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POLARITY OF POINTS FOR GAUSSIAN RANDOM FIELDS

BY ROBERT C. DALANG1, CARL MUELLER2 AND YIMIN XIAO3

Ecole Polytechnique Fédérale de Lausanne, University of Rochester and
Michigan State University

We show that for a wide class of Gaussian random fields, points are polar
in the critical dimension. Examples of such random fields include solutions
of systems of linear stochastic partial differential equations with determinis-
tic coefficients, such as the stochastic heat equation or wave equation with
space–time white noise, or colored noise in spatial dimensions k ≥ 1. Our
approach builds on a delicate covering argument developed by M. Talagrand
[Ann. Probab. 23 (1995) 767–775; Probab. Theory Related Fields 112 (1998)
545–563] for the study of fractional Brownian motion, and uses a harmoniz-
able representation of the solutions of these stochastic PDEs.
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1. Introduction. Hitting probabilities are one of the most studied features of
stochastic processes. Given a process X = (Xt) with values in R

d and a subset A

of Rd , we say that X hits A if

P {Xt ∈ A for some t} > 0.

The set A is polar for X if P {Xt ∈ A for some t} = 0. When X is a Markov pro-
cess, potential theory gives a necessary and sufficient condition for a set to be
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polar; see [3] for an extensive discussion. One first constructs a potential theory
associated to X, after which it follows that X hits A with positive probability if
and only if cap(A) > 0, where cap(A) is the capacity of A with respect to the
potential theory associated to X.

For processes other than Markov processes, and even for Gaussian random
fields, results on hitting probabilities are much less complete. One exception is
the Brownian sheet, which has specific properties such as independence of incre-
ments. Using these properties, Khoshnevisan and Shi [21] have given essentially
complete answers about hitting probabilities for the sheet, and the recent work of
Dalang, Khoshnevisan, Nualart, Wu and Xiao [12] and Dalang and Mueller [13]
has even settled the issue of multiple points of the Brownian sheet in critical di-
mensions.

Other interesting Gaussian random fields are for instance those obtained as solu-
tions of linear systems of stochastic partial differential equations (SPDEs). Mueller
and Tribe [25] considered systems of d stochastic heat equations

(1.1)
∂u

∂t
(t, x) = ∂2u

∂x2 (t, x) + Ẇ (t, x),

where t > 0, x ∈ R, Ẇ = Ẇ (t, x) is an R
d -valued two-parameter white noise,

and the function u(0, ·) takes values in R
d and is suitably specified. This system

of SPDEs is interpreted in integral form in the framework of Walsh [31]. They
showed (among other things) that points are polar if and only if d ≥ 6, so that
the critical dimension for hitting points is d = 6 for the random field u and points
are polar in this critical dimension. It turns out that the method of [25] is quite
specific and cannot be extended, for instance, even to the case where the system
has deterministic but nonconstant coefficients.

Another case in which the issue of polarity in the critical dimension has been
resolved concerns systems of reduced stochastic wave equations (in one spatial di-
mension) studied by Dalang and Nualart in [14]. In this case, the critical dimension
is d = 4 and points are polar in this dimension (for linear and nonlinear systems of
such equations). This situation is again special, because the natural filtration of the
process has the commutation property F4 of Cairoli and Walsh [4], which makes it
possible to use Cairoli’s maximal inequality for multiparameter martingales [19],
Chapter 7.2.

For linear and nonlinear systems of stochastic heat and wave equations, there
has been much progress in recent years for all dimensions except the critical di-
mension. A typical result for nonlinear systems of stochastic heat equations in
spatial dimension 1 is given in [9, 10]. In these papers, the authors establish upper
and lower bounds on hitting probabilities of the following type:

c−1 Capd−6+η(A) ≤ P
{
u(t, x) ∈ A for some (t, x) ∈ [1,2]2}≤ cHd−6−η(A),

where Cap denotes Bessel–Riesz capacity, H denotes Hausdorff measure, and
η > 0. This type of upper and lower bound is also available for systems of heat
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and wave equations in spatial dimensions k ≥ 1 (see [11]), for linear systems of
stochastic wave equations in spatial dimensions k ≥ 1 (see [15]) and for nonlinear
systems of stochastic wave equations in spatial dimensions k ∈ {1,2,3} (see [16]).
For a wide class of so-called anisotropic Gaussian random fields v = (v(x), x ∈
R

k), Biermé, Lacaux and Xiao [2] identified the critical dimension and obtained
the following result. Let αi be the Hölder exponent of the random field when the
ith coordinate varies and the others are fixed, and set Q = α−1

1 +· · ·+α−1
k . Under

certain assumptions, they established the following upper and lower bounds on hit-
ting probabilities: Fix M > 0 and a compact set I ⊂ R

k . Then there is 0 < C < ∞
such that for every compact set A ⊂ B(0,M) (the open ball in R

d centered at 0
with radius M),

C−1 Capd−Q(A) ≤ P
{∃x ∈ I : v(x) ∈ A

}≤ CHd−Q(A).

This result provides lots of information about hitting probabilities when d �= Q

(see also [34]). However, in the critical case where d = Q and A = {z0} is a single
point, these two inequalities essentially reduce to 0 ≤ P {∃x ∈ I : v(x) = z0} ≤ 1,
which is uninformative. Some other references on hitting probabilities for linear
systems of SPDEs include [6, 27, 32].

In order to prove that a set is polar, one typically estimates the probability that
the random field visits a small ball, and then one uses a covering argument. When
the dimension is strictly larger than the critical dimension, rather simple coverings
do the job (typically, the covering is obtained via a deterministic partition of the
parameter space). For instance, it is rather straightforward to establish that points
are polar for standard Brownian motion in dimensions d ≥ 3, but the critical di-
mension d = 2 is more difficult to handle (see [20], for instance).

In order to address the issues of exact Hausdorff measure functions and ex-
istence of multiple points for a non-Markovian random field such as fractional
Brownian motion, Talagrand introduced a new kind of covering argument in the
two important papers [29, 30]. His idea was to consider balls of different (ran-
dom) sizes that cover a given point in the parameter space. Having noticed that at
a typical point, the local (Hölder-type) regularity is better, with high probability,
than what one would expect, he chooses “good balls” that give a sharp cover of
the range of the process, allowing the method to succeed even in the critical di-
mension. His argument relies on properties of Gaussian processes as well as on
certain specific properties of fractional Brownian motion. However, it seems that
one of his goals was to develop a method that would extend to other situations,
since he states, as one reason for studying fractional Brownian motion, that (ordi-
nary) “Brownian motion suffers from an over abundance of special properties; and
that moving away from these forces to find proofs that rely on general principles,
and arguably lie at a more fundamental level.”

This paper shows that Talagrand’s intuition was correct. Indeed, we have iso-
lated sufficient conditions on an anisotropic Gaussian random field v = (v(x), x ∈
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R
k), as considered in [2, 34], under which it is possible to extend Talagrand’s ar-

gument and establish polarity of points in the critical dimension; see Assumptions
2.1 and 2.4. These assumptions are satisfied by many multiparameter Gaussian
random fields, for which the Hölder exponents in each parameter may be different.
The random fields that we consider are typically nowhere-differentiable (see, e.g.,
Theorem 3.1 in [33] and Theorem 8.1 in [34]), and this assumption states the ex-
istence of particular approximations that are Lipschitz continuous but whose Lip-
schitz constants have a certain asymptotic growth rate. The main assumption (As-
sumption 2.1) is discussed in more detail at the beginning of Section 2. This as-
sumption also leads to an upper bound on the canonical metric associated with the
Gaussian random field (see Proposition 2.2).

The first technical effort is to establish Proposition 2.3, which extends an anal-
ogous result of Talagrand ([30], Proposition 3.4) and makes precise the idea that
for any x ∈ Rk , with high probability, there is a (random) neighborhood of x in
which the increments v(y) − v(x) are smaller than expected. With this result in
hand, and under the assumption that the process has covariances that have better
Hölder regularity than its sample paths (see Assumption 2.4), which is the case in
the examples that we are interested in, we extend the method of Talagrand [30] and
establish polarity of points in the critical dimension Q (see Theorem 2.6). These
results are proved in Sections 3–5.

The next step is to show that the two main assumptions are satisfied in a wide
class of important examples. As a warm-up, we begin in Section 6 with the case
of fractional Brownian motion. Then we turn to linear systems of stochastic heat
equations. In Section 7, we consider first the case of constant coefficients, in spa-
tial dimension 1, with space–time white noise as in (1.1), and recover the result
of Mueller and Tribe [25]: points are polar for this process in dimension d = 6.
However, essentially the same calculations apply to the case of higher spatial di-
mensions, with spatially homogeneous noise with covariance given by a Riesz
kernel with exponent β ∈]0,2[, so we also obtain polarity of points in the critical
dimension d = (4 + 2k)/(2 − β) for this case (when this fraction is an integer).
The verification of Assumption 2.1 relies on a harmonizable representation of the
solution u(t, x) of the stochastic heat equation; see (7.3): this representation is
analogous to the spectral representation of stationary processes (see [17, 18, 35]).
It also appears in [1] and is of independent interest.

As we mentioned above, the method of Mueller and Tribe was not robust enough
to extend to systems of heat equations with deterministic but nonconstant coeffi-
cients. We examine this situation in Section 8, and we obtain, under the assump-
tion that these coefficients have some smoothness properties (expressed in terms
of their Fourier transform: see Assumption 8.1), polarity of points in the critical
dimension. This applies in particular to the case of spatial dimension 1 with space–
time white noise, and the critical dimension remains d = 6.

In Section 9, we turn to linear systems of stochastic wave equations with con-
stant coefficients. Here, we consider both the cases of spatial dimension k = 1
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with space–time white noise, and higher spatial dimensions with spatially homo-
geneous noise with covariance given by a Riesz kernel with exponent β ∈]0,2[.
The stochastic wave equation presents additional difficulties because the funda-
mental solution is irregular (it is not even a function when k ≥ 3). This means that
Walsh formalism does not apply directly and we use the extension of this theory
developed by Dalang [8]. For the spatial dimension k = 1 with space–time white
noise, we show that points are polar in the critical dimension d = 4, and in higher
spatial dimensions, under the assumption β ∈ [1,2[, we obtain polarity of points
in the critical dimension d = 2(k + 1)/(2 − β) (when this fraction is an integer).

The method developed by Talagrand and the extensions presented in this paper
can also be applied to the issue of multiple points of Gaussian random fields in
critical dimensions, and can also be used to study the same type of questions for
nonlinear systems of SPDEs. These topics are the subject of research in progress
and we expect to present them in future papers.

2. Main assumptions and results. Recall that a white noise based on a mea-
sure ν is a set function A 	→ W(A) defined on B(Rk) with values in L2(�,F,P )

such that for each A, W(A) is a centered normal random variable with variance
ν(A), and when A ∩ B = ∅, then W(A ∪ B) = W(A) + W(B) and W(A) and
W(B) are independent. If W(A) is a centered normal random vector with values
in R

d instead of R and covariance matrix ν(A) · Id (where Id denotes the d × d

identity matrix), then we say that A 	→ W(A) is an R
d -valued white noise.

In order to motivate Assumption 2.1 below, recall that many stationary Gaus-
sian process (v(t), t ∈ R) admit a “moving average” representation of the form
v(t) = ∫

R
f (t − s) dWs , where f is a function and (Ws) is a Brownian motion

(see [17], Chapter XI, Section 8). For fixed t ∈ R, we can define a white noise by
setting v(A, t) = ∫A f (t − s) dWs . In many cases, when f (s) is smooth and has
appropriate decay as s → ±∞, it happens that if |t − s| ∼ 2−n/α , for some α > 0,
then v(t) − v(s) is well approximated by v([2n,2n+1[, t) − v([2n,2n+1[, s). Even
though we will not be dealing with stationary processes, but with nonstationary
random fields, it is often possible to construct a process that plays the same role as
v(A, t). This is the motivation for Assumption 2.1 below, and this assumption will
be verified for the solutions to the SPDEs that we will consider in Sections 7–9, as
we explain just below.

Let v = (v(x), x ∈ R
k) be a centered continuous R

d -valued Gaussian random
field with i.i.d. components. We write v(x) = (v1(x), . . . , vd(x)).

ASSUMPTION 2.1. Let I ⊂ R
k be a closed box: I = ∏k

j=1[cj , dj ], where

cj < dj . Let I (ε) denote an ε-enlargement of I , in Euclidean norm. There is a
Gaussian random field (v(A,x),A ∈ B(R+), x ∈ R

k) and ε0 > 0 such that:
(a) for all x ∈ I (ε0), A 	→ v(A,x) is an R

d -valued white noise with i.i.d. com-
ponents, v(R+, x) = v(x) and when A and B are disjoint, v(A, ·) and v(B, ·) are
independent;
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(b) there are constants c0 ∈ R+, a0 ∈R+ and γj > 0, j = 1, . . . , k, such that for
all a0 ≤ a ≤ b ≤ +∞, x, y ∈ I (ε0),

(2.1)
∥∥v([a, b[, x)−v(x)−v

([a, b[, y)+v(y)
∥∥
L2 ≤ c0

[
k∑

j=1

aγj |xj −yj |+b−1

]

and

(2.2)
∥∥v([0, a0], x)− v

([0, a0], y)∥∥L2 ≤ c0

k∑
j=1

|xj − yj |.

In order to see that the above assumption is satisfied by many solutions of
SPDEs, it is necessary in each case to construct the random field v(A,x). Let us
consider, for example, the solution v(x) of the linear one-dimensional heat equa-
tion driven by space–time white noise. Then R

k will be replaced by R+ ×R, and
the generic variable x above becomes (t, x). We define

v(A, t, x) =
∫∫

max(|τ | 1
4 ,|ξ | 1

2 )∈A
e−iξx e−iτ t − e−tξ2

ξ2 − iτ
W(dτ, dξ).

Then we will see in Section 7 that Assumption 2.1 is satisfied (with the exponents
γ1 = 3, γ2 = 1, that is, α1 = 1/4 and α2 = 1/2, where the αj are defined in the
next lines), as is Assumption 2.4 below.

Define αj ∈]0,1[ by the relation

γj = α−1
j − 1, that is, αj = (γj + 1)−1,

and define a metric

�(x,y) =
k∑

j=1

|xj − yj |αj .

Consider also the canonical metric associated with v:

d(x, y) = ∥∥v(x) − v(y)
∥∥
L2 .

It turns out that under Assumption 2.1, the metric � provides an upper bound on
the canonical metric.

PROPOSITION 2.2. Under Assumption 2.1, for all x, y ∈ I (ε0) with �(x,y) ≤
min(a−1

0 ,1), we have d(x, y) ≤ 4c0�(x,y).

