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PARISI FORMULA FOR THE GROUND STATE ENERGY
IN THE MIXED p-SPIN MODEL

BY ANTONIO AUFFINGER1 AND WEI-KUO CHEN2

Northwestern University and University of Minnesota

We show that the thermodynamic limit of the ground state energy in the
mixed p-spin model can be identified as a variational problem. This gives a
natural generalization of the Parisi formula at zero temperature.

1. Introduction and main result. The mixed p-spin model is defined on the
hypercube �N := {−1,+1}N for N ≥ 1 and its Hamiltonian is given by

HN(σ) = XN(σ) + h

N∑
i=1

σi,

where XN = (XN(σ) : σ ∈ �N) is a centered Gaussian process indexed by �N ,

XN(σ) = ∑
p≥2

cp

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip

for i.i.d. standard Gaussian random variables gi1,...,ip for 1 ≤ i1, . . . , ip ≤ N and
p ≥ 2. Here, h denotes the strength of the external field and the sequence (cp)p≥2

is assumed to decay fast enough, for instance,
∑

p≥2 2pc2
p < ∞, to guarantee the

infinite sum XN converges a.s. With this assumption, one readily computes that

EXN

(
σ 1)

XN

(
σ 2) = Nξ(R1,2),

where

ξ(s) = ∑
p≥2

c2
psp

and R1,2 = N−1 ∑N
i=1 σ 1

i σ 2
i is the overlap between σ 1 and σ 2. To avoid triviality,

we shall assume that cp �= 0 for at least one p ≥ 2. The classical Sherrington–
Kirkpatrick (SK) model corresponds to ξ(s) = s2/2.
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A quantity of great interest in the mixed p-spin model is the large N limit
(known as the thermodynamic limit) of the ground state energy

LN := max
σ∈�N

HN(σ)

N
.

In the past decades, there have been several numerical studies and analytic predic-
tions of this limit in the physics literature, especially in the case of the SK model
without external field (h = 0) [6, 11, 13, 14, 21]. This quantity also obtained great
relevance in problems coming from computer science (see for instance [7, 12] and
the references therein).

In order to get an explicit expression for

GSE := lim
N→∞LN,

the usual approach is to consider the free energy

FN(β) = 1

βN
log

∑
σ∈�N

expβHN(σ),

where β > 0 is called the inverse temperature. It is well known that the thermody-
namic limit of the free energy can be computed through the famous Parisi formula.
More precisely, denote by M the collection of all probability distribution functions
on [0,1]. Define the Parisi functional by

Pβ(α) = log 2

β
+ �α,β(0, h) − 1

2

∫ 1

0
βα(s)sξ ′′(s) ds

for α ∈ M, where �α,β(t, x) is the weak solution to the following nonlinear
parabolic PDE:

∂t�α,β(t, x) = −ξ ′′(t)
2

(
∂xx�α,β(t, x) + βα(t)

(
∂x�α,β(t, x)

)2)
(1.1)

for (t, x) ∈ [0,1) ×R with boundary condition

�α,β(1, x) = log coshβx

β
.

For results on the regularity of �α,β , we refer the readers to [1, 9]. The Parisi
formula says that

F(β) = lim
N→∞FN(β) = inf

α∈MPβ(α) a.s.(1.2)

Predicted by Parisi in [22], this formula was established by Talagrand [23] in the
case of the mixed even p-spin model, that is, cp = 0 for all odd p ≥ 3, follow-
ing the beautiful discovery of Guerra’s replica symmetry breaking bound [8]. Its
validity to general mixtures was obtained by Panchenko [17]. For fixed β > 0,
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we denote the minimizer of (1.2) by αP,β . Uniqueness of this minimizer was es-
tablished by Auffinger–Chen [2]. Throughout this paper, we call αP,β the Parisi
measure at temperature β .

