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AIRY POINT PROCESS AT THE LIQUID-GAS BOUNDARY
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Royal Institute of Technology KTH

Domino tilings of the two-periodic Aztec diamond feature all of the
three possible types of phases of random tiling models. These phases are
determined by the decay of correlations between dominoes and are generally
known as solid, liquid and gas. The liquid-solid boundary is easy to define
microscopically and is known in many models to be described by the Airy
process in the limit of a large random tiling. The liquid-gas boundary has
no obvious microscopic description. Using the height function, we define a
random measure in the two-periodic Aztec diamond designed to detect the
long range correlations visible at the liquid-gas boundary. We prove that this
random measure converges to the extended Airy point process. This indicates
that, in a sense, the liquid-gas boundary should also be described by the Airy
process.

1. Introduction.

1.1. The two-periodic Aztec diamond and random tilings. An Aztec diamond
graph of size n is a bipartite graph which contains white vertices given by

W= {
(i, j) : i mod 2 = 1, j mod 2 = 0,1 ≤ i ≤ 2n − 1,0 ≤ j ≤ 2n

}
and black vertices given by

B= {
(i, j) : i mod 2 = 0, j mod 2 = 1,0 ≤ i ≤ 2n,1 ≤ j ≤ 2n − 1

}
.

The edges of the Aztec diamond graph are given by b− w= ±e1,±e2 for b ∈ B
and w ∈ W, where e1 = (1,1) and e2 = (−1,1). The coordinate of a face in the
graph is defined to be the coordinate of its center. For an Aztec diamond graph of
size n = 4m with m ∈ N, define the two-periodic Aztec diamond to be an Aztec
diamond graph with edge weights a for all edges incident to the faces (i, j) with
(i + j)mod 4 = 2 and edge weights b for all the edges incident to the faces (i, j)

with (i + j)mod 4 = 0; see the left figure in Figure 1. We call the faces (i, j) with
(i +j)mod 4 = 2 to be the a-faces. For the purpose of this paper, we set b = 1; this
incurs no loss of generality, since multiplying both a and b by the same constant
does not change the model that we consider.

Received February 2017; revised November 2017.
1Supported by the German Research Foundation in SFB 1060-B04 “The Mathematics of Emergent

Effects”.
2Supported by the Knut and Alice Wallenberg Foundation Grant KAW:2010.0063.
MSC2010 subject classifications. 60G55, 82B20, 60K35.
Key words and phrases. Domino tilings, Airy kernel point process, two-periodic Aztec diamond.

2973

http://www.imstat.org/aop/
https://doi.org/10.1214/17-AOP1244
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2974 V. BEFFARA, S. CHHITA AND K. JOHANSSON

FIG. 1. The top figure shows the two-periodic Aztec diamond graph for n = 4 with the edges
weights given by a (or b) if the edge is incident to a face marked a (resp., b). The bottom figure
shows the limit shape when a = 0.5 and b = 1; see [9, 14, 28] for the explicit curve.

A dimer is an edge and a dimer covering is a subset of edges so that each vertex
is incident to exactly one edge. Each dimer covering of the two-periodic Aztec
diamond is picked with probability proportional to the product of its edge weights.
For the two-periodic Aztec diamond, it is immediate that each dimer covering is
picked uniformly at random when a = 1.

An equivalent notion to a dimer covering is a domino tiling, where one replaces
each dimer by a domino. Each dimer is the graph theoretic dual of a domino. Sim-
ulations of domino tilings of large bounded regions exhibit interesting features due
to the emergence of a limit shape. Here, the tiling separates into distinct macro-
scopic regions: solid, where the configurations of dominoes are deterministic; liq-
uid, where the correlation between dominoes have polynomial decay in distance;
and gas where the dominoes have exponential decay of correlations. These phases
are characterised in [29] but first noticed in [30]. Even though their names may
suggest otherwise, these regions are not associated with physical states of matter.
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An alternate convention is to say that the solid region is the frozen region while
the liquid and gas regions are the unfrozen regions. The liquid region is then re-
ferred to as the rough unfrozen region (or simply rough region) and the gas region
is referred to as the smooth unfrozen region.

Considerable research attention has been directed to tiling models, including
domino tilings and lozenge tilings, on bounded regions whose limit shapes contain
both solid and liquid regions, but no gaseous regions. The primary reason behind
this attention lies in the fact that in several cases these models are mathematically
tractable due to direct connections with algebraic combinatorics through the so-
called Schur processes [31]. By exploiting the algebraic structure via the so-called
Schur generating functions, it is possible to find the limit shape, and the local and
global bulk limiting behaviours in several cases; see the recent articles [8, 20, 32].
More computational approaches are also used to find these asymptotic quantities
as well as the limiting edge behaviour. These approaches often use in an essential
way that the dimers, or some associated particles, form a determinantal process
with an explicit correlation kernel. Finding this correlation kernel is not a simple
task in general, but successful techniques have come from applying the Karlin–
McGregor–Lindström–Gessel–Viennot matrix and the Eynard–Mehta theorem, or
using vertex operators; see [2] for the former and [4, 5] for a recent exposition of
the latter. The limiting correlation kernels that appear are often the same or related
to those that occur in random matrix theory. Indeed, in [19, 22, 31, 33], the limiting
behaviour of the random curve separating the solid and liquid regions is described
by the Airy process, a universal probability distribution first appearing in [35] in
connection with random growth models.

Domino tilings of the two-periodic Aztec diamond do not belong to the Schur
process class. In fact, the two techniques mentioned above fail (at least for us) for
this model. However, in [10], the authors derive a formula for the correlations of
dominoes for the two-periodic Aztec diamond, that is, they give a formula for the
so-called the inverse Kasteleyn matrix; see below for more details. The formula
given in [10] is particularly long and without any specific algebraic or asymptotic
structure. In [9], the formula is dramatically simplified and written in a good form
for asymptotic analysis. Precise asymptotic expansions of the inverse Kasteleyn
matrix reveal the limit shape as well as the asymptotic entries of the inverse Kaste-
leyn matrix in all three macroscopic regions, and at the solid-liquid and liquid-
gas boundaries. Due to technical considerations, these asymptotic computations
were only performed along the main diagonal of the two-periodic Aztec diamond.
Roughly speaking, the outcome is that the asymptotics of the inverse Kasteleyn
matrix at the liquid-gas boundary is given by a mixture of a dominant “gas part”
and a lower order “Airy part” correction. Unfortunately, these asymptotic results
only describe the statistical behaviour of the dominoes at the liquid-gas boundary,
and do not determine the nature of this boundary. More explicitly, it is highly plau-
sible, as can be seen in simulations (see Figure 2) that there is a family of lattice
paths which separate the liquid and gas regions. The exact microscopic definition
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FIG. 2. Two different drawings of a simulation of a domino tiling of the two-periodic Aztec diamond
of size 200 with a = 0.5 and b = 1. The top figure contains eight different colours, highlighting the
solid and liquid phases. The bottom figure contains eight different gray-scale colours to accentuate
the gas phase. We choose a = 0.5 for aesthetic reasons in relation of the size of the Aztec diamond
and the size of the liquid and gas regions.

of these paths is not clear; see [9] for a discussion and a suggestion. The asymp-
totic computations in [9] do not give us any information about these paths. At the
liquid-solid boundary, the definition of the boundary is obvious; it is the first place
where we see a deviation from the regular brick wall pattern. At the liquid-gas
boundary, however, these paths, if they exist, are in some sense “sitting” in a “gas”
background. The paths represent long-distance correlations and the purpose of this
paper is to extract these correlations from the background “gas noise” and show
that they are described by the Airy point process. This strongly indicates that there
should be a random boundary path at the liquid-gas boundary which, appropriately
rescaled, converges to the Airy process just as at the liquid-solid boundary.

We approach the problem via the so-called height function of the domino tiling,
an idea originally introduced by Thurston [36]. The height function is defined for
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the two-periodic Aztec diamond at the center of each face of the Aztec diamond
graph, characterised by the height differences in the following way: if there is a
dimer covering the edge shared between two faces, the height difference between
the two faces is ±3, while if there is no dimer covering the shared edge between
two faces the height difference is ∓1. We use the convention that as we traverse
from one face to an adjacent face, the height difference will be +3 if there is a
dimer covering the shared edge and the left vertex of the incident edge is black.
Similarly, the height difference is +1 when we cross an empty edge with a white
vertex to the left. We assign the height at the face (0,0) (outside of the Aztec
diamond graph) to be equal to 0. The height function on the faces bordering the
Aztec diamond graph are deterministic and given by the above rule. Figure 3 shows
a domino tiling of the Aztec diamond with the heights labeled at each face.

The height function has a limit shape that is the solution of a certain varia-
tional problem and this also, in principle, leads to a description of the macroscopic
boundaries between the regions with different phases [11, 28]. For the two-periodic

FIG. 3. The top figure shows the height function of an Aztec diamond graph of size 4 on the border-
ing faces imposing that the height at face (0,0) is 0. The bottom figure shows the same graph with a
dimer covering and its corresponding height function.
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Aztec diamond, this gives the algebraic equation for the boundaries seen in Fig-
ure 1. The solid and gas phases correspond to flat pieces, facets, of the limit shape.
The solid phase has a completely flat height function even at the microscopic level,
whereas the height function in the gas phase has small fluctuations. The global
fluctuations of the height function in the liquid, or rough phase, for many tilings
models have been studied revealing the so-called Gaussian-free field in the limit;
see the papers [1, 3, 7, 13, 15–18, 25, 26, 34] for examples with varying techniques
of proof. Hence, the liquid-gas interface can be seen as an example of a boundary
between a rough random crystal surface and a facet with small, random, almost
independent and Poissonnian dislocations.

The novelty of this paper is that we use the height function close to the liquid-
gas boundary to introduce a random measure, defined in detail below, which cap-
tures the long distance changes in the height function, but averages out the local
height fluctuations coming from the surrounding gas phase. This random measure
gives a partial explanation of the nature of the liquid-gas boundary.

1.2. Definition of the random measure. Let IA be the indicator function for
some set A and denote I to be the identity matrix or operator. Let Ai(·) denote the
standard Airy function, and define

Ã(τ1, ζ1; τ2, ζ2) =
∫ ∞

0
e−λ(τ1−τ2)Ai(ζ1 + λ)Ai(ζ2 + λ)dλ(1.1)

and

(1.2) φτ1,τ2(ζ1, ζ2) = Iτ1<τ2

1√
4π(τ2 − τ1)

e
− (ζ1−ζ2)2

4(τ2−τ1)
− (τ2−τ1)(ζ1+ζ2)

2 + (τ2−τ1)3

12 ,

the latter is referred to as the Gaussian part of the extended Airy kernel; see [21].
The extended Airy kernel, A(τ1, ζ1; τ2, ζ2), is defined by

(1.3) A(τ1, ζ1; τ2, ζ2) = Ã(τ1, ζ1; τ2, ζ2) − φτ1,τ2(ζ1, ζ2).

