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STOCHASTIC INTEGRATION WITH RESPECT TO CYLINDRICAL
LÉVY PROCESSES

BY ADAM JAKUBOWSKI1 AND MARKUS RIEDLE2

Nicolaus Copernicus University and King’s College London

A cylindrical Lévy process does not enjoy a cylindrical version of the
semimartingale decomposition which results in the need to develop a com-
pletely novel approach to stochastic integration. In this work, we introduce
a stochastic integral for random integrands with respect to cylindrical Lévy
processes in Hilbert spaces. The space of admissible integrands consists of
càglàd, adapted stochastic processes with values in the space of Hilbert–
Schmidt operators. Neither the integrands nor the integrator is required to
satisfy any moment or boundedness condition. The integral process is char-
acterised as an adapted, Hilbert space valued semimartingale with càdlàg tra-
jectories.

1. Introduction. Cylindrical Brownian motion is the most prominent model
of the driving noise for stochastic partial differential equations. The attribute cylin-
drical refers here to the fact that cylindrical Brownian motions are not classical
stochastic processes attaining values in the underlying space but are generalised
objects whose probabilistic distributions are described by a cylindrical, that is,
a finitely additive, measure. The reasons for the choice of cylindrical but not clas-
sical Brownian motion can be found in the facts that there does not exist a classical
Brownian motion with independent components, that is, a standard Brownian mo-
tion, in an infinite dimensional Hilbert space, and that cylindrical processes enable
a very flexible modelling of random noise in time and space.

The concept of cylindrical Browian motion is naturally extended to cylindrical
Lévy processes in one of the authors’ work [1] with Applebaum. Some specific ex-
amples and their constructions of cylindrical Lévy processes are presented in the
work [26] by Riedle. Linear and semi-linear stochastic partial differential equa-
tions perturbed by an additive noise which is modelled by various but specific
examples of cylindrical Lévy processes can be found, for example, in the works
Brzeźniak and Zabczyk [3], Peszat and Zabczyk [21], and Priola and Zabczyk [22].
However, modelling an arbitrary perturbation of a general stochastic partial differ-
ential equations beyond the purely additive case requires a theory of stochastic
integration of random integrands with respect to cylindrical Lévy processes.
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Stochastic integration with respect to cylindrical Brownian processes is devel-
oped, for example, in Daletskij [4], followed by the articles Gaveau [6], Lepingle
and Ouvrard [15] and many others. Surprisingly, stochastic integration with respect
to other cylindrical processes than cylindrical Brownian motion is much less con-
sidered. In fact, only with respect to cylindrical martingales a stochastic integration
theory is developed which originates either from an approach by Métivier and Pel-
laumail in [16] and [17] or from Mikulevičius and Rozovskiı̌ in [18] and [19]. The
construction by Métivier and Pellaumail is based on Doléans measures whereas the
construction by Mikulevičius and Rozovskiı̌ uses a family of reproducing kernel
Hilbert spaces. Thus, both constructions heavily rely on the assumed existence of
finite weak second moments. In Métivier and Pellaumail [16], the construction is
extended to cylindrical local martingales. For the special case of a cylindrical Lévy
process with finite weak second moments, one can follow a classical Itô approach
to define the stochastic integral for random integrands; see Riedle [25]. Another ap-
proach to stochastic integration in infinite dimensional spaces is introduced in [13]
by Kurtz and Protter for a large class of integrators, so-called #-semimartingales,
under the additional assumption that they are “good integrators”. Although cylin-
drical Lévy processes belong to the class of #-semimartingales, it is not clear if
they are good integrators in the sense of [13].

The classical approach to stochastic integration with respect to genuine Lévy
processes or semimartingales exploits their decomposition into a (local) martin-
gale and a process with trajectories of bounded variation. Alternatively, one can
develop an integration theory by starting with “good integrators”. In this case,
one concludes from the Bichteler–Dellacherie theorem that good integrators are
semimartingales. Vice versa, semimartingales are verified as good integrators by
exploiting their decomposition; see, for example, the monograph [23] by Protter.
However, any approach based on a semimartingale decomposition fails for cylin-
drical Lévy processes although they are in the class of cylindrical semimartingales.
This is due to the conceptual mismatch that a cylindrical semimartingale cannot be
decomposed into the sum of a cylindrical local martingale and another cylindri-
cal process; see Remark 2.2. Consequently, our work requires a novel approach to
stochastic integration without decomposing the integrator.

To explain our approach in more detail, let (Y (t) : t ∈ [0, T ]) be a classical
Lévy process in a Hilbert space U with inner product 〈·, ·〉. A simple integrand
(�(t) : t ∈ [0, T ]) is of the form � = 1(a,b] ⊗ � where 0 ≤ a ≤ b ≤ T and � is a
random variable with values in the space of Hilbert–Schmidt operators from U to
another Hilbert space V . Each sensible definition of stochastic integration leads to〈∫ T

0
�(s) dY (s), v

〉
= 〈

�
(
Y(b) − Y(a)

)
, v
〉= 〈

Y(b) − Y (a),�∗v
〉

(1)

for every v ∈ V , where �∗ denotes the adjoint operator. A cylindrical process, like
the cylindrical Lévy process, is a family (L(t) : t ∈ [0, T ]) of linear and bounded
operators L(t) from U to the space of equivalence classes of real valued random
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variables. If we substitute Y by the cylindrical Lévy process L in (1), then the
inner product on the right-hand side in (1) corresponds to the application of the
linear operator L(b) − L(a) to the other argument of the inner product such that
we arrive at 〈∫ T

0
�(s) dL(s), v

〉
= (

L(b) − L(a)
)(

�∗v
)
.(2)

However, a technical and a conceptual problem arise in (2):

(1) the linear operator L(b)−L(a), mapping to the space of equivalence classes
of random variables, is applied to a random argument which results in an ambigu-
ity;

(2) in order to obtain a V -valued stochastic integral such as �(Y(b) − Y(a))

in (1), there must exist a V -valued random variable J satisfying(
L(b) − L(a)

)(
�∗v

)= 〈J, v〉 for all v ∈ V.

We call the approach for solving the Problems (1) and (2) the radonification of the
increments and present it in Section 4.

However, a much more complicated problem is to extend the class of admis-
sible integrands to a larger space rather than only simple integrands. Denote by
H0(U,V ) the space of linear combinations of simple integrands of the form as �

above. Then, by means of the radonification of the increments one can define an
integral operator

I : H0(U,V ) → L0
P (�;V ),(3)

where L0
P (�;V ) denotes the space of equivalence classes of V -valued random

variables. In the classical setting, the integrator Y is decomposed into a martingale
M and a bounded variation process A, resulting in integral operators IA and IM

with I = IA + IM . It is straightforward to extend the domain of the integral oper-
ator IA. The integral operator IM turns out to map to the Hilbert space L2

P (�;V )

of equivalence classes of V -valued random variables with finite second moments.
Martingale properties and the nice Hilbert space topology of L2

P (�;V ) allow to
conclude the continuity of IM , and thus to extend its domain. However, as men-
tioned above, the cylindrical Lévy process L does not enjoy an analogues decom-
position, and thus we must work with the integrator operator (3) in a single entity
to solve:

(3) if a sequence (�n)n∈N of simple processes in H0(U,V ) converges to a
stochastic process � in a larger space in some sense then I (�n) converges to a
random variable in L0

P (�;V ).

Dealing with problem (3) means in particular that, instead of exploiting the Itô
isomorphism to the Hilbert space L2

P (�;V ), one must establish convergence in
the much less amenable topology in L0

P (�;V ), that is, convergence in probability.
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We solve Problem (3) in Section 5. Here, the main step is establishing tightness of
the set {I (�n) : n ∈ N} of Hilbert space valued random variables. We prove tight-
ness of this set by exploiting the result that tightness of the sum of the decoupled
tangent sequence implies tightness of the original sum. This result originates from
one of the authors’ work [8], and we will introduce and prove a modified version
of this result in Section 3. Although this result was originally introduced with a
completely different aim, it seems to be tailor-made for the considerations of our
current work.

Concerning the class of admissible integrands, in this work we restrict ourselves
to the space of càglàd, adapted stochastic processes with values in the space of
Hilbert–Schmidt operators. In finite dimensions, introducing stochastic integra-
tion for the larger class of predictable integrands can be achieved in two steps: in
the first step, the stochastic integral is introduced for integrands with càglàd paths,
and in the second step, the definition is extended to predictable integrands; see, for
example, the monograph [23] by Protter. In this sense, our work can be seen as
completing the first step for stochastic integrals with respect to cylindrical Lévy
processes. In finite dimensions, the second step is typically achieved by arguments
based on the semimartingale decomposition of the integrator. However, as cylin-
drical Lévy processes do not enjoy a corresponding decomposition, enlarging the
space of admissible integrands to predictable processes will require other novel
tools different from those in this work.

2. Preliminaries. Let U and V be separable Hilbert spaces with inner prod-
ucts 〈·, ·〉 and corresponding norms ‖·‖. The dual spaces are identified by the orig-
inal Hilbert spaces. The unit ball is denoted by BV := {v ∈ V : ‖v‖ ≤ 1}. Through-
out the paper, {ek}k∈N and {fk}k∈N denote some orthonormal basis of U and V ,
respectively.

The space of linear and bounded operators is denoted by L(U,V ) and it is
equipped with the operator norm ‖·‖U→V . The subspace of Hilbert–Schmidt op-
erators is denoted by L2(U,V ) and is equipped with the norm

‖ϕ‖2
L2

:=
∞∑

k=1

‖ϕek‖2.

A simple argument using the standard characterisation of compact sets in Hilbert
spaces show that a set K ⊆ L2(U,V ) is compact if and only if it is bounded, closed
and obeys

lim
N→∞ sup

ϕ∈K

∞∑
k=N+1

‖ϕek‖2 = 0.(4)

The space of L2(U,V )-valued càglàd (continue à gauche, limite à droite) functions
is denoted by

D−
([0, T ];L2(U,V )

)
:= {

ψ : [0, T ] → L2(U,V ) : left-continuous with right-limits
}
.
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This space can be metrizable via the Skorokhod metric

dJ (ϕ,ψ) := inf
j∈�

(
sup

t∈[0,T ]
∥∥ϕ(t) − ψ ◦ j (t)

∥∥
L2

∨ sup
t∈[0,T ]

∣∣t − j (t)
∣∣),(5)

where the infimum is over the set � of all all strictly increasing, continuous bijec-
tions j : [0, T ] → [0, T ].