Letting N and then β tend to infinity, the simple bound

LN ≤ FN(β) ≤ LN + log 2

β

yields that

GSE = lim
β→∞F(β) a.s.,

from which the Parisi formula deduces

GSE = lim
β→∞ inf

α∈MPβ(α) a.s.(1.3)

In this paper, we show that (1.3) can be expressed as a variational problem. This
gives a natural generalization of Parisi’s formulation to the ground state energy.
To prepare for the statements of our main results, we introduce the space U that
collects all nonnegative and nondecreasing functions γ on [0,1) that are right con-
tinuous and satisfy

∫ 1
0 γ (t) dt < ∞. We endow this space with the L1-distance d .

Let Ud be the set of all step-like γ ∈ U , that is, γ is a piecewise constant func-
tion with finite jumps. For each γ ∈ Ud , consider the following fully nonlinear
parabolic PDE:

∂t�γ (t, x) = −ξ ′′(t)
2

(
∂2
x�γ (t, x) + γ (t)

(
∂x�γ (t, x)

)2)
,(1.4)

for (t, x) ∈ [0,1) ×R with boundary condition

�γ (1, x) = |x|.
Using the Cole–Hopf transformation, �γ can be solved explicitly in the classical
sense. As we will show below that γ ∈ (Ud, d) 	→ �γ (t, x) defines a Lipschitz
functional with uniform Lipschitz constant for all (t, x) ∈ [0,1] ×R, one may ex-
tend �γ uniquely and continuously to arbitrary γ ∈ U . We shall call �γ the Parisi
PDE solution at zero temperature throughout this paper. With this construction, we
can now define a continuous functional P on U by

P(γ ) = �γ (0, h) − 1

2

∫ 1

0
tξ ′′(t)γ (t) dt.

Our main result is stated as follows.

THEOREM 1 (Parisi formula). We have that

GSE = inf
γ∈U P(γ ) a.s.(1.5)

Moreover, there exists a γ0 ∈ U that reaches the minimum of P over U and it is the
vague limit of an infinite sequence (βlαP,βl

)l≥1 for some (βl)l≥1 with liml→∞ βl =
∞.
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We mention that the Parisi formula for the ground state energy in the spherical
version of the mixed p-spin model has been established recently in Chen–Sen [5]
and Jagannath–Tobasco [10]. The approaches in both works rely on the Crisanti–
Sommers representation for the thermodynamic limit of the free energy, where
the functional has an explicit and simple expression in terms of ξ and α. This
representation is not available in our setting, which leads to a substantially more
demanding problem that requires a different approach. The proof of Theorem 1
is based on the establishment of upper and lower inequalities between the two
sides of (1.5). The upper bound is not difficult and has already been obtained by
Guerra [8], Theorem 6, via choosing suitable candidates in M since one is taking
infimum of the functional. The lower bound, in contrast, carries all the challenges
as one would unavoidably need to handle the sequence Pβ(αP,β), which involves
the nonlinear PDE

(1.6)
∂t�αP,β,β(t, x) = −ξ ′′(t)

2

(
∂xx�αP,β,β(t, x)

+ βαP,β(t)
(
∂x�αP,β,β(t, x)

)2)
.

More precisely, it is known that qP,β := inf{t ∈ [0,1] : αP,β(t) = 1} < 1 and one
can solve the PDE in (1.6) for t ∈ [qP,β,1] to get

�αP,β,β(t, x) = 1

β
log coshβx + β

2

(
ξ ′(1) − ξ ′(t)

)
(see [24], Chapter 14). The major obstacle here is that we do not know the quan-
titative behavior of βαP,β(t) for t being close to qP,β from below, when β tends
to infinity. This makes it very hard to track the effect of this singularity by a direct
analysis of the PDE solution. To overcome this issue, we construct a representation
of the Parisi PDE in terms of the stochastic optimal control problem introduced in
[2, 3]. Under this framework, we are able to deal with the large β limit of the
Parisi functional and we remove this singularity as a marvel cancellation happens
between the nonlinear PDE and the linear term in the functional Pβ . The details
are in Section 3, where we present the argument of obtaining the lower bound.
Although we only consider the mixed p-spin model in this paper, we believe that
the present approach could also be useful in deriving similar results as Theorem 1
from the existing Parisi formulas for the free energies in other mean-field spin
glass models [15, 18–20].