Let β1 < · · · < βL1 , L1 ≥ 1, be given fixed real numbers. The extended Airy
kernel gives a determinantal point process on L1 lines {β1, . . . , βL1}×R. We think
of this process as a random measure μAi on {β1, . . . , βL1}×R in the following way.

Let A1, . . . ,AL2 , L2 ≥ 1, be finite, disjoint intervals in R and write

(1.4) �(x) =
L2∑

p=1

L1∑
q=1

wp,qI{βq }×Ap(x)

for x ∈ {β1, . . . , βL1} ×R, where wp,q are given complex numbers. Then

E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμAi
({βq} × Ap

))]

= det
(
I+ (e� − 1

)
A
)
L2({β1,...,βL1 }×R)

for wp,q ∈ C, defines the random measure μAi, the extended Airy point process.
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The positions of the particles in the extended Airy point process can be thought
of as the intersections of the lines {β1, . . . , βL1} × R with a family of random
curves (a line ensemble; see [12]). If we think of these lines as level lines of
some height function, then μAi({βq} × A) is the height change in A along the
line {βq} × A. We want to define a random measure in a random tiling of the
two-periodic Aztec diamond close to the liquid-gas boundary which captures the
long distance height differences, and which converges to μAi. Take L1 lines in the
Aztec diamond at distances of order m2/3 from each other, and look at the height
differences along these lines in intervals of length O(m1/3) close to the liquid-gas
boundary. In Figure 2, we see something like long random curves, but the height
differences along an interval in the diamond will come not only from these curves
but also from the smaller sized objects which are in a sense due to the gas-like
features in the background. We expect that these smaller sized objects are much
smaller than O(m1/3), and we further expect that the correlations between these
smaller sized objects decay rapidly. We isolate the effects of the long curves by
taking averages of the height differences along copies of the intervals on M par-
allel lines, with M tending to infinity slowly as m tends to infinity. The distances
between the copies are of order (logm)2, which is less than m2/3, but large enough
for the short range correlations to decay. We will now make these ideas precise and
define a random measure on μm on {β1, . . . , βL1}×R that we will show converges
to μAi.

The following constants come from the asymptotic results for the inverse Kaste-
leyn matrix for the two-periodic Aztec diamond; see [9] and Theorem 6.1 below.
Let

c = a

(1 + a2)

which occurs throughout the paper. For this paper, we fix ξ = −1
2

√
1 − 2c and set

c0 = (1 − 2c)
2
3

(2c(1 + 2c))
1
3

, λ1 =
√

1 − 2c

2c0
and λ2 = (1 − 2c)

3
2

2cc2
0

.

The term ξ can be thought of as the asymptotic parameter which puts the analysis
at the liquid-gas boundary after rescaling (along the main diagonal in the third
quadrant of the rotated Aztec diamond). The terms λ1 and λ2 are scale parameters,
as found in [9].

We will define discrete lines Lm(q, k), q ∈ {1, . . . ,L1}, 1 ≤ k ≤ M , which we
should think of as M copies of the lines {β1, . . . , βL1} ×R embedded in the Aztec
diamond as mentioned above. Recall that e1 = (1,1) and e2 = (−1,1). Set

βm(q, k) = 2
[
βqλ2(2m)2/3 + kλ2(logm)2]

and define

Lm(q, k) = L0
m(q, k) ∪L1

m(q, k),



2980 V. BEFFARA, S. CHHITA AND K. JOHANSSON

FIG. 4. The lines Lm(q,1) to Lm(q,M).

where, for ε ∈ {0,1},
Lε

m(q, k) =
{(

2t − ε + 1

2

)
e1 − βm(q, k)e2; t ∈ [0,4m] ∩Z

}
.

The lines Lm(q, k) are discrete lines parallel to the main diagonal with direction
(1,1); see Figure 4. Write

Lε
m =

L1⋃
q=1

M⋃
k=1

Lε
m(q, k)

and

(1.5) Lm = L0
m ∪L1

m,

so that Lm is the union of all these discrete lines. For z ∈ Lm, we write

ε(z) = ε if z ∈ Lε
m.

Each of the points in Lε
m may be covered by a dimer. When computing height

differences, the sign of the height change as we cross a dimer depends on whether
ε = 0 or 1. Later, we will think of these dimers as particles and ε will then be called
the parity of the particle. We think of ε(z) = 0 having even parity while ε(z) = 1
having odd parity.

We call a subset I ⊆Lm(q, k) a discrete interval if it has the form

(1.6) I =
{(

1

2
+ t

)
e1 − βm(q, k)e2; t1 ≤ t < t2

}
,

where t1, t2 ∈ 2Z + 1. We denote the height of the face F by h(F ) as defined in
Section 1.1. The a-faces adjacent to the discrete interval I in (1.6) are defined to
be the faces

F+(I ) = t2e1 − βm(q, k)e2,

F−(I ) = t1e1 − βm(q, k)e2,

which are the end faces of a discrete interval; see Figure 5.
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FIG. 5. The two endpoints of I: F−(I ) and F+(I ).

The height difference along I is then

�h(I) = h
(
F+(I )

)− h
(
F−(I )

)
.

Write

ρm = 4
[
m(1 + ξ)

]
, τm(q) = [

β2
qλ1(2m)1/3].

We want to embed the real line intervals Ap = [αl
p,αr

p], 1 ≤ p ≤ L2, in the Aztec
diamond as discrete intervals close to the liquid-gas boundary. For this, and for
the asymptotic analysis later in the paper, it is convenient to use the following
parameterisation of Lm(q, k). Given z ∈ Lm(q, k), there is a t (z) ∈ [−ρm/2 +
τm(q),4m − ρm/2 + τm(q)] ∩Z such that

(1.7) z =
(
ρm + 2

(
t (z) − τm(q)

)− ε(z) + 1

2

)
e1 − βm(q, k)e2.

We also write, for s ∈ Z,

(1.8) zq,k(s) =
(
ρm + s − 2τm(q) + 1

2

)
e1 − βm(q, k)e2,

so that Lm(q, k) = {zq,k(s); s ∈ [−ρm + 2τm(q) − 1,8m − ρm + 2τm(q)] ∩Z}.
Let

(1.9) Ãp,m = {
s ∈ Z;2

[
αl

pλ1(2m)1/3]− 1 ≤ s < 2
[
αr

pλ1(2m)1/3]+ 1
}
.

The embedding of the interval Ap as a discrete interval in Lm(q, k) is then given
by

(1.10) Ip,q,k = {
zq,k(s); s ∈ Ãp,m

}
.
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We define the random signed measure μm on {β1, . . . , βL1} ×R by

(1.11) μm

({βq} × Ap

)= 1

4M

M∑
k=1

�h(Ip,q,k) for 1 ≤ p ≤ L2,1 ≤ q ≤ L1.

The height changes between a-faces along a line are multiples of 4. Intuitively, the
factor 4 in the above normalisation ensures that we increase the height by 1 for
each connected component of a edges traversing the two boundaries, which in a
sense are the paths describing the transition between the liquid and gas phases.

1.3. Main theorem. We now state the main theorem of this paper. Assume
that M = M(m) → ∞ as m → ∞, but M(m)(logm)2/m1/3 → 0 as m → ∞, for
example, we could take M = (logm)γ for some γ > 0.

THEOREM 1.1. The sequence of measures {μm} converges to μAi as m tends
to infinity in the sense that that there is an R > 0 so that for all |wp,q | ≤ R, 1 ≤
p ≤ L2, 1 ≤ q ≤ L1,

lim
m→∞E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμm

({βq} × Ap

))]

= E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμAi
({βq} × Ap

))]
.

(1.12)

In the above equation, the expectation on the left-hand side is with respect to
the two-periodic Aztec diamond measure and the right-hand side is with respect to
the extended Airy point process.

1.4. Heuristic interpretation. The asymptotic formulas at the liquid-gas
boundary for the inverse Kasteleyn matrix, described below, are computed in [9].
These formulas have a primary contribution from the full-plane gas phase inverse
Kasteleyn matrix and a correction term given in terms of the extended Airy ker-
nel. This means that when we consider correlations between dominoes that are
relatively close they are essentially the same as in a pure gas phase. However,
at longer distances the correction term becomes important since correlations in a
pure gas phase decay exponentially. A heuristic description of the behaviour of the
dominoes at the liquid-gas boundary is that the behaviour is primarily a gas phase
but there is a family of random curves which have a much longer interaction scale
than the gas phase objects. Although this is not quite an accurate description of the
boundary, it naturally motivates the random measure μm defined in (1.11).

In this paper, we do not investigate whether there is a natural geometric curve
that separates the liquid and gas regions. A candidate for such a path, the last tree-
path, is discussed in [9], Section 6, but there are other possible definitions. Such a
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path should converge to the Airy2 process. The present work can be thought of as a
crucial step in proving this by providing a specific averaging of the height function
at the liquid-gas boundary which isolates the long-distance correlations. However,
it does not give any direct information about the existence of a natural path that
converges to the Airy2 process. We plan to investigate this in a future paper (work
in progress).

1.5. Organisation. The rest of the paper is organised as follows: in Section 2,
we introduce the particle description associated to the height function and the in-
verse Kasteleyn matrix. In Section 3, we state asymptotic formulas and results
needed for the rest of the paper. The proof of Theorem 1.1 is given in Section 4. In
Section 5, we give the proof of lemmas that are used in the proof of Theorem 1.1.
Finally, in Section 6, we give the proof of the results stated in Section 3.

2. Inverse Kasteleyn matrix and the particle process. In this section, we in-
troduce a particle process which will be used to prove (1.12). This particle process
enables the direct use of determinantal point process machinery.

For the two-periodic Aztec diamond, there are two types of white vertices and
two types of black vertices seen from the two possibilities of edge weights around
each white and each black vertex. To distinguish between these types of vertices,
we define for i ∈ {0,1}

Bi = {
(x1, x2) ∈ B : x1 + x2 mod 4 = 2i + 1

}
and

Wi = {
(x1, x2) ∈ W : x1 + x2 mod 4 = 2i + 1

}
.

