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LIMIT THEOREMS FOR MARKOV WALKS CONDITIONED TO
STAY POSITIVE UNDER A SPECTRAL GAP ASSUMPTION

BY ION GRAMA, RONAN LAUVERGNAT AND ÉMILE LE PAGE

Université de Bretagne Sud

Consider a Markov chain (Xn)n≥0 with values in the state space X. Let
f be a real function on X and set Sn =∑n

i=1 f (Xi), n ≥ 1. Let Px be the
probability measure generated by the Markov chain starting at X0 = x. For
a starting point y ∈ R, denote by τy the first moment when the Markov walk
(y +Sn)n≥1 becomes nonpositive. Under the condition that Sn has zero drift,
we find the asymptotics of the probability Px(τy > n) and of the conditional
law Px(y + Sn ≤ ·√n | τy > n) as n → +∞.
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1. Introduction. Assume that on the probability space (�,F ,P) we are
given a sequence of random variables (Xn)n≥1 with values in a measurable
space X. Let f be a real function on X. Suppose that the random walk Sn =∑n

i=1 f (Xi), n ≥ 1 has zero drift. For a starting point y ∈ R, denote by τy the
time at which (y + Sn)n≥1 first passes into the interval (−∞,0]. We are interested
in the asymptotic behaviour of the probability P(τy > n) and of the conditional
law of y+Sn√

n
given the event {τy > n} = {S1 > 0, . . . , Sn > 0} as n → +∞.

The case when f is the identity function and (Xn)n≥1 are i.i.d. in X = R has
been extensively studied in the literature. We refer to Spitzer [31], Iglehart [23,
24], Bolthausen [2], Doney [12], Bertoin and Doney [1], Borovkov [3, 4], Car-
avenna [6], Vatutin and Wachtel [35] to cite only a few. Recent progress has been
made for random walks with independent increments in X= Rd ; see Eichelbacher
and König [14], Denisov and Wachtel [9, 11] and Duraj [13]. However, to the best
of our knowledge, the case of the Markov chains has been treated only in some
special cases. Upper and lower bounds for P(τy > n) have been obtained in Vara-
poulos [32, 33] for Markov chains with bounded jumps and in Dembo, Ding and
Gao [7] for integrated random walks based on independent increments. An ap-
proximation of P(τy > n) by the survival probability of the Brownian motion for
Markov walk under moment conditions is given in Varopoulos [34]. Exact asymp-
totic behaviour was determined in Presman [29, 30] in the case of sums of random
variables defined on a finite Markov chain under the additional assumption that the
distributions have an absolute continuous component and in Denisov and Wachtel
[10] for integrated random walks. The case of products of i.i.d. random matrices
which reduces to the study of a particular Markov chain defined on a merely com-
pact state space was considered in [20] and the case of affine walks in R has been
treated in [18]. We also point out the work of Denisov, Korshunov and Wachtel
[8] where a constructive analysis of harmonic functions for Markov chains with
values in N is performed.

In this paper, we determine the limit of the probability of the exit time τy and
of the law of y + Sn conditioned to stay positive for a Markov chain under the
assumption that its transition operator has a spectral gap. In particular, our results
cover the case of Markov chains with compact state spaces and the affine random
walks in R (see [18]) and Rd (see Gao, Guivarc’h and Le Page [16]). Our results
apply also to the case of sums of i.i.d. random variables.

To present briefly the main results of the paper, denote by Px and Ex the proba-
bility and the corresponding expectation generated by the trajectories of a Markov
chain (Xn)n≥1 with the initial state X0 = x ∈ X. Let Q be the transition operator of
the Markov chain (Xn, y + Sn)n≥1 and let Q+ be the restriction of Q on X×R∗+.
We show that under appropriate assumptions, there exists a Q+-harmonic function
V with nonempty support supp(V ) in X×R such that, for any (x, y) ∈ supp(V ),

(1.1) Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ
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and

Px

(
y + Sn

σ
√

n
≤ t

∣∣∣ τy > n

)
−→

n→+∞ �+(t),

where �+(t) = 1 − e− t2
2 is the Rayleigh distribution function and σ is a positive

real. Moreover, we complete this result by giving the behaviour of Px(τy > n) on
the complement of supp(V ): for any (x, y) /∈ supp(V ),

(1.2) Px(τy > n) ≤ cxe−cn,

where cx depends on x and c is a constant. This is different from the case of
sums of i.i.d. real random variables, where instead of (1.2), on supp(V )c it holds
Px(τy > n) = 0. We give an example of a Markov chain for which the bound (1.2)
is attained and state uniform versions of (1.1) and (1.2). A characterization of the
supp(V ) is given in point 4 of Theorem 2.2. For details, we refer to Section 2.

The study of the asymptotic behaviour of the probability P(τy > n) for walks on
the real line R is usually based on the Wiener–Hopf factorization (see Feller [15]).
Unfortunately, the Wiener–Hopf factorisation is not well suited for more general
walks, as for example, those with values in Rd or for walks with dependent incre-
ments. For random walks with dependent increments and for random walks with
independent increments in Rd , Varopoulos [34], Eichelbacher and König [14] and
Denisov and Wachtel [11] have developed an alternative approach based on the
existence of the harmonic function. Using the particular structure of the under-
laying models such extensions where performed in Denisov and Wachtel [10] for
integrated random walks, in [20] for products of random matrices and in [18] for
affine random walks in R. Despite these advances, there are still some major diffi-
culties in transferring the harmonic function approach to the case of more general
Markov chains. In this paper, we extend it to Markov chains under spectral gap
assumptions. Let us highlight below the key points of the proofs.

We begin with the construction of a martingale approximation (Mn)n≥1 for
(Sn)n≥1 following the approach of Gordin [17]. One of the delicate points of the
proof is to control the difference Sn − Mn. We make use of the spectral gap prop-
erty of the transition operator P of the Markov chain (Xn)n≥1 relatively to some
Banach space B (for details we refer to Section 2). Our martingale approximation
is such that

(z + Mn) − (y + Sn) = r(Xn),

where r(x) = �(x)−f (x) is the coboundary, z = y+r(x) and � is the solution of
the Poisson equation �−P� = f . Under Hypothesis M4, we can control |r(x)| by
c(1 + N(x)) where N ∈ B has bounded moments E1/α

x (N(Xn)
α) ≤ c(1 + N(x)),

for some α > 2. Note that in the case of products of random matrices [20] the
coboundary is bounded, so that supn≥1 |Sn − Mn| is bounded by a constant Px-a.s.
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for any x ∈ X, which simplifies greatly the proofs. The extension to the case of un-
bounded coboundary turns out to be quite laborious even for particular examples.
We refer to the case of affine Markov walks considered in [18], where the authors
have benefited from the special structure of the model.

The next step is the proof of the existence of a positive harmonic function. The
starting idea is very simple. Let Vn(x, y) := Ex((y + Sn)1{τy>n}) be the expecta-
tion of the Markov walk (y + Sn)n≥1 killed at τy . Since by the Markov property,
we have Vn+1(x, y) = Q+Vn(x, y), taking the limit as n → +∞ under appro-
priate assumptions, yields that the function V (x, y) = limn→+∞ Vn(x, y) is Q+-
harmonic. Using the approximating martingale, the function V can be identified
as V (x, y) = −Ex(Mτy ). To justify this approach, it is important to control uni-
formly in n the expectation wn := Ex((z + Mn)1{τy>n}). Our key idea (in contrast

to [20] and [18]) is the introduction of two extra stopping times Tz and T̂z: the
first time when (z + Mn)n≥1 leaves R∗+ and the first time larger than τy when
(z + Mn)n≥1 leaves R∗+, respectively, where as before z = y + r(x). Clearly, T̂z

depends on τy and dominates both, τy and Tz. The relation of the time T̂z to the
exit times τy and Tz is explicitly given in Lemma 5.3 which is an application of
the Markov property to T̂z. This property is useful to control uniformly in n the
expectation un := Ex((z + Mn)1{T̂z>n}), which is one of the crucial points of the
proof. To establish this we note that the sequence (un)n≥0 is increasing, since
((z + Mn)1{T̂z>n})n≥1 is a submartingale. In addition, we show that it satisfies
a recurrence equation, which implies its boundedness. Using the previous argu-
ments, we obtain a uniform control on the expectation wn. All the details can be
found in Sections 6 and 7. The proof of the (strict) positivity of V is also rather
involved but uses similar arguments based on the subhamonicity of the function
Ŵ (x, z) = −Ex(MT̂z

). (See Section 8.)
Now we can turn to the tail behaviour of the exit time τy . It is inferred from

that of the exit time τbm
y of the Brownian motion, using the Donsker invariance

principle for sums defined on Markov chains with a the rate of convergence, re-
cently proved in [19]. The result in [19] gives the explicit dependence of the con-
stants on the norm ‖δx‖B′ of the Dirac measure δx and on the absolute moments
μα(x) = supn≥1 E

1/α
x (|f (Xn)|α) for some initial state x ∈ X and some α > 2. To

have a control on the constants we make use of Hypothesis M4. Note that for
products of random matrices [20], ‖δx‖B′ and μα(x) are bounded uniformly in
the initial state x ∈ X, so that the rate of convergence invariance principle does not
depend on the initial state. The case of when ‖δx‖B′ and μα(x) are not bounded
was studied in details in [18] for affine Markov walks.

The paper is organized as follows. In Section 2, we introduce the necessary no-
tations and state our main results. In Section 3, we give applications of the results
of the paper to stochastic recursions in Rd and Markov chains with compact state
space. In Section 4, we collect some preliminary results. In Section 5, we construct
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the approximating martingale and state some of its properties and of the associated
exit times. In Section 6, we prove that the expectations Ex((y + Sn)1{τy>n}) are
bounded uniformly in n. Using the results of Sections 5 and 6, we establish in
Section 7 the existence of a Q+-harmonic function and prove in Section 8 that
this function is not identically zero. We determine the limit of the probability
Px(τy > n) in Section 9 and that of the conditioned law of (y + Sn)/(σ

√
n) given

the event {τy > n} in Section 10.
We end this section by setting some basic notations. For the rest of the paper, the

symbol c denotes a positive constant depending on the all previously introduced
constants. Sometimes, to stress the dependence of the constants on some parame-
ters α,β, . . . we shall use the notations cα, cα,β, . . . . All these constants are likely
to change their values every occurrence. For any real numbers u and v, denote
by u ∧ v = min(u, v) the minimum between u and v. The indicator of an event
A is denoted by 1A. For any bounded measurable function f on X, random vari-
able X in X and event A, the integral

∫
X f (x)P(X ∈ dx,A) means the expectation

E(f (X);A) = E(f (X)1A).

2. Main results. Let (Xn)n≥0 be a Markov chain taking values in the mea-
surable state space (X,X ), defined on the probability space (�,F ,P). For any
given x ∈ X, denote by P(x, ·) its transition probability, to which we associate the
transition operator

Pg(x) =
∫
X

g
(
x′)P(x,dx′),

for any complex bounded measurable function g on X. Denote by Px and Ex the
probability and the corresponding expectation generated by the finite dimensional
distributions of the Markov chain (Xn)n≥0 starting at X0 = x. We remark that
Pg(x) = Ex(g(X1)) and Png(x) = Ex(g(Xn)) for any g complex bounded mea-
surable, x ∈ X and n ≥ 1.

Let f be a real valued function defined on the state space X and let B be a
Banach space of complex valued functions on X endowed with the norm ‖·‖B .
Let ‖·‖B→B be the operator norm on B and let B′ = L (B,C) be the topological
dual of B endowed with the norm ‖ϕ‖B′ = suph∈B

|ϕ(h)|
‖h‖B

, for any ϕ ∈ B′. Denote
by e the unit function of X: e(x) = 1, for any x ∈ X and by δx the Dirac measure
at x ∈ X: δx(g) = g(x), for any g ∈ B.

Following [19], we assume the following hypotheses.

HYPOTHESIS M1 (Banach space). 1. The unit function e belongs to B.
2. For any x ∈ X, the Dirac measure δx belongs to B′.
3. The Banach space B is included in L1(P(x, ·)), for any x ∈ X.
4. There exists a constant κ ∈ (0,1) such that for any g ∈ B, the function eitf g

is in B for any t satisfying |t | ≤ κ .

Under point 3 of M1, Pg(x) exists for any g ∈ B and x ∈ X.
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HYPOTHESIS M2 (Spectral gap). 1. The map g 
→ Pg is a bounded operator
on B.

2. There exist constants c1 > 0 and c2 > 0 such that

P = � + Q,

where � is a one-dimensional projector and Q is an operator on B satisfying
�Q = Q� = 0 and for any n ≥ 1,∥∥Qn

∥∥
B→B ≤ c1e−c2n.

Since � is a one-dimensional projector and e is an eigenvector of P, there exists
a linear form ν ∈ B′, such that for any g ∈ B,

(2.1) �g = ν(g)e.

When Hypotheses M1 and M2 hold, we set Pt g := P(eitf g) for any g ∈ B and
t ∈ [−κ, κ]. In particular, P0 = P.

HYPOTHESIS M3 (Perturbed transition operator). 1. For any |t | ≤ κ , the map
g 
→ Pt g is a bounded operator on B.

2. There exists a constant CP > 0 such that, for any n ≥ 1 and |t | ≤ κ ,∥∥Pn
t

∥∥
B→B ≤ CP.

The following hypothesis will be important for establishing the main results.

HYPOTHESIS M4 (Local integrability). The Banach space B contains a se-
quence of real nonnegative functions N,N1,N2, . . . such that:

1. There exist α > 2 and γ > 0 such that, for any x ∈ X,

max
{∣∣f (x)

∣∣1+γ
,‖δx‖B′,E1/α

x

(
N(Xn)

α)}≤ c
(
1 + N(x)

)
and

N(x)1{N(x)>l} ≤ Nl(x), for any l ≥ 1.

2. There exists c > 0 such that, for any l ≥ 1,

‖Nl‖B ≤ c.

3. There exist β > 0 and c > 0 such that, for any l ≥ 1,

∣∣ν(Nl)
∣∣≤ c

l1+β
.
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A comment on Hypothesis M4 seems to be appropriate. Although the function
N belongs to the Banach space B, the truncated function x 
→ N(x)1{N(x)>l} may
not belong to B. Fortunately, in many interesting cases, there exists an element
Nl in B dominating it. We refer to Section 3, where we verify Hypothesis M4 for
stochastic recursions in Rd and for Markov chains with compact state space. Note
also that the function f need not belong to the Banach space B.

Under Hypotheses M1, M2 and M4, we have, for any x ∈ X and n ≥ 1,

Ex

(
N(Xn)

)= ν(N) + QnN(x)

≤ ∣∣ν(N)
∣∣+ ∥∥Qn

∥∥
B→B‖N‖B‖δx‖B′(2.2)

≤ c
(
1 + e−cnN(x)

)
and, in the same way, for any x ∈X, l ≥ 1 and n ≥ 1,

(2.3) Ex

(
Nl(Xn)

)≤ c

l1+β
+ ce−cn(1 + N(x)

)
.

Moreover, from point 1 of M4, one can easily verify that, for any x ∈X,

(2.4) μα(x) := sup
n≥1

E
1/α
x

(∣∣f (Xn)
∣∣α)≤ c

(
1 + N(x)

1
1+γ
)
.

The following proposition is proved in [19], where the bounds on the right follow
from (2.4) and again M4.

PROPOSITION 2.1. Assume that the Markov chain (Xn)n≥0 and the function
f satisfy Hypotheses M1–M4.

1. There exists a constant μ such that, for any x ∈ X and n ≥ 1,∣∣Ex

(
f (Xn)

)− μ
∣∣≤ ce−cn(1 + μα(x)1+γ + ‖δx‖B′

)≤ ce−cn(1 + N(x)
)
.

2. There exists a constant σ ≥ 0 such that, for any x ∈ X and n ≥ 1,

sup
m≥0

∣∣∣∣∣Varx

(
m+n∑

k=m+1

f (Xk)

)
− nσ 2

∣∣∣∣∣≤ c
(
1 + μα(x)2+2γ + ‖δx‖B′

)
≤ c
(
1 + N(x)2),

where Varx is the variance under Px .

We do not assume the existence of the stationary probability measure. If a sta-
tionary probability measure ν′ satisfying ν′(N2) < +∞ exists then, under Hy-
potheses M1–M4, we have that ν′ = ν is necessarily unique and it holds (see [19])

(2.5) ν(f ) = μ and σ 2 = ν
(
f 2)− ν(f )2 + 2

+∞∑
n=1

[
ν
(
f P nf

)− ν(f )2].
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HYPOTHESIS M5 (Centring and nondegeneracy). We suppose that the con-
stants μ and σ defined in Proposition 2.1 satisfy μ = 0 and σ > 0.

Under M5 it follows from Proposition 2.1 that, for any x ∈ X and n ≥ 1,

(2.6)
∣∣Ex

(
f (Xn)

)∣∣≤ ce−cn(1 + N(x)
)
.

Let y ∈ R be a starting point and (y + Sn)n≥0 be the Markov walk defined by
Sn :=∑n

k=1 f (Xk), n ≥ 1 with S0 = 0. Denote by τy the first moment when y +Sn

becomes nonpositive:

τy := inf{k ≥ 1 : y + Sk ≤ 0}.
It is shown in Lemma 5.5 that for any y ∈ R and x ∈ X, the stopping time
τy is Px -a.s. finite. The asymptotic behaviour of the probability Px(τy > n) is
determined by the harmonic function which we proceed to introduce. For any
(x, y) ∈X×R, denote by Q(x, y, ·) the transition probability of the Markov chain
(Xn, y + Sn)n≥0. The restriction of the measure Q(x, y, ·) on X × R∗+ is defined
by

Q+(x, y,B) = Q(x, y,B)

for any measurable set B on X×R∗+ and for any (x, y) ∈ X×R. For any bounded
measurable function ϕ : X × R → R set Q+ϕ(x, y) = ∫

X×R∗+ ϕ(x′, y′)Q+(x, y,

dx′ × dy′), where (x, y) ∈ X × R. A function V : X × R → R is said to be
Q+-harmonic if

Q+V (x, y) = V (x, y), for any (x, y) ∈X×R.

We shall deal only with nonnegative harmonic functions V . Denote by supp(V )

the support of such a function V ,

supp(V ) := {
(x, y) ∈X×R : V (x, y) > 0

}
.

On the complement of supp(V ), the function V is 0. For any γ > 0, consider the
set

Dγ := {
(x, y) ∈ X×R : ∃ n0 ≥ 1,Px

(
y + Sn0 > γ

(
1 + N(Xn0)

)
, τy > n0

)
> 0

}
.

The following assertion proves the existence of a nonidentically zero harmonic
function.

THEOREM 2.2. Assume Hypotheses M1–M5.

1. For any x ∈ X, y ∈ R, the sequence (Ex(y + Sn; τy > n))n≥0 converges to a
real number V (x, y):

Ex(y + Sn; τy > n) −→
n→+∞ V (x, y).
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2. The function V : X×R → R, defined in the previous point is Q+-harmonic,
that is, for any x ∈ X, y ∈ R,

Q+V (x, y) = Ex

(
V (X1, y + S1); τy > 1

)= V (x, y).

3. For any x ∈ X, the function V (x, ·) is nonnegative and nondecreasing on R

and

lim
y→+∞

V (x, y)

y
= 1.

Moreover, for any δ > 0, x ∈X and y ∈R,

(1 − δ)max(y,0) − cδ

(
1 + N(x)

)≤ V (x, y)

≤ (1 + δ)max(y,0) + cδ

(
1 + N(x)

)
.

4. There exists γ0 > 0 such that, for any γ ≥ γ0,

supp(V ) = Dγ .

The following result gives the asymptotic of the exit probability for fixed
(x, y) ∈ X×R.

THEOREM 2.3. Assume Hypotheses M1–M5.

1. For any (x, y) ∈ supp(V ),

Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

2. For any (x, y) /∈ supp(V ) and n ≥ 1,

Px(τy > n) ≤ ce−cn(1 + N(x)
)
.

Now we complete point 1 of the previous theorem by some estimations.

THEOREM 2.4. Assume Hypotheses M1–M5.

1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n ≥ 1 and (x, y) ∈ X×R,∣∣∣∣Px(τy > n) − 2V (x, y)√
2πnσ

∣∣∣∣≤ cε

max(y,0) + (1 + y1{y>n1/2−ε} + N(x))2

n1/2+ε/16 .

2. Moreover, for any (x, y) ∈ X×R and n ≥ 1,

Px(τy > n) ≤ c
1 + max(y,0) + N(x)√

n
.

Finally, we give the asymptotic of the conditional law of y + Sn.
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THEOREM 2.5. Assume Hypotheses M1–M5.

1. For any (x, y) ∈ supp(V ) and t ≥ 0,

Px

(
y + Sn

σ
√

n
≤ t

∣∣∣ τy > n

)
−→

n→+∞ �+(t),

where �+(t) = 1 − e− t2
2 is the Rayleigh distribution function.

