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EXTREMAL EIGENVALUE CORRELATIONS IN THE GUE MINOR
PROCESS AND A LAW OF FRACTIONAL LOGARITHM1

BY ELLIOT PAQUETTE∗,2 AND OFER ZEITOUNI∗,†

The Ohio State University∗ and New York University†

Let λ(N) be the largest eigenvalue of the N ×N GUE matrix which is the
N th element of the GUE minor process, rescaled to converge to the standard
Tracy–Widom distribution. We consider the sequence {λ(N)}N≥1 and prove
a law of fractional logarithm for the lim sup:

lim sup
N→∞

λ(N)

(logN)2/3 =
(

1

4

)2/3
almost surely.

For the lim inf, we prove the weaker result that there are constants c1, c2 > 0
so that

−c1 ≤ lim inf
N→∞

λ(N)

(logN)1/3 ≤ −c2 almost surely.

We conjecture that in fact, c1 = c2 = 41/3.
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1. Introduction. Let Sn =∑n
i=1 Xi be a random walk with i.i.d. increments

of zero mean and unit variance. The celebrated Hartman–Wintner [15] law of the
iterated logarithm (LIL) states that

lim sup
n→∞

Sn√
2n log logn

= 1 almost surely.

(Earlier versions of the LIL for bounded increments were given by Khinchine and
by Kolmogorov.) Since Wn := Sn/

√
n is asymptotically standard normal, the LIL

can be considered as a gauge of the extremal fluctuations of sequence {Wn}.
In this paper, we investigate the analogous question for the largest eigenvalue

of the minor (or corner) process of the Gaussian unitary ensemble (GUE) of ran-
dom matrices. We begin by introducing some notation. Let {Zi,j }∞i,j=1 be a doubly
infinite array of random variables where:

(1) Zi,j for i > j is a complex centered Gaussian of absolute variance 1
2 (that is,

the real and imaginary parts of Zi,j are independent centered Gaussian of variance
1/4),

(2) Zi,i for i ≥ 1 is a centered real Gaussian of variance 1/2,
(3) {Zi,j }i≥j are mutually independent, and
(4) Zi,j = Zj,i for all i, j ≥ 1.

Let λ̃(N) be the largest eigenvalue of the N × N Hermitian matrix GN =
(Zi,j )

N
i,j=1. [The latter is a standard GUE(N) matrix.] Center and scale λ̃(N) by

defining

λ(N) = (λ̃(N) − √
2N
)√

2N1/6.

A fundamental result in random matrix theory, due to Tracy and Widom [29], is the
statement that λ(N) converge in distribution as N → ∞ to a Tracy–Widom vari-
able. We study in this paper the analogue of the LIL for the sequence {λ(N)}N≥1.

The GUE minor process fits within a large class of probability models called
corner processes. Just as the GUE sits at the intersection of two classes of random
matrix models, the complex Wigner matrices and the unitarily invariant ensembles,
the GUE minor process fits at the intersection of two classes of corner processes.

On the Wigner side, one can consider infinite Hermitian arrays of i.i.d. variables,
satisfying the same moment and independence hypotheses as {Zi,j } though with
some other distribution. From the single-N universality principle (see, e.g., [5, 7,
8, 28]), it is natural to expect that Wigner corner processes could display similar
multilevel universality behavior as the GUE minor process. Hence, it is natural to
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conjecture the behavior of the GUE minor process is representative of this entire
class; specifically, we conjecture that the behavior of the upper and lower envelope
of the extremal eigenvalue sequence {λ(N)}N≥1 is the same for any Wigner corner
process, perhaps with adequate moment hypotheses. That is, we conjecture that
Theorems 1.1 and 1.2 below hold for such processes.

On the unitarily invariant side, the GUE minor process is only one among a
class of three classical ensembles, which includes the Laguerre and Jacobi minor
processes (see [11, 12]), and which give rise to a measure on an infinite Gelfand–
Tsetlin pattern. For the Laguerre process, the largest eigenvalue will likely have
similar behavior to the GUE largest eigenvalue, by virtue of sharing the same Airy
process limit (as proven in [12]). However, the smallest eigenvalue of this Laguerre
process, as well as the extremal eigenvalues of the Jacobi minor process, should
exhibit different extremal behavior due to the existence of a hard edge.

Indeed, a natural idealization of the problem we consider here is to study the
largest eigenvalue of the Airy process, a stationary real-valued process on R which
at all fixed points in time is GUE Tracy–Widom distributed. See [9, 12, 17, 25] for
details. This Airy process itself appears as a limit of a large variety of integrable
systems models (see [9] for an overview or [17, 25] for notable examples). In
spirit, the question solved here for the largest eigenvalue of the GUE minor process
has natural adaptations to these integrable models in the Airy process universality
class.

Besides this, we remark there is a sizeable class of integrable probability mea-
sures on Gelfand–Tsetlin patterns that should have related behavior to the sequence
{λ(N)}N≥1. In particular, there is the β-Jacobi corner process of [4] and a host of
other discrete ensembles (see, e.g., [3, 10, 14, 18, 23]).

Among those listed, we have mentioned some nondeterminantal probability
measures. Indeed, a very natural question is to ask about the real symmetric ana-
logue of the GUE minor process, the GOE corner process, which does not have
a joint determinantal structure. We focus on the GUE corner process precisely
because of this joint determinantal structure. However, our technique ultimately
reduces to the study of the joint law of the largest eigenvalues of a matrix X and a
submatrix X′. In principle, such estimates are possible without the aid of determi-
nantal machinery. Moreover, one of our goals here is to create an analysis of the
upper envelope and lower envelope of {λ(N)}N≥1 that requires the simplest pos-
sible random matrix estimates to be made, and which could serve as template of
expected results for the myriad of related models described above.

With that in mind, we turn to formulating our main result. Two ingredients enter
into the proof of the Hartman–Wintner LIL: first, the tail behavior of the sequence
{Wn}n≥1 (in the moderate deviations regime) is Gaussian and second, the corre-
lation between Wn and Wn+m begins to decay only when m is of order n. Both
facts change when one deals with the sequence {λ(N)}; further, because the Tracy–
Widom has differing (and non-Gaussian) behavior in the upper and lower tails,
extremal fluctuations of {λ(N)} are not symmetric.
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Our main result for the upper limit of {λ(N)} is a complete analogue of the
Hartman–Wintner LIL, except that the iterated logarithm is replaced by a fractional
power of the logarithm.

THEOREM 1.1. With notation as above, we have

(1) lim sup
N→∞

λ(N)

(logN)2/3 =
(

1

4

)2/3
almost surely.

For the lower limit of {λ(N)}, we have less precise results.

THEOREM 1.2. There are constants c1, c2 > 0 so that

(2) −c1 ≤ lim inf
N→∞

λ(N)

(logN)1/3 ≤ −c2 almost surely.

That the scaling of the logarithm in Theorems 1.1 and 1.2 should be different
is natural: indeed, for the Tracy–Widom law PTW it is known (see [1], Exercise
3.8.3) that

lim
s→∞

1

s3/2 logPTW
(
(s,∞)

)= −4

3
,

lim
s→∞

1

s3 logPTW
(
(−∞,−s)

)= − 1

12
.

(3)

The different powers of s in the exponent translate eventually to different scalings
for the logarithm.

The proof of Theorems 1.1 and 1.2 relies on the joint determinantal structure
of the eigenvalues of the matrices {GN }N≥1, which we use only for its explicit
description of the joint law of the largest eigenvalues of two of these matrices.
For general background on determinantal point processes, consider [1] or [16]. We
will give at present a very restricted discussion as we only need a few properties
of these processes.

Let � = N×R. We represent the eigenvalues of the sequence of matrices {GN }
as a point process G on � by representing for every N ∈ N the eigenvalues of GN

as points on the line {N}×R. The process G, referred to as the GUE minor process,
is determinantal (with explicit kernel K , see (16), and see also [2, 12, 18]).

Endow � with the product measure of counting measure on N and Lebesgue
measure on R. This kernel (or rather a rescaled version, cf. Section 2.1) gives rise
an operator, which we again call K as an abuse of notation, on L2(�) to itself.
This operator is not trace class. However, if for some finite S ⊂ N, we let π be the
map from L2(S × R) → L2(�) defined by π(f )(n, x) = f (n, x)1{n ∈ S}, then
π∗Kπ is a trace class (and in fact finite rank) operator on L2(S ×R). Hence, the
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Fredholm determinant exists, and in particular we have the essential identity that
for any Borel set U ⊂ S ×R

Pr[G ∩ U = ∅] = det
(
I − π∗

UKπU

)
,

where πU is defined analogously to π (see, e.g., [1], Lemma 3.2.4, for a proof
of this identity). Importantly, we can express the joint cdf of λ(N1) and λ(N2) as
a Fredholm determinant of an operator on L2(R) ⊕ L2(R). Moreover, this is the
only fact about the determinantal process that we will use.

As is the case for the Hartman–Wintner LIL, three ingredients are needed in
proving Theorems 1.1 and 1.2. First, one needs a version of (3) for the distribution
of λ(N), in the form

C1(s)e
−cus3/2 ≤ Pr

(
λ(N) ∈ (s,∞))≤ C2(s)e

−cus3/2
,(4)

C3(s)e
−cls

3 ≤ Pr
(
λ(N) ∈ (−∞,−s

))≤ C4(s)e
−cls

3
,(5)

which are uniform in the range s ∈ [0, (logN)γ ] for appropriate γ , and where
cu = 4/3, cl = 1/12, and | log(Ci(s))| = O(log s).

Second, one argues that there is a subsequence Nk = kα sufficiently sparse (with
α > 1) so that the events

(6) Fk = {λ(Nk) ≥ c1(logNk)
2/3}

and

(7) Ek = {λ(Nk) < −c2(logNk)
1/3}

are approximately independent, that is,

(8) Pr(Fk ∩F	) = Pr(Fk)Pr(F	)
(
1 + o(1)

)
,

with a similar estimate for Ek . This leads to a lower bound for lim supk→∞
(
λ(Nk) ·

(logNk)
−2/3) and to an upper bound for lim infk→∞

(
λ(Nk) · (logNk)

−1/3). Due to

work of [12], we know that the correlations of λ(N) and λ(N+
(N2/3)) are nontrivial
and nondegenerate in the limit. This leads to the choice α = 3 + ε. The challenge
however is to extend the decorrelation to the tail events Fk and Ek .

Third, we must show that along a subsequence Nk = kα with α = 3 − ε, the
behavior of {λ(Nk)}∞k=1 determines the behavior of {λ(N)}∞N=1. In the case of the
lim sup, this means that only finitely many of the events

F ′
k = {∃N : Nk−1 < N < Nk,λ

(N) ≥ (c1 + δ)(logN)2/3}∩Fc
k

occur almost surely. To do this, we must in effect show that

Pr
(
F ′

k

)� Pr(Fk),

which is to say that λ(N) for Nk−1 < N < Nk are highly correlated. This leads
to the upper bound for lim supN→∞ λ(N)(logN)−2/3. In the case of the lim inf,



GUE EXTREMAL EIGENVALUES AND FRACTIONAL LOGARITHM 4117

for which we are unable to prove a sufficiently sharp decorrelation inequality, we
produce a lower bound for the lim inf simply by applying Borel–Cantelli over the
whole sequence (a slight, suboptimal improvement, can be attained easily using
eigenvalue interlacing).

The proof of all three steps rely heavily on the study of the kernel K . The upper
tail (4) is considerably simpler to handle because

Pr(Fk) = det(Id−K|Ik
),

where K|Ik
is the restriction of K to the single interval Ik := {Nk} × (sk,∞),

while the probability in (8) involves restriction of the kernel to two lines. In ei-
ther case, in handling the upper tail one considers situations in which the kernel is
small, and thus tail estimates of the form (4) and (8) follow from standard approx-
imations of the determinant and (known) asymptotic expansion of the Hermite
polynomials. In contrast, for the lower envelope, substantially more work is re-
quired, and the results are not as sharp. The tail estimates (5) cannot be obtained
just from approximation of the kernel K , since one now restricts to the interval
Jk := {Nk} × (−∞,−sk), in which the entries of the kernel are not exponentially
small.

The first step, namely the left tail asymptotics in (5), could be obtained with
some (substantial) effort by the method of [6] used to get similar estimates for
the Laguerre ensemble and strong asymptotics of the limiting Tracy–Widom tail.
Since we were unable to obtain a sharp result in Theorem 1.2, we instead use the
following uniform tail bound:

(9) C−1e−Ct3 ≤ Pr
[
λ(N) ≤ −t

]≤ Ce−t3/C

for an absolute constant C > 0 and all t ≤ N2/3; see [21], Theorem 1.4.
More difficult is the proof of the second step, namely the proof of decorrelation

estimates analogous to (8). For the upper envelope, these decorrelation estimates
are relatively straightforward, and we produce essentially sharp results. For the
lower envelope, the fact that direct estimates on the restriction of the kernel K to Jk

are not sharp enough force us to use a sub-optimal sequence Nk ; using that yields
Theorem 1.2. Even with this nonoptimal subsequence, obtaining the decorrelation
estimate (8) with Ek replacing Fk involves a careful analysis which represents
much of the technical work in this article; we detail the main result in Section 2
below, after we introduce some notation.