There are four different types of dimers having weight a with (Wi ,Bj ) for i, j ∈
{0,1} and a further four types of dimers having weight 1 with (Wi ,Bj ) for i, j ∈
{0,1}.

The Kasteleyn matrix for the two periodic Aztec diamond of size n = 4m with
parameters a and b, denoted by Ka,b, is given by

Ka,b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(1 − j) + bj if y = x + e1, x ∈ Bj ,(
aj + b(1 − j)

)
i if y = x + e2, x ∈ Bj ,

aj + b(1 − j) if y = x − e1, x ∈ Bj ,(
a(1 − j) + bj

)
i if y = x − e2, x ∈ Bj ,

0 if (x, y) is not an edge,

where i2 = −1 and j ∈ {0,1}. For the significance of the Kasteleyn matrix for
random tiling models see, for example, [27].

Since the Aztec diamond graph is bipartite, meaning that there is a two-
colouring of the vertices, from [24] the dimers of the two-periodic Aztec diamond



2984 V. BEFFARA, S. CHHITA AND K. JOHANSSON

form a determinantal point process. More explicitly, suppose that E = {ei}ri=1 is a
collection of distinct edges with ei = (bi ,wi), where bi and wi denote black and
white vertices.

THEOREM 2.1 ([23, 24]). The dimers form a determinantal point process on
the edges of the Aztec diamond graph with correlation kernel L meaning that

P(e1, . . . ,er ) = detL(ei ,ej )1≤i,j≤r ,

where

L(ei ,ej ) = Ka,b(bi ,wi)K
−1
a,b(wj ,bi).

As mentioned in the Introduction, the derivation for the inverse Kasteleyn ma-
trix, K−1

a,b for the two-periodic Aztec diamond is given in [10] and a simplification
of this formula, which is amenable for asymptotic analysis, is given in [9]. For the
purpose of this paper, we set b = 1.

In order to prove (1.12), we want to write the expectation on the left-hand side
as an expectation of a determinantal point process. For this, it is convenient to
introduce a suitable particle process.

The space of possible particle positions is Lm given by (1.5). To a particle z ∈
Lm, we associate two vertices x(z) ∈ W and y(z) ∈ B and the edge (y(z), x(z))

between them. For z ∈Lm, and since each z is incident to an a-face, we let

x(z) = z − 1

2
(−1)ε(z)e2,

y(z) = z + 1

2
(−1)ε(z)e2.

(2.1)

This gives the particle to edge mapping

(2.2) Lm � z ←→ (
y(z), x(z)

) ∈ B× W.

Using the definitions we see that x(z) ∈ Wε(z) and y(z) ∈ Bε(z); see Figure 6.
From Theorem 2.1, we know that the dimers, that is, the covered edges, form

a determinantal point process. Hence, the mapping (2.2) induces a determinan-
tal point process on Lm. There is a particle at z ∈ Lm if and only if the edge
(y(z), x(z)) is covered by a dimer. The next proposition is an immediate conse-
quence of Theorem 2.1 and the fact that Ka,1(y(z), x(z)) = ai for z ∈ Lm.

PROPOSITION 2.2. The particle process on Lm defined above is a determi-
nantal point process with correlation kernel K̃m given by

K̃m

(
z, z′)= aiK−1

a,1

(
x
(
z′), y(z)

)
for z, z′ ∈ Lm.
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FIG. 6. An a-face on a discrete line with ε(z′) = 0 and ε(z) = 1, z, z′ ∈Lm.

Recall the definitions of (1.10) and (1.11). Let {zi} denote the particle process
on Lm as defined above, and let

Ip,q,k(z) =
{

1 if z ∈ Ip,q,k,

0 if z /∈ Ip,q,k,

be the indicator function for Ip,q,k . The change in the height function across the
interval Ip,q,k can be written in terms of the particle process, namely, we have the
equation

�h(Ip,q,k) = 4
∑
i

(−1)ε(zi )Ip,q,k(zi),

where
∑

i is the sum over all particles in the process. From the above equation and
(1.11), we obtain

μm

({βq} × Ap

)= 1

M

M∑
k=1

∑
i

(−1)ε(zi )Ip,q,k(zi).

If we let

ψ(z) =
M∑

k=1

L2∑
p=1

L1∑
q=1

wp,q(−1)ε(z)Ip,q,k(z),

we see that

L2∑
p=1

L1∑
q=1

wp,qμm

({βq} × Ap

)= 1

M

∑
i

ψ(zi).
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Since {zi} is a determinantal process on Lm with correlation kernel K̃m, we imme-
diately obtain

E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμm

({βq} × Ap

))]

= E

[
exp
(

1

M

∑
i

ψ(zi)

)]

= E

[∏
i

(
1 + (e 1

M
ψ(zi) − 1

))]

= det
(
I+ (e 1

M
ψ − 1

)
K̃m

)
.

(2.3)

The matrix in the above determinant is indexed by entries of Lm, which is a finite
set. The above formula will be the basis of our asymptotic analysis which will lead
to a proof of (1.12). To perform this asymptotic analysis, we need some asymptotic
formulas which we state in the next section.

3. Asymptotic formulas. This section brings forward some of the key asymp-
totic results for the liquid-gas boundary from [9]. These results are refined specifi-
cally for the particle process introduced in Section 2 and the corresponding scaling
associated to Lm. The origin of these results is made explicit in Section 6.

Let

(3.1) c̃(u1, u2) = 2
(
1 + a2)+ a

(
u1 + u−1

1

)(
u2 + u−1

2

)
,

which is related to the so-called characteristic polynomial for the dimer model
[29]; see [9], (4.11), for an explanation. Write

h(ε1, ε2) = ε1(1 − ε2) + ε2(1 − ε1).

We set

C = 1√
2c

(1 − √
1 − 2c).

REMARK 1. Note that the quantity C given above is exactly equal to the quan-
tity |G(i)| defined in [9], equation (2.6), that is, |G(i)| = C. We have simplified
the notation since only |G(i)| appears in our computations here and the complete
definition of G along with its choice of branch cut is not necessary.

The full-plane gas phase inverse Kasteleyn matrix is given by

K−1
1,1(x, y)

= − i1+h(εx,εy)

(2π i)2

∫
�1

du1

u1

∫
�1

du2

u2

aεyu
1−h(εx,εy)

2 + a1−εyu1u
h(εx,εy)

2

c̃(u1, u2)u
x1−y1+1

2
1 u

x2−y2+1
2

2

,
(3.2)
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where x = (x1, x2) ∈ Wεx and y = (y1, y2) ∈ Bεy with εx, εy ∈ {0,1}, and �1 is the
positively oriented unit circle; see [9], Section 4, for details. For the rest of this
paper, �R denotes a positively oriented circle of radius R around the origin. From
[9], it is natural to write

K−1
a,1(x, y) = K−1

1,1(x, y) −KA

which defines KA. The full expression for KA is complicated; see [9], Theo-
rem 2.3. Its asymptotics is given in Section 6. Since Ka,1(x(z), y(z)) = ai, this
leads us to define

K̃m,0
(
z, z′)= aiK−1

1,1

(
x
(
z′), y(z)

)
,

K̃m,1
(
z, z′)= aiKA

(
x
(
z′), y(z)

)(3.3)

so that

K̃m

(
z, z′)= ∑

δ∈{0,1}
(−1)δK̃m,δ

(
z, z′).

For z ∈ Lm(q, k), we define

γ1(z) = t (z)

λ1(2m)1/3 βq − 1

3
β3

q ,

γ2(z) = ε(z) + βm(q, k),

γ3(z) = 2
(
t (z) − τm(q)

)+ βm(q, k).

(3.4)

We also introduce the relation

gε1,ε2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i(
√

a2 + 1 + a)

1 − a
if (ε1, ε2) = (0,0),

√
a2 + 1 + a − 1√

2a(1 − a)
if (ε1, ε2) = (0,1),

−
√

a2 + 1 + a − 1√
2a(1 − a)

if (ε1, ε2) = (1,0),

i(
√

a2 + 1 − 1)

(1 − a)a
if (ε1, ε2) = (1,1).

Let z, z′ ∈ Lm and write x(z′) = (x1(z
′), x2(z

′)) and y(z) = (y1(z), y2(z)). Moti-
vated by the asymptotic results from [9] (compare [9], Theorem 2.7), we define for
δ = 0,1,

Km,δ

(
z, z′)= 1

λ1c0aigε(z′),ε(z)
iy1(z)−x1(z

′)−1eγ1(z
′)−γ1(z)

× C 1
2 (2+x1(z

′)−x2(z
′)+y2(z)−y1(z))K̃m,δ

(
z, z′)(3.5)
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and

(3.6) Km

(
z, z′)= ∑

δ∈{0,1}
(−1)δKm,δ

(
z, z′).

Km,δ(z, z
′) is the object that will have nice scaling limits and that we can con-

trol as m → ∞; see Proposition 3.1 below. If z ∈ Lm(q, k) and z′ ∈ Lm(q ′, k′), a
computation using (1.7), (2.1) and (3.4) gives

(3.7)
2 + x1(z

′) − x2(z
′) + y2(z) − y1(z)

2
= γ2

(
z′)− γ2(z) + 2 − 2ε

(
z′)

and

y1(z) − x1
(
z′)− 1 = γ3(z) − γ3

(
z′)+ 2ε

(
z′).

Applying these formulas in (3.5) and using the fact that λ1c0 = 1
2

√
1 − 2c, we

obtain

K̃m,δ

(
z, z′)= ai

2

√
1 − 2cgε(z′),ε(z)C2ε(z′)−2(−1)ε(z

′)eγ1(z
′)−γ1(z)

× Cγ2(z)−γ2(z
′)iγ3(z

′)−γ3(z)Km,δ

(
z, z′).(3.8)

From this, we see that

(3.9) Km

(
z, z′)= ai

2

√
1 − 2cgε(z′),ε(z)C2ε(z′)−2(−1)ε(z

′)Km

(
z, z′)

is also a correlation kernel for the particle process on Lm. See Section 6 for specific
signposting of where these formulas come from.

The next proposition contains the asymptotic formulas and estimates that we
will need in the proof of our main theorem. The proof will be given in Section 6.

PROPOSITION 3.1. Let z ∈ Lm(q, k), z ∈ Lm(q ′, k′) and write t = t (z), t ′ =
t (z′). Consider Km,δ(z, z

′) defined by (3.5). The asymptotic formulas and estimates
below are uniform as m → ∞ for |t |, |t ′| ≤ C(2m)1/3, for any fixed C > 0 and
1 ≤ k ≤ M .

