ≥ 1, let Er,N stand
for the event where the minimal length of a cycle separating Br(P) from infinity is
greater than r/N . By Theorem 1, we can fix N ≥ 1 large enough so that P(Er,N) >

1 − ε/2 for every r ≥ 1.
We fix c > 0 such that M(N + 1)4c4 < 1. Then, let n ≥ 1 large enough so that

cn1/4 ≥ 1 and M((N + 1)�cn1/4�)4 < n. We argue on the event{∣∣B•
(N+1)�cn1/4�(P)

∣∣< n
}∩ EN�cn1/4�,N

which has probability at least 1−ε by the preceding observations [we use (30) and
our choice of c].

We claim that, on latter event, we have |∂A| ≥ cn1/4 for every A ∈ K such that
|A| ≥ n. Indeed, writing � for the root vertex of P , we distinguish two cases:

• If dgr(�, ∂A) > N�cn1/4� + 1, we note that the ball BN�cn1/4�(P) is sep-
arated from infinity by the cycle ∂A, which implies that |∂A| ≥ cn1/4 by the very
definition of the event EN�cn1/4�,N .

• If dgr(�, ∂A) ≤ N�cn1/4� + 1, then we argue by contradiction assum-
ing that |∂A| < cn1/4 and in particular the diameter of ∂A is bounded above by
�cn1/4� − 1. To simplify notation, we set rn = (N + 1)�cn1/4�. The property
dgr(�, ∂A) ≤ N�cn1/4� + 1 ensures that any vertex of ∂A is at distance at most
rn from �, and therefore any edge of ∂A is incident to a vertex at distance at most
rn −1 from �. It follows that any face incident to an edge of ∂A is contained in the
hull B•

rn
(P). Consequently, the whole boundary ∂A is contained in B•

rn
(P), and so

is the set A. In particular, |A| ≤ |B•
rn

(P)| < n, which is a contradiction with our
assumption |A| ≥ n.

This completes the proof of Proposition 4. �
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Before we proceed to the proof of Theorem 3, we state a proposition which is a
key ingredient of this proof.

PROPOSITION 15. There exists a constant M0 such that, for every r ≥ 1,

E
[∣∣B•

r (P)
∣∣]≤ M0r

4.

We postpone the proof of Proposition 15 to the end of the section.

PROOF OF THEOREM 3. Thanks to Proposition 15 and Markov’s inequality,
we have for every r ≥ 1, for every a > 0,

(31) P
(∣∣B•

r (P)
∣∣≥ a

)≤ M0r
4

a
.

We then proceed in a way very similar to the proof of Proposition 4. Let δ ∈
(0,1/4) and δ′ = δ/2. For every integer p ≥ 1, set

cp = p− 3
4 −δ

and

Np = ⌈
p

1
2 +δ′⌉

.

Recalling the notation Er,N in the proof of Proposition 4, we first observe that the
bound of Theorem 1(i) implies

∞∑
p=1

P
(
Ec

Np�cp2p/4�,Np

)
< ∞.

Similarly, the bound (31) gives

∞∑
p=1

P
(∣∣B•

(Np+1)�cp2p/4�(P)
∣∣≥ 2p)< ∞.

The Borel–Cantelli lemma then shows that a.s. there exists an integer p0 such that
the event {∣∣B•

(Np+1)�cp2p/4�(P)
∣∣< 2p}∩ ENp�cp2p/4�,Np

holds for every p ≥ p0. However, we can now reproduce the same arguments as
in the end of the proof of Proposition 4 (replacing n by 2p , N by Np and c by cp)
to get that, if the latter event holds for some p ≥ 1, then for every A ∈ K such that
2p ≤ |A| ≤ 2p+1, we have

|∂A| ≥ ⌈
cp2p/4⌉≥ 2−1/4(log 2)|A| 1

4
(
log |A|)− 3

4 −δ
.

