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Let P be a simple, stationary point process on Rd having fast decay of
correlations, that is, its correlation functions factorize up to an additive error
decaying faster than any power of the separation distance. Let Pn := P ∩Wn

be its restriction to windows Wn := [− 1
2n1/d , 1

2n1/d ]d ⊂ Rd . We consider

the statistic H
ξ
n := ∑

x∈Pn
ξ(x,Pn) where ξ(x,Pn) denotes a score func-

tion representing the interaction of x with respect to Pn. When ξ depends
on local data in the sense that its radius of stabilization has an exponential
tail, we establish expectation asymptotics, variance asymptotics and central

limit theorems for H
ξ
n and, more generally, for statistics of the re-scaled, pos-

sibly signed, ξ -weighted point measures μ
ξ
n := ∑

x∈Pn
ξ(x,Pn)δn−1/dx , as

Wn ↑ Rd . This gives the limit theory for nonlinear geometric statistics (such
as clique counts, the number of Morse critical points, intrinsic volumes of
the Boolean model and total edge length of the k-nearest neighbors graph) of
α-determinantal point processes (for −1/α ∈ N) having fast decreasing ker-
nels, including the β-Ginibre ensembles, extending the Gaussian fluctuation
results of Soshnikov [Ann. Probab. 30 (2002) 171–187] to nonlinear statis-
tics. It also gives the limit theory for geometric U -statistics of α-permanental
point processes (for 1/α ∈N) as well as the zero set of Gaussian entire func-
tions, extending the central limit theorems of Nazarov and Sodin [Comm.
Math. Phys. 310 (2012) 75–98] and Shirai and Takahashi [J. Funct. Anal.
205 (2003) 414–463], which are also confined to linear statistics. The proof
of the central limit theorem relies on a factorial moment expansion originat-
ing in [Stochastic Process. Appl. 56 (1995) 321–335; Statist. Probab. Lett.
36 (1997) 299–306] to show the fast decay of the correlations of ξ -weighted
point measures. The latter property is shown to imply a condition equivalent

to Brillinger mixing, and consequently yields the asymptotic normality of μ
ξ
n

via an extension of the cumulant method.
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1. Introduction and main results. Functionals of geometric structures on fi-
nite point sets X ⊂ Rd often consist of sums of spatially dependent terms admitting
the representation

(1.1)
∑
x∈X

ξ(x,X ),

where the R-valued score function ξ , defined on pairs (x,X ), x ∈ X , represents
the interaction of x with respect to X , called the input. The sums (1.1) typically
describe a global geometric feature of a structure on X in terms of local contribu-
tions ξ(x,X ).

It is frequently the case in stochastic geometry, statistical physics and spatial
statistics that one seeks the large n limit behavior of

(1.2) Hξ
n := Hξ

n (P) := ∑
x∈Pn

ξ(x,Pn),
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where ξ is an appropriately chosen score function, P is a simple, stationary point
process on Rd , and Pn is the restriction of P to Wn := [−1

2n1/d, 1
2n1/d ]d . For

example, if Pn is either a Poisson or binomial point process and if ξ is either
a local U -statistic or an exponentially stabilizing score function, then the limit
theory for H

ξ
n is established in [5, 15, 27, 29, 40, 42, 45, 48]. If Pn is a rarified

Gibbs’ point process on Wn and ξ is exponentially stabilizing, then [50, 54] treat
the limit theory for H

ξ
n .

It is natural to ask whether the limit theory of these papers extends to more gen-
eral input satisfying a notion of “asymptotic independence” for point processes.
Recall that if ξ ≡ 1 and if P is an α-determinantal point process with α = −1/m or
an α-permanental point process with α = 2/m for some m in the set of positive in-
tegers N (resp., P is the zero set of a Gaussian entire function), then remarkable re-
sults of Soshnikov [53], Shirai and Takahashi [52] (resp., Nazarov and Sodin [37]),
show that the counting statistic Pn(Wn) := ∑

x∈Pn
1[x ∈ Wn] is asymptotically

normal. One may ask whether asymptotic normality of H
ξ
n still holds when ξ is

either a local U -statistic or an exponentially stabilizing score function. We answer
these questions affirmatively. Loosely speaking, subject to a mild growth condition
on VarHξ

n , our approach shows that H
ξ
n is asymptotically normal whenever P is a

point process having fast decay of correlations.
Heuristically, when the score functions depend on “local data” and when the

input is “asymptotically independent,” one might expect that the statistics H
ξ
n

obey a strong law and a central limit theorem. The notion of dependency on “lo-
cal data” for score functions is formalized via stabilization in [5, 15, 40, 42, 45].
Here we formalize the idea of asymptotically independent input P via the notion
of “fast decay of correlation functions.” We thereby extend the limit theory of
the aforementioned papers to input having fast decay of correlation functions. A
point process P on Rd has fast decay of correlations if for all p,q ∈ N and all
x1, . . . , xp+q ∈ Rd , its correlation functions ρ(p+q)(x1, . . . , xp+q) factorize into
ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q) up to an additive error decaying faster than
any power of the separation distance

s := d
({x1, . . . , xp}, {xp+1, . . . , xp+q})

(1.3)
:= inf

i∈{1,...,p},j∈{p+1,...,p+q} |xi − xj |

as at (1.10) below. Here |x| denotes the Euclidean norm of x ∈ Rd . Roughly speak-
ing, such point processes exhibit asymptotic independence at large distances. Ex-
amples of such point processes are given in Section 2.2. Point processes with fast
decay of correlations are called “clustering point processes” in statistical physics
[32, 34, 37]. We shall avoid this terminology since, at least from the point of view
of spatial statistics, it suggests that the points of P clump or aggregate together,
which need not be the case.
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If either P has fast decay of correlations and ξ is a local U -statistic or if P
has exponentially fast decay of correlations and ξ is an exponentially stabilizing
score function, then with δx denoting the point mass at x, our main results establish
expectation and variance asymptotics as n → ∞, as well as central limit theorems
for the re-scaled, possibly signed, ξ -weighted point measures

(1.4) μξ
n := ∑

x∈Pn

ξ(x,Pn)δn−1/dx,

thereby also establishing the limit theory for the total mass of μ
ξ
n given by the

nonlinear statistics H
ξ
n .

As shown in Theorems 1.12–1.15, this yields the limit theory for general non-
linear statistics of α-determinantal and α-permanental point processes, the point
process given by the zero set of a Gaussian entire function, as well as rarified
Gibbsian input.

The benefit of the general approach taken here is four-fold: (i) we establish the
asymptotic normality of the random measures μ

ξ
n, with P either an α-permanental

point process (with 1/α ∈ N), an α-determinantal point process (with −1/α ∈ N)
or the zero set of a Gaussian entire function, thereby extending the work of Sosh-
nikov [53], Shirai and Takahashi [52] and Nazarov and Sodin [37], who restrict
to linear statistics, (ii) we extend the limit theory of [5, 29, 40–42, 45], which is
confined to Poisson and binomial input, to point processes having fast decay of
correlations, (iii) we apply our general results to deduce asymptotic normality and
variance asymptotics for geometric statistics of input having fast decay of correla-
tions, including statistics of simplicial complexes and germ-grain models, clique
counts, Morse critical points, as well of statistics of random graphs (cf. Section 2.3
of [10]), (iv) our general proof of the asymptotic normality of μ

ξ
n relates the fast

decay of correlations of the input process P to a similar fast correlation decay for
the family of ξ -weighted (point) measures

(1.5)
∑

x∈Pn

ξ(x,Pn)δx,

consequently implying Brillinger mixing of these measures, and thus directly re-
lating the two concepts: Fast decay of correlations implies Brillinger mixing.

Given input P having fast decay of correlations, an interesting feature of the
measures μ

ξ
n is that their variances are at most of order Vold(Wn), the vol-

ume of the window Wn (Theorem 1.12). This holds also for the statistic Ĥ
ξ
n :=∑

x∈Pn
ξ(x,P), which involves summands having no boundary effects. An inter-

esting feature of this statistic is that if its variance is o(Vold(Wn)) then it has to be
O(Vold−1(∂Wn)), where ∂Wn denotes the boundary of Wn and Vold−1(·) stands
for the (d − 1)th intrinsic volume (Theorem 1.15). In other words, if the fluctua-
tions of Ĥ

ξ
n are not of volume order, then they are at most of surface order.
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Coming back to our setup, when a functional H
ξ
n (P) is expressible as a sum of

local U -statistics or, more generally, as a sum of exponentially stabilizing score
functions ξ , then a key step towards proving the central limit theorem is to show
that the correlation functions of the ξ -weighted measures defined via Palm expec-
tations Ex1,...,xk

(cf. Section 1.1) and given by

m(k1,...,kp+q)(x1, . . . , xp+q;n)

:= Ex1,...,xp+q

(
ξ(x1,Pn)

k1 . . . ξ(xp+q,Pn)
kp+q

)
(1.6)

× ρ(p+q)(x1, . . . , xp+q),

similar to those of the input process P , approximately factorize into

m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kp+q)(xp+1, . . . , xp+q;n),

uniformly in n ≤ ∞, up to an additive error decaying faster than any power of
the separation distance s, defined at (1.3). Here x1, . . . , xp+q are distinct points
in Wn and k1, . . . , kp+q ∈ N. This result, spelled out in Theorem 1.11, is at the
heart of our approach. We then give two proofs of the central limit theorem (The-
orem 1.13) for the purely atomic random measures (1.4) via the cumulant method,
and as a corollary, derive the asymptotic normality of H

ξ
n (P) and

∫
f dμ

ξ
n, f a

test function, as n → ∞. The proof of expectation and variance asymptotics (The-
orem 1.12) mainly relies upon the refined Campbell theorem.

In contrast to the aforementioned works, our proof of the fast decay of cor-
relations of the ξ -weighted measures depends heavily on a factorial moment ex-
pansion for expected values of functionals of a general point process P . This ex-
pansion, which originates in [8, 9], is expressed in terms of iterated difference
operators of the considered functional on the null configuration of points and in-
tegrated against factorial moment measures of the point process. It is valid for
general point processes, in contrast to the Fock space representation of Poisson
functionals, which involves the same difference operators but is deeply related to
chaos expansions [30]. Further connections with the literature are discussed in the
remarks following Theorems 1.14 and 1.15.

Our interest in these issues was stimulated by similarities in the methods of [4,
5, 32, 50] and [37]. The articles [5, 50] prove central limit theorems for stabilizing
functionals of Poisson and rarified Gibbsian point processes, respectively, while
[37] proves central limit theorems for linear statistics

∑
x∈Pn

ξ(x) of point pro-
cesses having fast decay of correlations. These papers all establish the fast decay
of correlations of the ξ -weighted measures as at (1.21) below, and then use the
resulting volume order cumulant bounds to show asymptotic normality. This paper
unifies and extends the results of [4, 5, 37, 50, 52] to input having fast decay of
correlations. The idea of using correlation functions to show asymptotic normal-
ity via cumulants goes back to [32]. The earlier work of [34] has stimulated our
investigation of variance asymptotics.
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Having described the goals and context of this paper, we now describe more
precisely the assumptions on allowable score and input pairs (ξ,P) as well as our
main results. The generality of allowable pairs (ξ,P) considered here necessitates
several definitions which go as follows.

1.1. Admissible point processes having fast decay of correlations. Throughout
P ⊂ Rd denotes a simple point process. By a simple point process, we mean a
random element taking values in N , the space of locally finite simple point sets
in Rd [or equivalently Radon counting measures μ such that μ({x}) ∈ {0,1} for
all x ∈ Rd ] and equipped with the canonical σ -algebra B. Given a simple point
process P , we interchangeably use the following representations of P :

P(·) := ∑
i

δXi
(·) (random measure);

P := {Xi}i≥1 (random set),

where Xi, i ≥ 1, are Rd -valued random variables (given a measurable numbering
of points, which is irrelevant for the results presented in this paper). Points of Rd

are denoted by x or y whereas points of (Rd)k−1 are denoted by x or y. We let 0
denote a point at the origin of Rd .

For a bounded function f on Rd and a simple counting measure μ, let μ(f ) :=
〈f,μ〉 denote the integral of f with respect to μ. For a bounded set B ⊂ Rd , we
let μ(B) = μ(1B) = card(μ ∩ B), with μ in the last expression interpreted as the
set of its atoms.

For a simple Radon counting measure μ and k ∈ N, its kth factorial power is

μ(k) :=
⎧⎪⎨⎪⎩

∑
distinct x1,...,xk∈μ

δ(x1,...,xk) when μ
(
Rd) ≥ k,

0 otherwise.

Note that μ(k) is a Radon counting measure on (Rd)k . Consistently, for a set
X ⊂ Rd , we denote X (k) := {(x1, . . . , xk) ∈ (Rd)k : xi ∈ X , xi 
= xj for i 
= j}.
The kth order factorial moment measure of the (simple) point process P is defined
as α(k)(·) := E(P(k)(·)) on (Rd)k , that is, α(k)(·) is the intensity measure of the
point process P(k)(·). Its Radon–Nikodyn density ρ(k)(x1, . . . , xk) (provided it ex-
ists) is the k-point correlation function (or kth joint intensity) and is characterized
by the relation

α(k)(B1 × · · · × Bk) = E
( ∏

1≤i≤k

P(Bi)

)
(1.7)

=
∫
B1×···×Bk

ρ(k)(x1, . . . , xk)dx1 . . . dxk,

where B1, . . . ,Bk are mutually disjoint bounded Borel sets in Rd . Since P is sim-
ple, we may put ρ(k) to be zero on the diagonals of (Rd)k , that is on the subsets
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of (Rd)k where two or more coordinates coincide. The disjointness assumption is
crucial as illustrated by the following useful relation: For any bounded Borel set
B ⊂ Rd and k ≥ 1, we have

α(k)(Bk) = E
(
P(B)

(
P(B) − 1

)
. . .

(
P(B) − k + 1

))
(1.8)

=
∫
Bk

ρ(k)(x1, . . . , xk)dx1 . . . dxk.

Heuristically, the kth Palm measure Px1,...,xk
of P is the probability distribution of

P conditioned on {x1, . . . , xk} ⊂ P . More formally, if α(k) is locally finite, there
exists a family of probability distributions Px1,...,xk

on (N ,B), unique up to an
α(k)-null set of (Rd)k , called the kth Palm measures of P , and satisfying the dis-
integration formula

E
( ∑

(x1,...,xk)∈P(k)

f (x1, . . . , xk;P)

)

=
∫
(Rd )k

∫
N

f (x1, . . . , xk;μ)Px1,...,xk
(dμ)α(k)(dx1 . . . dxk)

(1.9)

for any (say nonnegative) measurable function f on (Rd)k ×N . Formula (1.9) is
also known as the refined Campbell theorem.

To simplify notation, write
∫
N f (x1, . . . , xk;μ)Px1,...,xk

(dμ) = Ex1,...,xk
(f (x1,

. . . , xk;P)), where Ex1,...,xk
is the expectation corresponding to the Palm prob-

ability Px1,...,xk
on a canonical probability space on which P is also defined.

To further simplify notation, denote by P!
x1,...,xk

the reduced Palm probabilities

and their expectation by E!
x1,...,xk

, which satisfies E!
x1,...,xk

(f (x1, . . . , xk;P)) =
Ex1,...,xk

(f (x1, . . . , xk;P \ {x1, . . . , xk})).3
All Palm probabilities (expectations) are meaningfully defined only for α(k) al-

most all x1, . . . , xk ∈ Rd . Consequently, all expressions involving these measures
should be understood in the α(k) a.e. sense and suprema should likewise be under-
stood as essential suprema with respect to α(k).

The following definition is reminiscent of the so-called weak exponential de-
crease of correlations introduced in [32] and subsequently used in [4, 34, 37].

DEFINITION 1.1 (ω-mixing correlation functions). The correlation functions
of a point process P are ω-mixing if there exists a decreasing function ω :
N × R+ → R+ such that for all n ∈ N, limx→∞ ω(n, x) = 0 and for all p,q ∈
N, x1, . . . , xp+q ∈ Rd , we have∣∣ρ(p+q)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q)

∣∣ ≤ ω(p + q, s),

where s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) is as at (1.3).

3It can be shown that Px1,...,xk (x1, . . . , xk ∈P) = 1 for α(k) a.e. x1, . . . , xk ∈Rd .
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By an admissible point process P on Rd, d ≥ 2, we mean that P is simple,

stationary (i.e., P + x
d= P for all x ∈ Rd , where P + x denotes the translation

of P by the vector x), with nonnull and finite intensity ρ(1)(0) = E(P(W1)), and
has k-point correlation functions of all orders k ∈ N. By a fast decreasing function
φ : R+ → [0,1], we mean φ satisfies limx→∞ xmφ(x) = 0 for all m ≥ 1.

DEFINITION 1.2 (Admissible point process having fast decay of correlations).
Let P be an admissible point process. P is said to have fast decay of correla-
tions if its correlation functions are ω-mixing as in Definition 1.1 with ω(n, x) =
Cnφ(cnx) for some correlation decay constants cn,Cn ∈ (0,∞) and a fast de-
creasing function φ :R+ → [0,1], called a correlation decay function.

More explicitly, an admissible point process has fast decay of correlations, if
for all p,q ∈N and all (x1, . . . , xp+q) ∈ (Rd)p+q ,∣∣ρ(p+q)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q)

∣∣
(1.10)

≤ Cp+qφ(cp+qs),

where s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) is as at (1.3) and Ck, ck,φ are as
in Definition 1.2. Without loss of generality, we assume that ck is nonincreasing
in k, and that Ck ∈ [1,∞) is nondecreasing in k. As a by-product of our proof
of the asymptotic normality of μ

ξ
n in (1.4), we establish that the fast decay of

correlations of P implies that it is Brillinger mixing; cf. Remark (vi) in Section 1.4
and Remarks at the end of Section 4.4.2.

Admissible point processes having fast decay of correlations are ubiquitous
and include certain determinantal, permanental and Gibbs point processes, as ex-
plained in Section 2.2. The k-point correlation functions of admissible point pro-
cesses having fast decay of correlations are bounded, that is,

(1.11) sup
(x1,...,xk)∈(Rd )k

ρ(k)(x1, . . . , xk) ≤ κk < ∞,

for some constants κk , which without loss of generality are assumed nondecreasing
in k. Also without loss of generality, assume κ0 := max{ρ(1)(0),1}. For stationary
P with intensity ρ(1)(0) ∈ (0,∞) we have that (1.10) implies (1.11) with

(1.12) κk ≤ (
ρ(1)(0)

)k +
k∑

i=2

Ci

(
ρ(1)(0)

)k−i ≤ kCkκ
k
0 .

The bound (1.12) helps to determine when point processes having fast decay of
correlations also have exponential moments, as in Section 2.1.
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1.2. Admissible score functions. Throughout we restrict to translation-
invariant score functions ξ : Rd × N → R, that is, those which are measur-
able in each coordinate, ξ(x,X ) = 0 if x /∈ X ∈ N , and for all y ∈ Rd , satisfy
ξ(· + y, · + y) = ξ(·, ·).

We introduce classes (A1) and (A2) of admissible score and input pairs (ξ,P).
Specific examples of admissible input pairs of both classes are provided in Sec-
tions 2.2 and 2.3. The first class allows for admissible input P as in Definition 1.2
whereas the second considers admissible input P having fast decay of correlations
(1.10), subject to ck ≡ 1 and growth conditions on the decay constants Ck and the
decay function φ.