1. For any q , q ′,

(3.10) Km,1
(
z, z′)= 1

λ1(2m)1/3 Ã
(
βq ′,

t ′

λ1(2m)1/3 ;βq,
t

λ1(2m)1/3

)(
1 + o(1)

)
,

where Ã is given in (1.1).
2. If q �= q ′, then

(3.11) Km,0
(
z, z′)= 1

λ1(2m)1/3 φβq′ ,βq

(
t ′

λ1(2m)1/3 ,
t

λ1(2m)1/3

)(
1 + o(1)

)
where c1 > 0 is a constant adn φβq′ ,βq is given in (1.2).
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3. Assume that q = q ′ and k > k′. Then there are constants c1, c2,C > 0, so that

(a)

Km,0
(
z, z′)= 1

λ1(logm)

1√
4π(k − k′)

× exp
(
− 1

4(k − k′)

(
t ′ − t

λ1 logm

)2)(
1 + o(1)

)
if |t ′ − t | ≤ c2((k − k′)(logm)2)7/12,

(b) ∣∣Km,0
(
z, z′)∣∣≤ C

(logm)
√

k − k′ exp
(
− c1

(k − k′)

(
t ′ − t

λ1 logm

)2)
if c2((k − k′)(logm)2)7/12 ≤ |t ′ − t | ≤ λ2(k − k′)(logm)2,

(c) and ∣∣Km,0
(
z, z′)∣∣≤ Ce−c1(k−k′)(logm)2

if |t ′ − t | ≥ λ2(k − k′)(logm)2.

4. Assume that q = q ′ and k < k′. Then there are constants c1,C > 0 so that∣∣Km,0
(
z, z′)∣∣≤ Ce−c1(k

′−k)(logm)2
.

5. Assume that q = q ′ and k = k′. Then there are constants c1,C > 0 so that∣∣Km,0
(
z, z′)∣∣≤ Ce−c1|t ′−t |.

4. Proof of Theorem 1.1. In this section we give the proof of Theorem 1.1
relying on Proposition 3.1 and Lemmas 4.1 and 4.6 whose proofs are deferred to
later in the paper. To prove Theorem 1.1, we analyze the right-hand side of (2.3)
via its cumulant or trace expansion. Since Km, given by (3.9), is also a correlation
kernel for the particle process, we have

det
(
I+ (e 1

M
ψ − 1

)
K̃m

)= det
(
I+ (e 1

M
ψ − 1

)
Km

)
.

For |wp,q | ≤ R with R sufficiently small, we have the expansion

log det
(
I+ (e 1

M
ψ − 1

)
Km

)
Lm

=
∞∑

s=1

1

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r ! tr
(
ψ�1Km · · ·ψ�rKm

)
.

(4.1)

For a simple proof of this expansion see, for example, page 450 in [6]. Since Lm

is finite we have a finite-dimensional operator, and the expansion is convergent if



2990 V. BEFFARA, S. CHHITA AND K. JOHANSSON

R is small enough. Note that, a priori, R could depend on m. It is a consequence
of the proof below that we are able to choose R independent of m.

Since all the discrete intervals Ip,q,k have disjoint support,

(4.2) ψ(z)� =
M∑

k=1

L2∑
p=1

L1∑
q=1

w�
p,q(−1)�ε(z)Ip,q,k(z),

for all l ≥ 1. In what follows, we use the notation j ∈ Sr to denote the sum over all
j1, . . . , jr ∈ S for some set S and we assume the notation to be cyclic with respect
to r , that is jr+1 = j1. Also, we use the notation [N ] = {1, . . . ,N}. Thus, we have
from (4.2)

tr
(
ψ�1Km · · ·ψ�rKm

)
= ∑

z∈(Lm)r

∑
k∈[M]r

∑
p∈[L2]r

∑
q∈[L1]r

r∏
i=1

w�i
pi ,qi

(−1)�iε(zi )

× Ipi,qi ,ki
(zi)Km(zi, zi+1)

= ∑
ε∈{0,1}r

∑
k∈[M]r

∑
p∈[L2]r

∑
q∈[L1]r

r∏
i=1

w�i
pi ,qi

(−1)�iεi

× ∑
z∈(Lm)r

r∏
i=1

I
εi

pi ,qi ,ki
(zi)Km(zi, zi+1).

(4.3)

Here, Iεp,q,k is the indicator function on Lm for the set

I ε
p,q,k = {

z ∈ Ip,q,k; ε(z) = ε
}

for ε ∈ {0,1}. Write Km = ∑
δ∈{0,1}(−1)δKm,δ , similar to (3.6), and plug it into

(4.3) to get

tr
(
ψ�1Km · · ·ψ�rKm

)
= ∑

ε,δ∈{0,1}r

r∏
i=1

(−1)�iεi
∑

k∈[M]r

∑
p∈[L2]r

∑
q∈[L1]r

r∏
i=1

w�i
pi,qi

(−1)δi

× ∑
z∈(Lm)r

r∏
i=1

I
εi

pi ,qi ,ki
(zi)Km,δi

(zi, zi+1).

(4.4)

In order to carry out the asymptotic analysis, we will split this trace into four parts.
Let

Dr = {0,1}r × [M]r × [L2]r × [L1]r .
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Define

Dr,0 = {
(δ, k,p, q) ∈ Dr; δi = 0, ki = ki+1,pi = pi+1

and qi = qi+1,1 ≤ i ≤ r
}
,

Dr,1 = {
(δ, k,p, q) ∈ Dr; δi = 0, qi = qi+1 for 1 ≤ i ≤ r

and pi �= pi+1 for some i
}
,

Dr,2 = {
(δ, k,p, q) ∈ Dr; δi = 0, qi = qi+1,pi = pi+1 for 1 ≤ i ≤ r

and ki �= ki+1 for some i
}

and

Dr,3 = {
(δ, k,p, q) ∈ Dr; δi = 1 or qi �= qi+1 for some i

}
.

Then we have Dr = Dr,0 ∪ Dr,1 ∪ Dr,2 ∪ Dr,3. Introduce

Tj (m, r, l) = ∑
ε∈{0,1}r

r∏
i=1

(−1)�iεi
∑

(δ,k,p,q)∈Dr,j

r∏
i=1

w�i
pi,qi

(−1)δi

× ∑
z∈(Lm)r

r∏
i=1

I
εi

pi ,qi ,ki
(zi)Km,δi

(zi, zi+1),

(4.5)

for 0 ≤ j ≤ 3. Then, by (4.1) and (4.4) we have

log det
(
I+ (e 1

M
ψ − 1

)
Km

)= 3∑
j=0

Uj(m),

where we define

(4.6) Uj(m) =
∞∑

s=1

1

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

Tj (m, r, �)

�1! · · ·�r ! .

Our goal is now to show that Uj(m) tends to zero as m tends infinity for j = 0,1,2
and then to compute the limit of U3(m), which will give us what we want. The
proof of U0(m) tends to zero as m tends to infinity is rather involved and requires
a separate argument. We formulate it as a lemma but postpone the proof until
Section 5.

LEMMA 4.1. There is an R > 0 such that limm→∞ U0(m) = 0 uniformly for
|wp,q | ≤ R.

Recall (3.9) and define

(4.7) P(ε, �) =
r∏

i=1

ai

2

√
1 − 2c(−1)(1+�i)εigεi ,εi+1Cεi+εi+1−2.
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Then we have

Tj (m, r, �) = ∑
ε∈{0,1}r

P (ε, �)
∑

(δ,k,p,q)∈Dr,j

r∏
i=1

w�i
pi ,qi

(−1)δi

× ∑
z∈(Lm)r

r∏
i=1

I
εi

pi ,qi ,ki
(zi)Km,δi

(zi, zi+1),

for j = 1,2,3.
Recall (1.7), (1.8), (1.9) and (1.10). Define

zε
q,k(t) =

(
ρm + 2

(
t − τm(q)

)− ε + 1

2

)
e1 − βm(q, k)e2

and

(4.8) Ap,m = {
t ∈ Z; [αl

pλ1(2m)1/3]≤ t ≤ [αr
pλ1(2m)1/3]},

where we recall the notation Ap = [αl
p,αr

p] for all 1 ≤ p ≤ L2. Then we can write

I ε
p,q,k = {

zε
q,k(t); t ∈ Ap,m

}
.

Hence, we can also write

Sr(ε, δ, k,p, q) := ∑
z∈(Lm)r

r∏
i=1

I
εi

pi ,qi ,ki
(zi)Km,δi

(zi, zi+1)

= ∑
t∈Zr

r∏
i=1

IApi ,m
(ti)Km,δi

(
z
εi

qi ,ki
(ti), z

εi+1
qi+1,ki+1

(ti+1)
)

=
∫
Rr

dr t

r∏
i=1

IApi ,m

([ti])K(i)

m,ε,δ,k,q
(ti , ti+1),

(4.9)

where

K(i)

m,ε,δ,k,q

(
t, t ′

)= Km,δi

(
z
εi

qi ,ki

([t]), zεi+1
qi+1,ki+1

([
t ′
]))

.

With this notation, we see that

(4.10) Tj (m, r, �) = ∑
ε∈{0,1}r

P (ε, �)
∑

(δ,k,p,q)∈Dr,j

r∏
i=1

w�i
pi ,qi

(−1)δi Sr(ε, δ, k,p, q)

for j = 1,2,3.

LEMMA 4.2. There is an R > 0 such that, for j = 1,2, limm→∞ Uj(m) = 0
uniformly in |wp,q | ≤ R.
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PROOF. Consider j = 1 so that (δ, k,p, q) ∈ Dr,1. There is an i = i1 such
that pi1 �= pi1+1 by the definition of Dr,1. We have δi = 0 for all i. Hence, by
statements (3) to (5) in Proposition 3.1, we have∣∣K(i1)

m,ε,δ,k,q
(ti1, ti1+1)

∣∣≤ Ce−c1(logm)2

since |ti1+1 − ti1 | ≥ Cm1/3—note that the real estimate in the above inequality is

actually less than or equal to Ce−c1m
1/3

but we do not need this here. All the other
K(i) factors in the integrand in (4.9) can be estimated using statements (3) to (5) in
Proposition 3.1; to make this argument very precise, we can use the same type of
change of variables (4.11) below, we omit the details. From this, we see that∣∣Sr(ε, δ, k,p, q)

∣∣≤ Crm2/3e−c1(logm)2
.