PROOF. Fix x, y ∈ I (ε0). Observe that for any a ≥ a0

d(x, y) ≤ ∥∥v(x) − v
([a0, a[, x)− v(y) + v

([a0, a[, y)∥∥L2

+ ∥∥v([a0, a[, x)− v
([a0, a[, y)∥∥L2



4706 R. C. DALANG, C. MUELLER AND Y. XIAO

and by Assumption 2.1(a),∥∥v([a0, a[, x)− v
([a0, a[, y)∥∥L2

≤ ∥∥v(x) − v
([a,∞[, x)− v(y) + v

([a,∞[, y)∥∥L2

+ ∥∥−v
([0, a0[, x)+ v

([0, a0[, y)∥∥L2 .

Applying Assumption 2.1(b), we see that

(2.3) d(x, y) ≤ c0

[
k∑

j=1

(
a

α−1
j −1

0 + a
α−1

j −1)|xj − yj | + a−1 +
k∑

j=1

|xj − yj |
]
.

By hypothesis, maxj=1,...,k |xj − yj |αj ≤ �(x,y) ≤ a−1
0 , so we choose a ≥ a0

such that maxj=1,...,k |xj − yj |αj = a−1. Notice that

(
a

α−1
j −1

0 + a
α−1

j −1)|xj − yj |

= [(a0|xj − yj |αj
) 1−αj

αj + (a|xj − yj |αj
) 1−αj

αj
]|xj − yj |αj

(2.4)

≤ 2
(
a|xj − yj |αj

) 1−αj
αj |xj − yj |αj

≤ 2|xj − yj |αj

by the choice of a. Now (2.3) and (2.4) imply that

d(x, y) ≤ c0

[
2

k∑
j=1

|xj − yj |αj + max
j=1,...,k

|xj − yj |αj +
k∑

j=1

|xj − yj |
]
.

For �(x,y) ≤ 1, since 0 < αj < 1, we conclude that d(x, y) ≤ 4c0�(x,y). �

A first objective is to prove the following analogue for v of Proposition 3.4 of
Talagrand [30].

PROPOSITION 2.3. Let Assumption 2.1 hold, and let

(2.5) Q =
k∑

j=1

(γj + 1) =
k∑

j=1

1

αj

.

Then there are constants K̃ < ∞ and ρ0 ∈]0,1] with the following property. Given
0 < r0 < ρ0, for all x0 ∈ I , we have

P

{
∃r ∈ [r2

0 , r0
] : sup

y:�(y,x0)<r

∣∣v(y) − v(x0)
∣∣≤ K̃

r

(log log 1
r
)1/Q

}
(2.6)

≥ 1 − exp
[
−
[
log

1

r0

] 1
2
]
.
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When d(y, x0) ≤ 4c0�(y,x0) ≤ 4c0r , one expects that v(y) − v(x0) is of or-
der r , so Proposition 2.3 states that with high probability, there is a �-ball of radius
r in which the increments v(y)−v(x0) are smaller than expected. This proposition
is proved in Section 4.

In order to obtain results on polarity of points, we need an additional assump-
tion.

ASSUMPTION 2.4. Let I ⊂ R
k be a closed box and ε0 > 0 be as in Assump-

tion 2.1.
(a) There is a constant c̃ > 0 such that for all x ∈ I (ε0), and i = 1, . . . , d , we

have ‖vi(x)‖L2 ≥ c̃.
(b) There is ρ > 0 with the following property. For x ∈ I , there are x′ ∈ I (ε0),

δj ∈]αj ,1], j = 1, . . . , k, and C > 0 such that for all i = 1, . . . , d , y, ȳ ∈ I (ε0)

with �(x,y) ≤ 2ρ and �(x, ȳ) ≤ 2ρ,

∣∣E[(vi(y) − vi(ȳ)
)
vi

(
x′)]∣∣≤ C

k∑
j=1

|yj − ȳj |δj .

REMARK 2.5. (a) We do not require the lower bound d(x, y) ≥ c�(x, y) on
the canonical metric d . Without this lower bound, Theorem 2.6 below is valid, but
Q defined in (2.5) might not be the critical dimension.

(b) Part (b) in Assumption 2.4 states that covariances are smoother than what
one gets from the Cauchy–Schwarz inequality, Hölder continuity and Proposi-
tion 2.2:

∣∣E[(vi(y) − vi(ȳ)
)
vi

(
x′)]∣∣≤ ∥∥vi(y) − vi(ȳ)

∥∥
L2

∥∥vi

(
x′)∥∥

L2

≤ ∥∥vi

(
x′)∥∥

L2

k∑
j=1

|yj − ȳj |αj .

This will be the case in the examples that we will consider.

The main result of this section is the following.

THEOREM 2.6. Let Assumptions 2.1 and 2.4 hold for all sufficiently small
boxes. Assume that Q = d . Then for any closed box J and for all z ∈ R

Q,

P
{∃x ∈ J : v(x) = z

}= 0.

This theorem is proved in Section 5.
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3. Preliminaries. Following [29], Section 2, we first set up some estimates
that are needed.

Recall the number Q defined in (2.5). Let I ⊂ R
k be a closed box such that

Assumption 2.1 is satisfied. For x0 ∈ I , the number of balls in metric d of radius ε

needed to cover the set

Sr(x0) = {x ∈ R
k : �(x,x0) < r

}
is ≤ Nd(Sr, ε) = c̄rQ/εQ [indeed, x ∈ Sr(x0) implies that |xj − x0,j | < r

α−1
j , so

the volume of Sr(x0) with respect to Lebesgue measure is ≤ rQ, and by Proposi-
tion 2.2, the volume of a d-ball of radius ε is ≥ c̄εQ].

LEMMA 3.1. Let D be the diameter (in metric d) of a subset S ⊂ R
k . There

is a universal constant K0 such that, for all u > 0, we have

P

{
sup

x,y∈S

∣∣v(x) − v(y)
∣∣≥ K0

(
u +
∫ D

0

√
logNd(S, ε) dε

)}
≤ exp

(
− u2

D2

)
.

(Note. There is a misprint in [29], Lemma 2.1, where D should be D2.)

PROOF. This is a consequence of inequality (11.4), page 302 in [23], which
holds for Gaussian processes with ψ(x) = e(x2) − 1. �

LEMMA 3.2. There is a constant K > 0 (depending on c0 in Assumption 2.1)
such that, for all u > 0,

P
{

sup
x,y∈I

∣∣v(x) − v(y)
∣∣≤ u

}
≥ exp

(
− 1

KuQ

)
.

PROOF. We use the small ball estimate for Gaussian processes (see [22],
(7.13), page 257, or Lemma 2.2 of [29])

P
{

sup
x,y∈I

∣∣v(x) − v(y)
∣∣≤ u

}
≥ exp

(
−ψ(u)

K

)
,

where ψ(u) = u−Q. Indeed, a ball of radius ε (in the canonical metric d) has
volume ≥ c̃εQ, so the number of balls (in the canonical metric d) of radius ε

needed to cover I is ≤ cI ε
−Q. �

LEMMA 3.3. Consider b > a > 1, ε0 > r > 0 and set

A =
k∑

j=1

a
α−1

j −1
r
α−1

j + b−1.
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There are constants A0, K̃ and c̃ (depending on c0 in Assumption 2.1) such that if
A ≤ A0r and

(3.1) u ≥ K̃A log1/2
(

r

A

)
,

then

P
{

sup
x∈Sr (x0)

∣∣v(x) − v(x0) − (v([a, b], x)− v
([a, b], x0

))∣∣≥ u
}

≤ exp
(
− u2

c̃A2

)
.

PROOF. Recall that Sr = Sr(x0) = {x ∈ R
k : �(x,x0) < r}, and set

d̃(x, y) = ∥∥v(x) − v(y) − (v([a, b[, x)− v
([a, b[, y))∥∥L2 .

Then

d̃(x, y) ≤ ∥∥v(x) − v(y)
∥∥
L2 + ∥∥v([a, b[, x)− v

([a, b[, y)∥∥L2 .

Since

v(x)−v(y) = (v([a, b[, x)−v
([a, b[, y))+ (v(R+ \[a, b[, x)−v

(
R+ \[a, b[, y)),

and the two terms on the right-hand side are independent by Assumption 2.1(a),
we see that ∥∥v([a, b[, x)− v

([a, b[, y)∥∥L2 ≤ ∥∥v(x) − v(y)
∥∥
L2 .

Finally,

d̃(x, y) ≤ 2
∥∥v(x) − v(y)

∥∥
L2 ≤ 8c0�(x,y)

by Proposition 2.2. Therefore, for small ε > 0, the number of ε-balls (in metric d̃)
needed to cover Sr(x0) is

N
d̃

(
Sr(x0), ε

)≤ c
rQ

εQ
.

For x ∈ Sr(x0), |xj − x0,j | ≤ r
α−1

j , so by Assumption 2.1(b), d̃(x, x0) ≤ c0A and,
therefore, the diameter D of Sr(x0) satisfies D ≤ 2c0A. Assuming that we have
chosen the constant A0 and that A ≤ A0r , notice that for D ≤ 2c0A ≤ 2c0A0r ,
there is a constant K̃ ′ (depending on c and c0A0) such that∫ D

0

√
logN

d̃

(
Sr(x0), ε

)
dε ≤ K̃ ′

∫ D

0

√
log

r

ε
dε.

Recalling the elementary inequality
∫+∞
x u2e−u2

du ≤ Cxe−x2
for x large, and

using the change of variables ε = re−u2
(r fixed), we see that there is a universal
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constant K such that for all D > 0 and r > 0 with D/r sufficiently small (which
is the case if A0 is chosen sufficiently small),∫ D

0

√
log

r

ε
dε ≤ KD

√
log

r

D
,

so for D/r sufficiently small,∫ D

0

√
logN

d̃

(
Sr(x0), ε

)
dε ≤ K̃ ′KD

√
log

r

D
.

Let K0 be the universal constant in Lemma 3.1. It follows that

u ≥ K0

(
u

2K0
+
∫ D

0

√
logN

d̃

(
Sr(x0), ε

)
dε

)

when

(3.2) u ≥ 2K0K̃
′KD

√
log

r

D
,

so by Lemma 3.1 (applied to the random field (v(x) − v([a, b[, x)))], when u

satisfies (3.2),

P
{

sup
x∈Sr (x0)

∣∣v(x) − v(x0) − (v([a, b], x)− v
([a, b], x0

))∣∣≥ u
}

≤ exp
(
−(u/(2K0))

2

D2

)
≤ exp

(
− u2

c̃A2

)
.

In order to explain (3.1), notice that

D

√
log

r

D
= [f (D)

]1/2 where f (x) = x2

2
log

r2

x2 ,

and

f ′(x) = x log
r2

x2 − x2

2

2

x
= x

(
log

r2

x2 − 1
)
,

so

f ′(x) > 0 if
r2

x2 > e that is, x2 <
r2

e
.

Since D ≤ 2c0A,

KD

√
log

r

D
≤ K̃ ′′

[
A2

2
log
(

r2

(2c0A)2

)]1/2
≤ K̃A log

1
2

(
r

A

)

provided (2c0A)2 ≤ r2/e, that is, A ≤ (2c0e)
−1r , which is the case as long as A0

is sufficiently small and A ≤ A0r . In this case, (3.1) implies (3.2). �



POLARITY FOR GAUSSIAN RANDOM FIELDS 4711

LEMMA 3.4. There is a constant K (depending on c0 in Assumption 2.1) such
that if 0 < u < r , then for all 0 < a < b,

P
{

sup
x∈Sr (x0)

∣∣v([a, b[, x)− v
([a, b[, x0

)∣∣≤ u
}

≥ exp
(
−K

rQ

uQ

)
.

PROOF. As in the proof of Lemma 3.2, we note that the number of balls of ra-
dius ε [in the canonical metric of v(a, b, ·, ·)] needed to cover Sr(x0) is ≤ cε−QrQ.
Applying the same small ball estimate as in the proof of Lemma 3.2, we obtain the
desired conclusion. �

4. Proof of Proposition 2.3. Fix U > 1. Set r� = r0U
−2� and a� = U2�−1/r0.

Consider the largest integer �0 such that

(4.1) �0 ≤ log(1/r0)

2 logU
.

Then for � ≤ �0, we have r� ≥ r2
0 .

It suffices to show that, for some large constant K2,

P

{
∃1 ≤ � ≤ �0 : sup

x∈Sr�
(x0)

∣∣v(x) − v(x0)
∣∣≤ K2

r�

(log log 1
r�

)1/Q

}

≥ 1 − exp
(
−
(

log
1

r0

)1/2)
.

It follows from Lemma 3.4 that, for K2 large enough so that K/K
Q
2 ≤ 1/4,

P

{
sup

x∈Sr�
(x0)

∣∣v([a�, a�+1[, x)− v
([a�, a�+1[, x0

)∣∣≤ K2
r�

(log log 1
r�

)1/Q

}

≥ exp
(
− K

K
Q
2

r
Q
�

r
Q
�

(
log log

1

r�

))
≥ exp

(
−1

4

(
log log

1

r�

))
(4.2)

=
(

log
1

r�

)−1/4
.

Thus, by independence of the v([a�, a�+1[, ·), � = 1, . . . , �0,

P

{
∃� ≤ �0 : sup

x∈Sr�
(x0)

∣∣v([a�, a�+1[, x)− v
([a�, a�+1[, x0

)∣∣≤ K2
r�

(log log 1
r�

)1/Q

}

= 1 − ∏
1≤�≤�0

(
1 − P

{
sup

x∈Sr�
(x0)

∣∣v([a�, a�+1[, x)− v
([a�, a�+1[, x0

)∣∣(4.3)

≤ K2
r�

(log log 1
r�

)1/Q

})
.
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Apply (4.2) to see that this is greater than

1 −
�0∏

�=1

[
1 −
[
log

1

r�

]− 1
4
]

≥ 1 −
[
1 −
[
log

1

r2
0

]− 1
4
]�0

(4.4)

≥ 1 − exp
[
−�0

[
log

1

r2
0

]− 1
4
]
.

Set

A� =
k∑

j=1

a
α−1

j −1
� r

α−1
j

� + a−1
�+1.

Notice that r�a� = U−1 and r�a�+1 = U . Then

A�r
−1
� =

k∑
j=1

(a�r�)
α−1

j −1 + (a�+1r�)
−1 =

k∑
j=1

U
−(α−1

j −1) + U−1 ≤ (k + 1)U−β,

with β = min(1,minj=1,...,k(α
−1
j − 1)) > 0 since αj < 1, j = 1, . . . , k. Therefore,

for U large enough, A� ≤ A0r�, and for u ≥ K̃r�U
−β

√
logU , (3.1) is satisfied

(with A there replaced by A� and r by r�), so by Lemma 3.3,

P
{

sup
x∈Sr�

(x0)

∣∣v(x) − v(x0) − v
([a�, a�+1[, x)+ v

([a�, a�+1[, x0
)∣∣≥ u

}

≤ exp
(
− u2

c̃A2
�

)
≤ exp

(
− u2

cr2
�

U2β

)
.

