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ROOTS OF RANDOM POLYNOMIALS WITH COEFFICIENTS OF
POLYNOMIAL GROWTH

BY YEN DO∗,1, OANH NGUYEN†,2 AND VAN VU†,2

University of Virginia∗ and Yale University†

In this paper, we prove optimal local universality for roots of random
polynomials with arbitrary coefficients of polynomial growth. As an applica-
tion, we derive, for the first time, sharp estimates for the number of real roots
of these polynomials, even when the coefficients are not explicit. Our results
also hold for series; in particular, we prove local universality for random hy-
perbolic series.
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1. A motivation: Real roots of random polynomials. Let us start by describ-
ing a natural and famous problem which serves as the motivation of our studies,
the main results of which will be discussed in Section 2.

Finding real roots of a high degree polynomial is among the most basic prob-
lems in mathematics. From the algebraic point of view, it is classical that for most
polynomials of degree at least 5, the roots cannot be computed in radicals, thanks to
the fundamental works of Abel–Ruffini and Galois. There has been a huge amount
of results on the number of real roots and also their locations using information
from the coefficients (for instance, one of the earliest results is Descartes’ classi-
cal theorem concerning sign sequences); however, most results are often sharp for
certain special classes of polynomials, but poor in many others.

It is natural and important to consider the root problem from the statistical point
of view. What can we say about a typical (i.e., random) polynomial? Already in
the seventeenth century, Waring considered random cubic polynomials and con-
cluded that the probability of having three real roots is at most 2/3. This effort was
discussed by Toddhunter in [40], one of the earliest books in probability theory,
which also reported a similar effort made by Sylvester. However, the distribution
of the polynomials was not explicitly defined at the time.

In the last hundred years, random polynomials have attracted the attention of
many generations of mathematicians, with most efforts directed to the following
model:

Pn,ξ (x) := cnξnx
n + · · · + c1ξ1x + c0ξ0x

0,

where ξi are i.i.d. copies of a random variables ξ with zero mean and unit variance,
and ci are deterministic coefficients which may depend on both n and i. Different
definitions of ci give rise to different classes of random polynomials, which have
different behaviors. When ci = 1 for all i, the polynomial Pn,ξ is often referred to
as the Kac polynomial. Even for this special case, the literature is very rich (see [3,
12] for surveys). In the next few paragraphs, we will discuss few seminal results
which directly motivate our research.

The first modern work on random polynomials was due to Bloch and Polya in
1932 [5], who considered the Kac polynomial with ξ being Rademacher [namely
P(ξ = 1)= P(ξ =−1)= 1/2], and showed that with high probability

Nn,ξ =O(
√

n),
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where Nn,ξ denotes the number of real roots of the Kac polynomial associated with
the random variable ξ . Their key idea is simple and beautiful. Notice that if we
apply Descartes’ rule of signs for Pn, one could only obtain the trivial bound O(n)

for Nn,ξ as the typical number of sign changes is around n/2. Bloch and Polya’s
idea is to apply Descartes rule for PnQ, where Q is a deterministic polynomial
which does not have any real positive roots. By choosing Q properly, they reduced
the number of sign changes significantly.

Next came the ground breaking series of papers by Littlewood and Offord [20–
22] in the early 1940s, which, to the surprise of many mathematicians of their time,
showed that Nn,ξ is typically polylogarithmic in n.

THEOREM 1.1 (Littlewood–Offord). For ξ being Rademacher, Gaussian or
uniform on [−1,1],

logn

log logn
≤Nn,ξ ≤ log2 n

with probability 1− o(1).

Littlewood–Offord’s papers and later works of Offord [20–22] lay the founda-
tion for the theory of random functions, which is an important part of modern
probability and analysis; see, for instance, [28, 33].

During more or less the same time, Kac [18] discovered his famous formula for
the density function ρ(t) of Nn,ξ

(1.1) ρ(t)=
∫ ∞
−∞
|y|p(t,0, y) dy,

where p(t, x, y) is the joint probability density for Pn,ξ (t)= x and the derivative
P ′n,ξ (t)= y.

Consequently,

(1.2) ENn,ξ =
∫ ∞
−∞

dt

∫ ∞
−∞
|y|p(t,0, y) dy.

In the Gaussian case (ξ is Gaussian), the joint distribution of Pn,ξ (t) and P ′n,ξ (t)

can be explicitly computed. Using this fact, Kac showed in [18] that

(1.3) ENn,Gauss = 1

π

∫ ∞
−∞

√
1

(t2 − 1)2 +
(n+ 1)2t2n

(t2n+2 − 1)2 dt =
(

2

π
+ o(1)

)
logn.

A more careful evaluation by Wilkins [41] and also Edelman and Kostlan [10]
gives

(1.4) ENn,Gauss = 2

π
logn+C + o(1),

where C is an explicit constant. As a matter of fact, Wilkins [41] computed all
terms in the Taylor expansion of the integration in (1.3).
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In his original paper [18], Kac thought that his formula would lead to the same
estimate for ENn,ξ for all other random variables ξ . It has turned out to be not the
case, as the right-hand side of (1.2) is often hard to compute, especially when ξ

is discrete (Rademacher for instance). Technically, the joint distribution of Pn,ξ (t)

and P ′n,ξ (t) is easy to determine in the Gaussian case, thanks to special properties
of the Gaussian distribution, but can pose a great challenge in the general one. Kac
admitted this in a later paper [19], in which he managed to push his method to treat
the case ξ being uniform in [−1,1]. A further extension was made by Stevens [37],
who evaluated Kac’s formula for a large class of ξ having continuous and smooth
distributions with certain regularity properties (see [37], page 457, for details).

The treatment of ENn,ξ for discrete random variables ξ required considerable
effort. More than 10 years after Kac’s paper [18], Erdős and Offord [11] found a
completely new approach to handle the Rademacher case, proving that with prob-
ability 1− o( 1√

log logn
)

(1.5) Nn,ξ = 2

π
logn+ o

(
log2/3 n log logn

)
.

The argument of Erdős and Offord is combinatorial and very delicate, even by
today’s standard. Their main idea is to approximate the number of roots by the
number of sign changes in Pn,ξ (x1), . . . ,Pn,ξ (xk) where x1, . . . , xk is a carefully
defined deterministic sequence of points of length k = ( 2

π
+ o(1)) logn. The au-

thors showed that with high probability, almost every interval (xi, xi+1) contains
exactly one root, and used this fact to prove (1.5).

It took another ten years until Ibragimov and Maslova [14, 15] successfully
extended the method of Erdős–Offord to treat the Kac polynomials associated with
more general distributions of ξ .

THEOREM 1.2. For any ξ with mean zero which belongs to the domain of
attraction of the normal law,

(1.6) ENn,ξ = 2

π
logn+ o(logn).

For related results, see also [16, 17]. Few years later, Maslova [25, 26] showed
that if ξ has mean zero and variance one and P(ξ = 0) = 0, then the variance of
Nn,ξ is ( 4

π
(1− 2

π
)+ o(1)) logn, and Nn,ξ satisfies the central limit theorem.

So, after more than three decades of continuous research, a satisfactory answer
for the Kac polynomial (the base case when all ci = 1) was obtained. Apparently,
the next question is what happens with more general sets of coefficients?

This general problem is very hard and still far from being settled. Let us recall
that Kac’s formula for the density function (1.2) applies for all random polyno-
mials. However, in practice one can only evaluate this formula in the Gaussian
case and some other very nice continuous distributions. On the other hand, Erdős–
Offord’s argument seems too delicate and relies heavily on the fact that all ci = 1.
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For a long time, no analogue of Theorem 1.2 was available for general sets of
coefficients ci with respect to non-Gaussian random variables ξ .

1.1. Description of the new results for coefficients with zero means. In this
paper, we prove universality results for general random polynomials where the co-
efficients ci have polynomial growth. These universality results show that, among
other, the expectation of the number of real roots depend only on the mean and
variance of the coefficients ξ (two moment theorems). Thus, the problem of find-
ing the expectation of real roots reduces to the Gaussian case, which we can handle
using an analytic argument (see the last paragraph of Section 3).

As the reader will see in the next section, our universality results show much
more than just the expectation. They completely describe the local behavior of the
roots (both complex and real). More generally, we can also control the number of
intersection of the graph of the random polynomial with any deterministic curve
of given degree. (The number of real roots is the number of intersections with the
x-axis.)

Thanks to new and powerful tools, our method does not require an explicit ex-
pression for the deterministic coefficients ci . As a corollary, we obtain the fol-
lowing extension (and refinement) of Theorem 1.2. To formulate this result (see
Theorem 1.4), we first introduce a definition.

DEFINITION 1.3. We say that h(k) is a generalized polynomial if there exists
a finite sequence 0 < L0 < · · ·< Ld <∞ such that for some α0, . . . , αd ∈R with
αd �= 0 it holds that

h(k)=
d∑

j=0

αj

Lj (Lj + 1) · · · (Lj + k− 1)

k! for every k = 0,1, . . . , n.

Here, we understand that L · · · (L+ k − 1)/k! ≡ 1 if k = 0. We will say that the
degree of h is Ld − 1 in this case. We say that h is a real generalized polynomial
if the coefficients αj ’s are real.

It is clear that any classical polynomial is also a generalized polynomial with
the same degree: if h(k) is a classical polynomial with degree d , then it could be
written as a linear combination of the binomial polynomials Lj(Lj + 1) · · · (Lj +
k − 1)/k! with Lj = j + 1 for j = 0,1, . . . , d . We also have αd �= 0 because
it is a nonzero multiple of the leading coefficient of h; therefore, the degree in
the generalized sense of Definition 1.3 is also d . On the other hand, the class of
generalized polynomials is much richer as the degree of h could be fractional.

Below, recall that our random polynomials have the form Pn(z)=∑n
i=0 ciξiz

i .
For a subset S ⊂C, denote by NP (S) the number of zeros of P in S.
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THEOREM 1.4. Let N0 be a nonnegative constant. Let ξ0, . . . , ξn be indepen-
dent (but not necessarily i.i.d.) real-valued random variables with variance 1 and
supj=0,...,n E|ξj |2+ε < C0 for some constant C0 > 0 and ξi has mean 0 for all
i ≥N0. Let h be a fixed generalized polynomial with a positive leading coefficient.
Assume that there are positive constants, M,m,C1 such that the real deterministic
coefficients c0, . . . , cn ∈R satisfy{

mh(k)≤ c2
k ≤Mh(k), N0 ≤ k ≤ n,

c2
k ≤ C1M, 0≤ k < N0.

Then with Kh := 1+√deg(h)+1
π

we have

(1.7)
m2

M2

[
Kh logn+O(1)

]≤ ENPn(R)≤ M2

m2

[
Kh logn+O(1)

]
.

The implicit constants in O(1) depend on ε, C0, C1, N0, h and the ratio M/m. In
particular, if c2

k = h(k) for some real (generalized) polynomial h of degree d then

(1.8) ENPn(R)= 1+√d + 1

π
logn+O(1).

Notice that the zeros of Pn is invariant under the scaling of cj ’s, this explains
why we only need dependence on the ratio M/m instead of both M and m. In the
proof, we may assume M = 1 without loss of generality. The first few ξi , i < N0
can have arbitrary means.

Theorem 1.4 is a corollary of our main local universality result discussed in the
next section. This result (formulated in term of correlation functions) proves uni-
versality for not only the expectation, but higher moments of the number of roots
(complex or real) in any small region of microscopic scale. We delay the discussion
of universality to the next section and make a few comments on Theorem 1.4.

First, the error term in (1.8) is only O(1), which is best possible, as showed in
(1.4). Even in the well-studied case of Kac polynomials (all ci = 1), this gives a
improvement

(1.9) ENn,ξ = 2

π
logn+O(1)

upon the estimate 2
π

logn+o(logn) from Theorem 1.2 by Ibragimov and Maslova.
We believe that the method used by Erdős and Offord and also Ibragimov and
Maslova cannot lead to error term better than O(

√
logn). (1.9) was also proved by

H. Nguyen and the last two authors in [30] by other means, but the method there
does not go beyond the Kac polynomials; see also [8].

Second, there are many natural families of random polynomials which satisfy
the assumptions in Theorem 1.4. Here are a few examples:
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Derivatives of the Kac polynomial. The roots of the derivatives of a function
have strong analytic and geometric meanings, and thus are of particular interests.
For the dth derivative of the Kac polynomial (any fixed d ≥ 0) our result implies

ENPn(R)= 1+√2d + 1

π
logn+O(1).

Prior to this, for derivatives of the Kac polynomial only weaker estimates [with
error terms o(log1/2 n)] are available for the Gaussian case; see the works of Das
[6, 7] for d = 1,2 and the extension in [35, 36] to the setting when ξj ’s are weakly
correlated Gaussian random variables. For the first derivative (d = 1), Maslova
[26] considered non-Gaussian polynomials and obtained an asymptotic bound with
worse error term o(logn).

Hyperbolic polynomials. Random hyperbolic polynomials are defined by

ci :=
√

L(L+ 1) · · · (L+ i − 1)

i! ,

for a constant L > 0. This class of random polynomials includes the Kac poly-
nomials as a subcase (L = 1) and has became very popular recently due to the
invariance of the zeros of the corresponding infinite series under hyperbolic trans-
formations; see [13] for more discussion. By Theorem 1.4, we have

ENPn(R)= 1+√L

π
logn+O(1).

Logarithmic expectation. Another immediate corollary of Theorem 1.4 is that
ENPn(R) grows logarithmically if the deterministic coefficients cj have polyno-
mial growth:

COROLLARY 1.5. Consider ξi as in Theorem 1.4. Assume that there are posi-
tive constants, C0,C1 and some constant ρ >−1/2 such that the real deterministic
coefficients c0, . . . , cn ∈R satisfy{

C0k
ρ ≤ |ck| ≤ C1k

ρ, N0 ≤ k ≤ n,

c2
k ≤ C1, 0≤ k < N0.

Then there are positive constants C2, C3 such that

(1.10) C2 logn≤ ENPn(R)≤C3 logn.

Here, C2, C3 depend only on C0, C1, ρ, N0 and ε.

To deduce this result from Theorem 1.4, simply let L= 2ρ + 1 and notice that
the binomial coefficient

h(k)= L(L+ 1) · · · (L+ k− 1)

k!
is about the size of kL−1 = k2ρ for k large, therefore, the desired conclusion fol-
lows from Theorem 1.4 via comparing |ck| with

√
h(k).
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COROLLARY 1.6. Consider ξi as in Theorem 1.4. Assume that there are posi-
tive constants, C0,C1 and some constant ρ >−1/2 such that the real deterministic
coefficients c0, . . . , cn ∈R satisfy{|ck| = C0k

ρ(1+ o(1)
)
, N0 ≤ k ≤ n,

c2
k ≤ C1, 0≤ k < N0.

Then

(1.11) ENPn(R)= 1+√2ρ + 1

π
logn+ o(logn).

The Gaussian setting of Corollary 1.6 in the special case ck = kρ , ρ ≥ 0 was
considered by [6, 7]; see also the extension in [35, 36].

To see Corollary 1.6, we need to show that given any δ > 0 it holds that

(1− δ)
1+√2ρ + 1

2π
logn≤ ENPn(R)≤ (1+ δ)

1+√2ρ + 1

2π
logn

for all n sufficiently large. Again by comparing with
√

h(k) and rescaling all cj if
necessary we may assume that

(1+ δ)−1/10h(k)≤ |ck|2 ≤ (1+ δ)1/10h(k)

for k ≤ n sufficiently large [the threshold now depends on ρ and (polynomially)
on δ]. Applying Theorem 1.4, we obtain the desired conclusion.

The reader can also notice that by Definition 1.3, our generalized polynomials
always have degree greater than −1. This corresponds to the assumption that ρ >

−1/2 in Corollaries 1.5 and 1.6. This assumption is important for our results. For
example, consider the model when ci = iρ with ρ <−1/2 and Var ξi = 1 for all
i, then VarPn(±1)=∑n

i=0 i2ρ converges as n→∞. Intuitively, this says that the
contribution of the first few terms becomes important and one may not expect to
see universality around ±1 which is where most of the real roots locate.

Number of crossings. The number of real roots is the number of intersections of
the graph of P(z) (over the real) with the line y = 0. What about an arbitrary line?
(The line y = T is of particular interest, as it corresponds to the important notion
of level sets.) For Kac polynomials, this question was considered (see [12] for a
survey) in the Gaussian case, and it was showed that the number of crossing (in
expectation) is asymptotically ( 2

π
+ o(1)) logn.

Theorem 1.4 allows us to prove a more precise result in much more general
setting, where we can consider the number of intersection with any polynomial
curve of constant degree.

COROLLARY 1.7. Consider ξi as in Theorem 1.4. Assume that c2
k = h(k) for

some real (generalized) polynomial h of degree d . Let f be a deterministic poly-
nomial of degree l and � be its graph over the real. Let NPn,�(R) be the number
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of intersections of the graph of Pn (over the real) with �. Then

(1.12) ENPn,�(R)= 1+√d + 1

π
logn+O(1),

where the constant in O(1) depends on ε, N0, h and f .

Corollary 1.7 can be derived by applying Theorem 1.4 to the random polynomial
Pn − f .

The Gaussian case. The strategy of the proof of Theorem 1.4 is to reduce to the
Gaussian case, using universality results presented in the next section (which are
the main results of this paper). Let us emphasize that even in the Gaussian setting,
Theorem 1.4 (and Theorem 1.8 below) are substantially new and the method of
proof is novel compared to previous works. For more details, see the last paragraph
of Section 3.

1.2. Polynomials with coefficients having nonzero means. To conclude this
section, let us mention that our method could also be used to handle polynomials
with nonzero means. For instance, we have the following analogue of Theorem 1.4.

THEOREM 1.8. Let N0 be a positive constant and h be a deterministic clas-
sical polynomial with real coefficients. Let ξ0, . . . , ξn be independent real-valued
random variables with variance 1 and supj=0,...,n E|ξj |2+ε < C0 for some con-
stant C0 > 0. Assume that ξi has mean μ �= 0 and ci = h(i) for i ≥ N0 and that
|ci | ≤ C1 for i < N0. Let Pn(z)=∑n

i=0 ciξiz
i . Then

(1.13) ENPn(R)= 1+√2 deg(h)+ 1

2π
logn+O(1).

The implicit constant in O(1) depends on ε, C0, C1, N0, h and μ.

The key feature of this result is that the number of real roots reduces by a factor
of 2, compared to Theorem 1.4. To our best knowledge, such a result was avail-
able only for Kac polynomials. Farahmand [12] showed that when ξ is Gaussian
with nonzero mean, ENPn(R)= (1+o(1)) 1

π
logn. Ibragimov and Maslova in [17]

proved the same estimate if ξ belongs to the domain of attraction of normal law.
Even for Kac polynomials, our result improves upon these as it achieves the opti-
mal error term O(1). The analogue of Corollary 1.7 holds for this model.

Similar to Theorem 1.4, Theorem 1.8 will be derived from a general universality
result provided in the next section. These results can also be used to treat higher
moments (such as the variance) of the number of real roots. Details will appear
elsewhere.
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1.3. Outline of the paper. In Section 2, we will present our main results re-
garding the local universality of the joint distribution of the zeros of Pn,ξ when the
deterministic coefficients cj have polynomial growth. Special cases of these results
will be used to reduce the proof of Theorems 1.4 and 1.8 to the Gaussian setting
(see the discussion near the end of Section 2.4 for details). In Section 2.5, we
will also discuss several extensions regarding universality for the zeros of random
power series. Among others, we achieve local universality of hyperbolic series un-
der very general assumptions. A sketch of our proofs for these results is presented
is Section 3, followed by the detailed proofs in Sections 4, 5, 6, 7. In the rest of
the paper (from Section 8 to the end), we prove the Gaussian case of Theorems 1.4
and 1.8.

It is worth mentioning that our paper is self-contained and is accessible to read-
ers unfamiliar with the paper [38] by Tao and the third author.

2. Correlation functions and universality. Correlation functions are effec-
tive tools to study random point processes. To define correlation functions, let us
first consider the complex case in which the coefficients ci and the atom distribu-
tion ξ are not required to be real valued. In this case, the point process {ζ1, . . . , ζn}
of zeroes of a random polynomial P = Pn can be described using the (complex)
k-point correlation functions ρ(k) = ρ

(k)
P :Ck→R

+, defined for any fixed natural
number k by requiring that

E
∑

i1,...,ik distinct

ϕ(ζi1, . . . , ζik )

=
∫
Ck

ϕ(z1, . . . , zk)ρ
(k)(z1, . . . , zk) dz1 · · · dzk

(2.1)

for any continuous, compactly supported, test function ϕ : Ck→ C, with the con-
vention that ϕ(∞)= 0; see, for example, [2, 13]. This definition of ρ(k) is clearly
independent of the choice of ordering ζ1, . . . , ζn of the zeroes. Furthermore, the
correlation function ρ

(k)
P should be viewed as part of the (correlation) measure

ρ
(k)
P dz1 · · · dzk on C

k , and this perspective is useful in more singular settings when
the correlation measure (whose existence is a consequence of the Riesz represen-
tation theorem) does not have a density on C

k .

REMARK 2.1. When ξ has a continuous complex distribution and when
the coefficients ci are nonzero, then the zeroes are almost surely simple. In
this case, if z1, . . . , zk are distinct fixed complex numbers, then one can inter-
pret ρ(k)(z1, . . . , zk) as the unique quantity such that the following holds: the
probability that there is a zero in each of the disks B(zi, ε) for i = 1, . . . , k is
(πε2)k(ρ(k)(z1, . . . , zk)+ o(1)) in the limit ε→ 0.
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When the random polynomial P has real coefficients, the zeroes ζ1, . . . , ζn are
symmetric with respect to the real axis, and one expects several of the zeroes to
lie on this axis. Because of this possibility, the situation is more complicated. It is
no longer natural to work with the complex k-point correlation functions ρ

(k)
P , as

they are likely to become singular on the real axis. Instead, we divide the complex
plane C into three pieces C=R∪C+∪C−, with C+ := {z ∈C : Im(z) > 0} being
the upper half-plane and C− := {z ∈C : Im(z) < 0} being the lower half-plane. By
the aforementioned symmetry, we may restrict our attention to the zeroes in R and
C+ only. For any natural numbers k, l ≥ 0, we define the mixed (k, l)-correlation
function ρ(k,l) = ρ

(k,l)
P :Rk × (C+ ∪C−)l→R

+ of a random polynomial P to be
the function defined by the formula

E
∑

i1,...,ik distinct

∑
j1,...,jl distinct

ϕ(ζi1,R, . . . , ζik,R, ζj1,C+, . . . , ζjl,C+)

=
∫
Rk

∫
C

l+
ϕ(x, z)ρ

(k,l)
P (x, z) dz dx

(
x ∈Rk, z ∈Cl+

)
for any continuous compactly supported test function ϕ : Rk × C

l → C (note
that we do not require ϕ to vanish at the boundary of C

l+), ζi,R runs over an
arbitrary enumeration of the real zeroes of Pn, and ζj,C+ runs over an arbi-
trary enumeration of the zeroes of Pn in C+. This defines ρ(k,l) (in the sense
of distributions, at least) for x1, . . . , xk ∈ R and z1, . . . , zl ∈ C+; we then extend
ρ(k,l)(x1, . . . , xk, z1, . . . , zl) to all other values of x1, . . . , xk ∈ R and z1, . . . , zl ∈
C+ ∪C− by requiring that ρ(k,l) is symmetric with respect to conjugation of any
or all of the z1, . . . , zl parameters. Again, we permit ρ(k,l) to be a measure3 instead
of a function when the random polynomial Pn has a discrete distribution.

In the case l = 0, the correlation functions ρ(k,0) for k ≥ 1 provide (in principle,
at least) all the essential information about the distribution of the real zeroes. For
instance,

(2.2) ENP (R)=
∫
R

ρ(1,0)(x) dx

and similarly,

VarNP (R)=
∫
R

∫
R

ρ(2,0)(x, y)− ρ(1,0)(x)ρ(1,0)(y) dx dy

+
∫
R

ρ(1,0)(x) dx.

(2.3)

We refer the reader to [2, 13] for a thorough discussion of correlation functions.

3As in the complex case, we allow the real zeros ζi1,R, . . . , ζik,R or the complex zeroes
ζj1,C+ , . . . , ζjl ,C+ to have multiplicity; it is only the indices i1, . . . , ik, j1, . . . , jl that are required

to be distinct. In particular, in the discrete case it is possible for ρ(0,2)(z1, z2) (say) to have nonzero
mass on the diagonal z1 = z2 or the conjugate diagonal z1 = z2, if P has a repeated complex eigen-
value with positive probability.
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2.1. Universality. The correlation functions give us a lot of information at
finer scales. Given the story of real roots in the previous section [which corre-
sponds to the special case (2.2)], it is natural to expect that their computation is
extremely hard.

The situation is roughly as follows. We have an explicit formula (Kac–Rice for-
mula) to compute correlation functions. This formula is a generalization of Kac’s
formula in the previous section and involves joint distributions. In principle, one
can evaluate it in the Gaussian case (as Kac did). But technically, for various sets
of coefficients ci , this is already a significant challenge.

In [29], Nazarov and Sodin considered the series f (z)=∑∞j=0
1√
j !ξj z

j where
ξj are i.i.d. normalized complex Gaussian and used the Kac–Rice formula to prove
repulsion properties of its complex zeros, more specifically they proved that the k-
correlation function is locally comparable to the square modulus of the complex
Vandermonde product:

C−1
∏
i<j

|zi − zj |2 ≤ ρ
(k)
f (z1, . . . , zk)≤ C

∏
i<j

|zi − zj |2.

The method of [29] extends to more general settings. In [29], the authors proved
the same type of estimates for the complex k-point correlation function of the so-
called 2k-nondegenerate Gaussian analytic functions, which include (among oth-
ers) P(z)=∑∞j=0 cj ξj z

j with c0, . . . , c2k−1 �= 0 such that
∑

j |cj |2|z|2j converges
in the domain where estimates for ρ

(k)
f are needed (see [29] for technical details).

These certainly include random polynomials of finite degrees (at least 2k − 1)
whose first 2k coefficients are nonzero; however, the implicit constants C in the
estimates depend also on f (and k and the domain), and thus could be a very large
function of the degree.

Similar to the Kac formula, a direct evaluation of the Kac–Rice formula is not
feasible when ξ is a general non-Gaussian random variable. On the other hand, it
has been conjectured that the value of the formula, at least in the asymptotic sense,
should not depend on the fine details of the atom variable ξ . This is commonly
referred to in the literature as the universality phenomenon.

Bleher and Di proved universality for elliptic polynomials in which the atom
distribution ξ was real-valued and sufficiently smooth and rapidly decaying (see
[4], Theorem 7.2, for the precise technical conditions and statement). With these
hypotheses, they showed that the pointwise limit of the normalized correlation
function n−k/2ρ(k,0)(a+ x1√

n
, . . . , a+ xk√

n
) for any fixed k, a, x1, . . . , xk (with a �=

0) as n→∞ was independent of the choice of ξ (with an explicit formula for the
limiting distribution). Their method is based on the Kac–Rice formula.