Consequently, by (4.10), since |P(ε, �)| ≤ Cr ,∣∣Tj (m, r, �)
∣∣≤ CrMrRsm2/3e−c1(logm)2

.

We can use this estimate in (4.6) to see that

∣∣U1(m)
∣∣≤ ∞∑

s=1

Rs

Ms

s∑
r=1

1

r

∑
�1+···+�r=s
�1,...,�r≥1

(CM)rm2/3e−c1(logm)2

�1! · · ·�r !

≤ Cm2/3e−c1(logm)2
∞∑

s=1

(CR)s ≤ Cm2/3e−c1(logm)2

provided that R is small enough. Here, we used the fact that

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r ! ≤
( ∞∑

�=0

1

�!
)r

= er .

We next consider j = 2 so that (δ, k,p, q) ∈ Dr,2. We cannot have ki > ki+1 for
all i since it violates the cyclic condition. Hence, when estimating the K(i) in the
integrand in (4.9), we have to use statement (4) in Proposition 3.1 at least once.
We now proceed in exactly the same way as above to prove that U2(m) → 0 as
m → ∞. �

It remains to consider U3(m). This means that we need to control Sr(ε, δ, k,

p, q) in the case when (δ, k,p, q) ∈ Dr,3. There are two sub-cases, for a given
(δ, k,p, q) ∈ Dr,3:

1. if δi = 1 for some i, we define i1, by δ1 = · · · = δi1−1 = 0, δi1 = 1,
2. if δi = 0 for all i, we define i1 by q1 = · · · = qi1 �= qi1+1.
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Such i1’s always exist by the definition of Dr,3. Define di , 1 ≤ i ≤ r , by

di =

⎧⎪⎪⎨⎪⎪⎩
λ1(2m)1/3 if qi �= qi+1 or δi = 1,

(logm)λ1

√
|ki+1 − ki | if δi = 0, qi = qi+1, ki �= ki+1,

1 if δi = 0, qi = qi+1, ki = ki+1.

We now introduce new coordinates in (4.9) by

(4.11)

{
τi1 = ti1/di1,

τi = (ti+1 − ti)/di if i > i1,

recalling that the indices are cyclic. The inverse transformation is

ti = ti(τ ) =
i∑

j=i1

dj τj

for i1 ≤ i < i1 + r . After this change of variables, we obtain

Sr(ε, δ, k, q) =
∫
Rr

drτ

r∏
i=1

IApi ,m

([
ti(τ )

])
diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)
.

The next lemma gives a bound on Sr .

LEMMA 4.3. There is a constant C > 0 such that∣∣Sr(ε, δ, k,p, q)
∣∣≤ Cr

for all (ε, δ, k, q) ∈ Dr,3 and ε ∈ {0,1}r .

PROOF. If δi = 1, then statement (1) in Proposition 3.1 gives∣∣diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)∣∣≤ C

∣∣∣∣Ã(βqi
,

ti(τ )

λ1(2m)1/3 ;βqi+1,
ti+1(τ )

λ1(2m)1/3

)∣∣∣∣.
Similarly, if δi = 0, qi �= qi+1, then∣∣diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)∣∣≤ C

∣∣∣∣φβqi
,βqi+1

(
ti(τ )

λ1(2m)1/3 ,
ti+1(τ )

λ1(2m)1/3

)∣∣∣∣,
by (2) in Proposition 3.1. Furthermore, we obtain the following estimates for δi = 0
and qi = qi+1:

• If ki > ki+1 and |τi | ≤ c2((ki − ki+1)(logm)2)1/2, then∣∣diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)∣∣≤ Ce−c′
1τ

2
i ,

where c′
1 > 0, which follows from statement (3)(a) in Proposition 3.1.



AIRY POINT PROCESS AT THE LIQUID-GAS BOUNDARY 2995

• If ki < ki+1, or ki > ki+1 and |τi | > c2(|ki − ki+1|(logm)2)1/2, then∣∣diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)∣∣≤ Ce−c1|ki−ki+1|(logm)2
,

which follows from statements (3)(a), (3)(b) and (4) in Proposition 3.1.
• If ki = ki+1, then ∣∣diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)∣∣≤ Ce−c1|τi |,

which follows from statement (5) in Proposition 3.1.

If we use these estimates and the fact that |ti | ≤ Cm1/3 for all 1 ≤ i ≤ r , we get
the bound on Sr . �

We can now prove that we have a uniform control of the series defining U3(m).

LEMMA 4.4. The series (4.6) defining U3(m) is uniformly convergent for
|wp,q | ≤ R if R is sufficiently small.

PROOF. It follows from (4.6), (4.10) and the bound in Lemma 4.3 that

∣∣U3(m)
∣∣≤ ∞∑

s=1

1

Ms

s∑
r=1

1

r

∑
�1+···+�r=s
�1,...,�r≥1

∑
ε∈{0,1}r

|P(ε, �)|
�1! . . . �r !

∑
(δ,k,p,q)∈Dr,3

RsCr

≤
∞∑

s=1

Rs

Ms

s∑
r=1

(CM)r < ∞

if |wp,q | ≤ R, and R is sufficiently small. �

Let

D∗
s,3 = {

(δ, k,p, q) ∈ Ds,3;ki �= kj for all i �= j
}

and write

(4.12) Q(ε) = P
(
ε, (1, . . . ,1)

)
with the vector (1, . . . ,1) having length s. Define

U∗
3 (m) =

∞∑
s=1

(−1)s+1

sMs

∑
ε∈{0,1}s

Q(ε)

× ∑
(δ,k,p,q)∈D∗

s,3

s∏
i=1

(−1)δiwpi,qi
Ss(ε, δ, k,p, q).

(4.13)
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LEMMA 4.5. There is a constant C > 0 so that for |wp,q | ≤ R, with R suffi-
ciently small, ∣∣U3(m) − U∗

3 (m)
∣∣≤ C

M
.

PROOF. The same argument as in the proof of the previous lemma shows that∣∣∣∣∣
∞∑

s=1

1

Ms

s−1∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

∑
ε∈{0,1}r

P (ε, �)

�1! . . . �r !

× ∑
(δ,k,p,q)∈Dr,3

Sr(ε, δ, k,p, q)

∣∣∣∣∣
≤

∞∑
s=1

Rs

Ms

s−1∑
r=1

CrMr

r
≤ C

M
.

If r = s, and ki = kj for some i, j , then the number of elements in Ds,3 is less than
CMs−1 and we use the same estimates as used in the proof of the previous lemma.

�

Since M tends to infinity (slowly) as m tends to infinity, we only have to con-
sider U∗

3 (m).
Given (δ, k,p, q) ∈ D∗

s,3, we let 1 ≤ j1 < · · · < jr ≤ s be the indices i where
δi = 1, or δi = 0 and qi �= qi+1. Let �1 = j1 − jr + s, �2 = j2 − j1, . . . , �r =
jr − jr−1. We see that �i ≥ 1 and �1 + · · · + �r = s. Also, jr = j1 + s − �1 ≤ s,
which implies that j1 ≤ �1. Hence, given �1, . . . , �r with �1 + · · · + �r = s, �i ≥ 1
for all 1 ≤ i ≤ r , and j1 with 1 ≤ j1 ≤ �1, we can uniquely reconstruct j1, . . . , jr .

Write J = {j1, . . . , jr} and J ′ = [s] \ J . Then, using (4.9), we have

Ss(ε, δ, k,p, q) =
∫
Rs

dsτ

s∏
i=1

IApi ,m

([
ti(τ )

])∏
i∈J

diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)
×∏

i /∈J

diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)
.

Note that [ti(τ )] ∈ Api,m means that[
αl

pi
λ1(2m)1/3]≤ ti(τ ) ≤ [αr

pi
λ1(2m)1/3].

Dropping the integer parts gives a negligible error and this is equivalent to
ti(τ )/λ1(2m)1/3 ∈ Api

, where Api
= [αl

pi
, αr

pi
]. By statement (3) in Proposi-

tion 3.1, for i ∈ J ′ and |τi | ≤ c2(logm)1/6,

diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)= 1√
4π

e− τ2
i
4
(
1 + o(1)

)
Iki>ki+1
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as m → ∞. Write

(4.14) B0
(
β, ξ ;β ′, ξ ′)= φβ,β ′

(
ξ, ξ ′)

and

(4.15) B1
(
β, ξ ;β ′, ξ ′)= Ã

(
β, ξ ;β ′, ξ ′).

Then, for i ∈ J and |ti(τ )|, |ti+1(τ )| ≤ Cm1/3,

diK(i)

m,ε,δ,k,q

(
ti(τ ), ti+1(τ )

)= Bδi

(
βqi

,
ti(τ )

λ1(2m)1/3 ;βqi+1,
ti+1(τ )

λ1(2m)1/3

)(
1 + o(1)

)
as m → ∞. Note that

lim
m→∞

ti(τ )

λ1(2m)1/3 = lim
m→∞

i∑
j=i1

dj

λ1(2m)1/3 τj =
i∑

j=i1
j∈J

τj

for i1 ≤ i < i1 + s.
It follows from the above asymptotic formulas and the estimates in Proposi-

tion 3.1 that

lim
m→∞Ss(ε, δ, k,p, q)

=
∫
Rr

∏
j∈J

dτj

s∏
i=1

IApi

(
i∑

j=i1,j∈J

τj

)

×∏
i∈J

Bδi

(
βqi

,

i∑
j=i1,j∈J

τj ;βqi+1,

i+1∑
j=i1,j∈J

τj

)

× ∏
i∈J ′

Iki>ki+1

1√
4π

∫
R

dτie
− τ2

i
4

= ∏
i∈J ′

Iki>ki+1

∫
Rr

∏
j∈J

dτj

s∏
i=1

IApi

(
i∑

j=i1,j∈J

τj

)

×∏
i∈J

Bδi

(
βqi

,

i∑
j=i1,j∈J

τj ;βqi+1,

i+1∑
j=i1,j∈J

τj

)
.

(4.16)

Note that a nonzero right-hand side in (4.16) requires pi = pjα for jα ≤ i < jα+1
since otherwise

s∏
i=1

IApi

(
i∑

j=i1,j∈J

τj

)
= 0.
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By the definition of jα , we have that qi = qjα for jα ≤ i < jα+1. Note that the limit
in (4.16) does not depend on ε. We have, for fixed δ, q , which determine J and J ′,
that

lim
m→∞

1

Ms

∑
k∈[M]s

∏
i∈J ′

Iki>ki+1 = 1

�1! · · ·�r ! .