Proceeding as in [29], (4.3), we take u = K2r�(log log 1
r0

)−1/Q, which is possible
provided

K2r�

(
log log

1

r0

)−1/Q

≥ K̃r�U
−1
√

logU,

that is, provided

(4.5) U(logU)−1/2 ≥ K̃

K2

(
log log

1

r0

)Q

,

which holds if U is large enough, to get

P

{
sup

x∈Sr�
(x0)

∣∣v(x) − v(x0) − v
([a�, a�+1[, x)

+ v
([a�, a�+1[, x0

)∣∣≥ K2r�

(
log log

1

r0

)−1/Q}
(4.6)

≤ exp
(
− U2β

c(log log 1
r0

)2/Q

)
.
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Let

F� =
{∣∣v([a�, a�+1[, x)− v

([a�, a�+1[, x0
)∣∣≤ K2

2

r�

(log log 1
r�

)1/Q

}
,

G� =
{∣∣v(x) − v(x0) − v

([a�, a�+1[, x)

+ v
([a�, a�+1[, x0

)∣∣≥ K2

2

r�

(log log 1
r�

)1/Q

}
.

Then

P

{
∃1 ≤ � ≤ �0 : sup

x∈Sr�
(x0)

∣∣v(x) − v(x0)
∣∣≤ K2

r�

(log log 1
r�

)1/Q

}

≥ P

(
�0⋃

�=1

(
F� ∩ Gc

�

))≥ P

((
�0⋃

�=1

F�

)
∩
(

�0⋂
�=1

Gc
�

))
(4.7)

≥ P

(
�0⋃

�=1

F�

)
− P

(
�0⋃

�=1

G�

)
.

By (4.4),

P

(
�0⋃

�=1

F�

)
≥ 1 − exp

(
−�0

(
log

1

r2
0

)−1/4)
,

and by (4.6),

P

(
�0⋃

�=1

G�

)
≤ �0 exp

(
− U2β

c(log log 1
r0

)2/Q

)
.

Combining with (4.7), we get

P

{
∃1 ≤ � ≤ �0 : sup

x∈Sr�
(x0)

∣∣v(x) − v(x0)
∣∣≤ K2

r�

(log log 1
r�

)1/Q

}

≥ 1 − exp
(
−�0

(
log

1

r2
0

)−1/4)
− �0 exp

(
− U2β

c(log log 1
r0

)2/Q

)
.

Therefore, the proof of (2.6) will be complete provided

(4.8) exp
[
−�0

[
log

1

r2
0

]− 1
4
]

+ �0 exp
[ −U2β

c(log log 1
r0

)2/Q

]
≤ exp

[
−
[
log

1

r0

] 1
2
]
.

Recall the condition (4.5), and that �0 is defined in (4.1). Therefore, if we set

U =
(

log
1

r0

)1/(2β)

,
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then for r0 small enough, by (4.1),

�0 ≥ β

(
log

1

r0

)(
log log

1

r0

)−1
� 1.

Therefore, the left-hand side of (4.8) is bounded above by

exp
[
− (log 1

r0
)3/4

c log log 1
r0

]
+
(

1 + log
1

r0

)
exp
[
− log 1

r0

c(log log 1
r0

)2/Q

]

≤ exp
[
−
(

log
1

r0

)1/2]

provided r0 is small enough. This completes the proof of Proposition 2.3.

5. Proof of Theorem 2.6. The main effort in establishing Theorem 2.6 will
be to prove the next proposition.

PROPOSITION 5.1. Assume that Q = d . Let I be a sufficiently small box so
that Assumptions 2.1 and 2.4 hold. Let ε0 > 0 be as in Assumption 2.1 and let ρ

be as in Assumption 2.4. Fix x ∈ I , and consider the following (random) subset
of Rd :

M(ρ,x) = {v(y) : y ∈ R
k and �(y,x) ≤ ρ

}
.

Then for any z0 ∈ R
Q, P {z0 ∈ M(ρ,x)} = 0.

PROOF OF THEOREM 2.6 (ASSUMING PROPOSITION 5.1). Let J be a closed
box and

M = {v(y) : y ∈ J
}
.

Divide J into a finite union of small boxes I� for which Assumptions 2.1 and 2.4
hold. Let ρ� > 0 be given by Assumption 2.4 for I�. Since (Sρ�

(x), x ∈ I�) is an
open cover of I�, there are x�,1, . . . , x�,n�

∈ I� such that I� ⊂ ⋃n�

i=1 Sρ�
(x�,i). It

follows that

M ⊂⋃
�

n�⋃
i=1

M(ρ�, x�,i),

so for any z0 ∈ R
Q,

P {z0 ∈ M} ≤∑
�

n�∑
i=1

P
{
z0 ∈ M(ρ�, x�,i)

}= 0,

by Proposition 5.1. It follows that z0 is polar for v. �
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We now work toward proving Proposition 5.1. We proceed as in [30], Section 3.
Set

Bρ(x) = {y ∈ R
k : �(y,x) ≤ ρ

}
,

B ′
ρ(x) = {y ∈ R

k : �(y,x) ≤ 2ρ
}= B2ρ(x).

Let x′ ∈R
k be given by Assumption 2.4(b).

Define two R
d -valued random fields:

v2(y) = E
(
v(y) | v(x′)), v1(y) = v(y) − v2(y).

REMARK 5.2. (a) Because they are Gaussian and orthogonal, the processes
v1 and v2 are independent. Further, v1 is independent of the random vector v(x′).

(b) If we only want to prove that almost all points are polar for v (i.e., the range
of v has Lebesgue measure zero), then we would not need to introduce the process
v1. Here, we will prove that the range of v1 has Lebesgue measure zero, and v1

is quite a good approximation of v (so the range of v also has Lebesgue measure
zero). Then we will use the independence of v1 and v(x′) to deduce that all points
are polar for v.

LEMMA 5.3. The random field v2 = (v2(y), y ∈ B ′
ρ(x)) has a continuous ver-

sion, and there is a finite constant C such that, for y ∈ B ′
ρ(x) and ȳ ∈ B ′

ρ(x),

∣∣v2(y) − v2(ȳ)
∣∣≤ C

∣∣v(x′)∣∣ k∑
j=1

|yj − ȳj |δj .

PROOF. Let

(5.1) α(y) = E(vj (y)vj (x
′))

E(vj (x′)2)
,

where the right-hand side does not depend on j . Since the components of v(y) are
independent, v2

j (y) is the orthogonal projection of vj (y) onto vj (x
′), therefore, for

j ∈ {1, . . . , d},
(5.2) v2

j (y) = α(y)vj

(
x′),

and v2(y) = (v2
1(y), . . . , v2

d(y)) is the continuous version of v2. With this version,
the conclusion follows from Assumption 2.4(a) and (b). �

LEMMA 5.4. There is a number K (depending on d) such that, for ε < 1/3,

P

{
∀y, ȳ ∈ Ī , d(y, ȳ) ≤ ε ⇒ ∣∣v(y) − v(ȳ)

∣∣≤ Kε log1/2 1

ε

}
≥ 1 − ε.
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PROOF. The set I (ε) has finite diameter in the metric �, hence in the metric
d by Proposition 2.2. According to [24], Theorem 6.3.3, page 258, there is a finite
random variable Z such that, a.s., for all y, ȳ ∈ Ī ,

∣∣v(y) − v(ȳ)
∣∣≤ Z

∫ d(y,ȳ)

0

[(
log

1

λ(Bd(y,u))

)1/2
+
(

log
1

λ(Bd(ȳ, u))

)1/2]
du,

where λ denotes Lebesgue on Ī and Bd(y,u) is the ball in metric d centered at y

with radius u. Since d(x, y) ≤ 4c0�(x,y) for small values of �(x,y),

∣∣v(y) − v(ȳ)
∣∣≤ Z

∫ d(y,ȳ)

0

(
log

1

uQ

)1/2
du.

Using the elementary inequality
∫ x

0

(
log

1

u

)1/2
du ≤ c0x log1/2 1

x
,

which is valid for 0 < x < x0 with x0 > 0, and the fact that x 	→ x log1/2(1/x) is
increasing on ]0,1/e[, we see that d(y, ȳ) ≤ ε implies∥∥v(y) − v(ȳ)

∥∥≤ c0Zε log1/2(1/ε),

and this is ≤ Kε log1/2(1/ε) on the event {Z ≤ K/c0}. Since Z is finite a.s., this
event has probability ≥ 1 − ε if K is large enough. �

For p ≥ 1, consider the random set

Rp =
{
y ∈ B ′

ρ(x) : ∃r ∈ [2−2p,2−p[

with sup
ȳ:�(ȳ,y)<r

∣∣v(ȳ) − v(y)
∣∣≤ K2

r

(log log 1
r
)

1
Q

}
,

and the event

�p,1 =
{
λ(Rp) ≥ λ

(
B ′

ρ(x)
)(

1 − exp
(
−

√
p

4

))}

(here, λ denotes Lebesgue measure). Notice that �p,1 can be described as the event
“a large portion of B ′

ρ(x) consists of points at which v is comparatively smooth.”
Then

(�p,1)
c =
{
λ(Rp) < λ

(
B ′

ρ(x)
)(

1 − exp
(
−

√
p

4

))}

=
{
λ
(
B ′

ρ(x) \ Rp

)≥ λ
(
B ′

ρ(x)
)

exp
(
−

√
p

4

)}
,
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so by Markov’s inequality

(5.3) P
(
(�p,1)

c)≤ E(λ(B ′
ρ(x) \ Rp))

λ(B ′
ρ(x)) exp(−

√
p

4 )
.

The numerator is equal to

E

[∫
B ′

ρ(x)
1B ′

ρ(x)\Rp
(y) dy

]
=
∫
B ′

ρ(x)
P
{
y ∈ B ′

ρ(x) \ Rp

}
dy.

By the definition of Rp and Proposition 2.3 (taking the log in base 2), for y ∈
B ′

ρ(x),

P {y /∈ Rp} ≤ exp
(
−
(

log
1

2−p

) 1
2
)

= exp(−√
p),

therefore, by (5.3),

P
(
(�p,1)

c)≤ exp
(
−3

4
√

p

)
.

In particular,

(5.4)
∞∑

p=1

P
(
(�p,1)

c)< +∞.

Fix β ∈]0,min(minj=1,...,k(δjα
−1
j − 1),1)[ (which is possible since δj > αj ,

j = 1, . . . , k) and set

�p,2 = {∣∣v(x′)∣∣≤ 2βp}.
Since v(x′) is a normal random vector,

∑
p≥1 P((�p,2)

c) < +∞. In addition, on
the event �p,2, the constant of Hölder continuity of v2 is not too large. Indeed, by
Lemma 5.3, for y ∈ B ′

ρ(x) and ȳ ∈ B ′
ρ(x), if �(y,x) ≤ r and �(ȳ, x) ≤ r , then on

�p,2,

∣∣v2(y) − v2(ȳ)
∣∣≤ C2βp

k∑
j=1

|yj − ȳj |δj ≤ C̃2βp
k∑

j=1

r
δj α−1

j .

If r ≤ 2−p , then

r
δjα−1

j 2βp = r
δj α−1

j
(
2−p)−β ≤ r

δjα−1
j r−β = rr

δjα−1
j −1−β

,

and minj=1,...,k(δjα
−1
j −1−β) > 0 by definition of β . Therefore, there is K3 > K2

such that on

�p,3
def= �p,1 ∩ �p,2,
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for each y ∈ Rp , there exists r ∈ [2−2p,2−p] such that

(5.5) sup
ȳ:�(ȳ,y)<r

∣∣v1(ȳ) − v1(y)
∣∣≤ K3

r

(log log 1
r
)

1
Q

.

Define an “anisotropic dyadic cube” of order � as a box in R
k of the form

k∏
j=1

[
mj 2−�α−1

j , (mj + 1)2−�α−1
j
]
,

where mj ∈ N. For y ∈ R
k , let C�(y) denote the anisotropic dyadic cube of order

� that contains y. This cube is called “good” if

(5.6) sup
y,ȳ∈C�(y)∩Bρ(x)

∣∣v1(y) − v1(ȳ)
∣∣≤ d�,

where

d� = K̃3
2−�

(log log 2�)
1
Q

and K̃3 = kK3. By (5.5), when �p,3 occurs, we can find a family H1,p of nonover-
lapping good anisotropic dyadic cubes (they may have intersecting boundaries) of
order � ∈ [p,2p] that covers Rp . This family only depends on the random field v1.

Let H2,p be the family of nonoverlapping dyadic cubes of order 2p that meet
Bρ(x) but are not contained in any cube of H1,p . For p large enough, these cubes
are contained in B ′

ρ(x), hence in B ′
ρ(x) \ Rp . Therefore, when �p,3 occurs, their

number is at most Np , where

Np2−2pQ ≤ λ
(
B ′

ρ(x)
)

exp
(
−

√
p

4

)
,

so

(5.7) Np ≤ C22pQ exp
(
−

√
p

4

)
,

where C does not depend on p.
Let �p,4 be the event “the inequality

(5.8) sup
y,ȳ∈C

∣∣v(y) − v(ȳ)
∣∣≤ K42−2p√

p

holds for each dyadic cube C of order 2p of R+ ×R that meets Bρ(x).” We choose
K4 large enough so that

∑
p≥1 P((�p,4)

c) < +∞: this is possible by Lemma 5.4.
Set Hp = H1,p ∪ H2,p . This family is well defined for all p ≥ 1, and it is a

nonoverlapping cover of Bρ(x) (because of how dyadic cubes fit together). Set

rA = 4d� = 4K̃32−�(log�)
− 1

Q if A ∈ H1,p and A is of order � ∈ [p,2p],
rA = K42−2p√

p if A ∈ H2,p.
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Define

�p = �p,3 ∩ �p,4.

LEMMA 5.5. Recall that d = Q. Let

(5.9) f (x) = xd log log
1

x
.

For p large enough, if �p,3 occurs, then∑
A∈Hp

f (rA) ≤ Kλ
(
Bρ(x)

)
.

PROOF. For A ∈ H1,p ,

f (rA) ≤ K

(
2−�

(log�)
1
Q

)d

log log 2� ≤ K2−d� log�

(log�)d/Q
= K2−Q�

since d = Q, which is the volume of a anisotropic dyadic cube of order �.
There is a constant K5 such that, for p large enough and for all A ∈ H2,p ,

f (rA) ≤ K5
(
2−2p√

p
)Q log(2p).

If �p,3 occurs, then by (5.7), the total contribution of
∑

A∈H2,p
f (rA) is bounded

by

K2−2pQpQ/2 log(2p)22pQ exp
(
−

√
p

4

)
= pQ/2 log(2p) exp

(
−

√
p

4

)
.