In a recent paper [38], Tao and the third author introduced a new method to
prove universality, which we will refer to as “universality by sampling” (see Sec-
tion 3). This method makes no distinction between continuous and discrete ran-
dom variables and the authors used it to derive universality for flat, elliptic and
Kac polynomials in certain domains.
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DEFINITION 2.2. Two complex random variables ξ and ξ ′ are said to match
moments to order m if

ERe(ξ)a Im(ξ)b = ERe
(
ξ ′
)a Im

(
ξ ′
)b

for all natural numbers a, b ≥ 0 with a + b ≤m.

2.2. Coefficients with polynomial growth. We consider

(2.4) Pn(z)=
n∑

i=0

ciξiz
i, z ∈C,

random polynomials with the following condition.

CONDITION 1. 1. ξi ’s are independent (real or complex) random variables
with unit variance and bounded 2+ ε moment, namely E|ξi |2+ε ≤ τ2 for an arbi-
trarily small positive constant ε.

2. ci’s are deterministic complex numbers with

(2.5) τ1i
ρ ≤ |ci | ≤ τ2i

ρ for all i ≥N0, and |ci | ≤ τ2 for all 0≤ i < N0,

where N0, τ1, τ2, ε are positive constants and ρ >−1/2.

Notice that we do not require the ξi to be identically distributed. They are also
allowed to have different means. However, by Hölder’s inequality, our condition
on the uniform boundedness of 2+ ε moments implies that the means should be
bounded E|ξi | ≤ τ

1/(2+ε)
2 for all i.

An essential point here is that we do not need to know the values of the co-
efficients ci precisely, only their growth. We do not know of any result which is
applicable at this level of generality.

In the next two subsections, we state our universality theorems for complex and
mixed correlation functions.

2.3. Complex local universality for polynomials. For a polynomial P = Pn of
the form (2.4), let (ζP

i )ni=1 be the zeros of P . We use the convention that if Pn

vanishes identically then it has a zero of order n at ∞, and similarly, if Pn has
degree m < n then it has a zero of order n−m at∞.

Let δ be a small positive number. Define

I (δ)=

⎧⎪⎪⎨⎪⎪⎩
[1− 2δ,1− δ] if

1

10n
≤ δ < 1,

[1− 1/n,1+ 1/n] if 0 < δ <
1

10n
,

and

(2.6) J (δ)=
[

1

1− δ
,

1

1− 2δ

]
if

1

10n
≤ δ < 1.
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Note that( ⋃
1

20n
≤δ≤ 1

C

I (δ)

)
∪
( ⋃

1
10n
≤δ≤ 1

C

J (δ)

)
=
[
1− 2

C
,

C

C − 2

]
⊃
[
1− 1

C
,1+ 1

C

]
.

Our goal is to prove universality in the annulus A(0,1 − 1
C

,1+ 1
C

) for some
large constant C and we shall break it into annuli with radii given by I (δ) and
J (δ). When proving universality on the annulus {z : |z| ∈ I (δ)}, for convenience
of notation we will consider the following rescaled version:

(2.7) P̌ (ž)= P(z) where ž= z

10−3δ
.

The term “local universality” can be thought of as universality on balls that contain
(1) zeros on average. It is more or less proven throughout the paper that for such
z as above, there are an average of (1) zeros in the ball B(z,10−3δ). The rescaled
factor 10−3δ in (2.7) plays the simple role of making this ball have the unit radius.
The factor 10−3 is artificial and can be replaced by any sufficient small constant
that allows the ball to grow under various approximation steps in our proofs while
keeping distance (δ) away from the unit circle. Observe that by the change of
variables formula, we have

ρ
(k)

P̌
(w1, . . . ,wk)= (10−3δ

)2k
ρ

(k)
P

(
10−3δw1, . . . ,10−3δwk

)
.

When working with the annulus {z : |z| ∈ J (δ)}, we first consider Q(z) =
zn

cn
P (1

z
) to transform the domain |z| ≥ 1 into |z| ≤ 1, and in particular, J (δ) into

I (δ). Note that Q=∑n
i=0

di

d0
ξn−iz

i where di = cn−i . For notational convenience,

sometimes we also think about Q as Q=∑n
i=0

di

d0
ξiz

i . And then, we use the same
rescaling:

Q̌(ž)=Q(z) where ž= z

10−3δ
.

Let ρ
(k)

P̌
and ρ

(k,l)

P̌
be the corresponding correlation functions of P̌ . Note that

they depend on δ because the rescaling factor does.
Here, for a function F : Cm→ C, we think of it as a function from R

2m→ C

and denote by |∇aF (x)| the Euclidean norm of ∇aF (x):

∣∣∇aF (x)
∣∣= ( ∑

1≤i1,...,ia≤2m

∣∣∣∣ ∂aF

∂xi1 · · · ∂xia

(x)

∣∣∣∣2)1/2
.

THEOREM 2.3. Let k ≥ 1 be an integer constant. Let Pn =∑n
i=0 ciξiz

i and
P̃n =∑n

i=0 ci ξ̃iz
i be two random polynomials satisfying Condition 1. Assume that

ξi and ξ̃i match moments to second order for all N0 ≤ i ≤ n where N0 is the
constant in Condition 1.
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Let �ρ
(k)
P = ρ

(k)

P̌
−ρ

(k)

ˇ̃P and �ρ
(k)
Q = ρ

(k)

Q̌
−ρ

(k)

ˇ̃Q , differences of correlation func-
tions.

Then there exist constants C, C′, c depending only on k and the constants in
Condition 1 such that for every 1

20n
≤ δ ≤ 1

C
and complex numbers z1, . . . , zk with

|zj | ∈ I (δ) for all 0≤ j ≤ k, and for every smooth function G :Ck→C supported
on B(0,10−3)k with |∇aG(z)| ≤ 1 for all 0≤ a ≤ 2k + 4 and z ∈Ck , we have

(2.8)
∣∣∣∣∫

Ck
G(w1, . . . ,wk)�ρ

(k)
P (ž1 +w1, . . . , žk +wk)dw1 · · · dwk

∣∣∣∣≤ C′δc.

Furthermore, if 1
10n
≤ δ ≤ 1

C
,

(2.9)
∣∣∣∣∫

Ck
G(w1, . . . ,wk)�ρ

(k)
Q (ž1 +w1, . . . , žk +wk)dw1 · · · dwk

∣∣∣∣≤ C′δc.

2.4. Real local universality. For real universality, we require the following
additional condition on ξi ’s and ci ’s.

CONDITION 2. 1. The random variables ξi ’s and the coefficients ci ’s are real.
2. One of the following holds:

(a) Eξi = 0 for all i ≥N0,
(b) Eξi = μ for all i ≥N0, where μ is any constant, and there exists a classical

polynomial P (independent of n) with degree ρ ∈ N such that ci = P(i) for all
i ≥N0.4

Notice that when Condition 2(2b) is satisfied, by replacing ci by −ci if needed,
we can also assume that ci =P(i) > 0 for all i larger than some constant because
the (fixed) polynomial P(x) keeps the same sign when x is sufficiently large.

THEOREM 2.4. Let k, l ≥ 0 be integer constants with k + l ≥ 1. Let Pn =∑n
i=0 ciξiz

i and P̃n = ∑n
i=0 ci ξ̃iz

i be two random polynomials satisfying Con-
ditions 1 and 2. Assume that ξi and ξ̃i match moments to second order for all
N0 ≤ i ≤ n where N0 is the constant in Condition 1.

Let �ρ
(k)
P = ρ

(k)

P̌
−ρ

(k)

ˇ̃P and �ρ
(k)
Q = ρ

(k)

Q̌
−ρ

(k)

ˇ̃Q , differences of correlation func-
tions.

Then there exist constants C, c depending only on k, l and the constants and
the polynomial P in Conditions 1 and 2 such that for every 1

20n
≤ δ ≤ 1

C
, real

numbers x1, . . . , xk , and complex numbers z1, . . . , zl such that |xi |, |zj | ∈ I (δ) for
all i = 1, . . . , k, j = 1, . . . , l, and for every smooth function G : Rk × C

l → C

4For instance, P is Kac polynomial or its derivatives.
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supported on [−10−3,10−3]k × B(0,10−3)l such that |∇aG(z)| ≤ 1 for all 0 ≤
a ≤ 2(k + l)+ 4 and z ∈Rk ×C

l , we have∣∣∣∣∫
Rk

∫
Cl

G(y1, . . . , yk,w1, . . . ,wl)

×�ρ
(k,l)
P (x̌1 + y1, . . . , x̌k + yk,

ž1 +w1, . . . , žl +wl) dy1 · · · dyk dw1 · · · dwl

∣∣∣∣
≤ Cδc.

(2.10)

Furthermore, if 1
10n
≤ δ ≤ 1

C
, we have the same inequality (2.10) with Q in place

of P .

Now, to derive Theorems 1.4 and 1.8 from Theorem 2.4, it suffices to show that
the number of real roots in the Gaussian case satisfies the claimed bounds and that
the expectation of real roots (in the general case) outside the universality annulus
is bounded. More specifically, we will show the following.

LEMMA 2.5. Under the conditions of Theorem 2.4, for each constant C > 0,
there exists a constant M(C) such that

ENPn

(
R
∖

A

(
0,1− 1

C
,1+ 1

C

))
≤M(C),

for every n≥ 1.

Together with Theorem 2.4, Lemma 2.5 gives the following.

COROLLARY 2.6. Under conditions of Theorem 2.4, there exists a constant
C such that for every n≥ 1, one has∣∣ENPn(R)−ENP̃n

(R)
∣∣≤C.

REMARK 2.7. To get an intuition for Lemma 2.5, let i be the smallest index
for which ci0 �= 0. Assume that ci0 = �(1), E log |ξi0 | = O(1), and E log |ξn| =
O(1). Under condition (2.5), i0 =O(1). Then by Jensen’s inequality for the func-
tion P(z)/zi0 and concavity of the function log, one has the easy bound

ENP

(
B(0,1− 1/C)

) ≤ i0 +E
log M

|ci0ξi0 |
log 1−1/2C

1−1/C

= i0 +OC(1)+OC(E logM)

≤OC(1)+OC(log EM)

=OC(1)+OC

(
log

∞∑
i=0

iρ(1− 1/2C)i

)
=OC(1),
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where M = max|z|≤1−1/2C |P(z)/zi0 |. Similarly, ENQ(B(0,1− 1/C))=OC(1).
And hence, ENP (C \ A(0,1 − 1/C,1 + 1/C)) = OC(1). In other words, for a
large class of polynomials of the form (2.4), one expects to see only a few zeros
outside the annulus of universality.

By Corollary 2.6, to verify Theorem 1.4 and Theorem 1.8 it suffices to consider
the Gaussian case.

THEOREM 2.8. The statement of Theorem 1.4 holds for ξi being standard
Gaussian for all i = 0, . . . , n.

THEOREM 2.9. The statement of Theorem 1.8 holds for ξi being Gaussian
with mean μ and variance 1 for all i = 0, . . . , n.

We are going to prove these theorems in Section 8 and Section 11. The evalua-
tion of Kac’s formula under the general setting of Theorem 1.4 is fairly involved,
and as mentioned in the discussion leading to Corollary 1.5, it is somewhat sur-
prising that the growth of the coefficients alone already determines the number of
real roots.

2.5. Local universality for series. Our method could also be used to extend
the previous results to random series. Let us first extend Theorem 2.3.

We consider a random series PPS of the form

(2.11) PPS(z)=
∞∑
i=0

ciξiz
i, z ∈D,

where D is the open unit disk in the complex plane, and the ci ’s and ξi ’s satisfy
Condition 1.

THEOREM 2.10. Let k ≥ 1 be an integer constant. Let PPS =∑∞i=0 ciξiz
i and

P̃PS = ∑∞i=0 ci ξ̃iz
i be two random power series satisfying Condition 1 (with n

being replaced by∞). Assume that ξi and ξ̃i match moments to second order for
all i ≥N0 where N0 is the constant in Condition 1.

Let �ρ(k) = ρ
(k)

P̌PS
− ρ

(k)

ˇ̃P PS
, the difference of the correlation functions.

Then there exist constants C, c depending only on k and the constants in Con-
dition 1 such that for every 0 < δ ≤ 1

C
and complex numbers z1, . . . , zk with

|zj | ∈ [1− 2δ,1− δ] for all 0≤ j ≤ k, and for every smooth function G :Ck→C

supported on B(0,10−3)k with |∇aG(z)| ≤ 1, ∀0 ≤ a ≤ 2k + 4 and z ∈ C
k , we

have

(2.12)
∣∣∣∣∫

Ck
G(w1, . . . ,wk)�ρ(k)(ž1 +w1, . . . , žk +wk)dw1 · · · dwk

∣∣∣∣≤ Cδc.
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Notice that when all ξi are (complex) standard Gaussian, the distribution of the
zeroes is invariant with respect to rotation. As a corollary of Theorem 2.10, this
invariance is preserved (in the asymptotic sense) if ξi matches the moments of
standard Gaussian up to second order.

COROLLARY 2.11. Let k ≥ 1 be an integer constant. Let PPS be the ran-
dom series of the form (2.11) satisfying Condition 1. Assume furthermore that
E(Re(ξi)) = E(Im(ξi)) = Cov(Re(ξi), Im(ξi)) = 0 and Var(Re(ξi)) =
Var(Im(ξi))= 1/2 for all i ≥N0.

Then there exist constants C, c such that for every 0 < δ ≤ 1
C

and complex num-
bers z1, . . . , zk with |zj | ∈ [1−2δ,1−δ] for all 0≤ j ≤ k and 0≤ θ < 2π , and for
every smooth function G :Ck→ C supported on B(0,10−3)k with |∇aG(z)| ≤ 1,
∀0≤ a ≤ 2k + 4 and z ∈Ck , we have∣∣∣∣∫

Ck
G(w1, . . . ,wk)ρ

(k)

P̌PS
(ž1 +w1, . . . , žk +wk)dw1 · · · dwk

−
∫
Ck

H(w1, . . . ,wk)

× ρ
(k)

P̌PS

(
e
√−1θ ž1 +w1, . . . , e

√−1θ žk +wk

)
dw1 · · · dwk

∣∣∣∣
≤ Cδc,

where H(w1, . . . ,wk)=G(e−
√−1θw1, . . . , e

−√−1θwk).

In case that PPS is hyperbolic and the ξi are complex Gaussian, the distribution
of the zeros of PPS is invariant under hyperbolic transformations of the disk D (see
[13]). A hyperbolic transformation on D is a transformation of the form

φ(z)= az+ b

b̄z+ ā
,

where a, b ∈ C and |a|2 − |b|2 = 1. A holomorphic function on D is bijective if
and only if it is a hyperbolic transformation (see, for instance, [34], Theorems 12.4,
12.6).

As another immediate corollary of Theorem 2.10, this invariance is preserved
(in the asymptotic sense) again if ξi matches the moments of standard Gaussian up
to order 2 and if the hyperbolic transformation preserves our universality domain.

COROLLARY 2.12. Let k ≥ 1 be an integer constant. Let P be the ran-
dom hyperbolic series of the form (2.11) satisfying Condition 1. Assume further-
more that E(Re(ξi)) = E(Im(ξi)) = Cov(Re(ξi), Im(ξi)) = 0 and Var(Re(ξi)) =
Var(Im(ξi))= 1/2 for all i ≥N0.

Then there exist constants C, c such that the following holds true. Let 0 < δ0 ≤
1
C

and complex numbers z1, . . . , zk with |zj | ∈ [1− 2δ0,1− δ0] for all 0≤ j ≤ k
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and 0≤ θ < 2π . Let φ be a hyperbolic transformation that maps zj to tj with |tj | ∈
[1−2δ1,1−δ1] for all j and for some 0 < δ1 ≤ 1

C
. Then for every smooth function

G : Ck→ C supported on B(0,10−4)k with |∇aG(z)| ≤ 1, ∀0 ≤ a ≤ 2k + 4 and
z ∈Ck , we have∣∣∣∣∫

Ck
G(w)

(
δ0

103

)2k

ρ
(k)
PPS

(
z+ 10−3δ0w

)
dw1 · · · dwk

−
∫
Ck

H(w)
(
10−3δ1

)2k
ρ

(k)
PPS

(
t + 10−3δ1w

)
dw1 · · · dwk

∣∣∣∣≤C max{δ0, δ1}c,
where

H(w1, . . .)=G

(
1

10−3δ0

(
φ−1(t1 + 10−3δ1w1

)− z1
)
, . . .

)
.

Similar to the complex case, real universality also follows from our arguments
for polynomials.

THEOREM 2.13. Let k, l ≥ 0 be integer constants with k + l ≥ 1. Let PPS =∑∞
i=0 ciξiz

i and P̃PS =∑∞i=0 ci ξ̃iz
i be two random power series satisfying Condi-

tions 1 and 2 (with n being replaced by∞). Assume that ξi and ξ̃i match moments
to second order for all i ≥N0 where N0 is the constant in Conditions 1 and 2.

Let �ρ(k,l) = ρ
(k,l)

P̌PS
− ρ

(k,l)

ˇ̃P PS
, the difference of the correlation functions.

Then there exist constants C, c depending only on k, l and the constants and the
polynomial P in Conditions 1 and 2 such that for every 0 < δ ≤ 1

C
, real numbers

x1, . . . , xk , and complex numbers z1, . . . , zl such that |xi |, |zj | ∈ [1 − 2δ,1 − δ]
for all i = 1, . . . , k, j = 1, . . . , l, and for every smooth function G :Rk ×C

l→C

supported on [−10−3,10−3]k × B(0,10−3)l such that |∇aG(z)| ≤ 1, ∀0 ≤ a ≤
2(k + l)+ 4 and z ∈Rk ×C

l , we have∣∣∣∣∫
Rk

∫
Cl

G(y1, . . . , yk,w1, . . . ,wl)

×�ρ(k,l)(x̌1 + y1, . . . , x̌k + yk,

ž1 +w1, . . . , žl +wl) dy1 · · · dyk dw1 · · · dwl

∣∣∣∣
≤ Cδc.

(2.13)

We will prove these results in Section 7.

3. Sketch of the proof and the main technical ideas. To start, we make use
of the “universality by sampling” method from [38], which is based on the Linde-
berg swapping technique. To give the reader a quick introduction on this method,
let us discuss the simplest correlation function ρ(0,1), which is the density function
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of the complex roots. Consider two polynomials Pn,ξ and Pn,ξ̃ and a (nice) test
function G(x). We would like to show∫

C

G(x)ρ
(0,1)
Pn,ξ

(x) dx =
∫
C

G(x)ρ
(0,1)
P

n,ξ̃
(x) dx + o(1).

Recall that by definition∫
C

G(x)ρ
(0,1)
Pn,ξ

(x) dx =
n∑

i=1

EξG(ζi),

∫
C

G(x)ρ
(0,1)
P

n,ξ̃
(x) dx =

n∑
i=1

Eξ̃G(ζ̃i),

where ζi (ζ̃i) are the roots of Pn,ξ (Pn,ξ̃ ).
We are going to prove universality of the right-hand side, namely

n∑
i=1

EξG(ζi)=
n∑

i=1

Eξ̃G(ζ̃i)+ o(1).

Our starting point is Green’s formula, which asserts that

logG(0)=− 1

2π

∫
C

log |z|�G(z)dz,

where � is the Laplacian. By change of variables, this implies that for all i,

logG(ζi)=− 1

2π

∫
C

log |z− ζi |�G(z)dz,

which, in turn, yields∑
i

EξG(ζi)=− 1

2π
Eξ

∫
C

log

∣∣∣∣∣
n∏

i=1

(z− ζi)

∣∣∣∣∣�G(z)dz

=− 1

2π
Eξ

∫
C

log
∣∣Pn,ξ (z)

∣∣�G(z)dz.

[The leading coefficient of Pn,ξ does not matter here, as
∫
C

�G(z)dz = 0.] We
estimate the integration

∫
C

log |Pn,ξ (z)|�G(z)dz by sampling. The intuition is
that if S is the average of (say) N numbers S := a1+···+aN

N
where N is large

integer, then (hopefully) we can estimate S accurately by a much shorter ran-
dom partial sum S′ = ai1+···+aim

m
, where the indices i1, . . . , tm are chosen ran-

domly from the index set {1, . . . ,N}, with m being a parameter much smaller
than N . Thinking of a1, . . . , aN as terms in the Riemann sum approximation of∫
C

log |Pn,ξ (z)|�G(z)dz, we want to approximate this integral by

1

m

(
Hξ(z1)+ · · · +Hξ(zm)

)
,
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where Hξ(z) := C log |Pn,ξ (z)|�G(z) with C being a normalization constant,
z1, . . . , zm are random sample points, and m is a properly chosen parameter which
tends to infinity slowly with n. (The magnitude of m determines the quality of the
approximation.)

Now assume, for a moment that 1
m

(Hξ (z1)+· · ·+Hξ(zm)) is indeed a good ap-
proximation of

∫
C

log |Pn,ξ (z)|�G(z)dz, and similarly, 1
m

(Hξ̃ (z1)+· · ·+Hξ̃ (zm))

is a good approximation of
∫
C

log |Pn,ξ (z)|�G(z)dz, with overwhelming proba-
bility. In this case, the problem reduces to showing

Eξ

1

m

(
Hξ(z1)+ · · · +Hξ(zm)

)= Eξ̃

1

m

(
Hξ̃ (z1)+ · · · +Hξ̃ (zm)

)+ o(1).

We can apply the Lindeberg swapping method to prove this estimate. In
fact, we can use this method to show that the joint distribution of m variables
Hξ(z1), . . . ,Hξ (zm) and that of Hξ̃ (z1), . . . ,Hξ̃ (zm) are approximately the same.
This can be done by defining Z := (Hξ (z1), . . . ,Hξ (zm)) and showing

(3.1) EξF (Z)= Eξ̃ F (Z̃)+ o(1)

for any nice test function F .
An application of the Lindeberg method often requires estimates on the deriva-

tives of the function in question, and a decisive advantage here is that the function
H is explicit, and it is not too hard to bound its derivatives. Generalizing the whole
scheme to the general case of ρk,l requires several additional technical steps, but
the spirit of the method remains the same.

The critical point of this scheme is to show that the random sum indeed approx-
imates the integral. In order to do so, we need to bound from above the second
moment ∫

C

∣∣log
∣∣Pn,ξ (z)

∣∣�G(z)
∣∣2 dz=

∫
D

∣∣log
∣∣Pn,ξ (z)

∣∣�G(z)
∣∣2 dz,

where D is the support of G; see Lemma 4.8.
Our strategy has two steps. We first define a good event T (which holds with

high probability) in the space generated by the ξi . Among others, this event guar-
antees that the number of roots in D is at most nc, where c is a sufficiently small
positive constant. [D was actually chosen so that the expectation of the number of
roots in D is O(1).] When T holds, we split P =RQ, where R :=∏ζi∈D(z− ζi)

and Q :=∏ζi /∈D(z− ζi). Then∫
D

∣∣log
∣∣Pn,ξ (z)

∣∣�G(z)
∣∣2 dz

≤ 2
(∫

D

∣∣log
∣∣Rn,ξ (z)

∣∣�G(z)
∣∣2 dz+

∫
D

∣∣log
∣∣Qn,ξ (z)

∣∣�G(z)
∣∣2 dz

)
.

The first integral on the RHS is easy to bound, as the number of roots in R

is small, and log |R| can be split into sum of few terms. To bound the second
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one, we show that | log |Qn,ξ (z)|�G(z)| is small for every point in D. Typically,
in order to prove that an event E(z) holds for every point z in some domain D

one makes use of the ε-net argument. We put an ε-net on D and prove that E(z)

holds for all points in the net, and then use some analytic argument to extend
the net to the whole domain. If the net has size N , then by the union bound, we
need to show that for each z in the net P(E(z) holds) ≥ 1 − o(1/N). The proof
of this usually requires sophisticated anti-concentration inequalities; furthermore,
sometimes the bound itself is not true (which does not contradict the correctness
of the final statement we want to prove). In our situation, we make a novel use of
Harnack’s inequality, which allows us to reduce the statement to one point, instead
of to the whole ε-net, which completely avoids the use of union bound argument.
This way, we obtain a sufficiently strong bound on the second moment so that the
sampling procedure goes through. See Section 4.2 for more details.

The trickier part is when T does not hold. In this case, it is possible that sam-
pling does not provide a good approximation. We are going to avoid this problem
by directly showing that the contribution coming from the complement T c of T
toward the expectations in (3.1) is small, namely EξF (Z)IT c = o(1) (and the same
for the ξ̃ version).

The main difficulty here is that the logarithm function has a pole at zero. If
|Pn,ξ (z)| is very close to zero in some region, then the value of log |Pn,ξ (z)| could
be very large. [Another type of danger is that |Pn,ξ (z)| is large, but this is easy to
deal with, even by elementary method such as the moment method.] To overcome
this problem, one needs to show that with high probability, |Pn,ξ (z)| is bounded
away from 0. Technically speaking, we need to show

P
(∣∣cnξnz

n + · · · + c0ξ0
∣∣≤ ε(n)

)
is sufficiently small, for most value of z and a properly chosen parameter ε(n).
These types of estimates are called anti-concentration (or small ball) inequality in
the literature; see [31] for an introduction. This part is the most delicate part of our
proof, and unlike prior works (see, e.g., [38]), our method could treat the general
set of coefficients considered here.

In this paper, we introduce a completely different way to obtain the desired
anti-concentration bound, which makes use of of various a priori estimates for
Pn,ξ and a recent powerful result of Nazarov–Nishry–Sodin [27] about the log-
integrability of random Rademacher series. As a matter of fact, Nazarov et al.
result only holds for random Rademacher variables (and may fail for others). We
use a couple of symmetrization arguments to handle the general case. See Section 4
and in particular, Sections 4.1 and 4.4 for details.

By completing the above scheme, we obtain universality results for the complex
roots. The handling of real roots also requires extra care. In order to prove the uni-
versality of the correlation functions among real roots (including the universality
of the density function which yields new results on the expectation discussed in
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the Introduction) we need to show that there is no complex root near the real line,
with high probability. This, at the intuition level at least, would allow us to trans-
late results for complex roots near the real line to results for real roots, as once a
root is sufficiently near the real line it has to be real.

One way to obtain this is via the so-called weak level repulsion property, relying
on explicit estimates of the Kac–Rice formula for Kac polynomials with Gaussian
coefficients. However, it is very difficult, if not impossible, to obtain similar es-
timates for the general polynomials considered in this paper, particularly in the
case when the means of the coefficients are nonzero. We handle this problem by
a novel argument, based on Rouché’s theorem following an ideas from a paper
of Peres and Virag [33] and the monograph by Hough et al. [13]. Apparently, the
repulsion property is interesting on its own right, and there is a chance that the
argument can be applied for other settings.

To illustrate the idea, let us consider a disk B(x0, r) center at a point x0 on the
real line. We want to show that if r is sufficiently small, then with high probability
B(x0, r) contains at most one root. This excludes the complex roots as they come
in conjugated pairs. Define g(z)= Pn,ξ (x0)+ (z−x0)P

′
n,ξ (x0). By Rouché’s theo-

rem, if we can show that (with high probability), |Pn,ξ (z)−g(z)|< |g(z)| for all z

on the boundary of B(x0, r), then Pn,ξ (z) and g(z) have the same number of roots
inside the disk. Note that g(z) is linear, so it has at most one root. The verification
of |Pn,ξ (z) − g(z)| < |g(z)| makes use of the Cauchy’s integral formula and an
anti-concentration result. (One can also use an ε-net argument here, but the details
are more involved.) See Section 5 for details.