2. Moreover, there exists ε0 > 0 such that, for any ε ∈ (0, ε0), n ≥ 1, t0 > 0,
t ∈ [0, t0] and (x, y) ∈ X×R,∣∣∣∣Px(y + Sn ≤ t

√
n, τy > n) − 2V (x, y)√

2πnσ
�+
(

t

σ

)∣∣∣∣
≤ cε,t0

max(y,0) + (1 + y1{y>n1/2−ε} + N(x))2

n1/2+ε/16 .

We now comment on Theorems 2.2 and 2.3.

REMARK 2.6. If we assume that there exist δ > 0 and M > 0 such that for any
x ∈ X, Px(f (X1) > δ,N(X1) ≤ M) > 0, then one can see that the set X×[0,+∞)

is included in supp(V ).

REMARK 2.7. The sets (Dγ )γ>0 are nested and become equal to supp(V ) for
large γ : we have Dγ1 ⊇ Dγ2 ⊇ Dγ = supp(V ), for γ1 ≤ γ2 ≤ γ , where γ is large
enough (see Proposition 8.8).

REMARK 2.8. The set supp(V ) is not empty. More precisely, there exists γ1 >

0 such that {
(x, y) ∈ X×R : y > γ1

(
1 + N(x)

)}⊆ supp(V );
see Proposition 8.8. Example 2.11 and Figure 1 illustrate this property.

REMARK 2.9. When (Xn)n≥1 are i.i.d., it is well known that Px(τy > n) = 0
for any (x, y) /∈ supp(V ). When the sequence (Xn)n≥1 is a Markov chain, instead
of this, we have an exponential bound; see point 2 of Theorem 2.3. We show
that this bound is attained for some Markov walk. We refer for details to Exam-
ple 2.12.

EXAMPLE 2.10 (Random walks in R). Suppose that (Xn)n≥1 are i.i.d. real
random variables of mean 0 and positive variance with finite absolute moments of
order p > 2. In this case, one can take N = Nl = 0, l ≥ 0. Therefore,

Dγ := {
y ∈ R : ∃n0 ≥ 1,P(y + Sn0 > γ, τy > n0) > 0

}
.
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y > 1
2(|x|1+ε + 1)

supp(V )

supp(V )c
x

y

0

FIG. 1. The support of the harmonic function V in Example 2.11.

Since the walk (y + Sn)n≥1 can increase at each step with positive probability, it
follows that P(y + Sn0 > γ, τy > n0) > 0 if and only if P(τy > 1) = P(y + X1 >

0) > 0. Thus, [0,+∞) ⊆ (−max supp(μ),+∞) = Dγ = supp(V ), for every γ >

0, where μ is the common law of Xn and supp(μ) is its support.

The following example is intended to illustrate Remark 2.8.

EXAMPLE 2.11. Consider the following special case of the one dimensional
stochastic recursion: Xn+1 = an+1Xn + bn+1 where (ai)i≥1 and (bi)i≥1 are two
independent sequences of i.i.d. random variables. In this example, we consider that
the law of ai is 1

2δ{−1/2} + 1
2δ{1/2} and that of bi is uniform on [−1,1]. The state

space X is R. The functions N and Nl are given by N(x) = |x|1+ε for some ε > 0,
and Nl(x) = N(x)φl(|x|) with φl defined by (A.4). The Banach space satisfying
M1–M5 is constructed in Section A (see also [18]). One can verify that the domain
of positivity of the function V is supp(V ) = {(x, y) ∈ R2 : y > −|x|

2 − 1} = Dγ ,
for all γ > 0. Obviously, {(x, y) ∈ X × R : y > 1

2(1 + |x|1+ε)} ⊆ supp(V ); see
Figure 1.

The next example is intended to show that the inequality of point 2 of Theorem
2.3 is attained.

EXAMPLE 2.12. Consider the Markov walk (Xn)n≥0 living on the finite state
space X := {−1;1;−3;7/6} with the transition probabilities given in Figure 2.
Suppose that f is the identity function on X. It is easy to see that the assumptions
stated in Remark 3.10 of Section 3.3 are satisfied and thereby so are Hypothe-
ses M1–M5. In particular, M4 holds with N = Nl = 0 for any l ≥ 1. Now, when
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−1 1

−3 7
6 1/2

1/2

1/2

1/2

1/2

1

1/2

FIG. 2. Transition probabilities of the Markov chain in Example 2.12.

x = 1 and y ∈ (1,3] or when x = −1 and y ∈ (−1,2], one can check that the
Markov walk y + Sn stays positive if and only if the values of the variables Xi

alternate between 1 and −1 and therefore, for such starting points (x, y), we have
Px(τy > n) = (1

2)n. This shows that, when the random variables (Xn)n≥1 form a
Markov chain, the survival probability Px(τy > n) has an asymptotic behaviour
different from that in the independent case where it can be either equivalent to cx,y√

n

or 0.
In this example, we can make explicit the support of the function V . Since

N = 0, the function V is positive if and only if there exists an integer n ≥ 1 such
that Px(y + Sn > γ, τy > n) > 0 for a γ large enough. This is possible only if the
chain can reach the state Xn = 7/6 within a trajectory of (y + Sk)n≥k≥1 which
stays positive, that is, Px(Xn = 7/6, τy > n) > 0. Consequently,

supp(V ) = {−1} × (2,+∞) ∪ {1} × (3,+∞) ∪ {−3,7/6} × (−7/6,+∞)

= D3 = {
(x, y) ∈ X×R : ∃n ≥ 1,Px(y + Sn > 3, τy > n) > 0

}
.

To sum up, this model presents the three possible asymptotic behaviours of
Px(τy > n): for any (x, y) ∈ supp(V ) = {−1} × (2,+∞) ∪ {1} × (3,+∞) ∪
{−3,7/6} × (−7/6,+∞),

Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

,

for any (x, y) ∈ {−1} × (−1,2] ∪ {1} × (1,3] and n ≥ 1,

Px(τy > n) =
(

1

2

)n

,

for any (x, y) ∈ {−1} × (−∞,−1] ∪ {1} × (−∞,1] ∪ {−3,7/6} × (−∞,−7/6]
and n ≥ 1,

Px(τy > n) = 0.
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3. Applications. We illustrate the results of Section 2 by considering three
particular models.

3.1. Affine random walk in Rd conditioned to stay in a half-space. Let d ≥ 1
be an integer and (gn)n≥1 = (An,Bn)n≥1 be a sequence of i.i.d. random elements
in GL(d,R) ×Rd following the same distribution μ. Let (Xn)n≥0 be the Markov
chain on Rd defined by

X0 = x ∈ R
d, Xn+1 = An+1Xn + Bn+1, n ≥ 1.

Set Sn =∑n
k=1 f (Xk), n ≥ 1, where the function f (x) = 〈u,x〉 is the projection of

the vector x ∈ Rd on the direction defined by the vector u ∈ Rd \ {0}. For any y ∈
R, consider the first time when the random walk (y +Sn)n≥1 becomes nonpositive:

τy = inf{k ≥ 1 : y + Sk ≤ 0}.
This stopping time coincides with the entry time of the affine walk (

∑n
k=1 Xk)n≥0

in the closed half-subspace {s ∈ Rd : 〈u, s〉 ≤ −y}.
Introduce the following hypothesis.

HYPOTHESIS 3.1. 1. There exists a constant δ > 0, such that

E
(‖A1‖2+2δ)< +∞, E

(|B1|2+2δ)< +∞
and

k(δ) = lim
n→+∞E

1/n(‖AnAn−1 · · ·A1‖2+2δ)< 1.

2. There is no proper affine subspace of Rd which is invariant with respect to
all the elements of the support of μ.

3. For any vector v0 ∈ Rd \ {0},
P
(tA−1

1 v0 = tA−1
2 v0

)
< 1,

where tA is the transpose of A, for any A ∈ GL(d,R).
4. The vector B1 is centred: E(B1) = 0.

PROPOSITION 3.2. Under Hypothesis 3.1, Theorems 2.2–2.5 hold true.

Proposition 3.2 is proved in Appendix A where we construct an appropriate Ba-
nach space B and show that Hypotheses M1–M5 are satisfied with N(x) = |x|1+ε ,
for some ε > 0 and with Nl(x) = N(x)φl(|x|), where φl is defined by (A.4).

REMARK 3.3. The set supp(V ) depends on the law of (Ai,Bi). In the case
when Ai are independent of Bi and the support of the law of 〈u,Bi〉 contains a
sequence converging to +∞, one can verify that supp(V ) = Rd ×R.
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3.2. Two components Markov chains in compact sets under the doeblin-fortet
condition. Let (X,dX) be a compact metric space, C (X) and L (X) be the spaces
of continuous and Lipschitz complex functions on X, respectively. Define

|h|∞ = sup
x∈X

∣∣h(x)
∣∣, ∀h ∈ C (X)

and

[h]X = sup
(x,y)∈X

x �=y

|h(x) − h(y)|
dX(x, y)

, ∀h ∈ L (X).

We endow C (X) with the uniform norm |·|∞ and L (X) with the norm |·|L =
|·|∞ + [·]X , respectively. Consider the space X := X × X with the metric dX on X

defined by dX((x1, x2), (y1, y2)) = dX(x1, y1) + dX(x2, y2), for any (x1, x2) and
(y1, y2) in X. Denote by L (X) the space of the Lipschitz complex function on X

endowed with the norm ‖·‖L = ‖·‖∞ + [·]X, where

‖h‖∞ = sup
x∈X

∣∣h(x)
∣∣, ∀h ∈ C (X)

and

[h]X = sup
(x,y)∈X

x �=y

|h(x) − h(y)|
dX(x, y)

, ∀h ∈ L (X).

Following Guivarc’h and Hardy [21], consider a Markov chain (χn)n≥0 on X with
transition probability P . Let (Xn)n≥0 be the Markov chain on X defined by Xn =
(χn−1, χn), n ≥ 1 and X0 = (0, χ0): its transition probability is given by

P
(
(x1, x2),dy1 × dy2

)= δx2(dy1)P (x2,dy2).

For a fixed real function f on X, let Sn :=∑n
k=1 f (Xn) be the associated Markov

walk and, for any y ∈ R, let τy := inf{n ≥ 1 : y + Sn ≤ 0} be the associated exit
time.

In order to apply the results stated in the previous section, we need some hy-
potheses on the function f and the operator P on C (X) defined by Ph(x) =∫
X h(y)P (x,dy) for any x ∈ X and any h ∈ C (X).

HYPOTHESIS 3.4. 1. For any h in C (X), respectively in L (X), the function
Ph is an element of C (X), respectively of L (X).

2. There exist constants n0 ≥ 1, 0 < ρ < 1 and C > 0 such that, for any function
h ∈ L (X), we have ∣∣P n0h

∣∣
L ≤ ρ|h|L + C|h|∞.

3. The unique eigenvalue of P of modulus 1 is 1 and the associated eigenspace
is generated by the function e: x 
→ 1, that is, if there exist θ ∈ R and h ∈ L (X)

such that Ph = eiθh, then h is constant and eiθ = 1.
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Under Hypothesis 3.4, one can check that conditions (a), (b), (c) and (d) of
Chapter 3 in Norman [28] hold true and we can apply the theorem of Ionescu
Tulcea and Marinescu [25] (see also [21]). Coupling this theorem with point 3 of
Hypothesis 3.4 we obtain the following proposition.

PROPOSITION 3.5. 1. There exists a unique P -invariant probability ν on X.
2. For any n ≥ 1 and h ∈ L (X),

P nh = ν(h) + Rnh,

where R is an operator on L (X) with a spectral radius r(R) < 1.

Suppose that f and ν satisfy the following hypothesis.

HYPOTHESIS 3.6. 1. The function f belongs to L (X).
2. The function f is centred, in the sense that∫

X

f (x, y)P (x,dy)ν(dx) = 0.

3. The function f is nondegenerated, that means that there is no function h ∈
L (X) such that

f (x, y) = h(x) − h(y),

for Pν -almost all (x, y), where Pν(dx × dy) = P(x,dy)ν(dx).

Assuming Hypotheses 3.4 and 3.6, Guivarc’h and Hardy [21] have established
that the sequence (Sn/

√
n)n≥1 converges weakly to a centred Gaussian random

variable of variance σ 2 > 0, under the probability Px generated by the finite di-
mensional distributions of the Markov chain (Xn)n≥0 starting at X0 = x, for any
x ∈ X. Moreover, under the same hypotheses, we show in Appendix B that M1–M5
are satisfied with N = Nl = 0, thereby proving the following assertion.

PROPOSITION 3.7. Under Hypotheses 3.4 and 3.6, Theorems 2.2–2.5 hold
true.

3.3. Markov chains in compact sets under spectral gap assumptions. In this
section, we give sufficient conditions in order that a Markov chain with values in
a compact set satisfy conditions M1–M5.

Let (X, d) be a compact metric space and (Xn)n≥0 be a Markov chain living
in X. Denote by P the transition probability of (Xn)n≥0 and by C (X) the Banach
algebra of the continuous complex functions on X endowed with the uniform norm

|h|∞ = sup
x∈X

∣∣h(x)
∣∣, h ∈ C (X).

Consider a real function f defined on X, the transition operator P on C (X) asso-
ciated to the transition probability of (Xn)n≥0 and the unit function e defined on X

by e(x) = 1, for any x ∈ X.
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HYPOTHESIS 3.8. 1. For any h ∈ C (X), the function Ph is an element of
C (X).

2. The operator P has a unique invariant probability ν.
3. For any n ≥ 1,

Pn = � + Qn,

where � is the one-dimensional projector on C (X) defined by �(h) = ν(h)e, for
any h ∈ C (X), Q is an operator on C (X) of spectral radius r(Q) < 1 satisfying
�Q = Q� = 0.

4. The function f belongs to C (X) and is ν-centred, that is, ν(f ) = 0.
5. The function f is nondegenerated, that is there is no function h ∈ C (X) such

that

f (X1) = h(X0) − h(X1), Pν-a.s.,

where Pν is the probability generated by the finite dimensional distributions of the
Markov chain (Xn)n≥0 when the initial law of X0 is ν.

Consider the Markov walk Sn =∑n
k=1 f (Xk). It is well known, that under Hy-

pothesis 3.8 the normalized sum Sn/
√

n converges in law to a centred normal
distribution of variance σ 2 > 0 with respect to the probability Px generated by the
finite dimensional distributions of the Markov chain (Xn)n≥0 starting at X0 = x,
for any x ∈ X.

PROPOSITION 3.9. Under Hypothesis 3.8, Theorems 2.2–2.5 hold true.

All the elements of the proof are contained in the proof of Proposition 3.7 (see
Appendix B), which therefore is left to the reader. In particular, Hypothesis M4
holds with N = Nl = 0.

REMARK 3.10. As a special example of the compact case, consider the
Markov chain (Xn)n≥1 taking values in a finite space X. Assume that (Xn)n≥1
is aperiodic and irreducible with transition matrix P. Let f be a finite function
on X. We shall verify Hypothesis 3.8. The Banach space B consists of all fi-
nite real functions on X, therefore condition 1 is obvious. Moreover, there is
a unique invariant measure ν, which proves condition 2. According to Perron-
Frobenius theorem, the transition matrix P admits 1 as the only simple eigen-
value of modulus 1, which implies condition 3. Assume in addition that ν(f ) = 0
(which is condition 4) and that there exists a path x0, . . . , xn in X such that
P(x0, x1) > 0, . . . ,P(xn−1, xn) > 0,P(xn, x0) > 0 and f (x0) + · · · + f (xn) �= 0
(which implies condition 5). Thus, all the conclusions of Theorems 2.2–2.5 hold
true.

4. Preliminary statements.

4.1. Results for the Brownian motion. Let (Bt )t≥0 be the standard Brownian
motion with values in R living on the probability space (�,F ,P). Define the exit
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time

(4.1) τbm
y = inf{t ≥ 0 : y + σBt ≤ 0},

where σ > 0. The following affirmations are due to Lévy [27].

LEMMA 4.1. For any y > 0, 0 ≤ a ≤ b and n ≥ 1,

P
(
τbm
y > n,y + σBn ∈ [a, b])= 1√

2πnσ

∫ b

a

(
e
− (s−y)2

2nσ2 − e
− (s+y)2

2nσ2
)

ds.

LEMMA 4.2. 1. For any y > 0,

P
(
τbm
y > n

)≤ c
y√
n
.

2. For any sequence of real numbers (θn)n≥0 such that θn −→
n→+∞ 0,

sup
y∈[0;θn

√
n]

(
P(τ bm

y > n)

2y√
2πnσ

− 1
)

= O
(
θ2
n

)
.

4.2. Strong approximation. Under Hypotheses M1–M5 it is proved in [19]
that there is a version of the Markov walk (Sn)n≥0 and of the standard Brownian
motion (Bt )t≥0 living on the same probability space which are close enough in the
following sense.

PROPOSITION 4.3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0], with-
out loss of generality one can reconstruct the sequence (Sn)n≥0 together with a
continuous time Brownian motion (Bt )t∈R+ , such that for any x ∈ X and n ≥ 1,

(4.2) Px

(
sup

0≤t≤1
|S�tn� − σBtn| > n1/2−ε

)
≤ cε

nε

(
1 + N(x)

)
,

where σ is defined in point 2 of Proposition 2.1.

In the original result the right-hand side in (4.2) is cεn
−ε(1 + μα(x) +

‖δx‖B′)α ≤ cεn
−ε(1 + N(x))α with α > 2, by point 1 of the Hypothesis M5. To

obtain the result of Proposition 4.3 it suffices to take the power 1/α on the both
sides and to use the obvious inequality p < p1/α , for p ∈ [0,1].

Using Proposition 4.3, we easily deduce the following result.

COROLLARY 4.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ R

and n ≥ 1,

sup
t∈R

∣∣∣∣Px

(
Sn√
n

≤ t

)
−
∫ t

−∞
e− u2

2σ2
du√
2πσ

∣∣∣∣≤ cε

nε

(
1 + N(x)

)
.
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5. Martingale approximation and related assertions. In this section, we
construct an approximating martingale for the Markov walk (Sn)n≥0, which will
be used subsequently to define the harmonic function. We also state some useful
properties.

Consider � the real valued function defined on X by

�(x) = f (x) +
+∞∑
k=1

Pkf (x), ∀x ∈X.

It is well known that � is the solution of the Poisson equation

� − P� = f.

For any x ∈ X, let

r(x) = P�(x) = �(x) − f (x) =
+∞∑
k=1

Pkf (x).

Following Gordin [17], define the process (Mn)n≥0 by setting M0 = 0 and, for any
n ≥ 1,

Mn =
n∑

k=1

[
�(Xk) − P�(Xk−1)

]= n∑
k=1

[
�(Xk) − r(Xk−1)

]
.

For any x ∈ X, we have that (Mn)n≥0 is a zero mean Px -martingale with respect
to the natural filtration (Fn)n≥0. Denote by ξn the increments of the martingale
(Mn)n≥0: for any n ≥ 1,

ξn := �(Xn) − r(Xn−1).

In the sequel it will be convenient to consider the martingale (z + Mn)n≥1 starting
at

z = y + r(x).

The reason for this is the following approximation which is an easy consequence
of the definition of the martingale (z + Mn)n≥1: for any x ∈ X and y ∈R, we have

(5.1) z + Mn = y + Sn + r(Xn).

From (2.6), we deduce the following assertion.

LEMMA 5.1. The functions � and r exist on X and for any x ∈ X,∣∣�(x)
∣∣≤ c

(
1 + N(x)

)
and

∣∣r(x)
∣∣≤ c

(
1 + N(x)

)
.

We show that the moments of order p ∈ [1, α] of the martingale (Mn)n≥0 are
bounded.
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LEMMA 5.2. 1. For any p ∈ [1, α], x ∈ X and n ≥ 1,

E
1/p
x

(|Mn|p)≤ cp

√
n
(
1 + N(x)

)
.

2. For any x ∈ X and n ≥ 1,

Ex

(|Mn|)≤ c
(√

n + N(x)
)
.

PROOF. First, we control the increments ξn. By Lemma 5.1, for any n ≥ 1,

(5.2) |ξn| ≤ c
(
1 + N(Xn) + N(Xn−1)

)
.

So, using point 1 of Hypothesis M4 and (2.2), for any n ≥ 1,

E
1/p
x

(|ξn|p)≤ cp

(
1 + N(x)

) ∀p ∈ [1, α],(5.3)

Ex

(|ξn|)≤ c + ce−cnN(x).(5.4)

Proof of claim 1. By Burkholder’s inequality, for 2 < p ≤ α,

E
1/p
x

(|Mn|p)≤ cpE
1/p
x

((
n∑

k=1

ξ2
k

)p/2)
.

Using Hölder’s inequality with the exponents u = p/2 > 1 and v = p
p−2 , we obtain

E
1/p
x

(|Mn|p)≤ cpE
1/p
x

[(
n∑

k=1

ξ2u
k

) p
2u

n
p
2v

]
= cpn

p−2
2p

(
n∑

k=1

Ex

[|ξk|p]
)1/p

.