Therefore, since the cubes in H1,p are nonoverlapping and intersect B ′
ρ(t, x), if

�p,3 occurs, then

∑
A∈Hp

f (rA) ≤ Kλ
(
B ′

ρ(x)
)+ pQ/2 log(2p) exp

(
−

√
p

4

)
.

Now λ(B ′
ρ(x)) ≤ 2Qλ(Bρ(x)), and this quantity does not depend on p, so the

lemma is proved. �

For each A ∈ Hp , we pick a distinguished point pA in A (say the lower left
corner). Let BA be the Euclidean ball in R

d centered at v(pA) with radius rA.

LEMMA 5.6. Let Fp be the family of balls (BA,A ∈Hp). For p large enough,
on �p , Fp covers M(ρ,x).
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PROOF. Consider z ∈ M(ρ,x). By definition, there is y ∈ Bρ(x) such that
v(y) = z. Since Hp is a cover of Bρ(x), the point y belongs to a certain cube A of
Hp . We will show that z ∈ BA.

Consider first the case A ∈ H1,p . Suppose that A is of order � ∈ [p,2p].
By (5.6), ∣∣v1(pA) − v1(y)

∣∣≤ d�.

Thus, since � ≥ p, on �p,3, by Lemma 5.3, letting γ = minj=1,...,k(δjα
−1
j − 1 −

β) > 0,

∣∣v(pA) − v(y)
∣∣≤ d� + ∣∣v2(vA) − v2(y)

∣∣≤ d� + C2βp
k∑

j=1

(
2−�)δj α−1

j

≤ d� + Ck2βp2−�γ 2−�(1+β) ≤ d� + Ck2−�γ 2−�

≤ 2d�

for p large enough, since γ > 0. Since v(y) = z and rA = 4d�, this implies that
z ∈ BA.

Now consider the case A ∈ H2. Then on �p,4, by (5.8),∣∣v(pA) − z
∣∣= ∣∣v(pA) − v(y)

∣∣≤ K42−2p√
p = rA,

so z ∈ BA. �

COROLLARY 5.7. Almost surely, the set M(ρ,x) has Lebesgue measure zero:
λ(M(ρ,x)) = 0 a.s.

PROOF. For p large enough so that �p occurs, by the definition of f in (5.9)
and Lemma 5.5,

∑
A∈Hp

rd
A ≤ 1

logp

∑
A∈Hp

f (rA) ≤ Kλ(Bρ(x))

logp
→ 0

as p → +∞. Since the family of balls (BA,A ∈ Hp) covers M(ρ,x) by
Lemma 5.6, we conclude that λ(M(ρ, x)) = 0 a.s. �

PROOF OF PROPOSITION 5.1. Fix z0 ∈ R
Q. Let α(y) be defined as in (5.1).

Notice that for ρ small enough, 1/2 ≤ α(y) ≤ 3/2, and y 	→ α(y) is Hölder con-
tinuous by Assumption 2.4(b). Define

v3(y) = 1

α(y)

(
z0 − v1(y)

)
.

Clearly, by (5.2),

(5.10) v(y) = z0 ⇐⇒ v3(y) = v
(
x′).
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We are going to check that the range of v3 has Lebesgue measure 0. Assuming this
for the moment, let fv(x′) be the probability density function of v(x′). Then

P
{
z0 ∈ M(ρ,x)

}= P
{∃y ∈ Bρ(x) : v3(y) = v

(
x′)}

=
∫
RQ

dzfv(x′)(z)P
{∃y ∈ Bρ(x) : v3(y) = z

}
,

where we have used the fact that v1, hence v3, is independent of v(x′) [see Re-
mark 5.2(a)]. Since the range of v3 has Lebesgue measure 0, the probability on the
right-hand side vanishes for a.a. z, hence the integral is 0 and P {z0 ∈ M(ρ,x)} =
0, as claimed in Proposition 5.1.

It remains to prove that the range of v3 has Lebesgue measure 0. For A ∈ Hp

and y ∈ A,

v3(y) − v3(pA) = 1

α(y)

(
z0 − v1(y)

)− 1

α(pA)

(
z0 − v1(pA)

)
.

Recall that α is Hölder continuous and bounded above and below. If A ∈ H1,p and
A is of order �, then for p sufficiently large, the right-hand side is

≤ c

k∑
j=1

|yj − pA,j |δj + 2d� ≤ c

k∑
j=1

2−�δj α−1
j + 2d�.

Since δjα
−1
j > 1, j = 1, . . . , k, this is ≤ 3d� ≤ rA. If A ∈ H2,p , then for p suffi-

ciently large, the right-hand side is

≤ c

(
k∑

j=1

2−2pδjα−1
j + 2K42−2p

√
2p

)
≤ c̃rA.

This means that for some constant c̃, (B(pA, c̃rA),A ∈ Hp) covers the range of
v3. As in the proof of Corollary 5.7, we conclude that the Lebesgue measure of
{v3(y) : y ∈ B1(x)} is zero. �

6. Warm-up: Polarity of points for fractional Brownian fields. Recall that
a (multiparameter) fractional Brownian motion (terminology of [29, 30]), which,
following [7], we prefer to call a fractional Brownian field with Hurst parameter
H ∈]0,1[, is a centered Gaussian field v = (v(x), x ∈ R

k) with values in R
d ,

continuous sample paths and covariances given by

E
(
v�(x)vj (y)

)= δ�,j

1

2

[|x|2H + |y|2H − |x − y|2H ],
where δ�,j is the Kronecker symbol. This random field is such that

(6.1) E
(∣∣v(x) − v(y)

∣∣2)= d|x − y|2H .
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The papers [29, 30] of Talagrand do not explicitly discuss the issue of polarity of
points for fractional Brownian fields in the critical dimension d = k/H (though he
was certainly aware of this result). In the case k = 1, this issue is handled in [26],
Theorem 1. Here, we show how our Theorem 2.6 can be used to deduce polarity of
points for the fractional Brownian field in the critical dimension. Obviously, since
v(0) = 0, the parameter 0 ∈ R

k (or the value 0 ∈ R
d ) must be excluded.

THEOREM 6.1. Suppose that d = k/H . Then d is the critical dimension for
hitting points and points are polar for v, that is, for all z ∈ R

k/H ,

P
{∃x ∈ R

k \ {0} : v(x) = z
}= 0.

PROOF. The fractional Brownian field has a moving average representation
(see [7], Theorem 3.2.2 and (3.79)), but also a harmonizable representation

(6.2) v(x) = c

∫
Rk

1 − e−ix·ξ

|ξ |H+k/2 W(dξ),

where W(dξ) is a C
d -valued white noise on R

k , that is, Re(W) and Im(W) are
independent Rd -valued white noises on R

k based on Lebesgue measure (see [7],
Definition 3.3.1). If one prefers to work with real numbers, then there is the equiv-
alent representation (see [30], Section 2)

v(x) = c

∫
Rk

1 − cos(x · ξ)

|ξ |H+k/2 W1(dξ) + c

∫
Rk

sin(x · ξ)

|ξ |H+k/2 W2(dξ),

where W1 and W2 are independent Rd -valued white noises on R
k .

With this representation, one can define the random field (v(A,x)) by

v(A,x) = c

∫
|ξ |H ∈[a,b[

1 − cos(x · ξ)

|ξ |H+k/2 W1(dξ) + c

∫
|ξ |H ∈[a,b[

sin(x · ξ)

|ξ |H+k/2 W2(dξ).

Using fairly straightforward calculations that extend those in [29], Lemma 3.1, one
checks that for all 0 ≤ a ≤ b ≤ +∞ and x, y ∈R

k ,∥∥v([a, b[, x)− v(x) − v
([a, b[, y)+ v(y)

∥∥
L2 ≤ c0

[
aH−1−1|x − y| + b−1],

that is, Assumption 2.1 is satisfied with a0 = 0 and γj = H−1 − 1 > 0, j =
1, . . . , k. This is also coherent with (6.1), that is, ‖v(x) − v(y)‖L2 = √

d|x − y|H .
Let I ⊂ R

k \ {0} be a closed box and let ε0 > 0 be such that I (ε0) ⊂ R
k \ {0}.

Then Assumption 2.4(a) is satisfied since infx∈I (ε0) ‖vi(x)‖L2 = infx∈I (ε0) |x|H >

0. According to [30], Lemma 3.2, Assumption 2.4(b) is satisfied with ρ = 2ε0/3
and δj = 1 ∈]H,1], j = 1, . . . , k. It follows from Theorem 2.6 that if Q is defined
by

Q =
k∑

j=1

(γj + 1) = k

H
,
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since d = Q, then P {∃x ∈ I : v(x) = z} = 0, for all z ∈ R
Q. Since the closed box

I ⊂ R
k \ {0} is arbitrary, points are polar for v. The fact that d = Q is the critical

dimension for hitting points follows from [2], Theorem 2.1. Theorem 6.1 is proved.
�

7. Polarity of points for systems of linear heat equations with constant coef-
ficients. Fix k ≥ 1 and suppose β ∈]0, k∧2[ or k = 1 = β . Let D(R×R

k) denote
the space of C∞-functions with compact support and (Ŵ (ϕ),ϕ ∈ D(R×R

k)) be a
spatially homogeneous Rd -valued Gaussian noise that is white in time, with spatial
covariance given by the Riesz kernel |x − y|−β , unless k = 1 = β , in which case
Ŵ is space–time R

d -valued Gaussian white noise based on Lebesgue measure. In
both cases, Ŵ (ϕ) = (Ŵ1(ϕ), . . . , Ŵd(ϕ)), and the components are independent.

Recall that in the spatially homogeneous case, the covariance of the noise is
informally given by

E
(
Ŵ�(t, x)Ŵj (s, y)

)= δ(t − s)|x − y|−βδ�,j ,

where δ(·) denotes the Dirac delta function and δ�,j is the Kronecker symbol. More
precisely, for any C∞-test functions ϕ and ψ with compact support,

E
(
Ŵ�(ϕ)Ŵj (ψ)

)= δ�,j

∫
R+

dr

∫
Rk

dy

∫
Rk

dzϕ(r, y)|y − z|−βψ(r, z).

Using elementary properties of the Fourier transform (see (10) in [8]), this covari-
ance can also be written

E
(
Ŵ�(ϕ)Ŵj (ψ)

)
(7.1)

= δ�,j ck,β

∫
R+

dr

∫
Rk

dξ |ξ |β−kFxϕ(r, ·)(ξ)Fxψ(r, ·)(ξ),

where ck,β is a constant and Fxϕ(r, ·)(ξ) denotes the Fourier transform in the x-
variable

Fxϕ(r, ·)(ξ) =
∫
Rk

e−iξ ·xϕ(r, x) dx.

This type of noise is discussed for instance in [11], Section 2. Space–time white
noise in the case k = 1 corresponds formally to β = 1 in (7.1) or, equivalently,

E
(
Ŵ�(ϕ)Ŵj (ψ)

)= δ�,j

∫
R+

dr

∫
Rk

dyϕ(r, y)ψ(r, y).

Let v̂ = (v̂(t, x), t ∈ R+, x ∈ R) be the mild solution of a linear system of d

uncoupled heat equations driven by this space–time white noise:

(7.2)

⎧⎨
⎩

∂

∂t
v̂j (t, x) = �v̂j (t, x) + ˙̂

Wj(t, x) j = 1, . . . , d,

v(0, x) = 0 x ∈ R
k.
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Here, v̂(t, x) = (v̂1(t, x), . . . , v̂d(t, x)) and � is the Laplacian in the spatial vari-
ables. The notion of mild solution is discussed in [11], Section 2 (see also [28],
Chapter 6).

THEOREM 7.1. Suppose (4 + 2k)/(2 − β) = d . Then d is the critical dimen-
sion for hitting points and points are polar for v̂, that is, for all z ∈ R

(4+2k)/(2−β),

P
{∃(t, x) ∈]0,+∞[×R

k : v̂(t, x) = z
}= 0.

In particular, in the case where k = 1 = β , Ŵ is space–time white noise and d = 6,
then points are polar for v̂.

Let W(dτ, dξ) be a C
d -valued space–time white noise, that is, Re(W) and

Im(W) are independent space–time white noises based on Lebesgue measure
[Re(W) and Im(W) denote respectively the real and imaginary parts of W ]. In
particular,

E
(
W�(A)Wj(B)

)= 2λ(A ∩ B)δ�,j

[here, W(A) = (W1(A), . . . ,Wd(A))].
We shall show in the next proposition that the process (v(t, x), (t, x) ∈ R+ ×

R
k) defined by

(7.3) v(t, x) =
∫
R

∫
Rk

e−iξ ·x e−iτ t − e−t |ξ |2

|ξ |2 − iτ
|ξ |(β−k)/2W(dτ, dξ),

is a solution of the stochastic heat equation. By analogy with the processes consid-
ered in [5], and with (6.2), we call formula (7.3) a harmonizable representation of
the solution to (7.2). This type of representation also appears in [1], Section 4.

PROPOSITION 7.2. For ϕ ∈ L2(R+ ×R
k,C), define

W̃j (ϕ) =
∫
R

∫
Rk

Wj (dτ, dξ)|ξ |(β−k)/2Fs,yϕ(τ, ξ),

where Fs,y denotes Fourier transform in the variables (s, y).
(a) For j = 1, . . . , d , if k = 1 = β , then W̃j is a C-valued space–time white

noise; otherwise, W̃j is spatially homogeneous noise that is white in time with
spatial covariance given by |x − y|−β .

(b) (v(t, x), (t, x) ∈ R+ ×R
k) defined in (7.3) is a C-valued solution of

(7.4)

⎧⎨
⎩

∂

∂t
vj (t, x) = �vj (t, x) + ˙̃

Wj(t, x) j = 1, . . . , d,

v(0, x) = 0 x ∈ R
k.

(c) (Re(v(t, x)), (t, x) ∈ R+ × R
k) and (v̂(t, x), (t, x) ∈ R+ × R

k) have the
same law.
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PROOF. (a) Consider first the case k = 1 = β . Observe that

E
(
W̃j (ϕ)W̃j (ψ)

)= ∫
R

∫
Rk

dτ dξFs,yϕ(τ, ξ)Fs,yψ(τ, ξ)

=
∫
R

∫
Rk

ds dyϕ(s, y)ψ(s, y),

where we have used Plancherel’s theorem, so W̃i is a space–time white noise.
Now consider the case β ∈]0, k ∧ 2[. Then

E
(
W̃j (ϕ)W̃j (ψ)

)= ∫
R

dτ

∫
Rk

dξ

|ξ |k−β
Fs,yϕ(τ, ξ)Fs,yψ(τ, ξ)

=
∫
R

ds

∫
Rk

dy

∫
Rk

dzϕ(s, y)
1

|y − z|β ψ(s, z),

where we have used again formula (10) in [8], and property (a) is established.
(b) Let G be the fundamental solution of the heat equation. Notice that∫

R×Rk
1[0,t](s)G(t − s, x − y)W̃j (ds, dy)

=
∫
R×Rk

Wj (dτ, dξ)Fs,y

(
1[0,t](·)G(t − ·, x − ·))(τ, ξ)|ξ |(β−k)/2.