Finally, let us discuss the treatment of polynomials with Gaussian coefficients.
The strategy of the proof of Theorem 1.4 (and other results in the Introduction) is to
reduce to the Gaussian case, using universality results. In fact, the Gaussian setting
of Theorem 1.4 and Theorem 1.8 are already substantially new, and furthermore
our method of proof is novel compared to previous works. For example, the only
case we know where the optimal error term O(1) in our results was obtained is Kac
polynomials, thanks to the very explicit formula (1.3). In our general setting while
some version of (1.3) is available, evaluation of such formula turns out to be fairly
delicate: in many other previous works for the mean-zero coefficients setting [6, 7,
35, 36] (see also [3]), researchers used the method of Logan and Shepp [23, 24], but
this could not lead to the error term O(1), and for coefficients with nonzero means
(see below), the analysis from Farahmand’s and Ibragimov–Maslova’s paper [12,
17] do not lead to the error bound O(1), even for the Kac polynomial. Finally,
none of the above mentioned analysis can be reproduced to yield an asymptotic
result for our general setting, where only the order of magnitude of the coefficients
ci is known.

Now let us discuss briefly the main new ideas in our the treatment of the Gaus-
sian case. Via the Kac–Rice formula, the analysis of the nonzero mean case relies
on several key estimates from the zero mean setting. In the zero mean case, our
new idea is to develop a reformulation of the Edelman–Kostlan formula for the
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density function of the distribution of real zeros [10], so that the density could be
computed using only the variance function Var[Pn,Gauss] and its first few deriva-
tives. This enables us to reduce the analysis of the density function to a careful
study of the large n asymptotics of Var[Pn,Gauss] and its derivatives. This novel
approach allows us to get the O(1) estimate for the error terms, which can not be
obtained using the Logan–Shepp methods. The analysis of the large n behavior of
Var[Pn,Gauss] and its derivatives involves fairly technical estimates and occupies
the last few sections of the paper. Unlike the Kac polynomials, in our setting the
distribution of the real zeros is not invariant under the map x �→ 1/x, leading to
extra difficulty in the analysis.

4. Proof of complex local universality for polynomials. Throughout the pa-
per, L := 1

δ
.

In this section, we prove Theorem 2.3. In particular, we will prove (2.8). The
same proof works for (2.9) by replacing P by Q, unless otherwise noted. Notice
that we only consider Q when talking about δ ≥ 1

10n
.

We can assume without loss of generality that ξ̃i has Gaussian distribution for
all i.

By standard arguments using the Fourier analysis, using the assumption that the
test function G is sufficiently smooth, one gets that G equals its Fourier series on
its support with the Fourier coefficients growing sufficiently slowly. Therefore, if
the desired statement is proven for each term (which is smoothly truncated on the
support of G) in the Fourier expansion, it extends automatically to G. In other
words, the problem reduces to proving (2.8) for

(4.1) G(w1, . . . ,wm)=G1(w1) · · ·Gk(wk),

where for each 1 ≤ i ≤ k, Gi : C → C is a smooth function supported in
B(0,10−2) and |∇aGi | ≤ 1 for all 0≤ a ≤ 3.

When G is of that form, we have∫
Ck

G(w1, . . . ,wk)ρ
(k)

P̌
(ž1 +w1, . . . , žk +wk)dw1 · · · dwk

= E
∑

i1,...,ik distinct

G1
(
ζ P̌
i1
− ž1

) · · ·Gk

(
ζ P̌
ik
− žk

)
.

(4.2)

Let r0 = 10−2. By the inclusion-exclusion formula, we then can rewrite the later
expression as

(4.3) E
k∏

j=1

XP
j

plus a bounded number of lower order terms which are of the form (4.3) for smaller
values of k, where

(4.4) XP
j =XP

žj ,Gj
=

n∑
i=1

Gj

(
ζ P̌
i − žj

)
.
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Hence, by induction on k, it suffices to show that

(4.5)

∣∣∣∣∣E
k∏

j=1

XP
j −E

k∏
j=1

XP̃
j

∣∣∣∣∣≤ Cδc.

If P does not vanish on the support of Hj , then by the Green formula it follows
from (4.4) that

(4.6) XP
j =

∫
C

log
∣∣P̌ (z)

∣∣Hj(z) dz=
∫
B(žj ,r0)

log
∣∣P̌ (z)

∣∣Hj(z) dz,

where Hj(z)=− 1
2π
�Gj(z− žj ). Note that supp(Hj )⊂ B(žj , r0).

Let KP
j = log |P̌ (z)|Hj(z). Let c1 be a small positive constant to be chosen

later. Let T = T (δ) be the event on which:

(i) P �≡ 0.
(ii) NP (B(zj ,

δ
10))≤ Lc1 for all 1≤ j ≤ k.

(iii) log |P(zj )| ≥ −1
2Lc1 for all 1≤ j ≤ k.

(iv) log |P(z)| ≤ 1
2Lc1 for all z such that |z| ∈ I (δ)+ (−δ/2, δ/2).

And if δ ≥ 1
10n

, we also require that on the event T :

(v) NQ(B(zj ,
δ

10))≤ Lc1 for all 1≤ j ≤ k.
(vi) log |Q(zj )| ≥ −1

2Lc1 for all 1≤ j ≤ k.
(vii) log |Q(z)| ≤ 1

2Lc1 for all z such that |z| ∈ I (δ)+ (−δ/2, δ/2).

The rest of the proof consists of several parts. In Section 4.1, we will show that
the event T occurs with high probability. Then in Section 4.2, we will show that
‖KP

j ‖L2(z) is small on T for all 1≤ j ≤ k. This allows us to approximate XP
j by

a finite sum 1
m

∑m
i=1 log |P̌ (wi)|Hj(wi) using the Monte Carlo sampling method.

After the approximation step, in Section 4.3, we show that the two approximating
expressions for P and P̃ are close using the Lindeberg swapping technique. Next,
in Section 4.4, we show that the tail event T c does not contribute significantly to
the picture, that is, E(|∏k

j=1 XP
j |1T c ) is small. This is the key step of our proof.

Finally, we wrap up the proof in Section 4.5.

4.1. The event T occurs with high probability. Let A be a large constant, say
A= k+ 2. And set

γ (δ)=

⎧⎪⎪⎨⎪⎪⎩
δA if

log2 n

n
≤ δ ≤ 1

C
,

n−1/2 if 0≤ δ <
log2 n

n
.

In this section, we show that P(T )≥ 1−Cγ (δ) for some constant C. To show
that (iii) and (vi) occur with high probability, we will need two Littlewood–Offord-
type anti-concentration bounds. The first bound for ξi being Rademacher is known
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as Erdős’ lemma. We reduce the general case to the Rademacher case and then
include a proof of the Erdős’ lemma.

LEMMA 4.1. If the ξi’s satisfy Condition 1, there exists a constant D such
that for any integer n ≥ 1, real number a > 0, and complex numbers a1, . . . , an

with |ai | ≥ a for all i, and for any z ∈C, we have

P

(∣∣∣∣∣
n∑

i=1

aiξi − z

∣∣∣∣∣≤ a

D

)
≤ D√

n
.

PROOF OF LEMMA 4.1. By translation, we can assume that Eξi = 0 for all i. It
then suffices to show the lemma when the ξi ’s and ai ’s are real. Indeed, assume that
the statement on the real line holds true. In the general case, assume without loss of
generality (wlog) that a = 1. Since |ai | ≥ 1, either |Re(ai)| ≥ max{| Im(ai)|, 1√

2
}

or | Im(ai)| ≥ max{|Re(ai)|, 1√
2
}. By the pigeonhole principle, we can assume

wlog that there are at least n/2 indices i such that |Re(ai)| ≥max{| Im(ai)|, 1√
2
}.

For such i, set Xi = Re(ξi) − Im(ai )
Re(ai )

Im(ξi), Yi = Im(ξi) + Im(ai )
Re(ai )

Re(ξi), then

aiξi = Re(ai)(Xi +
√−1Yi), Var(Xi) + Var(Yi) = 1 + Im2(ai )

Re2(ai )
∈ [1,2], and

E|Xi |2+ε,E|Yi |2+ε ≤ 22+εE|ξ |2+ε ≤ 22+ετ2. By the pigeonhole principle, we can
then assume wlog that there are at least n/4 indices i such that |Re(ai)| ≥ 1/

√
2

and Var(Yi) ∈ [1/2,2]. Now, for such i, Re(ai)Yi = Re(ai)
√

Var(Yi)
Yi√

Var(Yi)

with |Re(ai)|√Var(Yi) ≥ 1
2 . This allows one to use the result for the reals (af-

ter conditioning on the rest Yj ’s) with coefficients Re(ai)
√

Var(Yi) and random
variables Yi√

Var(Yi)
and obtain a constant D such that for any y ∈R,

P

(∣∣∣∣∣
n∑

i=1

Re(ai)Yi − y

∣∣∣∣∣≤ 1

2D

)
≤ D√

n
.

This implies that for all z ∈C, P(|∑n
i=1 aiξi − z| ≤ 1

2D
)≤ D√

n
≤ 2D√

n
.

Thus, we can assume that the ξi’s and ai ’s are real. We can further assume that
the ai ’s have the same sign. Indeed, by the pigeonhole principle again, there are at
least n/2 numbers ai having the same sign, say, positive. By conditioning on the
ξi ’s with ai negative, we can reduce the problem to the case ai > 0 for all i. Thus,
the assumption becomes ai ≥ 1, ∀i.

Since the ξi ’s satisfy Condition 1, there exist constants D and q > 0 such that
P(D ≥ ξi − ξ ′i ≥ 1

D
)≥ q , where ξ ′i is an independent copy of ξi . Let ε1, . . . , εn be

independent Rademacher random variables which are independent of all previous
random variables. Let

ξ̃i =
{
ξi if εi = 1,

ξ ′i if εi =−1.
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Then ξ̃1, . . . , ξ̃n are independent random variables having the same distribution
as ξ1, . . . , ξn. Hence, it suffices to show that for all x ∈R,

P

(∣∣∣∣∣
n∑

i=1

ai ξ̃i − x

∣∣∣∣∣≤ 1

3D

)
=O

(
1√
n

)
.

Let J be the set of indices j such that ξj − ξ ′j ≥ 1
D

. Since P(ξj − ξ ′j ≥ 1
D

)≥ q ,
E|J | ≥ nq . By Chernoff’s bound (see, for instance, [9], Theorem 1.1),

(4.7) P
(
|J | ≤ nq

2

)
≤ P
(
|J | ≤ E|J |

2

)
≤ 2e−

E|J |
8 ≤ 2e−

nq
8 ≤ 1√

n
.

Conditioning on the event that |J | ≥ nq
2 , and fixing ξ̃k’s for all k /∈ J as well as

ξj ’s, ξ ′j ’s for all j ∈ J , the only source of randomness left is from εj ’s with j ∈ J .

It suffices to show that for all x, P(|∑j∈J aj ξ̃j − x| ≤ 1
3D

)=O( 1√
n
).

Let F be the collection of all subsets {j ∈ J : εj = 1} as εj run over all possible
values such that |∑j∈J aj ξ̃j − x| ≤ 1

3D
. Observe that F is an anti-chain. Indeed,

suppose that F ⊂ F ′ be two elements of F which correspond to εj = xj and εj =
x′j , respectively, (xj , x

′
j ∈ {±1}). For εj = xj ,

(4.8)
∑
j∈J

aj ξ̃j =
∑
j∈F

aj ξj +
∑

j∈J\F
aj ξ
′
j ,

and for εj = x′j ,

(4.9)
∑
j∈J

aj ξ̃j =
∑
j∈F ′

aj ξj +
∑

j∈J\F ′
aj ξ
′
j ,

The difference of the expressions in (4.8) and (4.9) is∑
j∈F ′\F

aj

(
ξj − ξ ′j

)≥ 1

D

which contradicts the assumption that they both lie in an interval of length at most
2

3D
. Hence, F is an anti-chain. And so, |F | ≤ ( |J |�|J |/2�

)
by Sperner’s theorem [1],

Chapter 12. It follows that of all 2|J | choices of the values of εj , there are at most( |J |
�|J |/2�

)
of them can make |∑j∈J aj ξ̃j − x| ≤ 1

3D
. By Stirling’s formula,

P
(∣∣∣∣∑

j∈J
aj ξ̃j − x

∣∣∣∣≤ 1

3D

)
≤
( |J |
�|J |/2�

)
2|J |

=O

(
1√|J |
)
=O

(
1√
n

)
.

This completes the proof. �

The next bound is proven in [38], Lemma 9.2. We include a short proof for the
convenience of the reader.
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LEMMA 4.2. Let (ξi)
n
i=1 be independent random variables satisfying Condi-

tion 1. There exist positive constants C′ and α such that for any complex number
z, any integer m, and any sequence of complex numbers e0, . . . , en containing a
lacunary subsequence |ei1 | ≥ 2|ei2 | ≥ · · · ≥ 2m|eim |, we have

(4.10) P

(∣∣∣∣∣
n∑

i=0

eiξi − z

∣∣∣∣∣≤ |eim |
)
≤ C′ exp(−αm).

PROOF OF LEMMA 4.2. As in the proof of Lemma 4.1, we can assume that
Eξ = 0. Consider ξ ′i , ξ̃i , D and q as in that proof. Without loss of generality, as-
sume that D ≥ 10. We can choose a subsubsequence (eijk

)m̃k=1 of the lacunary se-

quence (eij )
m
j=1 with m̃=(m) such that |eij1

| ≥D3|eij2
| ≥ · · · ≥D3m̃|eijk

|. By
conditioning on the random variables ξl with l not equal any ijk

, we can assume
that the subsubsequence equals the original sequence; in other words, ijk

= k for all
k, and m̃=m= n. Let J be the set of indices j < m such that D ≥ ξj−ξ ′j ≥ 1

D
. By

the same argument with Chernoff’s bound as before, we have |J | ≥ mq
2 with prob-

ability at least 1− exp(−αm). Conditioning on the event that |J | ≥ mq
2 , and fixing

ξ̃k’s for all k /∈ J as well as ξj ’s, ξ ′j ’s for all j ∈ J , the only source of randomness
left is from εj ’s with j ∈ J . It suffices to show that for all z, P(|∑j∈J ej ξ̃j − z| ≤
|em|) = O(exp(−αm)). By triangle inequality, we can show that for any two in-
stances of (εj )j∈J , the difference of the two sums

∑
j∈J ej ξ̃ has magnitude at least

4|em|. And so, P(|∑j∈J ej ξ̃j − z| ≤ |em|)≤ 2−|J | =O(exp(−αm)). �

We are now ready to show that (iii) and (vi) occur with the desired probability.

For δ ∈ [ log2 n
n

, 1
C
], we prove the following.

LEMMA 4.3. For any constants A > 0 and c > 0, there exists a constant C

such that for any δ ∈ [ log2 n
n

, 1
C
], complex number z such that |z| ∈ I (δ), and 1 ≤

λ≤ nδ

log2 δ
, one has

P
(

log
∣∣P(z)

∣∣≥−1

2
λδ−c

)
≥ 1−C

δA

λA
,(4.11)

P
(

log
∣∣Q(z)

∣∣≥−1

2
λδ−c

)
≥ 1−C

δA

λA
.(4.12)

PROOF. Since L = 1
δ
≤ n

log2 n
, we have L log2 L ≤ n

log2 n
log2 n = n. Thus,

there exists some λ such that 1 ≤ λ ≤ n

L log2 L
= nδ

log2 δ
. Set m= � logC′+A log(λL)

α
�,

then C′ exp(−αm)≤ 1
λALA . We obtain a lacunary sequence |cj0z

j0 | ≥ 2|c2j0z
2j0 | ≥

· · · ≥ 2m|ci0z
i0 | where j0 = �BL�, B is a large enough constant and i0 = (m +

1)j0.
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Observe that i0 ≤ n
2 and ci0 |z|i0 ≥ e−1/2λLc

. Thus, by applying inequality (4.10)
to this lacunary sequence, we get (4.11).

To prove (4.12), we similarly apply (4.10) to the lacunary sequence∣∣∣∣dj0

d0
zj0

∣∣∣∣≥ 2
∣∣∣∣d2j0

d0
z2j0

∣∣∣∣≥ · · · ≥ 2m

∣∣∣∣di0

d0
zi0

∣∣∣∣. �

For δ ∈ [ 1
20n

,
log2 n

n
], we prove the following.

LEMMA 4.4. For any positive constant c, there exists a constant C such that

for all δ ∈ [ 1
20n

,
log2 n

n
], and complex number z such that |z| ∈ I (δ), it holds that

log |P(z)| ≥ −1
2δ−c with probability at least 1−Cn−1/2.

If δ ≥ 1
10n

, the same statement holds for Q in place of P .

PROOF. If δ ∈ [ 1
10n

,
log2 n

n
], |z| ∈ [1− 2δ,1− δ], and N0 ≤ i ≤ n, then

∣∣ciz
i
∣∣≥ τ1n

−|ρ|(1− 2δ)n ≥ τ1n
−|ρ|
(

1− 2 log2 n

n

)n

≥ e−8 log2 n ≥ 2De−
1
2 Lc

,

where D is the constant in Lemma 4.1.
By Lemma 4.1, we have P(|P(z)| ≤ e− 1

2 Lc
) ≤ Cn−1/2. Note that we may

not have |ciz
i | ≥ 2De− 1

2 Lc
for i < N0, but by first conditioning on ξ0, . . . , ξN0 ,

Lemma 4.1 still gives us the desired result.
The same argument holds for δ ≤ 1

10n
and for Q in place of P . �

In the following lemma, we show that the events (iv) and (vii) occur with high
probability.

LEMMA 4.5. For any constants A > 1 and c > 0, there exists a constant C

such that for any 1
10n
≤ δ ≤ 1

C
and λ≥ 1, we have

logM ≤ 1

2
λLc

with probability at least 1− δA

λA , where M =max{|P(z)|, |Q(z)| : |z| ≤ 1− δ/2}.
And if 1

20n
≤ δ ≤ 1

10n
then

logM ≤ 1

2
Lc

with probability at least 1− n−1/2, where M =max{|P(z)| : |z| ≤ 1+ 4
n
}.

PROOF. Assume that 1
10n
≤ δ ≤ 1

C
. Let X = 2−δ/2

2−δ
∈ (1,2) and ai = λALAXi .

Let

�′ = {ω : |ξi | ≤ ai,∀i = 0, . . . , n
}
.
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The probability of the complement of �′ is

P
(
�′c
)= P

(∃i ∈ {0,1, . . . , n} : |ξi |> ai

)≤ n∑
i=0

τ2

a2
i

≤ 1

λALA
.

For every ω ∈�′, we have

max|z|≤1−δ/2

∣∣P(z)
∣∣≤ n∑

i=0

|ciξi |
(

1− δ

2

)i

≤
n∑

i=0

ai |ci |
(

1− δ

2

)i

≤ C′′λALA

(
4

δ

)�ρ�+1
≤ e

1
2 λLc

.

A similar bound holds for Q.
When 1

20n
≤ δ ≤ 1

10n
, we set �′ = {ω : |ξi | ≤ n,∀0≤ i ≤ n} and argue similarly.

�

Combining Lemmas 4.3, 4.4 and 4.5, we obtain that the events (ii) and (v) occur
with high probability.

PROPOSITION 4.6 (Nonclustering). For any constants A > 1 and c > 0, there
exists a constant C such that:

(i) For any δ ∈ [ log2 n
n

, 1
C
], 1 ≤ λ ≤ nδ

log2 δ
, and complex number z such that

|z| ∈ I (δ), we have

NP

(
B(z, δ/9)

)≤ λδ−c and NQ

(
B(z, δ/9)

)≤ λδ−c

with probability at least 1−C δA

λA .

(ii) For any δ ∈ [ 1
20n

,
log2 n

n
] and complex number z such that |z| ∈ I (δ), one

has

NP

(
B(z, δ/9)

)≤ δ−c

with probability at least 1− Cn−1/2. The same statement holds for Q in place of

P when δ ∈ [ 1
10n

,
log2 n

n
].

PROOF. By our convention, we only need to work on the event that P and Q

do not vanish identically. In the following, we prove for P . The same argument
works for Q equally well.

We first prove (i). By Jensen’s inequality, we have

NP

(
B(z, s)

)≤ logM − log |P(z)|
log R

s

≤ logM − log
∣∣P(z)

∣∣,
where R = δ

3 , s = δ
9 , M =max|w−z|=R |P(w)| ≤max|w|≤1−δ/2 |P(w)|.
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Claim (i) follows from Lemmas 4.3 and 4.5. Similarly, (ii) follows from Lem-
mas 4.4 and 4.5. �

From the above proposition, we obtain the following.

PROPOSITION 4.7. For any constants A > 1 and c1 > 0, there exists a con-
stant C such that for any 1

20n
≤ δ ≤ 1

C
, we have

P
(
T (δ)

)≥ 1−Cγ (δ).

PROOF. By Hölder’s inequality,

1= Var(ξi)≤ E|ξi |2 ≤ (E|ξi |2+ε)2/(2+ε)P
(|ξi |> 0

)ε/(2+ε)

≤ τ
2/(2+ε)
4 P

(|ξi |> 0
)ε/(2+ε)

.

Thus, for all i, P(ξi = 0)≤ 1− 1
C′ for some constant C′. This gives

P(P ≡ 0)=
(

1− 1

C

)n

≤ Cn−A ≤ Cγ (δ).

The proposition then follows from Lemmas 4.3, 4.4, 4.5, 4.6 and the union bound.
�

4.2. Approximation of integrals by finite sums. Fix δ ∈ [ 1
20n

, 1
C
]. In this sec-

tion, we show that on the event T , the norms ‖KP
j ‖L2(z) are small for all 1≤ j ≤ k.

At the end of the section, this bound allows us to use the Monte Carlo sampling
lemma to approximate XP

j with finite (sample) sums, on which we will apply the
Lindeberg swapping argument. The crucial tool in this section is Harnack’s in-
equality which allows us to show that property (iii) in the definition of T basically
holds for every z ∈ B(zj ,10−5δ).

Recall that KP
j = log |P̌ (z)|Hj(z). and

∥∥KP
j

∥∥2
L2(z) =

∫
B(žj ,r0)

∣∣log
∣∣P̌ (z)

∣∣Hj(z)
∣∣2 dz

≤
∫
B(žj ,r0)

∣∣log
∣∣P̌ (z)

∣∣∣∣2 dz

= 1

10−6δ2

∫
B(zj ,10−5δ)

log2∣∣P(z)
∣∣dz.

(4.13)

LEMMA 4.8. On T , one has the bound:

(4.14)
∥∥log

∣∣P(z)
∣∣∥∥

L2(B(zj ,10−5δ)) ≤ L4c1−1.



2438 Y. DO, O. NGUYEN AND V. VU

Note that this is a deterministic statement.

PROOF. Fix ω ∈ T . Consider I := [10−5δ,10−1δ], we have |I | ≥ δ
20 . There

exists an r ∈ I such that P does not have zeros in the (closed) annulus A(zj , r −
η, r + η) where η= 1

80δ1+c1 . Indeed, assume such an r does not exist, then

NP B(zj , δ/10)≥ |I |
3η

> δ−c1

which contradicts the condition (ii) in the definition of T .
Now fix that r , we have

∫
B(zj ,10−5δ) log2 |P(z)|dz ≤ ∫B(zj ,r) log2 |P(z)|dz.

Let ζ1, . . . , ζm be all zeros of P in B(zj , r − η), then m ≤ Lc1 and P(z) =
(z − ζ1) · · · (z − ζm)g(z) where g is a polynomial having no zeros on the closed
ball B(zj , r + η). We have∥∥log

∣∣P(z)
∣∣∥∥

L2(B(zj ,r)) ≤
m∑

i=1

∥∥log |z− ζi |
∥∥
L2(B(zj ,r)) +

∥∥log
∣∣g(z)

∣∣∥∥
L2(B(zj ,r))

≤mδ1−c1 + ∥∥log
∣∣g(z)

∣∣∥∥
L2(B(zj ,r)),

where the last inequality is because∫
B(zj ,r)

log2 |z− ζi |dz≤
∫
B(0,δ)

log2 |z|dz≤ δ2−2c1 .

Thus,

(4.15)
∥∥log

∣∣P(z)
∣∣∥∥

L2(B(zj ,r)) ≤ L2c1−1 + ∥∥log
∣∣g(z)

∣∣∥∥
L2(B(zj ,r)).

Next, we will estimate
∫
B(zj ,r) log2 |g(z)|dz. Since log |g(z)| is harmonic in

B(zj , r), it attains its extrema on the boundary. Thus,
(4.16)∥∥log

∣∣g(z)
∣∣∥∥

L2(B(zj ,r)) =
(∫

B(zj ,r)
log2∣∣g(z)

∣∣dz

)1/2
≤ δ max

z∈∂B(zj ,r)

∣∣log
∣∣g(z)

∣∣∣∣.
Notice that log |g(z)| is also harmonic on the ball B(zj , r + η).

CLAIM 4.9. For every z in B(zj , r + η), we have

log
∣∣g(z)

∣∣≤ L2c1 .

PROOF. Since a harmonic function attains its extrema on the boundary, we can
assume that z ∈ ∂B(zj , r+η). Since |z|< |zj |+δ/2, |z| ∈ I (δ)+ (−δ/2, δ/2). So,
by condition (iv) in the definition of T , log |P(z)| ≤ Lc1 . Additionally, by noticing
that |z− ζi | ≥ 2η for all 1≤ i ≤m, we get

log
∣∣g(z)

∣∣= log
∣∣P(z)

∣∣− m∑
i=1

log |z− ζi | ≤ Lc1 −m log(2η)≤ L2c1

as desired. �
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Now let u(z)=L2c1 − log |g(z)|, then u is a nonnegative harmonic function on
the ball B(zj , r+η). By Harnack’s inequality (see [34], Chapter 11) for the subset
B(zj , r) of the above ball, we have that for every z ∈ B(zj , r),

αu(zj )≤ u(z)≤ 1

α
u(zj ),

where α = η
2r+η

≥ δc1

160 . Hence,

α
(
L2c1 − log

∣∣g(zj )
∣∣)≤ L2c1 − log

∣∣g(z)
∣∣≤ 1

α

(
L2c1 − log

∣∣g(zj )
∣∣).

And so,

(4.17)
∣∣log
∣∣g(z)

∣∣∣∣≤ 1

α

∣∣log
∣∣g(zj )

∣∣∣∣+ 1

α
L2c1 ≤ 160Lc1

∣∣log
∣∣g(zj )

∣∣∣∣+ 160L3c1 .

Thus, we reduce the problem to bounding | log |g(zj )||. From Claim 4.9 and the
condition (iii) in the definition of T , we have

L2c1 ≥ log
∣∣g(zj )

∣∣= log
∣∣P(zj )

∣∣− m∑
i=1

log |zj − ζi | ≥ log
∣∣P(zj )

∣∣≥−1

2
Lc1 .

And so, | log |g(zj )|| ≤ L2c1 , which together with (4.17) give

(4.18)
∣∣log
∣∣g(z)

∣∣∣∣≤ 320L3c1 .

From (4.15), (4.16) and (4.18), we obtain∥∥log
∣∣P(z)

∣∣∥∥
L2(B(zj ,r)) ≤ L4c1−1.