The Borel σ -algebra in U is denoted by B(U) and the space of Borel measures
on B(U) is denoted by M(U). The space of Borel probability measures is denoted
by M1(U) and it is equipped with the Prokhorov metric

dP (μ, ν) := inf
{
ε > 0 : μ(B) ≤ ν(Bε) + ε and ν(B) ≤ μ(Bε) + ε

for closed B ∈ B(U)
}
,

where Bε := {u ∈ U : inf{‖u − b‖ : b ∈ B} < ε}. Convergence in the Prokhorov
metric is equivalent to weak convergence of probability measures.

Let (�,A,P ) be a probability space. The space of equivalence classes of mea-
surable functions X : � → U is denoted by L0

P (�;U). If G is a sub-σ -algebra of
A, we write L0

P (�,G;U) for the space of equivalence classes of G-measurable
functions. By defining the function

p : L0
P (�;U) → [0,1], p(X) = E

[
1 ∧ ‖X‖2],(6)

the space L0
P (�;U) becomes an F -space under the metric d(X,Y ) := p(X − Y).

Let S be a subset of U . For every elements u1, . . . , un ∈ S, n ∈ N and B ∈ B(Rn)

define

C(u1, . . . , un;B) := {
u ∈ U : (〈u,u1〉, . . . , 〈u,un〉) ∈ B

}
.

These sets are called cylindrical sets with respect to S and they form an alge-
bra Z(U,S). The generated σ -algebra is denoted by Ẑ(U,S) and it is called the
cylindrical σ -algebra with respect to S. If S = U , we write Z(U) := Z(U,S) and
Ẑ(U) := Ẑ(U,S).

A function η : Z(U) → [0,∞] is called a cylindrical measure on Z(U) if for
each finite subset S ⊆ U the restriction of η to the σ -algebra Ẑ(U,S) is a measure.
A cylindrical measure η is called finite if η(U) < ∞ and a cylindrical probability
measure if η(U) = 1. The characteristic function of a finite cylindrical measure η

is defined by

χη : U → C, χη(u) =
∫
U

ei〈u,h〉η(dh).

Note that this integral is well defined as the integrand is measurable with respect
to Ẑ(U, {u}) for each u ∈ U . The cylindrical measure η is called continuous if χη

is continuous.
A cylindrical random variable in U is a linear and continuous mapping

Z : U → L0
P (�;R).
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If C = C(u1, . . . , un;B) is a cylindrical set for u1, . . . , un ∈ U and B ∈ B(Rn), we
obtain a cylindrical probability measure η by the definition

η(C) := P
(
(Zu1, . . . ,Zun) ∈ B

)
.

The mapping η is called the cylindrical distribution of Z. The characteristic func-
tion of a cylindrical random variable Z is defined by

ϕZ : U →C, ϕZ(u) = E
[
exp(iZu)

]
,

and the characteristic function of Z and its cylindrical distribution η coincide. For
a function ϕ ∈ L(U,V ), one can define a cylindrical random variable in V by

Zϕ : V → L0
P (�;R), Zϕv = Z

(
ϕ∗v

)
.

In general, Zϕ is only a cylindrical random variable but if ϕ is a Hilbert–Schmidt
operator then there exists a V -valued random variable ϕ(Z) : � → V satisfying

Z
(
ϕ∗v

)= 〈
ϕ(Z), v

〉
for all v ∈ V ;(7)

see [27], Theorem VI.5.2.
A family (Z(t) : t ≥ 0) of cylindrical random variables Z(t) in U is called a

cylindrical process in U . In our work [1], we extended the concept of cylindrical
Brownian motion to cylindrical Lévy processes.

DEFINITION 2.1. A cylindrical process (L(t) : t ≥ 0) in U is called a cylin-
drical Lévy process if for each n ∈ N and any u1, . . . , un ∈ U we have that((

L(t)u1, . . . ,L(t)un

) : t ≥ 0
)

is a Lévy process in R
n.

The characteristic function of L(t) is studied in detail in our work [24]. It turns
out that the characteristic function of L(t) for each t ≥ 0 is of the form

ϕL(t) : U →C, ϕL(t)(u) = exp
(
tS(u)

)
,

where S : U →C is called the cylindrical symbol of L and is of the form

(8) S(u) = ia(u) − 1

2
〈Qu,u〉 +

∫
U

(
ei〈u,h〉 − 1 − i〈u,h〉1BR

(〈u,h〉))ν(dh).

Here, a : U →R is a continuous mapping with a(0) = 0, Q : U →R is a positive
and symmetric operator and ν is a cylindrical measure on Z(U) satisfying∫

U

(〈u,h〉2 ∧ 1
)
ν(dh) < ∞ for all u ∈ U.

Since L(t) : U → L0
P (�;R) is continuous, it follows that the characteristic func-

tion ϕL(1) : U → C is continuous, and thus the symbol S : U → C is continuous.
According to Lemma 3.2 in [26], the cylindrical symbol S maps bounded sets to
bounded sets.
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REMARK 2.2. It follows from the Lévy–Itô decomposition in R that for each
u ∈ U and t ≥ 0 a cylindrical Lévy process L with Lévy symbol (8) can be de-
composed into

L(t)u = a(u)t + W(t)u +
∫
|β|≤1

βÑu(t, dβ) +
∫
|β|>1

βNu(t, dβ),

where W is a cylindrical Wiener process in U with covariance operator Q and

Nu(t,B) := ∑
0≤s≤t

1B

((
L(s)u − L(s−)

)
u
)

for all t ∈ [0, T ],B ∈ B
(
R\{0}),

and Ñu is the compensated Poisson random measure defined by Ñu(t,B) :=
Nu(t,B) − t (ν ◦ 〈·, u〉−1)(B); see [1], Th. 3.9. If L does not have finite weak
second moments, that is, E[|L(1)u|2] = ∞, then the (local) martingale part in
the semimartingale decomposition of (L(t)u : t ∈ [0, T ]) is given by the sum
W(t)u + R(t)(u) where

R(t)(u) :=
∫
|β|≤1

βÑu(t, dβ).

As the truncation function β �→ 1B(β) is not linear, the mapping u �→ R(t)(u) is
not linear neither. Thus, (L(t)u : t ∈ [0, T ]) enjoys a semimartingale decomposi-
tion for fixed u ∈ U , but the martingale and bounded variation parts are not linear
in u in general.

We equip the probability space (�,A,P ) with the filtration generated by L and
defined by

F t := σ
({

L(s)u : u ∈ U, s ∈ [0, t]}) for all t ≥ 0.

For a filtration G := {Gt }t∈I where I ⊆ [0,∞) is an arbitrary index set, we define

ϒ(G) := {τ : � → I : is stopping time for G}.
3. Tightness by decoupling. In the later part of this work, the main argument

on extending the definition of the stochastic integral from simple integrands to
a much larger class of integrands is based on establishing tightness of the set of
stochastic integrals for a sequence of simple integrands. This will be established
by the following result which provides a handy criterion for the tightness of a set
of sums of random variables in a Hilbert space. The theorem is a modification of a
result by Jakubowski in [8], and which is also published in a more general setting
in [11].

THEOREM 3.1. For each n ∈ N, let {Xn,k : k ∈ N} be a sequence of V -valued
random variables adapted to a filtration Fn := {Fn,k : k ∈ N0}. Define for each k,
n ∈N a version of the regular conditional distribution

Pn,k : B(V ) × � → [0,1], Pn,k(B,ω) = P(Xn,k ∈ B|Fn,k−1)(ω).
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If there exists a sequence {σn : n ∈ N} of finite stopping times σn ∈ ϒ(Fn) such
that {Pn,1 ∗ · · · ∗ Pn,τ : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} is tight, then{

Xn,1 + · · · + Xn,τ : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N
}

(9)

is tight.

Theorem 3.1 provides a method for establishing tightness of the random
field (9). We call this method tightness by decoupling for the following reason:
for the given sequences {Xn,k : k ∈ N} there exist sequences {X∗

n,k : k ∈ N} of ran-
dom variables X∗

n,k on a larger probability space (�∗,A∗,P ∗) satisfying:

(i) for every n ∈ N the sequence {X∗
n,k : k ∈ N} is conditionally independent

over a σ -algebra F∗ ⊆ A∗;
(ii) P ∗(X∗

n,k ∈ B|F∗) = P(Xn,k ∈ B|Fn,k−1) for all B ∈ B(V ) and k, n ∈ N.

The sequence {X∗
n,k : k ∈ N} is called the decoupled tangent sequence; see Chap-

ter 6 in [5] or [14]. By defining

Sn(σn) :=

⎧⎪⎪⎨⎪⎪⎩
0 if σn = 0,
σn∑

k=1

Xn,k else,
S∗

n(σn) :=

⎧⎪⎪⎨⎪⎪⎩
0 if σn = 0,
σn∑

k=1

X∗
n,k else,

one can conclude from Theorem 3.1 that if {S∗
n(σn) : n ∈ N} is tight then {Sn(σn) :

n ∈ N} is also tight.
Applying Theorem 3.1 in the one-dimensional case yields another result, the

principle of conditioning, which we also use in this work. The original proof can
be found in [2] and [7], and further extensions to Hilbert spaces in [10].

THEOREM 3.2. For each n ∈ N, let {Xn,k : k ∈ N} be a sequence of real val-
ued random variables adapted to a filtration Fn := {Fn,k : k ∈ N0} and σn : � →
N be a stopping time for {Fn,k : k ∈ N}. Define for each k, n ∈ N

�n,k : R×� →C, �n,k(β,ω) = E
[
eiβXn,k |Fn,k−1

]
(ω).

If for each β ∈R, there exists a deterministic constant c(β) �= 0 such that

lim
n→∞

σn∏
k=1

�n,k(β, ·) = c(β) in probability,

then it follows that

lim
n→∞E

[
eiβ(Xn,1+···+Xn,σn)]= c(β).

For the proof of Theorem 3.2, we refer to the literature. For the following proof
of Theorem 3.1, we introduce a few notation and objects. A random measure is
a measurable mapping M : � → M(V ), where measurability is with respect to
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the Borel σ -algebra corresponding to the weak topology on M(V ). The map-
ping M is called a random probability measure, if it maps to the space M1(V ) of
Borel probability measures on B(V ). A random measure M is called integrable, if
E[M(V )] < ∞. In this case, E[M](B) := E[M(B)] for all B ∈ B(V ) defines an
element in M(V ). By starting with simple functions and passing to the limit, one
shows for bounded, measurable functions ϕ : V →R that

E

[∫
V

ϕ(u)M(du)

]
=
∫
V

ϕ(u)E[M](du).(10)

The characteristic function of a random probability measure M is defined by

χM : V × � →C, χM(v) =
∫
V

ei〈v,h〉M(dh).