Finally, for the proof of the third step, which we only do for the upper enve-
lope, we must essentially show how the kernel K restricted to two lines N1 and
N2 degenerates when those lines are separated by less than N

2/3
1 . A more detailed

overview of the argument is provided in Section 6 below, after introducing nota-
tion.

We conclude this Introduction by noting that working with the optimal sequence
Nk = k3 would allow one to prove the following.
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CONJECTURE 1.3. With notation as above,

lim inf
N→∞

λ(N)

(logN)1/3 = −41/3.

Structure of the paper. In Section 2, we define the kernel K , and we state
the decorrelation and correlation estimates that constitute the main technical work
of the proofs of Theorems 1.1 and 1.2. In Section 3, we prove the upper limit
theorem, Theorem 1.1, and in Section 4 we prove the lower limit theorem, The-
orem 1.2 using these estimates. In Section 5, we give a double contour integral
representation of the kernel K the scaled kernel that is approximated by the Airy
kernel. In Section 6, we prove the correlation inequality Proposition 2.3, assuming
Airy type estimates on the kernel K . In Section 7, we prove these Airy type es-
timates, as well as (4), using an approximate Hankel representation of the kernel
and minimum phase deformations. In Section 8, we prove that the portion of K

corresponding to lines {u1} and {u2} where |u1 − u2| � u
2/3
1 are small, and their

magnitude is controlled by the separation between u1 and u2. This forms the basis
of both decorrelation estimates. In Section 9, we show that the other parts of the
kernel remain bounded for well separated u1 and u2. In Section 10, we give the
proof of the decorrelation estimates, Propositions 2.1 and 2.2.

2. The kernel and decorrelation and correlation estimates. In this section,
we recall the GUE minor kernel and describe our basic decorrelation estimates in
terms of it.

2.1. The kernel. Define the following table of symbols ([12], equations (4.9)-
(4.13)):

φ(u1,u2)(x, y) = 0 if u1 ≥ u2,(10)

φ(u1,u2)(x, y) = 1

(u2 − u1 − 1)!(y − x)u2−u1−11{y > x} if u1 < u2,(11)

j(x) = e−x2
Hj(x) if j ≥ 0,(12)

j(x) = 1

(−j − 1)!
∫ ∞
x

(y − x)−j−1e−y2
dy if j < 0,(13)

Nj = 2j j !√π,(14)

�j(x) = Hj(x)
1

Nj

.(15)

The Hn(x) are the Hermite polynomials normalized so that
∫
R

j(x)�k(x) dx =
δj,k . The GUE minor kernel is given by ([12], equation (4.15))

(16) K(u1, y1;u2, y2) = −φ(u1,u2)(y1, y2) +
u2∑
l=1

u1−l(y1)�u2−l(y2).
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In the case that u1 ≥ u2, this simplifies to be

K(u1, y1;u2, y2) = e−y2
1

u2∑
l=1

Hu1−l(y1)Hu2−l(y2)

Nu2−l

,

which can be identified as the usual GUE kernel when u1 = u2. Note that we must
multiply this kernel by ey2

1/2−y2
2/2 to get the usual self-adjoint GUE kernel, but that

the Fredholm determinants of this kernel coincide with the usual self-adjoint one
as multiplication by ey2

1/2−y2
2/2 is a conjugation of the kernel.

2.2. Decorrelation estimates. Define another kernel

(17) KD(u1, y1;u2, y2) = 1{u1 ≤ u2}K(u1, y1;u2, y2).

It is easily verified that KD induces a determinantal point process GD on �, which
on each line {N} × R is distributed as the N -point GUE and for which {GD ∩
({N} × R)}∞N=1 are mutually independent. These kernels are not properly scaled
to be comparable, however, so we begin by a scaling. We let J be a scaling factor
[see (34)] and let K̃ be given by

K̃(u1, y1;u2, y2) = J (u2, y2)

J (u1, y1)
K(u1, y1;u2, y2) and

K̃D(u1, y1;u2, y2) = J (u2, y2)

J (u1, y1)
KD(u1, y1;u2, y2).

(18)

These scalings do not change the associated Fredholm determinants, and hence the
associated point processes are unchanged.

Define

E(u1, t1;u2, t2) = ∣∣Pr
[
λ(u1) ≥ t1 and λ(u2) ≥ t2

]− Pr
[
λ(u1) ≥ t1

]
Pr
[
λ(u2) ≥ t2

]∣∣,
and observe that E can also be expressed as

E(u1, t1;u2, t2) = ∣∣Pr
[
λ(u1) < t1 and λ(u2) < t2

]− Pr
[
λ(u1) < t1

]
Pr
[
λ(u2) < t2

]∣∣.
Write

I = {u1} × [√2u1 + u
−1/6
1 t1/

√
2,∞)∪ {u2} × [√2u2 + u

−1/6
2 t2/

√
2,∞)

.

Then we have the identity

(19) E(u1, t1;u2, t2) = ∣∣det(I − K̃|I ) − det
(
I − K̃D|I )∣∣.

Hence, by giving pointwise estimates on the kernels and using norm estimates for
the differences of Fredholm determinants, we may in turn estimate E. Our main
decorrelation estimates are the following. For the right tail, we have the following.
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PROPOSITION 2.1. For any R > 0, there are constants C > 0 and u0 > 0
sufficiently large so that for all 0 ≤ t1 ≤ R(logu1)

2/3, all 0 ≤ t2 ≤ R(logu2)
2/3

and all u1 ≥ u2 + u
2/3
2 e(logu1)

2/3 ≥ u0,

∣∣E(u1, t1;u2, t2)
∣∣≤ C

u
1/12
1 u

1/12
2

u
1/2
1 − u

1/2
2

eC(logu1)
5/6− 2

3 (t
3/2
1 +t

3/2
2 ).

Note that up to polynomial factors in t1, e− 2
3 t

3/2
1 ∼ Pr[λ(u1) ≥ t1]1/2. For the left

tail, we get the same bound, although we lose a multiplicative factor.

PROPOSITION 2.2. There are constants C > 0 and u0 > 0 sufficiently large
so that for all 0 ≤ t1 ≤ (logu1)

5/12, all 0 ≤ t2 ≤ (logu2)
5/12 and all u1 ≥ u2 +

u
2/3
2 e(logu1)

2/3 ≥ u0,

∣∣E(u1,−t1;u2,−t2)
∣∣≤ C

u
1/12
1 u

1/12
2

u
1/2
1 − u

1/2
2

eC(logu1)
5/6

.

2.3. Correlation estimate. We also show correlation estimates for λ(ui) when
u

1/3
1 � u2 − u1 � u

2/3
1 . It turns out not to be necessary to show an estimate for

smaller values of u2 − u1, as for those values we can use eigenvalue interlacing.
Define

F(u1, t1;u2, t2) = Pr
[
λ(u1) ≥ t1 and λ(u2) < t2

]
= ∣∣Pr

[
λ(u1) < t1 and λ(u2) < t2

]− Pr
[
λ(u2) < t2

]∣∣.
We seek to show that this is much smaller in order than Pr[λ(u1) > t1]. See Sec-
tion 6 for an overview of the approach.

Our main correlation result is the following.

PROPOSITION 2.3. In what follows, we let �u = u2 −u1 and use u = u1. For
any 0 < β < δ < 1

6 and ε > 0, there is a C > 0 sufficiently large so that:

(1) for all u1, u2 ∈ N with u1/3+δ ≤ �u ≤ u2/3−δ , and
(2) for all t1, t2 ∈ R and 0 ≤ �t ≤ 1 with

ε(logu)2/3 ≤ t2 ≤ t2 + �t ≤ t1 ≤ 1

ε
(logu)2/3,

we have that

F(u1, t1;u2, t2) ≤ C

[
(�u)

u2/3−β
+ Pr

[
Z > �tu1/3/

√
�u
]]

e− 2
3 ((t1)

3/2+t
3/2
2 ),

where Z is a standard normal variable.

The proof is given in Section 6.
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3. Proof of the upper limit, Theorem 1.1.

PROOF OF THEOREM 1.1. Fix α > 3, and define Nk = �kα� for all k ∈ N. Let
c∗ = (1

4)2/3, and for some fixed c < c∗ define

Ek = {λ(Nk) ≥ c(logNk)
2/3}.

Define SN = ∑N
k=1 1{Ek}. We will show that SN → ∞ in probability for suffi-

ciently small c by a second moment calculation, from which it follows that in-
finitely many Ek occur almost surely. Further, we will show that by making α

close to 3, we can take c close to c∗. Hence, we will have shown that

lim sup
N→∞

λ(N)

(logN)2/3 ≥ c∗.

By (4) (proven in Lemma 7.3),

Pr(Ek) = �
(
N

− 4
3 c3/2

k

)= �
(
k−α 4

3 c3/2)
.

Letting β = 4c3/2, which we observe has β < 1,

(20) ESN = �
(
N1−α

β
3 +o(1)).

As for the variance, we have that

Var(SN) = ES2
N − (ESN)2

≤ ESN + 2
N∑

k=1

N∑
	>k

[
Pr(Ek ∩ E	) − Pr(Ek)Pr(E	)

]

= ESN + 2
N∑

k=1

N∑
	>k

E
(
Nk, c(logNk)

2/3;N	, c(logN	)
2/3).

As α > 3, we may apply Proposition 2.1 to get that for any δ > 0
N∑

	>k

E
(
Nk, c(logNk)

2/3;N	, c(logN	)
2/3)= N∑

	>k

O

(
	α/12−β/2kα/12−β/2

	α/2 − kα/2 Nδ

)
.

Divide this sum into those terms 	 < 2k and those terms 	 ≥ 2k. For terms less
than 2k, use that 	α/2 ≥ kα/2 + (α/2 − 1)(	 − k)kα/2−1. For terms 	 ≥ 2k, just use
that 	α/2 − kα/2 = �(	α/2). Hence, we have that

N∑
	>k

	α/12−β/2kα/12−β/2

	α/2 − kα/2 ≤
2k∑

	>k

	α/12−β/2kα/12−β/2

(α/2 − 1)(	 − k)

+
N∑

	>2k

O

(
	α/12−β/2k1−5α/12−β/2

	α/2

)

= O
(
k1−α/3−β logk

)
.
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Hence, applying this to the variance, we have

Var(SN) ≤ ESN + O
(
N2−α/3−β+2δ).

As we may shrink δ to be as small as desired, it suffices to have 2 − α/3 − β <

2 − 2βα/3 in order to have Var(SN) = o((ESN)2). Hence, provided that 4c3/2 =
β < α

2α−3 , we have that Ek occur infinitely often. As we may take α arbitrarily
close to 3, we may make c as close to c∗ as desired.

We now turn to showing that

lim sup
N→∞

λ(N)

(logN)2/3 ≤ c∗.

Fix α < 3 and define Nk = �kα�. Fix δ > 0 to be chosen later, and define Nk =
{Nk − j�N1/3

k � : 0 ≤ j ≤ Nδ
k }. Fix c > c∗ and define

Ek = {∃j ∈ Nk : λ(j) ≥ c(log j)2/3}.
Then from (4) (proved in Lemma 7.3), we have

Pr(Ek) = O
(
N

− 4
3 c3/2+δ

k

)= O
(
k−α( 4

3 c3/2−δ)).
We thus see that for any choice of c > c∗ we can choose α sufficiently close to 3
and δ sufficiently close to 0 that this is summable in k. Hence, by Borel–Cantelli,
only finitely many Ek occur almost surely.

As we wish to bound the lim sup from above, we need to control of λ(n) for all N.
We do this by first extending control to a denser net of N using Proposition 2.3.
Having done so, we will have a sufficiently dense net that we can apply eigenvalue
interlacing to conclude the upper bound for the full sequence.

Define Ak = {Nk − j�N1/3
k � − 	�N1/3+δ

k � : 0 ≤ j ≤ Nδ
k ,0 ≤ 	 ≤ N

1/3−2δ
k } and

define A = ⋃∞
k=1 Ak . We claim that for δ sufficiently small, A has the property

that for all n ∈ N larger than some n0, there is a j ∈ A so that j ≥ n ≥ j − 2n1/3.
On the one hand, the spacing between consecutive elements of Ak is never more
than �N1/3

k �. On the other hand,

minAk = Nk − N
2/3−δ
k + O

(
N

1/3−δ
k

)
.

Hence, by making δ sufficiently small, we have that Nk−1 ≥ minAk for all k large.
Thus, for all n with Nk−1 < n ≤ Nk for k sufficiently large, we have shown that
there is a j ∈ Ak so that j ≥ n ≥ j −�N1/3

k �. Since Nk/Nk−1 → 1, we may bound

�N1/3
k � ≤ 2n1/3 for all k sufficiently large.
We will eventually show that for δ sufficiently small, there are almost surely

only finitely many j ∈ A so that λ(j) > (c + δ)(log j)2/3. First, we will show how
this implies there are only finitely many n ∈ N so that λ(n) > (c + 2δ)(logn)2/3.
Using the property shown above for A, we have that for any n > n0 random, there
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is a j ∈ A with j ≥ n ≥ j − 2n1/3 having λ(j) ≤ (c + δ)(log j)2/3. Recall that the
unscaled eigenvalues satisfy λ̃(n) ≤ λ̃(j), and hence

λ(n) ≤ (
√

2j − √
2n)(

√
2)n1/6 + (c + δ)(log j)2/3

(
n

j

)1/6

≤ (j − n)
n1/6

√
2n1/2

+ (c + δ)
(
log
(
n + (j − n)

))2/3
(

n

j

)1/6

≤ √
2 + (c + δ)

(
log(n) + 2n−2/3)2/3

≤ (c + 2δ)(logn)2/3,

for all n sufficiently large. Thus, if we show that almost surely only finitely many
j ∈A, then we conclude that almost surely

lim sup
n→∞

λ(n)

(logn)2/3 ≤ c + 2δ.