Lemma 4.8 is proved. �

From this lemma, we conclude that on the event T ,

(4.19)
∥∥KP

j

∥∥
L2(z) ≤ 103 ·L∥∥log

∣∣P(z)
∣∣∥∥

L2(B(zj ,10−5δ)) ≤ 106L4c1 .

Having bounded the 2-norm, we now use the following sampling lemma.

LEMMA 4.10 (Monte Carlo sampling lemma ([39], Lemma 38)). Let (X,μ)

be a probability space, and F :X→C be a square integrable function. Let m≥ 1,
let x1, . . . , xm be drawn independently at random from X with distribution μ, and
let S be the empirical average

S := 1

m

(
F(x1)+ · · · + F(xm)

)
.

Then S has mean
∫
X F dμ and variance 1

m

∫
X(F − ∫X F dμ)2 dμ. In particular,

by Chebyshev’s inequality, we have

P
(∣∣∣∣S − ∫

X
F dμ

∣∣∣∣≥ λ

)
≤ 1

mλ2

∫
X

(
F −

∫
X

F dμ

)2
dμ.
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Conditioning on T and applying this sampling lemma, we have for large m0 > 0
and small γ0 > 0 to be chosen later,

(4.20)

∣∣∣∣∣XP
j −

πr2
0

m0

m0∑
i=1

KP
j (w̌j,i)

∣∣∣∣∣≤ 2
√

πr2
0√

m0γ0
106L4c1 ≤ CL4c1

√
m0γ0

with probability at least 1− γ0, where w̌j,i are chosen independently at random
from B(žj , r0) with uniform distribution and are independent from all previous
random variables. By exactly the same argument, (4.19) also holds for Q when

1
10n
≤ δ ≤ 1

C
.

4.3. Log comparability. We shall show in Section 4.5 that (4.20) allows
us to reduce the problem to comparing F(log |P(z1)|, . . . , log |P(zm)|) and
F(log |P̃ (z1)|, . . . , log |P̃ (zm)|) for some smooth function F . This is done by
making use of the beautiful Lindeberg swapping trick. The following result is
from [38]; we include a proof in the Appendix for the reader’s convenience.

THEOREM 4.11 (Comparability of log-magnitude). Let P be the random
polynomial of the form (2.4) satisfying Condition 1(1). And let P̃ =∑n

i=0 ci ξ̃iz
i

be the corresponding polynomial with Gaussian random variables ξ̃i . Assume
that ξ̃i matches moments to second order with ξi for every i ∈ {0, . . . , n} \ I0
for some (deterministic) set I0 (may depend on n) of size at most N0 and that
supi≥0 E|ξ̃i |2+ε ≤ τ2 where N0 and τ2 are constants in Condition 1(1).

Then there exists a constant C2 such that the following holds true. Let α1 ≥
C2α0 > 0 and C > 0 be any constants. Let δ ∈ (0,1) and m ≤ δ−α0 and
z1, . . . , zm ∈C be complex numbers such that

(4.21)
|ci ||zj |i√

V (zj )
≤Cδα1 ∀i = 0, . . . , n, j = 1, . . . ,m,

where V (zj )=∑i∈{0,...,n}\I0
|ci |2|zj |2i .

Let F : Cm→ C be any smooth function such that |∇aF (w)| ≤ Cδ−α0 for all
0≤ a ≤ 3 and w ∈Cm, then∣∣EF

(
log
∣∣P(z1)

∣∣, . . . , log
∣∣P(zm)

∣∣)−EF
(
log
∣∣P̃ (z1)

∣∣, . . . , log
∣∣P̃ (zm)

∣∣)∣∣≤ C̃δα0,

where C̃ is a constant depending only on α0, α1, C and not on δ.

Now we show that condition (4.21) holds for P and Q.

LEMMA 4.12. Under the assumptions Theorem 2.3, there exist constants
α1 > 0 and C > 0 such that for every δ ∈ [ 1

20n
, 1

C
] and for every z such that

|z| ∈ I (δ)+ [−δ/2, δ/2],

(4.22)
|ci ||z|i√
VarP(z)

≤ Cδα1 ∀0≤ i ≤ n.
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and if δ ∈ [ 1
10n

, 1
C
],

(4.23)
|di ||d0| |z|i√
VarQ(z)

≤ Cδα1 ∀0≤ i ≤ n.

Notice that once (4.22) holds, say, the contribution of a few terms in VarP(z)=∑n
i=0 |ci |2|z|2i is negligible, and hence for any set I0 of size at most N0, we have

|ci ||z|i√∑
i∈{0,...,n}\I0

|ci |2|z|2i
≤ Cδα1 as required in (4.21).

PROOF. Let α1 =min(ρ+ 1/2,1/2) > 0. We prove (4.22) when δ ∈ [ 1
20n

, 1
C
].

The other parts of the statement are similar. Recall that L ≤ 20n. We have from
(2.5)

VarP(z)=
n∑

i=0

c2
i |z|2i ≥ τ 2

1

402ρ

�L/20�∑
i=�L/40�

L2ρ

(
1− 5

2L

)L

≥ 1

C
L2ρ+1,

c2
i |z|2i ≤Ci2ρ

(
1− 1

2L

)2i

≤ Ci2ρe−i/L

≤C max
(
1,L2ρ)≤ CL−2α1VarP(z) ∀0≤ i ≤ n,

(4.24)

where the next to last inequality follows from the boundedness of the function
x �→ x2ρe−x on [0,∞) whenever ρ ≥ 0 and is trivial when ρ < 0. �

Combining Theorem 4.11 and Lemma 4.12, we obtain the following.

PROPOSITION 4.13 (Log-comparability). There exist constants α0 > 0 and
C > 0 such that for every δ ∈ [ 1

20n
, 1

C
], 1 ≤ m ≤ δ−α0 , |z1|, . . . , |zm| ∈ I (δ) +

[−δ/2, δ/2], and smooth function F : Cm→ C with ‖∇aF‖ ≤ δ−α0 , ∀0 ≤ a ≤ 3,
we have∣∣EF

(
log
∣∣P(z1)

∣∣, . . . , log
∣∣P(zm)

∣∣)−EF
(
log
∣∣P̃ (z1)

∣∣, . . . , log
∣∣P̃ (zm)

∣∣)∣∣≤ Cδα0,

and if δ ∈ [ 1
20n

, 1
C
], we have∣∣EF

(
log
∣∣Q(z1)

∣∣, . . . , log
∣∣Q(zm)

∣∣)−EF
(
log
∣∣Q̃(z1)

∣∣, . . . , log
∣∣Q̃(zm)

∣∣)∣∣≤ Cδα0 .

4.4. On the tail event T c. In this section, we show that if T is any event such
that P(T c)≤ Cγ (δ) then the contribution from T c is negligible. We make use of
the powerful result in [27] to deal with the case when the ξi ’s are symmetric. The
general case requires some additional tricks in the end.
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LEMMA 4.14. There exists some constant C such that for all δ ∈ [ 1
20n

, 1
C
],

one has

(4.25) E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1T c

)
≤ Cδ1/22,

and when δ ∈ [ 1
10n

, 1
C
], one has

(4.26) E

(∣∣∣∣∣
k∏

j=1

X
Q
j

∣∣∣∣∣1T c

)
≤ Cδ1/22.

PROOF. We will consider two cases.
Case 1. log2 n

n
≤ δ ≤ 1

C
. We have P(T c) ≤ Cγ (δ) = CδA. By Proposition 4.6,

there exists a constant C1 such that for any 1≤ λ≤ n

L log2 L
,

N
P̌

(
B(žj , r0)

)=NP

(
B
(
zj ,10−5δ

))≤ λδ−c1,

with probability at least 1−C1
1

λALA . Hence, |XP
j | ≤ δ−c1 with probability at least

1−C1
1

λALA .

For each i such that i0 > i ≥ 1, where 2i0−1 ≤ n

L log2 L
< 2i0 , let �i be the set of

ω ∈ T c such that:

(i) 2i−1δ−c1 < N
P̌
B(žj , r0) for some 1≤ j ≤ k, and

(ii) N
P̌
B(žj , r0)≤ 2iδ−c1 , ∀1≤ j ≤ k.

Let �0 = {ω ∈ T c :N
P̌
B(žj , r0)≤ δ−c1∀1≤ j ≤ k} and

�i0 =
{
ω ∈ T c : 2i0−1δ−c1 < N

P̌
B(žj , r0) for some 1≤ j ≤ k

}
.

Then T c =⋃i0
i=0 �i , P(�i)≤ C1δ

A

2(i−1)A for all i ≤ i0 and |XP
j | ≤ 2iδ−c1 on �i for

all i < i0, and |XP
j | ≤ n on �i0 .

Using the assumption that log2 n
n
≤ δ and A≥ k + 2, we have

E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1T c

)
≤

i0−1∑
i=0

E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1�i

)
+E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1�i0

)

≤
∞∑
i=0

C1δ
A

2(i−1)A

(
2iδ−c1

)k + C1n
kδA

2(i0−1)A

≤ C1δ
A−kc1

∞∑
i=1

1

(2A−k)i
+ C1n

kδA

(n/(2L log2 L))A
≤ Cδ1/22.
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Case 2. 1
20n
≤ δ ≤ log2 n

n
. Then we have P(T c) ≤ Cγ (δ) = Cn−1/2 and |zj | ∈

[1− 2 log2 n
n

,1+ 1
n
] for all 1≤ j ≤ k.

Since ξi ’s satisfy Condition 1(1), there exist positive constants d and q such
that P(|ξi |< d) ≤ q < 1. Indeed, if for some d > 0, P(|ξi |< d) > 1− d , then by
Hölder’s inequality,

1≤ E|ξi |2 = E|ξi |21|ξi |<d +E|ξi |21|ξi |≥d

≤ d2 + dε/(2+ε)(E|ξi |2+ε)2/(2+ε) ≤ d2 + dε/(2+ε)τ
2/(2+ε)
2 .

(4.27)

Thus, one can choose d small enough (depending on τ2 and ε), and q = 1− d to
have P(|ξi |< d)≤ q < 1.

Subcase 2.1. We first consider the case when the random variables ξi ’s are sym-
metric. In other words, ξi and −ξi have the same distribution.

Let

(4.28) V = {ω ∈ T c : |ξi | ≥ d for some i ∈ [N0, n]}.
Since |XP

j | ≤ n, one has

E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1T c\V
)
≤ nkP

(|ξi |< d,∀i ∈ [N0, n])
≤ nkqn−N0 ≤ 1

20n
≤ δ,

(4.29)

when n is sufficiently large. Thus, it suffices to show that

(4.30) E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1V
)
≤ C′δ1/22.

By Hölder’s inequality, we have

(4.31) E

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1V
)
≤

k∏
j=1

E
(∣∣XP

j

∣∣k1V
)1/k

.

And so, we reduce the problem to showing that

(4.32) E
∣∣XP

j

∣∣k1V ≤ Cδ1/22 ∀1≤ j ≤ k.

From (4.6) and the change of variables formula, we obtain∣∣XP
j

∣∣≤ CL2
∫
B(zj ,10−5δ)

∣∣∣∣log
∣∣P(z)

∣∣Hj

(
z

10−3δ

)∣∣∣∣dz

≤ CL2
∫
B(zj ,10−5δ)

∣∣log
∣∣P(z)

∣∣∣∣dz.

(4.33)
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And from Hölder’s inequality, we have

E
∣∣XP

j

∣∣k1V ≤ CL2k
∫
V

(∫
B(zj ,10−5δ)

∣∣log
∣∣P(z)

∣∣∣∣dz

)k

dP

≤ CL2k
∫
V

(∫
B(zj ,10−5δ)

∣∣log
∣∣P(z)

∣∣∣∣k dz

)
× ∣∣B(zj ,10−5δ

)∣∣k−1
dP,

≤ CL2
∫
V

∫
B(zj ,10−5δ)

∣∣log
∣∣P(z)

∣∣∣∣k dz dP,

≤ CL2
(∫

V

∫
B(zj ,10−5δ)

∣∣log
∣∣P(z)

∣∣∣∣kp dz dP
)1/p

×
(∫

V

∫
B(zj ,10−5δ)

1dzdP
)1/q

,

where p and q are positive constants to be chosen later so that 1
p
+ 1

q
= 1. Since

B(zj ,10−5δ)⊂A(0,1− 3 log2 n
n

,1+ 2
n
)=:D, it follows that

(4.34) E
∣∣XP

j

∣∣k1V ≤ CL2
(∫

V

∫
D

∣∣log
∣∣P(z)

∣∣∣∣kp dz dP
)1/p( 1√

nL2

)1/q

.

For each N0 ≤ i ≤ n, let Vi = {ω ∈ � : |ξi | ≥ d}. By (4.28), V ⊂⋃n
i=N0

Vi . Note
that this bound is very generous because the measure of Vi can be very big. Let
Ii = ∫Vi

∫
D | log |P(z)||kp dz dP. Then

(4.35)
∫
V

∫
D

∣∣log
∣∣P(z)

∣∣∣∣kp dz dP≤
n∑

i=N0

Ii =: I.

Fix N0 ≤ i0 ≤ n. We will upper bound Ii0 .
Let (εm)m∈Z be independent Rademacher random variables (independent of all

previous random variables). In [27], Corollary 2.2, Nazarov, Nishry and Sodin
showed the following.

THEOREM 4.15. There exists a constant C1 such that for any g(θ) =∑
j∈Z aj εj e

√−12πjθ with deterministic coefficients aj ’s satisfying
∑

j∈Z |aj |2 = 1,
and any p0 ≥ 1, one has

(4.36) E
∫ 1

0

∣∣log
∣∣g(θ)

∣∣∣∣p0 dθ ≤ (C1p0)
6p0 .
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As a consequence, for any complex numbers a0, . . . , an, by Minkowski’s in-
equality for Lp((�× [0,1),P×m)), we have

E
∫ 1

0

∣∣∣∣∣log

∣∣∣∣∣
n∑

j=0

aj εj e
√−12πjθ

∣∣∣∣∣
∣∣∣∣∣
p0

dθ

≤
(
(C1p0)

6 + 1

2

∣∣∣∣∣log
n∑

j=0

|aj |2
∣∣∣∣∣
)p0

≤ 2p0(C1p0)
6p0 +

∣∣∣∣∣log
n∑

j=0

|aj |2
∣∣∣∣∣
p0

.

(4.37)

Let ξ̂k = εkξk . Since ξk is symmetric, ξ̂k has the same distribution as ξk . And so,
the random variables ξ̂0, . . . , ξ̂n have the same joint distribution as ξ0, . . . , ξn. Thus,
from the definition of Ii0 , we have

Ii0 =
∫
|ξ̂i0 |≥d

∫
D

∣∣∣∣∣log

∣∣∣∣∣
n∑

j=0

cj ξ̂j z
j

∣∣∣∣∣
∣∣∣∣∣
kp

dz dP

= 2π

∫ 1+2/n

1− 3 log2 n
n

r

∫
|ξi0 |≥d

∫ 1

0

∣∣∣∣∣log

∣∣∣∣∣
n∑

j=0

cj ξj εj r
j e
√−12πjθ

∣∣∣∣∣
∣∣∣∣∣
kp

dθ dPdr.

Conditioning on the event |ξi0 | ≥ d and fixing the ξi ’s, from (4.37), we obtain

Eε0,...,εn

∫ 1

0

∣∣∣∣∣log

∣∣∣∣∣
n∑

j=0

cj ξj εj r
j e
√−12πjθ

∣∣∣∣∣
∣∣∣∣∣
kp

dθ

≤ (2C1kp)6kp +
∣∣∣∣∣log

n∑
j=0

∣∣cj ξj r
j
∣∣2∣∣∣∣∣

kp

.

Undoing the conditioning, we get

Ii0 ≤ 2π

∫ 1+2/n

1− 3 log2 n
n

r

(
(Cp)6kp +

∫
|ξi0 |≥d

∣∣∣∣∣log
n∑

j=0

∣∣cj jξj r
j
∣∣2∣∣∣∣∣

kp

dP

)
dr

≤ C +C

∫ 1+2/n

1− 3 log2 n
n

r

∫
|ξi0 |≥d

∣∣∣∣∣log
n∑

j=0

∣∣cj r
j ξj

∣∣2∣∣∣∣∣
kp

dPdr.

(4.38)

By (2.5), for every N0 ≤ j ≤ n and 1− 3 log2 n
n
≤ r ≤ 1+ 2

n
, we have 1

Cn2|ρ| r
2j ≤

c2
j r

2j ≤ Cn2|ρ|. And hence, on the event |ξi0 | ≥ d ,

1

Cn2|ρ| r
2i0d2 ≤

n∑
j=0

∣∣cj r
j ξj

∣∣2 ≤Cn2|ρ|+1
n∑

j=0

ξ2
j .
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Hence,∣∣∣∣∣log
n∑

j=0

∣∣cj r
j ξj

∣∣2∣∣∣∣∣≤max

{∣∣∣∣log
(

1

Cn2|ρ| r
2i0d2

)∣∣∣∣,
∣∣∣∣∣log

(
Cn2|ρ|+1

n∑
j=0

ξ2
j

)∣∣∣∣∣
}
.

And so,

E1|ξi0 |≥d

∣∣∣∣∣log
n∑

j=0

∣∣cj r
j ξj

∣∣2∣∣∣∣∣
kp

≤ CE1|ξi0 |≥d

∣∣∣∣∣log
n∑

j=0

ξ2
j

∣∣∣∣∣
kp

+C logkp n+C
∣∣log
∣∣r2i0d2∣∣∣∣kp

= CE1|ξi0 |≥d,
∑n

j=0 ξ2
j≥1

∣∣∣∣∣log
n∑

j=0

ξ2
j

∣∣∣∣∣
kp

+CE1|ξi0 |≥d,
∑n

j=0 ξ2
j <1

∣∣∣∣∣log
n∑

j=0

ξ2
j

∣∣∣∣∣
kp

+C logkp n+C
∣∣log
∣∣r2i0d2∣∣∣∣kp

≤ C logkp n+C
∣∣logd2∣∣kp +C

∣∣log
∣∣r2i0d2∣∣∣∣kp.

Notice that under Condition 1, the coefficients ci of P , thanks to their polynomial
growth, only contribute the term logkp n in the above estimate. The same applies
for Q because C

n|ρ| ≤ | di

d0
| ≤ Cn|ρ|.

Plugging in (4.38) gives that for all N0 ≤ i0 ≤ n, one has

(4.39) Ii0 ≤ C logkp n+C

∫ 1+2/n

1− 3 log2 n
n

r
∣∣log r2i0d2∣∣kp dr ≤ C logkp n,

and so

∫
∃i∈[N0,n]:|ξi |≥d

∫
D

∣∣∣∣∣log

∣∣∣∣∣
n∑

j=0

cj ξj z
j

∣∣∣∣∣
∣∣∣∣∣
kp

dz≤ I =
n∑

i=N0

Ii

≤ C2n logkp n.

(4.40)

We now use a rude bound which will be convenient for the next subcase:

(4.41)
∫
∃i∈[N0,n]:|ξi |≥d

∫
D

∣∣∣∣∣log

∣∣∣∣∣
n∑

j=0

cj ξj z
j

∣∣∣∣∣
∣∣∣∣∣
kp

dz≤ I ≤ C2n
4/3 logkp n.
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Combining this with (4.34) and (4.35), we obtain

E
∣∣XP

j

∣∣k1V

≤ CL2I 1/p

(
C

1√
nL2

)1/q

≤ CL2n4/3p logk n

(
1√
nL2

)1/q

≤ CL2L8/3p(logL2)k( 1

L5/2

)1/q

(
since

√
n≤ n

log2 n
≤ L≤ 20n

)

= C
logk L

L
5

2q
−2− 8

3p

=C
logk L

L
1
2− 31

6p

≤ C

L1/22(
by choosing p = 12, q = 12

11

)
.

(4.42)

This together with (4.31) complete the proof of (4.30).
Subcase 2.2. Now let us consider the case when the ξi ’s are not symmetric. The

trick is to reduce to the symmetric case. For clarity, we write Pξ (z)=∑n
l=0 clξlz

l .
Recall that d and q are constants such that P(|ξi |< d) ≤ q < 1. Let ξ ′0, . . . , ξ ′n

be independent copies of ξ0, . . . , ξn correspondingly. For this subcase, instead of
(4.28), we set

(4.43) V = {ω ∈ T c : |ξi | ≥ d,
∣∣ξ ′i ∣∣≥ d for some i ∈ [N0, n]}.

Correspondingly,

(4.44) Vi = {ω ∈� : |ξi | ≥ d,
∣∣ξ ′i ∣∣≥ d

}
.

Let ξ̄l = ξl−ξ ′l√
2

. Then the ξ̄l’s are symmetric and satisfy Condition 1(1) (with a

different τ2). Let d̄ < 1 and q̄ be positive constants such that P(|ξ̄1|< d̄)≤ q̄ < 1
for all i.

In the following, we will show that

(4.45) Ii =
∫
Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣kp dz dP≤ 3n1/3 log10kp n=: 3K0

for all N0 ≤ i ≤ n, where p = 12 and then, one can use the same argument as in
the symmetric case to complete the proof.

Let

(4.46) j0 =
⌈

1

q̄(n+1)/(4kp+8)

⌉
.

We will first show that

(4.47)
∫
Vi

∫
D
| log |Pξ (z)||kp1Bξ dz dP≤K0 for all N0 ≤ i ≤ n,
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where Bξ = {(ω, z) ∈ Vi ×D : | log |Pξ (z)|| ≥ j0}. Indeed, by Hölder’s inequality,
one has ∫

Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣kp1Bξ dz dP

≤
(∫

Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣2kp
dz dP

)1/2(∫
Vi

∫
D

1Bξ dz dP
)1/2

.

(4.48)

To bound the first integral on the right, let ε′0, . . . , ε′n be independent Rade-
macher variables defined on ({±1}n+1, ν) where ν is the uniform probability mea-
sure on {±1}n+1. Let (�̂, μ̂)= (�×{±1}n+1,P× ν), and define the random vari-
ables ξ̂i (ω1,ω2)= ξi(ω1)ε

′
i(ω2) for all ω1 ∈� and ω2 ∈ {±1}n+1.

Observe that ξ̂ ′i is symmetric and equal to ξi when ε′i = 1. Let s > 1 be any
constant such that 21/s ≤ 1

q̄kp/(4kp+8) . We have∫
Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣2kp
dz dP

= 2n+1
∫
{1}n+1

∫
Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣2kp
dz dPdν

= 2n+1
∫
Vi×{1}n+1

∫
D

∣∣log
∣∣P

ξ̂
(z)
∣∣∣∣2kp

dz dμ̂ by Fubini’s theorem

≤ 2n+1[Dμ̂
(
Vi × {1}n+1)]1−1/s

m

(∫
Vi×{1}n+1

∫
D

∣∣log
∣∣P

ξ̂
(z)
∣∣∣∣2kps

dz dμ̂

)1/s

(by Hölder’s inequality)

≤ 2(n+1)/s

(∫
Vi×{1}n+1

∫
D

∣∣log
∣∣P

ξ̂
(z)
∣∣∣∣2kps

dz dμ̂

)1/s

(
because μ̂(Vi × {1}n+1)≤ 2−n−1)

≤ C2(n+1)/s log2kp n by (4.39) for ξ̂i .

A bound for the second integral on the right of (4.48) can also be derived from the
above bound.∫

Vi

∫
D

1Bξ dz dP≤ 1

j
2kp
0

∫
Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣2kp
dz dP≤ C

2n/s

j
2kp
0

log2kp n.

Plugging into (4.48) gives∫
Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣kp1Bξ dz dP≤ C
2(n+1)/s

j
kp
0

log2kp n

≤ C log2kp n < K0,

(4.49)
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where the next to last inequality follows directly from the way we set s and j0.
This proves (4.47).

Now assume to the contrary that (4.45) failed, that is, Ii > 3K0 for some i.
Thanks to (4.47), one then has

(4.50)
∫
Vi

∫
D

∣∣log
∣∣Pξ (z)

∣∣∣∣kp1| log |Pξ (z)||<j0 dzdP > 2K0.

For each z ∈D and 1≤ j ≤ j0, set μz(j)= P(Vi ∩ (j −1≤ | log |Pξ (z)||< j)).
Since

2K0 < Ii ≤
j0∑

j=1

∫
D

jkpμξ (j) dP

≤
j0∑

j=1

jkpm

(
D ∩

{
ω : μξ(j)≥ 1

jkp+2

})
+
∞∑

j=1

1

j2 ,

and
∑∞

j=1
1
j2 ≤ 2, there exists a number j ≤ j0 such that

(4.51) 1≥m(D)≥m(D0)≥ K0

2jkp+2 ,

where D0 = {z ∈ D : μξ(j) ≥ 1
jkp+2 }. Since jkp+2 ≥ K0

2 ≥ log10kp n
2 , we have j ≥

log5 n. Now, by Markov’s inequality and Condition 1, for any z ∈D,

P
(
log
∣∣P(z)

∣∣≥ j − 1
)≤ E|P(z)|2

e2j−2 ≤ 1

e2j−2

(
n∑

i=0

|ci ||z|i(E|ξi |2)1/2

)2

≤ n2ρ+2

e2j−2 ≤
1

ej
≤ 1

2jkp+2 .

Thus, pz := P(Vi ∩ (−j < log |Pξ (z)| ≤ −j + 1))≥ 1
2jkp+2 for every z ∈D0.

On the set D0,

P
(
ω ∈ Vi : −j < log

∣∣Pξ (z)
∣∣, log

∣∣Pξ ′(z)
∣∣≤−j + 1 and ∃i′ ∈ [N0, n] : |ξ̄i′ | ≥ d̄

)
≥ P
(
ω ∈ Vi : −j < log

∣∣Pξ (z)
∣∣, log

∣∣Pξ ′(z)
∣∣≤−j + 1

)− P
(|ξ̄i′ |< d̄,∀i ′)

≥ p2
z − q̄n+1.

From the definition (4.46) of j0, we have

(4.52) q̄n+1 ≤ 1

(j0 − 1)4kp+8 ≤
1

2
p2

z ,
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and thus, p2
z − q̄n+1 ≥ 1

2p2
z . Therefore, on D0 we have

P×m
(
(ω, z) ∈ Ū ×D0 : −j < log

∣∣Pξ (z)
∣∣, log

∣∣Pξ ′(z)
∣∣≤−j + 1

)
≥
∫
D0

1

2
p2

z dz≥ 1

2

(
K0

16j2kp+4

)3
,

where Ū = {ω : ∃i′ ∈ [N0, n] : |ξ̄i′ | ≥ d̄}.
Note that when −j < log |Pξ (z)|, log |Pξ ′(z)| ≤ −j + 1, we have |Pξ̄ (z)| ≤√
2e−j+1, so log |Pξ̄ (z)| ≤ − j

2 . This implies∫
Ū

∫
D

∣∣log
∣∣Pξ̄ (z)

∣∣∣∣6kp+12

≥ 1

2

(
j

2

)6kp+12( K0

16j2kp+4

)3
= K3

0

26kp+25 =
n log30kp n

26kp+25 .

(4.53)

Now since ξ̄i ’s are symmetric and satisfy Condition 1(1), (4.40) holds for ξ̄i

with d̄ in place of d and 6kp+ 12 in place of kp and gives

(4.54)
∫
Ū

∫
D

∣∣log
∣∣Pξ̄ (z)

∣∣∣∣6kp+12 ≤ Cn log6kp+12 n.