For an integrable random measure M , it follows from (10) that

E
[
χM(v)

]= χE[M](v) for all v ∈ V .(11)

A set {Mi : i ∈ I } of random measures is called tight, if for each ε1 > 0 we have:

there exist for all i ∈ I a set Ai ∈ A with P(Ai) > 1 − ε1 obeying:{
Mi(·,ω) : ω ∈ Ai, i ∈ I

}
is relatively compact in M(V ).

(12)

It follows from Prokhorov’s theorem that the last line is equivalent to

sup
i∈I

sup
w∈Ai

Mi(V,ω) < ∞;(13)

for each ε2 > 0 there exists a compact set K ⊆ V such that

sup
i∈I

sup
w∈Ai

Mi

(
Kc,ω

)≤ ε2.
(14)

If {Mi : i ∈ I } is a family of random probability measures, then it is tight if and
only if {E[Mi] : i ∈ I } is tight in M(V ).

A nonnegative, symmetric operator ϕ : V → V is called an S-operator if

tr[ϕ] :=
∞∑

k=1

〈ϕfk, fk〉 < ∞.

The space of all S-operators is denoted by LS(V ). The space LS(V ) is a subspace
of the Banach space of trace class operators, and it is equipped with the Borel σ -
algebra of the latter. A set {ϕi : i ∈ I } ⊆ LS(V ) is relatively compact if and only
if

sup
i∈I

tr[ϕi] < ∞;(15)

lim
N→∞ sup

i∈I

∞∑
k=N

〈ϕifk, fk〉 = 0.(16)
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A set {Ti : i ∈ I } of random variables Ti : � → LS(V ) is tight if and only if for
each ε > 0 there exist for all i ∈ I a set Ai ∈ A with P(Ai) > 1 − ε such that{

Ti(ω) : ω ∈ Ai, i ∈ I
}

is relatively compact in LS(V ).(17)

PROOF OF THEOREM 3.1. For each τ ∈ ϒ(Fn) with τ ≥ 1 and n ∈ N, define
the random probability measure

Pn(τ) : B(V ) × � → [0,1], Pn(τ ) := Pn,1 ∗ · · · ∗ Pn,τ ,

and, by denoting Sn(τ ) := Xn,1 + · · · + Xn,τ , the random probability measure

Qn(τ) : B(V ) × � → [0,1], Qn(τ) = Pn(τ) ∗ δ−Sn(τ),

where δY denotes the random Dirac measure in Y ∈ L0(�;V ). In a first and main
step, we show that for each ε > 0 there exists a compact set {ϕn,τ : τ ∈ ϒ(Fn),1 ≤
τ ≤ σn,n ∈ N} of deterministic S-operators ϕn,τ ∈ LS(V ), such that for every n ∈
N and each τ ∈ ϒ(Fn) with 1 ≤ τ ≤ σn we have

1 − ReE
[
χQn(τ)(v)

]≤ 〈ϕn,τ v, v〉 + 4ε for all v ∈ V.(18)

For this purpose, fix ε > 0 and define the symmetrisation P̃n,k := Pn,k ∗ P −
n,k

where P −
n,k(B,ω) := Pn,k(−B,ω) for all B ∈ B(V ) and ω ∈ �. Define for each

τ ∈ ϒ(Fn) with τ ≥ 1 and n ∈ N the random measure

P n(τ) : B(V ) × � →R+, P n(τ ) = P̃n,1 + · · · + P̃n,τ ,

and the random S-operator

Tn(τ ) : V × � → V,
〈
Tn(τ )v, v

〉= ∫
BV

〈v,h〉2P n(τ)(dh).

As {Pn(σn) : n ∈ N} is tight, it follows that the set {P̃n,1 ∗ · · · ∗ P̃n,σn : n ∈ N} is also
tight. Part (a) of Lemma 3.4 implies that {Tn(τ ) : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N}
is a tight set of random S-operators and that {P n(τ)(· ∩ Bc

V ) : τ ∈ ϒ(Fn),1 ≤
τ ≤ σn,n ∈ N} is a tight set of random measures. It follows from (13) and from
(15), respectively, that there are constants c1, c2 > 0 such that for each n ∈ N we
have P(P n(τ)(Bc

V ) > c1) ≤ ε and P(tr[Tn(τ )] > c2) ≤ ε for all τ ∈ ϒ(Fn) with
1 ≤ τ ≤ σn. Define for each n ∈ N the stopping times

ρ ′
n := inf

{
k ∈ N : P n(k)

(
Bc

V

)
> c1

}
, ρ′′

n := inf
{
k ∈ N : tr

[
Tn(k)

]
> c2

}
.

The stopping time ρn := ρ′
n ∧ ρ′′

n satisfies for each n ∈ N that P(ρn < τ) ≤ 2ε for
all τ ∈ ϒ(Fn) with 1 ≤ τ ≤ σn. Lemma 3.3 implies for each v ∈ V that

1 − ReE
[
χQn(τ)(v)

]≤ E
[(

1 − ReχQn(τ)(v)
)
1{τ≤ρn}

]+ P(ρn < τ)

≤ 1 − ReE
[
χQn(ρn∧τ)(v)

]+ 2ε

≤ E

[
ρn∧τ∑
k=1

(
1 − χP̃n,k

(v)
)]+ 2ε.
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The assumed tightness of {Pn(τ) : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} yields tightness
of {P̃n,1 ∗ · · · ∗ P̃n,ρn∧σn : n ∈ N}. Moreover, since

P n(ρn ∧ σn)
(
Bc

V

)≤ P n(ρn − 1)
(
Bc

V

)+ P̃n,ρn

(
Bc

V

)≤ c1 + 1 for all n ∈ N,

part (c) of Lemma 3.4 guarantees tightness of {E[P n(ρn ∧ τ)](· ∩ Bc
V ) : τ ∈

ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N}. Thus, there exists a constant d > 1 such that

E
[
P n(ρn ∧ τ)

({
v ∈ V : ‖v‖ > d

})]≤ ε.(19)

Define for each τ ∈ ϒ(Fn) and n ∈ N the random operator

Rn(τ) : V × � → V,
〈
Rn(τ)v, v

〉= ∫
1<‖h‖≤d

〈v,h〉2P n(τ)(dh).

Since 1 − cosβ ≤ 2β2 for all β ∈ R, we obtain by (19) for all v ∈ V that

E

[
ρn∧τ∑
k=1

(
1 − χP̃n,k

(v)
)]

= E

[∫
V

(
1 − cos

(〈v,h〉))P n(ρn ∧ τ)(dh)

]
≤ 2E

[∫
‖h‖≤d

〈v,h〉2P n(ρn ∧ τ)(dh)

]
+ 2E

[
P n(ρn ∧ τ)

({
h ∈ V : ‖h‖ > d

})]
≤ 2E

[〈
Tn(ρn ∧ τ)v, v

〉]+ 2E
[〈
Rn(ρn ∧ τ)v, v

〉]+ 2ε

= 2
〈
E
[
Tn(ρn ∧ τ)

]
v, v

〉+ 2
〈
E
[
Rn(ρn ∧ τ)

]
v, v

〉+ 2ε.

In the last line, we applied part (b) of Lemma 3.4, which can be done as the defi-
nition of the stopping times ρ ′

n and ρ′′
n guarantees for all n ∈ N that

tr
[
Rn

(
ρ′

n ∧ σn

)]≤ ∫
1<‖h‖≤d

‖h‖2P n

(
ρ′

n − 1
)
(dh) +

∫
1<‖h‖≤d

‖h‖2P̃n,ρ′
n
(dh)

≤ d2(c1 + 1),

and analogously

tr
[
Tn

(
ρ′′

n ∧ σn

)]≤ tr
[
Tn

(
ρ′′

n − 1
)]+ ∫

‖h‖≤1
‖h‖2P̃n,ρ′′

n
(dh) ≤ c2 + 1.

Moreover, Lemma 3.4 implies that the sets {E[Tn(ρn ∧ τ)] : τ ∈ ϒ(Fn),1 ≤ τ ≤
σn,n ∈N} and {E[Rn(ρn∧τ)] : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈N} are relatively com-
pact in LS(V ), which completes the proof of (18).

It follows from (18) by Theorem VI.2.3 in [20] that the set {E[Qn(τ)] : τ ∈
ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N}, and thus also the set {Qn(τ) : τ ∈ ϒ(Fn),1 ≤ τ ≤
σn,n ∈ N} are tight. Since each random probability measure Qn(τ) is the con-
volution of Pn(τ) and the random Dirac measure δ−Sn(τ), and since the set
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{Pn(τ) : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} is assumed to be tight, it follows that the
set {δ−Sn(τ) : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} is tight, which completes the proof.

�

The following two results are used in the proof of Theorem 3.1.

LEMMA 3.3. In the setting of Theorem 3.1, define for some n ∈ N and for a
stopping time τ ∈ ϒ(Fn) the random probability measure

Qn(τ) : B(V ) × � → [0,1], Qn(τ) = Pn,1 ∗ · · · ∗ Pn,τ ∗ δ−Sn(τ),

where Sn(τ ) := Xn,1 + · · · + Xn,τ . Then it follows that

1 − ReE
[
χQn(τ)(v)

]≤ E

[
τ∑

k=1

(
1 − χP̃n,k

(v)
)]

for every v ∈ V.

PROOF. Fix v ∈ V , n ∈ N, and define for each j ∈ N the Fn,j -measurable
random variable

Xn(j) := 1 − χP̃n,j
(v) − ReχQn(j−1)(v) + ReχQn(j)(v),

where we set Qn(0) = δ0. We claim that Yn(k) := Xn(1) + · · · + Xn(k) defines a
submartingale (Yn(k) : k ∈ N) with respect to Fn. For each k ∈ N, we obtain

E
[
Xn(k)|Fn,k−1

]
= 1 − χP̃n,k

(v) − ReχQn(k−1)(v) + ReE
[
χQn(k)(v)|Fn,k−1

]
.