From (5.3), for any p ∈ (2, α],

(5.5) E
1/p
x

(|Mn|p)≤ cpn
p−2
2p

(
n∑

k=1

cp

(
1 + N(x)

)p)1/p

≤ cp

√
n
(
1 + N(x)

)
.

Using the Jensen inequality for p ∈ [1,2], we obtain claim 1.

Proof of claim 2. Consider ε ∈ (0,1/2). By (5.4),

Ex

(|Mn|)≤ �nε�∑
k=1

Ex

(|ξk|)+Ex

(|Mn − M�nε�|)
≤ cnε + cN(x) +Ex

(|Mn − M�nε�|).
Since (Xn,Mn)n≥0 is a Markov chain, by the Markov property, claim 1 and (2.2),

Ex

(|Mn|)≤ cnε + cN(x) +Ex

(
E
(|Mn − M�nε�| | F�nε�

))
≤ cnε + cN(x) +Ex

[
c
(
n − ⌊nε⌋)1/2(1 + N(X�nε�)

)]
≤ c

√
n + cεN(x). �
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A key point in the proof of the existence and of the positivity of the harmonic
function is the introduction of the following stopping times. Let Tz be the first
time when the martingale (z+Mn)n≥1 becomes nonpositive, and let T̂z be the first
time, after the time τy , when the martingale (z + Mn)n≥1 becomes nonpositive.
Precisely, for any x ∈ X, z ∈ R and y = z − r(x), set

(5.6) Tz := inf{k ≥ 1 : z + Mk ≤ 0} and T̂z := inf{k ≥ τy : z + Mk ≤ 0}.
The finiteness of the stopping times τy , Tz and T̂z is proved in Lemmas 5.5, 5.6
and 5.7 below. Now we point out some elementary facts which will be helpful in
the sequel. First, the stopping time T̂z is such that τy ≤ T̂z and Tz ≤ T̂z. Since τy is
the exit time of (y + Sn)n≥0, by the Markov property,

(5.7) Px(τy > n) =
∫
X×R

Px′(τy′ > n − k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′, τy > k

)
.

A similar expression holds true for Tz. Unfortunately, (5.7) does not hold for T̂z.
Instead we have a more sophisticated expression given by the following lemma.
We shall use repeatedly the same trick for more complicated functionals, as for
example Ex(z + Mn; T̂z > n).

LEMMA 5.3. For any x ∈ X, z ∈ R, n ≥ 1, k ≤ n and y = z − r(x),

Px(T̂z > n)

=
∫
X×R

Px′(T̂z′ > n − k)Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k

)
+
∫
X×R

Px′(Tz′ > n − k)Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy ≤ k, T̂z > k

)
.

PROOF. Since T̂z ≥ τy , for any k ≤ n, we have

Px(T̂z > n) = Px(τy > n) +
n−k∑
i=1

Px(τy = i + k, T̂z > n) + Px(τy ≤ k, T̂z > n).

By the Markov property and (5.1), with y′ = z′ − r(x′),

Px(T̂z > n) =
∫
X×R

Px′(τy′ > n − k)Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k

)

+
n−k∑
i=1

∫
X×R

Px′
(
τy′ = i, z′ + Mi > 0, . . . , z′ + Mn−k > 0

)
× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k

)
+
∫
X×R

Px′(Tz′ > n − k)Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy ≤ k,

z + Mτy > 0, . . . , z + Mk > 0
)
.

Putting together the first two terms we get the result. �
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The following lemma will be useful in the next sections.

LEMMA 5.4. For any x ∈ X, z ∈ R, the sequence ((z + Mn)1{T̂z>n})n≥0 is a
Px-submartingale.

PROOF. Let x ∈X, z ∈ R. For any n ≥ 0,

Ex

(
(z + Mn+1)1{T̂z>n+1} | Fn

)
= Ex

(
(z + Mn+1)1{T̂z>n} | Fn

)−Ex

(
(z + Mn+1)1{T̂z=n+1} | Fn

)
= (z + Mn)1{T̂z>n} −Ex

(
(z + M

T̂z
)1{T̂z=n+1} | Fn

)
.

By the definition of T̂z we have z + M
T̂z

≤ 0 Px -a.s. and the result follows. �

We end this section by proving the finiteness of τy , Tz and T̂z.

LEMMA 5.5. For any x ∈X and y ∈R,

τy < +∞ Px-a.s.

PROOF. Let x ∈ X. Assume first that y > 0. Since {τy > n} is a nonincreasing
sequence of events,

Px(τy = +∞) = lim
n→+∞Px(τy > n) = lim

n→+∞Px(y + Sk > 0,∀k ≤ n).

Using Proposition 4.3,

Px(y + Sk > 0,∀k ≤ n) ≤ cε

nε

(
1 + N(x)

)+ P
(
τbm
y+n1/2−ε > n

)
.

Thus, by point 1 of Lemma 4.2,

(5.8) Px(τy > n) ≤ cε

nε

(
1 + N(x)

)+ c
y + n1/2−ε

√
n

≤ cε

nε

(
1 + y + N(x)

)
.

When y ≤ 0, we have, for any y′ > 0, Px(τy > n) ≤ Px(τy′ > n). Taking the limit
when y′ → 0, we obtain that

(5.9) Px(τy > n) ≤ cε

nε

(
1 + N(x)

)
.

From (5.8) and (5.9) it follows that, for any y ∈ R,

(5.10) Px(τy > n) ≤ cε

nε

(
1 + max(y,0) + N(x)

)
.

Taking the limit as n → +∞, we conclude that τy < +∞ Px -a.s. �

The same result can be obtained for the exit time Tz of the martingale (z +
Mn)n≥0.
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LEMMA 5.6. For any x ∈ X and z ∈ R,

Tz < +∞ Px-a.s.

PROOF. Let x ∈ X, z ∈ R and y = z − r(x). Assume first that y = z − r(x) >

0. Following the proof of Lemma 5.5,

Px(Tz = +∞) = lim
n→+∞Px(z + Mk > 0,∀k ≤ n).

By (5.1) the martingale (z + Mn)n≥0 is relied to the Markov walk (y + Sn)n≥0,
which gives

Px(z + Mk > 0,∀k ≤ n) ≤ Px

(
y + Sk > −n1/2−ε,∀k ≤ n

)
(5.11)

+ Px

(
max

1≤k≤n

∣∣r(Xk)
∣∣> n1/2−ε

)
.

On the one hand, in the same way as in the proof of Lemma 5.5,

(5.12) Px

(
y + Sk > −n1/2−ε,∀k ≤ n

)≤ cε

nε

(
1 + N(x)

)+ Px

(
τbm
y+2n1/2−ε > n

)
.

On the other hand, using Lemma 5.1, for n large enough,

Px

(
max

1≤k≤n

∣∣r(Xk)
∣∣> n1/2−ε

)
≤

�nε�∑
k=1

Ex

(
cN(Xk)

n1/2−ε

)
+

n∑
k=�nε�+1

Ex

(
cNl(Xk)

n1/2−ε

)
,

where l = cn1/2−ε . So, using (2.3) and taking ε ≤ min(1
6 ,

β
2(3+β)

), we obtain

(5.13) Px

(
max

1≤k≤n

∣∣r(Xk)
∣∣> n1/2−ε

)
≤ cε

nε

(
1 + N(x)

)
.

Putting together (5.11), (5.12) and (5.13) and using point 1 of Lemma 4.2, we have,
for z > r(x),

Px(Tz > n) ≤ cε

nε

(
1 + N(x)

)+ c
y + 2n1/2−ε

√
n

≤ cε

nε

(
1 + max(z,0) + N(x)

)
.

Since z 
→ Tz is nondecreasing, we obtain the same bound for any z ∈ R,

(5.14) Px(Tz > n) ≤ cε

nε

(
1 + max(z,0) + N(x)

)
.

Taking the limit as n → +∞ we conclude that Tz < +∞ Px -a.s. �

LEMMA 5.7. For any x ∈ X and z ∈ R,

T̂z < +∞ Px-a.s.
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PROOF. In order to apply Lemmas 5.5 and 5.6, we write, with y = z − r(x),

Px(T̂z > n) ≤ Px

(
τy > �n/2�)

+
∫
X×R

Px′
(
Tz′ > n − �n/2�)Px

(
X�n/2� ∈ dx′,

z + M�n/2� ∈ dz′, τy ≤ �n/2�, T̂z > �n/2�).
Using (5.10), (5.14) and the definition of y, we have

Px(T̂z > n) ≤ cε

nε

(
1 + max(y,0) + N(x)

)
+ cε

nε
Ex

(
1 + z + M�n/2� + N(X�n/2�); τy ≤ �n/2�, T̂z > �n/2�).

By point 1 of Hypothesis M4,

Px(T̂z > n) ≤ cε

nε

(
1 + max(y,0) + N(x)

)+ cε

nε
Ex

(
z + M�n/2�; T̂z > �n/2�)

− cε

nε
Ex

(
z + M�n/2�; τy > �n/2�).

Using (5.1), we see that on the event {τy > �n/2�} we have z+M�n/2� > r(X�n/2�).
Then, by Lemma 5.1 and point 1 of Hypothesis M4,

Px(T̂z > n) ≤ cε

nε

(
1 + max(y,0) + N(x)

)+ cε

nε
Ex

(
z + M�n/2�; T̂z > �n/2�).

Using Lemma 6.4, we have

Px(T̂z > n) ≤ cε

nε

(
1 + max(y,0) + N(x)

)
.

Finally, we conclude that

Px(T̂z = +∞) = lim
n→+∞Px(T̂z > n) = 0. �

6. Integrability of the killed martingale and of the killed Markov walk.
The goal of this section is to show that the expectations of the martingale (z +
Mn)n≥0 killed at T̂z and of the Markov walk (y + Sn)n≥0 killed at τy are bounded
uniformly in n.

We start by establishing two auxiliary bounds of order n1/2−2ε for the expecta-
tions of the martingale (z + Mn)n≥0 killed at Tz or at T̂z.

LEMMA 6.1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R

and n ≥ 1, it holds

Ex(z + Mn;Tz > n) ≤ max(z,0) + cε

(
n1/2−2ε + N(x)

)
.
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PROOF. Using the fact that (Mn)n≥0 is a zero mean martingale and the op-
tional stopping theorem,

Ex(z + Mn;Tz > n) = z −Ex(z + Mn;Tz ≤ n) = z −Ex(z + MTz;Tz ≤ n).

By the definition of Tz, on the event {Tz > 1}, we have

ξTz = z + MTz − (z + MTz−1) < z + MTz ≤ 0.

Using this inequality and (5.2), we obtain

Ex(z + Mn;Tz > n)

≤ zPx(Tz > 1) +Ex

(|ξ1|;Tz = 1
)+Ex

(|ξTz |;1 < Tz ≤ n
)

(6.1)

≤ max(z,0) + cEx

(
1 + N(XTz) + N(XTz−1);Tz ≤ n

)
.

We bound Ex(N(XTz);Tz ≤ n) as follows. Let ε be a real number in (0,1/6) and
set l = �n1/2−2ε�. Using point 1 of Hypothesis M4, we write

Ex

(
N(XTz);Tz ≤ n

)≤ n1/2−2ε +Ex

(
N(XTz);N(XTz) > n1/2−2ε, Tz ≤ n

)
≤ n1/2−2ε +

�nε�∑
k=1

Ex

(
N(Xk)

)+ n∑
k=�nε�+1

Ex

(
Nl(Xk)

)
.

By (2.2) and (2.3),

Ex

(
N(XTz);Tz ≤ n

)≤ cn1/2−2ε + cN(x) + cn

l1+β
+ ce−cnε (

1 + N(x)
)
.

Choosing ε < min(
β

4(2+β)
, 1

6), we find that

(6.2) Ex

(
N(XTz);Tz ≤ n

)≤ cεn
1/2−2ε + cεN(x).

In the same manner, we obtain that Ex(N(XTz−1);Tz ≤ n) ≤ cεn
1/2−2ε + cεN(x).

Consequently, from (6.2) and (6.1), we conclude the assertion of the lemma. �

LEMMA 6.2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R

and n ≥ 1, we have

Ex(z + Mn; T̂z > n) ≤ max(z,0) + cε

(
n1/2−2ε + n2εN(x)

)
.

PROOF. Let ε be a real number in (0,1/4) and n ≥ 1. Denoting z+ := z +
n1/2−2ε we have,

Ex(z + Mn; T̂z > n) = Ex(z + Mn;Tz+ ≤ n, T̂z > n)︸ ︷︷ ︸
=:J1

(6.3)
+Ex(z + Mn;Tz+ > n, T̂z > n)︸ ︷︷ ︸

=:J2

.
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Bound of J1. Recall that y = z − r(x). Using the definition of T̂z, we can see
that on the event {τy ≤ k, T̂z > k} it holds z+ + Mk > z + Mk > 0. So Px(τy ≤
k, T̂z > k,Tz+ = k) = 0. Using this fact and the Markov property, in the same way
as in the proof of Lemma 5.3,

J1 =
n∑

k=1

∫
X×R

Ex′
(
z′ + Mn−k; T̂z′ > n − k

)
× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k,Tz+ = k

)
.

Since z + MTz+ < 0, using point 2 of Lemma 5.2, we have

J1 ≤ cEx

(√
n + N(XTz+ ); τy > Tz+, Tz+ ≤ n

)
.

By the approximation (5.1), on the event {τy > Tz+}, it holds

r(XTz+ ) = z + MTz+ − (y + STz+ ) < −n1/2−2ε.

Therefore, by Lemma 5.1,

J1 ≤ cn2ε
Ex

(∣∣r(XTz+ )
∣∣+ N(XTz+ ); ∣∣r(XTz+ )

∣∣> n1/2−2ε, Tz+ ≤ n
)

≤ cn2ε + cn2ε
Ex

(
N(XTz+ );Tz+ ≤ n

)
.

Choosing ε small enough, by (6.2),

(6.4) J1 ≤ cn2ε + cεn
2ε(n1/2−4ε + N(x)

)≤ cεn
1/2−2ε + cεn

2εN(x).

Bound of J2. By Lemma 6.1, there exists ε0 > 0 such that, for any ε ∈ (0, ε0),

J2 ≤ Ex(z+ + Mn;Tz+ > n) ≤ max(z,0) + cεn
1/2−2ε + cεN(x).

Inserting this bound and (6.4) into (6.3), for any ε ∈ (0, ε0), we deduce the
assertion of the lemma. �

Let νn be the first time when the martingale z + Mn exceeds n1/2−ε: for any
n ≥ 1, ε ∈ (0,1/2) and z ∈R,

(6.5) νn = νn,ε,z := min
{
k ≥ 1 : z + Mk > n1/2−ε}.

The control on the joint law of νn and T̂z is given by the following lemma.

LEMMA 6.3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), δ > 0, x ∈ X,
z ∈ R and n ≥ 1,

Px

(
νn > δn1−ε, T̂z > δn1−ε)≤ cε,δe−cε,δn

ε (
1 + N(x)

)
.
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PROOF. Let ε ∈ (0,1/4) and δ > 0. Without loss of generally, we assume
that n ≥ cε,δ , where cε,δ is large enough. Set K := �nε/2�. We split the interval
[1, δn1−ε] by subintervals of length l := �δn1−2ε�. For any k ∈ {1, . . . ,K}, intro-
duce the event Ak,z := {max1≤k′≤k(z + Mk′l) ≤ n1/2−ε}. Then

(6.6) Px

(
νn > δn1−ε, T̂z > δn1−ε)≤ Px(A2K,z, T̂z > 2Kl).

By the Markov property, as in the proof of Lemma 5.3, with y = z − r(x), we
have

Px(A2K,z, T̂z > 2Kl)

=
∫
X×R

Px′(A2,z′, T̂z′ > 2l)Px

(
X2(K−1)l ∈ dx′, z + M2(K−1)l ∈ dz′,

A2(K−1),z, τy > 2(K − 1)l
)

(6.7)

+
∫
X×R

Px′(A2,z′, Tz′ > 2l)Px

(
X2(K−1)l ∈ dx′, z + M2(K−1)l ∈ dz′,

A2(K−1),z, τy ≤ 2(K − 1)l, T̂z > 2(K − 1)l
)
.

Moreover, with y′ = z′ − r(x′), we write also that

Px′(A2,z′, T̂z′ > 2l)

=
∫
X×R

Px′′(A1,z′′, T̂z′′ > l)Px′
(
Xl ∈ dx′′, z′ + Ml ∈ dz′′,A1,z′, τy′ > l

)
+
∫
X×R

Px′′(A1,z′′, Tz′′ > l)(6.8)

× Px′
(
Xl ∈ dx′′, z′ + Ml ∈ dz′′,A1,z′, τy′ ≤ l, T̂z′ > l

)
.

Bound of Px′′(A1,z′′, T̂z′′ > l). Note that on the event {τy′ > l} we have
z′ + Ml − r(Xl) = y′ + Sl > 0. Consequently, in the first integral of the right-
hand side of (6.8), the integration over X × R can be replaced by the integra-
tion over {(x′′, z′′) ∈ X × R : z′′ − r(x′′) > 0}. Therefore it is enough to bound
Px′′(A1,z′′, T̂z′′ > l) for x′′ and z′′ satisfying y′′ = z′′ − r(x′′) > 0. Using (5.1) we
have,

Px′′(A1,z′′, T̂z′′ > l) ≤ Px′′
(
y′′ + Sl ≤ 2n1/2−ε,

∣∣r(Xl)
∣∣≤ n1/2−ε)

+ Px′′
(∣∣r(Xl)

∣∣> n1/2−ε).
Therefore, there exists a constant cε,δ such that

Px′′(A1,z′′, T̂z′′ > l) ≤ Px′′
(

Sl√
l
≤ cε,δ

)
+Ex′′

( |r(Xl)|
n1/2−ε

)
.
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Using Corollary 4.4 and Lemma 5.1, there exists ε0 ∈ (0,1/4), such that, for any
ε ∈ (0, ε0),

Px′′(A1,z′′, T̂z′′ > l)

≤
∫ cε,δ

−∞
e− u2

2σ2
du√
2πσ

+ cε

lε

(
1 + N

(
x′′))+ c

n1/2−ε
Ex′′

(
1 + N(Xl)

)
.

Using point 1 of Hypothesis M4 and the fact that lε ≥ nε/2/cε,δ for ε < 1/4, we
have,

(6.9) Px′′(A1,z′′, T̂z′′ > l) ≤ qε,δ + cε,δ

nε/2

(
1 + N

(
x′′)),

with qε,δ := ∫ cε,δ−∞ e− u2

2σ2 du√
2πσ

< 1.

Bound of Px′′(A1,z′′, Tz′′ > l). On the event {Tz′′ > l} we have z′′ + Ml > 0.
Using (5.1) and Corollary 4.4, in the same way as in the proof of the bound (6.9),
we obtain

Px′′(A1,z′′, Tz′′ > l) ≤ Px′′
(
0 < z′′ + Ml ≤ n1/2−ε)

≤
∫ −y′′√

l
+cε,δ

−y′′√
l

−cε,δ

e− u2

2σ2
du√
2πσ

+ cε,δ

nε/2

(
1 + N

(
x′′))(6.10)

≤ qε,δ + cε,δ

nε/2

(
1 + N

(
x′′)).

Bound of Px′(A2,z′, T̂z′ > 2l). Inserting (6.9) and (6.10) into (6.8) and us-
ing (2.2), we have

Px′(A2,z′, T̂z′ > 2l) ≤ qε,δ + cε,δ

nε/2 + cε,δ

nε/2Ex′
(
N(Xl)

)
(6.11)

≤ qε,δ + cε,δ

nε/2 + cε,δe−cε,δn
1−2ε

N
(
x′).

Bound of Px′(A2,z′, Tz′ > 2l). By the Markov property,

Px′(A2,z′, Tz′ > 2l) =
∫
X×R

Px′′(A1,z′′, Tz′′ > l)

× Px′
(
Xl ∈ dx′′, z′ + Ml ∈ dz′′,A1,z′, Tz′ > l

)
.

Using (6.10) to bound the probability inside the integral, we get

(6.12) Px′(A2,z′, Tz′ > 2l) ≤ qε,δ + cε,δ

nε/2 + cε,δe−cε,δn
1−2ε

N
(
x′).
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Inserting the bounds (6.11) and (6.12) into (6.7), we find that

Px(A2K,z, T̂z > 2Kl) ≤
(
qε,δ + cε,δ

nε/2

)
Px

(
A2(K−1),z, T̂z > 2(K − 1)l

)
+ cε,δe−cε,δn

1−2ε(
1 + N(x)

)
.

Iterating this inequality, we get

Px(A2K,z, T̂z > 2Kl)

≤
(
qε,δ + cε,δ

nε/2

)K

+ cε,δe−cε,δn
1−2ε(

1 + N(x)
)K−1∑

k=0

(
qε,δ + cε,δ

nε/2

)k

.