REMARK 1. We comment that one may as well formulate the Parisi func-
tional P by constructing the PDE solution �γ directly from the equation (1.4)
rather than using the above approximation procedure. However, as γ could tend
to infinity when t approaches 1 from below and the boundary condition |x| is not
differentiable at 0, the construction of the PDE solution and its regularity proper-
ties require extra effort. For this reason and clarity, we use the Lipschitz property
of the PDE [see (2.7)] to construct the functional P .
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REMARK 2. Determining uniqueness of the minimizer of (1.5) needs regular-
ity properties of the solution �γ as those used in [2]. The proof of uniqueness in
[2] carries through once these properties are established. Reportedly, all these have
been successfully carried out recently in Chen–Handschy–Lerman [4].

OPEN PROBLEMS. Understanding physical interpretations to the variational
representation (1.5) is highly relevant. Moreover, in view of the approaches to
the Parisi formula (1.2) by Talagrand [23] and Panchenko [17], it is also of great
interest to see whether their methods can be applied here to obtain Theorem 1.

2. Variational representation for the Parisi PDE. In this section, we will
derive a variational representation for the PDE (1.1) in the form of stochastic op-
timal control. This formulation appeared initially in [3] and was used to establish
the strict convexity of the Parisi functional Pβ in [2]. See a simplified argument of
[2] in [9]. Different than the derivations in [2, 3, 9], here we present an approach
that relies only on Itô’s formula. Consider the following Parisi PDE:

∂t�(t, x) = −ξ ′′(t)
2

(
∂2
x�(t, x) + η(t)

(
∂x�(t, x)

)2)
(2.1)

for (t, x) ∈ [0,1) × R with boundary condition �(1, x) = f (x), where f and η

are specified by one of the following two cases:

(A1) f (x) = β−1 log coshβx and η = βα for some β > 0 and α ∈M,
(A2) f (x) = |x| and η ∈ Ud .

It is known [1, 9] that given (A1), the solution � has the properties that ∂
j
x � ∈

C([0,1] × R) for all j ≥ 0 and |∂x�| ≤ 1. Likewise, since γ ∈ Ud is a step func-
tion, � can be solved via the Cole–Hopf transformation, from which it can be
checked that ∂

j
x � ∈ C([0,1) ×R) for all j ≥ 0 and |∂x�| ≤ 1.

Let W = (Wt)0≤t≤1 be a standard Brownian motion. For 0 ≤ s < t ≤ 1, denote
by D[s, t] the collection of all progressive measurable processes u on [0,1] with
respect to the filtration generated by W and satisfying sup0≤t≤1 |u(t)| ≤ 1. For any
x ∈ R and u ∈ D[s, t], define

F s,t (u, x) = E
[
Cs,t (u, x) − Ls,t (u)

]
,

where

Cs,t (u, x) = �

(
t, x +

∫ t

s
η(r)ξ ′′(r)u(r) dr +

∫ t

s
ξ ′′(r)1/2 dWr

)
,

Ls,t (u) = 1

2

∫ t

s
η(r)ξ ′′(r)Eu(r)2 dr.

Note that these functionals are well-defined as
∫ 1

0 η(r) dr < ∞ and |u(r)| ≤ 1 for
all r ∈ [0,1].
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THEOREM 2 (Variational formula). Let f and η satisfy (A1) or (A2). We have
that

�(s, x) = max
{
F s,t (u, x)|u ∈ D[s, t]}.