DEFINITION 1.3 (Class (A1) of admissible score and input pairs (ξ,P)). Ad-
missible input P consists of admissible point processes having fast decay of cor-
relations as in Definition 1.2. Admissible score functions are of the form

(1.13) ξ(x,X ) := 1

k!
∑

x∈X (k−1)

h(x,x),

for some k ∈N and a symmetric, translation-invariant function h :Rd ×(Rd)k−1 →
R such that h(x1, . . . , xk) = 0 whenever either max2≤i≤k |xi − x1| > r for some
given r > 0 or when xi = xj for some i 
= j . When k = 1, we set ξ(x,X ) = h(x).
Further, assume ‖h‖∞ := supx∈(Rd )k−1 |h(0,x)| < ∞.

The interaction range for h is at most r , showing that the functionals H
ξ
n defined

at (1.2) generated via scores (1.13) are local U -statistics of order k as in [48].
Before introducing a more general class of score functions, we recall [5, 29, 40,
42, 45] a few definitions formalizing the notion of the local dependence of ξ on its
input. Let Br(x) := {y : |y − x| ≤ r} denote the ball of radius r centered at x and
Bc

r (x) its complement.

DEFINITION 1.4 (Radius of stabilization). Given a score function ξ , input X ,
and x ∈ X , define the radius of stabilization Rξ(x,X ) to be the smallest r ∈ N
such that ξ(x,X ∩ Br(x)) = ξ(x, (X ∩ Br(x)) ∪ (A ∩ Bc

r (x))), for all A ⊂ Rd

locally finite. If no such finite r exists, we set Rξ(x,X ) = ∞.

If ξ is a translation invariant function then so is Rξ(x,X ). Score functions (1.13)
of class (A1) have radius of stabilization upper-bounded by r .

DEFINITION 1.5 (Stabilizing score function). We say that ξ is stabilizing on
P if for all l ∈ N there are constants al > 0, such that

(1.14) sup
1≤n≤∞

sup
x1,...,xl∈Wn

Px1,...,xl

(
Rξ(x1,Pn) > t

) ≤ ϕ(alt)
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with ϕ(t) ↓ 0 as t → ∞. Without loss of generality, the al are nonincreasing in l

and 0 ≤ ϕ ≤ 1. In (1.14) and elsewhere, we adopt the convention that W∞ := Rd

and P∞ := P . The second sup in (1.14) is understood as ess sup with respect to
the measure α(l) at (1.7).

DEFINITION 1.6 (Exponentially stabilizing score function). We say that ξ is
exponentially stabilizing on P if ξ is stabilizing on P as in Definition 1.5 with ϕ

satisfying

(1.15) lim inf
t→∞

logϕ(t)

tc
∈ (−∞,0)

for some c ∈ (0,∞).

We define a general class of score functions exponentially stabilizing on their
input.

DEFINITION 1.7 [Class (A2) of admissible score and input pairs (ξ,P)]. Ad-
missible input P consists of admissible point processes having fast decay of cor-
relations as in Definition 1.2 with correlation decay constants satisfying ck ≡ 1,

(1.16) Ck = O
(
kak),

for some a ∈ [0,1) and correlation decay function φ satisfying the exponential
decay condition

(1.17) lim inf
t→∞

logφ(t)

tb
∈ (−∞,0)

for some constant b ∈ (0,∞). Admissible score functions ξ for this class are expo-
nentially stabilizing on the input P and satisfy a power growth condition, namely
there exists ĉ ∈ [1,∞) such that for all r ∈ (0,∞)

(1.18)
∣∣ξ (x,X ∩ Br(x)

)∣∣1[card
(
X ∩ Br(x)

) = n
] ≤ (

ĉ max(r,1)
)n

.

The condition ck ≡ 1 is equivalent to c∗ := inf ck > 0. This follows since we
may replace the fast decreasing function φ(·) by φ(c∗ × ·), with ck ≡ 1 for this
new fast decreasing function. Score functions of class (A1) also satisfy the power
growth condition (1.18) since in this case the left-hand side of (1.18) is at most
‖h‖∞n(k−1)/k. Thus the generalization from (A1) to (A2) consists in replacing
local U -statistics by exponentially stabilizing score functions satisfying the power
growth condition. This is done at the price of imposing stronger conditions on
the input process, requiring in particular that it has finite exponential moments, as
explained in Section 2.1.
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1.3. Fast decay of correlations of the ξ -weighted measures. The following p-
moment condition involves the score function ξ and the input P . We shall describe
in Section 2.1 ways to control the p-moments of input pairs of class (A1) and (A2).

DEFINITION 1.8 (Moment condition). Given p ∈ [1,∞), say that the pair
(ξ,P) satisfies the p-moment condition if

(1.19) sup
1≤n≤∞

sup
1≤p′≤�p�

sup
x1,...,xp′∈Wn

Ex1,...,xp′
∣∣ξ(x1,Pn)

∣∣p ≤ M̃p < ∞

for some constant M̃p := M̃
ξ
p ∈ [1,∞), where sup signifies ess sup with respect to

α(p). Without loss of generality, we assume that M̃p is increasing in p for all p

such that (1.19) holds.

We next consider the decay of the functions at (1.6), the so-called correlation
functions of the ξ -weighted measures at (1.5). These functions indeed play the
same role as the k-point correlation functions of the simple point process P . When
ξ ≡ 1 they obviously reduce to the correlation functions of P . For general ξ and
ki ≡ 1, they are densities (“mixed moment densities” in the language of [5]) of
the higher-order moment measures of the ξ -weighted measures with all distinct
arguments. In the case of repeated arguments, the moment measures of a simple
point process “collapse” to appropriate lower dimensional ones. This is neither
the case for nonsimple point processes nor for our ξ -weighted measures, where
general exponents ki are required to properly take into account repeated arguments.

When ki ≡ 1 for all 1 ≤ i ≤ p, we write m(p)(x1, . . . , xp;n) instead of
m(1,...,1)(x1, . . . , xp;n). Abbreviate m(k1,...,kp)(x1, . . . , xp;∞) by m(k1,...,kp)(x1,

. . . , xp). These functions exist whenever (1.19) is satisfied for p set to k1 +· · ·+kp

and provided the p-point correlation function ρ(p) exists. As for the input process
P , we consider mixing properties and fast decay of correlations for the ξ -weighted
measures at (1.5).

DEFINITION 1.9 (ω̃-mixing correlation functions of ξ -weighted measures).
The correlation functions (1.6) are said to be ω-mixing if there exists a decreas-
ing function ω̃ : N×R+ → R+ such that for all p ∈ N, limx→∞ ω̃(p, x) = 0 and
for all p,q ∈ N, distinct x1, . . . , xp+q ∈ Rd and n ∈N∪ {∞}:∣∣m(k1,...,kp+q)(x1, . . . , xp+q;n)

− m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kp+q )(xp+1, . . . , xp+q;n)
∣∣(1.20)

≤ ω̃(K, s),

where K := ∑p+q
i=1 ki and s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) is as at (1.3).
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DEFINITION 1.10 (Fast decay of correlations of the ξ -weighted measures).
The ξ -weighted measures are said to have fast decay of correlations if their cor-
relations functions are ω̃-mixing as in Definition 1.9 with ω̃(n, x) = C̃nφ̃(c̃nx)

for some fast decreasing function φ̃ : R+ → [0,1] and some constants c̃n > 0 and
C̃n < ∞.

More explicitly, the ξ -weighted measures (1.5) have fast decay of correlations
if there exists a fast-decreasing function φ̃ and constants C̃k < ∞, c̃k > 0, k ∈ N
such that for all n ∈ N ∪ {∞}, p,q ∈ N and any collection of positive integers
k1, . . . , kp+q , we have∣∣m(k1,...,kp+q)(x1, . . . , xp+q;n)

− m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kp+q )(xp+1, . . . , xp+q;n)
∣∣(1.21)

≤ C̃Kφ̃(c̃Ks),

where x1, . . . , xp+q,K and s are as in Definition 1.9.
Our first theorem shows that the fast decay of correlations is inherited from the

input process P by the ξ -weighted measures for a wide class of score functions
and input. This key result forms the starting point of our approach.

THEOREM 1.11. Let (ξ,P) be an admissible score and input pair of class
(A1) or (A2) such that the p-moment condition (1.19) holds for all p ∈ (1,∞).
Then the correlations of the ξ -weighted measures decay fast as at (1.21).

We prove this theorem in Section 3, where it is also shown that it subsumes
more specialized results of [5, 50].

1.4. Main results. We give the limit theory for the measures μ
ξ
n,n ≥ 1, defined

at (1.4). Given a score function ξ on admissible input P we set 4

(1.22) σ 2(ξ) := E0ξ
2(0,P)ρ(1)(0) +

∫
Rd

(
m(2)(0, x) − m(1)(0)2)dx.

The following result provides expectation and variance asymptotics for μ
ξ
n(f ),

with f belonging to the space B(W1) of bounded measurable functions on W1.

THEOREM 1.12. Let P be an admissible point process on Rd .
(i) If ξ satisfies exponential stabilization (1.15) and if (ξ,P) satisfies the p-

moment condition (1.19) for some p ∈ (1,∞) then for all f ∈ B(W1)

(1.23)
∣∣∣∣n−1Eμξ

n(f ) −E0ξ(0,P)ρ(1)(0)

∫
W1

f (x)dx

∣∣∣∣ = O
(
n−1/d).

4For a stationary point process P , its Palm expectation E0 [and consequently m(1)(0),
m(2)(0, x)dx] is meaningfully defined, for example, via the Palm–Matthes approach.
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If ξ only satisfies stabilization (1.14) and the p-moment condition (1.19) for some
p ∈ (1,∞), then the right-hand side of (1.23) is o(1).

(ii) Assume that the second correlation function ρ(2) of P exists and is bounded
as in (1.11), that ξ satisfies (1.14), and that (ξ,P) satisfies the p-moment condition
(1.19) for some p ∈ (2,∞). If the second-order correlations of the ξ -weighted
measures decay fast, that is, satisfy (1.21) with p = q = k1 = k2 = 1 and all n ∈
N∪ {∞}, then for all f ∈ B(W1)

(1.24) lim
n→∞n−1 Varμξ

n(f ) = σ 2(ξ)

∫
W1

f (x)2 dx ∈ [0,∞),

whereas for all f,g ∈ B(W1)

(1.25) lim
n→∞n−1Cov

(
μξ

n(f ),μξ
n(g)

) = σ 2(ξ)

∫
W1

f (x)g(x)dx.

We remark that (1.23) and (1.24) together show convergence in probability

n−1μξ
n(f )

P−→E0ξ(0,P)ρ(1)(0)

∫
W1

f (x)dx as n → ∞.

The proof of variance asymptotics (1.24) requires fast decay of the second-
order correlations of the ξ -weighted measures. Fast decay of all higher-order
correlations as in Definition 1.10 yields Gaussian fluctuations of μ

ξ
n,n ≥ 1, un-

der moment conditions on the atom sizes (i.e., under moment conditions on ξ )
and a variance lower bound. Let N denote a mean zero normal random variable
with variance 1. We write f (n) = 
(g(n)) when g(n) = O(f (n)), that is, when
lim infn→∞ |f (n)/g(n)| > 0.

THEOREM 1.13. Let P be an admissible point process on Rd and let the pair
(ξ,P) satisfy the p-moment condition (1.19) for all p ∈ (1,∞). If the correlations
of the ξ -weighted measures at (1.5) decay fast as in Definition 1.10 and if f ∈
B(W1) satisfies

(1.26) Varμξ
n(f ) = 


(
nν)

for some ν ∈ (0,∞), then as n → ∞

(1.27)
μ

ξ
n(f ) −Eμ

ξ
n(f )√

Varμξ
n(f )

D−→ N.

Combining Theorem 1.11 and Theorem 1.13 yields the following theorem,
which is well suited for off-the-shelf use in applications, as seen in Section 2.3.

THEOREM 1.14. Let (ξ,P) be an admissible pair of class (A1) or (A2) such
that the p-moment condition (1.19) holds for all p ∈ (1,∞). If f ∈ B(W1) satisfies
condition (1.26) for some ν ∈ (0,∞), then μ

ξ
n(f ) is asymptotically normal as in

(1.27), as n → ∞.
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Theorems 1.12 and 1.13 are proved in Section 4. We next compare our results
with those in the literature. Point processes mentioned below are defined in Sec-
tion 2.2.

Remarks. (i) Theorem 1.12. In the case of Poisson and binomial input, the limits
(1.23) and (1.24) are shown in [44] and [5, 40], respectively (the binomial point
processes are not the restriction of an infinite point process to windows, but rather
a re-scaled binomial point process on [0,1]d ). In the case of Gibbsian input, the
limits (1.23) and (1.24) are established in [50]. Theorem 1.12 shows these limits
hold for general stationary input. The paper [55] gives a weaker version of Theo-
rem 1.12 for specific ξ and for f = 1[x ∈ W1]. In full generality, the convergence
rate (1.23) is new.

(ii) Theorems 1.13 and 1.14. Under condition (1.26), Theorems 1.13 and 1.14
provide a central limit theorem for nonlinear statistics of either α-determinantal
and α-permanental input (|α|−1 ∈ N) with a fast-decaying kernel as at (2.7), the
zero set PGEF of a Gaussian entire function, or rarified Gibbsian input. When
ξ ≡ 1, then μ

ξ
n(f ) reduces to the linear statistic

∑
x∈Pn

f (x). These theorems
extend the central limit theorem for linear statistics of PGEF as established in [37].
When the input is determinantal with a fast decaying kernel as at (2.7), then The-
orems 1.13 and 1.14 also extend the main result of Soshnikov [53], whose path-
breaking paper gives a central limit theorem for linear statistics for any determi-
nantal input, provided the variance grows as least as fast as a power of the ex-
pectation. Proposition 5.7 of [52] shows central limit theorems for linear statis-
tics of α-determinantal point processes with α = −1/m or α-permanental point
processes with α = 2/m for some m ∈ N. During the revision of this article, we
noticed the recent work [46]. This paper shows that when the kernel satisfies (2.7)
with ω(s) = o(s−(d+ε)/2) and when |ξ | is bounded with a deterministic radius of
stabilization, then H

ξ
n at (1.2) is asymptotically normal. The generality of the score

functionals and point processes considered in our article necessitates assumptions
on the determinantal kernel which are more restrictive than those of [46, 53].

(iii) Variance lower bounds. To prove asymptotic normality, it is customary to
require variance lower bounds as at (1.26); [37] and [53] both require assump-
tions of this kind. Showing condition (1.26) is a separate problem and it fails in
general. For example, the variance of the point count of some determinantal point
processes, including the GUE point process, grows at most logarithmically. This
phenomena is especially pronounced in dimensions d = 1,2. Additionally, given
input PGEF and ξ ≡ 1, the bound (1.26) may fail even when f is a smooth cut-off
that equals one in a neighborhood of the origin (cf. Proposition 5.2 of [36]). On
the other hand, if ξ ≡ 1, and if the kernel K for a determinantal point process sat-
isfies

∫
Rd |K(0, x)|2 dx < K(0,0) = ρ(1)(0), then recalling the definition of σ 2(ξ)

at (1.22), we have σ 2(ξ) = σ 2(1) = ρ(1)(0) − ∫
Rd |K(0, x)|2 dx > 0. In the case

of rarified Gibbsian input, the bound (1.26) holds with ν = 1, as shown in of [54],
Theorem 1.1. Theorem 1.14 allows for surface-order variance growth, which arises
for linear statistics

∑
x∈Pn

ξ(x) of determinantal point processes; see [16], (4.15).
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(iv) Poisson, binomial and Gibbs input. When P is Poisson or binomial input
and when ξ is a functional which stabilizes exponentially fast as at (1.15), then
μ

ξ
n is asymptotically normal (1.27) under moment conditions on ξ ; see the survey

[56]. When P is a rarified Gibbs’ point process with “ancestor clans” decaying
exponentially fast, and when ξ is an exponentially stabilizing functional, then μ

ξ
n

satisfies normal convergence (1.27), as established in [50, 54].
(v) Mixing conditions. Central limit theorems for geometric functionals of mix-

ing point processes (random fields) are established in [1, 12, 21–23, 25, 46]. The
geometric functionals considered in these papers are different than the ones consid-
ered here; furthermore, the relation between the mixing conditions in these papers
and ω-mixing correlation functions as in Definition 1.1 is unclear. Though corre-
lation functions are simpler than mixing coefficients, which depend on σ -algebras
generated by the point processes, our decay rates appear more restrictive than those
needed in aforementioned papers. A careful investigation of the relations between
the various notions of mixing and fast decay of correlations lies beyond the scope
of our limit results and will be treated in a separate paper. In the case of point
processes on discrete spaces, such a study is easier; cf. [47].

(vi) Brillinger mixing and fast decay of correlations. Brillinger mixing [25],
Section 3.5, is defined via finiteness of integrals of the reduced cumulant measures
(see Section 4.3.2). The very definition of Brillinger mixing implies volume-order
growth of cumulants; the converse follows using the ideas in the proof of [7], The-
orem 3.2. The key to proving our announced central limit theorems is to show that
the fast decay of correlations of the ξ -weighted measures (1.5) implies volume-
order growth of cumulants, and hence Brillinger mixing; see the remarks at the
beginning of Section 4.3 and also those and at the end of Section 4.4.2.

(vii) Multivariate central limit theorem. We may use the Cramér–Wold device
to extend Theorems 1.12 and 1.14 to the multivariate setting as follows. Let (ξ,P)

be a pair satisfying the hypotheses of Theorems 1.12 and 1.14. If fi ∈ B(W1),1 ≤
i ≤ k, satisfy the variance limit (1.24) with σ 2(ξ) > 0, then as n → ∞ the fidis(

μ
ξ
n(f1) −Eμ

ξ
n(f1)√

n
, . . . ,

μ
ξ
n(fk) −Eμ

ξ
n(fk)√

n

)
converge to that of a centred Gaussian field having covariance kernel f,g �→
σ 2(ξ)

∫
W1

f (x)g(x)dx.
(viii) Deterministic radius of stabilization. It may be shown that our main results

go through without the condition (1.17) if the radius of stabilization Rξ(x,P) is
bounded by a nonrandom (deterministic) constant and if (1.16) and (1.18) are sat-
isfied. However, we are unable to find any interesting examples of point processes
satisfying (1.10) but not (1.17).

(ix) Fast decay of the correlation of the ξ -weighted measures; Theorem 1.11.
Though the cumulant method is common to [5, 37, 50] and this article, a distin-
guishing and novel feature of our approach is the proof of fast decay of correlations
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of the ξ -weighted measures (1.21), and consequently their Brillinger mixing, for
a wide class of functionals and point processes. As mentioned in the Introduction,
the proof of this result is via factorial moment expansions, which differs from the
approach of [5, 37, 50] (see the remarks at the beginning of Section 3). Fast decay
of correlations of the ξ -weighted measures (1.21) appears to be of independent
interest. It features in the proofs of moderate deviation principles and laws of the
iterated logarithms for stabilizing functionals of Poisson point process [3, 14]. Fast
decay of correlations (1.21) yields volume order cumulant bounds, useful in estab-
lishing concentration inequalities as well as moderate deviations, as explained in
[18], Lemma 4.2.