As K = �nε/2� and qε,δ < 1 it follows that, for n large enough, (qε,δ + cε,δ

nε/2 )K ≤
cε,δe−cε,δn

ε
, which, in turn, implies

Px(A2K,z, T̂z > 2Kl) ≤ cε,δe−cε,δn
ε (

1 + N(x)
)
. �

LEMMA 6.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R,
n ≥ 2 and any integer k0 ∈ {2, . . . , n},

Ex(z + Mn; T̂z > n) ≤
(

1 + cε

kε
0

)(
max(z,0) + cN(x)

)+ cεk
1/2
0 .

PROOF. Set for brevity un := Ex(z + Mn; T̂z > n). By Lemma 5.4, the se-
quence (un)n≥1 is nondecreasing. Let ε ∈ (0,1/2). We shall prove below that, for
n ≥ 2,

un ≤
(

1 + cε

nε

)
u�n1−ε� + cεe−cεn

ε (
1 + N(x)

)
.(6.13)

Using Lemma 9.1 of [18], we obtain that for any n ≥ 2 and k0 ∈ {2, . . . , n},
un ≤

(
1 + cε

kε
0

)
uk0 + cεe−cεk

ε
0
(
1 + N(x)

)
.

Next, by point 2 of Lemma 5.2, uk0 ≤ Ex(|Mk0 |) ≤ c(
√

k0 + N(x)), so that

un ≤
(

1 + cε

kε
0

)(
max(z,0) + cN(x)

)+ cεk
1/2
0 ,

which proves Lemma 6.4.
Establishing (6.13) is rather tedious. In the proof, we make use of Lemmas 6.2

and 6.1. Consider the stopping time νε
n := νn + �nε�. Then,

un ≤ Ex

(
z + Mn; T̂z > n, νε

n >
⌊
n1−ε⌋)︸ ︷︷ ︸

=:J1
(6.14)

+Ex

(
z + Mn; T̂z > n, νε

n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=:J2

.
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Bound of J1. Set mε = �n1−ε� − �nε� and recall that y = z − r(x). Using the
fact that {νε

n > �n1−ε�} = {νn > mε} and the Markov property, as in the proof of
Lemma 5.3,

J1 =
∫
X×R

Ex′
(
z′ + Mn−mε ; T̂z′ > n − mε

)
× Px

(
Xmε ∈ dx′, z + Mmε ∈ dz′, τy > mε, νn > mε

)
+
∫
X×R

Ex′
(
z′ + Mn−mε ;Tz′ > n − mε

)
× Px

(
Xmε ∈ dx′, z + Mmε ∈ dz′, τy ≤ mε, T̂z > mε, νn > mε

)
.

On the event {νn > mε}, we have z′ = z + Mmε ≤ n1/2−ε ≤ n1/2. Moreover by
point 2 of Lemma 5.2, Ex′(|Mn−mε |) ≤ cn1/2 + cN(x′). Therefore,

J1 ≤ cEx

(
n1/2 + N(Xmε); T̂z > mε, νn > mε

)
.

Set m′
ε = mε − �nε� = �n1−ε� − 2�nε�. Using the Markov property and (2.2),

J1 ≤ c

∫
X

[
n1/2 +Ex′

(
N(X�nε�)

)]
Px

(
Xm′

ε
∈ dx′, T̂z > m′

ε, νn > m′
ε

)
≤ cn1/2

Px

(
T̂z > m′

ε, νn > m′
ε

)+ ce−cnε

Ex

(
N(Xm′

ε
)
)
.

By Lemma 6.3 and point 1 of Hypothesis M4,

(6.15) J1 ≤ cεn
1/2e−cεn

ε(
1 + N(x)

)+ ce−cnε (
1 + N(x)

)≤ cεe−cεn
ε(

1 + N(x)
)
.

Bound of J2. By the Markov property, as in the proof of Lemma 5.3, we have

J2 =
�n1−ε�∑
k=1

∫
X×R

Ex′
(
z′ + Mn−k; T̂z′ > n − k

)
× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k, νε

n = k
)

+
∫
X×R

Ex′
(
z′ + Mn−k;Tz′ > n − k

)
× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy ≤ k, T̂z > k, νε

n = k
)
.

By Lemmas 6.2 and 6.1,

J2 ≤ cεEx

(
n1/2−2ε + n2εN(Xνε

n
); T̂z > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸

=:J21
(6.16)

+Ex

(
max(z + Mνε

n
,0); T̂z > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸

=:J22

.
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Bound of J21. Using the Markov property and (2.2),

J21 ≤ cε

∫
X

Ex′
(
n1/2−2ε + n2εN(X�nε�)

)
Px

(
Xνn ∈ dx′, T̂z > νn, νn ≤ ⌊n1−ε⌋)

≤ cεEx

(
n1/2−2ε + e−cεn

ε

N(Xνn); T̂z > νn, νn ≤ ⌊n1−ε⌋).
Again by (2.2),

Ex

(
e−cεn

ε

N(Xνn); T̂z > νn, νn ≤ ⌊n1−ε⌋)

≤ e−cεn
ε

�n1−ε�∑
k=1

Ex

(
N(Xk);νn = k

)
(6.17)

≤ cεe−cεn
ε

n1−ε(1 + N(x)
)
.

Therefore,

(6.18) J21 ≤ cεEx

(
n1/2−2ε; T̂z > νn, νn ≤ ⌊n1−ε⌋)︸ ︷︷ ︸

=:J ′
21

+cεe−cεn
ε(

1 + N(x)
)
.

By the definition of νn, we have n1/2−2ε <
z+Mνn

nε . So

J ′
21 ≤ cε

nε
Ex

(
z + Mνn; T̂z > νn, νn ≤ ⌊n1−ε⌋).

Using Lemma 5.4,

J ′
21 ≤ cε

nε
Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋)

(6.19)

− cε

nε
Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋, νn >

⌊
n1−ε⌋)︸ ︷︷ ︸

=:J ′′
21

.

Note that on the event {τy > �n1−ε�}, by (5.1), we have z + M�n1−ε� > r(X�n1−ε�)
while on the event {τy ≤ �n1−ε�, T̂z > �n1−ε�} we have z + M�n1−ε� > 0. There-

fore, by the definition of T̂z,

−J ′′
21 ≤ −Ex

(
r(X�n1−ε�); τy >

⌊
n1−ε⌋, νn >

⌊
n1−ε⌋)

≤ cEx

(
1 + N(X�n1−ε�); T̂z >

⌊
n1−ε⌋, νn >

⌊
n1−ε⌋).

Using the Markov property and (2.2),

−J ′′
21 ≤ cEx

(
1 + e−cnε

N(Xmε); T̂z > mε, νn > mε

)
≤ cPx(νn > mε, T̂z > mε) + ce−cnε (

1 + N(x)
)
.

By Lemma 6.3,

(6.20) −J ′′
21 ≤ cεe−cεn

ε(
1 + N(x)

)
.
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Putting together (6.20) and (6.19),

(6.21) J ′
21 ≤ cε

nε
Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋)+ cεe

−cεn
ε (

1 + N(x)
)
.

From (6.21) and (6.18), it follows that

(6.22) J21 ≤ cε

nε
Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋)+ cεe−cεn

ε(
1 + N(x)

)
.

Bound of J22. On the event {T̂z > νε
n, τy ≤ νε

n} we have z + Mνε
n

> 0. Conse-
quently,

J22 = Ex

(
z + Mνε

n
; T̂z > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)

+Ex

(
max(z + Mνε

n
,0) − (z + Mνε

n
); τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋).

By Lemma 5.4,

J22 ≤ Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋)

−Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋, νε

n >
⌊
n1−ε⌋)︸ ︷︷ ︸

=:J ′′
22

(6.23)

−Ex

(
z + Mνε

n
; z + Mνε

n
< 0, τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸

=:J ′
22

.

In the same way as in the proof of the bound of J ′′
21, replacing νn by νε

n, one can
prove that

(6.24) −J ′′
22 ≤ cεe−cεn

ε (
1 + N(x)

)
.

Moreover, using (5.1), on the event {τy > νε
n}, we have −(z + Mνε

n
) < −r(Xνε

n
).

So, by Lemma 5.1 and the Markov property

J ′
22 ≤ Ex

(∣∣r(Xνε
n
)
∣∣; T̂z > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)

≤ Ex

(
c
(
1 + N(Xνε

n
)
); T̂z > νn, νn ≤ ⌊n1−ε⌋)

= c

∫
X

Ex′
(
1 + N(X�nε�)

)
Px

(
Xνn ∈ dx′, T̂z > νn, νn ≤ ⌊n1−ε⌋).

Using (2.2),

J ′
22 ≤ cEx

(
1 + e−cnε

N(Xνn); T̂z > νn, νn ≤ ⌊n1−ε⌋).
Therefore, from (6.17) with the notation J ′

21 from (6.18),

(6.25) J ′
22 ≤ J ′

21 + cεe−cεn
ε (

1 + N(x)
)
.

With (6.21), (6.23) and (6.24) we obtain

(6.26) J22 ≤
(

1 + cε

nε

)
u�n1−ε� + cεe−cεn

ε (
1 + N(x)

)
.
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Inserting (6.26) and (6.22) into (6.16),

(6.27) J2 ≤
(

1 + cε

nε

)
u�n1−ε� + cεe−cεn

ε (
1 + N(x)

)
.

Now, inserting (6.15) and (6.27) into (6.14), we find (6.13). �

COROLLARY 6.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X,
y ∈ R, n ≥ 2 and any integer k0 ∈ {2, . . . , n},

Ex(y + Sn; τy > n) ≤
(

1 + cε

kε
0

)(
max(y,0) + cN(x)

)+ cεk
1/2
0 .

PROOF. First, using the definition of T̂z and Lemma 6.4, with z = y + r(x),

Ex(z + Mn; τy > n) = Ex(z + Mn; T̂z > n) −Ex(z + Mn; τy ≤ n, T̂z > n)

≤ Ex(z + Mn; T̂z > n)(6.28)

≤
(

1 + cε

kε
0

)(
max(z,0) + cN(x)

)+ cεk
1/2
0 .(6.29)

Now, using (5.1), Lemma 5.1 and (2.2),

Ex(y + Sn; τy > n) = Ex(z + Mn; τy > n) −Ex

(
r(Xn); τy > n

)
≤ Ex(z + Mn; τy > n) + c

(
1 + e−cnN(x)

)
≤
(

1 + cε

kε
0

)(
max(z,0) + cN(x)

)+ cεk
1/2
0 .

Using the definition of z concludes the proof. �

7. Existence and properties of the harmonic function. The idea is very
simple. Set for brevity Vn(x, y) := Ex(y + Sn; τy > n). By the Markov prop-
erty, Vn+1(x, y) = Q+Vn(x, y). We show that limn→∞ Vn(x, y) exists and is equal
to V (x, y) := −Ex(Mτy ). Then the harmonicity of V follows by the Lebesgue
dominated convergence theorem. The key point of the proof is the integrability
of the random variable Mτy . To justify the applicability of the Lebesgue dom-
inated convergence theorem we use Lemma 6.4. We also shall establish some
properties of V . They will be deduced from those of the following two functions:
W(x, z) := −Ex(MTz) and Ŵ (x, z) := −Ex(MT̂z

). The strict positivity of V is
technically more delicate and therefore is deferred to the next section.

LEMMA 7.1. Let x ∈ X, y ∈ R and z = y + r(x). The random variables M
T̂z

,
MTz and Mτy are integrable and

max
{
Ex

(|M
T̂z

|),Ex

(|MTz |
)
,Ex

(|Mτy |
)}≤ c

(
1 + |z| + N(x)

)
< +∞.
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In particular, the following functions are well defined, for any x ∈ X, y ∈ R and
z ∈ R,

V (x, y) := −Ex(Mτy ), W(x, z) := −Ex(MTz) and

Ŵ (x, z) := −Ex(MT̂z
).

PROOF. Let n ≥ 1. The stopping times τy ∧ n, Tz ∧ n and T̂z ∧ n are bounded
and satisfy τy ∧n ≤ T̂z ∧n and Tz ∧n ≤ T̂z ∧n. Since (|Mn|)n≥0 is a submartingale,
we have

(7.1) max
{
Ex

(|Mτy∧n|),Ex

(|MTz∧n|)}≤ Ex

(|M
T̂z∧n

|).
Using the optional stopping theorem,

Ex

(|M
T̂z∧n

|)≤ −Ex(z + M
T̂z

; T̂z ≤ n) +Ex

(|z + Mn|; τy > n
)

+Ex(z + Mn; τy ≤ n, T̂z > n) + |z|
= −Ex(z + Mn; T̂z ≤ n) − 2Ex(z + Mn; z + Mn ≤ 0, τy > n)

+Ex(z + Mn; τy > n) +Ex(z + Mn; τy ≤ n, T̂z > n) + |z|
= − z + 2Ex(z + Mn; T̂z > n)

− 2Ex(z + Mn; z + Mn ≤ 0, τy > n) + |z|.
On the event {z+Mn ≤ 0, τy > n}, by (5.1), it holds |z+Mn| ≤ |r(Xn)|. Therefore,
by Lemma 5.1 and point 1 of Hypothesis M4, we have

−2Ex(z + Mn; z + Mn ≤ 0, τy > n) ≤ c
(
1 + N(x)

)
.

Using Lemma 6.4,

(7.2) Ex

(|M
T̂z

|; T̂z ≤ n
)≤ Ex

(|M
T̂z∧n

|)≤ c
(
1 + |z| + N(x)

)
.

By the Lebesgue monotone convergence theorem and the fact that T̂z < +∞, we
deduce that M

T̂z
is Px -integrable and

Ex

(|M
T̂z

|)≤ c
(
1 + |z| + N(x)

)
.

In the same manner, using (7.1), (7.2) and Lemmas 5.5 and 5.6, we conclude that
Mτy and MTz are Px -integrable and

max
{
Ex

(|Mτy |
)
,Ex

(|MTz |
)}≤ c

(
1 + |z| + N(x)

)
.

The assertion of the lemma follows obviously from the last two inequalities. �
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PROPOSITION 7.2. 1. Let x ∈X, y ∈ R and z = y + r(x). Then

V (x, y) = lim
n→+∞Ex(z + Mn; τy > n) = lim

n→+∞Ex(y + Sn; τy > n)

and

W(x, z) = lim
n→+∞Ex(z + Mn;Tz > n),

Ŵ (x, z) = lim
n→+∞Ex(z + Mn; T̂z > n).

2. For any x ∈ X, the functions y 
→ V (x, y), z 
→ W(x, z) and z 
→ Ŵ (x, z)

are nondecreasing on R.
3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈X, z ∈ R and any integer

k0 ≥ 2,

(7.3) Ŵ (x, z) ≤
(

1 + cε

kε
0

)(
max(z,0) + cN(x)

)+ cεk
1/2
0

and, for any x ∈X, y ∈ R and z = y + r(x),

(7.4) 0 ≤ min
{
V (x, y),W(x, z)

}≤ max
{
V (x, y),W(x, z)

}≤ Ŵ (x, y).

In particular, for any x ∈X and y ∈R,

(7.5) 0 ≤ V (x, y) ≤ c
(
1 + max(y,0) + N(x)

)
.

4. For any x ∈ X and y ∈ R,

V (x, y) = Q+V (x, y) := Ex

(
V (X1, y + S1); τy > 1

)
and (V (Xn, y + Sn)1{τy>n})n≥0 is a Px -martingale.

PROOF. Claim 1. Let υ be any of the stopping times τy, Tz, or T̂z. By the
martingale property, for n ≥ 1,

Ex(z + Mn;υ > n) = zPx(υ > n) −Ex(Mυ;υ ≤ n).

Using Lemmas 5.5, 5.6, 5.7, 7.1 and the Lebesgue dominated convergence theo-
rem,

Ex(z + Mn;υ > n) = −Ex(Mυ).

Moreover, by (5.1),

Ex(y + Sn; τy > n) = Ex(z + Mn; τy > n) −Ex

(
r(Xn); τy > n

)
.

Since, by Lemma 5.1, point 1 of Hypothesis M4 and Lemma 5.5, we have∣∣Ex

(
r(Xn); τy > n

)∣∣≤ cE1/2
x

((
1 + N(Xn)

)2)
P

1/2
x (τy > n)

(7.6)
≤ c
(
1 + N(x)

)
P

1/2
x (τy > n) −→

n→+∞ 0,

claim 1 follows.
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Proof of claim 2. Let x ∈ X. For any y′ ≤ y, we obviously have τy′ ≤ τy . There-
fore, for n ≥ 1,

Ex

(
y′ + Sn; τy′ > n

)≤ Ex(y + Sn; τy′ > n) ≤ Ex(y + Sn; τy > n).

Taking the limit as n → +∞ and using claim 1, it follows that V (x, y′) ≤ V (x, y).
In the same way W(x, z′) ≤ W(x, z) for z′ ≤ z. To prove the monotonicity of Ŵ ,
we note that, for any z′ ≤ z, y′ = z′ − r(x) and y = z − r(x), we have T̂z′ =
min{k ≥ τy′ : z′ + Mk ≤ 0} ≤ min{k ≥ τy : z′ + Mk ≤ 0} ≤ T̂z. So

Ex

(
z′ + Mn; T̂z′ > n

)≤ Ex(z + Mn; T̂z′ > n, T̂z > n)

≤ Ex(y + Sn; τy > n) +Ex

(∣∣r(Xn)
∣∣; τy > n

)
+Ex(z + Mn; τy ≤ n, T̂z > n)

≤ Ex(z + Mn; T̂z > n) + 2Ex

(∣∣r(Xn)
∣∣; τy > n

)
.

As in (7.6), taking the limit as n → +∞, by the claim 1, we have Ŵ (x, z′) ≤
Ŵ (x, z).

Proof of claim 3. The inequality (7.3) is a direct consequence of claim 1 and
Lemma 6.4. Moreover, taking the limit as n → ∞ in (6.28), we get V (x, y) ≤
Ŵ (x, z).

To bound W , we write, for n ≥ 1,

Ex(z + Mn;Tz > n) = Ex(z + Mn; τy ≤ n, T̂z > n,Tz > n)

+Ex(z + Mn; z + Mn > 0, τy > n,Tz > n).

Since z + Mn > 0 on the event {τy ≤ n, T̂z > n},
Ex(z + Mn;Tz > n) ≤ Ex(z + Mn; τy ≤ n, T̂z > n)

+Ex(z + Mn; z + Mn > 0, τy > n)

= Ex(z + Mn; T̂z > n)

−Ex(z + Mn; z + Mn ≤ 0, τy > n).

Using the approximation (5.1),

(7.7) Ex(z + Mn;Tz > n) ≤ Ex(z + Mn; T̂z > n) +Ex

(∣∣r(Xn)
∣∣; τy > n

)
.

As in (7.6), using claim 1,

W(x, z) ≤ Ŵ (x, z).

Now, since y + Sn is positive on the event {τy > n}, by the claim 1, we see that
V (x, y) ≥ 0 and in the same way, W(x, z) ≥ 0. This proves (7.4).
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Inequality (7.5) follows from (7.3) and (7.4).

Proof of claim 4. By the Markov property, for n ≥ 1,

Vn+1(x, y) := Ex(y + Sn+1; τy > n + 1)
(7.8)

=
∫
X×R

Vn

(
x′, y′)

Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
,

where, by Corollary 6.5, Vn(x
′, y′) ≤ c(1 + |y′| + N(x′)) and by point 1 of Hy-

pothesis M4,

Ex

(
1 + |y + S1| + N(X1)

)≤ c
(
1 + |y| + N(x)

)
< +∞.

Taking the limit in (7.8), by the Lebesgue dominated convergence theorem, we
have

V (x, y) = Q+V (x, y) := Ex

(
V (X1, y + S1); τy > 1

)
. �

8. Positivity of the harmonic function. The aim of this section is to prove
that the harmonic function V is nonidentically zero and to precise its support.

For any x ∈ X, z ∈ R and n ≥ 0, denote for brevity,

(8.1) Ŵn(x, z) = Ŵ (Xn, z + Mn)1{T̂z>n}.

Although it is easy to verify that Ŵ (x, z) ≥ z (see Lemma 8.1) which, in turn,
ensures that Ŵ (x, z) > 0 for any z > 0, it is not straightforward to give a
lower bound for the function V . We show that V (x, y) = limn→+∞Ex(Ŵn(x, z);
τy > n) (Lemma 8.2) and use the fact that (Ŵn(x, z)1{τy>n})n≥0 is a Px-
supermartingale (Lemma 8.1). By a recurrent procedure similar to that used in
Lemma 6.4, we obtain a lower bound for V (Lemma 8.6) which subsequently is
used to prove the positivity of V (Lemma 8.8).

LEMMA 8.1. 1. For any x ∈ X and z ∈ R,

Ŵ (x, z) ≥ z.