PROOF. For simplicity, we shall only consider the case that η is continuous on
[0,1]. Under this assumption, the PDE (2.1) is valid in the classical sense and this
allows us to use Itô’s formula. The general case can be treated by an approximation
argument identical to [2], Theorem 3. Let u ∈ D[s, t]. For notational convenience,
we denote

Y(r) = x +
∫ r

s
η(w)ξ ′′(w)u(w)dw +

∫ r

s
ξ ′′(w)1/2 dWw.

Define

Z(r) = �
(
r, Y (r)

) + 1

2

∫ r

s
η(w)ξ ′′(w)

(
∂x�

(
w,Y (w)

) − u(w)
)2

dw

−
∫ r

s
ξ ′′(w)1/2∂x�

(
w,Y (w)

)
dWw − 1

2

∫ r

s
η(w)ξ ′′(w)u(w)2 dw.

Using Itô’s formula, we obtain that

�
(
w,Y (w)

) = ∂w�
(
w,Y (w)

)
dw + ∂x�

(
w,Y (w)

)
dY (w)

+ 1

2
∂xx�

(
w,Y (w)

)
d〈Y,Y 〉w.

Here, from the PDE (2.1), the right-hand side becomes

− ξ ′′

2

(
∂2
w�(w,Y ) + η(w)

(
∂x�(w,Y )

)2)

+ ηξ ′′u∂x�(w,Y )dw + ξ ′′1/2
∂x�(w,Y )dWw + ξ ′′

2
∂xx�(w,Y )dw

= −1

2
ηξ ′′((∂x�(w,Y )

)2 − 2u∂x�(w,Y )
)
dw + ξ ′′1/2

∂x�(w,Y )dWw

= −1

2
ηξ ′′(∂x�(w,Y ) − u

)2
dw + ξ ′′1/2

∂x�(w,Y )dWw + 1

2
ηξ ′′u2 dw.

In other words, dZ(r) = 0 and this implies that Z(t) = Z(s) = �(s, x). Taking
expectation of this equation gives

(2.2)
�(s, x) = E�

(
t, Y (t)

) − 1

2

∫ t

s
η(r)ξ ′′(r)Eu(r)2 dr

+ 1

2

∫ t

s
η(r)ξ ′′(r)E

(
∂x�

(
r, Y (r)

) − u(r)
)2

dr,
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so

(2.3)

�(s, x) ≥ sup
u∈D[s,t]

(
E�

(
t, x +

∫ t

s
η(r)ξ ′′(r)u(r) dr +

∫ t

s
ξ ′′(r)1/2 dWr

)

− 1

2

∫ t

s
η(r)ξ ′′(r)Eu(r)2 dr

)
.

To obtain the optimality, in the case of either (A1) or (A2) with t < 1, we consider

u∗(r) = ∂x�
(
r,X(r)

)
,(2.4)

where (X(r))s≤r≤t is the strong solution to

dX(r) = η(r)ξ ′′(r)∂x�
(
r,X(r)

)
dr + ξ ′′(r)1/2 dW(r),

X(s) = x.

Simply notice that if u = u∗, then Y(r) = X(r) for s ≤ r ≤ t such that
∂x�(r,Y (r)) = u∗ for all s ≤ r ≤ t . From this and (2.2), the equality of (2.3) fol-
lows. For the case (A2) with t = 1, we take u∗ to be the same as (2.4) for s ≤ r < 1
and set u∗(1) = 0. Letting u = u∗, one sees that Y(r) = X(r) for s ≤ r < 1 such
that ∂x�(r,Y (r)) = u∗ for all s ≤ r < 1. The optimality remains true. Note that
the reason why one could not take the same u∗ directly from (2.4) on the whole
[s,1] is because �(1, x) = |x| is not differentiable at 0. �

REMARK 3. In [2, 3, 9], the fact that the process u∗ attains the maximum
value of F s,t (·, x) was established by a direct verification using Itô’s formula.
From the above proof, equation (2.2) quantifies the distance between the PDE and
the functional F s,t for any u. Furthermore, it also explains how to choose the right
candidate to reach the optimality.