(x) Normal approximation. Difference operators (which appear in our facto-
rial moment expansions) are also a key tool in the Malliavin–Stein method [38,
39]. This method yields presumably optimal rates of normal convergence for var-
ious statistics (including many considered in Section 2.3) in stochastic geometric
problems [27–29, 48]. However, these methods currently apply only to functionals
defined on Poisson and binomial point processes. It is an open question whether a
refined use of these methods would yield rates of convergence in our central limit
theorems.

(xi) Cumulant bounds. As mentioned, we establish that the kth order cumu-
lants for 〈f,μ

ξ
n〉 grow at most linearly in n for k ≥ 1. Thus, under assumption

(1.26), the cumulant Ck
n for 〈f,μ

ξ
n〉/

√
Var〈f,μ

ξ
n〉 satisfies Ck

n ≤ D(k)n1−(νk/2),
with D(k) depending only on k. For k = 3,4, . . . and ν > 2/3, we have Ck

n ≤
D(k)/(�(n))k−2, where �(n) := n(3ν−2)/2. When D(k) satisfies D(k) ≤ (k!)1+γ ,
γ a constant, we obtain the Berry–Esseen bound (cf. [18], Lemma 4.2):

sup
t∈R

∣∣∣∣P(μ
ξ
n(f ) −Eμ

ξ
n(f )√

Varμξ
n(f )

≤ t

)
− P(N ≤ t)

∣∣∣∣ = O
(
�(n)−1/(1+2γ )).

Determining conditions on input pairs (ξ,P) insuring the bounds ν > 2/3 and
D(k) ≤ (k!)1+γ , γ a constant, is beyond the scope of this paper. When P is Poisson
input, this issue is addressed by [14].

We next consider the case when the fluctuations of H
ξ
n (P) are not of volume-

order, that is to say σ 2(ξ) = 0. Though this may appear to be a degenerate condi-
tion, interesting examples involving determinantal point processes or zeros of GEF
in fact satisfy σ 2(1) = 0. Such point processes are termed “super-homogeneous
point processes” [37], Remark 5.1. Put

(1.28) Ĥ ξ
n (P) := ∑

x∈Pn

ξ(x,P).

The summands in Ĥ
ξ
n (P), in contrast to those of H

ξ
n (P), are not sensitive

to boundary effects. We shall show that under volume-order scaling the asymp-
totic variance of Ĥ

ξ
n (P) also equals σ 2(ξ). However, when σ 2(ξ) = 0 we de-

rive surface-order variance asymptotics for Ĥ
ξ
n (P). Though a similar result should
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plausibly hold for H
ξ
n (P), a proof seems beyond the scope of the current paper.

Letting Vold denote the d-dimensional Lebesgue volume, for y ∈ Rd and W ⊂ Rd ,
put

(1.29) γW(y) := Vold
(
W ∩ (

Rd \ W − y
))

.

By [34], Lemma 1(a), we are justified in writing γ (y) := limn→∞ γWn(y)/

n(d−1)/d .

THEOREM 1.15. Under the assumptions of Theorem 1.12(ii), suppose also
that ξ is exponentially stabilizing on P as in (1.15). Then

(1.30) lim
n→∞n−1 VarHξ

n (P) = σ 2(ξ).

If moreover σ 2(ξ) = 0 in (1.24), then

lim
n→∞n−(d−1)/d Var Ĥ ξ

n (P)

= σ 2(ξ, γ )(1.31)

:=
∫
Rd

(
m(1)(0)2 − m(2)(0, x)

)
γ (x)dx ∈ [0,∞).

Remarks. (i) Checking positivity of σ 2(ξ, γ ) is not always straightforward,
though we note if ξ has the form (1.13), then the disintegration formula (1.9) yields

σ 2(ξ, γ ) =
k∑

j=0

∫
Rd

γ (x)ζj (x)

j !(k − j − 1)!(k − j − 1)! dx,

where ζj (x) = ∫
Aj (x) h(0,y, z)h(x,x, z)[ρ(k)(0,y, z)ρ(k)(x,x, z) − ρ(2k−j)(0,y,

z, x,x)]dz dy dx and Aj(x) = (Br(0) ∩ Br(x))j × Br(0)k−j−1 × Br(x)k−j−1.
(ii) Theorem 1.12 and Theorem 1.15 extend [34], Propositions 1 and 2, which

are valid only for ξ ≡ 1, to general functionals. If an admissible pair (ξ,P) of type
(A1) or (A2) is such that Ĥ

ξ
n (P) does not have volume-order variance growth,

then Theorems 1.12 and 1.15 show that Ĥ
ξ
n (P) has at most surface-order variance

growth.

2. Examples and applications. Before providing examples and applications
of our general results, we briefly discuss the moment assumptions involved in our
main theorems.

2.1. Moments of point processes having fast decay of correlations. We say
that P has exponential moments if for all bounded Borel B ⊂ Rd and all t ∈ R+
we have

(2.1) E
[
tP(B)] < ∞.
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Similarly, say that P has all moments if for all bounded Borel B ⊂ Rd and all
k ∈ N, we have

(2.2) E
[
P(B)k

]
< ∞.

Remarks. (i) The point process P has exponential moments whenever∑∞
k=1 κkt

k/k! < ∞ for all t ∈ R+ with κk as in (1.11) (cf. the expansion of the
probability generating function of a random variable in terms of factorial mo-
ments [13], Proposition 5.2.III). By (1.12), an admissible point process having fast
decay of correlations has exponential moments provided

(2.3)
∞∑

k=1

Ckt
k

(k − 1)! < ∞, t ∈ R+.

Note that input of type (A2) has exponential moments since by (1.16), we have
Ck = O(kak), a ∈ [0,1), making (2.3) summable. For pairs (ξ,P) of type (A2)
with radius of stabilization bounded by r0 ∈ [1,∞), by (1.18) the p-moment
in (1.19) is consequently controlled by a finite exponential moment, that is, for
x1, . . . , xp′ ∈ Wn,

Ex1,...,xp′
∣∣ξ(x1,Pn)

∣∣p ≤ Ex1,...,xp′ (ĉr0)
pP(Br0 (x1)).(2.4)

Finally, if P has exponential moments under its stationary probability P, the same
is true under Px1,...,xk

for α(k) almost all x1, . . . , xk .5

(ii) For pairs (ξ,P) of type (A1), the p-moment (1.19) satisfies for x1, . . . , xp′ ∈
Wn

(2.5) Ex1,...,xp′
∣∣ξ(x1,Pn)

∣∣p ≤
(‖h‖∞

k

)p

Ex1,...,xp′
[(
P
(
Br(x1)

))(k−1)p]
.

We next show that (2.5) may be controlled by moments of Poisson random vari-
ables. For any Borel set B ⊂ (Rd)k , the definition of factorial moment measures
gives α(k)(B) ≤ κk Voldk(B). Since moments may be expressed as a linear combi-
nation of factorial moments, for k ∈ N and a bounded Borel subset B ⊂ Rd , using
(1.8) we have

E
[(
P(B)

)k] =
k∑

j=0

{
k

j

}
α(j)(Bj ) ≤ κk

k∑
j=0

{
k

j

}
Voljd(B)j

(2.6)
= κkE

(
Po

(
Vold(B)

)k)
,

5Indeed, if Ex1,...,xk [ρP(Br (x1))] = ∞ for x1, . . . , xk ∈ B ′ for some bounded B ′ ∈ Rd such

that α(k)(B ′k) > 0 then Ex1,...,xk [ρP(Br (x1))] ≤ Ex1,...,xk [ρP(B ′
r )] = ∞ with B ′

r = B ′ ⊕ Br(0) =
{y′ + y : y′ ∈ B ′, y ∈ Br(0)} the r-parallel set of B ′. Integrating with respect to α(k) in B ′k , by the
Campbell formula E[(P(B ′

r ))
kρP(B ′

r )] = ∞, which contradicts the existence of exponential mo-
ments under P.
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where
{ k

j

}
stand for the Stirling numbers of the second kind, Po(λ) denotes a Pois-

son random variable with mean λ and where κj ’s are nondecreasing in j . Thus by
(1.12), an admissible point process having fast decay of correlations has all mo-
ments, as in (2.2). If P has all moments under its stationary probability P, the same
is true under Px1,...,xk

for α(k) almost all x1, . . . , xk (by the same arguments as in
Footnote 5).

2.2. Examples of point processes having fast decay of correlations. The no-
tion of a stabilizing functional is well established in the stochastic geometry liter-
ature but since the notion of fast decay of correlations for point processes (1.10)
is less well studied, we first establish that some well-known point processes enjoy
this property. For more details on the first five examples, we refer to [24].

2.2.1. Class A1 input.

Permanental input. The point process P is permanental if its correlation func-
tions are defined by ρ(k)(x1, . . . , xk) := per(K(xi, xj ))1≤i,j≤k , where the perma-
nent of an n×n matrix M is per(M) := ∑

π∈Sn

∏n
i=1 Mi,π(i), with Sn denoting the

permutation group of the first n integers and K(·, ·) is the Hermitian kernel of a lo-
cally trace class integral operator K : L2(Rd) → L2(Rd) [24], Assumption 4.2.3.
A kernel K is fast-decreasing if

(2.7)
∣∣K(x,y)

∣∣ ≤ ω
(|x − y|), x, y ∈Rd,

for some fast-decreasing ω : R+ → R+. [11], Lemma 1.5, in the Supplementary
Material shows that if a stationary permanental point process has a fast-decreasing
kernel as at (2.7), then it is an admissible point process having fast decay of corre-
lations with decay function φ = ω and with correlation decay constants satisfying

(2.8) Ck := kk!‖K‖k−1, ck ≡ 1,

where ‖K‖ := supx,y |K(x,y)| and we can choose κk = k!‖K‖k . However, a trace
class permanental point process in general does not have exponential moments,
that is, the right-hand side of (2.1) might be infinite for some bounded B and ρ

large enough. 6

The permanental point process with kernel K may be represented as a Cox point
process (see Section 2.2.3) directed by the random measure η(B) := ∫

B(Z1(x)2 +
Z2(x)2)dx, B ⊂ Rd , where the intensity Z1(x)2 + Z2(x)2 is a sum of i.i.d. Gaus-
sian random fields with zero mean and covariance function K/2 [52], Theo-
rem 6.13. Thus mean zero Gaussian random fields with a fast decaying covariance
function K/2 yield a permanental (Cox) point process with kernel K and having
fast decay of correlations.

6This is because, the number of points of a (trace-class) permanental p.p. in a compact set B is a
sum of independent geometric random variables Geo(1/(1 + λ)) where λ runs over all eigenvalues
of the integral operator defining the process truncated to B .
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α-permanental point processes. See [24], Section 4.10, [35] and [52] for more
details on this class of point processes which generalize permanental point pro-
cesses. Given α ≥ 0 and a kernel K which is Hermitian, nonnegative definite and
locally trace class, a point process P is said to be α-permanental 7 if its correlation
functions satisfy

(2.9) ρ(k)(x1, . . . , xk) = ∑
π∈Sk

αk−ν(π)
k∏

i=1

K(xi, xπ(i)),

where Sk stands for the usual symmetric group and ν(·) denotes the number of
cycles in a permutation. The right-hand side is the α-permanent of the matrix
((K(xi, xj ))i,j≤k . The special cases α = 0 and α = 1, respectively, give the Pois-
son point process with intensity K(0,0)) and the permanental point process with
kernel K . In what follows, we assume α = 1/m for m ∈N, that is, 1/α is a positive
integer. Existence of such α-permanental point processes is guaranteed by [52],
Theorem 1.2. The property of these point processes most important to us is that an
α-permanental point process with kernel K is a superposition of 1/α i.i.d. copies
of a permanental point process with kernel αK (see [24], Section 4.10). Also from
Definition (2.9), we obtain ρ(k)(x1, . . . , xk) ≤ ‖K‖kαk ∑

π∈Sk
(α−1)ν(π), and so we

can take κk = ∏k−1
i=0 (jα+1)‖K‖k for an α-permanental point process. The follow-

ing result is a consequence of the upcoming Proposition 2.3 and the identity (2.8)
for decay constants of a permanental point process with kernel αK .

PROPOSITION 2.1. Let α = 1/m for some m ∈ N and let Pα be the stationary
α-permanental point process with a kernel K which is Hermitian, nonnegative
definite and locally trace class. Assume also that |K(x,y)| ≤ ω(|x − y|) for some
fast-decreasing ω. Then Pα is an admissible point process having fast decay of
correlations with correlation decay constants Ck = km1−k(m−1)m!(k!)m‖K‖km−1,
ck = 1 and decay function φ = ω.

Zero set of Gaussian entire function (GEF). A Gaussian entire function f (z)

is the sum
∑

j≥0 Xj
zj√
j ! , where Xj are i.i.d. with the standard normal density

on the complex plane. The zero set f −1({0}) gives rise to the point process
PGEF := ∑

x∈f −1({0}) δx on R2. The point process PGEF is an admissible point
process having fast decay of correlations [37], Theorem 1.4, and exhibits local re-
pulsion of points. Though PGEF satisfies condition (1.17), it is unclear whether
(1.16) holds. By [26], Theorem 1, PGEF(Br(0)) has exponential moments.

Moment conditions. For p ∈ [1,∞), we show that the p-moment condition
(1.19) holds when ξ is such that the pair (ξ,PGEF) is of class (A1). By [37], The-

7In contrast to terminology in [24, 52], here we distinguish the two cases (i) α ≥ 0 (α-permanental)
and (ii) α ≤ 0 (α-determinantal).
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orem 1.3, given P := PGEF, there exist constants D̃k such that

D̃−1
k

∏
i<j

min
{|yi − yj |2,1

} ≤ ρ(k)(y1, . . . , yk)

(2.10)
≤ D̃k

∏
i<j

min
{|yi − yj |2,1

}
.

Recall from [52], Lemma 6.4 (see also [20], Theorem 1, [8], Proposition 2.5), that
the existence of correlation functions of any point process implies existence of re-
duced Palm correlation functions ρ

(k)
x1,...,xp (y1, . . . , yk), which satisfy the following

useful multiplicative identity: For Lebesgue a.e. (x1, . . . , xp) and (y1, . . . , yk), all
distinct,

(2.11) ρ(p)(x1, . . . , xp)ρ(k)
x1,...,xp

(y1, . . . , yk) = ρ(p+k)(x1, . . . , xp, y1, . . . , yk).

Combining (2.10) and (2.11), we get for Lebesgue a.e. (x1, . . . , xp) and (y1, . . . ,

yk), that

(2.12) ρ(k)
x1,...,xp

(y1, . . . , yk) ≤ Dp+kρ
(k)(y1, . . . , yk),

where Dp+k := D̃p+kD̃pD̃k . Thus we have shown there exist constants Dj, j ∈
N, such that for any bounded Borel subset B , k ∈ N and Lebesgue a.e. (x1, . . . ,

xp) ∈ (Rd)p , we have

(2.13) E!
x1,...,xp

(
P(k)(Bk)) ≤ Dp+kE

(
P(k)(Bk)).

By (2.5), (2.13) and (2.6) in this order, along with stationarity of PGEF, we have
for any p ∈ [1,∞),

sup
1≤n≤∞

sup
1≤p′≤�p�

sup
x1,...,xp′∈Wn

Ex1,...,xp′
∣∣ξ(x1,Pn)

∣∣p
(2.14)

≤
(‖h‖∞

k

)p

κ(k−1)pD(k−1)pE
[(

Po
(
Vold

(
Br(0)

)) + p
)(k−1)p]

< ∞,

where as before Po(λ) denotes a Poisson random variable with mean λ and where
we have assumed without loss of generality that the constants Dk are increasing in
k. Thus the p-moment condition (1.19) holds for pairs (ξ,PGEF) of class (A1) for
all p ∈ [1,∞).

2.2.2. Class A2 input.

Determinantal input. The point process P is determinantal if its correlation func-
tions are defined by ρ(k)(x1, . . . , xk) = det(K(xi, xj ))1≤i,j≤k , where K(·, ·) is
again the Hermitian kernel of a locally trace class integral operator K : L2(Rd) →
L2(Rd). Determinantal point processes exhibit local repulsivity and their structure
is preserved when restricting to subsets of Rd and as well as when considering
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their reduced Palm versions. These facts facilitate our analysis of determinantal
input; the Supplementary Material [11] provides lemmas further illustrating their
tractability. If a stationary determinantal point process has a fast-decreasing kernel
as at (2.7), then [11], Lemma 1.3, in the Supplementary Material shows that it is
an admissible point process having fast decay of correlations satisfying (1.16) with
decay function φ = ω, with ω as at (2.7), and correlation decay constants

(2.15) Ck := k1+(k/2)‖K‖k−1, ck ≡ 1.

Consequently, φ satisfies the requisite exponential decay (1.17) whenever ω itself
satisfies (1.17).

The Ginibre ensemble of eigenvalues of N ×N matrices with independent stan-
dard complex Gaussian entries is a leading example of a determinantal point pro-
cess. The limit of the Ginibre ensemble as N → ∞ is the Ginibre point process
(or the infinite Ginibre ensemble), here denoted PGIN. It is the prototype of a sta-
tionary determinantal point process and has the following kernel: For z1, z2 ∈ C,

K(z1, z2) := exp(z1z̄2) exp
(
−|z1|2 + |z2|2

2

)
= exp

(
iIm(z1z̄2) − |z1 − z2|2

2

)
.

More generally, for 0 < β ≤ 1, the β-Ginibre (determinantal) point process (see
[17]) has kernel

Kβ(z1, z2) := exp
(

1

β
z1z̄2

)
exp

(
−|z1|2 + |z2|2

2β

)
, z1, z2 ∈ C.

When β = 1, we obtain PGIN and as β → 0 we obtain the Poisson point process.
Thus the β-Ginibre point process interpolates between the Ginibre and Poisson
point processes. Identifying the complex plane with R2, we see that all β-Ginibre
point processes are admissible point processes having fast decay of correlations
satisfying (1.16) and (1.17).

Moment conditions. Let p ∈ [1,∞) and let P be a stationary determinantal
point process with a continuous and fast-decreasing kernel. We now show that
the p-moment condition (1.19) holds for pairs (ξ,P) of class (A1) or (A2), pro-
vided ξ has a deterministic radius of stabilization, say r0 ∈ [1,∞). First, for all
(x1, . . . , xp) ∈ (Rd)p , all increasing F : N → R+ and all bounded Borel sets B

we have [17], Theorem 2, E!
x1,...,xp

(F (P(B))) ≤ E(F (P(B))). Thus using (2.4),
the above inequality and stationarity of P , we get that for any bounded stabilizing
score function ξ of class (A2),

sup
1≤n≤∞

sup
1≤p′≤�p�

sup
x1,...,xp′∈Wn

Ex1,...,xp′
∣∣ξ(x1,Pn)

∣∣p
(2.16)

≤ E(ĉr0)
pP(Br0 (0))+p2

< ∞.

The finiteness of the last term follows from the fact that determinantal input con-
sidered here is of class (A2) and, by Remark (i) at the beginning of Section 2.1,
such input has finite exponential moments.
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α-Determinantal point processes. Similar to permanental point processes, we
generalize determinantal point processes to include their α-determinantal ver-
sions, by requiring that the correlation functions satisfy (2.9) for some α ≤ 0.
In what follows, we shall assume that α = −1/m,m ∈ N. Existence of such α-
determinantal point processes again follows from [52], Theorem 1.2. Likewise,
an α-determinantal point process with kernel K is a superposition of −1/α i.i.d.
copies of a determinantal point process with kernel −αK ([24], Section 4.10). By
[52], Proposition 4.3, we can take κk = K(0,0)k for an α-determinantal point pro-
cess. Analogously to Proposition 2.1, the next result follows from Proposition 2.3
below and the identity (2.15) for correlation decay constants of a determinantal
point process with kernel −αK .