Thus, after an analogous change of variables to (4.11), we get

lim
m→∞

1

Ms

∑
(δ,k,p,q)∈D∗

s,3

s∏
i=1

(−1)δiwpi,qi
Ss(ε, δ, k,p, q)

=
s∑

r=1

∑
�1+···+�r=s
�1,...,�r≥1

�1(−1)r

�1! . . . �r !
∑

p∈[L2]r

∑
q∈[L1]r

∑
δ∈{0,1}r

r∏
i=1

(−1)1+δiw�i
pi ,qi

×
∫
Rr

dr t

r∏
i=1

IApi
(ti)Bδi

(βqi
, ti;βqi+1, ti+1),

(4.17)

where the �1 factor comes from the �1 possible choices of j1 as discussed above.
By symmetry, we see that we can replace∑

�1+···+�r=s
�1,...,�r≥1

�1(−1)r

�1! · · ·�r !

on the right-hand side of (4.17) by

1

r

∑
�1+···+�r=s
�1,...,�r≥1

(�1 + · · · + �r)(−1)r

�1! · · ·�r ! = (−1)r

r

∑
�1+···+�r=s
�1,...,�r≥1

s

�1! . . . �r ! .

Thus, we find that

lim
m→∞

1

Ms

∑
(δ,k,p,q)∈D∗

s,3

s∏
i=1

(−1)δiwpi,qi
Ss(ε, δ, k,p, q)

=
s∑

r=1

(−1)r

r

∑
�1+···+�r=s
�1,...,�r≥1

s

�1! . . . �r !
∑

p∈[L2]r

∑
q∈[L1]r

r∏
i=1

w�i
pi ,qi

×
∫
Rr

dr t

r∏
i=1

IApi
(ti)A(βqi

, ti;βqi+1, ti+1),

since A = −B0 + B1 from (1.3), (4.14) and (4.15). In order to get the limit of
U∗

3 (m) in (4.13), we need the following lemma, which we will prove in Section 5.
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LEMMA 4.6. We have that∑
ε∈{0,1}s

Q(ε) = (−1)s .

Thus, using the estimate in Lemma 4.3, we see that, provided |wp,q | ≤ R with
R sufficiently small, we can take the limit in (4.13) and get

lim
m→∞U∗

3 (m) =
∞∑

s=1

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! . . . �r !
∑

p∈[L2]r

∑
q∈[L1]r

r∏
i=1

w�i
pi ,qi

×
∫
Rr

dr t

r∏
i=1

IApi
(ti)A(βqi

, ti;βqi+1, ti+1)

= log det
(
I+ (e� − 1

))
L2({β1,...,βL1 }×R),

where �(x) =∑L2
p=1

∑L1
q=1 wp,qI{βq }×Ap(x) as defined in (1.4) for x ∈ {β1, . . . ,

βq} ×R. This completes the proof of the theorem.

5. Proofs of Lemmas 4.1 and 4.6. In this section, we will give the proof of
Lemma 4.1 followed by the proof of Lemma 4.6. These were both stated without
proof in Section 4.

Before giving the proof of Lemma 4.1, we recall notation and give some pre-
liminaries. As in Section 4, we assume that the notation is cyclic, that is, zr+1 = z1
in all products of size r . Note that since Km,0 is related to K̃m,0 = aiK−1

1,1 by a
conjugation [see (3.3), (3.8) and (3.9)], we have

(5.1)
r∏

i=1

Km,0(zi, zi+1) =
r∏

i=1

aiK−1
1,1

(
x(zi+1), y(zi)

)
.

Let t = t (z), t ′ = t (z′), ε = ε(z) and ε′ = ε(z′), where z, z′ ∈ Lm(q, k). From
(3.2), we see that

K−1
1,1

(
x
(
z′), y(z)

)= − i1+h(ε1,ε2)

(2π i)2

∫
�1

du1

u1

∫
�1

du2

u2

× aεu
1−h(ε,ε′)
2 + a1−εu1u

h(ε,ε′)
2

c̃(u1, u2)u
x1(z′)−y1(z)+1

2
1 u

x2(z′)−y2(z)+1
2

2

.

Now, we have x2(z
′)− y2(z) = 2(t ′ − t)− 1 + 2ε and x1(z

′)− y1(z) = 2(t ′ − t)+
1 − 2ε′ by (1.7) and (2.1). Define

Gε,ε′(t) = aih(ε,ε′)

(2π i)2

∫
�1

du1

u1

×
∫
�1

du2

u2

aεu−1+ε+ε′
1 u

1−h(ε,ε′)
2 + a1−εuε+ε′

1 u
h(ε,ε′)
2

c̃(u1, u2)(u1u2)t+ε
.

(5.2)
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It follows that

aiK−1
1,1

(
x
(
z′), y(z)

)= Gε,ε′
(
t ′ − t

)
and consequently

(5.3)
r∏

i=1

Km,0(zi, zi+1) =
r∏

i=1

Gεi ,εi+1(ti+1 − ti)

if zi ∈ Lm(q, k), εi = ε(zi) and ti = t (zi) for 1 ≤ i ≤ r . By making the change of
variables u1 = u, u2 = ω/u in (5.2), we obtain

(5.4) Gε,ε′(t) = aih(ε,ε′)

2π i

∫
�1

fε,ε′(ω)

ωt

dω

ω
,

where

(5.5) fε,ε′(ω) = 1

2π i

∫
�1

du

u

aεu−2(1−ε)(1−ε′)ω1−ε−h(ε,ε′) + a1−εu2εε′
ωh(ε,ε′)−ε

c̃(u,ω/u)
.

We have the following lemma.

LEMMA 5.1. Let fε,ε′(ω) be defined in (5.5). Then we have the relations

f0,0(ω) = f1,1(ω)

and

af0,0(ω) − a2(f0,0(ω)2 + f0,1(ω)f1,0(ω)
)= 0.

PROOF. From (3.1), we have

c̃(
√

u,ω/
√

u) = a

uω

(
u2 + (1 + 2(a + 1/a)ω + ω2)u + ω2)

= a

uω

(
u − r1(ω)

)(
u − r2(ω)

)
.

The term in the parenthesis on the right-hand side of the first line of the above
equation is a quadratic in u and the second line gives the factorisation into two
roots, r1(ω) and r2(ω). We have that r1(ω)r2(ω) = ω2 and so for ω ∈ T, we choose
|r1(ω)| < 1 and |r2(ω)| > 1.

Making the change of variables u �→ √
u for fε,ε′(ω), defined in (5.5), gives

fε,ε′(z) = 1

2π i

∫
�1

du

u

aεω1−ε−h(ε,ε′)u−(1−ε)(1−ε′) + a1−εuεε′
ωh(ε,ε′)−ε

c̃(
√

u,ω/
√

u)

= 1

2π i

∫
�1

du
aε−1ω2−h(ε,ε′)−εu−(1−ε)(1−ε′) + a−εuεε′

ω1+h(ε,ε′)−ε

(u − r1(ω))(u − r2(ω))
.
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In the above integrand for (ε, ε′) �= (0,0), then (1 − ε)(1 − ε′) = 0 which means
that there is only residue at u = r1(z). This is easily computed and gives

aε−1ω2−h(ε,ε′)−ε + a−εr1(ω)εε
′
ω1+h(ε,ε′)−ε

r1(ω) − r2(ω)
.

For (ε, ε′) = (0,0), there are residues at u = r1(ω) and u = 0 which give

a−1ω2r1(ω)−1 + ω

r1(ω) − r2(ω)
+ a−1ω2

r1(ω)r2(ω)

= r1(ω)r2(ω)(a−1ω2r1(ω)−1 + ω) + a−1ω2(r1(ω) − r2(ω))

r1(ω)r2(ω)(r1(ω) − r2(ω))

= a−1r1(ω) + ω

r1(ω) − r2(ω)
,

where we have used r1(ω)r2(ω) = ω2. We have arrived at

fε,ε′(ω)

= (
aε−1r1(ω)(1−ε)(1−ε′)ω2−2(1−ε)(1−ε′)−h(ε,ε′)−ε

+ a−εω1+h(ε,ε′)−εr1(ω)εε
′)
/
(
r1(ω) − r2(ω)

)
.

(5.6)

Using the above equation, the first equation in Lemma 5.1 immediately follows.
For the second in equation in Lemma 5.1, using (5.6) we have

af0,0(ω) − a2(f0,0(ω)2 + f0,1(ω)f1,0(ω)
)

= a
a−1r1(ω) + ω

r1(ω) − r2(ω)

− a2

(r1(ω) − r2(ω))2

((
a−1r1(ω) + ω

)2 + (a−1ω + ω2)(1 + a−1ω
))

= −2a2ω2 + ar1(ω)ω + ar2(ω)ω + aω3 + aω + r1(ω)r2(ω) + ω2

(r1(ω) − r2(ω))2

= −ω(2a2ω + a(r1(ω) + r2(ω) + ω2 + 1) + 2ω)

(r1(ω) − r2(ω))2 = 0,

where we have used r1(ω)r2(ω) = ω2 and r1(ω) + r2(ω) = −(1 + 2(a + 1/a)ω +
ω2) as required. �

The next lemma expresses the exponential decay of correlation in a pure gas
phase.
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LEMMA 5.2. There are constants C,c1 > 0 so that∣∣Gε,ε′(t)
∣∣≤ Ce−c1|t |

for all t ∈ Z and ε, ε′ ∈ {0,1}.

PROOF. We see from the proof of the previous lemma that fε,ε′(ω) is an ana-
lytic function in the neighborhood of the unit circle. Let t > 0 and take r > 1, but
close to 1 so that fε,ε′(ω) is analytic in {ω : 1 ≤ |ω| ≤ r}. We see from (5.4) and
Cauchy’s theorem that

∣∣Gε,ε′(t)
∣∣= a

2π

∣∣∣∣∫
�r

fε,ε′(ω)

ωt

dω

ω

∣∣∣∣≤ C

rt
.

If t < 0, we take r < 1 instead. �

We are now ready to prove Lemma 4.1.