As we may make c as close to c∗ and δ as close to 0 as we wish, this will complete
the proof.

As for the claim about A, we define for any k ∈ N, any j ∈ Nk the set of num-
bers

Uk,j = {j − 	
⌈
N

1/3+δ
k

⌉ : 0 ≤ 	 ≤ ⌊N1/3−2δ
k

⌋}
,

and the event

Ek,j = {∃n ∈ Uk,j : λ(n) > (c + δ)(logn)2/3 and λ(j) ≤ c(log j)2/3}.
We begin by estimating Pr(Ek,j ). To this end, we will do a dyadic decomposition of
Uk,j . Let u∗ = minUk,j and u∗ = maxUk,j . Define n0,	 = u∗ and define n2	,	 = u∗
for all integers 	 ≥ 0. Now define, inductively on 	:

• For all 0 ≤ i ≤ 2	−1, define n2i,	 = ni,	−1.
• For all 0 ≤ i < 2	−1, define n2i+1,	 as a median of Uk,j ∩ (ni,	−1, ni+1,	−1), if

one exists or n2i+2,	 otherwise.

As |Uk,	| ≤ N
1/3
k for all k large, there is a C > 0 so that for all 	 > C logNk and

all 0 ≤ i < 2	−1, n2i+1,	 = n2i+2,	 In particular, we have that

Uk,j ⊆ {n2i+1,	 : 1 ≤ 	 ≤ C logNk,0 ≤ i ≤ 2	−1}.
Set β̄ = 4

3c3/2 > 1
3 . Set t0 = c(log j)2/3 and define t	 = t0 + 	

C logNk
for all 	 > 0.

Then we have the estimate for all k sufficiently large that

Pr(Ek,j ) ≤
�C logNk�∑

	=1

2	−1∑
i=0

Pr
(
λ(n2i+1,	) > t	 and λ(n2i+2,	) ≤ t	−1

)
.
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Applying Proposition 2.3 with β = δ/2,

≤
�C logNk�∑

	=1

2	−1∑
i=0

O

(
n2i+1,	 − n2i+2,	

N
2/3−2.5δ
k

N
−β̄
k

)

≤
�C logNk�∑

	=1

O
(
N

2δ−β̄
k

)

≤ O
(
N

2δ−β̄
k logNk

)
.

Hence, summing over j ∈ Nk we have∑
j∈Nk

Pr(Ek,j ) = O
(
N

3δ−β̄
k

)
.

Hence, for δ sufficiently small, this is summable in k, and the proof is complete.
�

4. Proof of the lower limit, Theorem 1.2. This proof is nearly identical to the
previous one, but with some small numerical changes to account for the differences
in Propositions 2.1 and 2.2.

PROOF. By the Borel–Cantelli lemma, the existence of c1 follows from (9).
The proof is therefore devoted to showing the existence of c2. This proof is nearly
identical to part of the proof of Theorem 1.1. Let α > 6 be fixed, and define Nk =
�kα� for all k ∈N. For some c2 > 0 to be determined, define the event

Ek = {λ(Nk) ≤ −c2(logNk)
1/3}.

Define SN = ∑N
k=1 1{Ek}. We will show that SN → ∞ in probability for suffi-

ciently small c2 by a second moment calculation.
From [21], Theorem 4, there is some β > 0 so that

Pr(Ek) = �
(
N

−βc3
2

k

)= �
(
k−αβc3

2
)
.

Hence, we have that for c2 so that αβc3
2 < 1,

(21) ESN = �
(
N1−αβc3

2
)
.

As for the variance, we have that

Var(SN) ≤ ESN + 2
N∑

k=1

N∑
	>k

[
Pr(Ek ∩ E	) − Pr(Ek)Pr(E	)

]

= ESN + 2
N∑

k=1

N∑
	>k

E
(
Nk,−c2(logNk)

1/3;N	,−c2(logN	)
1/3).



GUE EXTREMAL EIGENVALUES AND FRACTIONAL LOGARITHM 4125

Applying Proposition 2.2, we have that for any δ > 0:

N∑
	>k

E
(
Nk,−c2(logNk)

1/3;N	,−c2(logN	)
1/3)= N∑

	>k

O

(
	α/12kα/12

	α/2 − kα/2 Nδ

)
.

Divide this sum into those terms 	 < 2k and those terms 	 ≥ 2k. For terms less
than 2k, use that 	α/2 ≥ kα/2 + (α/2 − 1)(	 − k)kα/2−1. For terms 	 ≥ 2k, just use
that 	α/2 − kα/2 = �(	α/2). Hence, we have that

N∑
	>k

	α/12kα/12

	α/2 − kα/2 ≤
2k∑

	>k

	α/12k1−5α/12

(α/2 − 1)(	 − k)
+

N∑
	>2k

O

(
	α/12kα/12

	α/2

)

= O
(
k1−α/3 log k

)
.

Hence, applying this to the variance, we have

Var(SN) ≤ ESN + O
(
N2−α/3+2δ).

As we may shrink δ to be as small as desired, it suffices to have 2 − α/3 <

2 − 2αβc3
2 in order to have Var(SN) = o((ESN)2). This requires that βc3

2 < 1.
Conversely, letting c2 be any positive number satisfying αβc3

2 < 1, we have that
SN → ∞ in probability. �

5. Contour integral representations for the kernel. We begin with the fol-
lowing identity for j(x).

LEMMA 5.1. For all integer j ,

j(x) = 2j

√
πi

∫
	
sj es2−2xs ds.

The contour 	 is any vertical line in the complex plane, travelled in the direction
of increasing imaginary part, whose real part is positive.

PROOF. In the case that j ≥ 0, this formula is standard. The case j < 0 follows
from (2) of [19]. �

As for �j(x), we can represent a Hermite polynomial as

Hj(x) = j !
2πi

∮
e−z2+2xz

zj

dz

z
,

where the contour is any that winds once around 0. Thus, we have the representa-
tion

(22) �j(x) = 2−j

2π3/2i

∮
e−z2+2xz

zj

dz

z
.
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Expand (16) by replacing j(x) and �j(x) with Lemma 5.1 and (22). This
gives the representation

φ + K = 2u1−u2

2(πi)2

u2∑
k=1

∮
z2

∫
z1

ez2
1−2z1y1

ez2
2−2z2y2

(
z2

z1

)k z
u1
1

z
u2
2

dz1 dz2

z2
.

Taking the contours so that the z1 and z2 contours do not intersect, and evaluating
the contour integral over z2 first, we see, using the analyticity of the integrand, that
the last expression is not changed if the sum is extended to ∞. Taking the contours
so that |z1| > |z2|, the series is uniformly convergent. As this is a geometric series,
we arrive at the equation:

(23) φ + K = 2u1−u2

2(πi)2

∮
z2

∫
z1

ez2
1−2z1y1

ez2
2−2z2y2

z
u1
1

z
u2
2

dz1 dz2

z1 − z2
.

The z2 integral is taken over a closed loop that winds once around 0, and the z1
integral is taken over a vertical line with real part larger than any part of the z2
contour.

5.1. Contour deformation. At this point, we will deform the contours to be
ỹi -independent, approximate minimum phase contours (see Figure 1). We will use
these contours, or slight deformations of them, for most of our estimates. For ỹi

positive, we will also use more exact ỹi -dependent approximate minimum phase
contours in Section 7.

Fix parameters δ1 > 0 and δ2 > 0 to be determined later (see the proof of
Lemma 8.2). Define the following collection of straight-line contours:

γ1 = u
1/2
1

[
1√
2
,

1√
2

+ δ1√
2
eiπ/3

]
,

γ e
1 = u

1/2
1

(
1√
2

+ δ1√
2
eiπ/3

)
+ iR+,

(24)

FIG. 1. The contours over which we will eventually estimate K(u1, y1;u2, y2), with u1 ≥ u2. The
values of δ1 and δ2 are fixed positive constants determined in the proof of Lemma 8.2.



GUE EXTREMAL EIGENVALUES AND FRACTIONAL LOGARITHM 4127

FIG. 2. The contours γ c
1 , γ c

2 and γ r when u1 ≤ u2; the true picture will be one of these.

γ2 = u
1/2
2

[
1√
2
,

1√
2

+ δ2√
2
ei2π/3

]
,

γ e
2 = u

1/2
2

(
1√
2

+ δ2√
2
ei2π/3

)
+R−.

(25)

Define γ c
1 and γ c

2 to be the piecewise linear contours (see Figure 2):

γ c
1 = γ e

1 ∪ γ1 ∪ γ1 ∪ γ e
1 ,

γ c
2 = γ e

2 ∪ γ2 ∪ γ2 ∪ γ e
2 ,

oriented to have nondecreasing imaginary part. Define

(26) Ko(u1, y1;u2, y2) = 2u1−u2

2(πi)2

∫
γ c

2

∫
γ c

1

ez2
1−2z1y1

ez2
2−2z2y2

z
u1
1

z
u2
2

dz1 dz2

z1 − z2

and, define Ke = K − Ko.
When u1 ≥ u2, it is easily seen that the contours in (23) can be deformed to γ c

1
and γ c

2 respectively, so that Ke = 0. When u1 < u2, we would still like to use the
contours γ c

1 and γ c
2 , however, these contours cross, so that deforming the contours

contributes a nonzero residue. Further, when u1 < u2, we must account for φ. For
the remainder of the section, we assume that u1 < u2.

We will begin by giving a representation of φ which is useful for our purposes.
The contours γ c

1 and γ c
2 intersect at exactly two points, which are conjugates. Let

τ be the intersection point with positive imaginary part. Let γ r be the contour
that follows γ c

2 from τ to τ and which follows the vertical line through τ and τ

outside γ2. Orient γ r to have increasing imaginary part.
Let γ r+ be the portion of γ r below τ and above τ , and let γ r− be the portion of

γ r that follows γ c
2 . By adding a half loop to γ c

1 that connects τ and τ through the
right-most component of C \ γ c

2 , we get the identity:

(27) φ + K − Ko = 1

πi

∫
γ r−

e2z2(y2−y1)

(2z2)u2−u1
dz2.
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We next represent φ as an integral. From the residue theorem, we have that

(28) φ(u1,u2)(y1, y2) = 1{y2 > y1}
2πi

∮
eξ(y2−y1)

ξu2−u1 dξ,

with the contour positively winding once around 0. As we have that u1 < u2, we
can deform this contour to follow γ r .3 Additionally setting ξ = 2z2, we have

(29) φ(u1,u2)(y1, y2) = 1{y2 > y1}
πi

pv
∫
γ r

e2z2(y2−y1)

(2z2)u2−u1
dz2.

Combining (29) and (27), we have the following piecewise representation of Ke

when u1 < u2 − 1:4

(30) Ke(u1, y1;u2, y2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

πi

∫
γ r+

e2z2(y2−y1)

(2z2)u2−u1
dz2, y2 > y1,

1

πi

∫
γ r−

e2z2(y2−y1)

(2z2)u2−u1
dz2, y2 ≤ y1.

5.2. Scaling. Define the scaled variables:

(31) z̃i = 21/2u
−1/6
i zi − u

1/3
i , ỹi = 21/2u

1/6
i yi − 2u

2/3
i .

Substituting these variables into the integrand, we have

u log z + z2 − 2zy = u

2

(
log

u

2
+ 1
)

− √
2uy

+ u

(
log
(
1 + u−1/3z̃

)− u−1/3z̃ + 1

2
u−2/3z̃2 − z̃ỹ

u

)
.

(32)

Define

Gi(z̃i, ỹi) = log
(
1 + u

−1/3
i z̃i

)− u
−1/3
i z̃i + 1

2
u

−2/3
i z̃2

i − z̃i ỹi

ui

and(33)

J (ui, yi) = 2ui exp
(

ui

2

(
log

ui

2
+ 1
)

−√2uiyi

)
,(34)

for i = 1,2 so that we may rewrite (26) as

(35) Ko = 1

2(πi)2

J (u1, y1)

J (u2, y2)

∫∫
eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

dz1 dz2

z1 − z2
.

3In the case u2 = u1 + 1, we must take the principal value at infinity.
4Again, principal values at infinity need to be used if u2 = u1 + 1.
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REMARK 5.2. The Airy kernel limit can be seen from this representation (cf.
Lemma 7.1, where a different representation is used). Taylor expanding the log in
G around z̃ = 0, one sees

(36) uiGi(z̃i , ỹi) = −z̃i ỹi + 1

3
z̃3
i + O

(
u

−1/3
i z̃4

i

)
,

noting the error is uniform in ỹi . On the contours γ1 and γ2, as well as their conju-
gates below the axis, one gets that this error is order z̃4

i = o(u−1
i ). One can argue

that ∫∫
eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

dz1 dz2

z1 − z2
= o(1) +

∫∫
γ2,γ1

ez̃3
2/3−z̃2ỹ2

ez̃3
1/3−z̃1ỹ1

dz1 dz2

z1 − z2
.