Now, Fs,y(1[0,t](·)G(t − ·, x − ·))(τ, ξ) is equal to

Fs

(
e−iξ ·x1[0,t](·)FyG(t − ·, ·)(ξ)

)
(τ ) = e−iξ ·xFs

(
e−(t−·)|ξ |21[0,t](·))(τ )

= e−iξ ·x−t |ξ |2Fs

(
es|ξ |21[0,t](s)

)
(τ ).

The Fourier transform in the s-variable is easily calculated and one finds that∫
R×Rk

1[0,t](s)G(t − s, x − y)W̃j (ds, dy)

(7.5)

=
∫
R×Rk

Wj (dτ, dξ)e−iξ ·x e−iτ t − e−t |ξ |2

|ξ |2 − iτ
|ξ |(β−k)/2 = vj (t, x).

By (7.3), vj (0, x) = 0, so, following [28], Definition 6.1, we have checked that v

is the (mild) solution of (7.4), and (b) is proved.
(c) Set w = Re(v). Then by (b), w(0, x) = 0, w satisfies ∂wj

∂t
− �wj =

Re(W̃j (t, x)). If k = 1 = β , then Re(W̃j ) is a real-valued space–time white noise
such that E[(Re(W̃j ))

2] = λ(A), and otherwise, Re(W̃j ) is a spatially homoge-
neous noise with the appropriate covariance. This proves (c). �

Let

(7.6) α1 = 2 − β

4
, α2 = 2 − β

2
= 2α1
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[these are the Hölder exponents of t 	→ v̂(t, x) and x 	→ v̂(t, x), respectively, con-
sidered as functions with values in L2(�,F,P )], and set

v(A, t, x) =
∫∫

(τ,ξ):max(|τ |α1 ,|ξ |α2 )∈A
e−iξ ·x e−iτ t − e−t |ξ |2

|ξ |2 − iτ
|ξ |(β−k)/2W(dτ, dξ).

Clearly, the random field (v(A, t, x),A ∈ B(R+), (t, x) ∈ R+ × R
k) satisfies As-

sumption 2.1(a) (with the generic variable x ∈ R
k replaced by (t, x) ∈ R+ ×R

k).
In the next lemma, we check Assumption 2.1(b) (with a0 = 0).

LEMMA 7.3. Let

γ1 = α−1
1 − 1 = 2 + β

2 − β
, γ2 = α−1

2 − 1 = β

2 − β
.

There is a universal constant c0 such that for all 0 ≤ a ≤ b and (t0, x0) ∈ R+ ×R
k ,

(t, x) ∈ R+ ×R
k ,∥∥v([a, b[, t, x)− v(t, x) − v

([a, b[, t0, x0
)+ v(t0, x0)

∥∥
L2

≤ c0

[
aγ1 |t − t0| + aγ2

k∑
j=1

|xj − x0,j | + b−1

]
.

REMARK 7.4. Lemma 7.3 states in particular that for b = ∞, (t, x) 	→
v(t, x) − v([a,∞[, t, x) is Lipschitz continuous in L2(�,F,P ). However, the
Lipschitz constants in t and x are of different orders of magnitude, which reflects
the (α1, α2)-Hölder exponents of (t, x) 	→ v(t, x).

PROOF. Let

v1(a, t, x) =
∫∫

max(|τ |α1 ,|ξ |α2 )<a
e−iξx e−iτ t − e−tξ2

ξ2 − iτ
|ξ |(β−k)/2W(dτ, dξ),

v2(b, t, x) =
∫∫

max(|τ |α1 ,|ξ |α2 )>b
e−iξx e−iτ t − e−tξ2

ξ2 − iτ
|ξ |(β−k)/2W(dτ, dξ).

Then

v
([a, b[, t, x)− v(t, x) − v

([a, b[, t0, x0
)+ v(t0, x0)

(7.7)
= v1(a, t0, x0) − v1(a, t, x) + v2(b, t0, x0) − v2(b, t, x).

Set

f1(a, t, x, t0, x0) = E
[∣∣v1(a, t, x) − v1(a, t0, x0)

∣∣2],
f2(b, t, x, t0, x0) = E

[∣∣v2(b, t, x) − v2(b, t0, x0)
∣∣2].
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We shall estimate these two quantities separately. First, set

D1(a) = {(τ, ξ) ∈ R×R
k : max

(|τ |α1, |ξ |α2
)
< a
}
.

Then

f1(a, t, x, t0, x0)

= d

∫∫
D1(a)

∣∣∣∣e−iξ ·x e−iτ t − e−t |ξ |2

|ξ |2 − iτ
− e−iξ ·x0

e−iτ t0 − e−t0|ξ |2

|ξ |2 − iτ

∣∣∣∣2|ξ |β−k dτ dξ

= d

∫∫
D1(a)

∣∣∣∣e
−iτ t − e−t |ξ |2 − e−iξ ·(x0−x)−iτ t0 + e−t0|ξ |2e−iξ ·(x0−x)

|ξ |2 − iτ

∣∣∣∣2(7.8)

× |ξ |β−k dτ dξ

= d

∫∫
D1(a)

ϕ1(t, x, τ, ξ)2 + ϕ2(t, x, τ, ξ)2

|ξ |4 + τ 2 |ξ |β−k dτ dξ,

where

ϕ1(t, x, τ, ξ) = cos(τ t) − e−t |ξ |2 − cos
(
ξ · (x0 − x) + τ t0

)
+ e−t0|ξ |2 cos

(
ξ · (x0 − x)

)
,

ϕ2(t, x, τ, ξ) = − sin(τ t) + sin
(
ξ · (x0 − x) + τ t0

)− e−t0ξ
2

sin
(
ξ · (x0 − x)

)
.

Observe that ϕ1(t0, x0, τ, ξ) = 0 = ϕ2(t0, x0, τ, ξ), and

∂ϕ1

∂t
= −τ sin(τ t) + |ξ |2e−t |ξ |2,

∂ϕ1

∂xj

= −ξj sin
(
ξ · (x0 − x) + τ t0

)+ ξj e
−t0ξ

2
sin
(
ξ · (x0 − x)

)
,

∂ϕ2

∂t
= −τ cos(τ t),

∂ϕ2

∂xj

= −ξj cos
(
ξ · (x0 − x) + τ t0

)+ ξj e
−t0|ξ |2 cos

(
ξ · (x0 − x)

)
.

Therefore, for � = 1,2,∣∣∣∣∂ϕ�

∂t

∣∣∣∣≤ |τ | + |ξ |2,
∣∣∣∣∂ϕ�

∂xj

∣∣∣∣≤ 2|ξ |,

and the mean value theorem implies that∣∣ϕ�(t, x, τ, ξ)
∣∣≤ (|τ | + |ξ |2)|t − t0| + 2|ξ ||x − x0|,
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so

f1(a, t, x, t0, x0) ≤ d

∫∫
D1(a)

[
4
(
τ 2 + |ξ |4)(t − t0)

2

+ 8|ξ |2|x − x0|2] |ξ |β−k

|ξ |4 + τ 2 dτ dξ

(7.9)

≤ 4d · (t − t0)
2
∫∫

D1(a)
|ξ |β−k dτ dξ

+ 8d · |x − x0|2
∫∫

D1(a)

|ξ |2+β−k

|ξ |4 + τ 2 dτ dξ.

For the first integral, pass to polar coordinates r = |ξ | and use the fact that
α2 = 2α1 to get

ck

∫∫
max(|τ |,r2)<a

α
−1
1

rβ−k+k−1 dτ dr = ck(A1 + A2),

where

A1 =
∫∫

r2<|τ |<a
α
−1
1

rβ−1 dτ dr, A2 =
∫∫

|τ |<r2<a
α
−1
1

rβ−1 dτ dr.

Clearly,

A1 =
∫ a

α
−1
1

0
dτ

∫ √
τ

0
drrβ−1 = ca2(2+β)/(2−β) = ca2γ1,

and

A2 =
∫ a

α
−1
2

0
drrβ−1

∫ r2

0
dτ = ca2(2+β)/(2−β) = ca2γ1 .

We conclude that

(7.10)
∫∫

D1(a)
|ξ |β−k dτ dξ ≤ c̃a2γ1 .

For the second integral, pass to polar coordinates r = |ξ |:∫∫
D1(a)

|ξ |2+β−k

|ξ |4 + τ 2 dτ dξ = ck

∫
max(|τ |α1 ,rα2 )≤a

r2+β−k

r4 + τ 2 rk−1 dτ dr,

then set w = r2 to get∫
max(|τ |α1 ,wα1 )≤a

w(β+1)/2

w2 + τ 2

dτdw

2
√

w
=
∫

max(|τ |,w)≤a
α
−1
1

wβ/2

w2 + τ 2 dτ dw

≤
∫

max(|τ |,w)≤a
α
−1
1

∣∣(w, τ)
∣∣ β2 −2

dτ dw.
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Pass to polar coordinates ρ = |(w, τ)| to see that

(7.11)
∫∫

D1(a)

|ξ |2+β−k

|ξ |4 + τ 2 dτ dξ ≤ c

∫ a
α
−1
1

0
dρρ

β
2 −1 = ca2β/(2−β) = ca2γ2 .

We conclude that

f1(a, t, x, t0, x0) ≤ c
[
a2γ1(t − t0)

2 + a2γ2 |x − x0|2].
We now examine f2. Set

D2(b) = {(τ, ξ) : max
(|τ |α1, |ξ |α2

)
> b
}
.

Notice that, as in (7.8),

f2(b, t, x, t0, x0)
(7.12)

= d

∫∫
D2(b)

ϕ1(t, x, τ, ξ)2 + ϕ2(t, x, τ, ξ)2

|ξ |4 + τ 2 |ξ |β−k dτ dξ.

Observing that |ϕ1| ≤ 4 and |ϕ2| ≤ 3, we see that

f2(b, t, x, t0, x0) ≤ 25d

∫∫
D2(b)

|ξ |β−k

|ξ |4 + τ 2 dτ dξ.

Let

A1 = {(τ, ξ) : |τ |α1 ≥ |ξ |α2 and |τ |α1 > b
}
,

A2 = {(τ, ξ) : |τ |α1 < |ξ |α2 and |ξ |α2 > b
}
,

so that A1 ∪ A2 = D2(b). Passing to polar coordinates ρ = |ξ |, notice that
∫∫

A1

|ξ |β−k

|ξ |4 + τ 2 dτ dξ ≤ 4ck

∫ ∞
b
α
−1
1

dτ

∫ √
τ

0
dρ

ρk−1+β−k

τ 2

(7.13)
= cb

2 β−2
2−β = cb−2

and

(7.14)
∫∫

A2

|ξ |β−k

|ξ |4 + τ 2 dτ dξ ≤ ck

∫ ∞
b
α
−1
2

dρρk−1
∫ ρ2

0
dτ

ρβ−k

ρ4 = c̃b
2 β−2

2−β = c̃b−2,

therefore, f2(b, t, x, t0, x0) ≤ cb−2. This proves Lemma 7.3. �

We now check Assumption 2.4 for the process v̂. In the context of this section,
in agreement with Lemma 7.3 and Assumption 2.1(b),

(7.15) �
(
(t, x), (s, y)

)= |t − s| 2−β
4 + |x − y| 2−β

2 .
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It is well known (see [9], Lemma 4.2) that for any compact box I ⊂]0,∞[×R,
there is c > 0 such that for all (t, x) ∈ I and (s, y) ∈ I ,

(7.16)
∥∥v̂(t, x) − v̂(s, y)

∥∥
L2 ≥ c�

(
(t, x), (s, y)

)
,

and Q = (4 + 2k)/(2 − β) is the critical dimension for hitting points. Further,

∥∥v̂(t, x)
∥∥2
L2 = d

∫ t

0
ds

∫
Rk

dy

∫
Rk

dzG(s, y)
1

|y − z|β G(s, z)

≥ c2
∫ t

0
ds

∫
Rk

dξ

|ξ |k−β

∣∣FyG(s, ·)(ξ)
∣∣2

(7.17)

= c2
∫ t

0
ds

∫
Rk

dξ

|ξ |k−β
e−s|ξ |2

= c0t
2−β

2 ,

so Assumption 2.4(a) is satisfied for the box I . In the next lemma, we check As-
sumption 2.4(b).

LEMMA 7.5. Let I ⊂]0,∞[×R
k be a compact box. Fix (t, x) ∈ I . Let t ′ =

t − 2(2ρ)α
−1
1 and x′ = x (where ρ is small enough so that t ′ > 0). There is a num-

ber C1 (depending possibly on ρ, β , k and d) such that for all (s1, y1), (s2, y2) ∈
B ′

ρ(t, x) [the open �-ball in R+ × R
k of radius 2ρ centered at (t, x)], and

j ∈ {1, . . . , d},
E
[(

v̂j (s1, y1) − v̂j (s2, y2)
)
v̂j

(
t ′, x′)]≤ C1

(|s1 − s2| + |y1 − y2|).
PROOF. For (s, y) ∈ B ′

ρ(t, x), define

f (s, y) = E
(
v̂j (s, y)v̂j

(
t ′, x′)).

Case 1: k = 1 = β . In this case,

f (s, y) = C

∫ t ′

0
dr

∫
R

dȳG(s − r, y − ȳ)G
(
t ′ − r, x′ − ȳ

)
(notice that the right-hand side does not depend on j ). Then

∂f

∂y
(s, y) =

∫ t ′

0
dr

∫
R

dȳ
∂G

∂y
(s − r, y − ȳ)G

(
t ′ − r, x′ − ȳ

)
.

Notice that
∂G

∂y
(s − r, y − ȳ) = y − ȳ

s − r
G(s − r, y − ȳ).

Since (s, y) ∈ B ′
ρ(t, x), s ≥ t − (2ρ)α

−1
1 , and since t − t ′ = 2(2ρ)α

−1
1 , it follows

that for r ≤ t ′, s − r ≥ (2ρ)α
−1
1 . Therefore, | ∂f

∂y
| is bounded over B ′

ρ(t, x) [with a
bound that depends on ρ but does not depend on (t, x) ∈ I ].
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Similarly, since

∂G

∂s
(s − r, y − ȳ) = −1

2

(
1

s − r
+ (y − ȳ)2

(s − r)2

)
G(s − r, y − ȳ),

we see that | ∂f
∂s

| is also bounded over B ′
ρ(t, x). By the mean value theorem, we

conclude that
∣∣f (s1, y1) − f (s2, y2)

∣∣≤ C
(|s1 − s2| + |y1 − y2|),

and this proves the lemma in this case.
Case 2: β ∈]0,2 ∧ k[. In this case,

f (s, y) =
∫ t ′

0
dr

∫
Rk

dȳ

∫
Rk

dz̄G(s − r, y − ȳ)
1

|ȳ − z̄|β G
(
t ′ − r, x′ − z̄

)
,

so

∂f

∂yj

(s, y) =
∫ t ′

0
dr

∫
Rk

dȳ

∫
Rk

dz̄
∂G

∂yj

(s − r, y − ȳ)
1

|ȳ − z̄|β G
(
t ′ − r, x′ − z̄

)

= C

∫ t ′

0
dr

∫
Rk

dξ |ξ |β−ke−iξ ·(x′−y)iξj e
−(s−r)|ξ |2e−(t ′−r)|ξ |2 .