As an immediate consequence of Theorem 2, we obtain the variational repre-
sentations for the PDEs �α,β for α ∈ M and �γ for γ ∈ Ud .

COROLLARY 1. Let s ∈ [0,1] and x ∈R. For any α ∈ M, we have that

(2.5)

�α,β(s, x) = sup
u∈D[s,1]

(
1

β
E log coshβ

(
x +

∫ 1

s
u(r)ξ ′′(r)βα(r) dr

+
∫ 1

s
ξ ′′(r)1/2 dWr

)
− 1

2

∫ 1

s
Eu(r)2ξ ′′(r)βα(r) dr

)
.

COROLLARY 2. Let s ∈ [0,1] and x ∈R. For any γ, γ ′ ∈ Ud , we have that

(2.6)

�γ (s, x) = sup
u∈D[s,1]

(
E

∣∣∣∣x +
∫ 1

s
u(s)ξ ′′(r)γ (r) dr +

∫ 1

s
ξ ′′(r)1/2 dWr

∣∣∣∣
− 1

2

∫ 1

s
Eu(r)2ξ ′′(r)γ (r) dr

)
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and ∣∣�γ (s, x) − �γ ′(s, x)
∣∣ ≤ 2ξ ′′(1) d

(
γ, γ ′).(2.7)

Here, (2.7) can be checked directly from (2.6) by noting that |x| is Lipschitz 1
and using the triangle inequality. With the Lipschitz property (2.7), one can now
extend the solution �γ continuously and uniquely to all γ ∈ U by an approxima-
tion procedure using Ud . It is then clear that both (2.6) and (2.7) are valid for any
γ ∈ U .

3. Proof of Parisi’s formula. First, we construct a vaguely convergent sub-
sequence of (βαP,β)β>0 as follows. Note that from Gaussian integration by parts,
one has the following identity:

β
(
ξ(1) −E

〈
ξ(R1,2)

〉
β

) = E

〈
XN(σ)

N

〉
β

,(3.1)

where letting

GN,β(σ ) = expβHN(σ)∑
σ∈�N

expβHN(σ)

be the Gibbs measure, σ 1, σ 2 are two i.i.d. samplings from GN,β and 〈·〉β is the
Gibbs average with respect to this measure. To control (3.1), we observe that

E

〈
XN(σ)

N

〉
β

≤ E max
σ∈�N

XN(σ)

N
≤

√
2ξ ′(1) log 2.

Here, the second inequality is obtained by using the usual estimate for the size of
the maximum of Gaussian process (see, e.g., [25]). It is well known (see [16]) that
βF(β) is differentiable in temperature, which yields

lim
N→∞E

〈
ξ(R1,2)

〉
β =

∫ 1

0
ξ(s)αP,β(ds).

Consequently, from (3.1) and integration by part,∫ 1

0
βαP,β(s)ξ ′(s) ds = β

(
ξ(1) −

∫ 1

0
ξ(s)αP,β(ds)

)
≤

√
2ξ ′(1) log 2.

From this inequality, since αP,β is nondecreasing, it follows that

βαP,β(s) ≤
√

2ξ ′(1) log 2

ξ(1) − ξ(s)
, ∀s ∈ [0,1).(3.2)

From the last two inequalities, we may use Helly’s selection theorem combined
with a diagonalization process to conclude that, without loss of generality,

γ0 := lim
β→∞βαP,β(3.3)
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exists vaguely on [0,1) and

L0 := lim
β→∞

∫ 1

0
βαP,β(s)ξ ′′(s) ds(3.4)

exists. The following lemma, though simple, will be of great use in our argument.

LEMMA 1. Let (αβ)β>0 ∈ M such that (βαβ) converges to γ vaguely on
[0,1) for some γ ∈ U and ∫ 1

0
βαβ(s)ξ ′′(s) ds → L.