PROPOSITION 2.2. Let α = −1/m for some m ∈ N and Pα be the stationary
α-determinantal point process with a kernel K which is Hermitian, nonnegative
definite and locally trace class. Assume also that |K(x,y)| ≤ ω(|x − y|) for some
fast-decreasing function ω. Then Pα is an admissible point process having fast
decay of correlations with decay function φ = ω and correlation decay constants
Ck = m1−k(m−1)m!K(0,0)k(m−1)k1+(k/2)‖K‖k−1, ck = 1. Further, if w satisfies
(1.17), then Pα is an admissible input of type (A2).

From (2.16) and [11], (1.11), in the Supplementary Material, we have that for
Pα,−1/α ∈ N as above, and for any bounded stabilizing score function ξ of class
(A2),

(2.17) sup
1≤n≤∞

sup
1≤p′≤�p�

sup
x1,...,xp′∈Wn

Ex1,...,xp′
∣∣ξ(x1,Pn)

∣∣p < ∞.

Rarified Gibbsian input. Consider the class � of Hamiltonians consisting of pair
potentials without negative part, area interaction Hamiltonians, hard core Hamilto-
nians and potentials generating a truncated Poisson point process (see [50] for fur-
ther details of such potentials). For � ∈ � and β ∈ (0,∞), let Pβ� be the Gibbs’
point process having Radon–Nikodym derivative exp(−β�(·)) with respect to
a reference homogeneous Poisson point process on Rd of intensity τ ∈ (0,∞).
There is a range of inverse temperature and activity parameters (β and τ ) such
that Pβ� has fast decay of correlations; see the introduction to Section 3 and [50]
for further details. These rarified Gibbsian point processes are admissible point
processes having fast decay of correlations and satisfy the input conditions (1.16)
and (1.17) of class (A2). Setting ξ(·, ·) ≡ 1 in Lemma 3.4 of [50] shows that (1.10)
holds with Ck a scalar multiple of k and ck a constant.

2.2.3. Additional input examples. For additional examples of admissible point
processes having fast decay of correlations, we refer to the arxiv version of this
paper [10], Section 2.3. We shall discuss but one example here.



858 B. BŁASZCZYSZYN, D. YOGESHWARAN AND J. E. YUKICH

Superpositions of i.i.d. point processes. A natural operation on point processes
generating new point processes consists of independent superposition. We show
that this operation preserves fast decay of correlations.

Let P1, . . . ,Pm,m ∈ N, be i.i.d. copies of an admissible point process P with
correlation functions ρ and having fast decay of correlations. Let ρ0 denote the
correlation functions of the point process P0 := ⋃m

i=1 Pi . For any k ≥ 1 and dis-
tinct x1, . . . , xk ∈Rd , the following relation holds:

(2.18) ρ
(k)
0 (x1, . . . , xk) = ∑

�m
i=1Si=[k]

m∏
i=1

ρ(Si),

where � stands for disjoint union and where we abbreviate ρ(|Si |)(xj : j ∈ Si) by
ρ(Si). Here Si may be empty, in which case we set ρ(∅) = 1. From (2.18), we have
that P0 is an admissible point process with intensity mρ(1)(0). Further, we take
κk(P0) = (κk)

mmk . The proof of the next proposition, which shows that P0 has fast
decay of correlations, is in the Supplementary Material (cf. [11], Proposition 1.8).

PROPOSITION 2.3. Let m ∈ N and P1, . . . ,Pm be i.i.d. copies of an admissi-
ble point process P having fast decay of correlations with decay function φ and
correlation decay constants Ck and ck . Then P0 := ⋃m

i=1 Pi is an admissible point
process having fast decay of correlations with decay function φ and correlation
decay constants mkm!(κk)

m−1Ck and ck . Further, if P is admissible input of type
(A2) with κk ≤ λk for some λ ∈ (0,∞), then P0 is also admissible input of type
(A2).

We have already used this proposition in the context of fast decay of correlations
of α-permanental and determinantal point processes.

2.3. Applications. Having provided examples of admissible point processes,
one may use Theorems 1.12 and 1.14 to deduce the limit theory for geometric and
topological statistics of these point processes. Examples include statistics arising
in combinatorial and differential topology, integral geometry and computational
geometry. As fully explained in Section 2.3 of [10], one may deduce expectation
and variance asymptotics and central limit theorems for statistics of random Čech
complexes, Morse critical points, as well as statistics of germ-grain models gener-
ated by admissible point processes. The results described in Section 2.3 of [10] are
not exhaustive and include functionals in stochastic geometry already discussed in,
for example, [5, 45]. There are further applications to (i) random packing models
on input having fast decay of correlations (extending [43]), (ii) statistics of per-
colation models (extending, e.g., [31, 42]) and (iii) statistics of extreme points of
input having fast decay of correlations (extending [2, 54]). Details are left to the
reader.
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Here we focus on two examples and in doing so, we use the full force of The-
orems 1.12 and 1.14, applying them to sums of score functions whose radius of
stabilization has either a bounded or exponentially decaying tail.

k-covered region of the germ-grain model. The following is a statistic of interest
in coverage processes [19]. For locally-finite X ⊂ Rd and x ∈ X , define the score
function

β(k)(x,X ) :=
∫
y∈Br(x)

1[X (Br(y)) ≥ k]
X (Br(y))

dy.

Clearly, β(k) is an exponentially stabilizing score function as in Definition 1.1
with stabilization radius 2r . Define the k-covered region of the germ-grain model

by Ck
B(Pn, r) = {y : Pn(Br(y)) ≥ k}. Thus H

β(k)

n (P) is the volume of Ck
B(Pn, r).

When k = 1, H
β(k)

n (P) is the volume of the germ-grain model having germs in
Pn. Clearly, β(k) is bounded by the volume of a radius r ball and so ξ satisfies
the power growth condition (1.18). The following is an immediate consequence of
Theorems 1.12 and 1.14 and the fact that if P is of class (A2) then the input pair
(β(k),P) is also of class (A2).

THEOREM 2.4. For all k ∈ N and any point process P of class (A2) with the
pair (β(k),P) satisfying the moment condition (1.19) for all p ∈ (1,∞), we have∣∣n−1EVold

(
Ck

B(Pn, r)
) −E0β

(k)(0,P)ρ(1)(0)
∣∣ = O

(
n−1/d)

and

lim
n→∞n−1 Var Vold

(
Ck

B(Pn, r)
) = σ 2(β(k)).

Moreover, if Var Vold(Ck
B(Pn, r)) = 
(nν) for some ν ∈ (0,∞), then as n → ∞,

(2.19)
Vold(Ck

B(Pn, r)) −EVold(Ck
B(Pn, r))√

Var Vold(Ck
B(Pn, r))

D−→ N.

In the case of Poisson input and k = 1, [19] establishes a central limit theo-
rem for C1

B(Pn, r). For general k, the central limit theorem for Poisson input can
be deduced from the general results in [5, 42] with presumably optimal bounds
following from [29], Proposition 1.4.

Edge-lengths of k-nearest neighbor graphs. Statistics of the Voronoi tessellation
as well as of graphs in computational geometry such as the k-nearest neighbors
graph and sphere of influence graph may be expressed as sums of exponentially
stabilizing score functionals [42], and hence via Theorems 1.12 and 1.14, we may
deduce the limit theory for these statistics. To illustrate, we establish a weak law
of large numbers, variance asymptotics and a central limit theorem for the total
edge-length of the k-nearest neighbors graph on a α-determinantal point process
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P := Pα with −1/α ∈ N and a fast-decreasing kernel as in (2.7). As noted in
Proposition 2.2, such an α-determinantal point process is of class (A2) as in Defi-
nition 1.7.

As shown in [11], Corollary 1.10, of the Supplementary Material, we may ex-
plicitly upper bound void probabilities for P , allowing us to deduce exponential
stabilization for score functions on P . This is a recurring phenomena, and it is of-
ten the case that to show exponential stabilization of statistics, it suffices to control
the Palm probability content of large Euclidean balls. This opens the way towards
showing that other relevant statistics of random graphs exhibit exponential stabi-
lization on P . This includes intrinsic volumes of faces of Voronoi tessellations
[49], Section 10.2, edge-lengths in a radial spanning tree [51], Lemma 3.2, prox-
imity graphs including the Gabriel graph and Morse critical points.

Given locally finite X ⊂ Rd and k ∈ N, the (undirected) k-nearest neighbors
graph NG(X ) is the graph with vertex set X obtained by including an edge {x, y}
if y is one of the k nearest neighbors of x and/or x is one of the k nearest neighbors
of y. In the case of a tie, we may break the tie via some pre-defined total order (say
lexicographic order) on Rd . For any finite X ⊂ Rd and x ∈ X , we let E(x) be the
edges e in NG(X ) which are incident to x. Defining ξL(x,X ) := 1

2
∑

e∈E(x) |e|, we
write the total edge length of NG(X ) as L(NG(X )) = ∑

x∈X ξL(x,X ). Let σ 2(ξL)

be as at (1.22), with ξ put to be ξL.

THEOREM 2.5. Let P := Pα be a stationary α-determinantal point process
on Rd with −1/α ∈ N and a fast-decreasing kernel K as at (2.7). We have∣∣∣∣EL(NG(Pn))

n
−E0ξL(0,P)K(0,0)

∣∣∣∣ = O
(
n−1/d)

and

lim
n→∞

VarL(NG(Pn))

n
= σ 2(ξL).

If VarL(NG(Pn)) = 
(nν) for some ν ∈ (0,∞) then as n → ∞
L(NG(Pn)) −EL(NG(Pn))√

VarL(NG(Pn))

D−→ N.

Remark. Theorem 2.5 extends Theorem 6.4 of [40] which is confined to Poisson
input. In this context, the work [29] provides a rate of normal approximation.

PROOF OF THEOREM 2.5. We want to show that (ξL,P) is an admissible
score and input pair of type (A2) and then apply Theorem 1.14. Note that P is
an admissible point process which has fast decay of correlations satisfying (1.16)
and (1.17). Thus we only need to show that ξL is exponentially stabilizing, that ξL

satisfies the power growth condition (1.18), and the p-moment condition (1.19).
When d = 2, we show exponential stabilization of ξL by closely following the
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proof of Lemma 6.1 of [44]. This goes as follows. For each t > 0, construct six
disjoint congruent equilateral triangles Tj (t),1 ≤ j ≤ 6, such that x is a vertex of
each triangle and each edge has length t . Let the random variable R be the mini-
mum t such that Pn(Tj ) ≥ k + 1 for all 1 ≤ j ≤ 6. Notice that R ∈ [r,∞) implies
that there is a ball inscribed in some Tj (t) with center cj of radius γ r which does
not contain k + 1 points. Combining [11], Corollary 1.10, in the Supplementary
Material and the fact that P has kernel K , the probability of this event satisfies

Px1,...,xp [R > r] ≤ 6Px1,...,xp

[
P
(
Bγr(c1)

) ≤ k − 1
]

≤ 6P!
x1,...,xp

[
P
(
Bγr(c1)

) ≤ k − 1
]

≤ 6em(2k+p−2)/8e−K(0,0)πγ 2r2/8,

that is to say that R has exponentially decaying tails. As in Lemma 6.1 of [44], we
find that Rξ(x,Pn) := 4R is a radius of stabilization for ξL, showing that (1.15)
holds with c = 2. For d > 2, we may extend these geometric arguments (cf. the
proof of Theorem 6.4 of [40]) to define a random variable R serving as a radius of
stabilization. Mimicking the above arguments, we may likewise show that R has
exponentially decaying tails.

For all r ∈ (0,∞) and l ∈ N, we notice that (1.18) holds because |ξL(x,X ∩
Br(x))|1[X (Br(x)) = l] ≤ r · min(l,6) ≤ (cr)l . Since vertices in the k-nearest
neighbors graph have degree bounded by kC(d) as in Lemma 8.4 of [57], and
since each edge incident to x has length at most 4R, it follows that |ξL(x,Pn)| ≤
k · C(d) · 4R. Since R has moments of all orders, (ξL,P) satisfies the p-moment
condition (1.19) for all p ≥ 1. Thus ξL satisfies all conditions of Theorem 1.14 and
we deduce Theorem 2.5 as desired. �

3. Proof of the fast decay (1.21) for correlations of the ξ -weighted mea-
sures. We show the decay bound (1.21) via a factorial moment expansion for
the expectation of functionals of point processes. Notice that (1.21) holds for
any exponentially stabilizing score function ξ satisfying the p-moment condi-
tion (1.19) for all p ∈ [1,∞) on a Poisson point process P . Indeed if x, y ∈
Rd and r1, r2 > 0 satisfy r1 + r2 < |x − y| then ξ(x,P)1[Rξ(x,P) ≤ r1] and
ξ(y,P)1[Rξ(y,P) ≤ r2] are independent random variables. This yields the fast
decay (1.21) with k1 = · · · = kp+q = 1 and C̃n ≤ cn

1 with c1 a constant, as in [5],
Lemma 5.2. On the other hand, if P is rarified Gibbsian input and ξ is exponen-
tially stabilizing, then [50], Lemma 3.4, shows the fast decay bound (1.21) with
k1 = · · · = kp+q = 1. These methods depend on quantifying the region of spatial
dependencies of Gibbsian points via exponentially decaying diameters of their an-
cestor clans. Such methods apparently neither extend to determinantal input nor
to the zero set PGEF of a Gaussian entire function. On the other hand, for PGEF
and for ξ ≡ 1, the paper [37] uses the Kac–Rice–Hammersley formula and com-
plex analysis tools to show (1.21) with k1 = · · · = kp+q = 1. All three proofs are
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specific to either the underlying point process or to the score function ξ . The fol-
lowing more general and considerably different approach includes these results as
special cases.

3.1. Difference operators and factorial moment expansions. We introduce
some notation and collect auxiliary results required for an application of the much-
needed factorial moment expansions [8, 9] for general point processes. Equip Rd

with a total order ≺ defined using the lexicographical ordering of the polar co-
ordinates. For μ ∈ N and x ∈ Rd , define the measure μ|x(·) := μ(· ∩ {y : y ≺ x}).
Note that since μ is a locally finite measure and the ordering is defined via polar co-
ordinates μ|x is a finite measure for all x ∈ Rd . Let o denote the null-measure, that
is, o(B) = 0 for all Borel subsets B of Rd . For a measurable function ψ : N →R,
l ∈ N∪ {0} and x1, . . . , xl ∈ Rd , we define the factorial moment expansion (FME)
kernels [8, 9] as follows. For l ≥ 1,

Dl
x1,...,xl

ψ(μ) =
l∑

i=0

(−1)l−i
∑

J⊂([l]
i )

ψ

(
μ|x∗ + ∑

j∈J

δxj

)
(3.1)

= ∑
J⊂[l]

(−1)l−|J |ψ
(
μ|x∗ + ∑

j∈J

δxj

)
,

where
([l]

j

)
denotes the collection of all subsets of [l] := {1, . . . , l} with cardinality

j and x∗ := min{x1, . . . , xl}, with the minimum taken with respect to the order ≺.
For l = 0, put D0ψ(μ) := ψ(o). Note that D

(l)
x1,...,xlψ(μ) is a symmetric function

of x1, . . . , xl .8

We say that ψ is ≺-continuous at ∞ if for all μ ∈ N we have limx↑∞ ψ(μ|x) =
ψ(μ). We first recall the FME expansion proved in [8] (cf. Theorem 3.2) for di-
mension one and then extended to higher-dimensions [9] (cf. Theorem 3.1). Recall
that E!

y1,...,yl
denote expectations with respect to reduced Palm probabilities.

THEOREM 3.1. Let P be a simple point process and let ψ : N → R be ≺-
continuous at ∞. Assume that for all l ≥ 1

(3.2)
∫
Rdl

E!
y1,...,yl

[∣∣Dl
y1,...,yl

ψ(P)
∣∣]ρ(l)(y1, . . . , yl)dy1 . . . dyl < ∞

and

1

l!
∫
Rdl

E!
y1,...,yl

[
Dl

y1,...,yl
ψ(P)

]
ρ(l)(y1, . . . , yl)dy1 . . . dyl → 0

(3.3)
as l → ∞.

8For xl ≺ xl−1 ≺ . . . ≺ x1, the functional Dl
x1,...,xl

ψ(μ) is equal to the iterated difference opera-

tor: D1
x1

ψ(μ) = ψ(μ|x1 + δx1 ) − ψ(μ|x1), Dl
x1,...,xl

ψ(μ) = D1
xl

(Dl−1
x1,...,xl−1

ψ(μ)).
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Then E[ψ(P)] has the following factorial moment expansion:

(3.4) E
[
ψ(P)

] = ψ(o) +
∞∑
l=1

1

l!
∫
Rdl

Dl
y1,...,yl

ψ(o)ρ(l)(y1, . . . , yl)dy1 . . . dyl.

Consider now admissible pairs (ξ,P) of type (A1) or (A2) and x1, . . . , xp ∈ Rd .
The proof of (1.21) given in the next subsection is based on the FME expansion
for Ex1,...,xp [ψ(Pn)], where ψ(μ) is the product of score functions

(3.5) ψ(μ) := ψk1,...,kp (x1, . . . , xp;μ) :=
p∏

i=1

ξ(xi,μ)ki

with k1, . . . , kp ≥ 1. However, under Px1,...,xp the point process Pn has fixed atoms
at x1, . . . , xp , which complicates the form of its factorial moment measures. It
is more handy to consider these points as parameters of the following modified
functional:

(3.6) ψ !(μ) := ψ !
k1,...,kp

(x1, . . . , xp;μ) :=
p∏

i=1

ξ

(
xi,μ +

p∑
j=1

δxj

)ki

and to not count points x1, . . . , xp in P , that is, to consider P under the reduced
Palm probabilities P!

x1,...,xp
. Obviously, Ex1,...,xp [ψ(Pn)] = E!

x1,...,xp
[ψ !(Pn)] and

the latter expectation is more suitable for FME expansion with respect to the cor-
relation functions ρ

(l)
x1,...,xp (y1, . . . , yl) of P with respect to the Palm probabilities

P!
x1,...,xp

. The following consequence of Theorem 3.1 allows us to use FME ex-
pansions to prove (1.21).

LEMMA 3.2. Assume that either (i) (ξ,P) is an admissible score and input
pair of type (A1) or (ii) (ξ,P) satisfies the power growth condition (1.18), with ξ

having a radius of stabilization satisfying supx∈P Rξ(x,P) ≤ r a.s. for some r ∈
(1,∞) and with P having exponential moments. Then for distinct x1, . . . , xp ∈ Rd ,
nonnegative integers k1, . . . , kp and n ≤ ∞ the functional ψ ! at (3.6) admits the
FME

Ex1,...,xp

[
ψk1,...,kp (x1, . . . , xp;Pn)

]
= E!

x1,...,xp

[
ψ !

k1,...,kp
(x1, . . . , xp;Pn)

]
= ψ !

k1,...,kp
(x1, . . . , xp;o)(3.7)

+
∞∑
l=1

1

l!
∫
Rdl

Dl
y1,...,yl

ψ !
k1,...,kp

(x1, . . . , xp;o)

× ρ(l)
x1,...,xp

(y1, . . . , yl)dy1 . . . dyl.
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When (ξ,P) is of type (A1), the series (3.7) has at most (k − 1)
∑p

i=1 ki nonzero
terms, where k is as in (1.13).