Now as p = 12, the bounds (4.53) and (4.54) provide a contradiction which then
completes the proof of Lemma 4.14. �

4.5. Finishing. Finally, we will complete the proof of Theorem 2.3.
Let ϕ0 be a smooth function on C

k such that ϕ0(z1, . . . , zk) = z1 · · · zk on
B(0, δ−c1)k , = 0 outside of B(0,2δ−c1)k , |ϕ0(z1, . . . , zk)| ≤ |z1| · · · |zk| for all
(z1, . . . , zk) ∈ C

k and |∇aϕ0(ω)| ≤ Cδ−kc1 for all 0 ≤ a ≤ 3. For example,
ϕ0(z1, . . . , zk) = ∏k

i=1 ziφ(
|zi |
δ−c1

) for some smooth function φ such that φ is a
smooth function such that supp(φ)⊂ [−2,2], 0≤ φ ≤ 1, and φ = 1 on [−1,1].

Since XP
j ≤ δ−c1 on T , we have

Eξ

∣∣∣∣∣
k∏

j=1

XP
j − ϕ0

(
XP

1 , . . . ,XP
k

)∣∣∣∣∣
= Eξ

∣∣∣∣∣
k∏

j=1

XP
j − ϕ0

(
XP

1 , . . . ,XP
k

)∣∣∣∣∣1T c

≤ 2Eξ

(∣∣∣∣∣
k∏

j=1

XP
j

∣∣∣∣∣1T c

)
≤ C′δ1/22 by (4.25),

where by Eξ , we mean the expectation with respect to the random variables
ξ0, . . . , ξn.
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From Proposition 4.7 and (4.20), we deduce that on the product space generated
by the random variables ξ0, . . . , ξn and the random points w̌j,i , the bound (4.20)
holds with probability at least 1− γ0 −Cγ (δ). Thus,

Eξ,w̌

∣∣∣∣∣ϕ0
(
XP

1 , . . . ,XP
k

)− ϕ0

(
πr2

0

m0

m0∑
i=1

KP
1 (w̌1,i ), . . . ,

πr2
0

m0

m0∑
i=1

KP
k (w̌k,i)

)∣∣∣∣∣
≤ C

(
δ−kc1

L4c1

√
m0γ0

+ δ−kc1
(
γ (δ)+ kγ0

))
,

where Eξ,w̌ is the expectation on the product space. The first term bounds the
contribution of the good event when (4.20) holds, and follows from the bound on
the first derivative of ϕ0. The second term bounds the contribution of the bad event
when (4.20) fails and follows from the bound on the infinity norm of ϕ0.

Note that γ (δ)≤ 10δ1/2 for all 1
20n
≤ δ ≤ 1

C
.

Let c be any constant such that 0 < c ≤ min{ 1
22 ,

α0
2(3k+11)

, 1
2(k+1)

} where α0 is

the constant in Proposition 4.13. Let c1 = c, m0 = �δ−(3k+11)c�, and γ0 = δ(k+1)c,
then the above error term is Cδc, and so

Eξ,w̌

∣∣∣∣∣
k∏

j=1

XP
j − ϕ0

(
πr2

0

m0

m0∑
i=1

KP
1 (w̌1,i ), . . . ,

πr2
0

m0

m0∑
i=1

KP
k (w̌k,i)

)∣∣∣∣∣≤ Cδc.

Now, applying Proposition 4.13 by first conditioning on the points w̌j,i , we
obtain ∣∣∣∣∣Eξ,w̌ϕ0

(
πr2

0

m0

m0∑
i=1

KP
1 (w̌1,i ), . . . ,

πr2
0

m0

m0∑
i=1

KP
k (w̌k,i)

)

−Eξ̃ ,w̌ϕ0

(
πr2

0

m0

m0∑
i=1

KP̃
1 (w̌1,i ), . . . ,

πr2
0

m0

m0∑
i=1

KP̃
k (w̌k,i)

)∣∣∣∣∣≤ Cδc.

This completes the proof of Theorem 2.3.

5. Proof of real local universality. In this section, we will prove Theo-
rem 2.4. As before, we can assume without loss of generality that ξ̃i has Gaussian
distribution for all i.

Let r0 = 10−2/2. Below, we prove (2.10); the same proof works for Q in place
of P unless otherwise noted. As before, we reduce the problem to showing (2.10)
for functions G of the form

G(y1, . . . , yk,w1, . . . ,wl)= F1(y1) · · ·Fk(yk)G1(w1) · · ·Gl(wl),

where Fi : R→ C and Gj : C→ C are smooth functions supported on [−r0, r0]
and B(0, r0), respectively, such that∣∣∇aFi(x)

∣∣, ∣∣∇aGj (z)
∣∣≤ 1

for all 1≤ i ≤ k, 1≤ j ≤ l, x ∈R, z ∈C, and 0≤ a ≤ 3.



2452 Y. DO, O. NGUYEN AND V. VU

Then, by the inclusion-exclusion argument and the symmetry of zeros of P

about the x-axis, we can further reduce the problem to showing that∣∣∣∣∣E
(

k∏
j=1

XP
x̌i ,Fi ,R

)(
l∏

j=1

XP
žj ,Gj ,C+

)
−E

(
k∏

j=1

XP̃
x̌i ,Fi ,R

)(
l∏

j=1

XP̃
žj ,Gj ,C+

)∣∣∣∣∣
≤ Cδc,

(5.1)

where XP
x̌i,Fi ,R

=∑
ζ P̌
j ∈R

Fi(ζ
P̌
j − x̌i) and XP

žj ,Gj ,C+ =
∑

ζ P̌
i ∈C+

Gj(ζ
P̌
i − žj ).

Since the proof of Theorem 2.3 [and in particular, (4.5)] hardly changes if we
replace I (δ) by I (δ)+ (−10−6δ,10−6δ), we conclude that there exists a positive
constant c for which

(5.2)

∣∣∣∣∣E
(

m∏
j=1

XP
w̌j ,Hj

)
−E

(
m∏

j=1

XP
w̌j ,Hj

)∣∣∣∣∣≤ Cδc,

where 1 ≤ m ≤ k + l, |wj | ∈ I (δ)+ (−10−4δ,10−4δ), Hj : C→ C is a smooth
function supported in B(0,2r0) and |∇aHj | ≤ 1, ∀0 ≤ a ≤ 3, and Xw̌j ,Hj

=∑n
i=1 Hj(ζ

P̌
i − w̌j ). For the rest of the proof, we will write, for example, Xw̌j ,Hj

when it can be either XP
w̌j ,Hj

or XP̃
w̌j ,Hj

.
We shall reduce (5.1) to (5.2) by first showing that the number of complex zeros

near the real axis is small with high probability. This is the key lemma for this
proof. We make use of a more classical tool, the Rouché’s theorem, together with
some elegant arguments in [13] and [33].

LEMMA 5.1. Let c be as in (5.2). Let c2 =min{ c
100 , c

3k+3l+1 ,
ρ+1/2

4 } and γ =
δc2 . There exists a constant C such that for all 1

20n
≤ δ ≤ 1

C
, one has

P
(
N

P̌
B(x̌, γ )≥ 2

)≤ Cγ 3/2,

for all x ∈R with |x| ∈ I (δ)+ (−10−4δ,10−4δ).
When δ ≥ 1

10n
, the same statement holds for Q in place of P .

The power 3/2 in the lemma is not critical; we only need something strictly
greater than 1.

PROOF. We will prove the Lemma for P . The same arguments also work for
Q unless otherwise noted. The strategy is using Theorem 2.3 to reduce to Gaus-
sian case. Let H be a nonnegative smooth function supported on B(0,2γ ), which
equals 1 on B(0, γ ) and is at most 1 everywhere else, and |∇aH | ≤ Cγ−a for
all 0 ≤ a ≤ 8. In particular, one can take H(z) = φ( z

γ
) where φ is any smooth

function supported in B(0,2) and equals 1 on B(0,1).
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By Theorem 2.3, we have

P
(
N

P̌
B(x̌, γ )≥ 2

)
≤ E

∑
i �=j

H(ζ̌i − x̌)H(ζ̌j − x̌)

≤ E
∑
i �=j

H(
ˇ̃
ζi − x̌)H(

ˇ̃
ζj − x̌)+Cδcγ−8

≤ E
∑
i �=j

H(
ˇ̃
ζi − x̌)H(

ˇ̃
ζj − x̌)1k≥δ−c3 +Ek(k − 1)1k<δ−c3 +Cγ 3/2

≤ E
∑
i �=j

H(
ˇ̃
ζi − x̌)H(

ˇ̃
ζj − x̌)1k≥δ−c3 + δ−2c3P(k ≥ 2)+Cγ 3/2,

where k =N ˇ̃P B(x̌,2γ )=NP̃ B(x,2.10−3γ δ)=:NP̃ B(x, η), and c3 = c2/10. By
Proposition 4.6, k ≤ δ−c3 with probability at least 1−Cγ (δ).

Using the result from Section 4.4, we have

E
∑
i �=j

H(
ˇ̃
ζi − x̌)H(

ˇ̃
ζj − x̌)1k≥δ−c3 ≤ E

((
n∑

i=1

H(
ˇ̃
ζi − x̌)

)2

1k≥δ−c3

)

≤ Cδ1/22γ−8 ≤ Cγ 3/2.

Thus, it remains to show that P(k ≥ 2)= P(NP̃ B(x, η)≥ 2)≤ Cδ2c3γ 3/2. Hav-
ing reduced the task to the Gaussian case, we will adapt the proofs of similar results
in [13] and [32] to show it.

Consider g(z) = P̃ (x) + P̃ ′(x)(z − x) and put vz = (ciz
i)ni=0. Let p(z) =

P̃ (z)− g(z). Notice that for this Gaussian case, P(P̃ (x)= 0)= 0 when n is suffi-
ciently large. Since g is linear, it has at most one zero in B(x,η), and hence, when
k ≥ 2, P̃ has more zeros than g in that ball. If |g(z)|> |p(z)| for all z ∈ ∂B(x, η),
then by Rouché’s theorem, P̃ and g have the same number of zeros. Thus, for all
t > 0, we have

P(k ≥ 2)≤ P
(

min
z∈∂B(x,η)

∣∣g(z)
∣∣≤ max

z∈∂B(x,η)

∣∣p(z)
∣∣).

Let A1 = {ω : minz∈∂B(x,η) |g(z)| ≤ maxz∈∂B(x,η) |p(z)|}. We will show that
P(A1)≤ Cδ2c3γ 3/2.

We have p(z)= (ξ̃i)
n
i=0(vz − vx − v′(x)(z− x)) and

(5.3)
∣∣(vz − vx − v′(x)(z− x)

)
i

∣∣≤ sup
0≤θ≤1

1

2
|ci ||z− x|2i(i − 1)|x + θz|i−2.
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If δ ≥ 1
10n

, then for all z ∈ ∂B(x, η) and θ ∈ [0,1], |x + θz| ≤ 1 − δ
2 , and so by

Condition 1,

Var
(
p(z)

)= ∣∣vz − vx − v′(x)(z− x)
∣∣2

≤
n∑

i=0

η4i4c2
i

(
1− δ

2

)2i−4
≤CL2ρ+1−4c2 .

Similarly, if 1
20n
≤ δ ≤ 1

10n
, then for all z ∈ ∂B(x, η) and θ ∈ [0,1], |x + θz| ≤

1+ 3
n

, and so

Var
(
p(z)

)≤ n∑
i=0

η4i4c2
i

(
1+ 3

n

)2i−4

≤ C

n∑
i=0

η4n4+2ρ

(
1+ 3

n

)2n

≤ CL2ρ+1−4c2 .

Thus, in any case,

(5.4) Var
(
p(z)

)≤ CL2ρ+1−4c2 .

[When proving the Lemma for Q̃, there are two cases: if ρ ≥ 0 then observe
from Condition 1 that | di

d0
| ≤ C = Ci0 for all i, and so, by the same argument as

above, for the function p(z)= Q̃(z)− Q̃(x)− (z−x)Q̃′(x), one has Var(p(z))≤
CL(2)(0)+1−4c2 = CL1−4c2 which is similar to the case ρ = 0 for P . Now, if −1

2 <

ρ < 0 we similarly have

Var
[
p(z)

]≤ Cη4
∑

0≤i≤n/2

i4e−δi +Cη4
∑

n/2<i≤n

i4 (n− i)2ρ

n2ρ
e−δi ≤ CL1−4c2

which again is similar to the case ρ = 0 for P . We note that in all computation it
is very important that 2ρ + 1 > 0 to ensure that the harmonic sum

∑
j≤M j2ρ is

dominated by M2ρ+1.]
We use the above estimate to prove that for every t > 0,

(5.5) P
(

max
z∈∂B(x,η)

∣∣p(z)−Ep(z)
∣∣≥ t

)
≤ Ce−t2/(CL2ρ+1−4c2 ).

Indeed, let p̄(z) = p(z) − Ep(z), then for every z ∈ ∂B(x, η), by Cauchy’s
integral formula,

∣∣p̄(z)
∣∣≤ ∫ 2π

0

|p̄(x + 2ηe
√−1θ )|

|z− x − 2ηe
√−1θ |2η

dθ

2π

≤
√

CL2ρ+1−4c2

∫ 2π

0

|p̄(x + 2ηe
√−1θ )|√

Var(p̄(x + 2ηe
√−1θ ))

dθ

2π
.
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Hence, by Markov’s inequality,

P
(

max
z∈∂B(x,η)

∣∣p̄(z)
∣∣≥ t

)

≤ E
(

exp
(∫ 2π

0

|p̄(x + 2ηe
√−1θ )|

10
√

Var(p̄(x + 2ηe
√−1θ ))

dθ

2π

)2)
e−t2/(102CL2ρ+1−4c2 ).

Applying Jensen’s inequality for convex functions x → x2 and x → ex and
Fubini’s theorem gives

E
(

exp
(∫ 2π

0

|p̄(x + 2ηe
√−1θ )|

10
√

Var(p̄(x + 2ηe
√−1θ ))

dθ

2π

)2)

≤
∫ 2π

0
E exp

( |p̄(x + 2ηe
√−1θ )|2

100Var(p̄(x + 2ηe
√−1θ ))

)
dθ

2π
.

Let z = x + 2ηe
√−1θ then the real part and imaginary part of p̄(z)√

Var(p̄(z))
=:

Xz+
√−1Yz are normally distributed with mean 0 and variance at most 1. Hence,

by Cauchy–Schwarz inequality,

Ee10−2|Xz+
√−1Yz|2 = Ee10−2X2

z e10−2Y 2
z ≤ Ee2.10−2X2

z +Ee2.10−2Y 2
z ≤ C.

This completes the proof of (5.5). Now set

(5.6) t =Lρ+1/2−2c2+c3,

then (5.5) becomes

(5.7) P
(

max
z∈∂B(x,η)

∣∣p(z)−Ep(z)
∣∣≥ 1

2
t

)
≤ Ce−t2/(4CL2ρ+1−4c2 ) ≤ δ2c3γ 3/2.

(To prove Lemma 5.1 for Q, we set t = L1/2−2c2+c3 .)
Let A2 = {ω :maxz∈∂B(x,η) |p(z)−Ep(z)| ≥ 1

2 t}.
Now, since g is a linear with real coefficients [P(x) and P ′(x)], one has

min
z∈∂B(x,η)

∣∣g(z)
∣∣=min

∣∣g(x ± η)
∣∣.

And so,

P
(

min
z∈∂B(x,η)

∣∣g(z)
∣∣≤ t

)
≤ P
(∣∣g(x + η)

∣∣≤ t
)+ P

(∣∣g(x − η)
∣∣≤ t

)
.

Since g(x ± η) is normally distributed,

P
(∣∣g(x ± η)

∣∣≤ t
)≤ P

(∣∣g(x ± η)−Eg(x ± η)
∣∣≤ t

)
≤ t√

Var(g(x ± η))
= t

|vx ± ηv′x |
.

(5.8)
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Using Condition 1, we have

η
∣∣v′x ∣∣≤ Cη

√√√√ n∑
i=0

i2ρ+2x2i ≤ CηLρ+3/2 = CLρ+1/2−c2,(5.9)

|vx | ≥ 1

C

√√√√√ L/20∑
i=L/40

i2ρx2i ≥ 1

C
Lρ+1/2,(5.10)

which together give |vx − ηv′x | ≥ 1
C

Lρ+1/2.

[To prove Lemma 5.1 for Q observe that | di

d0
| ≥ 1

C
for all i ≤ n

2 , and hence
for all i ≤ L/20; therefore, by the same argument as above, for the vector field
vz = ( di

d0
zi)ni=0, one has |vx | ≥ 1

C
L1/2, which is again similar to the case ρ = 0 for

P ; now for η|v′x | we similarly have

η
∣∣v′x ∣∣≤ Cη

√√√√ n∑
i=0

i2
[
(n− i)/n

]2ρ
x2i

≤ Cη

√ ∑
i≤n/2

i2x2i + n2−2ρxn/2
∑

i>n/2

(n− i)2ρ

≤ Cη

√
L3 + n3xn/2 ≤ CηL3/2 = CL1/2−c2

which is similar to the case ρ = 0 for P .]
And so, by (5.6), the bound (5.8) becomes

P
(∣∣g(x ± η)

∣∣≤ t
)≤ P

(∣∣g(x ± η)−Eg(x ± η)
∣∣≤ t

)
≤ CL−2c2+c3 ≤ CL−3/2c2−2c3 = Cδ2c3γ 3/2.

(5.11)

Hence,

(5.12) P
(

min
z∈∂B(x,η)

∣∣g(z)
∣∣≤ t

)
≤ Cδ2c3γ 3/2.

Let A3 = {ω :minz∈∂B(x,η) |g(z)| ≤ t}, and A4 =A1 \ (A2 ∪A3)

If Condition 2(2a) holds, that is, Eξi = 0 for all N0 ≤ i ≤ n, then by (5.3),

∣∣Ep(z)
∣∣≤ η2

N0∑
i=0

|Eξi ||ci |i2(1+ 3/n)n ≤ Cη2 ≤ t

2

for every z ∈ ∂B(x, η). This together with (5.7) give

P
(

max
z∈∂B(x,η)

∣∣p(z)
∣∣≥ t

)
≤ δ2c3γ 3/2.

And so P(A1)≤ P(A3)+ P(maxz∈∂B(x,η) |p(z)| ≥ t)≤ δ2c3γ 3/2 as desired.
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[Similarly, for Q, one has |Ep(z)| ≤ η2∑N0
i=0 |Eξi | |ci ||cn|(n − i)2(1 − 1

2L
)n−i ≤

Cη2n2−ρe−n/2L ≤ Cη2L2−ρ = CL−ρ−2c2 ≤ t
2 for every z ∈ ∂B(x, η) because

ρ >−1/2.]
Now, if Condition 2(2b) holds, and x < 0, that is, x is in −I (δ) + (−10−4δ,

10−4δ). Recall that ρ ≥ 0 under Condition 2(2b). Then for every z ∈ ∂B(x, η),

∣∣Ep(z)
∣∣≤ Cη2 + |μ|

∣∣∣∣∣
n∑

i=N0

ciz
i −

n∑
i=N0

cix
i − (z− x)

n∑
i=N0

icix
i−1

∣∣∣∣∣
≤ Cη2 +Cη2 max

z′∈∂B(x,η)

∣∣∣∣∣
n∑

i=0

P(i)i(i − 1)z′i−2

∣∣∣∣∣,
in which we used the fact that the contributions of the sums from i = 0 to i =
N0 − 1 are just O(η2) as showed in the case of Condition 2(2a). Observe that
P(i)i(i− 1)=∑ρ+2

j=0 ej i(i− 1) · · · (i− j + 1) for some constants ej , and for each
0≤ j ≤ ρ + 2,∣∣∣∣∣

n∑
i=0

i(i − 1) · · · (i − j + 1)z′i−j

∣∣∣∣∣=
∣∣∣∣(1− z′n+1

1− z′
)(j)∣∣∣∣

≤ Cnj |z′|n−j+1 ≤ CLj nj

Lj
e−n/L

≤ CLj ≤ CLρ+2,

where in the first inequality, we used the bounds |1− z′| ≥ |1− x| − |x − z′| ≥ 1.
This shows that |Ep(z)| ≤ CLρ−2c2 |μ| ≤ t

2 . From this, the same proof as for
Condition 2(2a) applies.

[Similarly, for Q, one has

∣∣Ep(z)
∣∣ ≤ Cη2L2 +Cη2 max

z′∈∂B(x,η)

∣∣∣∣∣
n∑

i=0

P(n− i)

P(n)
i(i − 1)z′i−2

∣∣∣∣∣
=O

(
η2L2)=O

(
L−2c2

)≤ t

2
in which, again, we used the fact that the contribution of the sums from i = n−N0
to i = n is O(η2L2) as showed in the case of Condition 2(2a).]

Now, if Condition 2(2b) holds, and x ≥ 0, that is, x is in I (δ) + (−10−4δ,

10−4δ). Without loss of generality, assume that μ ≥ 0 and ci > 0 for all i suffi-
ciently large, say i ≥N0 (by replacing ci by −ci and ξi by −ξi if needed).

We have

(5.13) P(A1)≤ P(A2)+ P(A3)+ P(A4)≤ Cδ2c3γ 3/2 + P(A4).

If |Ep(z)| ≤ t
2 for every z ∈ ∂B(x, η), then as in the above case we also have

P(A1) ≤ δ2c3γ 3/2. Otherwise, assume that there exists z0 ∈ B(x, δ) such that
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|Ep(z0)| > t
2 . Without loss of generality, we choose z0 that maximizes |Ep(z0)|

in that (closed) ball. Let m(z)= EP(z)=∑n
i=0 ciEξiz

i . Then

∣∣Ep(z0)
∣∣= ∣∣m(z0)−m(x)−m′(x)(z0 − x)

∣∣≤ |z0 − x|2
2

max
z∈∂B(x,η)

∣∣m′′(z)∣∣
≤ o(t)+μη2

i=n∑
i=0

cii(i − 1)(x + η)i−2.

[For P the o(t) is Cη2, and for Q the o(t) is Cη2L2.]
Observe by a similar bound as in (5.3) that∣∣∣∣∣

n∑
i=n∧2(4+ρ)L logL

cii(i − 1)(x + θz0)
i−2

∣∣∣∣∣≤ CLρ+3
∫ ∞

2(4+ρ) logL
e−x/2 dx ≤ 1.

Hence,

t

2
<
∣∣Ep(z0)

∣∣≤ o(t)+ η2
i=n∧2(4+ρ)L logL∑

i=0

cii
2(x + η)i−2

≤ 2η2
i=n∧2(4+ρ)L logL∑

i=0

cii
2(x + η)i−2.

Now,

m(x)≥ μ

i=n∧2(4+ρ)L logL∑
i=0

cix
i − o(t)

≥ 1

C
μL−2 log−2 L

i=n∧2(4+ρ)L logL∑
i=0

cii
2(x + η)i − o(t)

≥ 1

C

L2c2

log2 L
η2

i=n∧2(4+ρ)L logL∑
i=0

cii
2(x + η)i−2 − o(t)

≥ 1

C

L2c2

log2 L

∣∣Ep(z0)
∣∣≥ 1

C

L2c2

log2 L
t = 1

C

Lρ+1/2+c3

log2 L
.

(5.14)

Similarly,

ηm′(x)≤ C + η

i=n∧2(4+ρ)L logL∑
i=0

ciix
i−1

≤ C +CηL(logL)m(x)≤ C
logL

Lc2
m(x)≤ m(x)

2
.
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Thus,

(5.15) Eg(x ± η)=m(x)± ηm′(x)≥ m(x)

2
.

By this and (5.9) and its analog for vx show that

(5.16)
√

Varg(x ± η)≤ CLρ+1/2 ≤ Eg(x ± η)

Lc3/2 .

On the event A4, we know that min |g(x ± η)| ≤ maxz∈∂B(x,η) |p(z)|. Choose
any z in the closed ball cl(B(x, η)) that maximizes |p|. Then min |g(x ± η)| ≤
|p(z)|. Since A4 ∩A2 =∅, |p(z)| ≤ |Ep(z0)| + t/2≤ 2|Ep(z0)|. Then, by (5.14)
and (5.15),

(5.17) min
∣∣g(x ± η)

∣∣≤ ∣∣p(z)
∣∣≤ C

log2 L

L2c2
min
∣∣Eg(x ± η)

∣∣≤ 1

2
min Eg(x ± η).

Finally, by (5.16), we have

P
(∣∣g(x ± η)

∣∣≤ 1

2
Eg(x ± η)

)
≤ P
( |g(x ± η)−Eg(x ± η)|√

Var(g(x ± η))
≥ Eg(x ± η)

2
√

Var(g(x ± η))

)

≤ P
(∣∣N(0,1)

∣∣≥ Lc3/2

2

)
≤ δ2c3γ 3/2.

This proves (5.17), and thus, P(A4)≤ Cδ2c3γ 3/2. So is A1. �

Now, for every 1 ≤ i ≤ k, consider the strip Si = [x̌i − r0, x̌i + r0] ×
[−γ /4, γ /4]. We can cover S by O(γ−1) balls of the form B(x̌, γ ) where
x ∈ [x̌i − r0, x̌i + r0]. Using Lemma 5.1, we obtain

P
(
there is at least 1 (or equivalently 2) root in Si \R)
=O

(
γ−1γ 3/2)=O

(
γ 1/2).(5.18)

Consider F̂i(z) = Fi(Re(z))φ(4 Im(z)
γ

), where φ is a bump function on R that
is supported on [−1,1] and is 1 at 0. Then F̂i is a smooth function supported on
Si − x̌i and |F̂i | ≤ 1, and |∇aF̂i | =O(γ−a) for 0≤ a ≤ 3.

Set X
x̌i,F̂i
=∑n

j=1 F̂i(ζ
P̌
j − x̌i ) and

Dx̌i,Fi
=X

x̌i,F̂i
−Xxi,Fi ,R =

∑
ζ P̌
i /∈R

F̂i

(
ζ P̌
i − x̌i

)
.

Observe that |Dx̌i,Fi
| ≤N

P̌
B(x̌i,2r0), and from (5.18), Dx̌i,Fi

= 0 with proba-
bility at least 1−O(γ 1/2).
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Let φ0 be a bump function supported on B(0,4r0) that equals 1 on B(0,2r0)

and |�aφ0| ≤ C for all 0≤ a ≤ 3, then

max
{|X

x̌i,F̂i
|, |Xxi,Fi,R|, |Dx̌i,Fi

|}≤ n∑
j=1

φ0
(
ζ P̌
j − x̌i

)=:Xx̌i,φ0 .

Let c4 = c2
4(k+l)2 . By Proposition 4.6, N

P̌
B(x̌i,2r0) = NP B(xi,2r010−3δ) ≤

δ−c4 with probability at least 1 − Cγ (δ). And from Section 4.4, we have
E(|Xx̌i,φ0 |k+l1N

P̌
B(x̌i ,2r0)>δ−c4 )≤Cδ1/22.

Hence,

E|X
x̌i,F̂i
−Xx̌i,Fi ,R|k+l

= E
(|Dx̌i,Fi

|k+l1N
P̌

B(x̌i ,2r0)≤δ−c4

)+E
(|Dx̌i,Fi

|k+l1N
P̌

B(x̌0,2r0)>δ−c4

)
≤ Cδ−c4(k+l)γ 1/2 +E

(|Xx̌i,φ0 |k+l1N
P̌

B(x̌i ,2r0)>δ−c4

)≤ Cδc4(k+l)2
.