(20)

Since the random measure Qn(j) is defined as a convolution its characteristic
function obeys

χQn(j)(v) = χδ−Sn(j)
(v)χPn(j)(v) = e−i〈v,Sn(j)〉χPn(j)(v) for all j ∈N,

where Pn(k) := Pn,1 ∗ · · · ∗ Pn,k . Consequently, we arrive at

E
[
χQn(k)(v)|Fn,k−1

]= χPn(k)(v)e−i〈v,Sn(k−1)〉E
[
e−i〈v,Xn,k〉|Fn,k−1

]
= χQn(k−1)(v)χPn,k

(v)χP −
n,k

(v)

= χQn(k−1)(v)χP̃n,k
(v).

Applying this equality to (20), we obtain

E
[
Xn(k)|Fn,k−1

]= (
1 − ReχQn(k−1)(v)

)(
1 − χP̃n,k

(v)
)
.

Since the last line is nonnegative, it follows that (Yn(k) : k ∈N) is a submartingale.
We conclude from (11) that

E
[
χQn(1)(v)

]= E
[
χPn,1(v)

]
E
[
e−i〈Xn,1,v〉]= χXn,1(v)χ−Xn,1(v) = E

[
χP̃n,1

(v)
]
,
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which yields E[Yn(1)] = 0. Doob’s optional stopping theorem shows for τ ∈
ϒ(Fn) that E[Yn(τ ∧ N)] ≥ E[Yn(1)] = 0 for all N ∈ N, which, by the very defi-
nition of Yn(k), results in

E

[
τ∧N∑
k=1

(
1 − χP̃n,k

(v)
)]≥ E

[
−

τ∧N∑
k=1

(
ReχQn(j)(v) − ReχQn(j−1)(v)

)]

= E
[
1 − ReχQn(τ∧N)(v)

]
.

Applying the result on monotone convergence to the left-hand side and Lebesgue’s
theorem of dominated convergence to the right-hand side completes the proof. �

For the following lemma, note that if k : V × V → R is a bilinear form then
a linear operator K : V → V can be defined by 〈Kv1, v2〉 = k(v1, v2) for all v1,
v2 ∈ V .

LEMMA 3.4. For each n ∈ N, let {Mn,k : k ∈ N} be a sequence of symmetric
random probability measures adapted to a filtration Fn := {Fn,k : k ∈ N0}. For
τ ∈ ϒ(Fn) with τ ≥ 1, denote Mn(τ) := Mn,1 + · · · + Mn,τ and define for some
c > 0 the random operators

Tn(τ ) : V × � → V,
〈
Tn(τ )v1, v2

〉= ∫
‖h‖≤c

〈v1, h〉〈v2, h〉Mn(τ)(dh),

and the random measures

Nn(τ) : B(V ) × � → R+, Nn(τ )(B) = Mn(τ)
(
B ∩ {‖v‖ > c

})
.

If there exists a sequence {σn : n ∈ N} of finite stopping times σn ∈ ϒ(Fn) with
σn ≥ 1 such that {Mn,1 ∗ · · · ∗ Mn,σn : n ∈ N} is tight, then we have:

(a) the set {Tn(τ ) : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} of random S-operators and
the set {Nn(τ) : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} of random measures are tight.

(b) uniform integrability of {tr[Tn(σn)] : n ∈ N} implies that, for τ ∈ ϒ(Fn),

E
[
Tn(τ )

] : V → V,
〈
E
[
Tn(τ )

]
v, v

〉= E
[〈
Tn(τ )v, v

〉]
defines a relatively compact set {E[Tn(τ )] : τ ∈ ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} of S-
operators.

(c) uniform integrability of {Nn(σn)(V ) : n ∈ N} implies that {E[Nn(τ)] : τ ∈
ϒ(Fn),1 ≤ τ ≤ σn,n ∈ N} is relatively compact.

PROOF. (a) Let Rn denote the infinitely divisible random measure with char-
acteristic function

χRn : V × � → C, χRn(v) = exp
(∫

V

(
ei〈h,v〉 − 1

)
Mn(σn)(dh)

)
.
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The inequality

1 − exp

(
n∑

k=1

(βk − 1)

)
≤ 1 −

n∏
k=1

βk for all βk ∈ [0,1], n ∈N,

yields for every v ∈ V and n ∈ N the estimate

1 − E
[
χRn(v)

]= E

[
1 − exp

(
σn∑

k=1

(
χMn,k

(v) − 1
))]≤ 1 − E

[
σn∏

k=1

χMn,k
(v)

]
.

Tightness of {Mn,1 ∗ · · · ∗ Mn,σn : n ∈ N} implies by Theorem VI.2.3 in [20] to-
gether with (11) that the set {E[Rn] : n ∈ N} is tight. It follows that for each ε > 0
there exists for every n ∈ N a set An ∈ A with P(An) > 1 − ε such that the set{

1An(ω)Rn(·,ω) + 1Ac
n
(ω)δ0(·) : ω ∈ �,n ∈ N

}
of infinitely divisible probability measures is relatively compact. Theorem VI.5.1
in [20] implies that the set {Tn(σn)(ω) : ω ∈ An,n ∈ N} is compact and the
set {Nn(σn)(·,ω) : ω ∈ An,n ∈ N} is relatively compact. The monotonicity
〈Tn(τ )fk, fk〉 ≤ 〈Tn(σn)fk, fk〉 for all k ∈ N and Nn(τ) ≤ Nn(σn) for each τ ≤ σn

completes the proof by (13), (14) and (15), (16).
(b) By applying Tonelli’s theorem, we obtain

sup
n∈N

tr
[
E
[
Tn(σn)

]]= sup
n∈N

E

[ ∞∑
k=1

〈
Tn(σn)fk, fk

〉]
(21)

= sup
n∈N

E
[
tr
[
Tn(σn)

]]
< ∞.

Let ε > 0 be given and choose δ > 0 such that P(A) ≤ δ for any A ∈ A implies
E[tr[Tn(σn)]1A] ≤ ε for all n ∈ N. From part (a), it follows by (16) that there are
An ∈ A, n ∈N, with P(An) > 1 − δ and N0 ∈ N such that

sup
n∈N

sup
ω∈An

∞∑
k=N0

〈
Tn(σn)(ω)fk, fk

〉≤ ε.

It follows that

sup
n∈N

∞∑
k=N0

〈
E
[
Tn(σn)

]
fk, fk

〉

≤ sup
n∈N

E

[
1An

∞∑
k=N0

〈
Tn(σn)fk, fk

〉]+ E
[
tr
[
Tn(σn)

]
1c

An

]
≤ 2ε,
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which shows that

lim
N→∞ sup

n∈N

∞∑
k=N

〈
E
[
Tn(σn)

]
fk, fk

〉= 0.(22)

Both properties (21) and (22) establish that {E[Tn(σn)] : n ∈ N} is relatively com-
pact, which completes the proof by monotonicity 〈E[Tn(τ )]fk, fk〉 ≤
〈E[Tn(σn)]fk, fk〉 for all k ∈ N for τ ≤ σn by (15) and (16).

(c) Can be proved as (b). �

4. Radonification of the increments. In this section, we solve problems (1)
and (2) mentioned in the Introduction. Recall the definition p(X) = E[1 ∧ ‖X‖2]
for any V -valued random variable X in (6). The following inequality originates
from the work [12], but since we only need a special case we give a short proof
here.

LEMMA 4.1. There exists a universal constant c > 0 such that for any ϕ ∈
L2(U,V ) and any cylindrical random variable Z : U → L0

P (�;R) we have

p(ϕZ) ≤ c

∫
U

p(Zu)
(
γ ◦ (ϕ∗)−1)

(du),

where γ denotes the canonical Gaussian cylindrical measure on V .

PROOF. Let (�′,A′,P ′) be another probability space and let � : V →
L0

P ′(�′;R) be a cylindrical random variable distributed according to the canonical
cylindrical Gaussian distribution γ on V . From the inequality,(

1 ∧ |α|)(1 ∧ |β|)≤ 1 ∧ |αβ| for all α,β ∈ R,

it follows for a real-valued, standard normally distributed random variable ξ that(
1 ∧ ‖v‖2)E′[1 ∧ |ξ |2]≤ E′[1 ∧ ‖v‖2|ξ |2]= E′[1 ∧ |�v|2] for all v ∈ V.

Consequently, by defining c := (E′[1 ∧ |ξ |2])−1 we obtain(
1 ∧ ‖v‖2)≤ cE′[1 ∧ |�v|2] for all v ∈ V.

It follows that

p(ϕZ) = E
[
1 ∧ ‖ϕZ‖2]≤ cE

[
E′[1 ∧ ∣∣�(ϕZ)

∣∣2]]
= cE

[∫
V

(
1 ∧ 〈v,ϕZ〉2)γ (dv)

]
= c

∫
V

E
[
1 ∧ ∣∣Z(ϕ∗v

)∣∣2]γ (dv)

= c

∫
U

E
[
1 ∧ |Zu|2](γ ◦ (ϕ∗)−1)

(du),
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which completes the proof. �

Let (L(t) : t ≥ 0) be a cylindrical Lévy process in U . We equip the probability
space with the filtration generated by L and defined by

F t := σ
({

L(s)u : u ∈ U, s ∈ [0, t]}) for all t ≥ 0.

Fix the times 0 ≤ s ≤ t . An L2(U,V )-valued, F s -measurable random variable �

is called simple if it is of the form

�(ω) =
m∑

i=1

1Ai
(ω)ϕi for all ω ∈ �,

for disjoint sets A1, . . . ,Am ∈ F s and ϕ1, . . . , ϕm ∈ L2(U,V ). The space of
all L2(U,V )-valued, F s -measurable, simple random variables is denoted by
S(�,F s;L2). It follows from (7) that for each i = 1, . . . ,m there exists an V -
valued random variable ϕi(L(t) − L(s)) satisfying〈

ϕi

(
L(t) − L(s)

)
, v
〉= (

L(t) − L(s)
)(

ϕ∗
i v
)

for all v ∈ V.

Define an F s -measurable, V -valued random variable by

J (�) :=
m∑

i=1

1Ai
ϕi

(
L(t) − L(s)

)
.

In this situation, we define(
L(t) − L(s)

)(
�∗v

) := 〈
J (�), v

〉
for all v ∈ V.

The following result enables us to extend this definition of radonified increments
from simple to arbitrary random variables �.

THEOREM 4.2. Let 0 ≤ s ≤ t be fixed. For each F s -measurable, L2(U,V )-
valued random variable �, there exist an V -valued random variable Y and a se-
quence {�n}n∈N of simple random variables in S(�,F s;L2) with �n → � P -a.s.
such that

Y = lim
n→∞J (�n) in probability.