PROOF. Throughout we fix nonnegative integers k1, . . . , kp and suppress them
when writing ψ !; that is, ψ !(x1, . . . , xp;Pn) := ψ !

k1,...,kp
(x1, . . . , xp;Pn). The

bounded radius of stabilization for ξ implies ψ ! is ≺-continuous at ∞.
Consider first ψ ! at (3.6) with ξ as in case (ii); later we consider the simpler

case (i). We show the validity of the expansion (3.7) as follows. Let y1, . . . , yl ∈
Rd . The difference operator Dl

y1,...,yl
vanishes as soon as yk /∈ ⋃p

i=1 Br(xi) for
some k ∈ {1, . . . , l}, that is to say

(3.8) Dl
y1,...,yl

ψ !(x1, . . . , xp;μ) = 0.

To prove this, set μJ := μ|y∗ + ∑
j∈J δyj

for J ⊂ [l] and y∗ := min{y1, . . . , yl},
with the minimum taken with respect to ≺ order. From (3.1), we obtain

Dl
y1,...,yl

ψ !(x1, . . . , xp;μ)

= ∑
J⊂[l],k /∈J

(−1)l−|J |ψ !(x1, . . . , xp;μJ )

+ ∑
J⊂[l],k /∈J

(−1)l−|J |−1ψ !(x1, . . . , xp;μJ∪{k}) = 0,

where the last equality follows by noting that for J ⊂ [l] with k /∈ J , ψ !(x1, . . . ,

xp;μJ ) = ψ !(x1, . . . , xp;μJ∪{k}) because Rξ(x,P) ∈ [1, r] by assumption.
Henceforth we put

(3.9) Kp :=
p∑

i=1

ki, Kq :=
q∑

i=1

kp+i , K :=
p+q∑
i=1

ki.

Consider now y1, . . . , yl ∈ ⋃p
i=1 Br(xi). For J ⊂ [l], from 1 ≤ Rξ(x,P) ≤ r

and (1.18) we have

(3.10) ψ !(x1, . . . , xp;μJ ) ≤ (ĉr)Kp|J |+pKp+∑p
i=1 kiμ(Br (xi)).

The term pKp in the exponent of (3.10) is due to
∑p

j=1 δxj
in the argument of ξ

in (3.6). Substituting this bound in (3.1) yields∣∣Dl
y1,...,yl

ψ !(x1, . . . , xp;μ)
∣∣

≤ (ĉr)pKp+∑p
i=1 kiμ(Br (xi))

∑
J⊂[l]

(ĉr)Kp|J |(3.11)

= (ĉr)pKp+∑p
i=1 kiμ(Br (xi))

(
1 + (ĉr)Kp

)l
.
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Consider ψ !(x1, . . . , xp;Pn), with Pn := P ∩ Wn and ψ ! defined as above. The
bound (3.11) yields

1

l!
∫
Rdl

(
E!

x1,...,xp

)!
y1,...,yl

[∣∣Dl
y1,...,yl

ψ !(x1, . . . , xp;Pn)
∣∣]

× ρ(l)
x1,...,xp

(y1, . . . , yl)dy1 · · · dyl

= 1

l!
∫
Rdl

E!
x1,...,xp,y1,...,yl

[∣∣Dl
y1,...,yl

ψ !(x1, . . . , xp;Pn)
∣∣]

× ρ(l)
x1,...,xp

(y1, . . . , yl)dy1 · · · dyl

≤ (1 + (ĉr)Kp)l(ĉr)pKp

l!
(3.12)

×E!
x1,...,xp

[
(Pn

( p⋃
i=1

Br(xi)

)l

(ĉr)
∑p

i=1 kiPn(Br (xi ))

]

≤ (1 + (ĉr)Kp)l(ĉr)pKp

l!

×E!
x1,...,xp

[
(Pn

( p⋃
i=1

Br(xi)

)l

(ĉr)KpPn(
⋃p

i=1 Br(xi))

]

≤ (1 + (ĉr)Kp)l

l!

×Ex1,...,xp

[
(Pn

( p⋃
i=1

Br(xi)

)l

(ĉr)KpPn(
⋃p

i=1 Br(xi))

]
,

where the last inequality follows since the distribution of P under Px1,...,xp is equal
to that of P+∑p

i=1 δxi
under P!

x1,...,xp
. Defining N := Pn(

⋃p
i=1 Br(xi)), we bound

(3.12) by

Ex1,...,xp

[
(ĉr)KpN

∞∑
m=l

(1 + (ĉr)Kp)l

l! Nl

]
≤ Ex1,...,xp

[
(ĉr)(1+(ĉr)Kp+Kp)N ]

< ∞,

where the last inequality follows since P has exponential moments under the Palm
measure as well (see Remark (i) at the beginning of Section 2.1). Consequently,
by the Lebesgue dominated convergence theorem, the expression (3.12) converges
to 0 as l → ∞. Thus conditions (3.2) and (3.3) hold and (3.7) follows by Theo-
rem 3.1.

Now we consider case (i), that is to say ψ ! is as at (3.6) with ξ a U -statistic of
type (A1). By [11], Lemma 1.1, in the Supplementary Material, with k as in (1.13),
ψ ! is a sum of U -statistics of orders not larger than Kp(k − 1). Consequently, for
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l ∈ (Kp(k − 1),∞) we have

(3.13) Dl
y1,...,yl

ψ !(x1, . . . , xp;μ) = 0 ∀y1, . . . , yl ∈ Rd,

as shown in [48], Lemma 3.3, for Poisson point processes (the proof for general
simple counting measures μ is identical). This implies that conditions (3.2) for
l ∈ (Kp(k − 1),∞) and (3.3) are trivially satisfied for ψ ! as at (3.6). Now, we
need to verify the condition (3.2) for l ∈ [1,Kp(k − 1)]. For y1, . . . , yl ∈ Rd , set
as before μJ = μ|y∗ + ∑

j∈J δyj
for J ⊂ [l] and y∗ := min{y1, . . . , yl}, with the

minimum taken with respect to the order ≺. Since ξ has a bounded stabilization
radius, by (3.8) and (2.5), we have

ψ !(x1, . . . , xp;μJ )

≤
p∏

i=1

‖h‖ki∞

(
μ

( p⋃
i=1

Br(xi)

)
+ |J | + p

)ki(k−1)

(3.14)

≤ ‖h‖Kp∞
(
μ

( p⋃
i=1

Br(xi)

)
+ |J | + p

)Kp(k−1)

.

The number of subsets of [l] is 2l and so by (3.1), we obtain∣∣Dl
y1,...,yl

ψ !(x1, . . . , xp;μ)
∣∣

≤ ‖h‖Kp∞
∑

J⊂[l]

(
μ

( p⋃
i=1

Br(xi)

)
+ |J | + p

)Kp(k−1)

(3.15)

≤ ‖h‖Kp∞ 2l

(
μ

( p⋃
i=1

Br(xi)

)
+ l + p

)Kp(k−1)

.

Consider ψ !(x1, . . . , xp;Pn) with ψ ! defined as above. Using the refined Campbell
theorem (1.9), the bound (3.15), and following the calculations as in (3.12), we
obtain

1

l!
∫
Rdl

(
E!

x1,...,xp

)!
y1,...,yl

[∣∣Dl
y1,...,yl

ψ !(x1, . . . , xp;Pn)
∣∣]

× ρ(l)
x1,...,xp

(y1, . . . , yl)dy1 · · · dyl

≤ ‖h‖Kp∞ 2lEx1,...,xp

[
P
( p⋃

i=1

Br(xi)

)l(
P
( p⋃

i=1

Br(xi)

)
+ l + p

)Kp(k−1)]
.

Since P has all moments under the Palm measure (see Remark (ii) at the beginning
of Section 2.1), the finiteness of the last term, and hence the validity of the condi-
tion (3.2) for l ∈ [1,Kp(k − 1)] follows. This justifies the FME expansion (3.7),
with finitely many nonzero terms, when ψ ! is the product of score functions of
class (A1). �
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3.2. Proof of Theorem 1.11. First, assume that (ξ,P) is of class (A2). Later we
consider the simpler case that (ξ,P) is of class (A1). For fixed p,q, k1, . . . , kp+q ∈
N, consider correlation functions m(k1,...,kp+q )(x1, . . . , xp+q;n), m(k1,...,kp)(x1, . . . ,

xp;n) and m(kp+1,...,kp+q )(xp+1, . . . , xp+q;n) of the ξ -weighted measures at (1.6).
We abbreviate ψk1,...,kp (x1, . . . , xp;μ) by ψ(x1, . . . , xp;μ) as at (3.5), and simi-
larly for ψ(xp+1, . . . , xp+q;μ) and ψ(x1, . . . , xp+q;μ).

Given x1, . . . , xp+q ∈ Wn, we recall s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}).
Without loss of generality, we assume s ∈ (4,∞). Recalling the definition of b

at (1.17) and that of K at (3.9), we may assume without loss of generality that
b ∈ (0, d). Put

(3.16) t := t (s) :=
(

s

4

)b(1−a)/(2(K+d))

,

where a ∈ [0,1) is at (1.16). Since s ∈ (4,∞) and K ≥ 2, we easily have t ∈
(1, s/4). Given stabilization radii Rξ(xi,Pn),1 ≤ i ≤ p + q , we put

ξ̃(xi,Pn) := ξ
(
xi,Pn ∩ BRξ (xi ,Pn)(x)

)
1
[
Rξ(xi,Pn) ≤ t

]
considered under Ex1,...,xp . We denote by m̃(k1,...,kp) the correlation functions of

the ξ̃ -weighted atomic measure, that is,

m̃(k1,...,kp)(x1, . . . , xp;n)

:= Ex1,...,xp

[
ξ̃(x1,Pn)

k1 . . . ξ̃(xp,Pn)
kp
]
ρ(p)(x1, . . . , xp).

Write

ψ̃(x1, . . . , xp;Pn) = ψ(x1, . . . , xp;Pn)1
[
max
i≤p

Rξ (xi,Pn) ≤ t
]

(3.17)

=
p∏

i=1

ξ̃(xi,Pn)
ki .

Next, write Ex1,...,xpψ(x1, . . . , xp;Pn) as a sum of

Ex1,...,xp

[
ψ(x1, . . . , xp;Pn)1

[
max
i≤p

Rξ (xi,Pn) ≤ t
]]

and

Ex1,...,xp

[
ψ(x1, . . . , xp;Pn)1

[
max
i≤p

Rξ (xi,Pn) > t
]]

.

The bounds (1.11), (1.14), the moment condition (1.19), Hölder’s inequality and
p ≤ ∑p

i=1 ki = Kp give for Lebesgue almost all x1, . . . , xp:∣∣Ex1,...,xpψ(x1, . . . , xp;Pn) −Ex1,...,xp ψ̃(x1, . . . , xp;Pn)
∣∣

× ρ(p)(x1, . . . , xp)
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≤ pκp(M̃Kp+1)
Kp/(Kp+1)ϕ(apt)1/(Kp+1)(3.18)

≤ KpκKp(M̃Kp+1)
Kp/(Kp+1)ϕ(aKp t)1/(Kp+1)

≤ c1(Kp)ϕ(aKp t)1/(Kp+1).

Here c1(m) := mκmM̃m+1 ≥ mκm(M̃m+1)
m/(m+1), as M̃m ≥ 1 by assumption.

Similarly, condition (1.19) yields |Ex1,...,xpψ(x1, . . . , xp;Pn)|ρ(p)(x1, . . . , xp) ≤
c1(Kp). Using (3.18) with p replaced by p + q , we find m(k1,...,kp+q )(x1, . . . ,

xp+q;n) differs from m̃(k1,...,kp+q )(x1, . . . , xp+q;n) by c1(K)ϕ(aKt)1/(K+1),
which is fast-decreasing by (1.15).

For any reals A,B, Ã, B̃ , with |B̃| ≤ |B|, we have |AB − ÃB̃| ≤ |A(B − B̃)| +
|(A − Ã)B̃| ≤ (|A| + |B|)(|B − B̃| + |A − Ã|). Hence, it follows that∣∣m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kq )(xp+1, . . . , xp+q;n)

− m̃(k1,...,kp)(x1, . . . , xp;n)m̃(kp+1,...,kq)(xp+1, . . . , xp+q;n)
∣∣

≤ (
c1(Kp) + c1(Kq)

)
× (

c1(Kp)ϕ(aKp t)1/(Kp+1) + c1(Kq)ϕ(aKq t)
1/(Kq+1))

≤ c2(K)ϕ(aKt)1/(K+1),

with c2(m) := 4(c1(m))2 and where we note that ϕ(amt)1/(m+1) is also fast-
decreasing by (1.15). The difference of correlation functions of the ξ -weighted
measures is thus bounded by∣∣m(k1,...,kp+q)(x1, . . . , xp+q;n) − m(k1,...,kp)(x1, . . . , xp;n)

× m(kp+1,...,kp+q )(xp+1, . . . , xp+q;n)
∣∣

(3.19)
≤ (

c1(K) + c2(K)
)
ϕ(akt)

1/(K+1) + ∣∣m̃(k1,...,kp+q)(x1, . . . , xp+q;n)

− m̃(k1,...,kp)(x1, . . . , xp;n)m̃(kp+1,...,kp+q)(xp+1, . . . , xp+q;n)
∣∣.

The rest of the proof consists of bounding |m̃(k1,...,kp+q) −m̃(k1,...,kp)m̃(kp+1,...,kp+q )|
by a fast-decreasing function of s. In this regard, we will consider the expan-
sion (3.7) with ψ(x1, . . . , xp;Pn) replaced by ψ̃(x1, . . . , xp;Pn) as at (3.17)
and similarly for ψ̃(xp+1, . . . , xp+q;Pn) and ψ̃(x1, . . . , xp+q;Pn). By [11],
Lemma 1.2, in the Supplementary Material, ξ̃(xi,Pn),1 ≤ i ≤ p, have radii
of stabilization bounded above by t and also satisfy the power-growth condi-
tion (1.18) since |ξ̃ | ≤ |ξ |. Thus the pair (ξ̃,P) satisfies the assumptions of
Lemma 3.2. The corresponding version of ψ̃ , accounting for the fixed atoms of Pn

is ψ̃ !(x1, . . . , xp;μ) := ∏p
i=1 ξ̃(xi,μ+∑p

i=1 δxi
)ki and similarly for ψ̃ !(xp+1, . . . ,

xq;Pn) and ψ̃ !(x1, . . . , xp+q;Pn).
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Put Bt,n(xi) := Bt(xi) ∩ Wn. Applying (3.7), the multiplicative identity (2.11)
and (3.8), we obtain

m̃(k1,...,kp+q )(x1, . . . , xp+q)

= E!
x1,...,xp+q

[
ψ̃ !(x1, . . . , xp+q;Pn)

]
ρ(p+q)(x1, . . . , xp+q)

=
∞∑
l=0

1

l!
∫
(Wn)l

Dl
y1,...,yl

ψ̃ !(o)

× ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl)dy1 . . . dyl

=
∞∑
l=0

1

l!
∫
(
⋃p+q

i=1 Bt,n(xi))
l
Dl

y1,...,yl
ψ̃ !(o)

× ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl)dy1 · · · dyl.

Applying (3.1) when μ is the null measure, this gives for α(p+q) almost all
x1, . . . , xp+q

m̃(k1,...,kp+q)(x1, . . . , xp+q)

=
∞∑
l=0

1

l!
l∑

j=0

l!
j !(l − j)!

×
∫
(
⋃p

i=1 Bt,n(xi))
j×(

⋃q
i=1 Bt,n(xp+i ))

l−j
Dl

y1,...,yl
ψ̃ !(x1, . . . , xp+q;o)

× ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl)dy1 . . . dyl(3.20)

=
∞∑
l=0

l∑
j=0

1

j !(l − j)!
∫
(
⋃p

i=1 Bt,n(xi))
j×(

⋃q
i=1 Bt,n(xp+i ))

l−j
dy1 . . . dyl

× ∑
J⊂[l]

(−1)l−|J |ψ̃ !
(
x1, . . . , xp+q;

∑
j∈J

δyj

)

× ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl).

To compare the (p+q)th correlation functions of the ξ -weighted measures with
the product of their pth and qth correlation functions, we shall use the fact that
Rξ̃ (xi,Pn) ∈ (0, t] (cf. Supplementary Material [11], Lemma 1.2) implies the fol-
lowing factorization, which holds for y1, . . . , yj ∈ ⋃p

i=1 Bt(xi) and yj+1, . . . , yl ∈⋃q
i=1 Bt(xp+i ), with t ∈ (1, s/4) (making

⋃p
i=1 Bt(xi) and

⋃q
i=1 Bt(xp+i ) dis-
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joint):

ψ̃ !
(
x1, . . . , xp+q;

l∑
i=1

δyi

)
(3.21)

= ψ̃ !
(
x1, . . . , xp;

j∑
i=1

δyi

)
ψ̃ !

(
xp+1, . . . , xp+q;

l∑
i=j+1

δyi

)
.

Using the expansion (3.7) along with (3.21), we next derive an expansion for
the product of pth and qth correlation functions of the ξ -weighted measures. Re-
calling the multiplicative identity (2.11) as well as the identity Ex1,...,xp [ψ(Pn)] =
E!

x1,...,xp
[ψ !(Pn)] (cf. (3.6)), we obtain

m̃(k1,...,kp)(x1, . . . , xp)m̃(kp+1,...,kq )(xp+1, . . . , xp+q)

= E!
x1,...,xp

[
ψ̃ !(x1, . . . , xp;Pn)

]
E!

xp+1,...,xp+q

[
ψ̃ !(xp+1, . . . , xp+q;Pn)

]
× ρ(p)(x1, . . . , xp)ρ(q)(xp+1, . . . , xp+q)

(3.22)

=
∞∑

l1,l2=0

1

l1!l2!
∫
(
⋃p

i=1 Bt,n(xi ))
l1×(

⋃q
i=1 Bt,n(xp+i ))

l2
Dl1

y1,...,yl1
ψ̃ !(x1, . . . , xp;o)

× Dl2
z1,...,zl2

ψ̃ !(xp+1, . . . , xp+q;o)ρ(l1+p)(x1, . . . , xp, y1, . . . , yl1)

× ρ(l2+q)(xp+1, . . . , xp+q, z1, . . . , zl2)dy1 . . . dyl1 dz1 . . . dzl2 .

Applying (3.1) once more for μ the null measure, this gives

m̃(k1,...,kp)(x1, . . . , xp)m̃(kp+1,...,kq)(xp+1, . . . , xp+q)

=
∞∑

l1,l2=0

1

l1!l2!
∫
(
⋃p

i=1 Bt,n(xi))
l1×(

⋃q
i=1 Bt,n(xp+i ))

l2
dy1 · · · dyl1 dz1 · · · dzl2

× ∑
J1⊂[l1],J2⊂[l2]

(−1)l1+l2−|J1|−|J2|

× ψ̃ !
(
x1, . . . , xp; ∑

i∈J1

δyi

)
ψ̃ !

(
xp+1, . . . , xp+q;

∑
i∈J2

δzi

)

× ρ(l1+p)(x1, . . . , xp, y1, . . . , yl1)ρ
(l2+q)(xp+1, . . . , xp+q, z1, . . . , zl2)

=
∞∑
l=0

l∑
j=0

1

j !(l − j)!