This completes the proof. �
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We still have to prove Proposition 15. We note that the continuous analog of the
UIPQ, or of the UIPT, is the Brownian plane introduced in [6]. For every r > 0 the
definition of the hull of radius r makes sense in the Brownian plane and the explicit
distribution of the volume of the hull was computed in [7], showing in particular
that the expected volume is finite and (by scaling invariance) equal to a constant
times r4. On the other hand, in the case of the UIPT, Ménard [18] was recently able
to compute the exact distribution of the volume of hulls. Such an exact expression
is not yet available in the case of the UIPQ, and so we use a different method based
on the skeleton decomposition.

Before we proceed to the proof of Proposition 15, we state a lemma concern-
ing truncated quadrangulations with a Boltzmann distribution. Let p ≥ 1. We say
that a random truncated quadrangulation M with boundary size p ≥ 1 is Boltz-
mann distributed if, for every integer n ≥ 1, for every M ∈ Qtr

n,p , P(M = M) =
Z(p)−112−n.

LEMMA 16. There exists a constant L0 > 0 such that, for every p ≥ 1, if Mp

is a Boltzmann distributed truncated quadrangulation with boundary size p,

E
[
#Inn(Mp)

] ∼
p→∞ L0p

2.

REMARK. By analogy with the case of triangulations [8], Proposition 9, one
expects that p−2#Inn(Mp) converges in distribution to (a scaled version of) the
distribution with density (2π)−1/2x−5/2 exp(− 1

2x
).

PROOF OF LEMMA 16. By definition,

E
[
#Inn(Mp)

]= Z(p)−1
∞∑

n=p

n12−n#Qtr
n,p.

In particular, (2) shows that E[#Inn(Mp)] < ∞. From the definition of U in Sec-
tion 2.5, we have

Z(p) =
∞∑

n=p

12−n#Qtr
n,p = [

yp]U(
1

12
, y

)
,

where as usual [yp]U( 1
12 , y) denotes the coefficient of yp in the series expansion

of U( 1
12 , y). Then the explicit formula (1), and standard singularity analysis [11],

Corollary VI.1, show that

(32) Z(p) ∼
p→∞ c′p−5/22−p

for some constant c′ > 0, whose exact value is unimportant for our purposes. Sim-
ilarly,

∞∑
n=p

n12−n#Qtr
n,p = [

yp]∂U

∂x

(
1

12
, y

)
,
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where the partial derivative is a left derivative at x = 1/12. Formula (3) in [13]
gives

∂U

∂x

(
1

12
, y

)
= −y2

2
− y

2

y2 − 10y − 32√
(18 − y)(2 − y)

and again singularity analysis leads to

(33)
∞∑

n=p

n12−n#Qtr
n,p ∼

p→∞ c′′p−1/22−p

for some other constant c′′ > 0. The lemma now follows from (32) and (33). �

PROOF OF PROPOSITION 15. We first observe that in the statement of the
proposition we may replace the standard hull B•

r (P) by the truncated hull Htr
r .

Indeed, the standard hull B•
r (P) is contained in the truncated hull Htr

r+1. So let
N(r) be the number of inner faces in the truncated hull Htr

r . We aim at proving that
E[N(r)] ≤ M0r

4 for some constant M0.
Recall our notation F◦

(r) for skeleton of Htr
r . As we already noticed in the proof

of Corollary 9, F◦
(r) is distributed according to μ◦

r,1. The fact that the distribution
of Htr

r is �r,1 (Corollary 8) yields that, conditionally on F◦
(r) = F , the truncated

quadrangulations Mv , v ∈ F∗ associated with the “slots” are independent, and Mv

is Boltzmann distributed with boundary size cv + 1, with the notation cv for the
number of offspring of v in F . We then observe that, still on the event {F◦

(r) = F},
N(r) ≤ ∑

v∈F∗
#Inn(Mv)

[see formula (8) in the proof of Lemma 6]. Using Lemma 16, it follows that

E
[
N(r) |F◦

(r) = F
]≤ L0E

[ ∑
v∈F∗

(1 + cv)
2
]
.