Moreover, by another application of Proposition 4.6 and Section 4.4, we obtain

max
{
E|X

x̌i,F̂i
|k+l ,E|Xx̌i,Fi ,R|k+l}

= E
(|Xx̌i,φ0 |k+l1N

P̌
B(x̌i ,4r0)≤δ−c4

)+E
(|Xx̌i,φ0 |k+l1N

P̌
B(x̌0,4r0)>δ−c4

)
≤ Cδ−c4(k+l) +Cδ1/22 ≤ Cδ−c4(k+l).

Similarly, for each 1 ≤ j ≤ l, let Ĝj (z) = Gj(z)η(Im(z + žj )/γ ) where η is
a bump function on R supported on [1/2,∞) and equal 1 on [1,∞). And let

X
žj ,Ĝj

=∑n
i=1 Ĝj (ζ

P̌
i − žj ). Then E|X

žj ,Ĝj
− Xžj ,Gj ,C+|k+l ≤ Cδc4(k+l)2

and

max{E|X
žj ,Ĝj

|k+l,E|Xžj ,Gj ,C+|k+l} ≤ Cδ−c4(k+l).
By telescoping the difference and applying Hölder’s inequality, we obtain

E

∣∣∣∣∣
(

k∏
i=1

Xx̌i,Fi ,R

)(
l∏

j=1

Xžj ,Gj ,C+

)
−
(

k∏
i=1

X
x̌i,F̂i

)(
l∏

j=1

X
žj ,Ĝj

)∣∣∣∣∣≤ Cδc4 .

Combining this with (5.2) with Hj ’s being F̂i/O(γ−3) and Ĝj /O(γ−3), re-
spectively, we get the desired result.

6. Proof of Lemma 2.5 and Corollary 2.6. PROOF OF LEMMA 2.5. If suf-
fices to show that

(6.1) ENPn

([
−1+ 1

C
,1− 1

C

])
≤M(C),

and ENQn([−1+ 1
C

,1− 1
C
])≤M(C), for some constant M(C).
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Again, the proof for the second inequality is the same as the first. We follow the
approach in [15]. By (4.27), there exist constants d and q such that P(|ξi | ≤ d)≤
q < 1 for all i.

For k ≥ N0, let Bk = {ω : |ξN0 | ≤ d, . . . , |ξk−1| ≤ d, |ξk| > d}. Then P(Bk) ≤
qk−N0 .

By mean value theorem and Jensen’s inequality, we have

NP

[
−1+ 1

C
,1− 1

C

]
≤ k+NP (k)

[
−1+ 1

C
,1− 1

C

]
≤ k+

log M
|P (k)(0)|

log R
r

,

where R = 1− 1
2C

, r = 1− 1
C

, and M = sup|z|=R |P (k)(z)|. On Bk , we have

NP

[
−1+ 1

C
,1− 1

C

]
≤ k+ log

∑n
j=k cjk

|cj |
|ck | |ξj |

d

log R
r

,

where cjk = j (j − 1) · · · (j − k+ 1)Rj−k/k!. And so,

ENP

[
−1+ 1

C
,1− 1

C

]
≤

n+1∑
k=N0

kP(Bk)+ log 1/d

log R
r

n+1∑
k=N0

P(Bk)

+ 1

log R
r

n+1∑
k=N0

∫
Bk

log

(
n∑

j=k

cjk

|cj |
|ck| |ξj |

)
dP.

Thus, to show (6.1), it suffices to show that

(6.2)
n+1∑
k=N0

∫
Bk

log(Rk) dP≤ C′,

for some C′ = C′(C), where Rk = (ρ + 1+ k)−ρ−1∑n
j=k cjk

|cj |
|ck | |ξj |. Then

ERk ≤ C′(ρ + 1+ k)−ρ−1
n∑

j=k

(
j

k

) |cj |
|ck|R

j−k ≤ C′k−ρ

(1−R)k+ρ+1 .

Let Bki = {ω ∈ Bk : eiERk < Rk ≤ ei+1ERk}. Then P(Bki) ≤ e−i by Markov’s
inequality. Let i0 = �− logqk�, then∫

Bk

logRk dP≤ P(Bk) log
(
ei0ERk

)+ ∞∑
i=i0

∫
Bki

logRk dP

≤ C′qk(k + 2+ ρ − k logq − ρ log k).

This proves (6.2) and completes the proof. �
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PROOF OF COROLLARY 2.6. Let C be the constant in Theorem 2.4 with
k = 1. As a consequence of the above lemma, we only need to concentrate on
the domain R∩A(0,1− 1

C
,1+ 1

C
).

Let c be the constant in Theorem 2.4, and let α = c/7. We will prove that for
every 1

20n
≤ δ ≤ 1

C
and real number x0 ∈R such that |x0| ∈ I (δ), we have∣∣ENP

(
x0 − 10−7δ, x0 + 10−7δ

)−ENP̃

(
x0 − 10−7δ, x0 + 10−7δ

)∣∣
=O

(
δα/2),(6.3)

and when 1
10n
≤ δ ≤ 1

C
,∣∣ENP

(
x0 − 10−7δ, x0 + 10−7δ

)−ENP̃

(
x0 − 10−7δ, x0 + 10−7δ

)∣∣
=O

(
δα/2).(6.4)

From (6.3), we can conclude that |ENP (±I (δ)) − ENP̃ (±I (δ))| = O(δα/2)

for all 1
20n
≤ δ ≤ 1

C
. Letting δ = 1

20n
, 1

10n
, . . . , 2m

20n
where 2m−1

20n
< 1

C
≤ 2m

20n
and

applying triangle inequality, we obtain∣∣∣∣ENP

(
±
(

1− 2m+1

n
,1+ 1

n

))
−ENP̃

(
±
(

1− 2m+1

n
,1+ 1

n

))∣∣∣∣=O(1).

This together with the analogue for Q give the desired result. (By definition of Q,
we have ENQ[a, b] = ENP [1/b,1/a] if 0≤ a < b ≤∞ or −∞≤ a < b ≤ 0.)

As for the proof of (6.3), let 1
20n
≤ δ ≤ 1

C
and let x0 be a real number with

|x| ∈ I (δ).
Let G be a smooth function supported on [−10−4 − δα,10−4 + δα] such that

0≤G≤ 1, G= 1 on [−10−4,10−4], and ‖∇aG‖ ≤ Cδ−6α for all 0≤ a ≤ 6. We
have

ENP

[
x0 − 10−7δ, x0 + 10−7δ

]
= EN

P̌

[
x̌0 − 10−4, x̌0 + 10−4]≤ E

∑
ζ P̌
i ∈R

G
(
ζ P̌
i − x̌0

)

≤ E
∑

ζ
ˇ̃P

i ∈R
G
(
ζ
ˇ̃P

i − x̌0
)+Cδc−6α by Theorem 2.4

≤ E
n∑

i=1

1[−δα−10−4,δα+10−4]
(
ζ
ˇ̃P

i − x̌0
)+Cδc−6α

≤ ENP̃

[
x0 − 10−7δ, x0 + 10−7δ

]+ IP̃ +Cδα,

where IP̃ = E
∑n

i=1 1±[10−7δ,10−7δ+10−3δα+1](ζ P̃
i − x0). We will show later that

IP̃ =O(δα/2).
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Thus,

ENP

[
x0 − 10−7δ, x0 + 10−7δ

]≤ ENP̃

[
x0 − 10−7δ, x0 + 10−7δ

]+Cδα/2.

By similar arguments with the function G being replaced by one supported on
[−10−4,10−4] such that 0 ≤G ≤ 1 and G = 1 on [−10−4 + δα,10−4 − δα], we
have

ENP

[
x0 − 10−7δ, x0 + 10−7δ

]≥ ENP̃

[
x0 − 10−7δ, x0 + 10−7δ

]−Cδα/2.

This gives (6.3) for P . Hence, to finish, we only need to prove the stated bound
on IP̃ and IQ̃. Let [a, b] = x0±[10−7δ,10−7δ+10−3δα+1]. By a Kac–Rice-type
formula (see, for instance, [12], Theorem 2.5), one has

(6.5) ENP̃ [a, b] ≤
∫ b

a

√
S
P2 dt +

∫ b

a

|m′|P + |m|R
P3/2 e

− 1
2 ( m√

P )2

dt,

for any a ≤ b, where m(t) = EP̃ (t),P = Var(P̃ ) =∑n
i=0 c2

i t
2i , Q = Var(P̃ ′) =∑n

i=0 c2
i i

2t2i−2, R = Cov(P̃ , P̃ ′) = ∑n
i=0 c2

i it
2i−1, and S = PQ − R2 =∑

i<j (j − i)2c2
i c

2
j t

2i+2j−2.
First, we will bound the second integral. By similar bounds as in (5.4) and

(5.10), we have for every t ∈ [a, b],

P ≥ 1

C
δ−2ρ−1, R≤ Cδ−2ρ−2 ≤ Cδ−1P .

Additionally, by the same argument as in the proof of Theorem 2.4 [more pre-
cisely Lemma 5.1 near the estimate (5.14)], one can show that under Condition
2(2), for every t ∈ [a, b], |m′(t)| ≤ Cδ−ρ−1 +Cδ−1 log 1

δ
|m(t)|. Thus,

|m′|P + |m|R
P3/2 e

− 1
2 ( m√

P )2 ≤ Cδ−1/2 +Cδ−1 log
1

δ

|m|√
P

e
− 1

2 ( m√
P )2 ≤ Cδ−1 log

1

δ
,

where in the last inequality, we used the boundedness of the function x→ xe−x2/2

on R. Since the length of the interval [a, b] is Cδα+1, the second integral in (6.5)
is of order O(δα/2) as desired.

Hence, it remains to bound the first integral in (6.5). By symmetry, we may as-
sume that a > 0. We first reduce to the hyperbolic polynomials for which that
integral is easier to handle. Consider the corresponding hyperbolic polynomi-

als with coefficients c
hyper
i =

√
(2ρ+1)···(2ρ+i)

i! . A routine estimation shows that
1
C

iρ ≤ c
hyper
i ≤Ciρ for some constant C. And thus, by condition (2.5), 1

C′ c
hyper
i ≤

|ci | ≤ C′chyper
i for all N0 ≤ i, and so when |t | ≥ 1

2 , one has S(t)≤ C′Shyper(t) and

P(t)≥ 1
C′Phyper(t). Thus,

√
S
P2 ≤ C′

√
Shyper

(Phyper)2 .
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If 1
2 ≤ t ≤ 1− (100ρ+100) logn

n
, one has

Phyper(t)= 1

(1− t2)2ρ+1 −
∞∑

i=n+1

(2ρ + 1) · · · (2ρ + i)

i! t2i ,

and the last term is bounded from above by
∑∞

i=1
(2ρ+1)···(2ρ+i)

i! t2iAi where

Ai = (2ρ + i + 1) · · · (2ρ + i + n)

(i + 1) · · · (i + n)
t2n

≤ (i + n+ 1) · · · (i + n+ �2ρ�)
(i + 1) · · · (i + �2ρ�) t2n = o

(
n−100ρ−100).

Thus, Phyper = 1
(1−t2)2ρ+1 (1+ o(n−100ρ−100)). Similarly,

Q=
(

(2ρ + 1)(2ρ + 2)t2

(1− t2)(2ρ+3)
+ 2ρ + 1

(1− t2)2ρ+2

)[
1+ o

(
n−100ρ−100)],

R= (2ρ + 1)t

(1− t2)2ρ+2

[
1+ o

(
n−100ρ−100)],

therefore, √
Shyper

(Phyper)2 =
√

2ρ + 1

1− t2

(
1+O

(
n−12ρ−12)).

Plugging into (6.5) with [a, b] = x0±[10−7δ,10−7δ+10−3δα+1] gives the desired
bound for δ ≥ (200ρ + 200)n−1 logn.

Next, if 1+ 2
n
≥ t ≥ 1− (500ρ+500) logn

n
, we will prove that

(6.6)
S
P2 ≤

O(n)

|1− t | .

This together with (6.5) will give the desired bound for δ ≤ (200ρ+200) logn
n

.
To prove (6.6), observe that S ≤ 4

∑
0≤i<j≤n(j − i)2c2

i c
2
j t

2i+2j . Set M = 1
|1−t | .

We have

(6.7)
∑

0≤i<j≤n∧(i+√nM)

(j − i)2c2
i c

2
j t

2i+2j ≤ n

|1− t |P
2(t).

And so, we only need to work on the summands corresponding to 0 ≤ i ≤ i +√
nM < j ≤ n. In particular, we can assume that M < n. If 1−2/n≤ t ≤ 1+2/n,

then 1
|1−t | ≥ n

2 and so, (6.6) follows by a similar argument to (6.7). Thus, we can

further assume that t < 1− 2
n

.
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For each
√

nM < j ≤ n, we have from (2.5)

�j−√nM�∑
i=0

(j − i)2c2
i c

2
j t

2i+2j =O

(
j2c2

j c
2
�j−√nM�t

2j
∞∑
i=0

t2i

)

=O
(
n2ρ+2c2

�j−√nM�Mt2j ).
(6.8)

We will now show that

(6.9) n2ρ+2c2
�j−√nM�Mt2j = O(n)

1− t
P(t)c2

�j−√nM�t
2�j−√nM�,

which is equivalent to n2ρ+1 = O(1)P(t)(1 − 1
M

)−2
√

nM for some constant
C3. This is true because the right-hand side is at least (

∑M
i=�M/2� c2

i (1 −
1
M

)2i )e2
√

n/M � M2ρ+1e2
√

n/M � n2ρ+1; note that we assumed that M =
1

1−t
< n.

From (6.7), (6.8) and (6.9), we obtain (6.6).
The proof for (6.4) follows nearly the same lines with

IQ̃ = E
n∑

i=1

1±[10−7δ,10−7δ+10−3δα+1]
(
ζ

Q̃
i − x0

)
and as in the proof of Lemma 5.1, the estimates for Q̃ will be similar to the case
ρ = 0 for P̃ . In particular, the handling of the corresponding second integral of
(6.5) is similar (exploiting ingredients from the proof of Lemma 5.1), and for the
first integral we may upper bound it by that of Kac polynomials by comparing cj

with the hyperbolic coefficients and using Lemma 10.6. This completes the proof.
�

7. Proof of complex local universality for series. PROOF OF THEOREMS

2.10 AND 2.13. First, let us make some observations about the series PPS under
Condition 1:

1. PPS converges uniformly in every compact set in D a.e.
Indeed, let �n = {ω : |ξi(ω)| ≤ n+ in,∀i ≥ 0}. Then �1 ⊂�2 · · · ⊂�n · · · , and

�=⋃∞n=1 �n. On each �n, PPS converges uniformly on compact sets in D.
Moreover, PPS does not extend analytically to any domain larger than the unit

disk (see, for instance, [13], Lemma 2.3.3).
2. By the Lebesgue’s dominated convergence theorem, Var(PPS(z)) =∑∞
n=0 |cn|2|z|2n.
3. For every 0 < δ ≤ 1− 1

C
, z ∈A(0,1− 2δ,1− δ], k ≥ 1, one has

E
[
NPPS

(
B(z, δ/10)

)]k
<∞.

This follows from Proposition 4.6 by setting λ= 2n with n= 1,2,3, . . . and shows
that the integrals in the statements of Theorems 2.10 and 2.13 are well defined.
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Now the proofs of Theorems 2.10 and 2.13 for any 0 < δ ≤ 1
C

follow exactly

the same lines as the proofs of Theorems 2.3 and 2.4 for the case log2 n
n
≤ δ ≤ 1

C
with the n in the latter proofs being replaced by∞. �

PROOF OF COROLLARY 2.11. The corollary follows from Theorem 2.3 with
the two sequences of random variables (ξn) and (ξne

√−1nθ ). �

PROOF OF COROLLARY 2.12. Observe that by the change of variables for-
mula, with respect to the rescaling formula 2.7, one has

(7.1) ρ
(k)

P̌
(w1, . . . ,wk)= (10−3δ

)2k
ρ

(k)
P

(
10−3δw1, . . . ,10−3δwk

)
.

Let P̃PS be the hyperbolic power series with ξ ’s being i.i.d. standard complex
Gaussian. By Theorem 2.10, we have∣∣∣∣∫

Ck
G(w)

(
10−3δ0

)2k
ρ

(k)
PPS

(
z+ 10−3δ0w

)
dw1 · · · dwk

−
∫
Ck

G(w)
(
10−3δ0

)2k
ρ

(k)

P̃PS

(
z+ 10−3δ0w

)
dw1 · · · dwk

∣∣∣∣≤C′δc
0.

(7.2)

As proven in Proposition 2.3.4 in [13], the zero set of P̃PS is invariant in distri-
bution under the transformations φ. Thus,∫

Ck
G(w)

(
10−3δ0

)2k
ρ

(k)

P̃PS

(
z+ 10−3δ0w

)
dw1 · · · dwk

=
∫
Ck

H(w)
(
10−3δ1

)2k
ρ

(k)

P̃PS

(
t + 10−3δ1w

)
dw1 · · · dwk.

(7.3)

Thus, it remains to show that∣∣∣∣∫
Ck

H(w)
(
10−3δ1

)2k
ρ

(k)
PPS

(
t + 10−3δ1w

)
dw1 · · · dwk

−
∫
Ck

H(w)
(
10−3δ1

)2k
ρ

(k)

P̃PS

(
t + 10−3δ1w

)
dw1 · · · dwk

∣∣∣∣≤ C′δc
1.

(7.4)

Recall that the hyperbolic area is defined by Area(B) := ∫B dm(z)

(1−|z|2)2 for every
Borel set B ⊂ D. By the change of variables formula, one can prove that if φ is a
hyperbolic transformation then φ preserves the hyperbolic area, that is, Area(B)=
Area(φ(B)). Moreover, φ maps circles in D into circles in D (see, for instance,
[34], Section 14.3).

Now, since φ maps zj to tj with |zj | ∈ [1−2δ0,1−δ0] and tj ∈ [1−2δ1,1−δ1],
one has

(7.5) φ
(
D(zj , δ0/s)

)⊂D(tj ,10δ1/s)
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for every s ≥ 25. Indeed, assume that tj ∈ φ(D(zj , δ0/s)) = D(t, r). Then
Area(D(zj , δ0/s))=Area(D(t, r)). We have

Area
(
D(zj , δ0/s)

)= ∫
D(zj ,δ0/s)

dm(z)

(1− |z|2)2 ≤
πδ2

0

s2

1

(δ0 − δ0/s)2 ≤
π

(s − 1)2 .

The radius r cannot be larger than 1/3 because otherwise, there exits some t ′
between t and tj such that |t ′ − tj | = δ1/2. And so D(t ′, δ1/2)⊂D(t, r), but then

(7.6) Area
(
D
(
t ′, δ1/2

))≥ πδ2
1

4

1

(1− (1− 3δ1)2)2 ≥
π

144
> φ
(
D(zj , δ0/s)

)
which is impossible. So, r ≤ 1/3, and hence, for every z ∈D(t, r), |z| ≥ |tj |−2r ≥
1− 2δ1− 2r > 1

3 − 2δ1 > 0. Therefore, Area(D(t, r))≥ πr2

16(δ1+r)2 . Comparing this

with (7.5), we conclude that r ≤ 4δ1
s−5 . Hence, D(t, r) ⊂ D(tj ,

8δ1
s−5) ⊂ D(tj ,

10δ1
s

),
proving (7.5).

From this and the assumption that G is supported in B(0,10−4)k , one can de-
duce that H is supported in B(0,10−3)k . The inequality (7.4) will then follow from
Theorem 2.3 if we can show that |∇aH(z)| ≤C for all 0≤ a ≤ 2k+ 4 and z ∈Ck ,
which in turn follows from the bounds:

(7.7)
∣∣(φ−1)(n)

(z)
∣∣≤ Cn

δ0

δn
1

∀n≥ 0,∀z ∈D
(
ti ,10−6δ1

)
,

where Cn is a constant depending on n.
Hence, it remains to show (7.7). Since φ−1(tj ) = zj , there exists some θ ∈

[0,2π) such that φ−1(z)= ϕ−zj
(e
√−1θϕtj (z)) for all z ∈D where ϕα = z−α

1−zᾱ
(see,

for instance, [34], Sections 12.4, 12.5). Since e
√−1θ does not change the magni-

tudes of the derivatives, we can assume without loss of generality that θ = 0. Now,
by direct computation, we have

∣∣ϕ(m)
tj

(z)
∣∣= ∣∣∣∣m!(1− |tj |2)t̄m−1

j

(1− t̄j z)m+1

∣∣∣∣
≤ Cmδ1

δm+1
1

= Cm

δm
1

∀m≥ 0,∀z ∈D
(
ti ,10−6δ1

)
.

(7.8)

For z ∈D(ti,10−6δ1), set w = ϕtj (z)= z−tj
1−t̄j z

∈D(0,10−5). And

(7.9)
∣∣ϕ(m)
−zj

(w)
∣∣= ∣∣∣∣m!(1− |zj |2)z̄m−1

j

(1− z̄jw)m+1

∣∣∣∣≤ Cmδ0 ∀m≥ 0,∀w ∈D
(
0,10−5).

Combining (7.8) and (7.9), we obtain (7.7) and complete the proof. �
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8. Proof of Theorem 2.8, part I: Reduction to the case M = m = 1. We be-
gin the proof of Theorem 2.8 in this section. In this section, ξk’s are i.i.d. normal-
ized Gaussian and (ck)k≥0 is a sequence of deterministic real numbers satisfying
the following assumptions. For some N0 ≥ 0 and 0 < m≤M <∞, it holds that

m
√

h(k)≤ |ck| ≤M
√

h(k), N0 ≤ k ≤ n, max
0≤k<N0

c2
k ≤ C1M.

Below, we let Nn(I) be the number of real zeros of Pn(t) =∑n
k=0 ckξkt

k that
are inside I for any I ⊂ R. For brevity, we will sometimes write Nn(a, b) =
Nn((a, b)), Nn[a, b] =Nn([a, b]), etc.

Our main goal of this section is to reduce the theorem to the simpler case M =
m= 1.

By Edelman–Kostlan [10], the density function for the distribution of the real
zeros for Pn(x) is ρn(t)= 1

π
‖γ ′n(t)‖ where γn(t) is the unit vector in the direction

of vn(t) := (c0, c1t, . . . , cnt
n). It was shown in [10] that

(8.1)
∥∥γ ′n(t)∥∥2 =

(‖v′n(t)‖
‖vn(t)‖

)2
−
(

vn(t) · v′n(t)
‖vn(t)‖2

)2
.

From (8.1), it follows that ρn is an even function of t .
By elementary computation, for any n≥ 0 and any sequence (xk) and (yk), we

have (
n∑

k=0

x2
k

)(
n∑

k=0

y2
k

)
−
(

n∑
k=0

xkyk

)2

=∑
k,m

(xkym − xmyk)
2.

It follows that

ρn(t)
2 = 1

π2

‖v′n(t)‖2‖vn(t)‖2 − [v′n(t) · vn(t)]2
‖vn(t)‖4

= 1

π2

∑
0≤k,m≤n(m− k)2c2

kc
2
mt2m+2k−2

(
∑n

k=0 c2
kt

2k)2
.

Thus, for |t | comparable to 1 we have ρ(t)=O(n), therefore, ENn(1− c
n
,1+

c
n
)=O(1) for any absolute constant c > 0. Furthermore, by scaling invariant one

sees that

COROLLARY 8.1. Suppose that for 0 < m≤M <∞ we have m|bk| ≤ |ak| ≤
M|bk| for every k = 0, . . . , n. Let Nn and Ñn respectively count the real zeros of
random polynomials associated with a0, . . . , an and b0, . . . , bn. Then

m2

M2 EÑn ≤ ENn ≤ M2

m2 EÑn.
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Thanks to Corollary 8.1, it suffices to prove Theorem 2.8 for m =M = 1. We
will free the symbols m and M so that they could be used for unrelated purposes
later.

We now describe the high-level overview of the rest of the proof of Theorem 2.8.
Thanks to Lemma 2.5, it remains to count the number of real zeros near the critical
points x = −1 and x = 1. By symmetry, it suffices to consider a small neighbor-
hood of 1, which we will discuss in the next two section: Section 9 will discuss
estimates for the density function near 1 and Section 10 will use these results to
estimate the average number of real zeros near 1.

9. Proof of Theorem 2.8, part II: Estimates for the density function near
±1. In this section, we prove some estimates for ρn near ±1.

Below, for x ≥ 0 let fn(x)=∑0≤k≤n c2
nx

n, clearly Var[Pn(t)] = fn(t
2) so our

notational convention is to think of x as t2.
Our general framework for the analysis in this section will be under the heuris-

tics that fn(x) converges fairly rapidly to some f∞(x) as n→∞. This conver-
gence essentially leads to the convergence of ρn to some limit ρ∞. The local aver-
age number of real zeros of Pn is essentially decided by the local behavior of ρ∞
and the rate of the convergence fn→ f∞. For instance, if Pn(t) =∑n

k=0 ckξkt
k

where ξk are i.i.d. normalized Gaussian and ck are independent of n then the nat-
ural choice for f∞ would be f∞(x)=∑∞k=0 c2

kx
k , and the convergence fn→ f∞

holds for x inside the radius of convergence of f∞. On the other hand, our ap-
proach is applicable even if ck depend on n, and does not require the polynomially
growing assumptions on ck .

To motivate the definition of ρ∞, we let gn(x)= logfn(x), and note the follow-
ing.

LEMMA 9.1. For every n, it holds that

(9.1) ρn(t)= 1

π

(
g′n
(
t2)+ t2g′′n

(
t2))1/2

.

PROOF. Let vn(t) denote the vector (c0, c1t, . . . , cnt
n). Clearly,∥∥vn(t)

∥∥2 = ∑
0≤k≤n

c2
kt

2k = fn

(
t2),

v′n(t) · vn(t)=
∑

0≤k≤n

kc2
kt

2k−1 = 1

2

d

dt

(∥∥vn(t)
∥∥2)= tf ′n

(
t2),

∥∥v′n(t)∥∥2 = ∑
0≤k≤n

k2c2
kt

2k−2 = 1

4t

d

dt

(
t
d

dt

(∥∥vn(t)
∥∥2))= f ′n

(
t2)+ t2f ′′n

(
t2).
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The desired claim now follows from the Edelman–Kostlan formula (8.1):

π2ρn(t)
2 =
(‖v′n(t)‖
‖vn(t)‖

)2
−
(

vn(t) · v′n(t)
‖vn(t)‖2

)2

= f ′n(t2)

fn(t2)
+ t2 f ′′n (t2)fn(t

2)− [f ′n(t2)]2
[fn(t2)]2

= g′n
(
t2)+ t2g′′n

(
t2). �

Let 0≤ β < α <∞ such that for x ∈ (α2, β2) the limit f∞(x) := limn→∞fn(x)

exists and is continuously twice differentiable on this interval. Let g∞(x) =
logf∞(x) and define

(9.2) ρ∞(t) := 1

π

√
g′∞
(
t2
)+ t2g′′∞

(
t2
)
.