×
∫
(
⋃p

i=1 Bt,n(xi))
j×(

⋃q
i=1 Bt,n(xp+i ))

l−j

∑
J1⊂[j ],J2⊂[l]\[j ]

(−1)l−|J1|−|J2|
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× ψ̃ !
(
x1, . . . , xp; ∑

i∈J1

δyi

)
ψ̃ !

(
xp+1, . . . , xp+q;

∑
i∈J2

δyi

)

× ρ(j+p)(x1, . . . , xp, y1, . . . , yj )

× ρ(l−j+q)(xp+1, . . . , xp+q, yj+1, . . . , yl)dy1 · · · dyl

=
∞∑
l=0

l∑
j=0

1

j !(l − j)!
∫
(
⋃p

i=1 Bt,n(xi))
j×(

⋃q
i=1 Bt,n(xp+i ))

l−j

∑
J⊂[l]

(−1)l−|J |

× ψ̃ !
(
x1, . . . , xp+q;

∑
i∈J

δyi

)
× ρ(j+p)(x1, . . . , xp, y1, . . . , yj )

× ρ(l−j+q)(xp+1, . . . , xp+q, yj+1, . . . , yl)dy1 · · · dyl,

where we have used (3.21) in the last equality.
Now we estimate the difference of (3.20) and (3.23). Applying (1.10) and re-

placing Bt,n(xi) with Bt(xi), we obtain∣∣m̃(k1,...,kp+q)(x1, . . . , xp+q)

− m̃(k1,...,kp)(x1, . . . , xp)m̃(kp+1,...,kq )(xp+1, . . . , xp+q)
∣∣

≤ φ

(
s

2

) ∞∑
l=0

l∑
j=0

Cl+p+q

j !(l − j)!(3.23)

×
∫
(
⋃p

i=1 Bt (xi))
j×(

⋃q
i=1 Bt (xp+i ))

l−j

∑
J⊂[l]

∣∣∣∣ψ̃ !
(
x1, . . . , xp+q;

∑
i∈J

δyi

)∣∣∣∣dy1 · · · dyl.

Recalling (3.21), (3.10) and the definitions of Kp,Kq and K at (3.9), we bound∑
J⊂[l] |ψ̃ !(x1, . . . , xp+q;∑i∈J δyi

)| by 2l(ĉt)jKp+(l−j)Kq+K , where ĉt ∈ [1,∞)

holds since ĉ ∈ [1,∞) in (1.18). This gives∣∣m̃(k1,...,kp+q )(x1, . . . , xp+q)

− m̃(k1,...,kp)(x1, . . . , xp)m̃(kp+1,...,kq )(xp+1, . . . , xp+q)
∣∣

(3.24)

≤ φ

(
s

2

) ∞∑
l=0

l∑
j=0

Cl+p+q

j !(l − j)!

×
∫
(
⋃p

i=1 Bt (xi))
j×(

⋃q
i=1 Bt (xp+i ))

l−j
2l(ĉt)jKp+(l−j)Kq+K dy1 · · · dyl.
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Consequently, bounding Kp and Kq by K we obtain∣∣m̃(k1,...,kp+q)(x1, . . . , xp+q)

− m̃(k1,...,kp)(x1, . . . , xp)m̃(kp+1,...,kq )(xp+1, . . . , xp+q)
∣∣

≤ φ

(
s

2

) ∞∑
l=0

Cl+p+q2l(ĉt)(l+1)K(
(p + q)θdtd

)l l∑
j=0

1

j !(l − j)!(3.25)

≤ φ

(
s

2

) ∞∑
l=0

Cl+p+q

l! 4l(ĉt)(l+1)K(
(p + q)θdtd

)l
≤ φ

(
s

2

) ∞∑
l=0

Cl+K

l! 4l(ĉt)(l+1)K(
Kθdtd

)l
,

where θd := πd/2/�(d/2 + 1) is the volume of the unit ball in Rd and where the
last inequality uses p+q ≤ K . The bound (1.16) yields Cl+K = O((l+K)a(l+K)).
Thus there are constants c1, c2 and c3 depending only on a, d and K such that

∞∑
l=0

Cl+K

l! 4l(ĉt)(l+1)K(
Kθdtd

)l ≤ tK
∞∑
l=0

c1c
l
2l

c3(tK+d)l · lal

l! .

By Stirling’s formula, there are constants c4, c5 and c6 depending only on a, d and
K such that

tK
∞∑
l=0

Cl+K

l! 4l(ĉt)lK
(
Kθdtd

)l ≤ tK
∞∑
l=0

c4c
l
5l

c6(tK+d)l

(�l(1 − a)�)! ,

where for r ∈ R, �r� is the greatest integer less than r . We compute

tK
∞∑
l=0

Cl+K

l! 4l(ĉt)lK
(
Kθdtd

)l
≤ tK

∞∑
n=0

∑
{l:�l(1−a)�=n}

c4c
l
5l

c6(tK+d)l

n!(3.26)

≤ tK
∞∑

n=0

c4c
n
5nc6(tK+d)(n+1)/(1−a)

(1 − a)n! ≤ c7 exp
(
c8t

(K+d)/(1−a)),
where c7 and c8 depend only on a, d and K .

Recalling from (3.16) that t := (s/4)b(1−a)/(2(K+d)) we obtain

∞∑
l=0

Cl+K

l! 4l(ĉt)(l+1)K(
Kθdtd

)l ≤ c7 exp
(
c8

(
s

4

) b
2
)
.
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By (1.17), there is a constant c9 depending only on a such that for all s we have
φ(s) ≤ c9 exp(−sb/c9). Combining this with (3.25) and (3.26) gives

∣∣m̃(k1,...,kp+q) − m̃(k1,...,kp)m̃(kp+1,...,kp+q )
∣∣ ≤ c7c9 exp

(−(s/2)b

c9
+ c8

(
s

4

) b
2
)
.

This along with (3.19) shows (1.21) when (ξ,P) is an admissible pair of
class (A2).

Now we establish (1.21) when (ξ,P) is of class (A1). Let k be as in (1.13).
Follow the arguments for case (A2) word for word using that supx∈P Rξ(x,P) ≤ r .
Notice that for l ∈ ((k − 1)K,∞) the summands in (3.20) vanish. Likewise, when
l1 ∈ ((k − 1)Kp,∞) and l2 ∈ ((k − 1)Kq,∞), the respective summands in (3.22)
vanish. It follows that for l ∈ ((k − 1)K,∞) the summands in (3.25) all vanish.
The finiteness of C̃K in expression (1.21) is immediate, without requiring decay
rates for φ or growth bounds on Ck . Thus (1.21) holds when (ξ,P) is of class (A1).

4. Proof of main results. We provide the proofs of Theorems 1.12, 1.15 and
1.13 in this order.

4.1. Proof of Theorem 1.12.

4.1.1. Proof of expectation asymptotics (1.23). The definition of the Palm
probabilities gives Eμ

ξ
n(f ) = ∫

Wn
f (n−1/du)Euξ(u,Pn)ρ

(1)(u)du. As P is sta-
tionary and ξ is translation invariant, we have E0ξ(0,P) = Euξ(u,P). So,∣∣∣∣n−1Eμξ

n(f ) −E0ξ(0,P)ρ(1)(0)

∫
W1

f (x)dx

∣∣∣∣
=

∣∣∣∣n−1
∫
Wn

f
(
n−1/du

){
Euξ(u,Pn)ρ

(1)(u) −E0ξ(0,P)ρ(1)(0)
}

du

∣∣∣∣
=

∣∣∣∣n−1
∫
Wn

f
(
n−1/du

)
Eu

[(
ξ(u,Pn) − ξ(u,P)

)
ρ(1)(u)

]
du

∣∣∣∣
≤ ‖f ‖∞n−1

∫
Wn

Eu

[∣∣ξ(u,Pn) − ξ(u,P)
∣∣

× 1
[
max

(
Rξ(u,P),Rξ (u,Pn)

) ≥ d(u, ∂Wn)
]]

ρ(1)(u)du

≤ ‖f ‖∞n−1
∫
Wn

duρ(1)(u)Eu

[∣∣ξ(u,Pn) − ξ(u,P)
∣∣

× (
1
[
Rξ(u,P) ≥ d(u, ∂Wn)

] + 1
[
Rξ(u,Pn) ≥ d(u, ∂Wn)

])]
≤ 4κ1‖f ‖∞n−1M̃p

∫
Wn

(
ϕ
(
a1d(u, ∂Wn)

))1/q du,
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where the last inequality follows from the Hölder inequality, (1.14), the bound
(1.11), the p-moment condition (1.19) (recall p ∈ (1,∞) and M̃p ∈ [1,∞)) and
where 1/p + 1/q = 1. By (1.15), the bound (1.23) follows at once from∫

Wn

(
ϕ
(
a1d(u, ∂Wn)

))1/q du = O
(
n(d−1)/d).

If ξ satisfies (1.14), but not (1.15), then by the bounded convergence theorem, we
have

lim sup
n→∞

n−1
∫
Wn

(
ϕ
(
a1d(u, ∂Wn)

))1/q du

= lim sup
n→∞

∫
W1

(
ϕ
(
a1n

1/dd(z, ∂W1)
))1/q dz = 0.

Consequently, we have expectation asymptotics under (1.14) as follows:∣∣∣∣n−1Eμξ
n(f ) −E0ξ(0,P)ρ(1)(0)

∫
W1

f (x)dx

∣∣∣∣ = o(1).

4.1.2. Proof of variance asymptotics (1.24). Recall the definition of correla-
tion functions (1.6) of the ξ -weighted measures. We have

Varμξ
n(f ) = E

∑
x∈Pn

f
(
n−1/dx

)2
ξ2(x,Pn)

+E
∑

x,y∈Pn,x 
=y

f
(
n−1/dx

)
f
(
n−1/dy

)
ξ(x,Pn)ξ(y,Pn)(4.1)

−
(
E

∑
x∈Pn

f
(
n−1/dx

)
ξ(x,Pn)

)2

=
∫
Wn

f
(
n−1/du

)2Eu

(
ξ2(u,Pn)

)
ρ(1)(u)du

+
∫
Wn×Wn

f
(
n−1/du

)
f
(
n−1/dv

)
(4.2)

× (
m(2)(u, v;n) − m(1)(u;n)m(1)(v;n)

)
dudv.

Since ξ satisfies the p-moment condition (1.19) for p > 2, we have that ξ2 sat-
isfies the p-moment condition for p > 1. Also, ξ and ξ2 have the same radius of
stabilization. Thus, the proof of expectation asymptotics, with ξ replaced by ξ2,
shows that the first term in (4.1), multiplied by n−1, converges to

E0ξ
2(0,P)ρ(1)(0)

∫
W1

f (x)2 dx;
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cf. expectation asymptotics (1.23). Setting x = n−1/du and z = v −u = v −n1/dx,
the second term in (4.2), multiplied by n−1, may be rewritten as∫

W1

∫
Wn−n1/dx

f
(
x + n−1/dz

)
f (x)

× [
m(2)

(
n1/dx, n1/dx + z;n)(4.3)

− m(1)

(
n1/dx;n)m(1)

(
n1/dx + z;n)]dz dx.

Setting Px
n := P ∩ (Wn −n1/dx), the translation invariance of ξ and stationarity

of P yields

m(2)

(
n1/dx, n1/dx + z;n) = m(2)

(
0, z;Px

n

)
,

m(1)

(
n1/dx;n) = m(1)

(
0;Px

n

)
,

m(1)

(
n1/dx + z;n) = m(1)

(
z;Px

n

)
.

Putting aside for the moment technical details, one expects that the above moments
converge to m(2)(0, z), m(1)(0) and m(1)(z) = m(1)(0), respectively, when n → ∞.
Moreover, splitting the inner integral in (4.3) into two terms∫

Wn−n1/dx
(· · · )dz

(4.4)
=

∫
Wn−n1/dx

1
[|z| ≤ M

]
(· · · )dz +

∫
Wn−n1/dx

1
[|z| > M

]
(· · · )dz

for any M > 0, we see (at least when f is continuous) that the first term in the
right-hand side of (4.4) converges to the desired value∫

Rd
f (x)2[m(2)(0, z) − m(1)(0)2]dz

when first n → ∞ and then M → ∞. By the fast decay of the second-order cor-
relations of the ξ -weighted measures, that is, by (1.21) with p = q = k1 = k2 = 1
and all n ∈ N∪{∞}, the absolute value of the second term in (4.4) can be bounded
uniformly in n by

‖f ‖2∞C̃2

∫
|z|>M

φ̃(c̃2z)dz,

which goes to 0 when M → ∞ since φ̃(·) is fast-decreasing (and thus integrable).
To formally justify the above statements, we need the following lemma. Denote

hξ
n(x, z) := m(2)

(
0, z;Px

n

) − m(1)

(
0;Px

n

)
m(1)

(
z;Px

n

)
.

LEMMA 4.1. Assume that translation invariant score function ξ on the input
process P satisfies (1.14) and the p-moment condition (1.19) for p ∈ (2,∞). Then
h

ξ
n(x, z) is uniformly bounded

sup
n≤∞

sup
x∈W1

sup
z∈Wn−n1/dx

∣∣hξ
n(x, z)

∣∣ ≤ Ch < ∞



876 B. BŁASZCZYSZYN, D. YOGESHWARAN AND J. E. YUKICH

for some constant Ch and

lim
n→∞hξ

n(x, z) = hξ∞(x, z) = m(2)(0, z) − (
m(1)(0)

)2
.

PROOF. Denote Xn := ξ(0,Px
n ), Yn := ξ(z,Px

n ), X := ξ(0,P), and Y :=
ξ(z,P). We shall prove first that all expectations E0,z(X

2
n), E0,z(Y

2
n ), E0,z(X

2)

E0,z(Y
2), E0|Xn|, Ez|Yn|, E0|X| and Ez|Y | are uniformly bounded. Indeed, by the

Hölder inequality

(4.5) E0,z

(
X2

n

) ≤ (
E0,z|Xn|p)2/p = (

En1/dx,z

∣∣ξ (n1/dx,Pn

)∣∣p)2/p ≤ M̃2/p
p ,

where in the last inequality we have used p-moment condition (1.19) for p > 2.
Similarly, E0,z(Y

2
n ) and E0,z(X

2), E0,z(Y
2) are bounded by M̃

2/p
p . Again using

p-moment condition (1.19), we obtain

E0|Xn| ≤ (
E0(Xn)

2)1/2 ≤ (
En1/dx

∣∣ξ2(n1/dx,Pn

)∣∣)1/2 ≤ M̃1/2
p

and similarly for Ez|Yn|, E0|X| and Ez|Y |. This proves the uniform bound of
|hξ

n(x, z)|. To prove the convergence notice that∣∣m(2)

(
0, z;Px

n

) − m(2)(0, z)
∣∣(4.6)

= ∣∣E0,z(XnYn) −E0,z(XY )
∣∣ρ(2)(0, z)

≤ κ2
(
E0,z|XnYn − XnY | +E0,z|XnY − XY |)

≤ κ2
(
E0,z

(
X2

n

)
E0,z(Yn − Y)2)1/2 + κ2

(
E0,z

(
Y 2)E0,z(Xn − X)2)1/2

,(4.7)

where κ2 bounds the second-order correlation function as at (1.11). We have al-
ready proved that E0,z(X

2
n), E0,z(Y

2) are bounded. Moreover,

E0,z(Xn − X)2

= E0,z

(
(Xn − X)21[Xn 
= X])

≤ E0,z

(
X2

n1[Xn 
= X]) + 2E0,z

(|XnX|1[Xn 
= X]) +E0,z

(
X21[Xn 
= X]).

The Hölder inequality gives for p > 2 and 2/p + 1/q = 1,

E0,z

(
X2

n1[Xn 
= X]) ≤ (
E0,z

(
Xp

n

))2/p(P0,z(Xn 
= X)
)1/q

,

E0,z

(|XnX|1[Xn 
= X]) ≤ (
E0,z

(
Xp

n

)
E0,z

(
Xp))1/p(P0,z(Xn 
= X)

)1/q
,

E0,z

(
X21[Xn 
= X]) ≤ (E0,z

(
Xp)2/p(P0,z(Xn 
= X)

)1/q
.

The pth moment of Xn and X under E0,z can be bounded by M̃p using the p-
moment condition (1.19) with p > 2 as in (4.5). Stabilization (1.14) with l = 2
gives

P0,z(Xn 
= X) ≤ P0,z(
(
max

(
Rξ(u,P),Rξ (u,Pn)

)
> n1/dd(x, ∂W1)

)
(4.8)

≤ 2ϕ
(
a2n

1/dd(x, ∂W1)
)

(4.9)
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with the right-hand side converging to 0 for all x /∈ ∂W1. This proves that
E0,z(Xn − X)2 and (by the very same arguments) E0,z(Yn − Y)2 converge to 0
as n → ∞ for all x /∈ ∂W1. Concluding this part of the proof, we have shown
that the expression in (4.6) converges to 0, and thus m(2)(0, z;Px

n ) converges to
m(2)(0, z). Using similar arguments, we derive∣∣m(1)

(
0,Px

n

) − m(1)(0)
∣∣ = ∣∣E0(Xn) −E0(X)

∣∣ρ(1)(0)

≤ κ1
((
E0(Xn)

2)1/2 + (
E0

(
X2))1/2)(P0(Xn 
= X)

)
)1/2,

by the p-moment condition (1.19) and the stabilization property (1.14) for p = 1
one can show that m(1)(0,Px

n ) converges to m(1)(0) uniformly in x for all x ∈ W1 \
∂W1. Exactly the same arguments assure convergence of m(1)(z,Px

n ) to m(1)(z) =
m(1)(0). This concludes the proof of Lemma 4.1. �

In order to complete the proof of variance asymptotics for general f ∈
B(W1) (not necessarily continuous), we use arguments borrowed from the
proof of [40], Theorem 2.1. Recall that x ∈ W1 is a Lebesgue point for f if
(VoldBε(x))−1 ∫

Bε(x) |f (z) − f (x)|dz → 0 as ε → 0. Denote by Cf all Lebesgue
points of f in W1. By the Lebesgue density theorem, almost every x ∈ W1 is
a Lebesgue point of f , and thus for any M > 0 and n large enough the double
integral in (4.3) is equal to∫

W1

1[x ∈ Cf ]f (x)

∫
Wn−n1/dx

f
(
x + n−1/dz

)
hξ

n(x, z)dz dx

=
∫
W1

1[x ∈ Cf ]f (x)

∫
|z|≤M

f
(
x + n−1/dz

)
hξ

n(x, z)dz dx

+
∫
W1

1[x ∈ Cf ]f (x)

∫
Wn−n1/dx

1
(|z| > M

)
f
(
x + n−1/dz

)
hξ

n(x, z)dz dx.

As already explained, by the fast decay of the second-order correlations of the ξ -
weighted measures, the second term converges to 0 as first n → ∞ and then M →
∞. Considering the first term, by the uniform boundedness of h

ξ
n(x, z), using the

dominated convergence theorem, it is enough to prove for any Lebesgue point x

of f and fixed M that

lim
n→∞

∫
|z|<M

hξ
n(x, z)f

(
x + n−1/dz

)
dz = f (x)

∫
|z|<M

hξ∞(x, z)dz.