PROOF OF LEMMA 4.1. Let (δ, k,p, q) ∈ Dr,0 so that δi = 0, pi = p, qi = q ,
ki = k, 1 ≤ i ≤ r . Thus,

T0(m, r, �) = ∑
ε∈{0,1}r

r∏
i=1

(−1)�iεi

M∑
k=1

L2∑
p=1

L1∑
q=1

w�1+···+�r
p,q

× ∑
z∈(Lm)r

r∏
i=1

I
εi

p,q,k(zi)aiK−1
1,1

(
x(zi+1), y(zi)

)
by (4.5) and (5.1). Recalling the definition of Ap,m in (4.8) and using (5.3), we
have that ∑

z∈(Lm)r

r∏
i=1

I
εi

p,q,k(zi)aiK−1
1,1

(
x(zi+1), y(zi)

)

= ∑
t∈Zr

r∏
i=1

IAp,m(ti)Gεi ,εi+1(ti+1 − ti).

With the above equations and (4.6), we obtain

U0(m) = M

L2∑
p=1

L1∑
q=1

( ∞∑
s=1

ws
p,q

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r !

× ∑
ε∈{0,1}r

r∏
i=1

(−1)�iεi
∑
t∈Zr

r∏
i=1

IAp,m(ti)Gεi ,εi+1(ti+1 − ti)

)
.

(5.7)
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The result of the lemma now follows from (5.7) and the next claim, since we get
the estimate ∣∣U0(m)

∣∣≤ C

M
.

CLAIM 1. There is a constant C and an R > 0 so that∣∣∣∣∣
∞∑

s=1

ws

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r !

× ∑
ε∈{0,1}r

∑
t∈Zr

r∏
i=1

(−1)�iεi IAp,m(ti)Gεi ,εi+1(ti+1 − ti)

∣∣∣∣∣
≤ C

M2

(5.8)

for |w| ≤ R and 1 ≤ p ≤ L2.

PROOF OF CLAIM 1. From (5.4), we see that

(5.9) Gε,ε′(t) = aih(ε,ε′)f̂ε,ε′(t)

for t ∈ Z where f̂ε,ε′(t) is the t th Fourier coefficient of fε,ε′ . Thus, we have

∑
t∈Zr

r∏
i=1

IAp,m(ti)Gεi ,εi+1(ti+1 − ti)

=
r∏

i=1

aih(εi ,εi+1)
∑
t∈Zr

r∏
i=1

IAp,m(ti)f̂εi ,εi+1(ti+1 − ti).

Using properties of convolutions of Fourier coefficients, we have

∑
t2,...,tr∈Z

r∏
i=1

f̂εi ,εi+1(ti+1 − ti)

= ∑
tr∈Z

( ̂fε1,ε2 · · ·fεr−1,εr )(tr − t1)f̂εr ,ε1(t1 − tr )

= ∑
tr∈Z

( ̂fε1,ε2 · · ·fεr−1,εr )(tr )f̂εr ,ε1(−tr )

= ( ̂fε1,ε2 · · ·fεr−1,εr )(0)

= 1

2π i

∫
�1

dω

ω

r∏
i=1

fεi,εi+1(ω)
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for r ≥ 2. Thus, for r ≥ 2 we have∣∣∣∣∣∑
t∈Zr

r∏
i=1

IAp,m(ti)f̂εi ,εi+1(ti+1 − ti) − |Ap,m|
2π i

∫
�1

dω

ω

r∏
i=1

fεi,εi+1(ω)

∣∣∣∣∣
=
∣∣∣∣∣∑
t∈Zr

IAp,m(t1)

(
r∏

i=2

IAp,m(ti) − 1

)
r∏

i=1

f̂εi ,εi+1(ti+1 − ti)

∣∣∣∣∣
≤ ∑

t∈Zr

IAp,m(t1)

(
r∑

j=2

IAc
p,m

(tj )

)
r∏

i=1

Ce−c1|ti+1−ti |

(5.10)

by Lemma 5.2 and equation (5.9).
Introduce new coordinates s1 = t1, si = ti − ti−1, 2 ≤ i ≤ r . The inverse is

tj =
j∑

i=1

si

so we get a bijection from Zr to Zr . We see that the right-hand side in (5.10) is
less than or equal to

Cr
∑
s∈Zr

IAp,m(s1)

(
r∑

j=2

IAc
p,m

(s1 + · · · + sj )

)
r∏

i=1

Ce−c1
∑r

i=2 |si |−c1|s2+···+sr |

≤ Cr
r∑

j=2

∑
σ,s1∈Z

∑
s2,...,sr∈Z

s2+···+sj=σ

IAp,m(s1)IAc
p,m

(s1 + σ)e− c1
2 |σ |− c1

2
∑r

i=2 |si |

≤ Cr
r∑

j=2

∑
σ,s1∈Z

IAp,m(s1)IAc
p,m

(s1 + σ)e− c1
2 |σ |

( ∑
s2,...,sr∈Z

e− c1
2 (|s2|+···+|sr |)

)

≤ Cr
∑

σ,s1∈Z
IAp,m(s1)IAc

p,m
(s1 + σ)e− c1

2 |σ | ≤ Cr.

Thus, we find

(5.11)

∣∣∣∣∣∑
t∈Zr

r∏
i=1

IAp,m(ti)f̂εi ,εi+1(ti+1 − ti)− |Ap,m|
2π i

∫
�1

dω

ω

r∏
i=1

fεi,εi+1(ω)

∣∣∣∣∣≤ Cr.

Write

�1 =
∞∑

s=1

ws

Ms

1

s!
∑

ε1∈{0,1}

∑
t1∈Z

(−1)sε1IAp,m(t1)aih(ε1,ε1)f̂ε1,ε1(0)

=
∞∑

s=1

ws

Ms

1

s!
∑

ε1∈{0,1}
(−1)sε1

|Ap,m|
2π i

∫
�1

dω

ω
aih(ε1,ε1)fε1,ε1(ω)
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and

�2 =
∞∑

s=2

ws

Ms

s∑
r=2

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r !
∑

ε∈{0,1}r

∑
t∈Zr

×
r∏

i=1

(−1)�iεi IAp,m(ti)aih(εi ,εi+1)f̂εi ,εi+1(ti+1 − ti),

so that the left-hand side of (5.8) is |�1 + �2|. Now, using (5.11), we see that∣∣∣∣∣�2 −
∞∑

s=2

ws

Ms

s∑
r=2

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r !
∑

ε∈{0,1}r
|Ap,m|

2π i

∫
�1

dω

ω

×
r∏

i=1

(−1)�iεi aih(εi ,εi+1)fεi ,εi+1(ω)

∣∣∣∣∣
≤

∞∑
s=2

|w|s
Ms

s∑
r=2

1

r

∑
�1+···+�r=s
�1,...,�r≥1

Cr

�1! · · ·�r ! ≤
∞∑

s=2

RsCs

Ms
≤ C

M2

if R is sufficiently small. Thus,

|�1 + �2|

≤
∣∣∣∣∣

∞∑
s=1

ws

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

|Ap,m|
�1! · · ·�r !

∑
ε∈{0,1}r

1

2π i

∫
�1

dω

ω

×
r∏

i=1

(−1)�iεi aih(εi ,εi+1)fεi ,εi+1(ω)

∣∣∣∣∣+ C

M2 .

(5.12)

Let Fω = (Fω(ε1, ε2))0≤ε1,ε2≤1 be the two-by-two matrix with elements Fω(ε1,

ε2) = aih(ε1,ε2)fε1,ε2(ω) for 0 ≤ ε1, ε2 ≤ 1, and let η(ε1) = (−1)ε1 . Then the ex-
pression between the absolute value signs in the right-hand side of (5.12) can be
written as

|Ap,m|
2π i

∫
�1

dω

ω

∞∑
s=1

ws

Ms

s∑
r=1

(−1)r+1

r

× ∑
�1+···+�r=s
�1,...,�r≥1

1

�1! · · ·�r ! tr
(
η�1Fω · · ·η�r Fω

)
.

(5.13)

Here, we view Fω as an operator with kernel Fω and on functions {0,1} →C, that
is, the trace is for a product of two 2 × 2 matrices. The expression in the integrand
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above is a cumulant expansion of log det(I+ (e
ω
M

η −1)Fω). This means that (5.13)
equals

|Ap,m|
2π i

∫
�1

dω

ω
log det

(
I+ (e ω

M
η − 1

)
Fω

)
provided that R is small enough. The above determinant can be written explicitly
and is given by

det

((
1 0
0 1

)
+
( (

e
w
M − 1

)
af0,0(ω)

(
e

w
M − 1

)
aif0,1(ω)(

e− w
M − 1

)
aif1,0(ω)

(
e− w

M − 1
)
af1,1(ω)

))

= (
1 + (e w

M − 1
)
af0,0(ω)

)(
1 + (e− w

M − 1
)
af1,1(ω)

)
+ (e w

M − 1
)(

e− w
M − 1

)
a2f0,1(ω)f1,0(ω)

= 1 + (e w
M − 1

)
af0,0(ω) + (e− w

M − 1
)
af1,1(ω)

+ a2(2 − e
w
M − e− w

M
)
f0,0(ω)f1,1(ω)

+ a2(2 − e
w
M − e− w

M
)
f0,1(ω)f1,0(ω)

= 1 + (e w
M − 1

)
af0,0(ω) + (e− w

M − 1
)
af0,0(ω)

+ a2(2 − e
w
M − e− w

M
)
f0,0(ω)2

+ a2(2 − e
w
M − e− w

M
)
f0,1(ω)f1,0(ω)

= 1 + (e w
M − 1

)
af0,0(ω) + (e− w

M − 1
)
af0,0(ω)

+ a
(
2 − e

w
M − e− w

M
)
f0,0(ω),

where the third equality follows from the first relation in Lemma 5.1 and the fourth
equality follows from the second relation in Lemma 5.1. We conclude that

det
(
I+ (e w

M
η − 1

)
Fω

)= 1

and so we have shown that |�1 + �2| ≤ C/M2. This proves the claim. �

The proof of the claim concludes the proof of Lemma 4.1. �

We now give the proof of Lemma 4.6.

PROOF OF LEMMA 4.6. We have that from (4.7) and (4.12)

Q(ε) = P(ε,1) =
s∏

i=1

ai

2

√
1 − 2cgε1,εi+1Cεi+εi+1−2.
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From this, we see that the left-hand side of (4.6) is the trace of the sth power of a
two-by-two matrix where the (ε1 + 1, ε2 + 1)th entry is

ai

√
1 − 2c

2

gε1,ε2

C2−ε1−ε2

for ε1, ε2 ∈ {0,1}. These entries are simplified using the expressions of gε1,ε2 and
C given above. Thus, the two-by-two matrix has the explicit form⎛⎜⎜⎝−1

2

(
1 + 1√

a2 + 1

)
ai

2
√

a2 + 1

− ai

2
√

a2 + 1
−1

2
+ 1

2
√

a2 + 1

⎞⎟⎟⎠
which has eigenvalues 0 and −1, as required. �

6. Proof of Proposition 3.1. In this section, we give the proof of Proposi-
tion 3.1. In order to give this proof, we rely on various results from [9] which are
recalled below.