Motivated by Lemma 9.1, under some mild assumptions one expects that ρn(t)

converges to ρ∞(t) for β < |t |< α. The precise estimates will be discussed below.
Note that the current analysis is only directly applicable to count the number of

real zeros inside (−α,α) near ±α. For R \ (−α,α), we will pass to the recipro-
cal polynomial P̃n(t)= 1

cn
tnPn(

1
t
) and apply the argument to P̃n, which is also a

Gaussian random polynomial.

9.1. Convergence of ρn.

THEOREM 9.2. Let un(x) := fn(x)
f∞(x)

. Assume that In ⊂ (β,α) is an interval

(whose endpoints may depend on n) such that un(t
2) ≥ c0 for |t | ∈ In for some

fixed constant c0 > 0. Then uniformly over {|t | ∈ In} it holds that

ρn(t)= ρ∞(t)+O
(∣∣u′n(t2)∣∣1/2 + ∣∣u′n(t2)∣∣+ ∣∣u′′n(t2)∣∣1/2)

.

PROOF. Let Dn(x)= logfn(x)− logf∞(x). Using Lemma 9.1, we have∣∣ρn(t)− ρ∞(t)
∣∣≤ ∣∣ρn(t)

2 − ρ∞(t)2∣∣1/2 ≤ ∣∣D′n(t2)∣∣1/2 + α
∣∣D′′n(t2)∣∣1/2

.

On the other hand, let x = t2 where t ∈ In, then un(x)≥ c0 > 0, therefore,

D′n(x)= u′n(x)

un(x)
=O

(
u′n(x)

)
D′′n(x)= u′′n(x)

un(x)
−
(

u′n(x)

un(x)

)2
=O

(
D′n(x)2 + |u′′n(x)|)

and the desired estimate immediately follows. �

We remark that the assumption un(t
2)≥ c0 > 0 uniformly over |t | ∈ In in The-

orem 9.2 is fairly mild, since one has un(x)→ 1 as n→∞.
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9.2. Blowup nature of ρ∞. It follows from Theorem 9.2 that the leading
asymptotics of ρn on In is determined by two factors: the size of un = fn/f∞ (and
its first two derivatives), and the possible blowup of ρ∞, which typically could hap-
pen near the endpoint of In. By (9.2) depends on the blowup nature of f∞ there.
For the polynomially growing setting of Theorem 2.8 (and with the normalization
M = m = 1), one expects that f∞ blows up polynomially near the endpoints of
its convergence interval. This will lead to a simple pole for ρ∞, as proved in the
following lemma.

LEMMA 9.3. Let 0 ≤ β < α < ∞ and γ ≥ 0. Assume that logf∞(x) +
γ log |x − α2| has two uniformly bounded derivatives for x ∈ (β2, α2). Then the
following holds uniformly over |t | ∈ (β,α):

ρ∞(t)= α
√

γ

π |t2 − α2| +O(1).

PROOF. Recall that g∞ = logf∞. For |t | ∈ (β,α), by the given assumption
we have

g′∞
(
t2)=− γ

t2 − α2 +O(1), g′′∞
(
t2)= γ

(t2 − α2)2 +O(1).

Using (9.2), we obtain

ρ∞(t)2 = 1

π2

(
g′∞
(
t2)+ t2g′′∞

(
t2))= 1

π2

(
− γ

t2 − α2 +
t2γ

(t2 − α2)2

)
+O(1)

= 1

π2

γα2

(t2 − α2)2 +O(1).

Since ρ∞ ≥ 0, the desired conclusion follows immediately. �

10. Proof of Theorem 2.8, part III: Counting real zeros near ±1. Recall
that h(k)=∑d

j=0 αjLj (Lj +1) · · · (Lj +k−1)/k! with nonzero coefficients, and
for some fixed N0 ≥ 0 the following hold:

• for every N0 ≤ k ≤ n it holds that |ck| = √h(k).
• for some C1 fixed we have max0≤k<N0 |ck|< C1.

Without loss of generality, assume that αd = 1.
To count the real zeros near ±1 of Pn(t)=∑d

k=0 ckξkt
k , we separate the treat-

ment of the inside and outside into two results, Lemmas 10.1 and 10.2 below. In
the following two results, the implicit constants may depend on N0, C1 and h.

LEMMA 10.1. For some β ∈ (0,1) that depends only on h, N0, C1, it holds
that

ENn

({
β ≤ |t | ≤ 1

})= √deg(h)+ 1

π
logn+O(1).
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LEMMA 10.2. It holds that

ENn

([−2,−1] ∪ [1,2])= logn

π
+O(1).

REMARK. It is clear that Theorem 2.8 follows from Lemma 2.5, Lemma 10.1,
Lemma 10.2. Therefore this section completes the proof of Theorem 2.8.

For convenience of notation, in the rest of the section let

(10.1) g(x)=
N0−1∑
k=0

[
c2
k − h(k)

]
xk.

It follows that fn(x)= g(x)+∑n
k=0 h(k)xk . Furthermore, g(x) and its derivatives

are uniformly bounded on any compact subset of R with bounds depending on C1
and N0 and h. This fact will be used implicitly below.

For any L ∈R, we also let

fn,L(x)=
n∑

k=0

bk,Lxk, bk,Ld
:= Ld · · · (Ld + k− 1)/k!.

10.1. Proof of Lemma 10.1. Clearly, fn(x) → f∞(x) for |x| < 1, and
f∞(x)= g(x)+∑∞k=0 h(k)xk .

Using the binomial expansion of (1− x)−L, we obtain

f∞(x)= g(x)+
d∑

m=0

αm(1− x)−Lm

for every x ∈ [−1,1). Since αd > 0 and Ld > · · ·> L0 > 0, it follows that

logf∞(x)+Ld log(1− x)

is bounded uniformly over x ∈ [β2,1) for some β ∈ (0,1) depending only on N0,
C1 and h. We furthermore choose β ∈ (0,1) to be sufficiently close to 1 such
that |( d

dx
)jf∞(x)| ≈ (1− x)−Ld−j 5 uniformly over x ∈ [β2,1) where j = 0,1,2.

Now, for c0 =min(Ld,minj (Lj −Lj−1)) > 0, it is clear that the j th derivative of
logf∞(x)+ Ld log(1− x)= log[(1− x)Ld f∞(x)] is bounded above by O((1−
x)c0−j ). Using (9.2) and argue as in the proof of Lemma 9.3, it follows that

ρ∞(t)=
√

Ld

π(1− t2)
+O

((
1− t2) c0

2 −1)
uniformly over |t | ∈ [β,1). Now recall that Ld ≡ deg(h)+ 1. By the symmetry of
the real zeros distribution, we have

(10.2) ENn

({β ≤ |t | ≤ 1})= 2
∫ 1− c

n

β
ρn(t) dt +O(1),

5We say that f ≈ g if there exist constants c, C such that cf ≤ g ≤ Cf .
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where c > 0 is any fixed constant. We will use the above estimate for ρ∞ to show
the following.

LEMMA 10.3. For some fixed c sufficiently large, it holds uniformly over |t | ∈
(β,1− c

n
) that

ρn(t)=
√

deg(h)+ 1

2π(1− |t |) +O(1)+O
(
(1− |t |) c0

2 −1)
+O

( [n(1− t2)](Ld+1)/2|t |n + [n(1− t2)]Ld |t |2n

1− |t |
)
.

We first show that this lemma implies the desired estimate for Lemma 10.1.
Indeed, notice that for every α > 0 we have α···(α+k−1)

k! ≈ kα−1 and
∑n

k=1 kα−1 ≈
nα , therefore, we obtain the following uniform estimates (over 0≤ x ≤ 1):

nαxn ≤ C

n∑
k=0

α · · · (α+ k− 1)

k! xk ≤ C

(1− x)α
.

Combining this with Lemma 10.3, we obtain the uniform estimate:

ρn(t)=
√

deg(h)+ 1

2π(1− t)
+O

(
(1− |t |) c0

2 −1)+O

(
1

n(1− |t |)2

)
over t ∈ [β,1− c

n
] where c > 0 is any fixed large constant. Together with (10.2),

we obtain

ENn

({β ≤ |t | ≤ 1})= √deg(h)+ 1

π
logn+O(1),

as stated in Lemma 10.1.
We now prove Lemma 10.3. The proof of this lemma relies on the following

estimates for fn.

LEMMA 10.4. For each j = 0,1,2, it holds uniformly over x ∈ [β2,1) that(
d

dx

)j (
fn(x)− f∞(x)

)=O

(
(1+ [n(1− x)]Ld+j−1)xn+1

(1− x)Ld+j

)
and it holds uniformly over x ∈ [−1,0] that fn(x)=O((1+ x)−(Ld−1)).

We first prove Lemma 10.3 using Lemma 10.4. Let un = fn(x)/f∞(x). By
Lemma 10.4, uniformly over x ∈ (β2,1) and j = 0,1,2 it holds that(

d

dx

)j (
un(x)− 1

)=O
(
(1− x)−j (1+ [n(1− x)

]Ld+j−1)
xn).
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In particular, for c large and β2 ≤ x ≤ 1 − c
n

we have un(x) = 1 + O(xn/2) =
1+O(e−c/2), and thus, un(x) ∈ [12 , 3

2 ]. Therefore, Theorem 9.2 is applicable, and
we obtain the desired estimate of Lemma 10.3.

PROOF OF LEMMA 10.4. Consider x ∈ [β2,1). It suffices to show that for
every L > 0 and each 0≤ j ≤ 2 the following holds uniformly:

(10.3)
(

d

dx

)j(
− 1

(1− x)L
+ fn,L(x)

)
=OL

(
(1+ [n(1− x)]L+j−1)xn+1

(1− x)L+j

)
.

Similarly, for x ∈ [−1,0] it suffices to show that for any L > 0,

(10.4) fn,L(x)=O
(
(1+ x)L−1).

Observe that

d

dx

(
− 1

(1− x)L
+ fn,L(x)

)
= L

(
− 1

(1− x)L+1 + fn−1,L+1(x)

)
therefore, in (10.3) we may assume that j = 0.

Now for 0≤ x < 1 we have

− 1

(1− x)L
+

n∑
k=0

L · · · (L+ k− 1)

k! xk

=
∞∑

k=n+1

L · · · (L+ k− 1)

k! xk

= xn+1
∞∑

k=0

L · · · (L+ k + n)

(n+ 1+ k)! xk.

(10.5)

Now we will use the standard asymptotic estimate for generalized binomial coef-
ficients

L(L+ 1) · · · (L+ k − 1)

k! ≈CkL−1

as k→∞ where C depends on L. It follows that

L(L+ 1) · · · (L+ k+ n)

(n+ 1+ k)! ≤ C
L(L+ 1) · · · (L+ k − 1)

k!
(

n+ k+ 1

k

)L−1

≤ C
L(L+ 1) · · · (L+ k − 1)

k!
(

1+ (n+ 1)L−1

kL−1

)
≤ C

L(L+ 1) · · · (L+ k − 1)

k! + (n+ 1)L−1
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(in the last estimate we use the asymptotic for generalized binomial coefficients
again). Using (10.5) and the binomial expansion, it follows that

− 1

(1− x)L
+

n∑
k=0

L(L+ 1) · · · (L+ k− 1)

k! xk

≤ xn+1[(1− x)−L + (n+ 1)L−1(1− x)−1]
≤ C

((
1+ [n(1− x)

]L−1)
(1− x)−Lxn+1)

giving (10.3).
For x ∈ [−1,0], we will use the following recursive formulas.

LEMMA 10.5. For any x �= 1, it holds that

fn,L(x)= fn,L−1(x)

1− x
− L · · · (L+ n− 1)

n!
xn+1

1− x
.

PROOF. We have

fn,L(x)= 1+Lx + L(L+ 1)

2
x2 + · · · + L(L+ 1) · · · (L+ n− 1)

n! xn,

xfn,L(x)= x +Lx2 + · · · + L · · · (L+ n− 1)

n! xn+1,

(1− x)fn,L(x)= 1+ (L− 1)x + · · · + L(L+ 1) · · · (L+ n− 2)(L− 1)

n! xn

− L · · · (L+ n− 1)

n! xn+1,

= fn,L−1(x)− L · · · (L+ n− 1)

n! xn+1

and the desired claim follows. �

For x ∈ [−1,0] it is clear that L···(L+n−1)
n!

xn+1

1−x
=O(nL−1|x|n)=O( 1

(1+x)L−1 ).
Thus, without loss of generality we may assume that 0 < L ≤ 1. For this L, for
x ∈ [−1,0] it is clear that fn,L is an alternating sum whose terms have decreasing
modulus, and could be easily bounded by O(1) uniformly over x ∈ [−1,0]. �

10.2. Proof of Lemma 10.2. Thanks to the symmetry of the distribution of the
real zeros, we have

(10.6) ENn

({
1≤ |t | ≤ 2

})= 2EÑn

(
1

2
,1
)
= 2
∫ 1− c

n

1
2

ρ̃n(t) dt +O(1),



2476 Y. DO, O. NGUYEN AND V. VU

where Ñn and ρ̃n are respectively the number of real zeros and the density of the
real zeros distribution for the normalized reciprocal polynomial

P̃n(t)=
n∑

k=0

cn−k

cn

ξkt
k.

We note that |cn| = √h(n) so cn �= 0 for n sufficiently large, so P̃n is well defined.
Let f̃n(x) denote the corresponding variance function

f̃n(x)=
n∑

k=0

c2
n−k

c2
n

xk ≡ xnfn(1/x)

c2
n

.

As we will see, for any 0≤ x < 1 the sequence f̃n(x) converges to f̃∞(x) := 1
1−x

,

which suggests that ρ̃n(t) is asymptotically 1
2π(1−t)

for t ∈ [12 ,1). In fact, we will
show the following.

LEMMA 10.6. Suppose that c > 0 is a sufficiently large fixed constant. Then
uniformly over t ∈ [12 ,1− c

n
], it holds that

ρ̃n(t)= 1

2π(1− t)

(
1+O

(
nLd−1−Ld

))+O(1)+O

(
1

n(1− t)2 +
1√

n(1− t)3

)
.

From the following computation, Lemma 10.6 and (10.6) imply the desired es-
timate for Lemma 10.2:

ENn

({
1≤ |t | ≤ 2

})= 2
∫ 1− c

n

1
2

1

2π(1− t)
dt +O(1)

+O

(∫ 1− c
n

1
2

1

n(1− t)2 +
1

n1/2(1− t)3/2 dt

)

= logn

π
+O(1).

To prove Lemma 10.6, we reduce the problem to the hyperbolic setting. As we
will see, f̃n(x) converges to f̃∞(x) = 1

1−x
for every x ∈ [0,1) sufficiently close

to 1, say x ∈ [1/2,1). Our proof will make use of the density comparison results
developed in the previous section, Theorem 9.2 and Lemma 9.3, relying on various
estimates for f̃n(x)/f̃∞(x) and its first two derivatives. It is clear that modulo the
contribution of g [defined in (10.1)] which will be shown to be very small, f̃n(x) is
a linear combination of f̃n,Lj

where the linear coefficient for f̃n,Ld
is 1+O(n−c)

and the linear coefficients of other terms are O(n−c) where c= Ld −Ld−1. Thus,
it suffices to consider the setting when fn = g + fn,Ld

, which we assume below.
We first establish some basic estimates for fn,L.
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LEMMA 10.7. Let L ∈R \ {0,−1,−2, . . .}. Then uniformly over 0≤ x < 1 it
holds that

(10.7) f̃n,L(x)= 1

1− x

[
1+O

(
1

n(1− x)

)]
the implicit constant depends only on L. Furthermore, if L≥ 1 then uniformly over
x ∈ [−1,0] it holds that f̃n,L(x)=O(1).

PROOF. For every x we have

f̃n,L(x)=
n∑

k=0

L · · · (L+ n− k− 1)n!
L · · · (L+ n− 1)(n− k)!x

k

=
n∑

k=0

(n− k+ 1) · · ·n
(L+ n− k) · · · (L+ n− 1)

xk

=
n∑

k=0

xk

(1+ L−1
n−k+1) · · · (1+ L−1

n
)
.

(10.8)

Now it is clear that if x ∈ [−1,0] and L≥ 1 then (10.8) is an alternating sum where
the terms have decreasing modulus, thus is clearly bounded above by O(1).

Now we consider L ∈ R \ {0,−1, . . . , } and x ∈ [0,1). Notice that for 0≤ k ≤
n/2 (and n large) it holds that 0 < 1− 2|L−1|

n
≤ 1+ L−1

n−k+1 ≤ 1+ 2|L−1|
n

. It follows

that (1+ L−1
n−k+1) · · · (1+ L−1

n
)≈ 1, therefore, by a telescoping argument we obtain

1

(1+ L−1
n−k+1) · · · (1+ L−1

n
)
= 1+O

(
k

n

)

(the implicit constant depends on L). Consequently, the sum of the first n/2 terms
of f̃n,L satisfies

∑
0≤k≤n/2

xk

(1+ L−1
n−k+1) · · · (1+ L−1

n
)
= ∑

0≤k≤n/2

xk + 1

n
O

(∑
k≥0

kxk

)

= 1

1− x
+O

(
1

n(1− x)2

)
.

For the other terms, we use the classical estimate

C0k
L−1 ≤

∣∣∣∣L(L+ 1) · · · (L+ k− 1)

k!
∣∣∣∣≤C2k

L−1



2478 Y. DO, O. NGUYEN AND V. VU

for some C0,C2 > 0 depending only on L (this estimate requires L /∈ {0,−1,

−2, . . .}). It follows that∣∣∣∣ ∑
n/2<k≤n

L(L+ 1) · · · (L+ n− k− 1)/(n− k)!
L(L+ 1) · · · (L+ n− 1)/n! xk

∣∣∣∣
≤ Cn1−Lxn/2

∑
n/2<k≤n

(n− k)L−1

≤ Cn1−Lxn/2nL ≤ C
1

n(1− x)2 .

This completes the proof of the lemma. �

Now recall the definition of g in (10.1), we obtain

(10.9) f̃n(x)= 1

bn,Ld

xng

(
1

x

)
+ f̃n,Ld

(x)

and we have the crude estimate [which holds uniformly over x =O(1))∣∣∣∣ 1

bn,Ld

xng(1/x)

∣∣∣∣≤ Cn1−Ld
(
xn + xn−N0

)≤ C
1

nLd+1(1− x)2

therefore, using Lemma 10.7, we obtain the following corollary.

COROLLARY 10.8. Uniformly, over 0≤ x < 1, it holds that

f̃n(x)= 1

1− x

[
1+O

(
1

n(1− x)

)]
.

Thus, using Ld > 0, for every fixed x ∈ [0,1) we have limn→∞ f̃n(x)= 1
1−x
≡

f̃∞(x) as claimed earlier. Furthermore, from Corollary 10.8, it follows that for any
fixed c > 0, if x ∈ [0,1− c

n
] then

ũn(x) := f̃n(x)

f̃∞(x)
= 1+O

(
1

c

)
for therefore by choosing c > 0 sufficiently large we could ensure that ũn(x)≥ 1/2
for every x ∈ [0,1− c

n
] and every n sufficiently large. Thus, by Theorem 9.2 and

Lemma 9.3, we obtain the following estimate, uniformly over t ∈ [12 ,1− c
n
]:

ρ̃n(t)= 1

2π(1− t)
+O(1)+O

(∣∣ũ′n(t2)∣∣1/2 + ∣∣ũ′n(t2)∣∣+ ∣∣ũ′′n(t2)∣∣1/2)
.

Thus, to complete the proof of Lemma 10.6, it remains to show the following
estimates uniformly over x ∈ [14 ,1− c

n
]:

ũ′n(x)=O

(
1

n(1− x)2

)
,(10.10)
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ũ′′n(x)=O

(
1

n(1− x)3

)
.(10.11)

Recall from (10.9) that

f̃n(x)= 1

bn,Ld

xng

(
1

x

)
+ f̃n,Ld

(x).

Using the definition (10.1) for g and using Ld ≥ 0, it follows that the first term
g1(x) := 1

bn,Ld
xng( 1

x
) satisfies

d

dx
g1(x)=O

(
n2−Ld xn)=O

(
1

nLd+1(1− x)3

)
=O

(
1

n(1− x)2 f̃∞(x)

)
,

(
d

dx

)2
g1(x)=O

(
n3−Ld xn)=O

(
1

nLd+1(1− x)4

)
=O

(
1

n(1− x)3 f̃∞(x)

)
,

uniformly over x ∈ [1/2,1).
Therefore, it suffices to show (10.10) and (10.11) for fn = fn,Ld

. We will use
the following analogue of Lemma 10.5.

LEMMA 10.9. For L /∈ {0,−1,−2, . . .}, it holds that

f̃n,L(x)= 1

1− x
− x

1− x

L− 1

L+ n− 1
f̃n,L−1(x).

PROOF. This follows from Lemma 10.5 using the definition of f̃ . Alterna-
tively, we could directly compute

(1− x)f̃n,L(x)= 1+
n∑

k=1

bn−k,L − bn−k+1,L

bn,L

xk − 1

bn,L

xn+1

= 1−
n∑

k=1

bn−k+1,L−1

bn,L

xk − 1

bn,L

xn+1

= 1− L− 1

L+ n− 1

n∑
k=1

bn−k+1,L−1

bn,L−1
xk − L− 1

L+ n− 1

1

bn,L−1
xn+1

= 1− L− 1

L+ n− 1
xf̃n,L−1(x)

giving the desired claim. �

Using Lemma 10.7 and Lemma 10.9, it follows that if L /∈ {1,0,−1, . . .} then

(10.12) f̃n,L(x)= 1

1− x
− L− 1

L+ n− 1

x

(1− x)2 +O

(
1

n2(1− x)3

)
.
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On the other hand, if L = 1 then this estimate holds trivially via explicit com-
putation from f̃n,1 = (1 − xn+1)/(1 − x). Thus, (10.12) holds for any L /∈
{0,−1,−2, . . .}.

Now, using (10.12) and Lemma 10.9 again, we obtain the following corollary.

COROLLARY 10.10. For x ∈ [1/2,1− c/n], if L /∈ {0,−1,−2, . . .}, then

f̃n,L(x)= 1

1− x
− L− 1

L+ n− 1

x

(1− x)2 +O

(
1

n2(1− x)3

)

= 1

1− x
− (L− 1)

(L+ n− 1)

x

(1− x)2

+ (L− 1)(L− 2)

(L+ n− 1)(L+ n− 2)

x2

(1− x)3 +O

(
1

n3(1− x)4

)
.

[Again, the case L= 1 of the second estimate in Corollary 10.10 does not follow
from (10.12) and Lemma 10.9 and one checks this case separately using explicit
computation.]

Now we show the desired estimate (10.10) for ũ′n. As remarked earlier, it suf-
fices to assume fn = fn,L for some L > 1. We have

ũ′n(x)= (f̃n,L(x)(1− x)
)′ = (1− x)

d

dx
f̃n,L(x)− f̃n,L(x),

d

dx
f̃n,L(x)= 1

bn,L

[
nxn−1fn,L

(
1

x

)
− xn−2f ′n,L

(
1

x

)]
.

It is clear that f ′n,L(x)= L
∑n−1

k=0
(L+1)···(L+k)

k! xk = Lfn−1,L+1(x), therefore,

(10.13)
d

dx
f̃n,L(x)= n

x

[
f̃n,L(x)− f̃n−1,L+1(x)

]
.

Recall that Ld > 0. Thus, by Corollary 10.10, we have

ũ′n(x)= n(1− x)

x

[
f̃n,Ld

(x)− f̃n−1,Ld+1(x)
]− f̃n,Ld

(x)

= n(1− x)

x

[(
1

1− x
− Ld − 1

Ld + n− 1

x

(1− x)2

)

+ (−1)

(
1

1− x
− Ld

Ld + n− 1

x

(1− x)2

)]

+
(
− 1

1− x

)
+O

(
1

n(1− x)2

)

=O

(
1

n(1− x)2

)
uniform over x ∈ [1/2,1− c/n], thus proving (10.10).
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For (10.11), we use (10.13) to obtain

ũ′′n(x)= d

dx

[
n(1− x)

x

(
f̃n,L(x)− f̃n−1,L+1(x)

)]− d

dx
f̃n,L(x)

= n(1− x)

x

[
n

x

(
f̃n,L(x)− f̃n−1,L+1(x)

)− n− 1

x

(
f̃n−1,L+1(x)

+ (−1)f̃n−2,L+2(x)
)]+ (− n

x2 −
n

x

)[
f̃n,L(x)− f̃n−1,L+1(x)

]
.

Using Corollary 10.10 again, we have

f̃n,L(x)− f̃n−1,L+1(x)= x

(L+ n− 1)(1− x)2 +

+ −2(L− 1)

(L+ n− 1)(L+ n− 2)

x2

(1− x)3

+O

(
1

n3(1− x)4

)
.

Therefore,

ũ′′n(x)= n(1− x)

x

[
1

(Ld + n− 1)(1− x)2

]

+ n(1− x)

x

[
2Ld(n− 1)− 2(Ld − 1)n

(Ld + n− 1)(Ld + n− 2)

x

(1− x)3

]

+ (−1)
n+ nx

x(Ld + n− 1)(1− x)2 +O

(
1

n(1− x)3

)

= n(1− x)

x

[
1

n(1− x)2 +O

(
1

n2(1− x)2

)]

+ n(1− x)

x

[
2Ldn− 2(Ld − 1)n

n2

x

(1− x)3 +O

(
1

n2(1− x)3

)]

+ (−1)
n+ nx

nx(1− x)2 +O

(
1

n(1− x)2

)
+O

(
1

n(1− x)3

)

= 1

x(1− x)
+ 2n

n(1− x)2 −
n+ nx

x(1− x)2 +O

(
1

n(1− x)3

)

=O

(
1

n(1− x)3

)
thus proving (10.11). This completes the proof of Lemma 10.2.

11. Proof of Theorem 2.9. In this section, we count the average number of
real zeros for Pn(t) =∑n

j=0 cj ξj t
j where for j ≥ N0 two conditions hold: cj =
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P(j) for some fixed classical polynomial P of degree ρ when j ≥ N0 and is
bounded when j ≤ N0, and ξj are independent Gaussian with mean μ �= 0 and
variance 1. Without loss of generality, we may assume that the leading coefficient
of P is 1, that is, cj = jρ + · · · .

Thanks to Lemma 2.5, the average number of real zeros outside [−1−b1,−1+
b1] and [1− b1,1+ b1] (for any fixed b1 > 0) is bounded.

We will show that on average there are a bounded number of real zeros in [1−
b1,1+ b1] and 1+√2ρ+1

2π
logn+O(1) real zeros in [−1− b1,−1+ b1].

As in the proof of Corollary 2.6, let m(t)= EP(t), P =Var[Pn] =∑n
j=0 c2

j t
2j ,

Q=Var[P ′n(t)] =
∑n

j=0 cj j
2t2j−2, and R=Cov[Pn,P

′
n] =

∑n
j=0 jc2

j t
2j−1, and

S = PQ−R2.
We will use the following generalization of the Kac–Rice formula in [12],

Corollary 2.1, which gives

ENn[a, b] = I1(a, b)+ I2(a, b),

I1(a, b) :=
∫ b

a

S1/2

πP exp
(
−m2Q+m′2P − 2mm′R

2S

)
dt,

I2(a, b) :=
∫ b

a

√
2|m′P −mR|

πP3/2 exp
(
−m2

2P

)
erf

( |m′P −mR|√
2PS

)
dt,

erf (x) :=
∫ x

0
e−t2

dt.