In this regard, notice that∫
|z|<M

∣∣hξ
n(x, z)f

(
x + n−1/dz

) − hξ∞(x, z)f (x)
∣∣dz

≤
∫
|z|<M

Ch × ∣∣f (
x + n−1/dz

) − f (x)
∣∣
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+ ∣∣hξ
n(x, z) − hξ∞(x, z)

∣∣ × ‖f ‖∞ dz

≤ Chn

∫
|z|<n−1/dM

∣∣f (x + z) − f (x)
∣∣dz + ‖f ‖∞

×
∫
|z|<M

∣∣hξ
n(x, z) − hξ∞(x, z)

∣∣dz.

Both terms converge to 0 as n → ∞: the first since x is a Lebesgue point of x, the
second by the dominated convergence of h

ξ
n(x, z); cf. Lemma 4.1. Note that∫

W1

∫
R2

∣∣hξ∞(x, z)
∣∣dz dx < ∞,

which follows again from the fast decay of the second-order correlations of the
ξ -weighted measure ((1.21) with p = q = k1 = k2 = 1 and all n ∈ N ∪ {∞}). Let-
ting M go to infinity in

∫
W1

f 2(x)
∫
|z|<M h

ξ∞(x, z)dz dx completes the proof of
variance asymptotics.

4.2. Proof of Theorem 1.15. The proof is inspired by the proofs of [34], Propo-
sitions 1 and 2. By the refined Campbell theorem and stationarity of P , we have

n−1 Var Ĥ ξ
n (P)

=
∫
Wn

Exξ
2(x;P)ρ(1)(x)dx

+
∫
Wn

∫
Wn

[
m(2)(x, y) − m(1)(x)m(1)(y)

]
dy dx(4.10)

= E0ξ
2(0,P)ρ(1)(0)

+ n−1
∫
Wn

∫
Wn

(
m(2)(x, y) − m(1)(x)m(1)(y)

)
dy dx.

Writing c(x, y) := m(2)(x, y) − m(1)(x)m(1)(y), the double integral in (4.10) be-
comes (z = y − x)

n−1
∫
Wn

∫
Wn

(
m(2)(x, y) − m(1)(x)m(1)(y)

)
dy dx

= n−1
∫
Wn

∫
Rd

c(0, z)1[x + z ∈ Wn]dz dx

= n−1
∫
Wn

∫
Rd

c(0, z)1[x ∈ Wn − z]dz dx.

Write 1[x ∈ Wn − z] as 1 − 1[x ∈ (Wn − z)c] to obtain

n−1
∫
Wn

∫
Wn

(
m(2)(x, y) − m(1)(x)m(1)(y)

)
dy dx

=
∫
Rd

c(0, z)dz − n−1
∫
Rd

∫
Wn

c(0, z)1
[
x ∈ Rd \ (Wn − z)

]
dx dz.
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From (1.29), we have that γWn(z) := Vold(Wn ∩ (Rd \ (Wn − z))), and thus rewrite
(4.10) as

n−1 Var Ĥ ξ
n (P) = E0ξ

2(0,P)ρ(1)(0)
(4.11)

+
∫
Rd

c(0, z)dz − n−1
∫
Rd

c(0, z)γWn(z)dz.

Now we claim that

lim
n→∞n−1

∫
Rd

c(0, z)γWn(z)dz = 0.

Indeed, as noted in Lemma 1 of [34], for all z ∈Rd we have limn→∞ n−1γWn(z) =
0. Since n−1c(0, z)γWn(z) is dominated by the fast-decreasing function c(0, z), the
dominated convergence theorem gives the claimed limit. Letting n → ∞ in (4.11)
gives

(4.12) lim
n→∞n−1 Var Ĥ ξ

n (P) = E0ξ
2(0,P)ρ(1)(0) +

∫
Rd

c(0, z)dz = σ 2(ξ),

where the last equality follows by the definition of σ 2(ξ) in (1.22) and the finite-
ness follows by the fast-decreasing property of c(0, z,P) (which follows from the
assumption of fast decay of the second mixed moment density).

Now if σ 2(ξ) = 0 then the right-hand side of (4.12) vanishes, that is,

E0ξ
2(0,P)ρ(1)(0) +

∫
Rd

c(0, z)dz = 0.

Applying this identity to the right-hand side of (4.11), then multiplying (4.11) by
n1/d and taking limits we obtain

(4.13) lim
n→∞n−(d−1)/d Var Ĥ ξ

n (P) = − lim
n→∞n−(d−1)/d

∫
Rd

c(0, z)γWn(z)dz.

As in [34], we have n−(d−1)/dγWn(z) ≤ C|z| and, therefore, again, by the fast-
decreasing property of c(0, z) we conclude that n−(d−1)/dc(0, z)γWn(z) is domi-
nated by an integrable function of z. Also, as in [34], Lemma 1, for all z ∈ Rd

we have limn→∞ n−(d−1)/dγWn(z) = γ (z). The dominated convergence theorem
yields (1.31) as desired,

lim
n→∞n−(d−1)/d Var Ĥ ξ

n (P) = −
∫
Rd

c(0, z)γ (z)dz.

4.3. First proof of the central limit theorem.

4.3.1. The method of cumulants. We use the method of cumulants to prove
Theorem 1.13. We shall define cumulants precisely in Section 4.3.2. Write
μ

ξ
n for the centered measure μ

ξ
n − Eμ

ξ
n and recall that we write 〈f,μ〉 for
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f dμ. The guiding principle is that as soon as the kth order cumulants Ck

n for

〈f,μ
ξ
n〉/

√
Var〈f,μ

ξ
n〉 vanish as n → ∞ for k large, then

(4.14)
〈f,μn〉√

Var〈f,μ
ξ
n〉

D−→ N.

We establish the vanishing of Ck
n for k large by showing that the fast decay of

correlation functions for the ξ -weighted measures at (1.5) implies volume order
growth (i.e., growth of order O(n)) for the kth order cumulant for 〈f,μ

ξ
n〉, k ≥ 2,

and then use the assumption Var〈f,μ
ξ
n〉 = 
(nν).

Our approach. The O(n) growth of the kth order cumulant for 〈f,μ
ξ
n〉 is es-

tablished by controlling the growth of kth order cumulant measures for μ
ξ
n, here

denoted by ck
n, and which are defined analogously to moment measures. We first

prove a general result (see (4.19) and (4.20) below) showing that integrals of the
cumulant measures ck

n may be controlled by a finite sum of integrals of so-called
(S, T ) semi-cluster measures, where (S, T ) is a generic partition of {1, . . . , k}.
This result holds for any μ

ξ
n of the form (1.4) and depends neither on choice of

input P nor on the localization properties of ξ . Semi-cluster measures for μ
ξ
n have

the appealing property that they involve differences of measures on product spaces
with product measures, and thus their Radon–Nikodym derivatives involve differ-
ences of correlation functions of the ξ -weighted measures.

In general, bounds on cumulant measures in terms of semi-cluster measures
are not terribly informative. However, when ξ , together with P , satisfy moment
bounds and fast decay of correlations (1.21), then the situation changes. First,
integrals of (S, T ) semi-cluster measures on properly chosen subsets W(S,T )

of Wk
n , with (S, T ) ranging over partitions of {1, . . . , k}, exhibit O(n) growth.

This is because the subsets W(S,T ) are chosen so that the Radon–Nikodym
derivative of the (S, T ) semi-cluster measure, being a difference of the correla-
tion functions of the ξ -weighted measures, may be controlled by (1.21) for points
(v1, . . . , vk) ∈ W(S,T ). Second, it conveniently happens that Wk

n is precisely the
union of W(S,T ), as (S, T ) ranges over partitions of {1, . . . , k}. Therefore, com-
bining these observations, we see that every cumulant measure on Wk

n is a sum
ranging over partitions (S, T ) of {1, . . . , k} of linear combinations of (S, T ) semi-
cluster measures on W(S,T ), each of which exhibits O(n) growth.

Thus cumulant measures ck
n exhibit growth proportional to Vold(Wn) carrying

Pn, namely

(4.15)
〈
f k, ck

n

〉 = O(n), f ∈ B(W1), k = 2,3, . . .

The remainder of Section 4.3 provides the details justifying (4.15).
Remarks on related work. (a) The estimate (4.15) first appeared in [5],

Lemma 5.3, but the work of [14] (and to some extent [56]) was the first to rigor-
ously control the growth of ck

n on the diagonal subspaces, where two or more coor-
dinates coincide. In fact, Section 3 of [14] shows the estimate 〈f k, ck

n〉 ≤ Lk(k!)βn,
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where L and β are constants independent of n and k. We assert that the arguments
behind (4.15) are not restricted to Poisson input, but depend only on the fast de-
cay of correlations (1.21) of the ξ -weighted measures and moment bounds (1.19).
Since these arguments are not well known, we present them in a way which is
hopefully accessible and reasonably self-contained. Since we do not care about
the constants in (4.15), we shall suitably adopt the arguments of [5], Lemma 5.3
and [56], taking the opportunity to make those arguments more rigorous. Indeed
those arguments did not adequately explain the fast decay of the correlations of
the ξ -wighted measures of the ξ -weighted measures on diagonal subspaces.

(b) The breakthrough paper [37] shows that the kth order cumulant for the linear
statistic 〈f,

∑
x δn−1/dx〉/

√
Var〈f,

∑
x δn−1/dx〉 vanishes as n → ∞ and k large. This

approach is extended to 〈f,μ
ξ
n〉 in Section 4.4 thereby giving a second proof of the

central limit theorem.

4.3.2. Properties of cumulant and semi-cluster measures.

Moments and cumulants. For a random variable Y with all finite moments, ex-
panding the logarithm of the Laplace transform (in the negative domain) in a for-
mal power series gives

(4.16) logE
(
etY ) = log

(
1 +

∞∑
k=1

Mkt
k

k!
)

=
∞∑

k=1

Skt
k

k! ,

where Mk = E(Y k) is the kth moment of Y and Sk = Sk(Y ) denotes the k th cumu-
lant of Y . Both series in (4.16) can be considered as formal ones and no additional
condition (on exponential moments of Y ) are required for the cumulants to exist.
Explicit relations between cumulants and moments may be established by formal
manipulations of these series; see, for example, [13], Lemma 5.2.VI. In particular,

(4.17) Sk = ∑
γ∈�[k]

(−1)|γ |−1(|γ | − 1
)! |γ |∏

i=1

M |γ (i)|,

where �[k] is the set of all unordered partitions of the set {1, . . . , k}, and for a
partition γ = {γ (1), . . . , γ (l)} ∈ �[k], |γ | = l denotes the number of its elements,
while |γ (i)| the number of elements of subset γ (i). (Although elements of �[k]
are unordered partitions, we need to adopt some convention for the labeling of their
elements: let γ (1), . . . , γ (l) correspond to the ordering of the smallest elements in
the partition sets.) In view of (4.17), the existence of the kth cumulant Sk follows
from the finiteness of the moment Mk .

Moment measures. Given a random measure μ on Rd , the kth moment measure
Mk = Mk(μ) is the one (Section 5.4 and Section 9.5 of [13]) satisfying〈
f1 ⊗ · · · ⊗ fk,M

k(μ)
〉 = E

[〈f1,μ〉 · · · 〈fk,μ〉]
= E

[ ∑
x∈Pn

f1

(
x

n1/d

)
ξ(x,Pn) · · · ∑

x∈Pn

fk

(
x

n1/d

)
ξ(x,Pn)

]
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for all f1, . . . , fk ∈ B(Rd), where f1 ⊗· · ·⊗fk : (Rd)k →R is given by f1 ⊗· · ·⊗
fk(x1, . . . , xk) = f1(x1) · · ·fk(xk).

As on page 143 of [13], when μ is a counting measure, Mk may be expressed
as a sum of factorial moment measures M[j ],1 ≤ j ≤ k, (as defined on page 133
of [13]):

Mk(d(x1 × · · · × xk)
) =

k∑
j=1

∑
V

M[j ]
( j∏

i=1

dyi(V)

)
δ(V),

where, to quote from [13], the inner sum is taken over all partitions V of the k

coordinates into j nonempty disjoint subsets, the yi(V),1 ≤ i ≤ j , constitute an
arbitrary selection of one coordinate from each subset and δ(V) is a δ function
which equals zero unless equality holds among the coordinates in each nonempty
subset of V .

When μ is the atomic measure μ
ξ
n, we write Mk

n for Mk(μ
ξ
n). By the Campbell

formula, considering repetitions in the k-fold product of Rd , and putting ỹi :=
yi(V) and V := (V1, . . . ,Vj ) we have that〈

f ⊗ · · · ⊗ f,Mk
n

〉
= E

[〈
f,μξ

n

〉 · · · 〈f,μξ
n

〉]
=

k∑
j=1

∑
V

∫
(Wn)j

k∏
i=1

f

(
yi

n1/d

)
Eỹ1···ỹj

[ j∏
i=1

ξ |Vi |(ỹi ,Pn)

]

× ρ(j)(ỹ1, . . . , ỹj )

j∏
i=1

dyi(V)δ(V).

In other words, recalling Lemma 9.5.IV of [13] we get

(4.18) dMk
n(y1, . . . , yk) =

k∑
j=1

∑
V

m(|V1|,...,|Vj |)(ỹ1, . . . , ỹj ;n)

j∏
i=1

dyi(V)δ(V).

Cumulant measures. The kth cumulant measure ck
n := ck(μn) is defined analo-

gously to the kth moment measure via〈
f1 ⊗ · · · ⊗ fk, c

k(μn)
〉 = c

(〈f1,μn〉 · · · 〈fk,μn〉),
where c(X1, . . . ,Xk) denotes the joint cumulant of the random variables X1, . . . ,

Xk .
The existence of the cumulant measures cl

n, l = 1,2, . . . follows from the exis-
tence of moment measures in view of the representation (4.17). Thus, we have the
following representation for cumulant measures:

cl
n = ∑

T1,...,Tp

(−1)p−1(p − 1)!MT1
n · · ·MTp

n ,
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where T1, . . . , Tp ranges over all unordered partitions of the set 1, . . . , l (see

page 30 of [33]). Henceforth for Ti ⊂ {1, . . . , l}, let M
Ti
n denote a copy of the

moment measure M |Ti | on the product space WTi . Multiplication denotes the
usual product of measures: For T1, T2 disjoint sets of integers and for measurable
B1 ⊂ (Rd)T1,B2 ⊂ (Rd)T2 , we have M

T1
n M

T2
n (B1 ×B2) = M

T1
n (B1)M

T2
n (B2). The

first cumulant measure coincides with the expectation measure and the second cu-
mulant measure coincides with the covariance measure.

Cluster and semi-cluster measures. We show that every cumulant measure ck
n is

a linear combination of products of moment and cluster measures. We first recall
the definition of cluster and semi-cluster measures. A cluster measure US,T

n on
WS

n × WT
n for nonempty S,T ⊂ {1,2, . . .} is defined by

US,T
n (B × D) = MS∪T

n (B × D) − MS
n (B)MT

n (D)

for Borel sets B and D in WS
n and WT

n , respectively, and where multiplication
means product measure.

Let S1, S2 be a partition of S and let T1, T2 be a partition of T . A product of a
cluster measure U

S1,T1
n on W

S1
n × W

T1
n with products of moment measures M

|S2|
n

and M
|T2|
n on W

S2
n × W

T2
n is an (S, T ) semi-cluster measure.

For each nontrivial partition (S, T ) of {1, . . . , k}, the kth cumulant ck
n measure

is represented as

(4.19) ck
n = ∑

(S1,T1),(S2,T2)

α
(
(S1, T1), (S2, T2)

)
US1,T1

n M |S2|
n M |T2|

n ,

where the sum ranges over partitions of {1, . . . , k} consisting of pairings (S1, T1),
(S2, T2), where S1, S2 ⊂ S and T1, T2 ⊂ T , where S1 and T1 are nonempty, and
where α((S1, T1), (S2, T2)) are integer valued pre-factors. In other words, for any
non-trivial partition (S, T ) of {1, . . . , k}, ck

n is a linear combination of (S, T ) semi-
cluster measures. We prove this exactly as in the proof of Lemma 5.1 of [5], as
that proof involves only combinatorics and does not depend on the nature of the
input. For an alternate proof, with good growth bounds on the integer pre-factors
α((S1, T1), (S2, T2)), we refer to Lemma 3.2 of [14].

Let �(k) be the collection of partitions of {1, . . . , k} into two subsets S and T .
Whenever Wk

n may be expressed as the union of sets W(S,T ), (S, T ) ∈ �(k), then
we may write∣∣〈f k, ck

n

〉∣∣ ≤ ∑
(S,T )∈�(k)

∫
W(S,T )

∣∣f (v1) · · ·f (vk)
∣∣∣∣dck

n(v1, . . . , vk)
∣∣

≤ ‖f ‖k∞
∑

(S,T )∈�(k)

∑
(S1,T1),(S2,T2)

∣∣α(
(S1, T1), (S2, T2)

)∣∣(4.20)

×
∫
W(S,T )

d
(
US1,T1

n M |S2|
n M |T2|

n

)
(v1, . . . , vk),
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where the last inequality follows by (4.19). As noted at the outset, this bound is
valid for any f ∈ B(Rd) and any measure μ

ξ
n of the form (1.4).

We now specify the collection of sets W(S,T ), (S, T ) ∈ �(k), to be used in
(4.20) as well as in all that follows. Given v := (v1, . . . , vk) ∈ Wk

n , let

Dk(v) := Dk(v1, . . . , vk) := max
i≤k

(|v1 − vi | + · · · + |vk − vi |)
be the l1 diameter for v. For all such partitions, consider the subset W(S,T ) of
WS

n × WT
n having the property that v ∈ W(S,T ) implies d(vS, vT ) ≥ Dk(v)/k2,

where vS and vT are the projections of v onto WS
n and WT

n , respectively, and where
d(vS, vT ) is the minimal Euclidean distance between pairs of points from vS and
vT .

It is easy to see that for every v := (v1, . . . , vk) ∈ Wk
n , there is a partition (S, T )

of {1, . . . , k} such that d(vS, vT ) ≥ Dk(v)/k2. If this were not the case, then given
v := (v1, . . . , vk), the distance between any two components of v must be strictly
less than Dk(v)/k2 and we would get maxi≤k

∑k
j=1 |vi − vj | ≤ (k − 1)kDk/k2 <

Dk , a contradiction. Thus Wk
n is the union of sets W(S,T ), (S, T ) ∈ �(k), as as-

serted. We next describe the behavior of the differential d(U
S1,T1
n M

|S2|
n M

|T2|
n ) on

W(S,T ).

Semi-cluster measures on W(S,T ). Next, given S1 ⊂ S and T1 ⊂ T , notice that
d(vS1, vT1) ≥ d(vS, vT ) where vS1 denotes the projection of vS onto W

S1
n and

vT1 denotes the projection of vT onto W
T1
n . Let �(S1, T1) be the partitions of S1

into j1 sets V1, . . . ,Vj1 , with 1 ≤ j1 ≤ |S1|, and the partitions of T1 into j2 sets
Vj1+1, . . . ,Vj1+j2 , with 1 ≤ j2 ≤ |T1|. Thus an element of �(S1, T1) is a partition
of S1 ∪ T1.

If a partition V of S1 ∪ T1 does not belong to �(S1, T1), then there is a partition
element of V containing points in S1 and T1, and thus, recalling (4.18), we have
δ(V) = 0 on the set W(S,T ). Thus we make the crucial observation that, on the
set W(S,T ) the differential d(M

S1∪T1
n ) collapses into a sum over partitions in

�(S1, T1). Thus d(M
S1∪T1
n ) and d(M

S1
n M

T1
n ) both involve sums of measures on

common diagonal subspaces, as does their difference, made precise as follows.