Use, as above, the fact that for r ≤ t ′, s − r ≥ (2ρ)α
−1
1 =: c, so that e−(s−r)|ξ |2 ≤

e−c|ξ |2 , then bound the integrand by its modulus, permute the integrals and com-
pute the dr-integral, to conclude that ∂f

∂yj
(s, y) is bounded [with a bound that de-

pends on ρ but does not depend on (t, x) ∈ I ], as is ∂f
∂s

, so the conclusion follows
as in Case 1. �

PROOF OF THEOREM 7.1. We have already mentioned (before Lemma 7.5)
that d = (4 + 2k)/(2 − β) is the critical dimension. By Lemma 7.3 and the
sentences that precede this lemma, for any compact box I ⊂]0,∞[×R

k , As-
sumption 2.1 is satisfied for Re(v), with exponents γ1 = 2+β

2−β
and γj = β

2−β
,

j = 2, . . . , k + 1, so that α1 = 2−β
4 and αj = 2−β

2 , j = 2, . . . , k + 1. By Lemma
7.5 and the comments that precede this lemma, Assumption 2.4 is satisfied by v̂

(with δj ≡ 1), hence by Re(v) by Proposition 7.2(c). Since Q = α−1
1 + kα−1

2 =
(4 + 2k)/(2 − β) = d , it follows from Theorem 2.6 that for all z ∈R

Q,

P
{∃(t, x) ∈ I : v̂(t, x) = z

}= P
{∃(t, x) ∈ I : Re

(
v(t, x)

)= z
}= 0.

Since this holds for all compact rectangles I ⊂]0,∞[×R
k , Theorem 7.1 is proved.

�
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8. Polarity of points for systems of linear heat equations with nonconstant
coefficients. For j = 1, . . . , k, let σj :R×R

k →R be continuous functions such
that, for all T ∈ R+, there are 0 < cT < CT < ∞ such that for all (t, x) ∈ [0, T ] ×
R

k ,

(8.1) cT ≤ σj (t, x) ≤ CT .

Let Ŵ be as in Section 7 and let v̂ = (v̂(t, x), t ∈ R+, x ∈ R
k) be the solution of a

linear system of d independent heat equations with deterministic coefficients:

(8.2)

⎧⎨
⎩

∂

∂t
v̂j (t, x) = �v̂j (t, x) + σj (t, x)

˙̂
Wj(t, x) j = 1, . . . , d,

v(0, x) = 0 x ∈ R
k.

Set

G̃t,x(s, y) = 1[0,t](s)G(t − s, x − y).

As a consequence of (8.1), in either of the cases β ∈]0, k ∧ 2[ or k = 1 = β ,∫
R

dτ

∫
Rk

dξ |ξ |β−k
∣∣Fs,y(G̃t,xσj )(τ, ξ)

∣∣2 < ∞.

Indeed, in the case β ∈]0, k ∧ 2[, for instance, the integral is equal to∫
R

ds

∫
Rk

dy1

∫
Rk

dy2G̃t,x(s, y1)σj (s, y1)
1

|y1 − y2|β Gt,x(s, y2)σj (s, y2),

and then (8.1) can be used.
We also make the following technical assumption on σj . This assumption can

be checked for specific choices of β , k and σj , as in Proposition 8.6 below, for
instance.

ASSUMPTION 8.1. (a) Fs,yσj is a measure μj with finite total variation.
(b) Similar to (7.11), for large a,

∫∫
R×Rk

|μj |(dr, dz)

∫∫
D1(a)

dτ dξ |ξ |β−k |ξ − z|2
|ξ − z|4 + |τ − r|2 ≤ ca2γ2 .

(c) Similar to (7.13) and (7.14), for large b,

∫∫
R×Rk

|μj |(dr, dz)

∫∫
D2(b)

dτ dξ
|ξ |β−k

|ξ − z|4 + |τ − r|2 ≤ cb−2.

THEOREM 8.2. Suppose that d = (4 + 2k)/(2 − β) and Assumption 8.1 is
satisfied. Then d is the critical dimension for hitting points and points are polar
for v̂.
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Recall from the calculations that led to (7.5) that

Fs,yG̃t,x(τ, ξ) = e−iξ ·x e−iτ t − e−t |ξ |2

|ξ |2 − iτ
.

Define W̃ as in Proposition 7.2, and set

vj (t, x) =
∫
R

∫
Rk

Wj (dτ, dξ)|ξ |(β−k)/2(Fs,yG̃t,x ∗Fs,yσj )(τ, ξ).

PROPOSITION 8.3. The random field v = (v(t, x) = (v1(t, x), . . . , vd(t, x)))

is the solution of the SPDE (8.2) with ˙̂
W replaced by ˙̃

W .

PROOF. Observe that by definition of W̃j ,∫∫
1[0,t](s)G(t − s, x − y)σ (s, y)W̃j (ds, dy)

=
∫∫

Wj(dτ, dξ)Fs,y(G̃t,xσj )(τ, ξ)|ξ |(β−k)/2 = vj (t, x),

and vj (0, x) = 0. Therefore, v is the mild solution of (8.2) (with ˙̂
W replaced by

˙̃
W ). This completes the proof. �

Define α1 and α2 as in (7.6) and let

vj (A, t, x) =
∫∫

max(|τ |α1 ,|ξ |α2 )∈A
Wj(dτ, dξ)|ξ |(β−k)/2(Fs,yG̃t,x ∗Fs,yσj )(τ, ξ)

and (v(A, t, x) = (v1(A, t, x), . . . , vd(A, t, x)).

PROPOSITION 8.4. Under Assumption 8.1(a)–(c), the random field
(v(A, t, x)) satisfies Assumption 2.1 for any compact box I ⊂]0,∞[×R

k .

PROOF. Assumption 2.1(a) is clearly satisfied, so we check Assumption 2.1(b).
Set

v1,j (a, t, x) =
∫∫

D1(a)
Wj (dτ, dξ)|ξ |(β−k)/2(Fs,yG̃t,x ∗Fs,yσj )(τ, ξ).

Define

f1,j (a, t, x, t0, x0)

:= E
((

v1,j (a, t, x) − v1,j (a, t0, x0)
)2)

=
∫∫

D1(a)
dτ dξ |ξ |β−k

∣∣((Fs,yG̃t,x −Fs,yG̃t0,x0) ∗Fs,yσj

)
(τ, ξ)

∣∣2,
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and notice that, by the Cauchy–Schwarz inequality,∣∣((Fs,yG̃t,x −Fs,yG̃t0,x0) ∗Fs,yσj

)
(τ, ξ)

∣∣2
=
∣∣∣∣
∫∫

R×Rk

(
Fs,yG̃t,x(τ − r, ξ − z) −Fs,yG̃t0,x0(τ − r, ξ − z)

)
μj(dr, dz)

∣∣∣∣2
(8.3)

≤ |μj |(R×R
k) ∫∫

R×Rk

∣∣Fs,yG̃t,x(τ − r, ξ − z)

−Fs,yG̃t0,x0(τ − r, ξ − z)
∣∣2|μj |(dr, dz),

so

f1,j (a, t, x, t0, x0) ≤ C

∫∫
R×Rk

|μj |(dr, dz)

∫∫
D1(a)

dτ dξ |ξ |β−k

× ∣∣Fs,yG̃t,x(τ − r, ξ − z) −Fs,yG̃t0,x0(τ − r, ξ − z)
∣∣2.

By (7.8) and (7.9), the inner integral is equal to

d

∫∫
D1(a)

dτ dξ |ξ |β−k ϕ1(t, x, τ − r, ξ − z)2 + ϕ2(t, x, τ − r, ξ − z)2

|ξ − z|4 + |τ − r|2

≤ d

∫∫
D1(a)

dτ dξ |ξ |β−k

[
4(t − t0)

2 + 8
|x − x0|2|ξ − z|2

|ξ − z|4 + |τ − r|2
]
.

By (7.10), this is

≤ c1(t − t0)
2a2γ1 + c2|x − x0|2

∫∫
D1(a)

dτ dξ |ξ |β−k |ξ − z|2
|ξ − z|4 + |τ − r|2 .

This establishes in particular (2.2) for any a0 ≥ 0.
By Assumption 8.1(a) and (b), we conclude that, for large a,

f1(a, t, x, t0, x0) := E
(∣∣v1(a, t, x) − v1(a, t0, x0)

∣∣2)
(8.4)

≤ c1a
2γ1(t − t0)

2 + c2a
2γ2 |x − x0|2.

Set

v2,j (a, t, x) =
∫∫

D2(b)
Wj (dτ, dξ)|ξ |(β−k)/2(Fs,yG̃t,x ∗Fs,yσj )(τ, ξ).

Then

f2,j (b, t, x, t0, x0)

:= E
((

v2,j (b, t, x) − v2,j (b, t0, x0)
)2)

=
∫∫

D2(b)
dτ dξ |ξ |β−k

∣∣((Fs,yG̃t,x −Fs,yG̃t0,x0) ∗Fs,yσj

)
(τ, ξ)

∣∣2.
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Using the Cauchy–Schwarz inequality as in (8.3), we find that

f2,j (b, t, x, t0, x0) ≤ C

∫∫
|μj |(dr, dz)

∫∫
D2(b)

dτ dξ |ξ |β−k

× ∣∣Fs,yG̃t,x(τ − r, ξ − z) −Fs,yG̃t0,x0(τ − r, ξ − z)
∣∣2

and by (7.12), the inner integral is equal to∫∫
D2(b)

dτ dξ |ξ |β−k ϕ1(t, x, τ − r, ξ − z)2 + ϕ2(t, x, τ − r, ξ − z)2

|ξ − z|4 + |τ − r|2

≤ 25
∫∫

D2(b)
dτ dξ

|ξ |β−k

|ξ − z|4 + |τ − r|2 .

By Assumption 8.1(c), for large b,

f2(b, t, x, t0, x0) := E
(∣∣v2(b, t, x) − v2(b, t0, x0)

∣∣2)≤ cb−2.

Putting this together with (8.4), we conclude that Assumption 2.1(b) is satisfied.
�

In the context of this section, �((t, x), (s, y)) is defined as in (7.15), and be-
cause of the lower bound in (8.1), the inequality (7.16) remains satisfied. There-
fore, by [2], Theorem 2.1, d = (4+2k)/(2−β) is the critical dimension for hitting
points.

LEMMA 8.5. (v̂(t, x)) defined in (8.2) satisfies Assumption 2.4 for any com-
pact box I ⊂]0,∞[×R

k .

PROOF. Observe that∥∥v̂(t, x)
∥∥2
L2 = d

∫ t

0
ds

∫
Rk

dy

∫
Rk

dzG(s, y)σ (s, y)
1

|y − z|β G(s, z)σ (s, z)

≥ c2
T

∫ t

0
ds

∫
Rk

dy

∫
Rk

dzG(s, y)
1

|y − z|β G(s, z) ≥ c0t
2−β

2

by the same calculation as in (7.17), so Assumption 2.4(a) is satisfied.
Since σ is bounded above by (8.1), the proof of Assumption 2.4(b) follows the

proof of Lemma 7.5. �

PROOF OF THEOREM 8.2. We have observed before Lemma 8.5 that d =
(4 + 2k)/(2 − β) is the critical dimension for hitting points. By Proposition 8.4,
Assumption 2.1 is satisfied for Re(v), with exponents α1 = 2−β

4 and α2 = 2−β
2 ,

for any compact box I ⊂]0,∞[×R
k . By Lemma 8.5, Assumption 2.4 is satisfied

for v̂. Since Re(v) and v̂ have the same law by Proposition 8.3, the conclusion
follows from Theorem 2.6. �

Sufficient conditions for Assumption 8.1(b) and (c)
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PROPOSITION 8.6. Suppose that k = 1 = β , and μj = Fs,yσj is a measure
with compact support and finite total variation. Then Assumption 8.1 is satisfied.

PROOF. It is clear that Assumption 8.1(a) holds. We check Assumption 8.1(b).
Note that k = 1 = β , so α1 = 1

4 and α2 = 1
2 , and observe that∫∫

D1(a)
dτ dξ

|ξ − z|2
|ξ − z|4 + |τ − r|2

≤
∫∫

max(|τ−r| 1
4 ,|ξ−z| 1

2 )≤a+r
1
4 +z

1
2

dτ dξ
|ξ − z|2

|ξ − z|4 + |τ − r|2

=
∫∫

D1(a+r
1
4 +z

1
2 )

dτ dξ
|ξ |2

|ξ |4 + |τ |2 .

By (7.11) in the case k = 1 = β (so γ2 = 1), we conclude that this integral is

≤ c(a + r
1
4 + z

1
2 )2 and, therefore,∫∫
R×R

|μj |(dr, dz)

∫∫
D1(a)

dτ dξ
|ξ − z|2

|ξ − z|4 + |τ − r|2

≤ c

∫∫
R×R

|μj |(dr, dz)
(
a + r

1
4 + z

1
2
)2

(8.5)

= ca2
∫∫

R×R

|μj |(dr, dz)

(
1 + r

1
4

a
+ z

1
2

a

)2

≤ ca2
∫∫

R×R

|μj |(dr, dz)
(
1 + r

1
4 + z

1
2
)2

provided a ≥ 1, and the integral is finite under the assumptions of this proposition.
This establishes Assumption 8.1(b).

We now check Assumption 8.1(c) in the case k = 1 = β . Use the change of
variables s = τ − r , y = ξ − z to see that∫∫

D2(b)
dτ dξ

1

|ξ − z|4 + |τ − r|2 ≤
∫∫

max(|s+r| 1
4 ,|y+z| 1

2 )>b
ds dy

1

|y|4 + |s|2

≤
∫∫

D2(ψ(b,r,z))
dτ dξ

1

|ξ |4 + |τ |2 ,

where ψ(b, r, z) = min(|b4 − |r||1/4, |b2 − |z||1/2).
By (7.13) and (7.14), we conclude that∫∫

R×R

|μj |(dr, dz)

∫∫
D2(b)

dτ dξ
1

|ξ − z|4 + |τ − r|2
(8.6)

≤ c

∫∫
R×R

|μj |(dr, dz)
(
ψ(b, r, z)

)−2
,
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and clearly,

ψ(b, r, z) = b min
(∣∣∣∣1 − |r|

b4

∣∣∣∣1/4
,

∣∣∣∣1 − |z|
b2

∣∣∣∣1/2)
.