If φ is any measurable function with ‖φ‖∞ ≤ 1 and limt→1− φ(t) = φ(1) a.s.,
then

lim
β→∞

∫ 1

0
βαβ(s)ξ ′′(s)φ(s) ds =

∫ 1

0
ξ ′′(s)φ(s)ν(ds),

where ν is the measure induced by

ν(ds) = 1[0,1)(s)γ (s) ds + 1

ξ ′′(1)

(
L −

∫ 1

0
γ (s)ξ ′′(s) ds

)
δ1(ds)

for δ1(ds) the Dirac measure at 1.

PROOF. Write∫ 1

0
βαβ(s)ξ ′′(s)φ(s) ds =

∫ t

0
βαβ(s)ξ ′′(s)φ(s) ds +

∫ 1

t
βαβ(s)ξ ′′(s)φ(s) ds.

Observe that∣∣∣∣
∫ 1

t
βαβ(s)ξ ′′(s)φ(s) ds − φ(1)

(∫ 1

0
βαβ(s)ξ ′′(s) ds −

∫ t

0
βαβ(s)ξ ′′(s) ds

)∣∣∣∣
=

∣∣∣∣
∫ 1

t
βαβ(s)ξ ′′(s)

(
φ(s) − φ(1)

)
ds

∣∣∣∣
≤

∫ 1

t
βαβ(s)ξ ′′(s) ds max

t≤s≤1

∣∣φ(s) − φ(1)
∣∣.

From this, it follows that by (3.2) and the dominated convergence theorem,

lim sup
β→∞

∫ 1

t
βαβ(s)ξ ′′(s)φ(s) ds

≤ φ(1)

(
L −

∫ t

0
ξ ′′(s)γ (ds)

)
+ L max

t≤s≤1

∣∣φ(s) − φ(1)
∣∣,

lim inf
β→∞

∫ 1

t
βαβ(s)ξ ′′(s)φ(s) ds

≥ φ(1)

(
L −

∫ t

0
ξ ′′(s)γ (ds)

)
− L max

t≤s≤1

∣∣φ(s) − φ(1)
∣∣.
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On the other hand, using (3.2) and the dominated convergence theorem again,

lim sup
β→∞

∫ 1

0
βαβ(s)ξ ′′(s)φ(s) ds

≤ lim sup
β→∞

∫ t

0
βαβ(s)ξ ′′(s)φ(s) ds + lim sup

β→∞

∫ 1

t
βαβ(s)ξ ′′(s)φ(s) ds

≤
∫ t

0
φ(s)γ (s)ξ ′′(s) ds + φ(1)

(
L −

∫ t

0
ξ ′′(s)φ(ds)

)

+ L max
t≤s≤1

∣∣φ(s) − φ(1)
∣∣

and

lim inf
β→∞

∫ 1

0
βαβ(s)ξ ′′(s)φ(s) ds

≥ lim inf
β→∞

∫ t

0
βαβ(s)ξ ′′(s)φ(s) ds + lim inf

β→∞

∫ 1

t
βαβ(s)ξ ′′(s)φ(s) ds

≥
∫ t

0
φ(s)γ (s)ξ ′′(s) ds + φ(1)

(
L −

∫ t

0
ξ ′′(s)φ(ds)

)

− L max
t≤s≤1

∣∣φ(s) − φ(1)
∣∣.

Since these two inequalities hold for all t ∈ (0,1), letting t → 1−, the continuity
of φ at 1 implies the announced result. �

The proof of Theorem 1 is completed by the following two lemmas, upper and
lower bounds. We deal with the upper bound first. It agrees with the one that ap-
peared in [8], Theorem 6.

LEMMA 2 (Upper bound). We have that

GSE ≤ inf
γ∈U

(
�γ (0, h) − 1

2

∫ 1

0
γ (s)sξ ′′(s) ds

)
.

PROOF. Assume that γ ∈ U with γ (1−) < ∞. For β > γ (1−), define

αβ(s) = γ (s)

β
1[0,1)(s) + δ1(s).