Moreover, the limit Y does not depend on the sequence {�n}n∈N.

PROOF. Since � : � → L2(U,V ) is strongly F s -measurable, there exists a
sequence {�n}n∈N of simple random variables in S(�,F s;L2) with �n → �

P -a.s. It remains to show that (J (�n))n∈N is a Cauchy sequence in L0
P (�;V ).

By linearity, it is sufficient to show that �n → 0 P -a.s. for n → ∞ implies that
J (�n) → 0 in probability for n → ∞. For this purpose, assume that

�n(ω) =
mn∑
i=1

1An,i
(ω)ϕn,i for all ω ∈ �,
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for disjoint sets An,1, . . . ,An,mn ∈ F s and ϕn,1, . . . , ϕn,mn ∈ L2(U,V ), mn ∈ N

and �n → 0 P -a.s. for n → ∞. Define the cylindrical random variable Z :=
L(t) − L(s). Independence of Z and F s implies that ϕn,iZ is also independent
of F s . Using this independence, Lemma 4.1 and (11), we obtain for each n ∈ N

that

p
(
J (�n)

)= E

[
1 ∧

∥∥∥∥∥
mn∑
i=1

1An,i
ϕn,iZ

∥∥∥∥∥
2]

= E

[
mn∑
i=1

1An,i

(
1 ∧ ‖ϕn,iZ‖2)]

=
∫
�

mn∑
i=1

1An,i
(ω)p(ϕn,iZ)P (dω)

≤ c

∫
�

mn∑
i=1

1An,i
(ω)

(∫
U

p(Zu)
(
γ ◦ (ϕ∗

n,i

)−1)
(du)

)
P(dω)

= c

∫
�

(∫
U

p(Zu)Mn(du,ω)

)
P(dω)

= c

∫
U

p(Zu)E[Mn](du),

where c denotes the constant derived in Lemma 4.1 and Mn is the random proba-
bility measure defined by

Mn : B(U) × � → [0,1], Mn(B,ω) =
mn∑
i=1

1An,i
(ω)

(
γ ◦ (ϕ∗

n,i

)−1)
(B).

Recall the definition E[Mn](B) := E[Mn(B)] for all B ∈ B(U). For each n ∈ N

and ω ∈ �, the measure Mn(·,ω) is Gaussian with expectation 0 and covariance
operator

Qn(ω) : U → U, Qn(ω) =
mn∑
i=1

1Ai,n
(ω)ϕ∗

n,iϕn,i .

Consequently, we have for all u ∈ U that

E
[
ϕMn(u)

]= E
[
ei〈Qnu,u〉]= E

[
ei‖�nu‖2

V
]→ 1 as n → ∞.(23)

Egorov’s theorem implies that for each ε > 0 there exists a set A ∈ A with P(A) >

1 − ε such that

sup
n∈N

sup
ω∈A

tr
[
Qn(ω)

]
< ∞.
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As Qn(ω) is the covariance operator of the Gaussian measure Mn(·,ω), it follows
that the set {Mn(·,ω) : ω ∈ A,n ∈ N} is tight. Thus, the set {Mn : n ∈ N} of ran-
dom measures is tight, which implies together with (23) that E[Mn] converges
weakly to the Dirac measure in 0. Since the function u �→ p(Zu) is bounded and
continuous, we obtain∫

H
p(Zu)E[Mn](du) → 0 as n → ∞.

Linearity of J guarantees the claimed uniqueness, which completes the proof. �

Theorem 4.2 enables us to define for each 0 ≤ s ≤ t and F s -measurable random
variable � : � → L2(U,V ) the V -valued random variable

�
(
L(t) − L(s)

) := lim
n→∞J (�n),

where (�n)n∈N ⊆ S(�,F s;L2) converges to � P -a.s. We define then the incre-
ments of the cylindrical Lévy process L under the random mapping � by(

L(t) − L(s)
)(

�∗v
) := 〈

�
(
L(t) − L(s)

)
, v
〉

for all v ∈ V.

We finish this section with calculating the conditional characteristic function of
the radonified increments.

LEMMA 4.3. If 0 ≤ s ≤ t and � : � → L2(U,V ) is an F s -measurable ran-
dom variable, then it follows for each v ∈ V that

E
[
exp

(
i
〈
�
(
L(t) − L(s)

)
, v
〉)|F s

]= exp
(
(t − s)S

(
�∗v

))
, P -a.s.,(24)

where S : U →C denotes the cylindrical Lévy symbol of L defined in (8).

PROOF. If � is simple, then it is easy to establish the equality claimed in (24).
For an arbitrary F s -measurable random variable � : � → L2(U,V ), Theorem 4.2
guarantees that there exists a sequence (�n)n∈N of simple random variables in
S(�,F s;L2) satisfying �n → � P -a.s. as n → ∞ and for all v ∈ V

lim
n→∞

(
L(t) − L(s)

)(
�∗

nv
)= (

L(t) − L(s)
)(

�∗v
)

in probability.(25)

On the other hand, as �n → � P -a.s. the continuity of the cylindrical Lévy symbol
S : U →C yields for all v ∈ V

lim
n→∞ exp

(
(t − s)S

(
�∗

nv
))= exp

(
(t − s)S

(
�∗v

))
P -a.s.(26)

Equations (25) and (26) show that the relation (24) can be generalised to arbitrary
� ∈ L0

P (�,F s;L2). �
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5. The stochastic integral. We begin the definition of the classical stochastic
integral with simple integrands. An L2(U,V )-valued, stochastic process (�(t) :
t ∈ [0, T ]) is called simple if it is of the form

�(t) = �0 1{0}(t) +
N∑

j=1

�j 1(tj ,tj+1](t) for all t ∈ [0, T ],(27)

where 0 = t1 < · · · < tN+1 = T is a finite sequence of deterministic times and
each �j : � → L2(U,V ) is an F tj -measurable random variable for each j =
0, . . . ,N . The set of all simple L2(U,V )-valued stochastic processes is denoted
by H0(U,V ).

Let (�(t) : t ∈ [0, T ]) be a simple process in H0(U,V ) of the form (27) and
(L(t) : t ≥ 0) be a cylindrical Lévy process in U . Theorem 4.2 guarantees that for
each j = 1, . . . ,N and t ∈ [0, T ], there exists the random variable

J (�j )(t) := �j

(
L(t ∧ tj+1) − L(t ∧ tj )

) : � → V,

satisfying(
L(t ∧ tj+1) − L(t ∧ tj )

)(
�∗

j v
)= 〈

J (�j )(t), v
〉

for all v ∈ V.

Thus, we can define a random variable in L0
P (�;V ) for each t ∈ [0, T ] by

I (�)(t) : � → V, I (�)(t) := J (�1)(t) + · · · + J (�N)(t).

Obviously, the random variable I (�)(t) obeys

〈
I (�)(t), v

〉= N∑
j=1

〈
J (�j )(t), v

〉= N∑
j=1

(
L(t ∧ tj+1) − L(t ∧ tj )

)(
�∗

j v
)

for all v ∈ V and t ∈ [0, T ].
In the following, we extend the domain of I to the linear space:

H(U,V ) := {
� : [0, T ] × � → L2(U,V ) : adapted and with càglàd paths

}
.

The paths of an element � in H(U,V ) are in the space D−([0, T ];L2(U,V ))

of L2(U,V )-valued functions which are continuous from the left and have limits
from the right (càglàd). Recall from Section 2 that this space is equipped with the
Skorokhod metric dJ defined in (5). As L2(U,V ) is separable every � ∈ H(U,V )

can also be considered as a random variable � : � → D−([0, T ];L2(U,V )).
The definition of the stochastic integral for arbitrary integrands in the space

H(U,V ) is given by the following result. The assumed approximation by simple
processes is presented in the subsequent Lemma 5.2.

THEOREM 5.1. For every sequence (�n)n∈N ⊆ H0(U,V ) which converges to
some � ∈ H(U,V ) in probability in the Skorokhod metric, that is,

lim
n→∞P

(
dJ (�n,�) ≥ ε

)= 0 for all ε > 0,
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there exists a V -valued, adapted semimartingale (I (�)(t) : t ∈ [0, T ]) with càdlàg
trajectories obeying for each t ∈ [0, T ] and ε > 0

lim
n→∞P

(∥∥I (�n)(t) − I (�)(t)
∥∥≥ ε

)= 0.

The limit I (�) does not depend on the sequence (�n)n∈N, that is, it is unique up
to evanescence.

In this work, we define simple integrands as stochastic processes which equal
a random variable �j on deterministic but not random intervals (tj , tj+1]. This
guarantees that the radonification of the increments J (�j )(t) is well defined by
the approach in Section 4. If the interval (tj , tj+1] were random the integrand �j

would not be independent of L(tj+1)−L(tj ) and this method could not be applied
any more.

Simple integrands defined on random intervals are dense in H(U,V ) with re-
spect to the uniform convergence on [0, T ] in probability, that is, the so-called
ucp convergence. In our case of deterministic partitions, we have to weaken the
topology to the Skorokhod topology.

LEMMA 5.2. For every � ∈ H(U,V ), there exists a sequence (�n)n∈N of sim-
ple stochastic processes �n ∈ H0(U,V ), each defined on a partition (tn,k)k=1,...,n

of the interval [0, T ] with maxj=1,...,n|tn,j+1 − tn,j | → 0 for n → ∞ and with
{�n(t) : t ∈ [0, T ]} in the closure of {�(t) : t ∈ [0, T ]} in V such that

lim
n→∞dJ

(
�n(ω),�(ω)

)= 0 for all ω ∈ �.

PROOF. This follows from the construction of the approximating sequence as
the discretisation in the analogue result for deterministic, càdlàg functions; see, for
example, [20], Lemma VII.6.5. �

PROPOSITION 5.3. Let μ be a continuous cylindrical probability measure on
Z(U) and K be a compact set in L2(U,V ). Then the set {μ ◦ ϕ−1 : ϕ ∈ K} is
relatively compact in the space M1(V ) of probability measures on B(V ).