The Airy function, meanwhile, has the following representation (see [22], Equa-
tion 9.5.4):

Ai(y) = 1

2πi

∫ ∞eiπ/3

∞e−iπ/3
ez3/3−zy dz,

from which point it can be deduced that the kernel in question converges to the
Airy kernel when u1 and u2 go to infinity with u1 − u2 = o(u

2/3
1 ).

6. Proof of the right tail correlation estimate for u
1/3
1 � u2 − u1 � u

2/3
1 .

6.1. Overview. Throughout this section, we will assume u2 ≥ u1 and write
�u = u2 − u1 and u = u1. Also, introduce the measures μi(dỹi) = dỹi/(

√
2u

1/6
i )

for i = 1,2. Our main goal is to prove Proposition 2.3.
As in (19), the joint probability can be expressed by det(Id−K̃|I ). It is con-

venient to express the kernel Id−K̃|I as a 2 × 2 matrix of kernels. This acts on
vectors of elements of L2(dy1) ⊕ L2(dy2) by first performing matrix multiplica-
tion and then by the usual integration. Define K̃ and φ̃ as

K̃(u1, ỹ1;u2, ỹ2) = J (u2, y2)

J (u1, y1)

(
φ(u1,u2)(y1, y2) + K(u1, y1;u2, y2)

)
,

φ̃(u1, ỹ1;u2, ỹ2) = J (u2, y2)

J (u1, y1)
φ(u1,u2)(y1, y2).

Implicitly, we shift and scale the action of these kernels on the L2 integrating them
against functions in the ỹi coordinates. Hence, the measures on the underlying L2

spaces are now L2(dμ1) ⊕ L2(dμ2). Let πi denote the multiplication operator by
the characteristic function 1{ỹi ≥ ti} for i = 1,2:

Id−K̃|I

←→
[

Id−π1K̃(u1, ·;u1, ·)π1 π1
(
φ̃(u1, ·;u2, ·) − K̃(u1, ·;u2, ·))π2

−π2K̃(u2, ·;u1, ·)π1 Id−π2K̃(u2, ·;u2, ·)π2

]
.

(37)
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As we are only interested in the determinant of this operator, we can sub-
tract an operator multiple of the second row from the first. Working in the case
that π1π2 = π1, we will subtract the left-multiplication of the second row by
π1φ̃(u1, ·;u2, ·) from the first. As all the K̃ terms are nearly the Airy kernel (ex-
plicit estimates are given in Section 7), the differences between the various K̃ will
be smaller in norm than the kernels themselves. Further, φ̃ behaves like an approx-
imation to the identity for a certain nice class of functions. Hence, after doing this
row operation, the matrix of kernels is approximately lower triangular, and its de-
terminant is hence very nearly the determinant of its lower-right block. This allows
us to estimate

F(u1, t1;u2, t2) = ∣∣det(Id−K̃|I ) − det
(
Id−π2K̃(u2, ·;u2, ·)π2

)∣∣.
Let φ denote the operator L2(dμ2) → L2(dμ1) given by

(38) φ[f ](ỹ1) =
∫
R

φ̃(u1, ỹ1;u2, ỹ2)f (ỹ2)μ2(dỹ2).

The exact sense in which φ ≈ Id is given by Lemma 6.1. To prove this, we will
pass to Fourier space, and so we state our Fourier transform conventions. Let F
denote the Fourier transform with the normalization:

F[φ](ξ) = 1

2π

∫
R

e−iξxφ(x) dx.

With this normalization, F has L2(dx) → L2(dx) operator norm (2π)−1/2, and
its inverse carries no factors of π . Define the ‖ · ‖H 2 norm by

‖f ‖H 2 = ∥∥(I − �)f
∥∥
L2(dx),

where � is the 1-dimension Laplacian �f (x) = ∂2
xf (x). Let H 2 denote the cor-

responding subspace of L2 given by taking the closure of the C∞
c functions under

H 2. By considering the Fourier transform, we have that the ‖ · ‖H 2 norm is equiv-
alent to the norm:

f �→ ∥∥f (x)
∥∥
L2(dx) + ∥∥∂xf (x)

∥∥
L2(dx) + ∥∥∂2

xf (x)
∥∥
L2(dx).

Recall that the inverse Laplacian (I − �)−1 operator on L2(dx) can be defined
as the Fourier multiplier operator:

F
[
(I − �)−1f

]
(ξ) = c

1 + ξ2F[f ](ξ)

for some constant c. Alternatively, we can write it in convolution form as

(I − �)−1f = ce−|·| ∗ f

for some other constant c.
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6.2. φ is an approximate identity.

LEMMA 6.1 (Approximate identity estimates for φ). For any 0 < β < δ < 1
6 ,

there is a C > 0 sufficiently large so that for all u1, u2 ∈ N with u1/3+δ ≤ �u ≤
u2/3−δ , the following hold:

(i) For all ỹi ,∣∣φ̃(u1, ỹ1;u2, ỹ2)
∣∣≤ C

√
u exp

(
− �u

Cu2/3 (ỹ1 + ỹ2)

)
.

(ii) For any |ỹi | < uβ , i = 1,2,

∣∣φ̃(u1, ỹ1;u2, ỹ2)
∣∣≤ C

√
u

�u
exp
(
− u2/3

2�u
(ỹ1 − ỹ2)

2
)

+ C exp
(
−(�u)1/3

C

)
.

(iii) For any f ∈ C1(R) supported on [−uβ,∞) with absolutely continuous
derivative f ′,∥∥1{| · | ≤ uβ}(φ[f ](·) − f (·))∥∥L2(μ1)

≤ C
�u

u2/3−β

(‖f ‖L2(μ2)
+ ∥∥f ′∥∥

L2(μ2)
+ ∥∥f ′′∥∥

L2(μ2)

)
.

(iv) For any g ∈ L2(dx) supported on [0,∞),∥∥1{| · | ≤ uβ}(φ − Id)(Id−�)−1[g](·)∥∥L2(μ1)
≤ C

�u

u2/3−β
‖g‖L2(μ2)

.

PROOF. From (24), we have that γ1 and γ2 intersect for all u1 sufficiently
large. Hence, τ is given by

(39) τ =
√

u1 + √
u2

2
√

2
+ i

√
3

2
√

2
(
√

u2 − √
u1).

When y1 ≤ y2, a deformation of the contour in (29) gives

(40) φ̃(u1, ỹ1;u2, ỹ2) = J (u2, y2)

J (u1, y1)

1

πi

∫
�z2=�τ

e2z2(y2−y1)

(2z2)u2−u1
dz2.

Note that in conclusions (ii), (iii) and (iv) of the lemma, we consider |ỹ1| < uβ and
ỹ2 > −uβ . For the yi and the ui that we consider, we have, using that �u ≥ u1/3+δ

in the second inequality,

y1 ≤√2u1 + u
β
1√

2u
1/6
1

≤√2u2 + u
β
1√

2u
1/6
1

− �

(
uδ

1

u
1/6
1

)

≤√2u2 + ỹ2√
2u

1/6
1

= y2.
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Hence, expression (40) always holds for these ỹi . For conclusion (i), the bound
is trivially satisfied in the case y1 > y2, and hence it suffices to consider the case
y1 ≤ y2.

Using the definition (34) of J (ui, yi), we have

(41) φ̃ = exp
(
ξ(u1, ỹ1;u2, ỹ2)

) 1

πi

∫
�z2=�τ

e2i�z2(y2−y1)

(�τ

z2

)u2−u1

dz2,

where

exp
(
ξ(u1, ỹ1;u2, ỹ2)

)= (u2

u1

) u1
2
(

2|�τ |2
eu2

) u1−u2
2

e2�τ(y2−y1)−√
2u2y2+√

2u1y1 .

Expanding these definitions, we have that

(42) ξ(u1, ỹ1;u2, ỹ2) = −
√

u2 − √
u1

2

(
ỹ1

u
1/6
1

+ ỹ2

u
1/6
2

)
+ O

(
(�u)3

u2

)
.

Conclusion (i) of the lemma now follows from bounding the integral in (41) by
absolute value and (42).

We will eventually truncate the integral over γ r+ into |�z2| ≤ R and |�z2| > R,
where R = R(u) to be chosen later satisfies R3�u/u3/2 = O(1). Note that this
implies that R = o(u1/2).

Define ζ(w,u) implicitly by

�u log
(

1 + iw

�τ

)
= i�u

w

�τ
+ �u

2

(
w

�τ

)2
+ ζ(w,u).

Then for each u, ζ(w,u) is analytic in w for all w with �w < �τ and |ζ(w,u)| =
O(�u · |w|3/u3/2) uniformly in |w| ≤ 2R. Note that |�ζ(w,u)| = O(�uw4/u2)

for real w. We use ζ to express (41) as

(43) φ̃ = eξ

π

∫
R

exp
(
−ζ + iw

(
2(y2 − y1) − �u

�τ

)
− �u

2

(
w

�τ

)2)
dw.

Define

(44) H = 2(y2 − y1) − �u

�τ
.

Using the analyticity of the integrand and the polynomial decay of the integrand
as |�w| → ∞, we may make the replacement w �→ w + iH�τ

�u
in (43), provided

H < �u, to get

(45) φ̃ = eξ

π

∫
R

exp
(
−ζ(w + iH, u) − �u

2

(
w

�τ

)2
− (H�τ)2

2�u

)
dw.

We truncate this integral into |w| > R and |w| < R. Let

(46) φ̃R = eξ

π

∫ R

−R
exp
(
−ζ(w + iH, u) − �u

2

(
w

�τ

)2
− (H�τ)2

2�u

)
dw.
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For |H| < R, we have that |ζ(w + iH, u)| = O(�uR3/u3/2) = O(1), giving

φ̃R ≤ exp(ξ + O(1) − (�τH)2

2�u
)

π

∫
R

exp
(
−�u

2

(
w

�τ

)2)
dw

≤ �τ
√

2√
π�u

exp
(
ξ + O(1) − (H�τ)2

2�u

)
.

(47)

Recalling (44), we have

H = 2(y2 − y1) − �u

�τ
= √

2
(

ỹ2

u
1/6
2

− ỹ1

u
1/6
1

)
.

Hence, with |ỹi | < uβ , we have that

H =
√

2

u1/6 (ỹ2 − ỹ1) + O

(
uβ�u

u7/6

)
.

Applying this to (47) and that ξ = O(1) for these ỹi , we have that

(48) φ̃R ≤ �τ√
�u

exp
(
O(1) − u2/3

�u

(ỹ2 − ỹ1)
2

2

)
.

As for the portion of the integral with |w| > R, note that by the definition of ζ ,
we have

�
[
ζ(w + iH, u) + �u

2

(
w

�τ

)2
+ (H�τ)2

2�u

]
= �u log

∣∣∣∣1 + iw −H
�τ

∣∣∣∣.
Hence, we get the pointwise bound:

(49)
∣∣φ̃ − φ̃R

∣∣≤ 2eξ

π

∫ ∞
R

∣∣∣∣1 + iw −H
�τ

∣∣∣∣−�u

dw.

For |ỹi | < uβ , we have |H| = o(1). Hence, for w > 2�τ , the contribution of the
integral is O((2 − o(1))−�u) as long as R < 2�τ . Fix now R = u1/2/(�u)1/3,
which satisfies this condition as well the earlier condition that R3�u/u3/2 = O(1).
For w < 2�τ , we have that∣∣∣∣1 + iw −H

�τ

∣∣∣∣= exp
(
−�

( H
�τ

)
+ w2

2(�τ)2 + O(1)

)
.

Hence, we get that∫ 2�τ

R

∣∣∣∣1 + iw −H
�τ

∣∣∣∣−�u

dw = exp
(
−�

(
R2

u
�u

))
.

Applying this to (49), we conclude that for |ỹi | < uβ

(50)
∣∣φ̃ − φ̃R

∣∣≤ exp
(
−�

(
R2

u
�u

))
= exp

(−�
(
(�u)1/3)).

Together with (47), this gives conclusion (ii) of the lemma.
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We now turn to the proof of conclusion (iii). Here, we will need to pick a dif-
ferent function R(u). Let ζR = ζ(w,u)1{|w| < R}, and define φ̃R,ζ by

(51) φ̃R,ζ (H) = 1

π

∫
R

exp
(
−ζR + iwH− �u

2

(
w

�τ

)2)
dw,

noting we have omitted the eξ from the expression. This has the form of a Fourier
transform of a product of functions evaluated at H. In particular, let us define the
distributions:

U(x) = 2πδ0(x) +F−1[(eζ(·,u) − 1
)
1
{| · | ≤ R

}]
(x),(52)

V (x) =
√

(�τ)2

2π�u
e− (�τ)2

2�u
x2

.(53)

This allows us to rewrite (51) as

(54) φ̃R,ζ = 2F−1[F[U ]F[V ]](H) = 2(U ∗ V )(H).