Since γ is nonnegative and nondecreasing with right continuity, we see that
αβ ∈ M. From the PDE (1.1), �αβ,β is given by

∂t�αβ,β(t, x) = −ξ ′′(t)
2

(
∂2
x�αβ,β(t, x) + γ (t)

(
∂x�αβ,β(t, x)

)2)
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for (t, x) ∈ [0,1) ×R with boundary condition �αβ,β(1, x) = β−1 log coshβx. In
other words, �αβ,β follows the same PDE. As now the boundary condition satis-
fies limβ→∞ β−1 log coshβx = |x|, it can be seen that limβ→∞ �αβ,β = �γ point-
wise, where �γ is the solution to (1.4). We emphasize that this convergence can
be carried out by utilizing the representations in Corollaries 1 and 2 and apply-
ing the dominated convergence theorem since the process u ∈ D[t,1] is uniformly
bounded by 1. On the other hand, note that∫ 1

0
βαβ(s)sξ ′′(s) ds =

∫ 1

0
sξ ′′(s)γ (s) ds.

Thus, we can conclude that

lim
β→∞Pβ(αβ) = lim

β→∞�αβ,β(0, h) − lim
β→∞

∫ 1

0
βαβ(s)sξ ′′(s) ds

= �γ (0, h) − 1

2

∫ 1

0
sξ ′′(s)γ (s) ds

and so

(3.5)
�γ (0, h) − 1

2

∫ 1

0
sξ ′′(s)γ (s) ds = lim

β→∞Pβ(αβ)

≥ lim
β→∞ inf

α∈MPβ(α) = GSE.

To establish the same inequality for any γ ∈ U without the assumption γ (1−) <

∞, we may apply the truncation γn = min(γ, n) of γ to (3.5),

�γn(0, h) − 1

2

∫ 1

0
sξ ′′(s)γn(s) ds ≥ GSE.

Since (γn)n≥1 converges to γ under the distance d , using (2.7) for γn and γ leads
to (3.5) for any γ ∈ U . This completes our proof. �

Next, we establish the lower bound, which is the most critical part in our ap-
proach.

LEMMA 3 (Lower bound). We have that

GSE ≥ inf
γ∈U

(
�γ (0, h) − 1

2

∫ 1

0
ξ ′′(s)sγ (s) ds

)
.

PROOF. Recall γ0 and L0 from (3.3) and (3.4). Define

ν0(ds) = γ0(s)1[0,1)(s) ds + ξ ′′(1)−1
(
L0 −

∫ 1

0
γ0(s)ξ

′′(s) ds

)
δ1(ds).
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For each n ≥ 1, consider the function gn defined by

gn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x ≥ 0,

2nx + 1, if −n−1 ≤ x < 0,

−1, if x < −n−1.

Note that (gn)n≥1 is a sequence of continuous functions with ‖gn‖∞ ≤ 1 such that

lim
n→∞gn(x) = sign(x),

where

sign(x) :=
{

1, if x ≥ 0,

−1, if x < 0.

Let u ∈ D[0,1]. For any ε ∈ (0,1) and n ≥ 1, define

φε,n(s) = u(s)1[0,ε)(s)

+ gn

(
h +

∫ s

0
u(r)ξ ′′(r)γ0(r) dr +

∫ s

0
ξ ′′(r)1/2 dWr

)
1[ε,1](s).

Then φε,n ∈ D[0,1] and lims→1− φε,n(s) = φε,n(1) since gn is continuous on R.
In addition, the following limits hold:

φn(s) := lim
ε→1−φε,n(s) = u(s)1[0,1)(s) + gn(S)1{1}(s)

and

lim
n→∞φn(s) = u(s)1[0,1)(s) + sign(S)1{1}(s),

where

S := h +
∫ 1

0
u(s)ξ ′′(s)γ0(s) ds +

∫ 1

0
ξ ′′(s)1/2 dWs.