We note that in I1 the first factor S1/2/(πP) is exactly the density of the real
roots for Pn in the mean zero case, namely ρn in the notation of Lemma 9.1, and
there is an extra exponential factor in I1. Our plan is, essentially, to show that
near 1 the exponential decay of the extra factor in I1 will cancel out the pole
singularity of ρn and near −1 the extra factor in I1 is essentially 1. This would
lead to I1(a, b)=O(1) if a, b are close to 1 and I1(a, b)= ∫ b

a ρn(t) dt +O(1) if
a, b, are close to −1, thus allowing us to reduce the proof to the mean zero case.
For I2, we will show that I2(a, b)=O(1) for both cases.

We now separate the neighborhood into four intervals: [1− b1,1], [−1,−1+
b1], [1,1 + b1], and [−1 − b1,−1], where b1 > 0 is a sufficiently small fixed
constant.

The interval [1 − b1,1]. We will show that this interval contributes O(1) to
ENn. Using (10.3), for 1− b1 ≤ t < 1 we have

m(t)= μ

n∑
j=0

cj t
j

= ∑
j<N0

μ
[
cj −P(j)

]
tj + μρ!

(1− t)ρ+1

(
1+O

([
1+ n(1− t)

]ρ
tn+1))
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=O(1)+ μρ!
(1− t)ρ+1

(
1+O

([
1+ n(1− t)

]ρ
tn+1))

=O(1)+ μρ!
(1− t)ρ+1

(
1+O

(
tn/2))

here we have used the fact that nLsn =O((1− s)−L), applied to s = t1/2. Simi-
larly,

m′(t)= μ

n−1∑
j=0

cj+1(j + 1)tj =O(1)+ μ(ρ + 1)!
(1− t)ρ+2

(
1+O

(
tn/2)),

P =O(1)+ (2ρ)!
(1− t2)2ρ+1

(
1+O

(
tn
))

,

Q=O(1)+ (2ρ + 2)!
(1− t2)2ρ+3

(
1+O

(
tn
))

,

R=O(1)+ (2ρ + 1)!t
(1− t2)2ρ+2

(
1+O

(
tn
))

.

Note that by choosing c > 0 sufficiently large we could ensure that tn/2 1 for
|t | ≤ 1− c

n
, and by choosing b1 > 0 sufficiently small we could ensure that 1

1−t2 �
1 for t ∈ [1− b1,1). It follows that

m2Q+m′2P − 2mm′R≥ Cρ

1

(1− t)4ρ+5 ≥ C′ρ
P2

(1− t)3

for some positive constants C′ρ,Cρ depending only on ρ and μ. Now, by
Lemma 10.3, we have

S1/2

πP = ρn ∼ 1

1− |t | .
Consequently, uniformly over t ∈ [1− b1,1], we have

m2Q+m′2P − 2mm′R
2S ≥C′′ρ

1

1− t

therefore,

I1

(
1− b1,1− c

n

)
=O

(∫ 1

1−b1

1

1− t
exp
(
− C′′ρ

1− t

)
dt

)
=O(1)

I1

(
1− c

n
,1
)
≤
∫ 1

1− c
n

ρn(t) dt =O(1).

Now for I2 we similarly have, for t ∈ [1− b1,1− c
n
],

m2

2P ≥Cρ

1

1− t
,

∣∣m′P −mR
∣∣=O

(
1

(1− t)3ρ+3

)
=O

( P3/2

(1− t)3/2

)
,
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therefore,

I2

(
1− b1,1− c

n

)
=O

(∫ 1− c
n

1−b1

1

(1− t)3/2 exp
(
−Cρ

1

1− t

)
dt

)
=O(1).

On the other hand, the integrand of I2 is bounded above by O(n) for t ∈ [1− c
n
,1],

for any fixed c > 0. To see this, first note that for some absolute constant n0 the
coefficients cj are of the same sign and |cj | ≥ jρ for j ≥ n0. It follows that the
main contribution to m and m′ comes from the tail j ≥ n0. For instance,∣∣m(t)

∣∣=O(1)+
∣∣∣∣ ∑
n0≤j≤n

cj t
j

∣∣∣∣,
∣∣∣∣ ∑
n0≤j≤n

cj t
j

∣∣∣∣ ≥ 1

C

∑
n0≤j≤n

jρ ≥ 1

C′
nρ+1� 1,

and for m′ we could argue similarly. Since cj are of the same sign for j ≥ n0, it
follows immediately that |m′(t)| =O(n|m(t)|), and consequently

|m′P|
P3/2 exp

(
−m2

2P

)
= nO

( |m|
P1/2 exp

(
−m2

2P

))
=O(n),

using the boundedness of xe−x2
. We also have

|mR|
P3/2 exp

(
−m2

2P

)
=O

(R
P

)
=O(n).

It follows that I2(1− c
n
,1)=O(1), so I2(1− b1,1)=O(1).

The interval [−1,−1 + b1]. We will show that this interval contributes
(
√

2ρ + 1 logn)/(2π)+O(1) to ENn. The analysis of this interval is fairly similar
to the analysis of [1− b1,1]; the main difference is that m(t) and m′(t) are less
singular near −1, in fact they are bounded by O((1+ t)−ρ) and O((1+ t)−(ρ+1)),
respectively [by using (10.4) for L = 1,2, . . . , ρ and expanding the polynomial
defining cj into the linear basis of binomial polynomials]. It follows that

m2Q+m′2P − 2mm′R=O

(
1

(1+ t)4ρ+3

)
=O

( P2

1+ t

)
=O

(
(1+ t)S

)
therefore, for c > 0 sufficiently large and b1 > 0 sufficiently small

I1

(
−1+ c

n
,−1+ b1

)
=
∫ −1+b1

−1+ c
n

ρn(t) dt +O

(∫ −1+b1

−1
ρn(t)(1+ t) dt

)

=
√

2ρ + 1

2π
logn+O(1),

I1

(
−1,−1+ c

n

)
≤
∫ −1+ c

n

−1
ρn(t) dt =O(1).
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For I2, similarly we only need to show that I2(−1 + c
n
,−1 + b1) = O(1). This

follows from

|m′P −mR|
P3/2 =O

(
(1+ t)−(2ρ+2)

(1+ t)−3ρ+ 3
2

)
=O

(
(1+ t)ρ−

1
2
)=O

(
(1+ t)−

1
2
)
.

The interval [1,1+b1]. We will show that this interval contributes O(1) to ENn.
To analyze this interval, consider the reciprocal polynomial P̃n(t)=∑n

j=0 c̃j ξj t
j

where c̃j = cn−j /cn. For convenience, let ρ̃n, Ĩ1, Ĩ2, P̃ , Q̃, R̃, S̃ , m̃, and m̃′ be
the corresponding quantities, and similarly it suffices to show that Ĩ1(1− b1,1−
c
n
), Ĩ2(1− b1,1− c

n
)=O(1) where c > 0 is a fixed large constant.

Let f̃n(t)= P̃(t), so f̃n(t
2)=Var[P̃n(t)] as in the proof of Theorem 2.8. Recall

from the proof of Lemma 9.1 that Q̃=∑n
j=0 j2c̃2

j t
2j−2 = f̃ ′n(t2)+ t2f̃ ′′n (t2), and

R̃=∑n
j=0 j c̃2

j t
2j−1 = t f̃ ′n(t2).

Recall that ũn(x)= f̃n(x)(1−x). From Corollary 10.8, (10.10) and (10.11), for
x ∈ [1− b1,1− c

n
] with c > 0 sufficiently large we have

f̃n(x)= 1

1− x

[
1+O

(
1

n(1− x)

)]
,

f̃ ′n(x)= ũ′n(x)+ f̃n(x)

1− x

= f̃n(x)

1− x
+O

(
1

n(1− x)3

)

= 1

(1− x)2 +O

(
1

n(1− x)3

)
,

f̃ ′′n (x)= ũ′′n(x)+ 2f̃ ′n(x)

1− x
= 2

(1− x)3 +O

(
1

n(1− x)4

)
.

It follows that for t ∈ [1− b1,1− c
n
], we have

P̃(t)= 1

1− t2 +O

(
1

n(1− t2)2

)
,

Q̃(t)= 2

(1− t2)3 +O

(
1

n(1− t2)4

)
+O

(
1

(1− t2)2

)
,

R̃(t)= t

(1− t2)2 +O

(
1

n(1− t2)3

)
and using Lemma 10.6 and the Edelman–Kostlan formula we have

S̃ = ρ̃n(t)
2π2P̃2(t)=O

(
1

(1− t2)2 P̃
2
)
.
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On the other hand, for t ∈ [1− b1,1], using Corollary 10.8 we have

m̃(t)= μ

n∑
j=0

c̃j t
j = μ

1− t

[
1+O

(
1

n(1− t)

)]
.

Let dj = cj j which is a polynomial of j (for j ≥ N0) of degree ρ + 1. Then for

j ≤ n−N0 we have d̃j = dn−j

dn
= c̃j − j

n
c̃j . We obtain

m̃′(t)= μ

n∑
j=0

c̃j j tj−1 = nμ

n∑
j=0

c̃j t
j−1 − nμ

n∑
j=0

d̃j t
j−1.

To evaluate
∑n

j=0 d̃j t
j−1 and

∑n
j=0 c̃j t

j−1, we use Corollary 10.10 together with
an expansion of the polynomials defining cj and dj into the linear basis of binomial
polynomials L···(L+j−1)

j ! with L = 1,2, . . . (as in the proof of Corollary 10.8). It
follows that

m̃′(t)= μ

n∑
j=0

c̃j j tj−1

= nμ

n∑
j=0

c̃j t
j−1 − nμ

n∑
j=0

d̃j t
j−1

= nμ

[
1

1− t

(
1+O

(
1

n

))
− ρ

ρ + n

t

(1− t)2 +O

(
1

n2(1− t)2

)]

− nμ

[
1

1− t

(
1+O

(
1

n

))
− ρ + 1

ρ + 1+ n

t

(1− t)2 +O

(
1

n2(1− t)2

)]

= μ

(1− t)2 +O

(
1

1− t

)
.

Note that by choosing b1 small and c large we know that 1− t  1 and 1
n(1−t)

 1.
Thus,

m̃2Q̃+ m̃′2P̃ − 2m̃m̃′R̃≥ C−1 1

(1− t)5 ≥ P̃2(1− t)−3

≥ C−1S̃(1− t)−1

and the rest of the proof is similar to the prior treatment for (the case ρ = 0 of)
ENn[1− b1,1]. In particular, to show that m̃′(t) =O(n|m̃(t)|) for t ∈ [1− c

n
,1]

[in the treatment of Ĩ2(1− c
n
,1)] we similarly observe that the main contributions

to |m̃| and |m̃′| come from 0≤ j ≤ n− n0, and for these indices we have c̃j > 0.
The interval [−1 − b1,−1]. We will show that this interval contributes

(logn)/(2π) + O(1) to ENn. As before, we also consider the reciprocal poly-
nomial P̃n and count the number of real roots in [−1,−1+ b1] for this polyno-
mial. The analysis is similar to the treatment for the interval [1,1+ b1]; the only
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modification is in the estimate for m̃ and m̃′ near −1, and unlike the last interval
here these two terms are bounded above by O(1) (via applications of Lemma 10.7
together with an expansion of the polynomial defining cj into the linear basis of bi-
nomial polynomials). The rest of the proof is entirely similar to the prior treatment
for (the case ρ = 0 of) ENn[−1,−1+ b1].

APPENDIX

In this section, we provide the proof of Theorem 4.11. For the proof of Theo-
rem 2.10, we need an analog of this theorem when P is a power series of the form
(2.11). A proof for series in fact runs along the same line with the following proof
for polynomials, except some minor modifications that we shall notify the reader.

We first prove the following lemma.

LEMMA A.1. Let P be the random polynomial of the form (2.4) where the ξi

are independent random variables with variance 1 and supi≥0 E|ξi |2+ε ≤ τ2 for
some constant τ2. And let P̃ =∑∞i=0 ci ξ̃iz

i be the corresponding polynomial with
Gaussian random variables ξ̃i . Assume that ξ̃i matches moments to second order
with ξi for every i ∈ {0, . . . , n} \ I0 for some subset I0 (may depend on n) of size
bounded by some constant N0 and that supi≥0 E|ξ̃i |2+ε ≤ τ2.

Then there exists a constant C2 such that the following holds true. Let α1 ≥
C2α0 > 0 and C > 0 be any constants. Let δ ∈ (0,1) and m ≤ δ−α0 and
z1, . . . , zm ∈C be complex numbers such that

(A.1)
|ci ||zj |i√

V (zj )
≤ Cδα1 ∀i = 0, . . . , n, j = 1, . . . ,m,

where V (zj )=∑i={0,...,n}\I0
|ci |2|zj |2i . Let H : Cm→ C be any smooth function

such that ‖∇aH‖ ≤ δ−α0 for all 0≤ a ≤ 3, then∣∣∣∣EH

(
P(z1)√
V (z1)

, . . . ,
P (zm)√
V (zm)

)
−EH

(
P̃ (z1)√
V (z1)

, . . . ,
P̃ (zm)√
V (zm)

)∣∣∣∣≤ C̃δα0,

where C̃ is a constant depending only on α0, α1, C, N0, τ2 and not on δ.

PROOF. Our proof works for any subset I0 of size bounded by N0, but for
notation convenience, we assume that I0 = {0, . . . ,N0 − 1}. We use the Linde-
berg swapping argument. Let Pi0 =

∑i0−1
i=0 ci ξ̃iz

i +∑n
i=i0

ciξiz
i . Then P0 = P and

Pn+1 = P̃ . Put

Ii0 =
∣∣∣∣EH

(
Pi0(z1)√
V (z1)

, . . . ,
Pi0(zm)√
V (zm)

)
−EH

(
Pi0+1(z1)√

V (z1)
, . . . ,

Pi0+1(zm)√
V (zm)

)∣∣∣∣.
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Then6

I :=
∣∣∣∣EH

(
P(z1)√
V (z1)

, . . . ,
P (zm)√
V (zm)

)
−EH

(
P̃ (z1)√
V (z1)

, . . . ,
P̃ (zm)√
V (zm)

)∣∣∣∣
≤

n∑
i0=0

Ii0 .

Fix i0 ≥N0 and let Yj =∑i0−1
i=0

ci ξ̃i z
i
j√

V (zj )
+∑n

i=i0+1
ciξiz

i
j√

V (zj )
for j from 1 to n. Then

Pi0 (zj )√
V (zj )

= Yj + ci0ξi0z
i0
j√

V (zj )
and

Pi0+1(zj )√
V (zj )

= Yj + ci0 ξ̃i0z
i0
j√

V (zj )
. Fix ξi when i < i0 and ξ̃i

when i > i0 and the Yj ’s are fixed. Put

G=Gi0(w1, . . . ,wm) :=H(Y1 +w1, . . . , Ym +wm).

Then ‖∇aG‖∞ ≤ Cδ−α0 for all 0≤ a ≤ 3. Then we need to estimate di0 , which is
defined by the following expression:∣∣∣∣Eξi0 ,ξ̃i0

G

(
ci0ξi0z

i0
1√

V (z1)
, . . . ,

ci0ξi0z
i0
m√

V (zm)

)
−Eξi0 ,ξ̃i0

G

(
ci0 ξ̃i0z

i0
1√

V (z1)
, . . . ,

ci0 ξ̃i0z
i0
m√

V (zm)

)∣∣∣∣.
Let ai,i0 = ci0z

i0
i√

V (zi)
and ai0 = (

∑m
i=1 |ai,i0 |2)1/2. Taylor expanding G around

(0, . . . ,0) gives

(A.2) G(a1,i0ξi0, . . . , am,i0ξi0)=G(0)+G1 + err1,

where

G1 = dG(a1,i0ξi0 t, . . . , am,i0ξi0 t)

dt

∣∣∣∣
t=0

=
m∑

i=1

∂G(0)

∂ Re(wi)
Re(ai,i0ξi0)+

m∑
i=1

∂G(0)

∂ Im(wi)
Im(ai,i0ξi0)

6For power series, to have I ≤∑∞i0=0 Ii0 , we need to show that

EH

(
P0(z1)√
V (z1)

, . . . ,
P0(zm)√
V (zm)

)
−EH

(
P̃ (z1)√
V (z1)

, . . . ,
P̃ (zm)√
V (zm)

)

=
∞∑

i0=0

(
EH

(
Pi0(z1)√

V (z1)
, . . . ,

Pi0(zm)√
V (zm)

)
−EH

(
Pi0+1(z1)√

V (z1)
, . . . ,

Pi0+1(zm)√
V (zm)

))
,

that is, EH(
Pn(z1)√
V (z1)

, . . . ,
Pn(zm)√
V (zm)

)→ EH(
P̃ (z1)√
V (z1)

, . . . ,
P̃ (zm)√
V (zm)

) as n→∞. This follows from the

fact that Pn(zi)→ P̃ (zi ) a.e., the continuity and boundedness of H , and the dominated convergence
theorem.
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and

|err1| ≤ sup
t ′∈[0,1]

∣∣∣∣12 d2G(a1,i0ξi0 t, . . . , am,i0ξi0 t)

dt2

∣∣∣∣
t=t ′

= sup
t ′∈[0,1]

∣∣∣∣12 ∑
h,k∈{Re,Im},i,j∈{1,...,m}

∂2G

∂h(wi)∂k(wj )
h(ai,i0ξi0)k(aj,i0ξi0)

∣∣∣∣
≤ C̃δ−α0 |ξi0 |2

m∑
i,j=1

|ai,i0 ||aj,i0 | ≤ C̃δ−α0 |ξi0 |2
(

m∑
i=1

|ai,i0 |
)2

≤ C̃δ−α0 |ξi0 |2m
(

m∑
i=1

|ai,i0 |2
)
= C̃δ−2α0 |ξi0 |2a2

i0
.

Similarly,

(A.3) G(a1,i0ξi0, . . . , am,i0ξi0)=G(0)+G1 + 1

2
G2 + err2,

where G2 =
d2G(a1,i0ξi0

t,...,am,i0ξi0 t)

dt2 |t=0 and

(A.4) |err2| ≤ C̃δ−
5
2 α0 |ξi0 |3a3

i0
.

Also, we have |err2| = |err1− 1
2G2| ≤ C̃δ−2α0 |ξi0 |2a2

i0
≤ δ− 5

2 α0 |ξi0 |2a2
i0

. Interpola-
tion gives

|err2| ≤ C̃δ−
5
2 α0 |ξi0 |2+εa2+ε

i0
.

The expression (A.4) also holds for ξ̃ in place of ξ . Subtracting and taking
expectations and using the matching moments give

di0 = |Eerr2| ≤ C̃δ−
5
2 α0a2+ε

i0

(
E|ξi0 |2+ε +E|ξ̃i0 |2+ε)≤ C̃δ−

5
2 α0a2+ε

i0
.

Taking expectation with respect to the random variables ξ̃i where i < i0 and ξi

where i > i0 gives Ii0 ≤ C̃δ− 5
2 α0a2+ε

i0
, for all i0 ≥N0.

For 0≤ i0 < N0, instead of (A.2) and (A.3), we use mean value theorem to get
the rough bound

G(a1,i0ξi0, . . . , am,i0ξi0)=G(0)+O

(
m‖∇G‖∞|ξi0 |

m∑
i=1

|ai,i0 |
)
,

which by the same arguments as above gives Ii0 ≤ C̃δ− 5
2 α0ai0 . Thus,

I ≤ C̃δ−
5
2 α0

n∑
i0=0

a2+ε
i0
+ C̃δ−

5
2 α0

N0∑
i0=0

ai0 .
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Note that since a2
i0
=∑m

i=1 |ci0 |2 |zi |2i0

V (zi)
, we obtain

n∑
i0=0

a2
i0
=m+

m∑
i=1

N0∑
i0=0

|ci0 |2|zi |2i0

V (zi)
=m+O

(
mδ2α1

)=O(m).

Moreover, since
|ci0 ||zi |i0√

V (zi)
≤ C̃δα1 , a2

i0
≤mC̃2δ2α1 ≤ C̃2δ2α1−α0 . Hence,

I ≤ C̃δ−
5
2 α0+ε(α1− α0

2 )
n∑

i0=0

a2
i0
+ C̃δα1−3α0

≤ C̃δ−
5
2 α0+ε(α1− α0

2 )δ−α0 + C̃δα1−3α0 ≤ C̃δα0 . �

Now we proceed to the proof of Theorem 4.11.

PROOF. Consider

F̄ (w1, . . . ,wm)= F

(
w1 + 1

2
log
∣∣V (z1)

∣∣, . . . ,wm + 1

2
log
∣∣V (zm)

∣∣).
Then we still have ‖∇aF̄‖∞ ≤ Cδ−α0 for all 0≤ α ≤ 3, and we want to show that∣∣∣∣EF̄

(
log
|P(z1)|√

V (z1)
, . . .

)
−EF̄

(
log
|P̃ (z1)|√

V (z1)
, . . .

)∣∣∣∣≤ C̃δα0

(the . . . stop at zm, this will be our convention when writing long expressions). Let

�1 =
{
(w1, . . . ,wm) ∈Rm : min

i=1,...,m
wi <−M

}
,

�2 =
{
(w1, . . . ,wm) ∈Rm : min

i=1,...,m
wi >−M − 1

}
,

where M is to be defined. Then �1 ∪�2 =R
m ⊂C

m, and since we only look at

F̄

(
log
|P(z1)|√

V (z1)
, . . . , log

|P(zm)|√
V (zm)

)
,

we can restrict F̄ to R
m ⊂C

m and think about F̄ as a function from R
m→C. We

can further assume that F̄ : Rm→ R by considering the real and imaginary parts
of F̄ separately.

Now there exists a smooth function ψ :Rm→R such that ψ is supported in �2
and ψ = 1 on the complement of �1 and ‖∇aψ‖∞ ≤mC2 for all 0≤ a ≤ 3 and C2
is some constant. Indeed, there exists a function ρ :R→R such that ρ is supported
in [−M − 1,∞), ρ = 1 on [−M,∞), 0 ≤ ρ ≤ 1, and ρ has bounded derivatives
of all orders. This function ρ can be constructed by convolution of the indicator of
[−M − 1/2,∞) with a mollifier. Now let ψ(x1, . . . , xm)= ρ(x1) · · ·ρ(xm). Then
clearly ψ satisfies the required conditions.
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Now put φ = 1− ψ , F1 = F̄ · φ and F2 = F̄ .ψ . Then F̄ = F1 + F2, and both
F1, F2 are smooth functions with suppF1 ⊂ �̄1, suppF2 ⊂ �̄2. We have

‖∇F1‖ = ‖∇F̄ .φ + F̄∇φ‖ ≤ ‖∇F̄‖‖φ‖ + ‖F̄‖‖∇φ‖ ≤ C̃δ−C2α0 .

And similarly for higher derivatives and for F2, we then get ‖∇aFi‖ ≤ C̃δ−C2α0

for i = 1,2 and 0≤ a ≤ 3.
We now show that the contribution from F1 is negligible. We show this by first

showing that there exists a smooth function H1 :Rm→R such that∣∣F1
(
log |w1|, . . . , log |wm|)∣∣≤H1(w1, . . . ,wm),

∥∥∇aH1
∥∥≤ C̃δ−C2α0,

suppH1 ⊂
{
(w1, . . . ,wm) ∈Rm : min

i=1,...,m
|wi | ≤ e−M

}
.

Indeed, let F̃1 = Cδ−α0φ then |F1| ≤ F̃1 and ‖∇aF̃1‖ ≤ C̃δ−C2α0 since ‖F̄‖∞ ≤
Cδ−α0 . Then let

H1(w1, . . . ,wm)= F̃1
(
log |w1|, . . . , log |wm|).

Since F̃1 is constant on �c
2, H1 is smooth. We have ‖H1‖ ≤ C̃δ−α0 and for all

a ≥ 1, ∇aH1 = 0 on (log |w1|, . . . , log |wm|) ∈ Int(�c
2)∪ Int(�c

1). In the remaining
domain (log |w1|, . . . , log |wm|) ∈ �̄2 ∩ �̄1, we have∣∣∣∣∂H1

∂w1

∣∣∣∣= ∣∣∣∣ ∂F̃1

∂w1

1

|w1|
∣∣∣∣≤ C̃δ−α0

∣∣∣∣ ∂φ

∂w1

∣∣∣∣ 1

|w1| ≤ C̃δ−C2α0
1

|w1| ,

where our constant C2 can, as always, change from one line to another. Since
log |w1| ≥ −M − 4, |w1| ≥ e−M−4. Thus, | ∂H1

∂w1
| ≤ C̃δ−C2α0eM . Similarly for

higher derivatives, we get that ‖∇aH1‖ ≤ C̃δ−C2α0e3M . Choose M = log(δ−3α0)

then ‖∇aH1‖ ≤ C̃δ−C2α0 for all 0≤ a ≤ 3. Applying Lemma A.1 to α1 and C2α0,

E
∣∣∣∣F1

(
log
|P(z1)|√

V (z1)
, . . .

)∣∣∣∣≤ EH1

( |P(z1)|√
V (z1)

, . . .

)

≤ EH1

( |P̃ (z1)|√
V (z1)

, . . .

)
+ C̃δC2α0 .

Since H1 = 0 if (log |w1|, . . . , log |wm|) /∈�1, one has

EH1

( |P̃ (z1)|√
V (z1)

, . . . ,
|P̃ (zm)|√

V (zm)

)

≤ C̃δ−α0P
(
∃i ∈ {1, . . . ,m} : |P̃ (zi)|√

V (zi)
≤ e−M = δ3α0

)
≤ C̃δ−α0mδ3α0 ≤ C̃δα0 .
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Thus, E|F1(log |P(z1)|√
V (z1)

, . . . , log |P(zm)|√
V (zm)

)| ≤ C̃δα0 . Finally, we will show that∣∣∣∣EF2

(
log
|P(z1)|√

V (z1)
, . . .

)
−EF2

(
log
|P̃ (z1)|√

V (z1)
, . . .

)∣∣∣∣≤ C̃δα0 .

Define H2 : Rm → R by H2(w1, . . . ,wm) = F2(log |w1|, . . . , log |w2|). Since
suppF2 ⊂ �̄2, it follows that supp(H2) is contained inside{

(w1, . . . ,wm) : log |wi | ≥ −M − 4 ∀i}= {(w1, . . . ,wm) : |wi | ≥ C̃δ3α0 ∀i}.
Thus, H2 is well defined and smooth on R

m. By a similar argument to the part
about H1, ‖∇aH2‖ ≤ C̃δ−C2α0 for all 0 ≤ a ≤ 3. We can increase C2 to have
C2 ≥ 1. Applying Lemma A.1 to α1 and C2α0 gives∣∣∣∣EF2

(
log
|P(z1)|√

V (z1)
, . . .

)
−EF2

(
log
|P̃ (z1)|√

V (z1)
, . . .

)∣∣∣∣
=
∣∣∣∣EH2

( |P(z1)|√
V (z1)

, . . . ,
|P(zm)|√

V (zm)

)
−EH2

( |P̃ (z1)|√
V (z1)

, . . . ,
|P̃ (zm)|√

V (zm)

)∣∣∣∣
≤ C̃δC2α0 ≤ C̃δα0 .

This completes the proof. �
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