Let φR,ζ be the operator from L2(μ2) → L2(μ1) with kernel φ̃R,ζ defined in
the same way as in (38).

Let q be a Schwartz function and consider the action of φR,ζ on it. We have that

φR,ζ [q](ỹ1) = 2
∫
R

(U ∗ V )

(√
2ỹ2

u
1/6
2

−
√

2ỹ1

u
1/6
1

)
q(ỹ2)

√
2dỹ2

u
1/6
2

= 2(U ∗ V ∗ q̃)

(√
2ỹ1

u
1/6
1

)
,

where q̃(x) = q(
u

1/6
2√

2
x).

By considering the Fourier transform, we have that

∥∥(V ∗ q̃)(ỹ1) − q̃(ỹ1)
∥∥
L2(dỹ1)

= 1√
2π

∥∥(2πF[V ](x) − 1
)
F[q̃](x)

∥∥
L2(dx)

≤ √
2π

�u

2(�τ)2

∥∥x2F[q̃](x)
∥∥
L2(dx)

= O

(
�u

u

)∥∥q̃ ′′(ỹ1)
∥∥
L2(dỹ1)

.

Hence, by adjusting constants, we have that∥∥∥∥V ∗ q̃

(√
2ỹ1

u
1/6
1

)
− q

(
u

1/6
2 ỹ1

u
1/6
1

)∥∥∥∥
L2(μ1(dỹ1))

=
∥∥∥∥V ∗ q̃

(√
2ỹ1

u
1/6
1

)
− q̃

(√
2ỹ1

u
1/6
1

)∥∥∥∥
L2(μ1(dỹ1))
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= ∥∥V ∗ q̃(x) − q̃(x)
∥∥
L2(dx)

(55)

≤ O

(
�u

u

)∥∥∂2
x q̃(x)

∥∥
L2(dx)

= O

(
�u

u2/3

)∥∥∥∥q ′′
(

u
1/6
2 x√

2

)∥∥∥∥
L2(dx)

= O

(
�u

u2/3

)∥∥q ′′(ỹ2)
∥∥
L2(μ2(dỹ2))

.

Meanwhile, setting α = u
1/6
2

u
1/6
1

so that α − 1 = O(�u/u), we have that for |ỹi | ≤ uβ ,

∥∥∥∥1{|ỹ1| ≤ uβ}∣∣∣∣q(ỹ1) − q

(
u

1/6
2 ỹ1

u
1/6
1

)∣∣∣∣
∥∥∥∥2

L2(μ1(dỹ1))

≤
∫ uβ

−uβ

(∫ αỹ1

ỹ1

q ′(x) dx

)2
μ1(dỹ1)

≤
∫ uβ

−uβ
(α − 1)ỹ1

∫ αỹ1

ỹ1

(
q ′(x)

)2
dx μ1(dỹ1).

Changing the order of integration and estimating,

∥∥∥∥1{|ỹ1| ≤ uβ}∣∣∣∣q(ỹ1) − q

(
u

1/6
2 ỹ1

u
1/6
1

)∣∣∣∣
∥∥∥∥2

L2(μ1(dỹ1))

≤
∫ αuβ

−αuβ

(
q ′(x)

)2 ∫ αx

x
(α − 1)ỹ1μ1(dỹ1) dx

≤
∫ αuβ

−αuβ
O(α − 1)2x2(q ′(x)

)2
μ1(dx)

≤ O

(
�u

u1−β

)2∥∥q ′(ỹ2)
∥∥2
L2(dμ2)

.

(56)

Finally, as we have that (�u)R4/u2 = o(1) it follows that
∥∥((U − 2πδ0) ∗ q

)
(x)
∥∥
L2(dx) = ∥∥(eζ(x,u) − 1

)
1{|x| ≤ R}F[q](x)

∥∥
L2(dx)

≤ O

(
�uR4

u2

)∥∥F[q](x)
∥∥
L2(dx)

= O

(
�uR4

u2

)∥∥q(x)
∥∥
L2(dx).
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We will take R = u1/2+δ/4/
√

�u, so that

∥∥((U − 2πδ0) ∗ q
)
(x)
∥∥
L2(dx) = O

(
uδ

�u

)∥∥q(x)
∥∥
L2(dx)

= O

(
�u

u2/3

)∥∥q(x)
∥∥
L2(dx).

(57)

Combining (55), (56) and (57), we have that for all q in H 2,
∥∥1{| · | ≤ uβ}|φR,ζ [q](·) − q(·)|∥∥L2(dμ1)

≤ O

(
�u

u2/3

)(‖q‖L2(dμ2)
+ ∥∥q ′∥∥

L2(dμ2)
+ ∥∥q ′′∥∥

L2(dμ2)

)
.

(58)

We now proceed to compare the action of φ̃R,ζ with that of φ̃. Following a
similar progression as taken in deriving (50) from (49), we have uniformly in ỹi

that

∣∣e−ξ φ̃ − φ̃R,ζ
∣∣≤ 1

π

∫ ∞
R

∣∣∣∣1 + iw

�τ

∣∣∣∣−�u

dw

≤ exp
(
−�

(
R2

u
�u

))
= exp

(−�
(
uδ/2)).

In particular, we can use this pointwise bound to give an estimate on the Hilbert–
Schmidt norm of the difference of these kernels restricted to ỹi > −uβ by∫∫

ỹi>−uβ

∣∣φ̃(u1, ỹ1;u2, ỹ2) − eξ(u1,ỹ1;u2,ỹ2)φ̃R,ζ (u1, ỹ1;u2, ỹ2)
∣∣2

× μ1(dỹ1)μ2(dỹ2)

≤ e−�(uδ/2)
∥∥1{ỹi > −uβ, i = 1,2

}
eξ(u1,ỹ1;u2,ỹ2)

∥∥2
L2(μ1(ỹ1)×μ2(ỹ2))

≤ e−�(uδ/2)eO(logu).

(59)

Define

ξ2(ỹ2) = −
√

u2 − √
u1

2

ỹ2

u
1/6
2

,

and let ξ1(ỹ1) = ξ(u1, ỹ1;u2, ỹ2) − ξ2(ỹ2), noting that the right-hand side is inde-
pendent of ỹ2.

By (59), we have that for any q ∈ L2(μ1) supported on [−uβ,∞):

(60)
∥∥φ[q](·) − eξ1(·)φR,ζ [eξ2(·)q

]
(·)∥∥L2(dμ1)

≤ e−�(uδ/2)‖q‖L2(dμ2)
.
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For |ỹ1| < uβ , |ξ1(ỹ1)| = O(1). Combining this observation with (58), we get∥∥eξ1(ỹ1)1
{|ỹ1| ≤ uβ}(φR,ζ [eξ2(·)q

]
(ỹ1) − eξ2(ỹ1)q(ỹ1)

)∥∥
L2(μ1(dỹ1))

≤ eO(1)
∥∥1{|ỹ1| ≤ uβ}(φR,ζ [eξ2q

]
(ỹ1) − eξ2(ỹ1)q(ỹ1)

)∥∥
L2(μ1(dỹ1))

≤ O

(
�u

u5/6

)∥∥eξ2q
∥∥
H 2 .

(61)

Observe that for q supported on [−uβ,∞), we have that ‖eξ2(x)q(x)‖H 2 =
O(1)‖q(x)‖H 2 .

It remains to compare q with eξ2q . Using that ξ2(ỹ1) = o(1) for |ỹ1| < uβ , there
is a constant C > 0 so that for all these ỹi , |eξ2(ỹ1) − 1| ≤ C �u

u2/3 |ỹ1|. Hence,

(62)
∥∥1{|ỹ1| ≤ uβ}(eξ2(ỹ1) − 1

)
q(ỹ1)

∥∥
L2(μ1(dỹ1))

≤ O

(
�u

u2/3−β

)
‖q‖L2(μ1)

.

Combining (62), (61) and (60), conclusion (iii) follows.
For conclusion (iv), note that this does not directly follow from (iii), as f =

(Id−�)−1g generally has full support. However, for g that is supported on [0,∞),
f will be exponentially small on (−∞,−uβ], and so the conclusion will follow
from this and (i).

To this end, let ρ ∈ C∞ be an increasing function that is 0 on (−∞,−uβ] and
1 on [−uβ + 1,∞). Then by (iii), we have

(63)
∥∥1{| · | ≤ uβ}(φ − Id)[ρf ](·)∥∥L2(μ1)

≤ C
�u

u2/3−β
‖g‖L2(μ2)

.

On the other hand,

sup
ỹ2∈R

∣∣(1 − ρ)(ỹ2)f (ỹ2)
∣∣≤ sup

ỹ2≤−uβ+1

∣∣f (ỹ2)
∣∣

≤ sup
ỹ2≤−uβ+1

c

∫
R

e−|ỹ2−w̃|∣∣g(w̃)
∣∣dw̃

≤ O
(
e−uβ/2) sup

ỹ2≤−uβ+1
c

∫
R

e−|ỹ2−w̃|/2∣∣g(w̃)
∣∣dw̃

= O
(
e−uβ/2)‖g‖L2,

(64)

where in the last step we have applied Hölder’s inequality. Hence, by conclusion
(i) and (64), we conclude

(65)
∥∥1{| · | ≤ uβ}(φ − Id)

[
(1 − ρ)f

]
(·)∥∥L2(μ1)

= eO(logu)−uβ/2‖g‖L2(μ2)
.

Combining (63) and (65), the conclusion follows. �
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6.3. Proof of correlation proposition.

PROOF OF PROPOSITION 2.3. The domain I is given in ỹi coordinates by

I = {u1} × [t1,∞) ∪ {u2} × [t2,∞).

Define a new domain I ′ by

I ′ = {u1} × [t1, uβ/2
]∪ {u2} × [t2,∞).

Then we have that∣∣det(Id−K̃I ) − det(Id−K̃I ′)
∣∣≤ Pr

[
λ(u1) ≥ uβ/2

]
= O

(
e−�(u3β/2)).

As the bound we produce on F(u1, t1;u2, t2) for the range of ti , we consider de-
cays no faster than some power of u, we may instead consider bounding:

F(u1, t1;u2, t2)
′ = ∣∣det(Id−K̃I ′) − Pr

[
λ(u2) ≥ t2

]∣∣.
Recall (37). Subtract a left multiple π ′

1φ of the second row from the first, and
then apply the Schur complement formula. This gives the identity:

(66) det(Id−K̃I ′) = det
(
Id−π2K̃(u2, ·;u2, ·)π2

)
det(Id−D1 + D2RM),

where the operators D1 : L2(μ1) → L2(μ1), D2 : L2(μ2) → L2(μ1), M :
L2(μ1) → L2(μ2) and R : L2(μ2) → L2(μ2) are given by

D1 = π ′
1
(
φπ2K̃(u2, ·;u1, ·) − K̃(u1, ·;u1, ·))π ′

1,

D2 = π ′
1
(
φπ2K̃(u2, ·;u2, ·) − K̃(u1, ·;u2, ·))π2,

M = π2K̃(u2, ·;u1, ·)π ′
1,

R = (Id−π2K̃(u2, ·;u2, ·)π2
)−1

.

As a consequence, we may bound

F(u1, t1;u2, t2)
′ ≤ Pr

[
λ(u2) ≥ t2

]∣∣det(Id−D1 + D2RM) − 1
∣∣,

and so we turn to estimating the difference of this determinant with 1.
Let ‖ · ‖ν denote the nuclear norm. For any nuclear operators A and B ,∣∣det(Id+A) − det(Id+B)

∣∣≤ ‖A − B‖νe
1+‖A‖ν+‖B‖ν

(see [26], (3.7)). Hence, we have the bound

(67)
∣∣det(Id−D1 + D2RM) − 1

∣∣= O
(‖D1‖ν + ‖D2‖ν‖R‖op‖M‖ν

)
,

provided the ‖−D1 + D2RM‖ν is uniformly bounded. Here, we have used the
Hölder inequality for Schatten norms and the bound ‖ · ‖op ≤ ‖ · ‖ν .



GUE EXTREMAL EIGENVALUES AND FRACTIONAL LOGARITHM 4139

For R, from Lemma 7.1, we have ‖M3‖ν = O(e− 4
3 (t2)

3/2
), and hence

‖R‖op ≤ 1

1 − ‖π2K̃(u2, ·;u2, ·)π2‖op

≤ 1

1 − ‖π2K̃(u2, ·;u2, ·)π2‖ν

(68)

≤ 1 + O
(
e− 4

3 (t2)
3/2)

.

For M, from Lemma 7.1, we have

(69) ‖M‖ν = O
(
e− 2

3 ((t1)
3/2+(t2)

3/2)).
The main work is to estimate the nuclear norms of D1 and D2. We give the proof

for D1. The proof for D2 follows from an identical argument. We begin by writing

D1 = D′
1 + π ′

1
(
K̃(u2, ·;u1, ·) − K̃(u1, ·;u1, ·))π ′

1,

where

D′
1 = π ′

1(φ − Id)π2K̃(u2, ·;u1, ·)π ′
1.

Then by Lemma 7.2, we have

(70)
∥∥D1 − D′

1
∥∥
ν = O

(
e− 4

3 (t1)
3/2)

.