Now, using (1.3) and the formula (2.5) applied to �αP,β,β(0, h), the Fatou lemma
and Lemma 1 together imply

GSE = lim
β→∞Pβ(αP,β)

= lim
β→∞

(
log 2

β
+ �αP,β,β(0, h) − 1

2

∫ 1

0
βαP,β(s)ξ ′′(s)sds

)

≥ lim
β→∞

(
1

β
E log coshβ

(
h +

∫ 1

0
βαP,β(s)ξ ′′(s)φε,n(s) ds

+
∫ 1

0
ξ ′′(s)1/2 dWs

)
− 1

2

∫ 1

0
βαP,β(s)ξ ′′(s)

(
Eφε,n(s)

2 + s
)
ds

)
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≥ E

∣∣∣∣h +
∫ 1

0
φε,n(s)ξ

′′(s)ν0(ds) +
∫ 1

0
ξ ′′(s)1/2 dWs

∣∣∣∣
− 1

2

∫ 1

0

(
Eφε,n(s)

2 + s
)
ξ ′′(s)ν0(ds).

By the dominated convergence theorem, letting ε → 1− and then n → ∞ implies

GSE ≥ E
∣∣S + sign(S)ξ ′′(1)ν0(1)

∣∣
− 1

2

∫ 1

0

(
Eu(s)2 + s

)
ξ ′′(s)γ0(s) ds − 1

2

(
E

(
sign(S)

)2 + 1
)
ξ ′′(1)ν0(1).

Since

(3.6)

∣∣S + sign(S)ξ ′′(1)ν0(1)
∣∣

= (
S + ξ ′′(1)ν0(1)

)
1{S>0} − (

S − ξ ′′(1)ν0(1)
)
1{S<0}

+ ξ ′′(1)ν0(1)1{S=0}
= |S| + ξ ′′(1)ν0(1)

and (
E

(
sign(S)

)2 + 1
)
ξ ′′(1)ν0(1) = 2ξ ′′(1)ν0(1),(3.7)

it follows that the terms ξ ′′(1)ν0(1) cancel each other and we obtain

GSE ≥ E|S| − 1

2

∫ 1

0

(
Eu(s)2 + s

)
ξ ′′(s)γ0(s) ds

= E

∣∣∣∣h +
∫ 1

0
u(s)ξ ′′(s)γ0(s) ds +

∫ 1

0
ξ ′′(s)1/2 dWs

∣∣∣∣
− 1

2

∫ 1

0

(
Eu(s)2 + s

)
ξ ′′(s)γ0(s) ds.

Since this holds for all u ∈ D[0,1], we get that by noting (2.6) holds for any γ ∈ U ,

GSE ≥ �γ0(0, h) − 1

2

∫ 1

0
sξ ′′(s)γ0(s) ds

≥ inf
γ∈U

(
�γ (0, h) − 1

2

∫ 1

0
sξ ′′(s)γ (s) ds

)
.

This completes our proof. �

REMARK 4. From the construction of φε,n, one sees that the crucial observa-
tions (3.6) and (3.7) allow us to cancel out the common terms ξ ′′(1)ν0(1) arising
from the jump of ν0 at 1. This explains how the effect of the singularity of the
Parisi PDE near 1 in the limiting procedure is eliminated by the linear term of the
Parisi functional as mentioned in the Introduction.
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REMARK 5. It should be mentioned that while the expression (1.5) depends
only on γ , the Parisi formula for the ground state energy in the spherical mixed
p-spin model [5, 10] relies on γ and one extra variable, L, playing the role like L0
in (3.4).

PROOF OF THEOREM 1. The equality (1.5) follows directly from Lemmas
2 and 3. In addition, from the proof of Lemma 3, the minimum of P over U is
reached by γ0 and γ0 is the vague limit of some infinite sequence (βl)l≥1 with
liml→∞ βl = ∞. This ends our proof. �
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