As previously, it is convenient to use the notation F(r) for the forest obtained by
forgetting the distinguished vertex of F◦

(r) and applying a uniform circular permu-
tation to the trees of F◦

(r). From the last display, we have also

(34) E[N(r)] ≤ L0E

[ ∑
v∈F∗

(r)

(1 + cv)
2
]
,

where we abuse notation by still writing cv for the number of offspring of the
vertex v of F(r).

In order to bound the expectation in the last display, we first consider vertices
v that are roots of trees in F(r) (or equivalently which correspond to edges of Cr ).
In the forthcoming calculations, we also assume that r ≥ 2. Let c(1), c(2), . . . , c(Hr)
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denote the offspring numbers of the roots of the successive trees in F(r). Using
formula (18) applied with u = r − 1 and w = r , we get, for every k ≥ 1,

E

[
Hr∑
i=1

(1 + c(i))
2|Hr = k

]
= E

[
ϕr−1(ξ1 + · · · + ξk)

ϕr(k)

k∑
i=1

(1 + ξi)
2

]
,

where ξ1, ξ2, . . . are i.i.d. with distribution θ . Recall formula (12) for the distri-
bution of Hr , and the definition (19) of ϕr(k). Using also the estimate (4) for
asymptotics of the constants κp , we get, with some constant L1,

P(Hr = k)

ϕr(k)
≤ L1√

k
.

We have therefore

E

[
Hr∑
i=1

(1 + c(i))
21{Hr=k}

]
≤ L1√

k
E

[
ϕr−1

(
k∑

i=1

ξi

)
k∑

i=1

(1 + ξi)
2

]
.

At this point, we again use (19) to see that there exist positive constants L2, L3, a1
such that, for every � ≥ 1,

ϕr−1(�) ≤ L2
�

r3

(
1 − a1

r2

)�

≤ L2
�

r3 exp
(
−a1�

r2

)
≤ L3

r
exp

(
−a1�

2r2

)
.

It follows that

E

[
Hr∑
i=1

(1 + c(i))
21{Hr=k}

]

≤ L1L3

r
√

k
E

[(
k∑

i=1

(1 + ξi)
2

)
exp

(
− a1

2r2

k∑
i=1

ξi

)]

= L1L3
√

k

r
E

[
(1 + ξ1)

2 exp
(
− a1

2r2 ξ1

)](
E

[
exp

(
− a1

2r2 ξ1

)])k−1
.

Using the asymptotics (9) for θ(k), it is elementary to verify that

E

[
(1 + ξ1)

2 exp
(
− a1

2r2 ξ1

)]
≤ L4r

for some constant L4. Moreover, we can also find a constant a2 > 0 such that

E

[
exp

(
− a1

2r2 ξ1

)]
≤ 1 − a2

r2 .

We then conclude that

E

[
Hr∑
i=1

(1 + c(i))
21{Hr=k}

]
≤ L1L2L4

√
k

(
1 − a2

r2

)k−1
.
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By summing this estimate over k ≥ 1, we get

E

[
Hr∑
i=1

(1 + c(i))
2

]
≤ L5r

3

with some other constant L5.
A similar estimate holds if instead of summing over the roots of trees in the

forest F(r) we sum over vertices at generation r − j , for every 1 ≤ j ≤ r − 1,
as this amounts to replacing F(r) by the forest F(j) (the case j = 1 requires a
slightly different argument since we assumed r ≥ 2 in the above calculations). By
summing over j , recalling (34), we conclude that

E[N(r)] ≤ L0E

[ ∑
v∈F∗

(r)

(1 + cv)
2
]

≤ L6

r∑
j=1

j3

with some constant L6. This completes the proof of Proposition 15. �

APPENDIX: PROOF OF LEMMA 13

We first note that Pk,K(r) is trivially empty if k > 2K/(cr2). If k ≤ 2K/(cr2)

and if we restrict our attention to k ≤ k0 for some constant k0, the bound of the
lemma holds for any choice of γ ∈ (0,1) by choosing the constant C large enough.
So we may assume that k ≥ k0 where k0 can be taken large (but fixed).