Let ρ ∈ C∞ be an increasing function which is 0 on (−∞, t2 − 1] and which is
1 on [t2,∞). We can clearly choose ρ so that its derivatives are bounded indepen-
dently of t2. We now divide D′

1 = D′′
1 + D′′′

1 where

D′′
1 = π ′

1(φ − Id)ρK̃(u2, ·;u1, ·)π ′
1,

D′′′
1 = π ′

1(φ − Id)(π2 − ρ)K̃(u2, ·;u1, ·)π ′
1.

For D′′
1, we begin by applying Lemma 6.1, part (iv), to conclude that

∥∥D′′
1
∥∥
ν ≤ C

�u

u2/3−β

∥∥(Id−�)ρK̃(u2, ·;u1, ·)π ′
1
∥∥
ν.

Applying Lemma 7.1 and using the boundedness of the derivatives of ρ, we have

(71)
∥∥D′′

1
∥∥
ν ≤ C

�u

u2/3−β
e− 2

3 ((t1)
3/2+(t2)

3/2).

Define π ′
2 to be the restriction operator to the interval [t2 − 1, t2], and note that

π ′
2(π2 −ρ) = π2 −ρ = (π2 −ρ)π ′

2. Also observe that π ′
1(π2 −ρ) = 0. Hence, we

may write ∥∥D′′′
1
∥∥
ν = ∥∥π ′

1φ(π2 − ρ)K̃(u2, ·;u1, ·)π ′
1
∥∥
ν

≤ ∥∥π ′
1φπ ′

2
∥∥

op

∥∥(π2 − ρ)
∥∥

op

∥∥π ′
2K̃(u2, ·;u1, ·)π ′

1
∥∥
ν.

(72)
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The operator norm of π2 − ρ is at most 1, and the nuclear norm of the K̃ term can
be controlled using Lemma 7.1. It just remains to estimate the operator norm of
π ′

1φπ ′
2.

By Lemma 6.1, part (ii), we have a pointwise estimate on the kernel of π ′
1φπ2,

given by

∣∣φ̃(u1, ỹ1;u2, ỹ2)
∣∣≤ C

√
u

�u
exp
(
− u2/3

2�u
(ỹ1 − ỹ2)

2
)

+ C exp
(
−(�u)1/3

C

)
.

As we are working on a domain of ỹi for which |ỹi | < uβ , the contribution of
the O(e−�((�u)1/3)) term to the operator norm of π ′

1φπ ′
2 is still O(e−�((�u)1/3)),

which can be seen by computing a Hilbert–Schmidt norm. Hence, we can estimate∥∥π ′
1φπ ′

2[f ]∥∥L2 ≤ C
∥∥φ′[|f |]∥∥L2 + O

(
e−�((�u)1/3))‖f ‖L2,

where φ′ is the convolution operator

φ′[f ] =
√

u2/3

2π�u
e− u2/3

2�u
(·)2

1{· ≥ t1 − t2} ∗ f.

By Young’s inequality, the L2 → L2 operator norm of φ′ is just given by its L1

norm. Hence, ∥∥φ′∥∥
op ≤ Pr

[
Z > u1/3(�u)−1/2�t

]
,

where Z is a standard normal variable. Hence, we have shown that

(73)
∥∥π ′

1φπ ′
2
∥∥

op ≤ C Pr
[
Z > u1/3(�u)−1/2�t

]+ O
(
e−�((�u)1/3)).

Combining this equation with (72), (71) and (70), we have

‖D1‖ν ≤ C

[
�u

u2/3−β
+ Pr

[
Z > u1/3(�u)−1/2�t

]]
e− 2

3 ((t1)
3/2+(t2)

3/2).

The same argument shows the same bound for D2. Hence, combining these bounds
with (67), (68) and (69), the proof is complete. �

7. Sharp uniform estimates of K̃ in the right tail. In this section, we give
some sharp estimates relevant to the right tail of the largest eigenvalue distribution.
Our first estimate is a bound on the nuclear norm of the derivatives of K̃ . In the
case u1 = u2, these are standard, and the bound here is a small extension of them.

LEMMA 7.1. For each δ > 0 and for each integer 	 ≥ 0, there is a constant
C > 0 so that for all u1, u2 ∈ N satisfying |u2 −u1| = O(u

2/3−δ
1 ), and all t1, t2 > 1,∥∥∥∥π1∂

	
ỹ1

K̃(u1, ỹ1;u2, ỹ2)√
2u

1/6
2

π2

∥∥∥∥
ν

≤ Ct	1ξ ′(u1, t1)ξ
′(u2, t2),

where

ξ ′(ui, ti) = C
(
e− 2

3 t
3/2
i + e−u

1/12
i ti/C).
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The second bound is a quantitative convergence of K̃ to the Airy kernel. Again,
such bounds have been proven in the diagonal case.

LEMMA 7.2. For each δ > 0 and for each integer 	 ≥ 0, there is a constant
C > 0 so that for all u1, u2 ∈ N satisfying |u2 −u1| = O(u

2/3−δ
1 ), and all t1, t2 > 1,∥∥∥∥π1

K̃(u1, ·;u2, ·)√
2u

1/6
2

π2 − π1K̃Airy(u1, ·;u2, ·)π2

∥∥∥∥
ν

≤ C

(
(logu1)

8

u
1/3
1

e− 2
3 ((t1)

3/2+(t2)
3/2) + e−(logu1)

2/C

)
.

The work done for proving Lemmas 7.1 and 7.2 will allow us to give a quick
proof of the following uniform tail bounds for the largest eigenvalue of GUE; these
imply (4).

LEMMA 7.3. There are constants C > 0 and δ > 0 so that for all 1 ≤ t ≤
δu1/6 and all u ∈ N,

1

C
t−3/2e− 4

3 t3/2 ≤ Pr
[
λ(u) > t

]≤ Ct−3/2e− 4
3 t3/2

.

We note that Lemma 7.3 could also be deduced from the uniform Plancherel–
Rotach asymptotics for Hermite polynomials contained in [27, 30]. For complete-
ness, we provide a self-contained proof of the lemma at the end of this section.

Our proofs in this section are based on a different representation of K̃ than the
double-contour integral formulae used in Section 5. Recall from (23) that we have
the representation for φ + K :

(φ + K)(u1, y1;u2, y2) = 2u1−u2

2(πi)2

∮ ∫
ez2

1−2z1y1

ez2
2−2z2y2

z
u1
1

z
u2
2

dz1 dz2

z1 − z2

= 2u1−u2

(πi)2

∮ ∫ ∫ ∞
0

ez2
1−2z1(y1+w)

ez2
2−2z2(y2+w)

z
u1
1

z
u2
2

dw dz1 dz2

= 2u1−u2

(πi)2

∫ ∞
0

∮ ∫
ez2

1−2z1(y1+w)

ez2
2−2z2(y2+w)

z
u1
1

z
u2
2

dz1 dz2 dw.

We now scale the w variable, introducing w̃ = √
2u

1/6
1 w. We also recall the nota-

tion Gi(z̃i, ỹi) used in (33). In terms of these variables, we have

(φ + K)(u1, y1;u2, y2)

= J (u1, y1)

J (u2, y2)

1

(πi)2

∫ ∞
0

∮ ∫
eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

e−2z1w

e−2z2w
dz1 dz2 dw

= J (u1, y1)

J (u2, y2)

1

(πi)2

∫ ∞
0

∮ ∫
eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

e−(z̃1+u
1/3
1 )w̃ dz1 dz2 dw

e−(z̃2+u
1/3
2 )u

−1/6
1 u

1/6
2 w̃

.
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Hence, changing the integration to be over w̃, we arrive at the following expres-
sion for K̃ :

(74)
K̃(u1, ỹ1;u2, ỹ2)√

2u
1/6
2

= 1

(2πi)2

∫ ∞
0

∮
z2

∫
z1

eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

e−z̃1w̃ dz̃1 dz̃2 dw̃

e−z̃2w̃+ξ2(z̃2,w̃,u1,u2)
,

where

(75) ξ2(z̃1, w̃, u1, u2) = −z̃2w̃
(
u

1/6
2 u

−1/6
1 − 1

)+ (u1/3
1 − u

1/2
2 u

−1/6
1

)
w̃.

Recalling that uiGi(z̃i , ỹi) − z̃i w̃ = uiGi(z̃i , ỹi + w̃), we define

K̃1(ỹ1, w̃) = 1{w̃ ≥ 0}
2πi

∫
γ̃1

eu1G1(z̃1,ỹ1+w̃) dz̃1,

K̃2(w̃, ỹ2) = 1{w̃ ≥ 0}
2πi

∫
γ̃2

e−u2G2(z̃2,ỹ2+w̃)eξ2(z̃2,w̃,u1,u2) dz̃2.

The γ̃1 contour is any vertical line for which �z̃1 > −u
1/3
1 , and the γ̃2 contour is

any closed loop that encloses −u
1/3
2 . Let K1 and K2 be the corresponding operators

from L2(dx) → L2(dx), so that (74) becomes K/(
√

2u
1/6
2 ) = K1 · K2.

The estimates in this section all in a sense rely on precise comparison between
K̃i and an Airy function. Recall that the Airy kernel has the representation:

(76) KAiry(ỹ1, ỹ2) =
∫ ∞

0
Ai(ỹ1 + w̃)Ai(ỹ2 + w̃) dw̃.

Let Ai be the operator with kernel A(x, y) = Ai(x + y)1{y ≥ 0}. Then A has the
representation:

A(ỹ1, w̃) = Ai(ỹ1 + w̃) = 1{w̃ ≥ 0}
2πi

∫ ∞eiπ/3

∞e−iπ/3
ez̃3

1/3−z̃1(ỹ1+w̃) dz̃1.

The minimum phase contour for this integral is given by the hyperbola h̃1:

−(�z̃1)
2

3
+ (�z̃1)

2 = ỹ1 + w̃

which is asymptotic to the contour used to define Ai as z̃1 → ∞. On this contour,
we have

�(z̃3
1/3 − z̃1(ỹ1 + w̃)

)
= −(ỹ1 + w̃ + (�z̃1)

2/3
)1/2

(
2(ỹ1 + w̃)

3
+ 8(�z̃1)

2

9

)

≤ −2(ỹ1 + w̃)3/2

3
− 8(�z̃1)

2(ỹ1 + w̃)1/2

9
.

(77)
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We will essentially use h̃1 to represent K̃1. However, this is a poor choice of
contour for large values of z̃1. Hence, let R be a truncation parameter to be deter-
mined later, and let h̃R

1 be the portion of this contour with imaginary part at most
R in absolute value. Define

A(ỹ1, w̃)R = 1{w̃ ≥ 0}
2πi

∫
h̃R

1

ez̃3
1/3−z̃1(ỹ1+w̃) dz̃1.

We will parameterize h̃1 by its imaginary part, noting the arc length differential is
uniformly bounded in this parameterization, so that

∣∣A(ỹ1, w̃) − A(ỹ1, w̃)R
∣∣≤ O(1)

∫ ∞
R

e− 2(ỹ1+w̃)3/2

3 − 8t2(ỹ1+w̃)1/2

9 dt

≤ O(1)

(ỹ1 + w̃)1/4 e− 2(ỹ1+w̃)3/2

3 − 8R2(ỹ1+w̃)1/2

9 .

(78)

Turning to K̃1, we define a contour h̃e
1 by extending h̃R

1 to ±i∞ by vertical
lines. We deform the integral in the definition of K̃1 to be over h̃e

1:

(79) K̃1(ỹ1, w̃) = 1{w̃ ≥ 0}
2πi

∫
h̃e

1

eu1G1(z̃1,ỹ1+w̃) dz̃1

and we define

K̃R
1 (ỹ1, w̃) = 1{w̃ ≥ 0}

2πi

∫
h̃R

1

eu1G1(z̃1,ỹ1+w̃) dz̃1.

We will need some estimates which are useful for large values of z̃1 to control
the difference of K̃1 and K̃R

1 . To this end, let

(80) F(z) = �[log(1 + z) − z + z2/2
]
,

so that ui�(Gi(z̃i , ỹi)) = uiF (u
−1/3
i z̃i ) − z̃i ỹi . In Cartesian coordinates, we have

(81) F(x + iy) = 1

2
log
(
(1 + x)2 + y2)− x + x2

2
− y2

2
.

We estimate F(x + iy), for x > 0 by

F(x + iy) = 1

2
log
(
(1 + x)2)+ 1

2
log
(

1 + y2

(1 + x)2

)
− x + x2

2
− y2

2

≤ y2

2

(
1

(1 + x)2 − 1
)

(82)

≤ − xy2

1 + x
.
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The real parts of the endpoints of h̃R
1 , are at least R/

√
3. Hence, on the vertical

portions of the h̃e
1, by (82), we have

u1�(G1(z̃1, ỹ1)
)≤ − R(�z̃1)

2

1 + Ru
−1/3
1

− Rỹ1/
√

3.

Ergo

∣∣K̃1(ỹ1, w̃) − K̃R
1 (ỹ1, w̃)

∣∣≤ O(1)

∫ ∞
R

e−u1�(G1(z̃1,ỹ1+w̃)) d(�z̃1)

= O
(
R−1/2)e−�(R3)−R(ỹ1+w̃)/

√
3,

(83)

provided we have R = O(u
1/3
1 ).