2. For any x ∈ X,

lim
z→+∞

Ŵ (x, z)

z
= 1.

3. The function Ŵ is subharmonic, that is, for any x ∈ X, z ∈ R and n ≥ 0,

Ex

(
Ŵn(x, z)

)≥ Ŵ (x, z).

4. For any x ∈ X and z ∈ R, (Ŵn(x, z)1{τy>n})n≥0 is a Px-supermartingale.
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PROOF. Claim 1. By the Doob optional theorem and the definition of T̂z, for
any n ≥ 1,

Ex(z + Mn; T̂z > n) = z −Ex(z + M
T̂z

; T̂z ≤ n) ≥ z.

Taking the limit as n → +∞ and using point 1 of Proposition 7.2 proves claim 1.

Proof of claim 2. By claim 1, lim infz→+∞ Ŵ (x, z)/z ≥ 1. Moreover, by (7.3),
for any k0 ≥ 2,

lim sup
z→∞

Ŵ (x, z)

z
≤
(

1 + cε

kε
0

)
.

Taking the limit as k0 → +∞, the claim follows.

Proof of claim 3. Recall the notation y = z − r(x). Using the Markov property,
as in the proof of Lemma 5.3, for any k ≥ 1,

Ex(z + Mn+k; T̂z > n + k)

=
∫
X×R

Ex′
(
z′ + Mn; T̂z′ > n

)
Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k

)
(8.2)

+
∫
X×R

Ex′
(
z′ + Mn;Tz′ > n

)
× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy ≤ k, T̂z > k

)
.

We shall find the limits as n → +∞ of the two terms in the right-hand side. By
Lemmas 6.4 and 5.1, Ex′(z′ + Mn; T̂z′ > n) ≤ c(1 + |y′| + N(x′)), with y′ = z′ −
r(x′). Moreover, by point 1 of Hypothesis M4, Ex(1+|y +Sk|+N(Xk)) ≤ ck(1+
|y| + N(x)) < +∞. So, by the Lebesgue dominated convergence theorem and
point 1 of Proposition 7.2,∫

X×R

Ex′
(
z′ + Mn; T̂z′ > n

)
Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k

)
(8.3)

−→
n→+∞ Ex

(
Ŵ (Xk, z + Mk); τy > k

)
.

Moreover, using (7.7), Lemmas 6.4 and 5.1 and point 1 of Hypothesis M4,

Ex′
(
z′ + Mn;Tz′ > n

)≤ c
(
1 + ∣∣z′∣∣+ N

(
x′)).

Again, by the Lebesgue dominated convergence theorem and point 1 of Proposi-
tion 7.2, we have∫

X×R

Ex′
(
z′ + Mn;Tz′ > n

)
Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy ≤ k, T̂z > k

)
(8.4)

−→
n→+∞ Ex

(
W(Xk, z + Mk); τy ≤ k, T̂z > k

)
.
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Putting together (8.2), (8.3), (8.4) and using point 1 of Proposition 7.2,

Ŵ (x, z) = Ex

(
Ŵ (Xk, z + Mk); τy > k

)
(8.5)

+Ex

(
W(Xk, z + Mk); τy ≤ k, T̂z > k

)
.

Now, taking into account (7.4) and the identity {τy > k} = {τy > k, T̂z > k}, we
obtain claim 3.

Proof of claim 4. By point 3 of Proposition 7.2, W is a nonnegative function.
Therefore, using (8.5),

Ŵ (x, z) ≥ Ex

(
Ŵ (X1, z + M1); τy > 1

)
,

which implies that (Ŵn(x, z)1{τy>n})n≥0 is a supermartingale. �

LEMMA 8.2. For any x ∈ X, y ∈ R and z = y + r(x),

V (x, y) = lim
n→+∞Ex

(
Ŵn(x, z); τy > n

)
.

PROOF. For any n ≥ 1, x ∈ X, y ∈R and z = y + r(x),

Ex(z + Mn; τy > n) = Ex(z + Mn; T̂z > n) −Ex(z + Mn; τy ≤ n, T̂z > n).

By point 1 of Lemma 8.1, on the event {T̂z > n}, we have z + Mn ≤ Ŵn(x, z) and
therefore

Ex(z + Mn; τy > n) ≥ Ex(z + Mn; T̂z > n) −Ex

(
Ŵn(x, z)

)
(8.6)

+Ex

(
Ŵn(x, z); τy > n

)
.

Moreover, by (7.3), for any δ > 0,

Ex

(
Ŵn(x, z)

)≤ (1 + δ)Ex(z + Mn; T̂z > n) + cδEx

(
1 + N(Xn); T̂z > n

)
− (1 + δ)Ex(z + Mn; z + Mn < 0, τy > n).

On the event {z + Mn < 0, τy > n}, by (5.1), it holds r(Xn) < z + Mn < 0. There-
fore, using Lemma 5.1,

Ex

(
Ŵn(x, z)

)≤ (1 + δ)Ex(z + Mn; T̂z > n) + cδEx

(
1 + N(Xn); T̂z > n

)
.

By the Markov property and (2.2),

Ex

(
1 + N(Xn); T̂z > n

)≤ cEx

(
1 + e−cn/2N(X�n/2�); T̂z > �n/2�)

≤ cPx

(
T̂z > �n/2�)+ ce−cn(1 + N(x)

)
.

By Lemma 5.7 and point 1 of Proposition 7.2,

(8.7) lim
n→+∞Ex

(
Ŵn(x, z)

)≤ (1 + δ)Ŵ (x, z).
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Taking the limit as n → +∞ in (8.6) and using the previous bound, we obtain that

V (x, y) ≥ −δŴ (x, z) + lim
n→+∞Ex

(
Ŵn(x, z); τy > n

)
.

Since this inequality holds true for any δ > 0 small enough, we obtain the bound

(8.8) lim
n→+∞Ex

(
Ŵn(x, z); τy > n

)≤ V (x, y).

Now, by point 1 of Lemma 8.1,

Ex(z + Mn; τy > n) ≤ Ex

(
Ŵ (Xn, z + Mn); τy > n

)
.

Taking the limit as n → +∞ and using point 1 of Proposition 7.2, we obtain
that

V (x, y) ≤ lim
n→+∞Ex

(
Ŵn(x, z); τy > n

)
.

Together with (8.8), this concludes the proof. �

REMARK 8.3. Taking the limit in point 3 of Lemma 8.1,

lim
n→+∞Ex

(
Ŵn(x, z)

)≥ Ŵ (x, z).

Coupling this result with (8.7), it follows that

lim
n→+∞Ex

(
Ŵn(x, z)

)= Ŵ (x, z).

LEMMA 8.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n ≥ 1, x ∈ X,
z ∈ R and y = z − r(x), we have

Ex

(
Ŵn(x, z); τy > n

)≥ Ŵ (x, z) + c min(z,0) − cε

(
n1/2−2ε + n2εN(x)

)
.

PROOF. Using point 3 of Lemma 8.1, the bound (7.3) and point 1 of Hypoth-
esis M4, we have, for any n ≥ 1,

Ex

(
Ŵn(x, z); τy > n

)= Ex

(
Ŵn(x, z)

)−Ex

(
Ŵn(x, z); τy ≤ n

)
≥ Ŵ (x, z) − cEx(z + Mn; τy ≤ n, T̂z > n) − c

(
1 + N(x)

)
.

Again by point 1 of M4, Lemma 6.2 and the Doob optional stopping theorem,

Ex

(
Ŵn(x, z); τy > n

)≥ Ŵ (x, z) − c
[
Ex(z + Mn; T̂z > n) −Ex(z + Mn; τy > n)

]
− c
(
1 + N(x)

)
≥ Ŵ (x, z) − c

[
max(z,0) − z +Ex(z + Mτy ; τy ≤ n)

]
− cε

(
n1/2−2ε + n2εN(x)

)− c
(
1 + N(x)

)
.
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By (5.1), z + Mτy ≤ r(Xτy ). Therefore, in the same way as in the proof of (6.2),

Ex(z + Mτy ; τy ≤ n) ≤ cEx

(
1 + N(Xτy ); τy ≤ n

)≤ cεn
1/2−2ε + cεN(x).

Together with the previous bound, this implies that

Ex

(
Ŵn(x, z); τy > n

)≥ Ŵ (x, z) + c min(z,0) − cε

(
n1/2−2ε + n2εN(x)

)
. �

LEMMA 8.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n ≥ 2, k0 ∈
{2, . . . , n}, x ∈ X and z ∈ R, with y = z − r(x), we have

Ex

(
Ŵn(x, z); τy > n

)≥ Ex

(
Ŵk0(x, z); τy > k0

)− cε

kε
0

(
max(z,0) + 1 + N(x)

)
.

PROOF. Let ε ∈ (0,1). Set for brevity un := Ex(Ŵn(x, z); τy > n) for n ≥ 1.
By point 4 of Lemma 8.1, the sequence (un)n≥1 is nonincreasing. We shall prove
that

(8.9) un ≥ u�n1−ε� − cε

nε

(
max(z,0) + 1 + N(x)

)
.

By Lemma 9.2 of [18] on the convergence of recursively bounded nonincreasing
sequences, we conclude that, for any n ≥ 2 and k0 ∈ {2, . . . , n},

un ≥ uk0 − cε

kε
0

(
max(z,0) + 1 + N(x)

)
,

which proves the assertion of the lemma.
It remains to establish (8.9). Consider the stopping time νε

n = νn + �nε�. By the
Markov property, with y′ = z′ − r(x′),

un ≥ Ex

(
Ŵn(x, z); τy > n, νε

n ≤ ⌊n1−ε⌋)

=
�n1−ε�∑

k=�nε�+1

∫
X×R

Ex′
(
Ŵn−k

(
x′, z′); τy′ > n − k

)
× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, τy > k, νε

n = k
)
.

Using Lemma 8.4, we obtain

un ≥ Ex

(
Ŵνε

n
(x, z); τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)

+ cEx

(
min(z + Mνε

n
,0); τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)

− cεEx

(
n1/2−2ε + n2εN(Xνε

n
); τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋).

On the event {z + Mνε
n

≤ 0, τy > νε
n}, by (5.1), we have 0 ≥ z + Mνε

n
≥ r(Xνε

n
).

Therefore, by Lemma 5.1,

Ex

(
min(z + Mνε

n
,0); τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋)

≥ −cEx

(
1 + N(Xνε

n
); τy > νε

n, ν
ε
n ≤ ⌊n1−ε⌋).
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Consequently, using point 4 of Lemma 8.1 and (2.2),

un ≥ Ex

(
Ŵ�n1−ε�(x, z); τy >

⌊
n1−ε⌋, νε

n ≤ ⌊n1−ε⌋)
− cεEx

(
n1/2−2ε + e−cεn

ε

N(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋).
By the definition of νn, we have n1/2−2ε ≤ (z + Mνn)/nε . Then as in (6.17),

un ≥ Ex

(
Ŵ�n1−ε�(x, z); τy >

⌊
n1−ε⌋, νε

n ≤ ⌊n1−ε⌋)
− cε

nε
Ex

(
z + Mνn; τy > νn, νn ≤ ⌊n1−ε⌋)

− cεe−cεn
ε(

1 + N(x)
)
.

Rearranging the terms, we have

un ≥ u�n1−ε� − cεe−cεn
ε(

1 + N(x)
)

− cε

nε
Ex

(
z + Mνn; τy > νn, νn ≤ ⌊n1−ε⌋)︸ ︷︷ ︸

=:I1

(8.10)

−Ex

(
Ŵ�n1−ε�(x, z); τy >

⌊
n1−ε⌋, νε

n >
⌊
n1−ε⌋)︸ ︷︷ ︸

=:I2

.

Bound of I1. To bound I1 we use the facts that, by the definition of νn, z+Mνn >

n1/2−ε > 0 and that T̂z ≥ τy . Taking into account Lemma 5.4, we have

I1 ≤ Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋, νn ≤ ⌊n1−ε⌋)

= Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋)− J ′′

21,

where J ′′
21 is defined in (6.19). Now, it follows from Lemma 5.4 and point 1

of Proposition 7.2, that (Ex(z + M�n1−ε�; T̂z > �n1−ε�))n≥0 is a nondecreasing

sequence which converges to Ŵ (x, z) and so Ex(z + M�n1−ε�; T̂z > �n1−ε�) ≤
Ŵ (x, z). Using (6.20), we find that

(8.11) I1 ≤ Ŵ (x, z) + cεe−cεn
ε(

1 + N(x)
)
.

Bound of I2. By (8.1) and (7.3),

I2 ≤ cEx

(
z + M�n1−ε�(1 − 1{z+M�n1−ε�<0}); T̂z >

⌊
n1−ε⌋, νε

n >
⌊
n1−ε⌋)

+ cEx

(
1 + N(X�n1−ε�); T̂z >

⌊
n1−ε⌋, νε

n >
⌊
n1−ε⌋).

On the event {z + M�n1−ε� < 0, T̂z > �n1−ε�} = {z + M�n1−ε� < 0, τy > �n1−ε�}, it
holds z + M�n1−ε� > r(X�n1−ε�). Therefore, using Lemma 5.1,

I2 ≤ cEx

(
z + M�n1−ε� + 1 + N(X�n1−ε�); T̂z >

⌊
n1−ε⌋, νε

n >
⌊
n1−ε⌋).
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By Lemma 5.4,

Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋, νε

n >
⌊
n1−ε⌋)≤ J1,

where J1 is defined in (6.14). Using inequalities (6.15), (2.2) and Lemma 6.3, with
mε = �n1−ε� − �nε�, we obtain

I2 ≤ cεe−cεn
ε (

1 + N(x)
)+ cEx

(
1 + e−cnε

N(Xmε); T̂z > mε, νn > mε

)
(8.12)

≤ cεe−cεn
ε (

1 + N(x)
)
.

Putting together (8.12), (8.11) and (8.10) and using (7.3), we obtain (8.9), which
completes the proof of the lemma. �

PROPOSITION 8.6. 1. For any δ ∈ (0,1), x ∈ X and y > 0,

V (x, y) ≥ (1 − δ)y − cδ

(
1 + N(x)

)
.

2. For any x ∈ X,

lim
y→+∞

V (x, y)

y
= 1.

PROOF. Claim 1. By Lemmas 8.5 and 8.2, we immediately have, with z =
y + r(x),

V (x, y) ≥ Ex

(
Ŵk0(x, z); τy > k0

)− cε

kε
0

(
max(z,0) + 1 + N(x)

)
.

Using point 1 of Lemma 8.1 and point 2 of Lemma 5.2,

V (x, y) ≥ Ex(z + Mk0; τy > k0) − cε

kε
0

(
max(z,0) + 1 + N(x)

)
≥ zPx(τy > k0) − c

(√
k0 + N(x)

)− cε

kε
0

(
max(z,0) + 1 + N(x)

)
.

Since, by the union bound and the Markov inequality,

Px(τy > k0) ≥ Px

(
max

1≤k≤k0

∣∣f (Xk)
∣∣< y

k0

)
≥ 1 − ck2

0(1 + N(x))

y
,

we obtain that, by the definition of z,

(8.13) V (x, y) ≥
(

1 − cε

kε
0

)
y − cεk

2
0
(
1 + N(x)

)
.

Let δ ∈ (0,1). Taking k0 large enough, we obtain the desired inequality.

Proof of claim 2. By claim 1, we have lim infy→+∞ V (x, y)/y ≥ 1 − δ, for any
δ ∈ (0,1) and x ∈ X. Taking the limit as δ → 0, we obtain the lower bound. Now
by (7.4) and (7.3), for any integer k0 ≥ 2, y ∈ R and z = y + r(x),

V (x, y) ≤ Ŵ (x, z) ≤
(

1 + cε

kε
0

)(
max(z,0) + cN(x)

)+ cεk
1/2
0 .
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Using the definition of z, we conclude that

lim sup
y→+∞

V (x, y)

y
≤ lim

k0→+∞

(
1 + cε

kε
0

)
= 1. �

Now, for any γ > 0, consider the stopping time:

(8.14) ζγ := inf
{
k ≥ 1 : |y + Sk| > γ

(
1 + N(Xk)

)}
.

The control on the tail of ζγ is given by the following lemma.

LEMMA 8.7. For any γ > 0, x ∈ X, y ∈ R and n ≥ 1,

Px(ζγ > n) ≤ ce−cγ n(1 + N(x)
)
.

PROOF. The reasoning is very close to that of the proof of the Lemma 6.3. Let
γ > 0. Consider the integer l ≥ 1 which will be chosen later. Define K := � n

2l
� and

introduce the event A
γ
k,y :=⋂

k′∈{1,...,k}{|y + Sk′l| ≤ γ (1 + N(Xk′l))}. We have

Px(ζγ > n) ≤ Px

(
A

γ
2K,y

)
.

By the Markov property,

Px

(
A

γ
2K,y

)= ∫
X×R

∫
X×R

Px′′
(
A

γ

1,y′′
)
Px′
(
Xl ∈ dx′′, y′ + Sl ∈ dy′′,Aγ

1,y′
)

(8.15)
× Px

(
X2(K−1)l ∈ dx′, y + S2(K−1)l ∈ dy′,Aγ

2(K−1),y

)
.

We write

Px′′
(
A

γ

1,y′′
)≤ Px′′

(∣∣y′′ + Sl

∣∣≤ 2γ
√

l
)+ Px′′

(
N(Xl) >

√
l
)

≤ Px′′
(−y′′

√
l

− 2γ ≤ Sl√
l
≤ −y′′

√
l

+ 2γ

)
+Ex′′

(
N(Xl)√

l

)
.

By Corollary 4.4 and point 1 of Hypothesis M4, there exists ε0 ∈ (0,1/4) such
that, for any ε ∈ (0, ε0),

Px′′
(
A

γ

1,y′′
)≤ ∫ −y′′√

l
+2γ

−y′′√
l

−2γ
e− u2

2σ2
du√
2πσ

+ 2cε

lε

(
1 + N

(
x′′))+ c√

l

(
1 + N

(
x′′)).

Set qγ := ∫ 2γ
−2γ e− u2

2σ2 du√
2πσ

< 1. From (8.15), we obtain

Px

(
A

γ
2K,y

)≤ ∫
X×R

(
qγ + cε

lε
+ cε

lε
Ex′
(
N(Xl)

))
× Px

(
X2(K−1)l ∈ dx′, y + S2(K−1)l ∈ dy′,Aγ

2(K−1),y

)
≤
(
qγ + cε

lε

)
Px

(
A

γ
2(K−1),y

)+ cεe−cεlEx

(
N(X2(K−1)l);Aγ

2(K−1),y

)
.
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For brevity, set pK = Px(A
γ
2K,y) and EK = Ex(N(X2Kl);Aγ

2K,y). Then, the pre-
vious inequality can be rewritten as

(8.16) pK ≤
(
qγ + cε

lε

)
pK−1 + cεe−cεlEK−1.

Moreover, from (2.2), we have

(8.17) EK ≤ cpK−1 + ce−c2lEK−1.

Using (8.16) and (8.17), we write that

(8.18)
(
pK

EK

)
≤ Al

(
pK−1
EK−1

)
,

where

Al :=
⎛
⎝qγ + cε

lε
cεe−cεl

c ce−cl

⎞
⎠ −→

l→+∞ A =
(
qγ 0
c 0

)
.

Since the spectral radius qγ of A is less than 1, we can choose l = l(ε, γ ) large
enough such that the spectral radius ρε,γ of Al is less than 1. Iterating (8.18), we
get

pK ≤ cρK
ε,γ max(p1,E1) ≤ cρK

ε,γ

(
1 + N(x)

)
.

Taking into account that K ≥ cε,γ n, we obtain

Px

(
A

γ
2K,y

)≤ ce−cγ n(1 + N(x)
)
. �

Now we shall establish some properties of the set Dγ introduced in Section 2.
It is easy to see that, for any γ > 0,

Dγ = {
(x, y) ∈ X×R : ∃n0 ≥ 1,Px(ζγ ≤ n0, τy > n0) > 0

}
,

where ζγ is defined by (8.14).

PROPOSITION 8.8. 1. For any γ1 ≤ γ2, it holds Dγ1 ⊇ Dγ2 .
2. For any γ > 0, there exists cγ > 0 such that

Dc
γ ⊆ {

(x, y) ∈X×R : Px(τy > n) ≤ e−cγ n(1 + N(x)
)
, n ≥ 1

}
.

3. For any γ > 0, the domain of positivity of the function V is included in Dγ :

supp(V ) = {
(x, y) ∈ X×R : V (x, y) > 0

}⊆ Dγ .

4. There exists γ0 > 0 such that for any γ ≥ γ0,

supp(V ) = Dγ .

Moreover, {
(x, y) ∈ X×R

∗+ : y >
γ0

2

(
1 + N(x)

)}⊆ supp(V ).
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PROOF. Claim 1. For any γ1 ≤ γ2, we have ζγ1 ≤ ζγ2 and claim 1 follows.
Claim 2. Fix γ > 0. By the definition of Dγ , for any (x, y) ∈ Dc

γ and n ≥ 1,

0 = Px(ζγ ≤ n, τy > n) = Px(τy > n) − Px(ζγ > n, τy > n).