PROOF. According to [27], Proposition IV.4.2, page 236, there exist a proba-
bility space (�,A,P ) and a cylindrical random variable Z : U → L0

P (�;R) such
that μ is the cylindrical distribution of Z. Then the random variable ϕ(Z) is dis-
tributed according to the probability measure μ ◦ ϕ−1 for each ϕ ∈ K . By [27],
Corollary 1 in I.3.9, p. 52, the set {μ ◦ ϕ−1 : ϕ ∈ K} is relatively compact if and
only if

lim
r→∞ sup

ϕ∈K

P
(∥∥ϕ(Z)

∥∥≥ r
)= 0,(28)

lim
N→∞ sup

ϕ∈K

P

( ∞∑
k=N+1

〈
ϕ(Z),fk

〉2 ≥ r

)
= 0 for each r > 0.(29)
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Recall that (fk)k∈N denotes the orthonormal basis in V . For fixed m and N in N

with N < m and for ϕ ∈ K , define the m − N -dimensional random vector Y :=
(〈ϕ(Z),fN+1〉, . . . , 〈ϕ(Z),fm〉). The characteristic function χY : R

m−N → C of
Y is given for β = (βN+1, . . . , βm) ∈ R

m−N by

χY (β) = E

[
exp

(
i

m∑
k=N+1

βk

〈
ϕ(Z),fk

〉)]= χZ

(
m∑

k=N+1

ϕ∗(βkfk)

)
.

Let ε > 0 be given. The continuity of the characteristic function χZ : U → C im-
plies that there exists a δ > 0 such that∣∣1 − χZ(u)

∣∣≤ ε 1Bδ (u) + 21Bc
δ
(u) ≤ ε + 2

‖u‖2

δ2 for all u ∈ U,(30)

where Bδ := {u ∈ U : ‖u‖ ≤ δ}. By applying [27], Proposition IV.5.2, p. 205, we
obtain for every r > 0 the inequality

P

(
m∑

k=N+1

〈
ϕ(Z),fk

〉2 ≥ r2

)
= PY

(
β ∈ R

m−N : |β| ≥ r
)

(31)

≤ 3
∫
R

m−N

(
1 − χY

(
β

r

))
dγm−N(β),

where γm−N denotes the standard normal distribution on B(Rm−N). Inequality
(30) implies∫
R

m−N

(
1 − χY

(
β

r

))
dγm−N(β)

=
∫
R

m−N

(
1 − χZ

(
1

r

m∑
k=N+1

ϕ∗(βkfk)

))
dγm−N(βN+1, . . . , βm)

≤
∫
R

m−N

(
ε + 2

δ2r2

∥∥∥∥∥
m∑

k=N+1

ϕ∗(βkfk)

∥∥∥∥∥
2)

dγm−N(βN+1, . . . , βm)

= ε + 2

δ2r2

m∑
k=N+1

m∑
�=N+1

〈
ϕ∗(fk), ϕ

∗(f�)
〉 ∫

R
m−N

βkβ� dγm−N(βN+1, . . . , βm)

= ε + 2

δ2r2

m∑
k=N+1

∥∥ϕ∗fk

∥∥2
.

By applying the last estimate to inequality (31), we obtain for every r > 0

sup
ϕ∈K

P

( ∞∑
k=N+1

〈
ϕ(Z),fk

〉2 ≥ r

)
= sup

ϕ∈K

lim
m→∞P

(
m∑

k=N+1

〈
ϕ(Z),fk

〉2 ≥ r

)
(32)

≤ 3ε + 6

δ2r2 sup
ϕ∈K

∞∑
k=N+1

∥∥ϕ∗fk

∥∥2
.
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Since the mapping ϕ �→ ϕ∗ is continuous on L2(U,V ), the set {ϕ∗ : ϕ ∈ K} is
compact in L2(V ,U). Thus, Condition (29) follows from (32) by the characterisa-
tion (4) of the compact set K . Similarly, we conclude for every r > 0 that

P
(∥∥ϕ(Z)

∥∥≥ r
)= lim

m→∞P

(
m∑

k=1

〈
ϕ(Z),fk

〉2 ≥ r2

)
≤ 3ε + 6

δ2r2 sup
ϕ∈K

‖ϕ‖2
L2

.

Thus, Condition (28) follows from boundedness of K , which completes the proof.
�

LEMMA 5.4. If the set {μα : α ∈ J } of infinitely divisible probability measures
μα on B(V ) for an arbitrary index set J is relatively compact in M1(V ), then{

μ∗t1
α1

∗ · · · ∗ μ∗tn
αn

: αi ∈ J, ti ≥ 0, t1 + · · · + tn ≤ T for i = 1, . . . , n, n ∈N
}

is also relatively compact in M1(V ).

PROOF. According to [20], Theorem VI.5.3, p. 187, the set {μα : α ∈ J } of
infinitely divisible probability measures μα with characteristics (aα,Qα, να) is
relatively compact if and only if the following three conditions are satisfied:

(1) the set {aα : α ∈ J } ⊆ V is relatively compact;
(2) the set {να : α ∈ J } restricted to the complement of any neighborhood of

the origin is relatively compact;
(3) the operators Tα : V → V defined by

〈Tαv, v〉 := 〈Qαv, v〉 +
∫
‖h‖≤1

〈v,h〉2να(dh)

satisfy the conditions

(i) sup
α∈J

∞∑
k=1

〈Tαfk, fk〉 < ∞,

(ii) lim
N→∞ sup

α∈J

∞∑
k=N

〈Tαfk, fk〉 = 0.

For αi ∈ J , ti ≥ 0 and t1 +· · ·+ tn ≤ T , the infinitely divisible probability measure
μ∗t1

α1
∗ · · · ∗ μ∗tn

αn
has the characteristics(

n∑
i=1

tiaαi
,

n∑
i=1

tiQαi
,

n∑
i=1

tiναi

)
.

It remains to show that these characteristics satisfy the corresponding Conditions
(1)–(3) above.
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(1) Define the set

D :=
{

n∑
i=1

tiaαi
: αi ∈ J, t1, . . . , tn ≥ 0, t1 + · · · + tn ≤ T ,n ∈ N

}
.

Since the set A := {aα : α ∈ J } is relatively compact, it follows by a theorem of
S. Mazur that the convex hull co(A) of A is relatively compact. Since the mapping

m : [0, T ] × co(A) → V, m(t, v) = tv,

is continuous and D ⊆ m([0, T ] × co(A)), we can conclude that the set D is rela-
tively compact.

(2) Prokhorov’s theorem guarantees that the set {να : α ∈ J } restricted to the
complement of any neighborhood of the origin is tight and uniformly bounded in
total variation norm. Clearly, the same applies to{

n∑
i=1

tiναi
: αi ∈ J, t1, . . . , tn ≥ 0, t1 + · · · + tn ≤ T ,n ∈ N

}
,

and another application of Prokhorov’s theorem shows that this set restricted to the
complement of any neighborhood of the origin is relatively compact.

(3) For every n,N ∈N, one obtains

sup
t1+···+tn≤T

t1,...,tn≥0

sup
α1,...,αn∈J

∞∑
k=N

n∑
i=1

〈tiTαi
fk, fk〉

≤ sup
t1+···+tn≤T

t1,...,tn≥0

n∑
i=1

ti sup
α∈J

∞∑
k=N

〈Tαfk, fk〉

≤ T sup
α∈J

∞∑
k=N

〈Tαfk, fk〉 → 0 as N → ∞.

Analogously, we conclude

sup
t1+···+tn≤T

t1,...,tn≥0

sup
α1,...,αn∈J

∞∑
k=1

n∑
i=1

〈tiTαi
fk, fk〉 ≤ T sup

α∈J

∞∑
k=1

〈Tαfk, fk〉 < ∞.

The proof is complete. �

For the proof of Theorem 5.1, we now introduce an alternative definition of a
stochastic integral Ĩ (�)(t) for simple integrands � . Its definition guarantees that
the integral processes (Ĩ (�n)(t) : t ∈ [0, T ]) for an approximating sequence (�n)

of simple integrands converge uniformly in probability (Proposition 5.6), which
guarantees that its limit has càdlàg trajectories. The original stochastic integral
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I (�n)(t) converges only as a V -valued random variable, that is, at each fixed time
t ∈ [0, T ]; see Theorem 5.1.

For the definition, assume that � ∈ H0(U,V ) is of the form

�(t) = �0 1{0}(t) +
N∑

j=1

�j 1(tj ,tj+1](t) for all t ∈ [0, T ],

where 0 = t1 < · · · < tN+1 = T is a finite sequence of deterministic times and each
�j : � → L2(U,V ) is an F tj -measurable random variable for each j = 0, . . . ,N .

Then we define a V -valued stochastic process (Ĩ (�)(t) : t ∈ [0, T ]) by

Ĩ (�)(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ∈ [0, t2),
k∑

j=1

�j

(
L(tj+1) − L(tj )

)
if t ∈ [tk+1, tk+2), k ∈ {1, . . . ,N − 1},

N∑
j=1

�j

(
L(tj+1) − L(tj )

)
if t = T .

Obviously, Ĩ (�) is an adapted stochastic process in V with càdlàg trajectories.

PROPOSITION 5.5. For every n ∈ N, let �n be a simple stochastic process
in H0(U,V ) defined on a partition {tn,k}k=1,...,Nn+1 and define Gn := {F tn,k

: k =
1, . . . ,Nn + 1}. If {�n : n ∈ N} is tight in M1(D−([0, T ];L2(U,V ))) then{

Ĩ (�n)(τ ) : τ ∈ ϒ(Gn), n ∈ N
}

is tight in V , where ϒ(Gn) = {τ : � → {tn,1, . . . , tn,Nn+1}: is stopping time for Gn}.

PROOF. Each �n is of the form

�n(t) = �n,0 1{0}(t) +
Nn∑
j=1

�n,j 1(tn,j ,tn,j+1](t),

for 0 = tn,1 < · · · < tn,Nn+1 = T and �n,j ∈ L0
P (�,F tn,j

;L2) for each j =
0, . . . ,Nn and n ∈ N. Define for each j = 2, . . . ,Nn + 1 and n ∈ N the F tn,j

-
measurable random variable

Xn,j := �n,j−1
(
L(tn,j ) − L(tn,j−1)

) : � → V,

and choose a regular conditional distribution

Pn,j : B(V ) × � → [0,1], Pn,j (B,ω) = P(Xn,j ∈ B|F tn,j−1)(ω).

Lemma 4.3 guarantees for every v ∈ V that

E
[
exp

(
i〈Xn,j , v〉)|F tn,j−1

]= exp
(
(tn,j − tn,j−1)S

(
�∗

n,j−1v
))

P -a.s.,
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where S : U → C denotes the cylindrical Lévy symbol of L. It follows for P -a.a.
ω ∈ � that

Pn,j (·,ω) = (
λ ◦ (�n,j−1(ω)

)−1)∗(tn,j−tn,j−1),(33)

where λ is the cylindrical distribution of L(1). For τ ∈ ϒ(Gn) introduce the nota-
tion

[τ ](ω) := inf
{
k ∈ {1, . . . ,Nn + 1} : τ(ω) = tn,k

}
.