If b is large enough so that the inequalities |z| ≤ b2/2 and |r| ≤ b4/2 are satisfied
for all (r, z) in the support of μj , then ψ(b, r, z) ≥ b/2, and so the right-hand side
of (8.6) is ≤ 4cb−2. This establishes Assumption 8.1(c). �

COROLLARY 8.7. Suppose that d = 6, k = 1, Ŵ is space–time white noise
and Fs,yσj is a measure with compact support and finite total variation. Then
points are polar for the solution (v̂(t, x)) of the stochastic heat equation (8.2) with
nonconstant deterministic coefficients σi .

PROOF. This is an immediate consequence of Theorem 8.2 (with β = 1) and
Proposition 8.6. �

9. Polarity of points for systems of linear wave equations with constant co-
efficients. Fix k ≥ 1 and β ∈]0, k ∧ 2[ or k = 1 = β , and let Ŵ be spatially ho-
mogeneous Rd -valued Gaussian noise as in the beginning of Section 7. We assume
that

(9.1) β ≥ 1.

Let v̂ be the solution of the stochastic wave equation in spatial dimension k driven
by Ŵ : ⎧⎪⎪⎨

⎪⎪⎩
∂2

∂t2 v̂j (t, x) = �v̂j (t, x) + ˙̂
Wj(t, x) j = 1, . . . , d,

v̂(0, x) = 0,
∂

∂t
v̂(0, x) = 0 x ∈R

k.

THEOREM 9.1. Suppose k = 1 = β or 1 < β < k ∧ 2, and d = 2(k+1)
2−β

. Then
d is the critical dimension for hitting points and points are polar for v̂, that is, for
all z ∈R

d ,

P
{∃(t, x) ∈]0,+∞[×R

k : v̂(t, x) = z
}= 0.

In particular, in the case where k = 1 = β , Ŵ is space–time white noise and d = 4,
then points are polar for v̂.

Define

F(t, x, τ, ξ) = e−iξ ·x−iτ t

2|ξ |
[

1 − eit (τ+|ξ |)

τ + |ξ | − 1 − eit (τ−|ξ |)

τ − |ξ |
]
.

The next proposition gives the harmonizable representation of v̂. This representa-
tion also appears in [1], Section 6.
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PROPOSITION 9.2. Set

v(t, x) =
∫
R

∫
Rk

W(dτ, dξ)|ξ |(β−k)/2F(t, x, τ, ξ),

and let W̃j (ϕ) be defined as in Proposition 7.2. Then (v(t, x), (t, x) ∈ R+ × R
k)

is a C-valued solution of⎧⎪⎪⎨
⎪⎪⎩

∂2

∂t2 vj (t, x) = �vj (t, x) + ˙̃
Wj(t, x) j = 1, . . . , d,

v(0, x) = 0,
∂

∂t
v(0, x) = 0 x ∈ R

k.

In particular, Re(v) and v̂ have the same law.

PROOF. Let S(s, y) be the fundamental solution of the wave equation. Since
β ∈]0, k ∧ 2[ or k = 1 = β , the stochastic integral∫

R

∫
Rk

W̃j (ds, dy)1[0,t](s)S(t − s, x − y)

is well defined in all spatial dimensions k ≥ 1 (see [8], Example 6), and∫
R

∫
Rk

W̃j (ds, dy)1[0,t](s)S(t − s, x − y)

=
∫
R

∫
Rk

Wj (dτ, dξ)|ξ |(β−k)/2Fs,y

(
1[0,t](·)S(t − ·, x − ·))(τ, ξ).

Now for s ∈ [0, t], according to [8], Example 6,

FyS(t − s, x − ·)(ξ) = e−iξ ·xFyS(t − s, ·)(−ξ) = e−iξ ·x sin((t − s)|ξ |)
|ξ | ,

and Fs,y(1[0,t](·)S(t − ·, x − ·))(τ, ξ) is equal to

e−iξ ·x

|ξ |
∫ t

0
e−iτ s sin

(
(t − s)|ξ |)ds = e−iξ ·x

|ξ |
∫ t

0
e−iτ (t−r) sin

(
r|ξ |)dr

= e−iξ ·x−iτ t

|ξ |
∫ t

0
eiτr eir|ξ | − e−ir|ξ |

2i
dr

= e−iξ ·x−iτ t

2|ξ |
[

1 − eit (τ+|ξ |)

τ + |ξ | + eit (τ−|ξ |) − 1

τ − |ξ |
]
.

Therefore,∫
R

∫
R

W̃j (ds, dy)1[0,t](s)S(t − s, x − y) = vj (t, x), j = 1, . . . , d.

This proves the proposition. �
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Let

α = 2 − β

2
,

and set

v(A, t, x) =
∫∫

max(|τ |α,|ξ |α)∈A
|ξ |(β−k)/2F(t, x, τ, ξ)W(dτ, dξ).

Clearly, the random field (v(A, t, x),A ∈ B(R+), (t, x) ∈ R+ × R
k) satisfies As-

sumption 2.1(a) (with the generic variable x ∈ R
k replaced by (t, x) ∈ R+ ×R

k).
In the next lemma, we check Assumption 2.1(b).

LEMMA 9.3. Let I ⊂]0, T ] × R be a compact box. Assume that (9.1) holds.
Then the random field (v(A, t, x),A ∈ B(R+), (t, x) ∈ I ) satisfies the conditions
of Assumption 2.1, with exponents

γ1 = γ2 = α−1 − 1 = β

2 − β
=: γ.

In particular, there is a universal constant c0 and a0 ∈ R+ such that for all a0 ≤
a ≤ b, (t0, x0) ∈ I , (t, x) ∈ I ,∥∥v([a, b[, t, x)− v(t, x) − v

([a, b[, t0, x0
)+ v(t0, x0)

∥∥
L2

(9.2)

≤ c0

[
aγ |t − t0| + aγ

k∑
j=1

|xj − x0,j | + b−1

]

and

∥∥v([0, a0], t, x)− v
([0, a0], t0, x0

)∥∥
L2 ≤ c0

[
|t − t0| +

k∑
j=1

|xj − yj |
]
.

(9.3)

PROOF. Assumption 2.1(a) is clearly satisfied, so we check Assumption
2.1(b). Let

D1(a) = {(τ, ξ) : max
(|τ |α, |ξ |α)< a

}
,

D2(b) = {(τ, ξ) : max
(|τ |α, |ξ |α)> b

}
,

and for � = 1,2,

v�(a, t, x) =
∫∫

D�(a)
|ξ |(β−k)/2F(t, x, τ, ξ)W(dτ, dξ).

As in (7.7),

v
([a, b], t, x)− v(t, x) − v

([a, b], t0, x0
)+ v(t0, x0)

(9.4)
= v1(a, t0, x0) − v1(a, t, x) + v2(b, t0, x0) − v2(b, t, x).
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So for � = 1,2, we let

f�(a, t, x, t0, x0) = E
[∣∣v�(a, t0, x0) − v�(a, t, x)

∣∣2].
Clearly,

f1(a, t, x, t0, x0) = d

∫∫
D1(a)

∣∣F(t0, x0, τ, ξ) − F(t, x, τ, ξ)
∣∣2|ξ |β−k dτ dξ.

Using Lemma 9.4(a) below, we see that

f1(a, t, x, t0, x0) ≤ c

(
|t − t0|2 +

k∑
j=1

|xj − x0,j |2
)

×
∫∫

D1(a)

[
1

1 + 1
4(τ + |ξ |)2

+ 1

1 + 1
4(τ − |ξ |)2

]
|ξ |β−k dτ dξ.

Change to polar coordinates r = |ξ | to see that the double integral is equal to

C

∫∫
0≤max(|τ |,r)<a1/α,r>0

[
1

1 + 1
4(τ + r)2

+ 1

1 + 1
4(τ − r)2

]
rβ−1 dτ dr.

Use the change of variables u = (τ + r)/2, v = (τ − r)/2 to see that the double
integral is equal to

2
∫∫

max(|u+v|,u−v)≤2a1/α,u−v>0

[
1

1 + u2 + 1

1 + v2

]
(u − v)β−1 dudv

≤
∫∫

max(|u|,|v|)≤2a1/α

[
1

1 + u2 + 1

1 + v2

]
|u − v|β−1 dudv.

By Lemma 9.5(a) below, this is ≤ Caβ/α = Ca2γ . We conclude that

(9.5)
∥∥v1(a, t0, x0) − v1(a, t, x)

∥∥
L2 ≤ Caγ

[
|t − t0| +

k∑
j=1

|xj − x0,j |
]
.

This establishes in particular (9.3), for any a0 ≥ 0.
We now turn to the second term:

f2(b, t, x, t0, x0)

= d

∫∫
D2(b)

∣∣F(t0, x0, τ, ξ) − F(t, x, τ, ξ)
∣∣2|ξ |β−k dτ dξ(9.6)

≤ 2d

∫∫
D2(b)

[(
F(t0, x0, τ, ξ)

)2 + (F(t, x, τ, ξ)
)2]|ξ |β−k dτ dξ.

By Lemma 9.4(b) below, the double integral is bounded above by

CT

∫∫
D2(b)

[
1

1 + 1
4 |τ + |ξ ||2 + 1

1 + 1
4 |τ − |ξ ||2

] |ξ |β−k

1 + |ξ |2 dτ dξ.
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Change again to polar coordinates r = |ξ | to see that this is bounded by

(9.7)
∫∫

max(|τ |,r)>b1/α,r>0

[
1

1 + 1
4(τ + r)2

+ 1

1 + 1
4(τ − r)2

]
rβ−1

1 + r2 dτ dr.

By Lemma 9.5(b) below, this is ≤ cb−2.
We conclude from (9.6) and the above estimate (9.7) that, for large b,

(9.8) f2(b, t, x, t0, x0) ≤ Cb−2.

Putting together (9.4), (9.5) and (9.8), we conclude that for a0 large enough and
a0 ≤ a ≤ b, the conclusion of Lemma 9.3 holds. �

The following two lemmas were used in the proof of Lemma 9.3.

LEMMA 9.4. Fix T > 0. There is a constant CT such that for all (t, x),
(t0, x0) ∈ [0, T ] ×R

k , and all (τ, ξ) ∈ R×R
k , the following inequalities hold:

(a)∣∣F(t0, x0, τ, ξ) − F(t, x, τ, ξ)
∣∣

≤ CT

(
|t − t0| +

k∑
j=1

|xj − x0,j |
)[

1

1 + 1
2 |τ + |ξ || + 1

1 + 1
2 |τ − |ξ ||

]
;

(b)

∣∣F(t, x, τ, ξ)
∣∣≤ CT

[
1

1 + 1
2 |τ + |ξ || + 1

1 + 1
2 |τ − |ξ ||

]
1

1 + |ξ | .

PROOF. (a) Notice that

∂F

∂xj

(t, x, τ, ξ) = −iξjF (t, x, τ, ξ)

= −iξj

2|ξ | e−iξ ·x−iτ t

[
1 − eit (τ+|ξ |)

τ + |ξ | − 1 − eit (τ−|ξ |)

τ − |ξ |
]
.

Observe that there is c > 0 such that for all u ∈ R and t ∈ [0, T ],∣∣∣∣1 − eitu

u

∣∣∣∣≤ c

1 + 1
2 |u| ,

so

(9.9)
∣∣∣∣ ∂F

∂xj

(t, x, τ, ξ)

∣∣∣∣≤ c

2

[
1

1 + 1
2 |τ + |ξ || + 1

1 + 1
2 |τ − |ξ ||

]
.
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Similarly,

∂F

∂t
(t, x, τ, ξ)

= −iτF (t, x, τ, ξ) + e−iξ ·x−iτ t

2|ξ |
[−ieit (τ+|ξ |) + ieit (τ−|ξ |)]

= −i

2|ξ |e
−iξ ·x

[
τe−iτ t − τeit |ξ |

τ + |ξ | − τe−iτ t − τe−it |ξ |

τ − |ξ | + eit |ξ | − e−it |ξ |
]
.

We notice that the term in brackets vanishes when |ξ | = 0, and remains bounded
when τ ± |ξ | → 0, so ∂F

∂t
is locally bounded. In fact, reducing to a common de-

nominator, rearranging terms and simplifying, one finds that

∂F

∂t
(t, x, τ, ξ) = i

2
e−iξ ·x−iτ t

[
1 − eit (τ−|ξ |)

τ − |ξ | + 1 − eit (τ+|ξ |)

τ + |ξ |
]
,

therefore, as in (9.9),

(9.10)
∣∣∣∣∂F

∂t
(t, x, τ, ξ)

∣∣∣∣≤ c

2

[
1

1 + 1
2 |τ + |ξ || + 1

1 + 1
2 |τ − |ξ ||

]
.

Using (9.9), (9.10) and the mean value theorem, we see that (a) holds.
(b) Let u = (τ + |ξ |)/2, v = (τ − |ξ |)/2 and notice that

(9.11)
∣∣F(t, x, τ, ξ)

∣∣= |ϕt(2u) − ϕt(2v)|
2|u − v| ,

where

ϕt (u) = 1 − eitu

u
, u �= 0.

Setting ϕt(0) = −it , then ϕt ∈ C1(R,C), and

ϕ′
t (u) = −1 + eitu − itueitu

u2 if u �= 0,

and ϕ′
t (0) = t2/2. It follows that for all (t, u) ∈ [0, T ] ×R,

(9.12) max
(∣∣ϕt (u)

∣∣, ∣∣ϕ′
t (u)
∣∣)≤ CT

1 + |u| .
In particular, we claim that for all (t, u) ∈ [0, T ] ×R with |u − v| ≤ 1/2,

(9.13)
|ϕt(2u) − ϕt(2v)|

|u − v| ≤ CT

[
1

1 + |u| + 1

1 + |v|
]
.

Indeed, by the mean value theorem,∣∣ϕt(2u) − ϕt(2v)
∣∣≤ 2|u − v|∣∣ϕ′

t (ξ)
∣∣,
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for some ξ between u and v. If both u and v have the same sign, say if 0 < u < v,
then by (9.12),

∣∣ϕ′
t (ξ)
∣∣≤ C

1 + |ξ | ≤ C

1 + |u| ≤ C

[
1

1 + |u| + 1

1 + |v|
]
.

The case where u and v are both negative is handled similarly. Finally, if u < 0 < v,
then since |u − v| ≤ 1/2, we have |u| ≤ 1/2 and |v| ≤ 1/2, so

∣∣ϕ′
t (ξ)
∣∣≤ C

1 + |ξ | ≤ C = C

[
3/4

1 + 1
2

+ 3/4

1 + 1
2

]
≤ C̃

[
1

1 + |u| + 1

1 + |v|
]
.