From this, using Lemma 8.7, we obtain

Px(τy > n) = Px(ζγ > n, τy > n) ≤ Px(ζγ > n) ≤ e−cγ n(1 + N(x)
)
.

Claim 3. Fix γ > 0. Using the claim 2 and Lemma 5.2, we have, for any (x, y) ∈
Dc

γ , z = y + r(x) and n ≥ 1,

Ex(z + Mn; τy > n) ≤ |z|Px(τy > n) +E
1/2
x

(|Mn|2)P1/2
x (τy > n)

≤ |z|(1 + N(x)
)
e−cγ n + c

√
n
(
1 + N(x)

)3/2e−cγ n.

Taking the limit when n → +∞, by point 1 of Proposition 7.2, we get

V (x, y) = 0,

and we conclude that Dc
γ ⊆ supp(V )c.

Claim 4. By point 1 of Proposition 8.6, taking δ = 1/2, there exists γ0 > 0 such
that, for any x ∈ X and y > 0,

(8.19) V (x, y) ≥ y

2
− γ0

4

(
1 + N(x)

)
.

Now, fix (x, y) ∈ Dγ0 and let n0 ≥ 1 be an integer such that Px(ζγ0 ≤ n0, τy >

n0) > 0. By point 4 of Proposition 7.2,

V (x, y) = Ex

(
V (Xn0, y + Sn0); τy > n0

)
≥ Ex

(
V (Xn0, y + Sn0); τy > n0, ζγ0 ≤ n0

)
.

By the Doob optional stopping theorem, (8.19) and the definition of ζγ0

[see (8.14)],

V (x, y) ≥ Ex

(
V (Xζγ0

, y + Sζγ0
); τy > ζγ0, ζγ0 ≤ n0

)
≥ 1

2
Ex

(
y + Sζγ0

− γ0

2

(
1 + N(Xζγ0

)
); τy > ζγ0, ζγ0 ≤ n0

)

≥ 1

2
Ex

(
γ0

2

(
1 + N(Xζγ0

)
); τy > ζγ0, ζγ0 ≤ n0

)

≥ γ0

4
Px(τy > n0, ζγ0 ≤ n0).

Now, since n0 has been chosen such that the last probability is strictly positive, we
get that V (x, y) > 0. This proves that Dγ0 ⊆ supp(V ). Using the claims 1 and 3,
for any γ ≥ γ0, we obtain that Dγ ⊆ Dγ0 ⊆ supp(V ) ⊆ Dγ and so Dγ = Dγ0 =
supp(V ). Using (8.19) proves the second assertion of claim 4. �
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Proof of Theorem 2.2. Claim 1 is proved by point 1 of Proposition 7.2; claim
2 is proved by point 4 of Proposition 7.2; claim 3 is proved by points 2 and 3 of
Proposition 7.2 and by Proposition 8.6; claim 4 is proved by point 4 of Proposition
8.8.

9. Asymptotic behaviour of the exit time.

9.1. Preliminary results.

LEMMA 9.1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R

and z = y + r(x),

E1 := Ex

(
z + Mνn; τy > νn, νn ≤ ⌊n1−ε⌋)

≤ cε

(
1 + max(y,0) + N(x)

)
, n ≥ 1,

E2 := Ex

(
z + M

νε2
n

; τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋) −→
n→∞ V (x, y).

Moreover, for any n ≥ 1, ε ∈ (0, ε0), x ∈X and y ∈R,∣∣E2 − V (x, y)
∣∣≤ cε

nε/8

(
1 + max(y,0) + N(x)

)
.

PROOF. Using the fact {τy > νn} ⊆ {T̂z > νn} and Lemma 5.4, for n ≥ 1,

E1 ≤ Ex

(
z + M�n1−ε�; T̂z >

⌊
n1−ε⌋)− J ′′

21,

where J ′′
21 is defined in (6.19) and by (6.20) the quantity −J ′′

21 does not exceed
cεe−cεn

ε
(1+N(x)). Again, by Lemma 5.4 and point 1 of Proposition 7.2, we have

that (Ex(z + Mn; T̂z > n))n≥0 is a nondecreasing sequence which converges to
Ŵ (x, z). So, using point 3 of Proposition 7.2 and the fact that z = y + r(x),

(9.1) E1 ≤ Ŵ (x, z) + cεe−cεn
ε (

1 + N(x)
)≤ cε

(
1 + max(y,0) + N(x)

)
.

By point 4 of Proposition 7.2, we have

V (x, y) = Ex

(
V (Xn, y + Sn); τy > n, νε2

n ≤ ⌊n1−ε⌋)
+Ex

(
V (Xn, y + Sn); τy > n, νε2

n >
⌊
n1−ε⌋).

Using point 3 of Proposition 7.2, for any k0 ≥ 2,

V (x, y) ≤ Ex

(
V (X

νε2
n

, y + S
νε2
n

); τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)
+ cEx

(
max(z + Mn,0) + 1 + N(Xn); τy > n, νε2

n >
⌊
n1−ε⌋)

≤
(

1 + cε

kε
0

)
E2 + cεEx

(√
k0 + N(X

νε2
n

); τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)
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− cεEx

(
z + M

νε2
n

; z + M
νε2
n

< 0, τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=J ′

22(ε
2)

+ cEx

(
z + Mn + ∣∣r(Xn)

∣∣+ 1 + N(Xn); τy > n, νε2

n >
⌊
n1−ε⌋).

From the previous bound, using the Markov property, the bound (2.2) and the
approximation (5.1), we get

V (x, y) ≤
(

1 + cε

kε
0

)
E2 + J ′

22
(
ε2)+ cEx

(
z + Mn; T̂z > n, νε2

n >
⌊
n1−ε⌋)︸ ︷︷ ︸

=J1(ε
2)

+ cεEx

(√
k0 + e−cnε2

N(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋)
+ cEx

(
1 + e−cεnN(X�n1−ε�); τy >

⌊
n1−ε⌋, νε2

n >
⌊
n1−ε⌋).

Proceeding in the same way as for the bound (6.25),

J ′
22
(
ε2)≤ cεEx

(
1 + e−cnε2

N(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋)
≤ cε

n1/2−ε
E1 + cεe−cεn

ε2 (
1 + N(x)

)
.

Moreover, similarly as for the bound (6.15), we have

J1
(
ε2)≤ cεe−cεn

ε2 (
1 + N(x)

)
.

Taking into account these bounds and using Lemma 6.3,

(9.2) V (x, y) ≤
(

1 + cε

kε
0

)
E2 + cε

√
k0

n1/2−ε
E1 + cεe−cεn

ε2 (
1 + N(x)

)
.

Analogously, by (8.13) and (5.1), we have the lower bound

V (x, y) ≥ Ex

(
V (X

νε2
n

, y + S
νε2
n

); τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)
≥
(

1 − cε

kε
0

)
E2 − cεk

2
0Ex

(
1 + N(X

νε2
n

); τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)(9.3)

≥
(

1 − cε

kε
0

)
E2 − cεk

2
0

n1/2−ε
E1 − cεk

2
0e−cεn

ε2 (
1 + N(x)

)
.

Taking k0 = n1/4−ε in (9.3) and (9.2), we conclude that, for any ε ∈ (0,1/8),∣∣V (x, y) − E2
∣∣≤ cε

nε/8 E2 + cε

nε

(
E1 + 1 + N(x)

)
.

Again, using (9.3),∣∣V (x, y) − E2
∣∣≤ cε

nε/8 V (x, y) + cε

nε

(
E1 + 1 + N(x)

)
.
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Finally, employing (9.1) and (7.5),∣∣V (x, y) − E2
∣∣≤ cε

nε/8

(
1 + max(y,0) + N(x)

)
. �

LEMMA 9.2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R

and n ≥ 1,

Px(τy > n) ≤ cε

n1/2−ε

(
1 + max(y,0) + N(x)

)
.

Moreover, summing this bound, for any ε ∈ (0, ε0), x ∈ X, y ∈ R and n ≥ 1, we
have

�n1−ε�∑
k=1

Px(τy > k) ≤ cε

(
1 + max(y,0) + N(x)

)
n1/2+ε/2.

PROOF. Using Lemma 6.3 and Lemma 9.1, with z = y + r(x) and n ≥ 1,

Px(τy > n) ≤ Px

(
τy > n, νn ≤ ⌊n1−ε⌋)+ Px

(
T̂z > n, νn >

⌊
n1−ε⌋)

≤ Ex

(
z + Mνn

n1/2−ε
; τy > n, νn ≤ ⌊n1−ε⌋)+ cεe−cεn

ε(
1 + N(x)

)
≤ cε

n1/2−ε

(
1 + max(y,0) + N(x)

)
. �

LEMMA 9.3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R

and z = y + r(x),

E3 := Ex

(
z + Mνn; z + Mνn > n1/2−ε/2, τy > νn, νn ≤ ⌊n1−ε⌋) −→

n→+∞ 0.

More precisely, for any n ≥ 1, ε ∈ (0, ε0), x ∈X, y ∈ R and z = y + r(x),

E3 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

nε
.

PROOF. Notice that when νn �= 1 the following inclusion holds:{
z + Mνn > n1/2−ε/2}⊆ {

ξνn > n1/2−ε/2 − n1/2−ε ≥ cεn
1/2−ε/2}.

Therefore,

E3 ≤ Ex

(
z + Mνn;νn ≤ 2

⌊
nε⌋)︸ ︷︷ ︸

=:E30
(9.4)

+
�n1−ε�∑

k=2�nε�+1

Ex

(
z + Mk; ξk > cεn

1/2−ε/2, τy > k, νn = k
)

︸ ︷︷ ︸
=:E31

.



CONDITIONED LIMIT THEOREMS FOR MARKOV WALKS 1855

Bound of E30. For y ≤ n1/2−2ε , by (6.5), the Markov inequality and Lemma 5.2,

Px

(
νn ≤ 2

⌊
nε⌋)≤ 2�nε�∑

k=1

Px

(
r(x) + Mk > n1/2−ε − y

)≤ cε(1 + N(x))

n1/2−3ε
.

For y > n1/2−2ε , in the same way, we have Px(νn ≤ 2�nε�) ≤ cε(1+y+N(x))

n1/2−3ε .
Putting together these bounds, we get, for any y ∈ R,

(9.5) Px

(
νn ≤ 2

⌊
nε⌋)≤ cε(1 + y1{y>n1/2−2ε} + N(x))

n1/2−3ε
.

Using Lemma 5.2,

E30 ≤ zPx

(
νn ≤ 2

⌊
nε⌋)+ 2�nε�∑

k=1

E
1/2
x

(|Mk|2)P1/2
x

(
νn ≤ 2

⌊
nε⌋)

(9.6)

≤ cε(1 + y1{y>n1/2−2ε} + N(x))2

nε
.

Bound of E31. Changing the index of summation (j = k − �nε�) and using the
Markov property,

E31 ≤
�n1−ε�∑

j=�nε�+1

∫
X×R

max
(
z′,0

)
Px′
(
ξ�nε� > cεn

1/2−ε/2)
× Px

(
Xj ∈ dx′, z + Mj ∈ dz′, τy > j

)︸ ︷︷ ︸
=:E32

(9.7)

+
�n1−ε�∑

j=�nε�+1

∫
X×R

E
1/2
x′
(|M�nε�|2)P1/2

x′
(
ξ�nε� > cεn

1/2−ε/2)
× Px

(
Xj ∈ dx′, z + Mj ∈ dz′, τy > j

)
.︸ ︷︷ ︸

=:E33

Bound of E32. Using (5.2), the Markov inequality and (2.3) with l =
�cεn

1/2−ε/2�,

Px′
(
ξ�nε� > cεn

1/2−ε/2)≤ Px′
(
N(X�nε�) > cεn

1/2−ε/2)
+ Px′

(
N(X�nε�−1) > cεn

1/2−ε/2)
≤ 1

l
Ex′
(
Nl(X�nε�)

)+ 1

l
Ex′
(
Nl(X�nε�−1)

)
≤ c

l2+β
+ c

l
e−cnε (

1 + N
(
x′)).
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Choosing ε > 0 small enough we find that

(9.8) Px′
(
ξ�nε� > cεn

1/2−ε/2)≤ cε

n1+β/4 + cεe−cεn
ε

N
(
x′).

By the definition of E32 in (9.7),

E32 ≤ cε

n1+β/4

�n1−ε�∑
j=�nε�+1

[
Ex(z + Mj ; τy > j) +Ex

(∣∣r(Xj )
∣∣)]

+ cεe−cεn
ε

�n1−ε�∑
j=�nε�+1

[
max(z,0)Ex

(
N(Xj)

)+E
1/2
x

(|Mj |2)E1/2
x

(
N(Xj)

2)].
Using (6.29), Lemma 5.2 and point 1 of Hypothesis M4, we find that

(9.9) E32 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))(1 + N(x))

nβ/4 .

Bound of E33. Using (9.8) and Lemma 5.2, we have

E33 ≤
�n1−ε�∑

j=�nε�+1

Ex

(
nε/2(1 + N(Xj)

)( cε

n1/2+β/8 + cεe−cεn
ε

N(Xj )
1/2
)
; τy > j

)
.

By the Markov property,

E33 ≤ cεe−cεn
ε(

1 + N(x)
)3/2

+ cε

n1/2+β/8−ε/2

�n1−ε�∑
j=1

Ex

(
1 + e−cnε

N(Xj ); τy > j
)
.

Using Lemma 9.2,

(9.10) E33 ≤ cε

max(y,0) + (1 + N(x))3/2

nβ/8−3ε/2 .

With (9.10), (9.9) and (9.7), for ε > 0 small enough, we find that

E31 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))(1 + N(x))

nε
.

This bound, together with (9.6) and (9.4), proves the lemma. �

LEMMA 9.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R

and z = y + r(x),

E4 := Ex

(
z + M

νε2
n

; z + M
νε2
n

> n1/2−ε/4, τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋) −→
n→+∞ 0.
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More precisely, for any n ≥ 1, ε ∈ (0, ε0), x ∈ X, y ∈R and z = y + r(x),

E4 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

nε/2 .

PROOF. We shall apply Lemma 9.3. For this we write, for any n ≥ 1,

E4 = Ex

(
z + M

νε2
n

; z + M
νε2
n

> n1/2−ε/4, z + Mνn > n1/2−ε/2,

τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=:E41

(9.11)
+Ex

(
z + M

νε2
n

; z + M
νε2
n

> n1/2−ε/4, z + Mνn ≤ n1/2−ε/2,

τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=:E42

.

Bound of E41. By the Markov property,

E41 =
�n1−ε�−�nε2�∑

k=1

∫
X×R

Ex′
(
z′ + M�nε2�; z′ + M�nε2� > n1/2−ε/4, τy′ >

⌊
nε2⌋)

× Px

(
Xk ∈ dx′, z + Mk ∈ dz′, z + Mk > n1/2−ε/2, τy > k, νn = k

)
,

where y′ = z′ − r(x′). Moreover, for any x′ ∈ X, z′ ∈ R, using (6.29), we have

Ex′
(
z′ + M�nε2�; z′ + M�nε2� > n1/2−ε/4, τy′ >

⌊
nε2⌋)

≤ Ex′
(
z′ + M�nε2�; z′ + M�nε2� > 0, τy′ >

⌊
nε2⌋)

≤ Ex′
(
z′ + M�nε2�; τy′ >

⌊
nε2⌋)+Ex′

(∣∣r(X
nε2 )

∣∣)
≤ cε max

(
z′,0

)+ cε

(
1 + N

(
x′)).

Consequently,

E41 ≤ cεE3 + cεEx

(
1 + N(Xνn); z + Mνn > n1/2−ε/2, τy > νn, νn ≤ ⌊n1−ε⌋)

≤ 2cεE3 + cεEx

(
N(Xνn);N(Xνn) > n1/2−ε, τy > νn, νn ≤ ⌊n1−ε⌋)

+ cεEx

(
n1/2−ε;N(Xνn) ≤ n1/2−ε, z + Mνn > n1/2−ε/2,(9.12)

τy > νn, νn ≤ ⌊n1−ε⌋)
≤ 3cεE3 + cε Ex

(
N(Xνn);N(Xνn) > n1/2−ε, τy > νn, νn ≤ ⌊n1−ε⌋)︸ ︷︷ ︸

=:E′
41

.
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Denoting l = �n1/2−ε� and using point 1 of M4 and (2.3), we have

E′
41 ≤ Ex

(
N(Xνn)

2

n1/2−ε
;νn ≤ ⌊nε⌋)+

�n1−ε�∑
k=�nε�+1

Ex

(
Nl(Xk); τy > k, νn = k

)

≤ cnε(1 + N(x))2

n1/2−ε
+

�n1−ε�∑
k=1

[
c

l1+β
Px(τy > k) + ce−cnε

Ex

(
1 + N(Xk)

)]
.

Using Lemma 9.2 and taking ε > 0 small enough,

(9.13) E′
41 ≤ cε

max(y,0) + (1 + N(x))2

nmin(1,β)/4 .

In conjunction with Lemma 9.3, from (9.12) we obtain that, for some ε > 0,

(9.14) E41 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

nε
.

Bound of E42. For any z′ ∈ (0, n1/2−ε/2], we have(
z′+M�nε2�

)
Px′
(
z′+M�nε2� > n1/2−ε/4)≤ z′

Px′
(
M�nε2� > cεn

1/2−ε/4)+|M�nε2�|.
Therefore, by the Markov property,

E42 ≤
∫
X×R

z′
Px′
(
M�nε2� > cεn

1/2−ε/4)
Px

(
Xνn ∈ dx′, z + Mνn ∈ dz′,

z + Mνn ≤ n1/2−ε/2, τy > νn, νn ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=:E43

(9.15)
+
∫
X×R

Ex′
(|M�nε2�|

)
Px

(
Xνn ∈ dx′, z + Mνn ∈ dz′,

z + Mνn ≤ n1/2−ε/2, τy > νn, νn ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=:E44

.

Bound of E43. Using Lemma 5.2,

Px′
(
M�nε2� > cεn

1/2−ε/4)≤ cεn
ε2

(1 + N(x′))
n1/2−ε/4 .

Therefore, we have

E43 ≤ Ex

(
cε

n3ε/4−ε2 (z + Mνn)1{N(Xνn)≤n1/2−ε} + cε

nε/4−ε2 N(Xνn)1{N(Xνn)>n1/2−ε};

z + Mνn ≤ n1/2−ε/2, τy > νn, νn ≤ ⌊n1−ε⌋)

≤ cε

n3ε/4−ε2 E1 + cε

nε/4−ε2 E′
41.
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By Lemma 9.1 and (9.13), we obtain for some small ε > 0,

(9.16) E43 ≤ cε

max(y,0) + (1 + N(x))2

nε/2 .

Bound of E44. Again by Lemma 5.2, Ex′(|M�nε2�|) ≤ nε2
(1 + N(x′)). Conse-

quently,

E44 ≤ cε

nε−ε2 Ex

(
z + Mνn;N(Xνn) ≤ n1/2−2ε, τy > νn, νn ≤ ⌊n1−ε⌋)

+ cεn
ε2
Ex

(
N(Xνn);N(Xνn) > n1/2−2ε, τy > νn, νn ≤ ⌊n1−ε⌋).

Proceeding exactly as in the proof of the bound of E′
41 but with l = �n1/2−2ε�, we

obtain, by Lemma 9.1,

E44 ≤ cε

max(y,0) + (1 + N(x))2

nε/2 .

Putting together this bound with (9.16) and (9.15), we find that

E42 ≤ cε

max(y,0) + (1 + N(x))2

nε/2 .

So, using (9.11) and (9.14), we obtain the second assertion. The first one is an easy
consequence of the second one. �

The following results are similar to that provided by Lemmas 9.1 and 9.4 (see
E2 and E4 respectively).

LEMMA 9.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X and
y ∈ R,

F2 := Ex

(
y + S

νε2
n

; τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋) −→
n→∞ V (x, y),

F4 := Ex

(
y + S

νε2
n

;y + S
νε2
n

> n1/2−ε/8, τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋) −→
n→+∞ 0.

More precisely, for any n ≥ 1, ε ∈ (0, ε0), x ∈ X and y ∈ R,

∣∣F2 − V (x, y)
∣∣≤ cε

nε/8

(
1 + max(y,0) + N(x)

)
and

F4 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

nε/2 .
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PROOF. By (5.1), for any n ≥ 1,

|F2 − E2| ≤ Ex

(∣∣r(X
νε2
n

)
∣∣; τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)︸ ︷︷ ︸
=:F ′

2

.

Using the Markov property, the definition of νn and Lemma 9.1,

F ′
2 ≤ cEx

(
1 + e−cnε2

N(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋)
≤ c

n1/2−ε
E1 + ce−cnε2 (

1 + N(x)
)

(9.17)

≤ cε

n1/2−ε

(
1 + max(y,0) + N(x)

)
.