For K̃2, we begin by representing the Airy function using a rotated contour:

A(w̃, ỹ2)
∗ = Ai(ỹ2 + w̃) = 1{w̃ ≥ 0}

2πi

∫ ∞ei2π/3

∞e−i2π/3
e−z̃3

2/3+z̃2(ỹ2+w̃) dz̃2.

Once again, the minimum phase contour for this integral is given by a hyperbola
h̃2 satisfying the same equation:

−(�z̃2)
2

3
+ (�z̃2)

2 = ỹ2 + w̃,

although we now take the branch opening to the left. Letting h̃R
2 be the portion of

the hyperbola with imaginary part at most R and defining A(w̃, ỹ2)
∗R to be the

restriction of the integral to h̃R
2 , we get exactly the same bound as (78):

(84)
∣∣A(ỹ1, w̃)∗ − A(ỹ1, w̃)∗R

∣∣≤ O(1)

(ỹ1 + w̃)1/4 e− 2(ỹ1+w̃)3/2

3 − 8R2(ỹ1+w̃)1/2

9 .

Define a contour h̃e
2 that extends h̃R

2 first along a vertical line and then along

the circle S̃, given by |1 + u
−1/3
2 z̃2| = 1 − u

−1/3
2 (see Figure 3). On S̃, we have

�z̃2 ≤ −1. Provided we take R = o(u
1/3
2 ), this is well defined.

For F , we get from (80) or (81) that for z̃2 on this circle,

(85) F
(
u

−1/3
2 z̃2

)= log
(
1 − u

−1/3
2

)− (1 − u
−1/3
2 )2 − 1

2
= O

(
u−1

2

)
.

Hence, we have

(86) −u2�(G2(z̃2, ỹ2)
)= O(1) + z̃2ỹ2 ≤ O(1) − ỹ2.

By (85), and the max-modulus principle, we have for z̃2 ∈ h̃e
2 \ h̃R

2

−u2�(G2(z̃2, ỹ2)
)≤ O(1) − Rỹ2.
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FIG. 3. Contours used to compare K̃1, K̃2 and A.

As for ξ2, since �z̃2 ≥ −2u
1/3
2 , we have

ξ2 ≤ (2u
1/2
2 u

−1/6
1 − 2u

1/3
2 + u

1/3
1 − u

1/2
2 u

−1/6
1

)
w̃

≤ O

(
u2 − u1

u
2/3
1

)
w̃.

Applying this bound and (86), we get

∣∣K̃2(ỹ2, w̃) − K̃R
2 (ỹ2, w̃)

∣∣≤ ∫
h̃e

2\h̃R
2

e−u2�(G2(z̃2,ỹ2+w̃))e�ξ2 |dz̃2|

≤
∫
h̃e

2\h̃R
2

eO(1)−(R−o(1))(ỹ2+w̃)|dz̃2|(87)

≤ O
(
u

1/3
2

)
e−(R−o(1))(ỹ2+w̃).

PROOF OF LEMMA 7.1. Recall that (74) can be expressed as K/(
√

2u
1/6
2 ) =

K1 · K2. Hence, we have the estimate:∥∥π1∂
	K/

(√
2u

1/6
2

)
π2
∥∥
ν ≤ ∥∥π1∂

	K1
∥∥

HS‖K2π2‖HS.

(As before, ‖ · ‖ν denotes the nuclear norm.)
We start with estimating the second Hilbert–Schmidt norm. By (87), we have

that the Hilbert–Schmidt norm of K̃2 − K̃R
2 is at most O(u1/3/R1/2e−0.99Rt2). As
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for the norm of K̃R
2 , define

ζ ′
2 = u2G2(z̃2, ỹ2) + z̃2ỹ2 − 1

3
z̃3

2.

Expanding G2 as in (36) we have ζ ′
2 = O(u

−1/3
2 z̃4

2). Hence, on h̃R
2 , with R =

O(u
1/12
2 ) we have

∣∣K̃R
2 (ỹ2, w̃)

∣∣≤ ∫
h̃R

2

e�ζ ′
2e�(z̃3

2/3−z̃2(ỹ2+w̃))|dz̃2|

≤ eO(1)
∫ R

−R
e− 2(ỹ2+w̃)3/2

3 − 8t2(ỹ2+w̃)1/2

9 dt(88)

≤ eO(1) e− 2(ỹ2+w̃)3/2

3

(ỹ2 + w̃)1/4 .

Hence, we get that the Hilbert–Schmidt norm of K̃R
2 is O(e− 2

3 t
3/2
2 ), so that

‖K2π2‖HS = O(e− 2
3 t

3/2
2 + e−0.98u

1/12
2 t2).

As for ‖π1∂
	K1‖HS, observe that we have the kernel representation:

∂	
ỹ1

K̃1(ỹ1, w̃) = 1{w̃ ≥ 0}
2πi

∫
γ̃1

z̃	
1e

u1G1(z̃1,ỹ1+w̃) dz̃1.

Hence, the same truncation approach as used in (83) for the 	 = 0 case works
here. Further, the same argument as given for K2 shows that ‖π1∂

	K1‖HSt−	
1 =

O	(e
− 2

3 t
3/2
1 + e−u

1/12
1 t1/C) for some constant C > 0, which completes the proof.

�

PROOF OF LEMMA 7.2. We can bound the nuclear norm quantity we seek to
estimate as∥∥π1K̃(u1, ·;u2, ·)π2 − π1KAiry(·, ·)π2

∥∥
ν

= ∥∥π1K1 · K2π2 − π1Ai · Ai∗π2
∥∥
ν

≤ ∥∥π1(K1 − Ai) · K2π2
∥∥
ν + ∥∥π1(Ai) · (K2 − Ai∗

)
π2
∥∥
ν

≤ ∥∥π1(K1 − Ai)
∥∥

HS‖K2π2‖HS + ‖π1Ai‖HS
∥∥(K2 − Ai∗

)
π2
∥∥

HS.

(89)

By Lemma 7.1, we can control the ‖K2π2‖HS = O(e− 2
3 t

3/2
2 + e−�(u1/12)). From

the standard Airy asymptotic,

(90) Ai(w̃) ≤ Ce−2(w̃)3/2/3;
see [22], Section 9.7.5. This translates immediately into bounds of the form

‖π1Ai‖HS = O(e− 2
3 t

3/2
1 ). Thus, it only remains to estimate both of ‖π1(K1 −

Ai)‖HS and ‖(K2 − Ai∗)π2‖HS.
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To compare K̃R
1 and AR , define

ζ ′
1 = u1G1(z̃1, ỹ1) + z̃1ỹ1 − 1

3
z̃3

1.

Expanding G1 as in (36), we have ζ ′
1 = O(u

−1/3
1 z̃4

1). Provided that R ≥ �z̃1 on

h̃R
1 , which forces ỹ1 + w̃ < 2

3R2, we get that ζ ′
1 = O(u

−1/3
1 R4). Hence, under the

assumption R4 = O(u
1/3
1 ), we have

∣∣AR(ỹ1, w̃) − K̃R
1 (ỹ1, w̃)

∣∣≤ ∫
h̃R

1

∣∣eζ ′
1 − 1

∣∣e�(z̃3
1/3−z̃1(ỹ1+w̃))|dz̃1|

≤ O
(
R4u

−1/3
1

) ∫ R

−R
e− 2(ỹ1+w̃)3/2

3 − 8t2(ỹ1+w̃)1/2

9 dt(91)

≤ O
(
R4u

−1/3
1

) e− 2(ỹ1+w̃)3/2

3

(ỹ1 + w̃)1/4 .

By taking R = logu1 in (78), (83) and (91), we have that for t1 > 1,

(92)
∥∥π1(K1 − Ai)

∥∥
HS ≤ e−�((logu1)

2) + O
(
(logu1)

4u
−1/3
1

)
e− 2

3 t
2/3
1 .

Finally, for �z̃2 ≥ −u
1/3
2 , we have by (75) that �ξ2 ≤ 0. Hence, on h̃R

2 , we can

estimate |eξ2 | ≤ 1. Thus, provided that R4 = O(u
1/3
2 ), the same estimates as in

(91) give

(93)
∣∣A∗R(w̃, ỹ2) − K̃R

2 (w̃, ỹ2)
∣∣≤ O

(
R4u

−1/3
2

) e− 2(ỹ2+w̃)3/2

3

(ỹ2 + w̃)1/4 .

Taking R = (logu1)
2 in (84), (87) and (93), we have that for t2 > 1,

(94)
∥∥(K2 − Ai∗

)
2

∥∥
HS ≤ e−�((logu1)

2) + O
(
(logu1)

8u
−1/3
1

)
e− 2

3 t
2/3
2 .

Combining (89) with (92) and (94), we have completed the proof. �

PROOF OF LEMMA 7.3. We begin by recalling that

Pr
[
λ(u) ≤ t

]= det(Id−πKπ),

where π is the restriction map to [t,∞) and K is given by kernel K̃(u, ·;u, ·)/
(
√

2u1/6) acting on L2. Note that K(u1, y1;u2, y2)
y2

2/2−y2
1/2 is self-adjoint and

positive definite, and hence so is the kernel restricted to min |yi | > a for any a.
This implies all the eigenvalues of K are nonnegative, and hence so are all the
eigenvalues of πKπ . Thus, we have the representation

det(Id−πKπ) = exp

(
−

∞∑
n=1

tr((πKπ)n)

n

)
,
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which can be seen by considering the eigenvalues of the operator πKπ (see
also [13], (3.9)). We also have that all traces are nonnegative and tr((πKπ)n) ≤
tr((πKπ))n. Hence, we get the simple bounds:

1 − tr(πKπ) ≤ det(Id−πKπ) ≤ e− tr(πKπ).

Turning this around,

(95)
(
1 − e− tr(πKπ))≤ Pr

[
λ(u) > t

]≤ tr(πKπ).

Thus, it only remains to give upper and lower bounds for the trace.
The trace is given by

(96) tr(πKπ) =
∫ ∞
t

K̃(ỹ, ỹ) dỹ =
∫ ∞
t

∫ ∞
0

K̃1(ỹ, w̃)K̃2(w̃, ỹ) dw̃ dỹ.

Using (83) and (87), we have that

tr(πKπ) =
∫ ∞
t

∫ ∞
0

K̃R
1 (ỹ, w̃)K̃R

2 (w̃, ỹ) dw̃ dỹ + O
(
e−�(Rt)).

Both of K̃R
1 (ỹ, w̃) or K̃R

2 (ỹ, w̃) are real, as their integrands commute with con-
jugation as functions of z̃1 and the contours {h̃R

i } are conjugation invariant. Recall
ζ ′

1 from (91), using which we may write

K̃R
1 (ỹ, w̃) =

∫
h̃R

1

eζ ′
1ez̃3/3−z̃(ỹ+w̃) dz̃.

As z̃3/3 − z̃(ỹ + w̃) is real-valued on h̃R
1 , and as |eζ ′

1 − 1| = O(u−1/3R4) on h̃R
1 ,

by making R is a sufficiently small multiple of u1/12, we may make

1

2
AR(ỹ, w̃) ≤ �K̃R

1 (ỹ, w̃) ≤ 2AR(ỹ, w̃)

for all ỹ > t and all w̃ ≥ 0. A similar statement holds for K̃R
2 . It then follows that

for R so chosen, we have

1

4
≤
∫∞
t

∫∞
0 K̃R

1 (ỹ, w̃)K̃R
2 (w̃, ỹ) dw̃ dỹ∫∞

t

∫∞
0 AR(ỹ, w̃)AR(w̃, ỹ) dw̃ dỹ

≤ 4

for all t ≥ 1. Using (78), we therefore conclude that there is a δ > 0 sufficiently
small and a C > 0 sufficiently large so that with R = δu1/12,

1

C
tr(πAiπ) − Ce−Rt/C − Ce−R2t1/2/C

≤ tr(πKπ) ≤ C tr(πAiπ) + Ce−Rt/C + Ce−R2t1/2/C.

(97)

The trace of the Airy kernel is given by

tr(πAiπ) =
∫ ∞
t

∫ ∞
0

Ai(ỹ + w̃)2 dw̃ dỹ =
∫ ∞
t

(s − t)Ai(s)2 ds.
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Using that Ai(s)s1/4e
2
3 s3/2

is bounded above and below by constants for s ≥ 0, we
therefore have that∫ ∞

t
(s − t)Ai(s)2 ds = t−3/2e− 4

3 t3/2(
C + O

(
t−1/2))

for some constant C. Hence, by the positivity and continuity of the trace, we con-

clude that tr(πAiπ)t3/2e
4
3 t3/2

is bounded above and below by constants. This and
(97) completes the proof. �

8. Offdiagonal kernel estimates for u1 − u2 � u
2/3
1 . Let K̃o and K̃e be de-

fined analogously to (18), starting from (26).

LEMMA 8.1. For all ỹ1 ≥ 0, all ỹ2 ≥ 0, and all u1 > u2,

∣∣K̃o(u1, y1;u2, y2)
∣∣≤ u

1/6
1 u

1/6
2

u
1/2
1 − u

1/2
2

ξ ′(u1, y1)ξ
′(u2, y2),

where

ξ ′(ui, yi) = C
(
e− 2

3 ỹ
3/2
i + e−u

1/12
i ỹi

)
for some absolute constant C > 0.