Define for every stopping time τ ∈ ϒ(Gn) with 2 ≤ [τ ] ≤ Nn + 1 the random
probability measure

Pn(τ) : B(V ) × � → [0,1], Pn(τ ) = Pn,2 ∗ · · · ∗ Pn,[τ ].

Let ε > 0 be given. Since {�n : n ∈ N} is tight, there exists a compact set C ⊆
D−([0, T ];L2(U,V )) such that P(�n ∈ C) ≥ 1 − ε for all n ∈ N. Proposition 1.6
in [9] guarantees that there exists a compact set K ⊆ L2(U,V ) such that {�n ∈
C} ⊆ {�n(t) ∈ K for all t ∈ [0, T ]} for all n ∈ N. Consequently, the set

An := {
�n(t) ∈ K for all t ∈ [0, T ]}= {�n,j ∈ K for all j = 0, . . . ,Nn},

satisfies P(An) ≥ 1 − ε for all n ∈ N. Denoting λϕ := λ ◦ ϕ−1 for every ϕ ∈ K ,
Proposition 5.3 guarantees that the set {λϕ : ϕ ∈ K} of infinitely divisible prob-
ability measures λϕ is relatively compact in M1(V ). Lemma 5.4 yields that the
set

X := {
λ∗s1

ϕ1
∗ · · · ∗ λ∗sn

ϕn
: s1, . . . , sn ≥ 0, s1 + · · · + sn ≤ T ,ϕj ∈ K,n ∈ N

}
is relatively compact in M1(V ). Since (33) implies{

Pn

(
τ(ω)

)
(·,ω) : τ ∈ ϒ(Gn),2 ≤ [τ ] ≤ Nn + 1,ω ∈ An,n ∈ N

}
⊆ {

Pn(k)(·,ω) : k ∈ {2, . . . ,Nn + 1},ω ∈ An,n ∈ N
}

⊆X,

it follows that the set{
Pn(τ) : τ ∈ ϒ(Gn),2 ≤ [τ ] ≤ Nn + 1, n ∈ N

}
of random probability measures is tight. Theorem 3.1 implies that{

Xn,2 + · · · + Xn,[τ ] : τ ∈ ϒ(Gn),2 ≤ [τ ] ≤ Nn + 1, n ∈N
}

is tight which completes the proof. �

PROPOSITION 5.6. For every sequence (�n)n∈N ⊆ H0(U,V ) which con-
verges to some � ∈H(U,V ) in probability in the Skorokhod metric, that is,

lim
n→∞P

(
dJ (�n,�) ≥ ε

)= 0 for all ε > 0,
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there exists a V -valued, adapted stochastic process (I (�)(t) : t ∈ [0, T ]) with
càdlàg trajectories obeying for each ε > 0

lim
n→∞P

(
sup

t∈[0,T ]
∥∥Ĩ (�n)(t) − I (�)(t)

∥∥≥ ε
)

= 0.

The limit I (�) does not depend on the sequence (�n)n∈N, that is, it is unique up
to evanescence.

PROOF. It is sufficient to show for an arbitrary ε > 0 that

lim
m,n→∞P

(
sup

t∈[0,T ]
∥∥Ĩ (�m)(t) − Ĩ (�n)(t)

∥∥> ε
)

= 0.(34)

Recall that the V -valued stochastic process (Ĩ (�m)(t) : t ∈ [0, T ]) has càdlàg
paths due to its definition. Define for each m,n ∈ N the stopping time

τm,n := inf
{
t > 0 : ∥∥Ĩ (�m)(t) − Ĩ (�n)(t)

∥∥> ε
}∧ T ,

where inf{∅} = ∞. By the very definition of τm,n it follows that (34) is satisfied if
and only if

lim
m,n→∞P

(∥∥Ĩ (�m)(τm,n) − Ĩ (�n)(τm,n)
∥∥> ε

)= 0.(35)

In order to establish (35), it is according to Lemma 2.4 in [11] sufficient to show
that {

Ĩ (�m)(τm,n) − Ĩ (�n)(τm,n) : m,n ∈ N
}

is tight in V ;(36)

and that for every v ∈ V we have

lim
m,n→∞

〈
Ĩ (�m)(τm,n) − Ĩ (�n)(τm,n), v

〉= 0 in probability.(37)

By merging the partitions where �m and �n are defined on, we obtain for every
m, n ∈ N and t ∈ [0, T ] the representation

�m(t) − �n(t) = �m,n,0 1{0}(t) +
Nm,n∑
j=1

�m,n,j 1(tm,n,j ,tm,n,j+1](t),

where 0 = tm,n,1 < · · · < tm,n,Nm,n+1 = T is a finite sequence of deterministic
times and �m,n,j : � → L2(U,V ) is an F tm,n,j

-measurable random variable for
each j = 0, . . . ,Nm,n.

In order to establish (36), note that for each m, n ∈ N the stochastic process
(Ĩ (�m − �n)(t) : t ∈ [0, T ]) varies only at points of the partition πm,n := {tm,n,k :
k = 2, . . . ,Nm,n, + 1}. Consequently, the stopping time τm,n only attains values in
πm,n, and thus it follows τm,n ∈ ϒ(Gm,n) for Gm,n := {F tm,n,k

: k = 1, . . . ,Nm,n +
1}. Consequently, one can apply Proposition 5.5 to conclude (36).
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For establishing (37), define for every j = 2, . . . ,Nm,n+1 the V -valued random
variable

Xm,n,j := �m,n,j−1
(
L(tm,n,j ) − L(tm,n,j−1)

) : � → V.

Obviously, we have

Ĩ (�m)(τm,n) − Ĩ (�n)(τm,n) = Xm,n,2 + · · · + Xm,n,[τm,n],(38)

where we use the notation

[τm,n](ω) := inf
{
k ∈ {2, . . . ,Nm,n + 1} : τm,n(ω) = tm,n,k

}
.

Lemma 4.3 implies for all β ∈ R and v ∈ V

Fm,n,j (β) := E
[
eiβ〈Xm,n,j (t),v〉|F tm,n,j−1

]
= exp

(
(tm,n,j − tm,n,j−1)S

(
β�∗

m,n,j−1v
))

, P -a.s.

Consequently, we obtain P -a.s. that

Fm,n(β) :=
[τm,n]∏
j=2

Fm,n,j (β) = exp

([τm,n]∑
j=2

(tm,n,j − tm,n,j−1)S
(
β�∗

m,n,j−1v
))

= exp
(∫ τm,n

0
S
(
β
(
�∗

m(s) − �∗
n(s)

)
v
)
ds

)
.

In order to show Fm,n(β) → 1 in probability for m,n → ∞ we have to show that
each subsequence (Fmk,nk

(β))k∈N has a further subsequence converging to 1 P -
a.s. As dJ (�mk

,�) and dJ (�nk
,�) converge to 0 in probability for k → ∞ there

exists subsequences (dJ (�mk�
,�))�∈N and (dJ (� ′

nk�
,�))�∈N converging to 0 P -

a.s. for � → ∞. It follows that there exists a set �0 ∈A with P(�0) = 1 such that
for each ω ∈ �0 we have that

sup
�∈N

sup
t∈[0,T ]

∥∥�mk�
(t)(ω) − �nk�

(t)(ω)
∥∥
L2

< ∞,(39)

and that there exists a Lebesgue null set Nω ⊆ [0, T ] depending on ω such that

lim
�→∞

∥∥�mk�
(s)(ω) − �nk�

(s)(ω)
∥∥
L2

= 0 for all s ∈ [0, T ] \ Nω.(40)

Lemma 3.2 in [26] guarantees that the cylindrical Lévy symbol S maps bounded
sets to bounded sets. Consequently, we can conclude from Lebesgue’s theorem of
dominated convergence by applying (39) and (40), that

lim
�→∞

∣∣∣∣∫ τmk�
,nk�

(ω)

0
S
(
β
(
�∗

mk�
(s)(ω) − �∗

nk�
(s)(ω)

)
v
)
ds

∣∣∣∣
≤ lim

�→∞

∫ T

0

∣∣S(β(�∗
mk�

(s)(ω) − �∗
nk�

(s)(ω)
)
v
)∣∣ds = 0.



4300 A. JAKUBOWSKI AND M. RIEDLE

Since we considered an arbitrary subsequence, we can conclude that Fm,n(β) →
1 in probability for m,n → ∞ for every β ∈ R. The principle of conditioning,
Theorem 3.2, yields

lim
m,n→∞E

[
exp

(
iβ

[τm,n]∑
j=2

〈Xm,n,j , v〉
)]

= 1 for every β ∈R .

Because of the representation (38), this establishes (37).
Let (�n)n∈N and (� ′

n)n∈N be two sequences converging to � in probability in
the Skorokhod metric dJ and denote by I (�) and I ′(�) the limits of (Ĩ (�n))n∈N
and (Ĩ (� ′

n))n∈N. As in the proof of (37), we can conclude that

lim
n→∞

〈
Ĩ
(
�n − � ′

n

)
(t), v

〉= 0 in probability for all v ∈ V and t ∈ [0, T ],
which shows I (�)(t) = I ′(�)(t) P -a.s. for each t ∈ [0, T ]. Since the stochastic
processes I (�) and I ′(�) have càdlàg paths, it follows that they are indistinguish-
able. �

Combining Lemma 5.2 and Proposition 5.6 enables us to define for every � ∈
H(U,V )

I(�) := lim
n→∞ Ĩ (�n),

where (�n)n∈N is an approximating sequence of simple processes in H0(U,V )

and the limit is in probability in the uniform norm as stated in Proposition 5.6.

PROPOSITION 5.7. If � is in H(U,V ), then the stochastic process (I (�)(t) :
t ∈ [0, T ]) is a semimartingale.