Let αx,αy,βx,βy ∈ R, kx, ky ∈ Z and fx, fy ∈ Z2. Set

x = (
ρm + 2

[
αxλ1(2m)1/3])e1

− (2[βxλ2(2m)2/3 + kxλ2(logm)2])e2 + fx,

y = (
ρm + 2

[
αyλ1(2m)1/3])e1

− (2[βyλ2(2m)2/3 + kyλ2(logm)2])e2 + fy.

(6.1)

From [9], Theorem 2.7, and its proof, we have the following.

THEOREM 6.1 ([9]). Assume that x ∈ Wεx and y ∈ Bεy are given by (6.1) with
εx, εy ∈ {0,1}. Furthermore, assume that |αx |, |αy |, |βx |, |βy |, |fx |, |fy | ≤ C for
some constant C > 0 and that |kx |, |ky | ≤ M . Then, as m → ∞

KA(x, y) = iy1−x1+1C
−2−x1+x2+y1−y2

2 c0gεx,εy e
αyβy−αxβx− 2

3 (β3
x−β3

y )

× (2m)−
1
3
(
Ã
(
βx,αx + β2

x ;βy,αy + β2
y

)+ o(1)
)
.

(6.2)

Also, as m → ∞,

K−1
1,1(x, y) = iy1−x1+1C

−2−x1+x2+y1−y2
2 c0gεx,εy e

αyβy−αxβx− 2
3 (β3

x−β3
y )

× (2m)−
1
3
(
φβx,βy

(
αx + β2

x ;αy + β2
y

)+ o(1)
)
.

(6.3)

REMARK 2. The difference between the above version of the theorem and
the statement given in [9], Theorem 2.7, is that there is a positional change of
the vertices x and y by at most |kxλ2(logm)2| and |kyλ2(logm)2| and the reverse
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time orientation, which simply consists of the change βx �→ −βx and βy �→ −βy .
By comparing the statement of [9], Theorem 2.7, and Theorem 6.1, the positional
change affects the exponent of C and the error term, where we remind the reader
that |G(i)| in [9] is equal to C in this paper.

More explicitly, this positional change only alters the Taylor series computation
of the ratio Hx1+1,x2(ω1)/Hy1,y2+1(ω2) using the local change of variables [9],
equation (3.22), where Hx1,x2(ω) is defined in [9] and x = (x1, x2) and y = (y1, y2)

are as defined in (6.1). Catering for this alteration immediately gives Theorem 6.1.

As given in [9], (4.20), define

Ek,l = 1

(2π i)2

∫
�1

du1

u1

∫
�1

du2

u2

1

c̃(u1, u2)u
k
1u

l
2

.

Then (see [9], equation (4.22)), for x ∈ Wεx , y ∈ Bεy ,

(6.4) K−1
1,1(x, y) = −i1+h(εx,εy)(aεyEk1,l1 + a1−εyEk2,l2

)
,

where

k1 = x2 − y2 − 1

2
+ h(εx, εy), k2 = x2 − y2 + 1

2
− h(εx, εy),

l1 = y1 − x1 − 1

2
, l2 = y1 − x1 + 1

2
.

(6.5)

From [9], Lemma 4.6 and Lemma 4.7, we get the following asymptotic formulas
and estimates.

LEMMA 6.2 ([9]). Let Am,Bm,m ≥ 1 be given and set bm = max(|Am|, |Bm|),
and let am = Am if bm = |Bm|, and let am = Bm if bm = |Am|:

1. Assume that bm → ∞ as m → ∞ and |am| ≤ b
7/12
m for large m. Then there

exists a constant d1 > 0 so that

EBm+Am,Bm−Am

= (−1)am+bmC2bm(e
−

√
1−2c
2c

a2
m

bm (1 + O(b
−1/4
m )) + O(e−d1b

1/6
m ))

2(1 + a2)(1 − 2c)1/4
√

2πcbm

(6.6)

as m → ∞.
2. Assume that bm > 0, m ≥ 1. There exist constants C,d1, d2 > 0 so that

(6.7) |EBm+Am,Bm−Am | ≤ C√
bm

C2bm
(
e
−d1

a2
m

bm + e−d2bm
)

for all m ≥ 1.
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Motivated by (6.4) and (6.6), we define

Am,i = ki − li

2
and Bm,i = ki + li

2

for i ∈ {1,2}. It follows from (6.5) that

2Am,i = x1(z
′) + x2(z

′) − (y1(z) + y2(z))

2
− (−1)ih

(
ε(z), ε

(
z′)),

2Bm,i = x2(z
′) − x1(z

′) + (y1(z) − y2(z))

2
+ (−1)i

(
1 − h

(
ε(z), ε

(
z′))).(6.8)

If we have z ∈ Lm(q, k), z′ ∈ Lm(q ′, k′), t = t (z), t ′ = t (z′), ε = ε(z) and ε′ =
ε(z′), then using (1.7) and (2.1)

2Am,i = 2
(
t ′ − τm

(
q ′))− 2

(
t − τm(q)

)+ 2
(
ε − ε′)− (−1)ih

(
ε, ε′),

2Bm,i = βm(q, k) − βm

(
q ′, k′)+ ε + ε′ − 1 + (−1)i

(
1 − h

(
ε, ε′)).(6.9)

We are now ready for the proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. To prove part (1) in the statement of the propo-
sition, we apply Theorem 6.1. By comparing (1.7) and (6.1), y = y(z), we see
that

αy = t − τm(q)

λ1(2m)1/3 and βy = βq,

if z ∈ Lm(q, k), t = t (z), where we have disregarded integer parts. Thus, we have

(6.10) αyβy + 2

3
β3

y = t

λ1(2m)1/3 βq − 1

3
β3

q = γ1(z)

by (3.4). Using (3.3), (3.5) and (6.10), we see that part (1) in the statement of the
proposition follows from (6.2). Similarly, part (2) in the statement of the proposi-
tion follows from (6.3).

We now consider part (3) in the statement of the proposition, that is, q = q ′,
k > k′. From (6.9) and the definition of βm(q, k), we see that

Bm,i = (
k − k′)λ2(logm)2 + 1

2

(
ε + ε′ + (−1)i

(
1 − h(ε1, ε2)

))
so Bm,i > 0 if m is sufficiently large. Also,

Am,i = t ′ − t + ε − ε′,

since tm(q ′) = tm(q). Assume now that |t ′ − t | ≤ c2((k − k′)(logm)2)7/12. Then
bm,i = |Bm,i | and

|am,i | = |Am,i | ≤ b
7/12
m,i ,
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for large m if c2 < 1. By (6.6),

Eki ,li
= (−1)kiCbm,i

2(1 + a2)(1 − 2c)1/4
√

2πcbm,i

× (e−
√

1−2c
2c

A2
m,i

Bm,i
(
1 + O

(
b

−1/4
m,i

))+ O
(
e
−d1b

1/6
m,i
))

.

Note that

−
√

1 − 2c

2c

A2
m,i

Bm,i

= − λ2
1

√
1 − 2c

2cλ2(k − k′)

(
t ′

λ1 logm
− t

λ1 logm

)2
+ o(1)

and that

(6.11)
∣∣γ1
(
z′)− γ1(z)

∣∣= ∣∣∣∣ t ′ − t

λ1(2m)1/3 βq

∣∣∣∣≤ C

since |t ′ − t | ≤ Cm1/3. We can now use (3.3), (3.8), (6.4) and proceed as in the
proof of [9], Proposition 3.4, and this will give part (3)(a) in the proposition.

We turn now to part (3)(b) in the proposition. Consider (3.8) and note that

Cγ2(z
′)−γ2(z)+2−2ε′ = C 1

2 (x1(z
′)−x2(z

′)+y2(z)−y1(z)+2) = C−2Bm,i+1−(−1)i (1−h(ε,ε′))

by (3.7) and (6.8). We can now use (6.7) to get

|Eki ,li
| ≤ C√

bm,i

C2bm,i
(
e
−d1

a2
m,i

bm,i + e−d2bm,i
)
.

If (c2((k −k′))(logm)2)7/12 ≤ |t ′ − t | ≤ λ2(k −k′)(logm)2, then bm,i = Bm,i . The
estimate (6.11) holds and combining these facts, we obtain the bound in (3)(b) in
the statement of the proposition.

If |t ′ − t | ≥ λ2(k − k′)(logm)2, then

bm,i = |Am,i | =
∣∣t ′ − t

∣∣+ O(1),

am,i = Bm,i = (
k − k′)λ2(logm)2 + O(1).

It follows, since |bm,2 − bm,1| and |am,2 − am,1| are bounded, that

(6.12)
∣∣Km,0

(
z, z′)∣∣≤ CC2(bm,1−Bm,1)e

c1
−a2

m,1
bm,1 .

If λ2(k−k′)(logm)2 ≤ |t ′ − t | ≤ 2λ2(k−k′)(logm)2, we can use C < 1 and bm,1 −
Bm,1 ≥ 0, to get ∣∣Km,0

(
z, z′)∣∣≤ e−c1(k−k′)(logm)2

.

If |t ′ − t | > 2λ2(k − k′)(logm)2, we use C < 1 to get∣∣Km,0
(
z, z′)∣∣≤ CC2(bm,1−Bm,1) ≤ CC2(k−k′)λ2(logm)2 ≤ Ce−c1(k−k′)(logm)2
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with an appropriate c1 > 0. In either case, we have shown (3)(c) in the statement
of the proposition.

Consider now the case (4) in the statement of the proposition. In this case,
Bm,i < 0 and we see that the factor

(6.13) C2(bm,i−Bm,i)

in (6.12) will give us the decay we need in order to prove the bound in statement
(4) of the proposition.

Finally, we consider statement (5) in the proposition, that is, q = q ′ and k = k′.
Then we have

Bm,i = ε + ε′ − 1 + (−1)i
(
1 − h

(
ε, ε′))

and

Am,i = t ′ − t + ε − ε′.

Thus, if |t ′ − t | is sufficiently large, then bm,i = |Am,i | and am,i = Bm,i . Since
|Bm,i | ≤ 2,

2(bm,i − Bm,i) ≥ 2
(∣∣t ′ − t

∣∣− 2
)

and again the factor in (6.13) gives the desired bound. �
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