Recall that (b(0), b(1), . . . , b(2K)) stands for a discrete bridge of length 2K .
We first observe that, for every � ∈ {0,1, . . . ,2K − 1}, we can “re-root” the bridge
b(·) at � by setting, for every j ∈ {0,1, . . . ,2K},

b�(j) :=
{
b(� + j) − b(�) if � + j ≤ 2K,

b(� + j − 2K) − b(�) if � + j > 2K.

Then b�(·) is again a discrete bridge of length 2K . Moreover the property defining
the event Pk,K(r) holds for b(·) with the sequence of times (m1, . . . ,mk) if and
only if it holds for b�(·) with the sequence (m

(�)
1 , . . . ,m

(�)
k ) which is obtained by

ordering the representatives in {0,1, . . . ,2K − 1} of m1 − �, . . . ,mk − � modulo
2K .

We start with a trivial observation. Let 0 ≤ m1 < m2 < · · · < mk < 2K be inte-
gers. If i0 ∈ {1, . . . , k} is an index such that the minimal value of b(·) is attained
in the interval [mi0,mi0+1] (there is at least one such value i0), then, for every
i, j ∈ {1, . . . , k}, i �= j , the maximum

max
(

min
�∈[mi,mj ]b(�), min

�∈[mj ,mi ]
b(�)

)
is attained for the one among the two intervals [mi,mj ] and [mj,mi] that does not
contain [mi0,mi0+1].
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Suppose that 0 ≤ m1 < m2 < · · · < mk < 2K are such that the property of the
definition of Pk,K(r) holds, and that k ≥ 16 is an integer multiple of 4 (we can
make the latter assumption without loss of generality). As already mentioned, the
property defining Pk,K(r) still holds if b(·) is replaced by the re-rooted bridge
b�(·), for every � ∈ {0,1, . . . ,2K − 1}, with the sequence 0 ≤ m

(�)
1 < m

(�)
2 < · · · <

m
(�)
k defined as explained above. Moreover, a simple argument shows that there

are at least k
2 values of i ∈ {1, . . . , k} such that, if � ∈ (mi,mi+1], the minimum

of b�(·) is attained in an interval [m(�)
j ,m

(�)
j+1] with k

4 ≤ j < 3k
4 . Suppose that �

is chosen uniformly at random in {0,1, . . . ,2K − 1}, conditionally given b(·):
the conditional probability for the minimum of b�(·) to be attained in an interval
[m(�)

j ,m
(�)
j+1] with k

4 ≤ j < 3k
4 is thus at least

k
2 × cr2

2K
.

It follows that

ckr2

4K
P
(
Pk,K(r)

)≤ P
(
P∗

k,K(r)
)
,

where P∗
k,K(r) is defined as Pk,K(r) but imposing the additional constraint that

the minimum of b(·) is attained in an interval [mi0,mi0+1] with k
4 ≤ i0 < 3k

4 .
If P∗

k,K(r) holds with the sequence (m1, . . . ,mk), at least one of the two proper-
ties mk/4 < K or m3k/4 > K holds. We write P∗∗

k,K(r) for the event where P∗
k,K(r)

holds and mk/4 < K and we will bound the probability of P∗∗
k,K(r) (the other case

where m3k/4 > K can be treated by time-reversal and leads to the same bound).
Let us argue on the event P∗∗

k,K(r). Using the definition of Pk,K(r) and the trivial
observation made at the beginning of the proof, we note that, if 1 ≤ i ≤ k/4,

b(mk) + b(mi) − 2 min
�∈[mk,mi ]

b(�) < 5r

and in particular

(35) b(mi) < min
�∈[mk,mi ]

b(�) + 5r ≤ b(mi) + 5r,

using the notation b(�) = min{b(j) : 0 ≤ j ≤ �}.
We fix an integer n ≥ 1 such that, if S(0), S(1), . . . is a simple random walk on