PROOF. Denote by E(V ,V ) the space of all adapted, càglàd, simple processes
with values in L(V ,V ) which are bounded by 1, that is each � ∈ E(V ,V ) is of the
form

�(t) = �0 1{0}(t) +
N∑

k=1

�j 1(sj ,sj+1](t) for all t ∈ [0, T ],(41)

where 0 = s1 < · · · < sN+1 = T is a finite sequence of deterministic times and each
�k : � → L(V ,V ) is an F sk -measurable random variable with ‖�k(ω)‖V →V ≤ 1
for all ω ∈ � and for each k = 0, . . . ,N . The elementary integral is then defined
by ∫ T

0
�(s)I (�)(ds) =

N∑
k=1

�k

(
I(�)(sk+1) − I (�)(sk)

)
.
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Theorem 2.1 in [12] shows that I (�) is a semimartingale if and only{∥∥∥∥∫ T

0
�(s)I (�)(ds)

∥∥∥∥ : � ∈ E(V ,V )

}
is stochastically bounded.(42)

Lemma 5.2 guarantees that there exists a sequence (�n)n∈N of simple processes
in H0(U,V ) converging to � in probability in the Skorokhod metric. As Propo-
sition 5.6 implies that Ĩ (�n)(s) converges to I (�)(s) in probability for all s ∈
[0, T ], it follows that (42) is established by showing{∥∥∥∥∫ T

0
�(s)Ĩ (�n)(ds)

∥∥∥∥ : � ∈ E(V ,V ), n ∈ N

}
(43)

is stochastically bounded. Each �n is of the form

�n(t) = �n,0 1{0}(t) +
Nn∑
�=1

�n,� 1(tn,�,tn,�+1](t) for all t ∈ [0, T ],(44)

for 0 = tn,1 < · · · < tn,Nn+1 = T and �n,� ∈ L0
P (�,F tn,�

;L2) for each � =
1, . . . ,Nn and n ∈ N. For given � ∈ E(V ,V ) of the form (41) and �n ∈
H0(U,V ) of the form (44), we can assume, by possibly enlarging the partition
(tn,�)�=1,...,Nn+1, that for every k ∈ {1, . . . ,N +1} there exists �k ∈ {1, . . . ,Nn +1}
such that sk = tn,�k

. It follows that∫ T

0
�(s)Ĩ (�n)(ds) =

N∑
k=1

�k

(
Ĩ (�n)(sk+1) − Ĩ (�n)(sk)

)

=
N∑

k=1

�k

(�k+1−1∑
�=�k

�n,�

(
L(tn,�+1) − L(tn,�)

))

=
Nn∑
�=1

(
�̃� ◦ �n,�

)(
L(tn,�+1) − L(tn,�)

)
,

where we use the definition

�̃� := �k for every � ∈ {�k, . . . , �k+1 − 1}.
Note, that �̃� is F tn,�

-measurable for all � = 1, . . . ,Nn. Define for each n ∈ N and
� = 2, . . . ,Nn + 1 the F tn,�

-measurable random variable

X�
n,� := (�̃�−1 ◦ �n,�−1)

(
L(tn,�) − L(tn,�−1)

) : � → V.

Obviously, we have∫ T

0
�(s)Ĩ (�n)(ds) = X�

n,2 + · · · + X�
n,Nn+1.
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Choose a regular conditional distribution

P �
n,� : B(V ) × � → [0,1], P �

n,�(B,ω) = P
(
X�

n,� ∈ B|F tn,�−1

)
(ω).

Lemma 4.3 guarantees for every v ∈ V that P -a.s.

E
[
exp

(
i
〈
X�

n,�, v
〉)|F tn,�−1

]= exp
(
(tn,� − tn,�−1)S

(
(�̃�−1 ◦ �n,�−1)

∗v
))

,

where S : U → C denotes the cylindrical Lévy symbol of L. It follows for P -a.a.
ω ∈ �

P �
n,�(·,ω) = (

λ ◦ (�̃�−1(ω) ◦ �n,�−1(ω)
)−1)∗(tn,�−tn,�−1),(45)

where λ is the cylindrical distribution of L(1). Define for every k ∈ {2, . . . ,Nn +1}
the random probability measure

P �
n (k) : B(V ) × � → [0,1], P �

n (k) = P �
n,2 ∗ · · · ∗ P �

n,k.

Let ε > 0 be given. Since {�n : n ∈ N} is tight, we can conclude as in the proof
of Proposition 5.5 by using Proposition 1.6 in [9] that there exists a compact set
K ⊆ L2(U,V ) such that the sets

An : = {�n,� ∈ K for all � = 1, . . . ,Nn},
satisfy P(An) ≥ 1 − ε for all n ∈ N. The ideal property of L2(U,V ) guarantees
that the set

KE := {
ϑ ◦ ψ : ψ ∈ K,ϑ ∈ L(V ,V ) with ‖ϑ‖V →V ≤ 1

}
is a subset of L2(U,V ). Moreover, as K is compact it follows that KE is bounded
and satisfies (4), and thus the closure KE is a compact set in L2(U,V ). De-
noting λσ := λ ◦ σ−1 for every σ ∈ KE , Proposition 5.3 guarantees that the set
{λσ : σ ∈ KE} of infinitely divisible probability measures λσ is relatively compact.
Lemma 5.4 yields that the set

X := {
λ∗s1

σ1
∗ · · · ∗ λ∗sn

σn
: sj ≥ 0, s1 + · · · + sn ≤ T ,

σj ∈ KE , j = 1, . . . , n, n ∈ N
}

is relatively compact. Since (45) implies{
P �

n (k)(·,ω) : k ∈ {2, . . . ,Nn + 1},ω ∈ An,� ∈ E(V ,V ), n ∈ N
}⊆ X,

it follows that the set{
P �

n (k) : k ∈ {2, . . . ,Nn + 1},� ∈ E(V ,V ), n ∈N
}

of random probability measures is tight. Theorem 3.1 implies that{
X�

n,2 + · · · + X�
n,k : k ∈ {2, . . . ,Nn + 1},� ∈ E(V ,V ), n ∈ N

}
is tight which establishes that the set (43) is stochastically bounded. �
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PROOF OF THEOREM 5.1. Let (�n)n∈N be the sequence of simple processes
in H0(U,V ) converging to � in probability in the Skorokhod metric, which exists
due to Lemma 5.2. In particular, {�n(t) : t ∈ [0, T ]} is in the closure of {�(t) : t ∈
[0, T ]} and the partition (tn,j )j=1,...,Nn+1 obeys

lim
n→∞ sup

j=1,...,Nn

|tn,j+1 − tn,j | = 0.(46)

Propositions 5.6 and 5.7 guarantee the existence of the adapted semimartingale
(I (�)(t) : t ∈ [0, T ]) in V obeying

sup
t∈[0,T ]

∥∥Ĩ (�n)(t) − I (�)(t)
∥∥→ 0 in probability.

It remains to show that for each t ∈ [0, T ] the V -valued random variable

�n(t) := I (�n)(t) − Ĩ (�n)(t) : � → V,

converges to 0 in probability for n → ∞. In order to show this, fix some t ∈ (0, T )

and denote by kn the element in {1, . . . ,Nn} such that t ∈ (tn,kn, tn,kn+1] and by
�n,kn the L2(U,V )-valued random variable satisfying �n(t) = �n,kn for all n ∈ N.
Thus, we obtain �n(t) = �n,kn(L(t) − L(tn,kn)) for all n ∈ N.

Choose a regular conditional distribution

Pn : B(V ) × � → [0,1], Pn(B,ω) = P(�n ∈ B|F tn,kn
)(ω).

As in the proof of Proposition 5.5, it follows that {Pn : n ∈ N} is tight. By taking
expectation, we obtain that {�n(t) : n ∈ N} is tight.

Furthermore, Lemma 4.3 implies for every β ∈ R and v ∈ V that P -a.s.

E
[
exp

(
iβ
〈
�n(t), v

〉)|Fn,kn

]= exp
(
(t − tn,kn)S

(
β�∗

n,kn
v
))

,(47)

where S : U → C denotes the cylindrical Lévy symbol of L; see (8). The set
{�∗

n,kn
(ω)v : n ∈ N} is uniformly bounded as �n,kn(ω) is in the closure of

{�(t)(ω) : t ∈ [0, T ]} for every ω ∈ � and the closure of the latter is compact
by Proposition 1.1 in [9]. As S maps bounded sets to bounded sets by Lemma 3.2
in [26], we conclude from (46) and (47) that

lim
n→∞E

[
exp

(
iβ
〈
�n(t), v

〉)|Fn,kn

]= 1 P -a.s. for every β ∈R.(48)

Taking expectation yields 〈�n(t), v〉 → 0 in probability for n → ∞ for all v ∈ V .
Together with tightness of {�n(t) : n ∈ N} it follows from Lemma 2.4 in [11] that
�n(t) → 0 for n → ∞ in probability, which yields

lim
n→∞P

(∥∥I (�n)(t) − I (�)(t)
∥∥≥ ε

)= 0 for every ε > 0.(49)

It remains to show that (49) holds true for each sequence (� ′
n)n∈N in H0(U,V )

converging to � in probability in the Skorokhod metric dJ ; that is, we have to
establish for every t ∈ [0, T ] that

lim
n→∞P

(∥∥I (� ′
n

)
(t) − I (�)(t)

∥∥≥ ε
)= 0 for every ε > 0.(50)
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For this purpose, define for each t ∈ [0, T ] and n ∈ N the V -valued random vari-
able

�′
n(t) := I (�n)(t) − I

(
� ′

n

)
(t) : � → V,

where (�n)n∈N denotes the sequence from above. Because of (49), we can estab-
lish (50) by showing

lim
n→∞P

(∥∥�′
n(t)

∥∥≥ ε
)= 0 for all ε > 0.(51)

In order to establish (51), it is according to Lemma 2.4 in [11] sufficient to show
that {

I (�n)(t) − I
(
� ′

n

)
(t) : n ∈N

}
is tight in V ;(52)

and that for every v ∈ V we have

lim
n→∞

〈
I (�n)(t) − I

(
� ′

n

)
(t), v

〉= 0 in probability.(53)

By merging the partitions where �n and � ′
n are defined, we obtain for every n ∈N

the representation

�n(t) − � ′
n(t) = �n,0 1{0}(t) +

Nn∑
j=1

�n,j 1(tn,j ,tn,j+1](t) for all t ∈ [0, T ],

where 0 = tn,1 < · · · < tn,Nn+1 = T is a finite sequence of deterministic times
and �n,j : � → L2(U,V ) is an F tn,j

-measurable random variable for each j =
0, . . . ,Nn. For a fixed t ∈ (0, T ], we can assume that for every n ∈ N there exists
kn ∈ {2, . . . ,Nn + 1} such that t = tn,kn . Now we can prove (52) and (53) as (36)
and (37) in the proof of Proposition 5.6. �
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