Therefore, by Lemma 9.1,∣∣F2 − V (x, y)
∣∣≤ ∣∣E2 − V (x, y)

∣∣+ F ′
2 ≤ cε

nε/8

(
1 + max(y,0) + N(x)

)
.

Now we shall control F4. Recall the notation z = y + r(x). By equation (5.1),
we note that on the event{

z + M
νε2
n

≤ n1/2−ε/4}∩ {y + S
νε2
n

> n1/2−ε/8}
we have |r(X

νε2
n

)| > cεn
1/2−ε/8. Therefore,

y + S
νε2
n

≤ n1/2−ε/4 − r(X
νε2
n

) ≤
(

cε

nε/8 + 1
)∣∣r(X

νε2
n

)
∣∣,

which implies that

F4 ≤ Ex

(
y + S

νε2
n

; z + M
νε2
n

> n1/2−ε/4, τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)+ cεF
′
2.

By (5.1), Lemma 9.4 and (9.17), we conclude that

F4 ≤ E4 + F ′
2 + cεF

′
2 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

nε/2 . �

9.2. Proof of Theorem 2.3. Assume that (x, y) ∈ X × R. Let (Bt )t≥0 be the
Brownian motion defined by Proposition 4.3. For any k ≥ 1, consider the event

(9.18) Ak =
{

sup
0≤t≤1

|S�tk� − σBtk| ≤ k1/2−2ε
}

and denote by Ak its complement. Let n ≥ 1 and remind that νε2

n = νn + �nε2� >

�nε2�. With the previous notation, we write

Px(τy > n)

= Px

(
τy > n, νε2

n >
⌊
n1−ε⌋)
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+
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′(τy′ > n − k,An−k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′,

(9.19)
τy > k, νε2

n = k
)︸ ︷︷ ︸

=:J1

+
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′(τy′ > n − k,An−k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′,

τy > k, νε2

n = k
)︸ ︷︷ ︸

=:J2

.

Bound of J1. Since n − k ≥ cεn, for any k ≤ �n1−ε�, by Proposition 4.3, we
have

Px′(τy′ > n − k,An−k) ≤ Px′(An−k) ≤ cε(1 + N(x′))
n2ε

.

So, using the fact that n1/2−ε ≤ z + Mνn and Lemma 9.1,

J1 ≤ cε

n2ε
Ex

(
1 + e−cnε2

N(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋)
≤ cε

n1/2+ε
E1 + cεe−cεn

ε2 (
1 + N(x)

)
(9.20)

≤ cε(1 + max(y,0) + N(x))

n1/2+ε
.

Bound of J2. We split J2 into two terms:

J2 =
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′(τy′ > n − k,An−k)

× Px

(
Xk ∈ dx′, y + Sk ∈ dy′, y + Sk > n1/2−ε/8, τy > k, νε2

n = k
)︸ ︷︷ ︸

=:J3
(9.21)

+
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′(τy′ > n − k,An−k)

× Px

(
Xk ∈ dx′, y + Sk ∈ dy′, y + Sk ≤ n1/2−ε/8, τy > k, νε2

n = k
)︸ ︷︷ ︸

=:J4

.

Bound of J3. With y′+ = y′ + (n − k)1/2−2ε , we have

(9.22) Px′(τy′ > n − k,An−k) ≤ Px′
(
τbm
y′+

> n − k
)
,
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where τbm
y is defined in (4.1). By point 1 of Lemma 4.2 and Lemma 9.5,

J3 ≤ cε√
n
Ex

(
y + S

νε2
n

+ n1/2−2ε;

y + S
νε2
n

> n1/2−ε/8, τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)
(9.23)

≤ 2cε√
n
F4

≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/2 .

Upper bound of J4. For y′ ≤ n1/2−ε/8 and any k ≤ �n1−ε�, it holds y′+ ≤
2n1/2−ε/8 ≤ cε(n − k)1/2−ε/8. Therefore, by (9.22) and the point 2 of Lemma 4.2
with θm = cεm

−ε/8 and m = n − k, we have

J4 ≤
�n1−ε�∑

k=�nε2�+1

∫
X×R

2(1 + θ2
n−k)√

2π(n − k)σ
Ex

(
y + Sk + (n − k)1/2−2ε;

y + Sk ≤ n1/2−ε/8, τy > k, νε2

n = k
)
.

Since
2(1+θ2

n−k)√
2π(n−k)σ

≤ 2√
2πnσ

(1 + cε

nε/4 ) and n1/2−ε ≤ z + Mνn , we get

J4 ≤ 2√
2πnσ

(
1 + cε

nε/4

)
Ex

(
y + S

νε2
n

+ n1/2−2ε;y + S
νε2
n

≤ n1/2−ε/8,

τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)
≤ 2√

2πnσ

(
1 + cε

nε/4

)
F2 + cε

n1/2+ε
E1.

By Lemmas 9.1, 9.5 and (7.5),

(9.24) J4 ≤ 2V (x, y)√
2πnσ

+ cε(1 + max(y,0) + N(x))

n1/2+ε/8 .

Lower bound of J4. With y′− = y′ − (n − k)1/2−2ε , we note that Px′(τy′ > n −
k,An−k) ≥ Px′(τ bm

y′−
> n − k) − Px′(An−k). Considering the event {y + Sk > (n −

k)1/2−2ε} and repeating the arguments used to bound J1 [see (9.20)], we obtain

J4 ≥
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′
(
τbm
y′−

> n − k
)
Px

(
Xk ∈ dx′, y + Sk ∈ dy′,

y + Sk ≤ n1/2−ε/8, y + Sk > (n − k)1/2−2ε, τy > k, νε2

n = k
)

− cε(1 + max(y,0) + N(x))

n1/2+ε
.
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Using point 2 of Lemma 4.2 and Proposition 4.3,

J4 ≥ 2√
2πnσ

(
1 − cε

nε/4

)
Ex

(
y + S

νε2
n

− (n − νε2

n

)1/2−2ε;

y + S
νε2
n

>
(
n − νε2

n

)1/2−2ε
, y + S

νε2
n

≤ n1/2−ε/8, τy > νε2

n , νε2

n ≤ ⌊n1−ε⌋)
− cε(1 + max(y,0) + N(x))

n1/2+ε

≥ 2√
2πnσ

(
1 − cε

nε/4

)
F2 − cε√

n
F4 − cε

n1/2+ε
E1 − cε(1 + max(y,0) + N(x))

n1/2+ε
.

By Lemmas 9.1, 9.5 and (7.5),

(9.25) J4 ≥ 2V (x, y)√
2πnσ

− cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/8 .

Putting together (9.25), (9.24), (9.23) and (9.21),∣∣∣∣J2 − 2V (x, y)√
2πnσ

∣∣∣∣≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/8 .

Taking into account (9.20), (9.19) and Lemma 6.3, we conclude that, for any
(x, y) ∈ X×R,

(9.26)
∣∣∣∣Px(τy > n) − 2V (x, y)√

2πnσ

∣∣∣∣≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/8 .

Taking the limit as n → +∞ in (9.26), we obtain point 1 of Theorem 2.3. Point 2
of Theorem 2.3 is an immediate consequence of points 2 and 4 of Proposition 8.8.

9.3. Proof of Theorem 2.4. Point 1 of Theorem 2.4 is exactly (9.26). In order
to prove point 2 of Theorem 2.4, we shall first establish a bound for Px(τy > n)

when z = y + r(x) ≥ n1/2−ε , n ≥ 1. Set mε = n − �nε�. By the Markov property,

Px(τy > n) =
∫
X×R

Px′(τy′ > mε)

(9.27)
× Px

(
X�nε� ∈ dx′, y + S�nε� ∈ dy′, τy >

⌊
nε⌋).

For any x′ ∈ X and y′ > 0, using Amε defined by (9.18), we have

Px′(τy′ > mε) ≤ Px′
(
τbm
y′+

> mε

)+ Px′(Amε),

where τbm
y′+

is defined by (4.1) and y′+ = y′ + m
1/2−2ε
ε . By point 1 of Lemma 4.2

and Proposition 4.3,

Px′(τy′ > mε) ≤ cy′+√
mε

+ cε

m2ε
ε

(
1 + N

(
x′))≤ cεy

′
√

n
+ cε

n2ε
+ cε

n2ε
N
(
x′).
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Introducing this bound in (9.27), we get

Px(τy > n) ≤ cε√
n
Ex

(
y + S�nε�, τy >

⌊
nε⌋)+ cε

n2ε
+ cε

n2ε
Ex

(
N(X�nε�)

)
.

Using Corollary 6.5, the inequality (2.2) and the fact that n1/2−ε ≤ z, we find

(9.28) Px(τy > n) ≤ cε(z + N(x))√
n

.

Now, for any x ∈ X, z ∈R and y = z − r(x), using the Markov property, (9.28)
and the fact that

√
n − νn ≥ cε

√
n on the event {νn ≤ �n1−ε�}, we have

Px(τy > n) ≤ cε√
n
Ex

(
z + Mνn + N(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋)

+ Px

(
τy > n, νn >

⌊
n1−ε⌋).

Using Lemma 6.3 and the fact that N(Xνn) ≤ z + Mνn on the event {N(Xνn) ≤
n1/2−ε}, with l = �n1/2−ε�, it holds

Px(τy > n) ≤ cε√
n
Ex

(
(z + Mνn)(1 + 1{N(Xνn)≤n1/2−ε}); τy > νn, νn ≤ ⌊n1−ε⌋)

+ cε√
n
Ex

(
Nl(Xνn); τy > νn, νn ≤ ⌊n1−ε⌋)+ cεe−cεn

ε(
1 + N(x)

)

≤ 2cε√
n
E1 + cε√

n

�nε�∑
k=1

Ex

(
Nl(Xk)

)

+ cε√
n

�n1−ε�∑
k=�nε�+1

Ex

(
Nl(Xk); τy > k

)+ cεe−cεn
ε (

1 + N(x)
)
.

By (2.3) and the Markov property,

Px(τy > n) ≤ cε√
n
E1 + cε√

n

(
cnε

l1+β
+ (1 + N(x)

))+ cεe−cεn
ε (

1 + N(x)
)

+ cε√
n

�n1−ε�−�nε�∑
j=1

[
c

l1+β
Px(τy > j) + ce−cnε

Ex

((
1 + N(Xj)

))]

≤ cε√
n
E1 + cε(1 + N(x))√

n
+ cε√

n

c

l1+β

�n1−ε�∑
j=1

Px(τy > j).

Using Lemmas 9.1 and 9.2, we deduce point 2 of Theorem 2.4.
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10. Asymptotic behaviour of the conditioned Markov walk. In this section,
we prove Theorem 2.5. The arguments are similar to those given in Section 9. We
also keep the same notations. Assume that (x, y) ∈ X × R and let t0 > 0 be a
positive real. For any t ∈ [0, t0] and n ≥ 1, we write

Px(y + Sn ≤ t
√

n, τy > n)

= Px

(
y + Sn ≤ t

√
n, τy > n, νε2

n >
⌊
n1−ε⌋)

+
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)

(10.1) × Px

(
Xk ∈ dx′, y + Sk ∈ dy′, τy > k, νε2

n = k
)︸ ︷︷ ︸

=:L1

+
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)

× Px

(
Xk ∈ dx′, y + Sk ∈ dy′, τy > k, νε2

n = k
)︸ ︷︷ ︸

=:L2

.

Bound of L1. With J1 defined in (9.19) and with the bound (9.20), we have,

(10.2) L1 ≤ J1 ≤ cε(1 + max(y,0) + N(x))

n1/2+ε
.

Bound of L2. According to whether y + Sk ≤ n1/2−ε/8 or not, we write

L2 =
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)

× Px

(
Xk ∈ dx′, y + Sk ∈ dy′, y + Sk > n1/2−ε/8, τy > k, νε2

n = k
)︸ ︷︷ ︸

=:L3
(10.3)

+
�n1−ε�∑

k=�nε2�+1

∫
X×R

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)

× Px

(
Xk ∈ dx′, y + Sk ∈ dy′, y + Sk ≤ n1/2−ε/8, τy > k, νε2

n = k
)︸ ︷︷ ︸

=:L4

.

Bound of L3. With J3 defined in (9.21) and with the bound (9.23), we have

(10.4) L3 ≤ J3 ≤ cε

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/2 .
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Bound of L4. We start with the upper bound. Set y′+ = y′ + (n − k)1/2−2ε and
t+ = t + 2

n2ε . Note that on the event {y′ +Sn−k ≤ t
√

n, τy′ > n− k,An−k} we have

y′+ + σBn−k ≤ t+
√

n and τbm
y′+

> n − k. Therefore, by Lemma 4.1,

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)
≤ 2√

2π

∫ t+
√

n

σ
√

n−k

0
e−s2/2sh

(
s

y′+√
n − kσ

)
ds.

We shall use the following bounds:

sh(u) ≤ u

(
1 + u2

6
ch(u)

)
, for u ≥ 0,

y′+
σ
√

n − k
≤ y′+

σ
√

n

(
1 + cε

nε

)
≤ cε

nε/8 , for y′ ≤ n1/2−ε/8 and k ≤ ⌊n1−ε⌋,
t+

√
n

σ
√

n − k
≤ t

σ
+ cε,t0

nε
≤ cε,t0, for k ≤ ⌊n1−ε⌋.

Consequently,

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)
≤ 2y′+√

2πnσ

(
1 + cε

nε

)∫ t+
√

n

σ
√

n−k

0
se−s2/2

(
1 + cεs

2

nε/4 ch(cεs)

)
ds

≤ 2y′+√
2πnσ

(
1 + cε

nε

)(
1 + cε,t0

nε/4

)(∫ t
σ

0
se−s2/2 ds +

∫ t+
√

n

σ
√

n−k

t
σ

se−s2/2 ds

)

≤ 2y′+√
2πnσ

(
1 + cε,t0

nε/4

)(
1 − e− t2

2σ2 + cε,t0

nε

)
.

This implies the upper bound (with F2 and E1 from Lemmas 9.5 and 9.1, respec-
tively)

L4 ≤ 2√
2πnσ

(
1 + cε,t0

nε/4

)(
1 − e− t2

2σ2 + cε,t0

nε

)
F2 + cε,t0

n1/2+ε
E1

≤ 2V (x, y)√
2πnσ

(
1 − e− t2

2σ2
)+ cε,t0(1 + max(y,0) + N(x))

n1/2+ε/8 .

The proof of the lower bound of L4, being similar, is left to the reader:

L4 ≥ 2V (x, y)√
2πnσ

(
1 − e− t2

2σ2
)− cε,t0

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/8 .

Combining the upper and the lower bounds of L4 and (10.4) with (10.3) we obtain
an asymptotic development of L2. Implementing this development and the bound
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(10.2) into (10.1) and using Lemma 6.3, we conclude that∣∣∣∣Px(y + Sn ≤ t
√

n, τy > n) − 2V (x, y)√
2πnσ

(
1 − e− t2

2σ2
)∣∣∣∣

≤ cε,t0

max(y,0) + (1 + y1{y>n1/2−2ε} + N(x))2

n1/2+ε/8 .

Using the asymptotic of Px(τy > n) provided by Theorem 2.3 finishes the proof of
Theorem 2.5.

APPENDIX A: PROOFS FOR AFFINE RANDOM WALKS IN Rd

In this section, we prove Proposition 3.2. For this we verify that Hypotheses
M1–M5 hold true on an appropriate Banach space which we proceed to introduce.
Let δ > 0 be the constant from Hypothesis 3.1. Denote by C (Rd) the space of
continuous complex valued functions on Rd . Let ε and θ be two positive numbers
satisfying

1 + ε < θ < 2 < 2 + 2ε < 2 + 2δ.

For any function h ∈ C (Rd) introduce the norm ‖h‖θ,ε = |h|θ + [h]ε , where

|h|θ = sup
x∈Rd

|h(x)|
(1 + |x|)θ , [h]ε = sup

x �=y

|h(x) − h(y)|
|x − y|ε(1 + |x|)(1 + |y|)

and consider the Banach space

B := Lθ,ε = {
h ∈ C

(
R

d) : ‖h‖θ,ε < +∞}
.

Proof of M1. Conditions 1, 2 and 3 of M1 can be easily verified under point 1
of Hypothesis 3.1 and the fact that θ < 2 + 2δ and ‖δx‖B′ ≤ (1 + |x|)θ , for any
x ∈ Rd .

We verify point 4 of Hypothesis M1. For any (x, y) ∈ Rd × Rd and t ∈ R, we
have |eitf (x) −eitf (y)| ≤ |t ||f (x)−f (y)| ≤ |t ||u||x −y| and |eitf (x) −eitf (y)| ≤ 2.
Therefore, we write ∣∣eitf (x) − eitf (y)

∣∣≤ 21−ε|t |ε|u|ε|x − y|ε.
Supposing that |x| ≤ |y|, we obtain, for any h ∈ Lθ,ε ,∣∣eitf (x)h(x) − eitf (y)h(y)

∣∣≤ ∣∣eitf (x) − eitf (y)
∣∣|h|θ (1 + |x|)θ + ∣∣h(x) − h(y)

∣∣.
Since θ < 2, we deduce that [eitf h − eitf h]ε ≤ 21−ε|t |ε|u|ε|h|θ + [h]ε . Conse-
quently, ‖eitf h‖θ,ε ≤ (1 + 21−ε|t |ε|u|ε)‖h‖θ,ε and the point 4 is verified.

Proof of M2 and M3. We shall verify that the conditions of the theorem of
Ionescu Tulcea and Marinescu are satisfied (see [28] and [25]). We start by estab-
lishing two lemmas.

LEMMA A.1. Assume Hypothesis 3.1.
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1. There exists a constant c > 0 such that, for any t ∈R, n ≥ 1, and h ∈ Lθ,ε ,∣∣Pn
t h
∣∣
θ ≤ c|h|θ .

2. There exist constants c1, c2 and ρ < 1 such that, for any n ≥ 1, h ∈ Lθ,ε and
t ∈R, [

Pn
t h
]
ε ≤ c1ρ

n[h]ε + c2|t |ε|h|θ .
3. For any t ∈ R, the operator Pt is compact from (B,‖·‖θ,ε) to (C (Rd), |·|θ ).

PROOF. Claim 1. For any x ∈ Rd ,∣∣Pn
t h(x)

∣∣= ∣∣Ex

(
eitSnh(Xn)

)∣∣≤ 3θ |h|θ (1 +E
(‖�n‖θ )|x|θ +E

(∣∣X0
n

∣∣θ )),
with �n = AnAn−1 · · ·A1 and X0

n = gn · · ·g1 · 0 =∑n
k=1 An · · ·Ak+1Bk . By point

1 of Hypothesis 3.1, there exist c(δ) > 0 and 0 < ρ(δ) < 1 such that, for any n ≥ 1,

E
2+2δ

θ
(‖�n‖θ )≤ E

(‖�n‖2+2δ)≤ c(δ)ρ(δ)n −→
n→+∞ 0,

from which it follows that

E
(∣∣X0

n

∣∣θ )≤
(

n∑
k=1

E
1/θ (‖�n‖θ )

E
1/θ (|B1|θ )

)θ

< +∞.

This proves claim 1.

Proof of claim 2. For any x �= y ∈ Rd , with |x| ≤ |y|, we have∣∣Pn
t h(x) − Pn

t h(y)
∣∣

≤ E

(
21−ε|t |ε|u|ε

(
n∑

k=1

‖�k‖
)ε

|x − y|ε|h|θ (1 + ‖�n‖|x| + ∣∣X0
n

∣∣)θ)

+E
([h]ε‖�n‖ε|x − y|ε(1 + ‖�n‖|x| + ∣∣X0

n

∣∣)(1 + ‖�n‖|y| + ∣∣X0
n

∣∣)).
Since θ < 2, we obtain that[

Pn
t h
]
ε ≤ 21−ε|t |ε|u|εC2(n)|h|θ + C1(n)[h]ε,

where

C1(n) = E
(‖�n‖ε(1 + ‖�n‖ + ∣∣X0

n

∣∣)2)
and

C2(n) = E

((
n∑

k=1

‖�k‖
)ε(

1 + ‖�n‖ + ∣∣X0
n

∣∣)θ).
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Since 2 + 2ε < 2 + 2δ = p, by the Hölder inequality,

C1(n) ≤ E
ε

1+ε
(‖�n‖1+ε)

E
1

1+ε
((

1 + ‖�n‖ + ∣∣X0
n

∣∣)2+2ε)

≤ c(δ)
ε
p ρ(δ)

nε
p 32

(
1 + c(δ)

2
p +

(
c(δ)

1
pE

1
p (|B1|p)

1 − ρ(δ)
1
p

)2)
,

which shows that C1(n) converges exponentially fast to 0. In the same way, taking
into account that θ < 2 we show that C2(n) is bounded:

C2(n) ≤
(

n∑
k=1

E
1

1+ε
(‖�k‖1+ε))ε

E
1

1+ε
((

1 + ‖�n‖ + ∣∣X0
n

∣∣)2+2ε)

≤
(

c(δ)
1
p

1 − ρ(δ)
1
p

)ε

32
(

1 + c(δ)
2
p +

(
c(δ)

1
pE

1
p (|B1|p)

1 − ρ(δ)
1
p

)2)
.