Z started from 0, the quantity

P
(

min
0≤�≤�ncr2�

S(�) ≥ −10r
)

is bounded above by a constant α < 1 independent of r ≥ 1. Notice that the choice
of n only depends on c. In what follows we assume that k is large enough so that
(k

4 − 1)/n ≥ 1 (recall the first observation of the proof).
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We then define by induction T1 = 0 and, for every integer p ≥ 1,

Tp+1 := inf
{
� ≥ Tp + ncr2 : b(�) ≤ b(�) + 5r

}∧ K,

where inf∅= ∞ as usual. Recalling that we argue on P∗∗
k,K(r), we notice that there

are at least �(k
4 − 1)/n� (consecutive) values of p ≥ 1 such that m1 ≤ Tp ≤ mk/4.

Indeed, the first time Tp that exceeds m1 must be smaller than mn+1 [by (35) and
our assumption mi+1 − mi > cr2], the next one must be smaller than m2n+1 if
2n + 1 ≤ k/4, and so on. Moreover, if p ≥ 1 is such that m1 ≤ Tp < Tp+1 ≤ mk/4,
we have

b(Tp) ≤ b(Tp) + 5r ≤ b(m1) + 5r ≤ min
�∈[m1,mk/4]

b(�) + 10r

≤ min
�∈[Tp,Tp+1]

b(�) + 10r,

where in the third inequality we use the fact that b(m1) ≤ min{b(�) : � ∈
[m1,mk/4]} + 5r , from the definition of Pk,K(r). Set Nk = �(k

4 − 1)/n� − 1. We
have obtained that P∗∗

k,K(r) is contained in the event

Ek,K(r) :=
∞⋃

j=0

{
Tj+Nk+1 < K

and b(Tj+p) ≤ min
�∈[Tj+p,Tj+p+1]

b(�) + 10r, for every 1 ≤ p ≤ Nk

}
.

Note that in the last display we can restrict the union to values of j ∈ {0,1, . . . ,

� K
ncr2 � − 1}, since by construction Tp ≥ (p − 1)ncr2 if Tp < K .

Recall that S(0), S(1), . . . is a simple random walk on Z started from 0,
and let T̃1, T̃2, . . . be the stopping times defined like T1, T2, . . . by replacing
(b(0), . . . , b(2K)) by (S(0), . . . , S(2K)) and removing “∧K”. We know that the
distribution of (b(0), b(1), . . . , b(K)) is absolutely continuous with respect to that
of (S(0), S(1), . . . , S(K)), with a Radon–Nikodym derivative that is bounded by
a constant M independent of K . It follows that

P
(
Ek,K(r)

)≤ M

� K

ncr2 �−1∑
j=0

P
(
S(T̃j+p) ≤ min

�∈[T̃j+p,T̃j+p+1]
S(�) + 10r,∀1 ≤ p ≤ Nk

)

≤ M ×
⌊

K

ncr2

⌋
× P

(
min

0≤�≤ncr2
S(�) ≥ −10r

)Nk

≤ M ×
⌊

K

ncr2

⌋
× αNk

using the strong Markov property of S in the second line, and our choice of n in
the last one. We conclude that

P
(
P∗∗

k,K(r)
)≤ P

(
Ek,K(r)

)≤ M ×
⌊

K

ncr2

⌋
× αNk
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and since we have

P
(
Pk,K(r)

)≤
(

ckr2

4K

)−1
× 2P

(
P∗∗

k,K(r)
)

we get the bound of the lemma.
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