This proves (9.13).
We now claim that there is a constant CT < ∞ such that for all (t, u, v) ∈ R+ ×

R
2,

(9.14)
|ϕt(2u) − ϕt(2v)|

2|u − v| ≤ CT

[
1

1 + |u| + 1

1 + |v|
]

1

1 + |u − v| .

Indeed, assume first that |u − v| ≤ 1/2. Then by (9.13), the left-hand side is

≤ CT

[
1

1 + |u| + 1

1 + |v|
]

≤ CT

[
1

1 + |u| + 1

1 + |v|
]

3/2

1 + |u − v| .

Now assume that |u − v| ≥ 1/2. Then the left-hand side of (9.14) is

≤ 3/2

1 + |u − v|
(∣∣ϕt(2u)

∣∣+ ∣∣ϕt(2v)
∣∣)≤ C̃T

1 + |u − v|
[

1

1 + |u| + 1

1 + |v|
]
,

where we have used (9.12). This completes the proof of (b). �

LEMMA 9.5. (a) For β ∈]0,2[,∫∫
max(|u|,|v|)≤2a1/α

[
1

1 + u2 + 1

1 + v2

]
|u − v|β−1 dudv ≤ Caβ/α.

(b) If β ≥ 1, then for large b,
∫∫

max(|τ |,r)>b1/α,r>0

[
1

1 + 1
4(τ + r)2

+ 1

1 + 1
4(τ − r)2

]
rβ−1

1 + r2 dτ dr ≤ Cb−2.

PROOF. (a) It suffices to consider the two integrals

A1 =
∫∫

max(u,v)≤2a1/α,u>0,v>0

[
1

1 + u2 + 1

1 + v2

]
|u − v|β−1 dudv,

A2 =
∫∫

max(u,v)≤2a1/α,u>0,v>0

[
1

1 + u2 + 1

1 + v2

]
|u + v|β−1 dudv.
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By symmetry, A1 = 2A1,1, where

A1,1 =
∫ 2a1/α

0
du

∫ u

0
dv

[
1

1 + u2 + 1

1 + v2

]
(u − v)β−1 dudv

≤ 2
∫ 2a1/α

0
du

∫ u

0
dv

1

1 + v2 (u − v)β−1.

By Fubini’s theorem, this is equal to

2
∫ 2a1/α

0

dv

1 + v2

∫ 2a1/α

v
du(u − v)β−1

= 2
∫ 2a1/α

0

dv

1 + v2

(
2a1/α − v

)β ≤ C

∫ 2a1/α

0

dv

1 + v2

(
2a1/α)β

≤ Caβ/α
∫ ∞

0

dv

1 + v2 .

Turning to A2, by symmetry,

A2 = 2
∫ 2a1/α

0
dv

∫ v

0
du

[
1

1 + u2 + 1

1 + v2

]
|u + v|β−1

≤ C

∫ 2a1/α

0
dv

∫ v

0
du

1

1 + u2 (u + v)β−1.

By Fubini’s theorem, this is equal to

C

∫ 2a1/α

0

du

1 + u2

∫ 2a1/α

u
dv(u + v)β−1

= C

∫ 2a1/α

0

du

1 + u2

[(
2a1/α + u

)β − (2u)β
]

≤ C

∫ 2a1/α

0

du

1 + u2

(
3a1/α)β ≤ C̃aβ/α.

This proves (a).
(b) We need to integrate over two regions:

r > b1/α, |τ | < r, and |τ | > b1/α,0 < r < |τ |.
Concerning the first region, we have to consider∫ ∞

b1/α
dr

∫ r

−r
dτ

1

1 + 1
4(τ ± r)2

rβ−1

1 + r2 ,

and, by symmetry, it suffices to consider∫ ∞
b1/α

dr
rβ−1

1 + r2

∫ r

0
dτ

1

1 + 1
4(τ ± r)2

≤ π

2

∫ ∞
b1/α

drrβ−3 = b(β−2)/α = b−2.
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For the second region, we consider

∫ ∞
b1/α

dτ

∫ τ

0
dr

1

1 + 1
4(τ ± r)2

rβ−1

1 + r2 =
∫ b1/α

0
dr

rβ−1

1 + r2

∫ ∞
b1/α

dτ
1

1 + 1
4(τ ± r)2

+
∫ ∞
b1/α

dr
rβ−1

1 + r2

∫ ∞
r

dτ
1

1 + 1
4(τ ± r)2

.

The second integral is

≤
∫ ∞
b1/α

drrβ−3 π

2
≤ Cb(β−2)/α = Cb−2.

Concerning the first integral, in the case of a “+” sign, it is

≤
∫ b1/α

0
dr

rβ−1

1 + r2

∫ ∞
b1/α

dτ
1

1 + 1
4τ 2

=
∫ b1/α

0
dr

rβ−1

1 + r2

[
π

2
− arctan

(
b1/α

2

)]
.

Using the property

lim
x→∞x

[
π

2
− arctan(x)

]
= 1,

we see that for all b ≥ 1, this is

≤ c̃b−1/α
∫ ∞

0
dr

rβ−1

1 + r2 ≤ Cb−2,

since 1
α

= 2
2−β

≥ 2 because β ≥ 1.
In the case of a “−” sign, we write the first integral as I1(b) + I2(b), where

I1(b) =
∫ b1/α/2

0
dr

rβ−1

1 + r2

∫ ∞
b1/α

dτ
1

1 + 1
4(τ − r)2

,

I2(b) =
∫ b1/α

b1/α/2
dr

rβ−1

1 + r2

∫ ∞
b1/α

dτ
1

1 + 1
4(τ − r)2

.

Then

I1(b) =
∫ b1/α/2

0
dr

rβ−1

1 + r2

∫ ∞
b1/α−r

du
1

1 + 1
4u2

≤
∫ b1/α/2

0
dr

rβ−1

1 + r2

∫ ∞
b1/α/2

du
1

1 + 1
4u2

≤ Cb−1/α
∫ b1/α/2

0
dr

rβ−1

1 + r2

≤ cb−2,



4746 R. C. DALANG, C. MUELLER AND Y. XIAO

since β ≥ 1, and

I2(b) ≤
∫ b1/α

b1/α/2
dr

rβ−1

1 + r2

∫ ∞
−∞

dτ
1

1 + 1
4(τ − r)2

≤ C

∫ b1/α

b1/α/2
drrβ−3

≤ Cb(β−2)/α = Cb−2.

This completes the proof of (b). �

We now turn to Assumption 2.4. In the context of this section, in agreement
with Lemma 9.3 and Assumption 2.1(b),

�
(
(t, x), (s, y)

)= |t − s| 2−β
2 + |x − y| 2−β

2 .

It is well known (see [15], Proposition 1.4) that for any compact box I ⊂
]0,∞[×R

k , there is c > 0 such that∥∥v̂(t, x) − v̂(s, y)
∥∥2
L2 ≥ c�

(
(t, x), (s, y)

)
,

and by [15], Theorems 4.4 and 4.5, d = 2(k + 1)/(2 − β) is the critical dimension
for hitting points.

Further, using the change of variables r = t − s, η = (t − s)ξ , we see that

∥∥v̂(t, x)
∥∥2
L2 = d

∫ t

0
ds

∫
Rk

dξ

|ξ |k−β

sin2((t − s)|ξ |)
|ξ |2

= d

∫ t

0
drr2−β

∫
Rk

dη

|η|k+2−β
sin2(|η|)

= ct3−β,

so Assumption 2.4(a) is satisfied for the box I . In the next lemma, we check As-
sumption 2.4(b).

LEMMA 9.6. Let I ⊂]0,∞[×R
k be a compact box. Fix (t, x) ∈ I . Let t ′ =

t − 2(2ρ)α
−1

and x′ = x (where ρ is small enough so that t ′ > 0). Assume that
k = 1 = β or 1 < β < k ∧ 2. There is a number C1 (depending on ρ, β , k and d)
such that for all (s1, y1), (s2, y2) ∈ B ′

ρ(t, x) (the open �-ball of radius 2ρ centered
at (t, x)) and j ∈ {1, . . . , d},
(9.15)

∣∣E[(v̂j (s1, y1) − v̂j (s2, y2)
)
v̂j

(
t ′, x′)]∣∣≤ C1

(|s1 − s2|δ + |y1 − y2|δ),
where δ = 2 − β .

REMARK 9.7. The conclusion of this lemma would not be possible for β ∈
]0,1[, since it would mean that (s, y) 	→ E[(v̂j (s, y)v̂j (t

′, x′)] would be Hölder-
continuous with exponent 2 − β > 1.
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PROOF. Consider first the case k = 1 = β (space–time white noise in spatial
dimension k = 1). Then

(9.16) E
[
v̂j (s, y)v̂j

(
t ′, x′)]= ∫ t ′

0
dr

∫
R

dzS(s − r, y − z)S
(
t ′ − r, x′ − z

)
,

where S(r, z) = 1
21{|z|<r} is the fundamental solution of the wave equation. For

(s, y) ∈ B ′
ρ(t, x),

|s − t | ≤ (2ρ)α
−1

, |y − x| ≤ (2ρ)α
−1

,

and since t ′ = t −2(2ρ)α
−1

and x′ = x, one checks immediately that if, in addition,
|x′ − z| < t ′ − r, then

|y − z| ≤ |y − x| + |x − z| < (2ρ)α
−1 + t ′ − r = t − (2ρ)α

−1 − r ≤ s − r,

so the right-hand side of (9.16) is equal to∫ t ′

0
dr

∫
R

dz
1

4
1{|x′−z|<t ′−r}

and, therefore, (s, y) 	→ E[v̂j (s, y)v̂j (t
′, x′)] is constant over B ′

ρ(t, x) and (9.15)
is trivially satisfied.

Now consider the case where 1 < β < k ∧ 2. Then for s ≥ t ′,
E
[
(v̂j (s, y)v̂j

(
t ′, x′)]

=
∫ t ′

0
dr

∫
Rk

dξ

|ξ |k−β
FS(s − r, y − ·)(ξ)FS

(
t ′ − r, x′ − ·)(ξ)

=
∫ t ′

0
dr

∫
Rk

dξ |ξ |β−2−ke−iξ ·(y−x′) sin
(
(s − r)|ξ |) sin

((
t ′ − r

)|ξ |)

=
∫ t ′

0
dr

∫
Rk

dξ |ξ |β−2−ke−iξ ·(y−x′) sin
(
r|ξ |) sin

(
(h + r)|ξ |),

where we have set h = s − t ′. We now permute the two integrals and calculate the
dr-integral explicitly. As in the proof of Lemma A.12 in [16], this gives

(9.17) E
[
v̂j (s, y)v̂j

(
t ′, x′)]= (t ′)3−β

∫
Rk

dη|η|β−2−ke−iη·ug0
(
λ, |η|),

where u = (y − x′)/t ′, λ = (s − t ′)/t ′, and

g0(λ, r) = cos(λr) − sin(r)

r
cos
(
(λ + 1)r

)
.

Case 1 (time increments): s1 �= s2, y1 = y2 = y. Set λ1 = (s1 − t ′)/t ′, λ2 =
(s2 − t ′)/t ′, and u = (y − x′)/t ′. Then by (9.17),

E
[(

v̂j (s1, y) − v̂j (s2, y)
)
v̂j

(
t ′, x′)]

(9.18)
= (t ′)3−β

∫
Rk

dη|η|β−2−ke−iη·u(g0
(
λ1, |η|)− g0

(
λ2, |η|)).
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Because cos(·) is Lipschitz, we see that∣∣g0(λ1, r) − g0(λ2, r)
∣∣≤ 4

((|λ1 − λ2|r)∧ 1
)
,

therefore, the right-hand side of (9.18) is bounded above by 4(t ′)3−β(I1 + I2),
where

I1 = |λ1 − λ2|
∫ |λ1−λ2|−1

0
rβ−2 dr, I2 =

∫ ∞
|λ1−λ2|−1

rβ−3 dr.

Clearly, since β > 1,

I1 = |λ1 − λ2| |λ1 − λ2|1−β

β − 1
= c|s1 − s2|2−β

and

I2 = |λ1 − λ2|2−β

2 − β
= c|s1 − s2|2−β.

We conclude that

(9.19) E
[(

v̂j (s1, y) − v̂j (s2, y)
)
v̂j

(
t ′, x′)]≤ c|s1 − s2|2−β.

Case 2 (spatial increments): s1 = s2 = s, y1 �= y2. Set λ = (s − t ′)/t ′, u1 =
(y1 − x′)/t ′, u2 = (y2 − x′)/t ′. By (9.17),

E
[(

v̂j (s, y1) − v̂j (s, y2)
)
v̂j

(
t ′, x′)]

(9.20)

= (t ′)3−β
∫
Rk

dη|η|β−2−k(e−iη·u1 − e−iη·u2
)
g0
(
λ, |η|).

Notice that ∣∣e−iη·u1 − e−iη·u2
∣∣≤ 2

((|u1 − u2||η|)∧ 1
)

and g0(λ, r) ≤ 2, so the right-hand side of (9.20) is bounded above by
4(t ′)3−β(J1 + J2), where

J1 = |u1 − u2|
∫ |u1−u2|−1

0
rβ−2 dr, J2 =

∫ ∞
|u1−u2|−1

rβ−3 dr.

Clearly the same calculations as for I1 and I2 show that

J1 + J2 ≤ c̃|u1 − u2|2−β = c|y1 − y2|2−β.

We conclude that

(9.21) E
[(

v̂j (s, y1) − v̂j (s, y2)
)
v̂j

(
t ′, x′)]≤ c|y1 − y2|2−β.

Putting together (9.19) and (9.21) establishes (9.15). This proves Lemma 9.6.
�
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PROOF OF THEOREM 9.1. We have already observed (before Lemma 9.6) that
d = 2(k+1)/(2−β) is the critical dimension for hitting points. By Lemma 9.3 and
the sentences that precede this lemma, for any compact box I ⊂]0,∞[×R

k , As-
sumption 2.1 is satisfied for Re(v), with exponents γ1 = β

2−β
= γj , j = 2, . . . , k +

1, so that α1 = 2−β
2 = αj , j = 2, . . . , k + 1. By Lemma 9.6 and the comments that

precede this lemma, Assumption 2.4 is satisfied by v̂ (with δj = 2−β > αj ), hence
by Re(v) by Proposition 9.2. Since Q = α−1

1 + kα−1
2 = (2 + 2k)/(2 − β) = d , it

follows from Theorem 2.6 that for all z ∈ R
Q,

P
{∃(t, x) ∈ I : v̂(t, x) = z

}= P
{∃(t, x) ∈ I : Re

(
v(t, x)

)= z
}= 0.

Since this holds for all compact boxes I ⊂]0,∞[×R
k , Theorem 9.1 is proved.

�
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