Proof of claim 3. Let B be a bounded subset of B, (hn)n≥0 be a sequence in
B and K be a compact of Rd . Using claim 1, it follows that, for any x ∈ K and
n ≥ 0, ∣∣Pthn(x)

∣∣≤ c|hn|θ (1 + |x|)θ ≤ cK,

which implies that the set A = {Pthn : n ≥ 0} is uniformly bounded in
(C (K), |·|∞), where |·|∞ is the supremum norm. By claims 1 and 2, we have
that, for any x, y ∈ K and n ≥ 0,∣∣Pthn(x) − Pthn(y)

∣∣≤ [Pthn]ε|x − y|ε(1 + |x|)θ (1 + |y|)θ ≤ cK‖hn‖B|x − y|ε

and, thereby, the set A is uniformly equicontinuous. By the theorem of Arzelà–
Ascoli, we conclude that A is relatively compact in (C (K), |·|∞). Using a diag-
onal extraction, we deduce that there exist a subsequence (nk)k≥1 and a function
ϕ ∈ C (Rd) such that, for any compact K ⊂Rd ,

sup
x∈K

∣∣Pthnk
(x) − ϕ(x)

∣∣ −→
n→+∞ 0.

Moreover, by claims 1 and 2, for any n ≥ 1 and x ∈ Rd ,∣∣Pthn(x)
∣∣≤ ∣∣Pthn(0)

∣∣+ [Pthn]ε|x|ε(1 + |x|)≤ c|hn|θ + c‖hn‖B|x|ε(1 + |x|).
Since B is bounded, we have |Pthn(x)| ≤ c(1 + |x|)1+ε , for any x ∈ Rd , as well
as ϕ(x) ≤ c(1 + |x|)1+ε , for any x ∈ Rd . Consequently, for any k ≥ 1 and A > 0,

sup
x∈Rd

|Pthnk
(x) − ϕ(x)|

(1 + |x|)θ ≤ sup
|x|≤A

∣∣Pthnk
(x) − ϕ(x)

∣∣+ 2c sup
|x|>A

(1 + |x|)1+ε

(1 + |x|)θ .
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Taking the limit as k → +∞ and then the limit as A → +∞, we conclude that

lim
k→+∞|Pthnk

− ϕ|θ = 0. �

LEMMA A.2. Assume Hypothesis 3.1. 1. The operator P has a unique invari-
ant probability ν which coincides with the distribution of the P-a.s. convergent
series Z :=∑+∞

k=1 A1 · · ·Ak−1Bk . Moreover, the unique eigenvalue of modulus 1
of the operator P on B is 1 and the associated eigenspace is generated by the
function e: x 
→ 1.

2. Let t ∈ R∗. If h ∈ B and z ∈ C of modulus 1 are such that

Pth(x) = zh(x), x ∈ supp(ν),

then h = 0 on supp(ν).

PROOF. We proceed as in Guivarc’h and Le Page [22] and Buraczewski,
Damek and Guivarc’h [5]. For any g = (A,B) ∈ GL(d,R) × Rd and x ∈ Rd , we
set g · x = Ax + B .

Proof of claim 1. Since k(δ) < 1, the series
∑

k E
1

2+2δ (|A1 · · ·Ak−1Bk|2+2δ)

converges and so the sequence g1 · · ·gn · x = A1 · · ·Anx +∑n
k=1 A1 · · ·Ak−1Bk

converges almost surely to Z = ∑+∞
k=1 A1 · · ·Ak−1Bk as n → +∞. Therefore,

for any ϕ ∈ B, the sequence ϕ(g1 · · ·gn · x) converges to ϕ(Z) almost surely as
n → +∞. Moreover, since |ϕ(x)| ≤ |ϕ|θ (1 + |x|)θ and θ < 2 + 2δ, the sequence
(ϕ(g1 · · ·gn · x))n≥1 is uniformly integrable. So Pnϕ(x) converges to E(ϕ(Z)) as
n → +∞. This proves that the distribution ν of Z is the only invariant probability
of P.

Fix z ∈ C such that |z| = 1 and let h �= 0 belonging to B be an eigenfunction
of P, so that Ph = zh. From the previous argument, it follows that, for any x ∈ Rd ,

znh(x) = Pnh(x) −→
n→+∞ ν(h).

Since there exists x ∈ Rd such that h(x) �= 0, the sequence (zn)n≥1 should be
convergent which is possible only if z = 1. From this, we deduce that for any
x ∈ Rd , h(x) = E(h(Z)) which implies that h is constant.

Proof of claim 2. Our argument is by contradiction. Let t ∈ R∗, h ∈ B and z ∈C

of modulus 1 be such that Pth(x) = zh(x), for any x ∈ supp(ν) and suppose that
there exists x0 ∈ supp(ν) such that h(x0) �= 0.

First, we establish that |h| is constant on the support of the distribution ν. Since
ν is μ-invariant, for any (g, x) ∈ supp(μ) × supp(ν) we have g · x ∈ supp(ν).
From this fact, it follows that Pn

t h(x) = znh(x), for any n ≥ 1 and x ∈ supp(ν).
This implies that |h|(x) ≤ Pn|h|(x), for any x ∈ supp(ν). Note also that |h|
belongs to B. Therefore, as we have seen in the proof of the first claim, we
have, limn→+∞ Pn|h|(x) = ν(|h|) = E(|h|(Z)) < +∞, for any x ∈ supp(ν). So
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|h|(x) ≤ ∫x′∈Rd |h|(x′)ν(dx′), for any x ∈ supp(ν). Since |h| is continuous, this im-
plies that |h| is constant on the support of ν. In particular, this means that h(x) �= 0
for any x ∈ supp(ν).

Since the support of ν is stable by all the elements of the support of μ, we de-
duce that the random variable ξn(x) = exp(it〈u,

∑n
k=1 gk · · ·g1 · x〉)h(gn · · ·g1 ·x)

takes values on the sphere Sν(|h|) = {a ∈ C : |a| = ν(|h|)}, for all x in the sup-
port of ν. Moreover, the mean znh(x) of ξn(x) is also on Sν(|h|), which is pos-
sible only if ξn(x) is a constant, for any x ∈ supp(ν). Consequently, for any pair
x, y ∈ supp(ν), there exists an event �x,y of P-probability one such that on �x,y

it holds, for any n ≥ 1,

exp

(
it

〈
u,

n∑
k=1

gk · · ·g1 · v
〉)

h(gn · · ·g1 · v) = znh(v),

with v ∈ {x, y}, from which we get

(A.1)
h(gn · · ·g1 · y)

h(gn · · ·g1 · x)
= h(y)

h(x)
exp

(
it

〈
n∑

k=1

tA1 · · · tAku, x − y

〉)
.

In addition, for any n ≥ 1,

E

(∣∣∣∣h(gn · · ·g1 · y)

h(gn · · ·g1 · x)
− 1

∣∣∣∣
)

= E

(∣∣∣∣h(g1 · · ·gn · y)

h(g1 · · ·gn · x)
− 1

∣∣∣∣
)
.

Since, for v ∈ {x, y}, the sequence h(g1 · · ·gn · v) converges a.s. to h(Z) and since
h is bounded with a constant modulus, we have by (A.1),

0 = lim
n→+∞E

(∣∣∣∣h(gn · · ·g1 · y)

h(gn · · ·g1 · x)
− 1

∣∣∣∣
)

= lim
n→+∞E

(∣∣∣∣∣h(y)

h(x)
exp

(
it

〈
n∑

k=1

tA1 · · · tAku, x − y

〉)
− 1

∣∣∣∣∣
)
.

Taking into account that the series
∑n

k=1
tA1 · · · tAk converges a.s. to a random

variable Z′, we have for any x, y ∈ supp(ν),

(A.2) E

(∣∣∣∣h(y)

h(x)
eit〈Z′u,x−y〉 − 1

∣∣∣∣
)

= 0.

Since the support of ν is invariant by all the elements of the support of μ, by
point 2 of Hypothesis 3.1, we deduce that the support of ν is not contained in
an affine subspace of Rd , that is, for any 1 ≤ j ≤ d , there exist xj , yj ∈ supp(ν),
such that the family (vj )1≤j≤d = (xj − yj )1≤j≤d generates Rd . From (A.2), we
conclude that for any 1 ≤ j ≤ d ,

h(yj )

h(xj )
eit〈Z′u,vj 〉 = 1, P-a.s.
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Let θj be such that h(xj )

h(yj )
= eiθj . Denoting by ηu the distribution of Z′u, we ob-

tain that 〈Z′u, vj 〉 ∈ θj+2πZ

t
P-a.s. and so the support of ηu is discrete. Moreover,

the measure ηu is invariant for the Markov chain X′
n+1 = tAn+1(X

′
n + u) and so,

for any Borel set B of Rd ,

(A.3) ηu(B) = E

(∫
v∈Rd

1B

(tA1(v + u)
)
ηu(dv)

)
.

Since ηu is discrete, the set Emax = {x ∈ Rd : ηu({x}) = maxy∈Rd ηu({y})} is
nonempty and finite. Moreover, using (A.3) with B = {x} and x ∈ Emax, we can
see that the image tA−1

1 x −u belongs to Emax P-a.s. Denoting by v0 the barycentre
of Emax, we find that

P
(tA−1

1 v0 − u = v0
)= 1.

The fact that u �= 0 implies that v0 �= 0. The latter implies that tA−1
1 v0 = v0 + u =

tA−1
2 v0 almost surely, which contradicts point 3 of Hypothesis 3.1. �

Conditions (b), (c) and (d) of the theorem of Ionescu Tulcea and Marinescu
as stated in Chapter 3 of Norman [28] follow from points 1–3 of Lemma A.1,
respectively. It remains to show condition (a). Let (hn)n≥0 be a sequence in Lθ,ε

satisfying ‖hn‖θ,ε ≤ K , for any n ≥ 0 and some constant K and suppose that
there exists h ∈ C (Rd) such that limn→+∞|hn −h|θ = 0. For any x, y, z ∈ Rd and
n ≥ 0,

|h(x) − h(y)|
|x − y|ε(1 + |x|)(1 + |y|) + |h(z)|

(1 + |z|)θ

≤ |hn − h|θ
(

(1 + |x|)θ + (1 + |y|)θ
|x − y|ε(1 + |x|)(1 + |y|) + 1

)
+ [hn]ε + |hn|θ .

Taking the limit as n → +∞, shows that h ∈ Lθ,ε and ‖h‖θ,ε ≤ K .
The theorem of Ionescu Tulcea and Marinescu and the unicity of the one-dimen-

sional projector proved in point 1 of Lemma A.2 imply Hypothesis M2. Hypothesis
M3 is obtained easily from Lemma A.1.

Point 2 of Lemma A.2 will be used latter to prove that σ 2 > 0.

Proof of M4. By the hypothesis α = 2+2δ
1+ε

> 2. Consider the function N : Rd →
R+ defined by N(x) = |x|1+ε . For any x, y ∈ Rd satisfying |x| ≤ |y|,∣∣N(x) − N(y)

∣∣≤ (1 + ε)|y|ε|x − y|.
Using the fact that |N(x) − N(y)| ≤ 2|y|1+ε , we have∣∣N(x) − N(y)

∣∣≤ (1 + ε)ε21−ε|y|ε2+(1+ε)(1−ε)|x − y|ε = cε|y||x − y|ε.
Together with |N |θ < +∞, this proves that the function N is in B = Lθ,ε .
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Obviously |f (x)|1+ε = |〈u,x〉|1+ε ≤ |u|1+ε(1 + N(x)). Moreover, for any h ∈
Lθ,ε , ∣∣h(x)

∣∣≤ [h]ε|x|ε(1 + |x|)+ ∣∣h(0)
∣∣≤ 2‖h‖θ,ε

(
1 + N(x)

)
and so ‖δx‖B′ ≤ 2(1 + N(x)). Note that for any p ∈ [1, α],

E
1/p(N(gn · · ·g1 · x)p

)
≤ 21+ε(

E
1/p(‖�n‖p(1+ε))N(x) +E

1/p(|gn · · ·g1 · 0|p(1+ε))).
Since p(1 + ε) ≤ 2 + 2δ, the previous inequality proves that E1/p

x (N(Xn)
p) ≤

c(1 + N(x)). Thus, we proved the first inequality of point 1 of M4.
For any l ≥ 1, we consider the function φl on R+ defined by

(A.4) φl(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ≤ l
1

1+ε − 1,

t − (l 1
1+ε − 1

)
if t ∈ [l 1

1+ε − 1, l
1

1+ε
]
,

1 if t ≥ l
1

1+ε .

Define Nl on Rd by Nl(x) = φl(|x|)N(x). For any x ∈ Rd , we have
N(x)1{N(x)>l} ≤ Nl(x) ≤ N(x) which implies that |Nl|θ ≤ |N |θ < +∞. More-
over, for any x, y ∈ Rd satisfying |x| ≤ |y|, we have∣∣φl

(|y|)− φl

(|x|)∣∣≤ min
(|y| − |x|,1

)
.

So ∣∣Nl(y) − Nl(x)
∣∣≤ [N ]ε|x − y|ε(1 + |x|)(1 + |y|)+ |x|1+ε|y − x|ε.

Since |x| ≤ |y|, we obtain that [Nl]ε ≤ [N ]ε + 1 < +∞. Therefore, the function
Nl belongs to B = Lθ,ε , which finishes the proof of point 1 of M4.

Moreover, ‖Nl‖θ,ε ≤ ‖N‖θ,ε + 1 and, so the point 2 of M4 is also established.
Since

∫
X|x|pν(dx) < +∞, for any p ≤ 2 + 2δ, we find that

ν(Nl) ≤
∫
X

|x|1+ε1
{|x|≥l

1
1+ε −1}

ν(dx) ≤
∫
X|x|2+2δν(dx)

(l
1

1+ε − 1)2+2δ−(1+ε)
.

Choosing β = α − 2 > 0, we obtain point 3 of M4.

Proof of M5. Using (2.5) and the point 4 of Hypothesis 3.1,

(A.5) μ =
∫
Rd

〈u,x〉ν(dx) =
〈
u,E

(+∞∑
k=1

A1 · · ·Ak−1Bk

)〉
= 0.

Now we prove that σ 2 > 0. For this, suppose the contrary: σ 2 = 0. One can easily
check that the function f belongs to B. Using M2 and the fact that ν(f ) = μ = 0,
we deduce that

∑
n≥0‖Pnf ‖θ,ε =

∑
n≥0‖Qnf ‖θ,ε < +∞ and therefore the series
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∑
n≥0 Pnf converges in (B,‖·‖θ,ε). We denote by � ∈ B its limit and notice that

the function � satisfies the Poisson equation: � − P� = f .
Using the bound (2.6), we have |∑N

n=1 f (x)Pnf (x)| ≤ c(1 + N(x))2. By the
Lebesgue dominated convergence theorem, from (2.5), we obtain

σ 2 =
∫
Rd

f (x)
(
2�(x) − f (x)

)
ν(dx)

=
∫
Rd

(
�2(x) − (P�)2(x)

)
ν(dx)

=
∫

GL(d,R)×Rd×Rd

(
�(g1 · x) − P�(x)

)2
μ(dg1)ν(dx).

As σ 2 = 0, we have �(g1 · x) = P�(x), that is, f (g1 · x) = P�(x) − P�(g1 · x),
μ × ν-a.s. Consequently, there exists a Borel subset B0 of Rd such that ν(B0) = 1
and for any t ∈ R and x ∈ B0,∫

GL(d,R)×Rd
eit〈u,g1·x〉eitP�(g1·x)μ(dg1) = eitP�(x).

Since the functions in the both sides are continuous, this equality holds for every
x ∈ supp(ν). Since � ∈ Lθ,ε , the function x 
→ eitP�(x) belongs to Lθ,ε \ {0}.
This contradicts the point 2 of Lemma A.2 and we conclude that σ 2 > 0 and so M5
holds true.

APPENDIX B: PROOFS FOR COMPACT MARKOV CHAINS

In this section, we prove Proposition 3.7. For this, we show that M1–M5 hold
true with N = Nl = 0, for the Markov chain (Xn)n≥1, the function f and the
Banach space L (X) given in Section 3.2.

Proof of M1. Obviously the Dirac measure belongs to L (X)′ and ‖δx‖L (X)′ ≤
1 for any x ∈X. For any h ∈ L (X) and t ∈ R the function eitf h belongs to L (X)

and

(B.1)
∥∥eitf h

∥∥
L ≤ |t |[f ]X‖h‖∞ + ‖h‖L ≤ (|t |[f ]X + 1

)‖h‖L .

Proof of M2. Let (x1, x2) and (y1, y2) be two elements of X and h ∈ L (X).
Since

Ph(x1, x2) =
∫
X

h
(
x2, x

′)P (x2,dx′),
we have ‖Ph‖∞ ≤ ‖h‖∞. Denote by hx2 the function z 
→ h(x2, z), which is an
element of L (X). Since [hx2]X ≤ [h]X and |hx2 |∞ ≤ ‖h‖∞, we obtain also that∣∣Ph(x1, x2) − Ph(y1, y2)

∣∣= ∣∣Phx2(x2) − Phy2(y2)
∣∣

≤ [Phx2]XdX(x2, y2) + [h]XdX(x2, y2)

≤ (|P |L →L ‖h‖X + [h]X)dX(x2, y2),
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where |P |L →L is the norm of the operator P : L (X) → L (X). Therefore, P
is a bounded operator on L (X) and ‖P‖L →L ≤ (1 + |P |L →L ). Now, for any
h ∈ L (X), we define the function Fh by

Fh(x2) :=
∫
X

h
(
x2, x

′)P (x2,dx′)= Ph(x1, x2).

Notice that Fh belongs to L (X) and |Fh|L ≤ ‖Ph‖L . So by Proposition 3.5, for
any n ≥ 2, (x1, x2) ∈ X and h ∈ L (X),

Pnh(x1, x2) = P n−1Fh(x2) = ν(Fh) + Rn−1Fh(x2)

= ν(h)e(x1, x2) + Qnh(x1, x2),

where the probability ν is defined on X by

ν(h) = ν(Fh) =
∫
X×X

h
(
x′, x′′)P (x′,dx′′)ν(dx′),

the function e is the unit function on X, e(x1, x2) = 1, ∀(x1, x2) ∈ X and Q

is the linear operator on L (X) defined by Qh = R(Fh) = Ph − ν(h). By
Proposition 3.5, the operator Q is bounded and for any n ≥ 1, ‖Qn‖L →L ≤
|Rn−1|L →L ‖P‖L →L ≤ ce−cn. Since ν is invariant by P , one can easily verify
that �Q = Q� = 0, where � is the one-dimensional projector defined on L (X)

by �h = ν(h)e.

Proof of M3. For any t ∈ R, h ∈ L (X) and (x1, x2) ∈ X,

Pth(x1, x2) =
∫
X

eitf (x2,x
′)h
(
x2, x

′)P (x2,dx′)= +∞∑
n=0

intn

n! Ln(h)(x1, x2),

where Ln(h) = P(f nh). Since (L (X),‖·‖L ) is a Banach algebra, it follows that
Ln is a bounded operator on L (X) and ‖Ln‖L →L ≤ ‖P‖L →L ‖f ‖n

L . Conse-
quently, the application t 
→ Pt is analytic on R and so, by the analytic perturbation
theory of linear operators (see [26]), there exists ε0 > 0 such that, for any |t | ≤ κ ,

Pn
t = λn

t �t + Qn
t ,

where λt is an eigenvalue of Pt , �t is the projector on the one-dimensional
eigenspace of λt and Qt is an operator of spectral radius r(Qt) < |λt | such that
�tQt = Qt�t = 0. The functions t 
→ λt , t 
→ �t and t 
→ Qt are analytic on
[−κ, κ]. Furthermore, for any h ∈ L (X) and (x1, x2) ∈ X,

|Pth|(x1, x2) =
∣∣∣∣
∫
X

eitf (x2,x
′)h
(
x2, x

′)P (x2,dx′)∣∣∣∣≤ ‖h‖∞

and necessarily |λt | ≤ 1, for any |t | ≤ κ . Consequently,

sup
|t |≤κ,n≥1

∥∥Pn
t

∥∥
L →L ≤ c.

Proof of M4 and M5. Since for any x ∈ X, |f (x)| ≤ |f |∞ and ‖δx‖L (X)′ ≤ 1,
we can choose N = 0 and Nl = 0 for any l ≥ 1 and Hypothesis M4 is obviously
satisfied.

Finally, Hypothesis 3.6 ensures that M5 holds true.
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