LEMMA 4.2. On the set W(S,T ), we have

(4.21) d
(
US1,T1

n

) =
|S1|∑
j1=1

|T1|∑
j2=1

∑
V∈�(S1,T1)

[· · · ]�j1+j2
i=1 dyi(V)δ(V),

where

[· · · ] := m(|V1|,...,|Vj1 |,|Vj1+1|,...,|Vj1+j2 |)(ỹ1, . . . , ỹj1 ỹj1+1, . . . ỹj1+j2;n)

− m(|V1|,...,|Vj1 |)(ỹ1, . . . , ỹj1;n)m(|Vj1+1|,...,|Vj1+j2 |)(ỹj1+1, . . . ỹj1+j2;n).
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The representations of dM
|S2|
n and dM

|T2|
n follow from (4.18), that is to say

(4.22) dM |S2|
n =

|S2|∑
j3=1

∑
V∈�(S2)

m(|V1|,...,|Vj3 |)(ỹ1, . . . , ỹj3;n)

j3∏
i=1

dyi(V)δ(V),

where �(S2) runs over partitions of S2 into j3 sets, 1 ≤ j3 ≤ |S2|. Similarly,

(4.23) dM |T2|
n =

|T2|∑
j4=1

∑
V∈�(T2)

m(|V1|,...,|Vj4 |)(ỹ1, . . . , ỹj4;n)

j4∏
i=1

dyi(V)δ(V),

where �(T2) runs over partitions of T2 into j4 sets, 1 ≤ j4 ≤ |T2|.
4.3.3. Fast decay of correlations and semi-cluster measures. The previous

section established properties of semi-cluster and cumulant measures valid for any
μ

ξ
n of the form (1.4). If ξ with P exhibit fast decay of correlations (1.21) of the ξ -

weighted measures and satisfies moment bounds, we now assert that each integral
in (4.20) is O(n).

LEMMA 4.3. Assume ξ satisfies moment bounds (1.19) for all p ≥ 1 and ex-
hibits fast decay of correlations (1.21) in its ξ -weighted measure. For each parti-
tion element (S, T ) of �(k), we have

(4.24)
∫
W(S,T )⊂WS

n ×WT
n

∣∣d(US1,T1
n M |S2|

n M |T2|
n

)∣∣ = O(n).

PROOF. The differential d(U
S1,T1
n M

|S2|
n M

|T2|
n ) is a sum of products of three

factors
∑|S1|

j1=1
∑|T1|

j2=1
∑|S2|

j3=1
∑|T2|

j4=1[· · · ][· · · ][· · · ], one factor coming from each of
the summands in (4.21)–(4.23). By Theorem 1.11, on the set W(S,T ) the factor
arising from (4.21) is bounded in absolute value by

C̃kφ̃

(
c̃kDk(y)

k2

)
.

By the moment bound (1.19), the two remaining factors arising from summands in
(4.22)–(4.23) are bounded by a constant M ′(k) depending only on k.

Thus we have∫
W(S,T )

∣∣d(US1,T1
n M |S2|

n M |T2|
n

)∣∣
≤ C̃k

(
M ′(k)

)2
k∑

j=1

∑
V

∫
W(S,T )

φ̃

(
c̃kDk(y)

k2

) j∏
i=1

dyi(V)δ(V)

≤ C̃k

(
M ′(k)

)2
k∑

j=1

∑
V

∫
(Wn)j

φ̃

(
c̃kDk(y)

k2

) j∏
i=1

dyi(V)δ(V).
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Here V runs over all partitions of the k coordinates into j nonempty disjoint sub-
sets. We assert that all summands are O(n). We show this when j = k, as the proof
for the remaining indices j ∈ {1, . . . , k − 1} is similar. Write∫

y1∈Wn

· · ·
∫
yk∈Wn

φ̃

(
c̃kDk(y)

k2

)
dy1 · · · dyk

=
∫
y1∈Wn

∫
w2∈Wn−y1

· · ·

×
∫
wk∈Wn−y1

φ̃

(
c̃kDk(0,w2, . . . ,wk)

k2

)
dy1 dw2 · · · dwk.

Now Dk(0,w2, . . . ,wk) ≥ ∑k
i=2 |wi |. Letting ek := c̃k(k − 1)/k2 gives∫

y1∈Wn

· · ·
∫
yk∈Wn

φ̃

(
c̃kDk(y)

k2

)
dy1 · · · dyk

≤ n

∫
w2∈Rd

· · ·
∫
wk∈Rd

φ̃

(
ek

k − 1

k∑
i=2

|wi |
)

dw2 · · · dwk

≤ n

∫
w2∈Rd

· · ·
∫
wk∈Rd

φ̃

(
k∏

i=2

|wi |1/(k−1)

)
dw2 · · · dwk = O(n),

where the first inequality follows from the decreasing behavior of φ̃, the second in-
equality follows from the arithmetic geometric mean inequality and the last equal-
ity follows since φ̃ is decreasing faster than any polynomial. We similarly bound
the other summands for j ∈ {1, . . . , k − 1}, completing the proof of Lemma 4.3.

�

4.3.4. Proof of Theorem 1.13. By the bound (4.20) and Lemma 4.3, we obtain

(4.15). Letting Ck
n be the kth cumulant for 〈f,μ

ξ
n〉/

√
Var〈f,μ

ξ
n〉, we obtain C1

n =
0,C2

n = 1, and for all k = 3,4, . . ..

Ck
n = O

(
n
(
Var

〈
f,μξ

n

〉)−k/2)
.

Since Var〈f,μ
ξ
n〉 = 
(nν) by assumption, it follows that if k ∈ (2/ν,∞),

then the kth cumulant tends Ck
n to zero as n → ∞. By a classical result of

Marcinkiewicz (see, e.g., [53], Lemma 3), we get that all cumulants Ck
n, k ≥ 3,

converge to zero as n → ∞. This gives (4.14) as desired and completes the proof
of Theorem 1.13.

4.4. Second proof of the central limit theorem. We now give a second proof
of the central limit theorem which we believe is of independent interest. Even
though this proof is also based on the cumulant method used in Section 4.3.1,
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we shall bound the cumulants using a different approach, using Ursell functions
of the ξ -weighted measure and establishing a property equivalent to Brillinger
mixing; see Remarks at the end of Section 4.4.2. Though much of this proof can
be read independently of the proof in Section 4.3, we repeatedly use the definition
of moments and cumulants from Section 4.3.2.

Our approach. We shall adapt the approach in [37], Section 4, replacing PGEF
by our ξ -weighted measures, which are purely atomic measures. As noted in Sec-
tion 1.3, the correlation functions of the ξ -weighted measure are generalizations
of the correlations functions of the simple point process, but the extension of the
approach used in [37], Section 4, requires some care regarding the repeated argu-
ments captured by general exponents ki in (1.6).

4.4.1. Ursell functions of the ξ -weighted measures. Recall the definition of
the correlation functions (1.6) of the ξ -weighted measures

m(k1,...,kp)(x1, . . . , xp;n)

:= Ex1,...,xp

((
ξ(x1,Pn)

)k1 · · · (ξ(xp,Pn)
)kp

)
ρ(p)(x1, . . . , xp).

We will drop dependence on n, that is, m(k1,...,kp)(x1, . . . , xp;n) = m(k1,...,kp)(x1,

. . . , xp) unless asymptotics in n is considered.
Inspired by the approach in [6], Section 2, we now introduce Ursell functions

m
(k1,...,kp)

� (sometimes called truncated correlation function) of the ξ -weighted

measures. Define m
(k1,...,kp)

� by taking m
(k)
� (x) := m(k)(x) for all k ∈N and induc-

tively

m
(k1,...,kp)

� (x1, . . . , xp) := m(k1,...,kp)(x1, . . . , xp)
(4.25)

− ∑
γ∈�[p]
|γ |>1

|γ |∏
i=1

m
(kj :j∈γ (i))

�
(
xj : j ∈ γ (i)

)
for distinct x1, . . . , xp ∈ Wn and all integers k1, . . . , kp , p ≥ 1, and (implic-
itly) n ≤ ∞. It is straightforward to prove that these functions satisfy the fol-
lowing relations. They extend the known relations for point processes, where
m(k1,...,kp)(x1, . . . , xp) = ρ(p)(x1, . . . , xp) depend only on p, but we were unable
to find them in the literature for (signed) purely atomic random measures, as our
ξ -weighted measures. Assuming 1 ∈ γ (1) in (4.25) and summing over partitions
of {1, . . . , p} \ γ (1), we get the following relation:

m(k1,...,kp)(x1, . . . , xp)
(4.26)

= m
(k1,...,kp)

� (x1, . . . , xp)

+ ∑
I�{1,...,p}

1∈I

m
(kj :j∈I )

� (xj : j ∈ I )m(kj :j∈I c)(xj : j ∈ I c),(4.27)
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where I c := {1, . . . , p} \ I . Using (4.27), by induction with respect to p, one ob-
tains the direct relation to the correlation functions

m
(k1,...,kp)

� (x1, . . . , xp)
(4.28)

= ∑
γ∈�[p]

(−1)|γ |−1(|γ | − 1
)! |γ |∏

i=1

m(kj :j∈γ (i))(xj : j ∈ γ (i)
)
.

This extends the relation [37], (27), valid for point processes. We say that a parti-
tion γ = {γ (1), . . . , γ (l)} ∈ �(p) refines partition σ = {σ(1), . . . , σ (l1)} ∈ �(p)

if for all i ∈ {1, . . . , l}, γ (i) ⊂ σ(j) for some j ∈ {1, . . . , l1}. Otherwise, the parti-
tion γ is said to mix partition σ . Now using (4.25) we get for any I � {1, . . . , p}

m(kj :j∈I )(xj : j ∈ I )m(kj :j∈I c)(xj : j ∈ I c)
(4.29)

= ∑
γ∈�[p]

γ refines{I,Ic}

|γ |∏
i=1

m
(kj :j∈γ (i))

�
(
xj : j ∈ γ (i)

)
and, therefore, again in view of (4.25),

m
(k1,...,kp)

� (x1, . . . , xp)

= ∑
γ∈�[p],|γ |>1
γ mixes {I,Ic}

|γ |∏
i=1

m
(kj :j∈γ (i))

�
(
xj : j ∈ γ (i)

)
(4.30)

+ m(k1,...,kp)(x1, . . . , xp)

− m(kj :j∈I )(xj : j ∈ I )m(kj :j∈I c)(xj : j ∈ I c).
This extends the relation [37], last displayed formula in the proof of Claim 4.1,
valid for point processes.

4.4.2. Fast decay of correlations and bounds for Ursell functions. We show
now that fast decay of correlations (1.21) of the ξ -weighted measures implies some
bounds on the Ursell functions of these measures. Since m(k1,...,kp)(x1, . . . , xp;n)

is invariant with respect to any joint permutation of its arguments (k1, . . . , kp) and
(x1, . . . , xp), fast decay of correlations (1.21) of the ξ -weighted measures may be
rephrased as follows: There exists a fast-decreasing function φ̃ and constants C̃k ,
c̃k , such that for any collection of positive integers k1, . . . , kp , p ≥ 2, satisfying
k1 + · · · + kp = k, for any nonempty, proper subset I � {1, . . . , p}, for all n ≤ ∞
and all configurations x1, . . . , xp ∈ Wn of distinct points we have∣∣m(k1,...,kp)(x1, . . . , xp;n)

− m(kj :j∈I )(xj : j ∈ I ;n)m(kj :j∈I c)(xj : j ∈ I c;n)∣∣(4.31)

≤ C̃kφ̃(c̃ks),
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where s := d({xj : j ∈ I }, {xj : j ∈ I c}).
Now we consider the bounds of Ursell functions of the ξ -weighted measures.

Following the idea of [37], Claim 4.1, one proves that fast decay of correla-
tions (1.21) of the ξ -weighted measures and the p-moment condition (1.19) imply
that there exists a fast-decreasing function φ̃� and constants C̃�

k , c̃�
k , such that for

any collection of positive integers k1, . . . , kp , p ≥ 2, satisfying k1 + · · · + kp = k,
for all n ≤ ∞ and all configurations x1, . . . , xp ∈ Wn of distinct points we have

(4.32)
∣∣m(k1,...,kp)

� (x1, . . . , xp;n)
∣∣ ≤ C̃�

k φ̃�
(
c�
k diam(x1, . . . , xp)

)
,

where diam(x1, . . . , xp) := maxi,j=1...p(|xi − xj |). The proof uses the representa-
tion (4.30), fast decay of correlations (1.21) of the ξ -weighted measures, together
with the fact that there exist constants c�

p (depending on the dimension d) such that
for each configuration x1, . . . , xp ∈ Wn, there exists a partition {I, I c} of {1, . . . , p}
such that d({xj : j ∈ I }, {xj : j ∈ I c}) ≥ c̃�

p diam(x1, . . . , xp).
Next, inequality (4.32) allows one to bound integrals

(4.33) sup
n≤∞

sup
x1∈Wn

sup
k1+···+kp=k

ki>0

∫
(Wn)p−1

∣∣m(k1,...,kp)

� (x1, . . . , xp;n)
∣∣dx2 · · · dxp < ∞.

Indeed, for a fixed point x1 ∈ Wn, we split (Wn)
p−1 into disjoint sets:

G0 := {
(x2, . . . , xp) ∈ (Wn)

p−1 : diam(x1, . . . , xp) ≤ 1
}
,

Gl := {
(x2, . . . , xp) ∈ (Wn)

p−1 : 2l−1 < diam(x1, . . . , xp) ≤ 2l}, l ≥ 1

and use estimate (4.32) to bound the integral on the left-hand side of (4.33) by

C̃�
k + C̃�

k

∞∑
l=1

2dl(k−1)φ̃�
(
c̃�
k 2l−1) < ∞

since φ̃� is fast-decreasing; cf. [37], Claim 4.2.
Remarks (i) A careful inspection of the relation (4.30) shows that in fact the

fast decay of correlations (1.21) of the ξ -weighted measures is equivalent to the
bound (4.32) on Ursell functions of these measures.

(ii) Condition (4.33), implied by (4.32), can be interpreted as the Brillinger mix-
ing condition of the ξ -weighted measures. In fact, it is slightly stronger in the
sense that the bound on the Ursell functions integrated over dx2 · · · dxp in the en-
tire space (corresponding to the total reduced cumulant measures) is uniform for
the whole family of the ξ -weighted measuress considered on Wn, parametrized by
n ≤ ∞ and, for n < ∞ the bound is also uniform over x1 ∈ Wn (which is immedi-
ate for reduced cumulant measures in the stationary case n = ∞).
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4.4.3. Proof of Theorem 1.13. The cumulant of order one is equal to the expec-
tation and hence disappears for the considered (centered) random variable μ

ξ
n(f ).

The cumulant of order 2 is equal to the variance and hence equal to 1 in our case.
For k ≥ 2, note the following relation between the normalized and the unnormal-
ized cumulants:

(4.34) Sk

((
Varμξ

n(f )
)−1/2

μξ
n(f )

) = (
Varμξ

n(f )
)−k/2 × Sk

(
μξ

n(f )
)
.

We establish the vanishing of (4.34) for k large by showing that the kth order
cumulant Sk(μ

ξ
n(f ) is of order O(n), k ≥ 2, and then use assumption (1.26), that

is, Var〈f,μ
ξ
n〉 = 
(nν). We have

Mk
n := E

(〈
f,μξ

n

〉)k = E
( ∑

xi∈Pn

fn(xi)ξ(xi,Pn)

)k

,

where fn(·) = f (·/n1/d). Considering appropriately the repetitions of points xi in
the kth product of the sum and using the Campbell theorem at (1.9), one obtains

(4.35) Mk
n = ∑

σ∈�[k]

〈 |σ |⊗
i=1

f |σ(i)|
n m(σ), λ|σ |

n

〉
,

where λl
n denotes the Lebesgue measure on (Wn)

l and
⊗

denotes the tensor prod-
uct of functions( p⊗

i=1

f
kj
n

)
(x1, . . . , xp) =

p∏
i=1

(fn)
kj (xj ),m

(σ)(x1, . . . , x|σ |;n)

:= m(|σ(1)|,...,|σ(|σ |)|)(x1, . . . , x|σ |;n).

Using the above representation and (4.17), the kth cumulant Sk(μ
ξ
n(f )) can be

expressed as follows:

Sk

(
μξ

n(f )
)

= ∑
γ∈�[k]

(−1)|γ |−1(|γ | − 1
)!

× ∑
σ∈�[k]

σ refines γ

|γ |∏
i=1

〈|γ (i)/σ |⊗
j=1

f (γ (i)/σ )(j)
n m(γ (i)/σ ), λ|γ (i)/σ |

n

〉
(4.36)

= ∑
σ∈�[k]

∑
γ∈�[k]

σ refines γ

(−1)|γ |−1(|γ | − 1
)!

×
|γ |∏
i=1

〈|γ (i)/σ |⊗
j=1

f (γ (i)/σ )(j)
n m(γ (i)/σ ), λ|γ (i)/σ |

n

〉
,
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where γ (i)/σ is the partition of γ (i) induced by σ . Note that for any partition
σ ∈ �[k], with |σ(j)| = kj , j = 1, . . . , |σ | = p, the inner sum in (4.36) can be
rewritten as follows:∑

γ∈�[p]
(−1)|γ |−1(|γ | − 1

)! |γ |∏
i=1

〈 ⊗
j∈γ (i)

f
kj
n m(kj :j∈γ (i)), λ|γ (i)|

n

〉
(4.37)

=
〈 p⊗
j=1

f
kj
n m

(k1,...,kp)

� , λp
n

〉
,

where the equality is due to (4.28). Consequently,

(4.38) Sk

(
μξ

n(f )
) = ∑

σ∈�[k]

〈 |σ |⊗
j=1

f |σ(j)|
n m

(|σ(1)|,...,|σ(|σ |)|)
� , λ|σ |

n

〉
,

which extends the relation [37], Claim 4.3, valid for point processes. The for-
mula (4.38), which expresses the kth cumulant in terms of the Ursell functions,
is the counterpart to the standard formula (4.35) expressing kth moments in terms
of correlation functions. Now, using (4.33) and denoting the supremum therein by
Ĉk , we have that∣∣∣∣∣

〈 p⊗
j=1

f
kj
n m

(k1,...,kp)

� , λp
n

〉∣∣∣∣∣
≤

∫
W

p
n

∣∣∣∣∣
p⊗

j=1

f
kj
n

∣∣∣∣∣∣∣m(k1,...,kp)

� (x1, . . . , xp)
∣∣dx1 . . . dxp

≤ ‖f ‖k∞
∫
Wn

dx1

∫
W

p−1
n

∣∣m(k1,...,kp)

� (x1, . . . , xp)
∣∣dx2 . . . dxp

≤ ‖f ‖k∞Ĉk Vold(Wn).

So, the above bound along with (4.36) and (4.37) gives us that Sk(μ
ξ
n(f )) =

O(n) for all k ≥ 2. Thus, using the variance lower bound condition (1.26) and the
relation (4.34), we get for large enough k, that Sk((Varμξ

n(f ))−1/2μ
ξ
n(f )) → 0

as n → ∞. Now, as discussed in (4.14), this suffices to guarantee normal conver-
gence.
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