PROOF. Recall (35), due to which we may express K̃o as

(98) K̃o = 1

2(πi)2

∫∫
eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

dz1 dz2

z1 − z2
,

where we deform the contours to be the same as those in Lemma 7.1, with w̃ = 0
(see Figure 3) and where z̃i is given by (31). On these contours, we have that
|z1 − z2| ≥ 21/2(u

1/2
1 − u

1/2
2 ). Hence, changing the integration to be in z̃, we have

the simple estimate:

(99) |K̃o| ≤ u
1/6
1 u

1/6
2

u
1/2
1 − u

1/2
2

[∫
h̃e

1

eu1�G1(z̃1,ỹ1)|dz̃1|
][∫

h̃e
2

e−u2�G2(z̃2,ỹ2)|dz̃2|
]
.

Thus, to complete the claimed bound, it suffices to show that each integral is
bounded by ξ for an appropriately large constant C.

Define

I e
1 =

∫
h̃e

1

eu1�G1(z̃1,ỹ1)|dz̃1|,

IR
1 =

∫
h̃R

1

eu1�G1(z̃1,ỹ1)|dz̃1|,
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and define I e
2 and IR

2 analogously. Using the same estimate as (83), we have that

for R = O(u
1/3
1 ):

∣∣I e
1 − IR

1
∣∣= O

(
R−1/2)e−�(R3)−Rỹ1/

√
3.(100)

Uniformly for z̃1 on h̃R
1 , we have by (77) that when R4 = O(u

1/3
1 ),

u1�G1(z̃1, ỹ1) ≤ −2ỹ
3/2
1

3
− 8(�z̃1)

2ỹ
1/2
1

9
+ O

(
R4u

−1/3
1

)
.

Hence, integrating over z̃1, we have

(101) IR
1 ≤ e− 2ỹ

3/2
1
3 +O(1).

Combining (100) and (101) and taking R = u
1/12
1 , we have

(102) I e
1 ≤ e− 2ỹ

3/2
1
3 +O(1) + e−u

1/12
1 ỹ1/

√
3+O(1).

For I e
2 and IR

2 , we proceed in the same manner, using the same estimates for IR
2

as in IR
1 and using the estimate from (87) to make the comparison. Again taking

R = u
1/12
2 , we get

(103) I e
2 ≤ e− 2ỹ

3/2
2
3 +O(1) + e−u

1/12
2 ỹ2/

√
3+O(1). �

LEMMA 8.2. There is an absolute constant
√

2 > c > 0 so that for all y1 ≥
cu

1/2
1 , all y2 ≥ cu

1/2
2 , and all u1 > u2,

∣∣K̃o(u1, y1;u2, y2)
∣∣≤ u

1/6
1 u

1/6
2

u
1/2
1 − u

1/2
2

ξ(y1)ξ(y2),

where

ξ(yi) =
⎧⎪⎨
⎪⎩

CeCỹ
3/2
i , ỹi ≤ 0,

C

1 + ỹi

, ỹi ≥ 0

for some absolute constant C > 0.

PROOF. Recall (35), due to which we may express K̃o as

(104) K̃o = 1

2(πi)2

∫∫
eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

dz1 dz2

z1 − z2
,
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with the contours given in (24) and z̃i given by (31). On these contours, we have
that |z1 − z2| ≥ 21/2(u

1/2
1 − u

1/2
2 ). Hence, changing the integration to be in z̃, we

have the simple estimate:

(105) |K̃o| ≤ u
1/6
1 u

1/6
2

u
1/2
1 − u

1/2
2

[∫
eu1�G1(z̃1,ỹ1)|dz̃1|

][∫
e−u2�G2(z̃2,ỹ2)|dz̃2|

]
.

Thus, to complete the claimed bound, it suffices to show that each integral is
bounded by ξ for an appropriately large constant C. Fix two parameters δ1 > 0
and δ2 > 0 to be determined. In terms of these parameters, define the following
straight-line contours in C, which are just the contours from (24) in the z̃i vari-
ables:

γ̃1 = [0, δ1e
iπ/3u

1/3
1

]
, γ̃ e

1 = δ1e
iπ/3u

1/3
1 + iR+,

γ̃2 = [0, δ2e
2iπ/3u

1/3
2

]
, γ̃ e

2 = δ2e
2iπ/3u

1/3
2 +R−.

By conjugate symmetry, it suffices to show that we have a bound of the form∫
γ̃1

eu1�G(z̃1,ỹ1)|dz̃1| ≤ ξ(ỹ1)/4, appropriately modified for all 4 contours.
We begin with some preliminaries that will determine how to pick δ1 and δ2.

Define F(z) = �[log(1+ z)− z+ z2/2]. From the Taylor expansion of the log, we
have that F(z) = �(z3/3) + O(z4). Hence, there are some constants c0 > 0 and
δ1 > 0 so that for |z| ≤ δ1 and arg(z) = π/3 we have

F(z) ≤ −c0|z|3.
Recall from (33) that �G1(z̃1, ỹ1) = F(u−1/3z̃1) − z̃1ỹ1

u1
. Hence, applying this

bound to G1(z̃1, ỹ1) for z̃1 ∈ γ̃1, we have

(106) u1�G1(z̃1, ỹ1) ≤ −c0|z̃1|3 − �z̃1ỹ1.

Writing z = x + iy, we have that F(x + iy) satisfies

F(x + iy) = 1

2
log
(
(1 + x)2 + y2)− x + x2

2
− y2

2
.

Fix some x0 > 0 and note that for all x ≥ x0 and y ≥ 0 we have that

∂yF (x + iy) = y

(1 + x)2 + y2 − y

≤ −2x0y − y3

(1 + x0)2 + y2

≤ −c(x0)y

for some c(x0) > 0. Setting ω1 = eiπ/3δ1, we may integrate the previous inequality
to arrive at

F(ω1 + iy) ≤ −c0δ
3
1 − c1y

2,
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for y ≥ 0. Applying this bound to G1(z̃1, ỹ1) for z̃1 ∈ γ̃ e
1 , which can be expressed

as z̃1 = ω1u
1/3
1 + it for t ∈R+, yields

(107) u1�G1(z̃1, ỹ1) ≤ −c0u1δ
3
1 − c1u

1/3
1 t2 − δ1u

1/3
1

2
ỹ1.

Picking δ2 requires more effort, as for δ2 too small, G(z̃2, ỹ2) on γ̃ e
2 can be

negative for a large range of z̃2. We will see that we can take δ2 = 2. Write

f (t) = F
(
e2πi/3t

)= 1

2
log
(
1 − t + t2)+ t

2
− t2

4
.

Then we have

f ′(t) = 1

2

2t2 − t3

1 − t + t2 .

For 0 ≤ t ≤ 2, we can bound this below by f ′(t) ≥ 1
6(2t2 − t3). Integrating, we

get that f (t) ≥ 1
9 t3(1 − 3

8 t) ≥ t3

36 on t ≤ 2. Hence, we have shown that for |z| ≤ 2
with arg(z) = 2π/3 we have

(108) F(z) ≥ |z|3
36

.

Hence, for z̃2 ∈ γ̃2 we have

(109) u2�G2(z̃2, ỹ2) ≥ |z̃2|3
36

− �z̃2ỹ2.

Meanwhile, for x ≤ −1 and y �= 0,

∂xF (x + iy) = 1 + x

(1 + x)2 + y2 − 1 + x

≥ −1 + x.

Setting ω2 = 2ei2π/3, and integrating the previous inequality in x from ω2, we get
from (108):

F(ω2 − x) ≥ 2

9
+ x2

2

for all x ≥ 0. Parameterize z̃2 ∈ γ̃ e
2 as z̃2 = ω2u

1/3
2 − t for t ∈ R+ so that

(110) u2�G2(z̃2, ỹ2) ≥ 2

9
u2 + u

1/3
2 t2

2
+ u

1/3
2

2
ỹ2 + t ỹ2.

The contour γ̃1: We must estimate

I1 =
∫
γ̃1

eu1�G(z̃1,ỹ1)|dz̃1|.
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We have, recalling (106), that

u1�G(z̃1, ỹ1) ≤ −c0|z̃1|3 − �z̃1ỹ1

uniformly in z̃1 ∈ γ̃1 and ỹ1 ∈ R. Thus, we have that

I1 ≤
∫ δ1u

1/3
1

0
e−

√
3

2 t ỹ1−c0t
3
dt.

When ỹ1 ≥ 1, we estimate this integral just by bounding e−c0t
3 ≤ 1. For −1 ≤ ỹ1 ≤

1, we estimate the integral by bounding e−
√

3
2 t ỹ1 ≤ 1. Combining these bounds, and

adjusting the constant C in ξ we can assure I1 ≤ ξ(ỹ1)/2 for ỹ1 ≥ −1.

For ỹ1 < −1, we write η =
√

−
√

3
6c0

ỹ1 and let p(t) = −3c0(
t3

3 − η2t) = −c0t
3 −√

3
2 ỹ1t . Then we may expand p(t) as

p(t)

3c0
= −1

3
(t − η)3 − η(t − η)2 + 2

3
η3.

In particular, for t ≥ 0, we have that p(t) ≤ 3c0η
3 − 3c0η(t − η)2. Hence, we have

I1 ≤
∫ ∞

0
ep(t) dt ≤ e3c0η

3
∫ ∞
−∞

e−3c0ηt2
dt.

As η is bounded uniformly away from 0 for ỹ1 < −1, we can assure I1 ≤ ξ(ỹ1)/4
for ỹ1 < −1.

The contour γ̃2: We must estimate

I2 =
∫
γ̃2

e−u2�G(z̃2,ỹ2)|dz̃2|.

From (109), we get −u2�G2(z̃2, ỹ2) ≤ −|z̃2|3
36 + �z̃2ỹ2 on γ̃2, and so the previous

proof applies mutatis mutandis.
The contour γ̃ e

1 : We must estimate

I e
1 =

∫
γ̃1

eu1�G(z̃1,ỹ1)|dz̃1|.

We parameterize z̃1 ∈ γ̃ e
1 by writing z̃1 = u

1/3
1 ω + it , where we recall that ω =

eiπ/3δ1. From (107),

u1�G1(z̃1, ỹ1) ≤ −c0u1δ
3
1 − c1u

1/3
1 t2 − δ1u

1/3
1

2
ỹ1.

Under the assumption that ỹ1 ≥ −2c0u
2/3
1 δ2

1 , we can pick C > 0 in ξ sufficiently
large that

I e
1 ≤ exp

(
−c0u1δ

3
1 − δ1u

1/3
1

2
ỹ1

)
·
∫ ∞

0
e−c1u

1/3
1 t2

dt ≤ ξ(ỹ1)/4.
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The contour γ̃ e
2 : We must estimate

I e
2 =

∫
γ̃2

e−u2�G(z̃2,ỹ2)|dz̃2|.

Using (110),

u2�G2(z̃2, ỹ2) ≥ 2

9
u2 + u

1/3
2 t2

2
− �z̃2ỹ2,

an analogous estimate to that done for I e
1 holds. �

9. Uniform boundedness of K̃ for all u2 −u1 � u
2/3
1 . We additionally need

quantitative bounds for the suprema of K̃o and K̃e to estimate the difference of
determinants. For K̃e, we have the following.

LEMMA 9.1. Let � = 4(
√

u2 − √
u1)
∑

i (yi − √
2ui)− for i = 1,2. There is

an absolute constant C > 0 so that

∣∣K̃e(u1, y1;u2, y2)
∣∣≤ C

√
u2 exp

(
−(

√
u2 − √

u1)
3

C
√

u2
+ �

)
.

PROOF. We will proceed by producing bounds for K̃e in terms of τ , which
we recall is the point of intersection of γ c

1 and γ c
2 . This location is not completely

explicit, as it depends on δ1 and δ2, chosen in Lemma 8.2. However, as we chose
δ2 = 2, which implies that γ2 runs from the real axis to the imaginary axis, we
have that τ is a point on γ2. If γ1 and γ2 intersect, they do so at the point:

(111) τ0.5 =
√

u1 + √
u2

2
√

2
+ i

√
3

2
√

2
(
√

u2 − √
u1).

Otherwise, γ c
1 and γ c

2 intersect at some point on γ2 with real part at least
√

u1/2,
and hence they intersect at

(112) τα =
√

u1 + α(
√

u2 − √
u1)√

2
+ i

(1 − α)
√

3√
2

(
√

u2 − √
u1),

for some α in [0,0.5].
We begin with the case that y1 ≤ y2, for which

K̃e(u1, y1;u2, y2) = −J (u2, y2)

J (u1, y1)

1

πi

∫
γ r+

e2z2(y2−y1)

(2z2)u2−u1
dz2.

As we assume that u2 − u1 ≥ 2, we have that

(113)
∣∣K̃e(u1, y1;u2, y2)

∣∣≤ J (u2, y2)

J (u1, y1)
e2�τ(y2−y1)2u1−u2

∫ ∞
0

∣∣(τ + it)
∣∣u1−u2 dt.
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For t ∈ [0, |τ |], we bound this integral by taking the supremum. For t ≥ |τ |, we
observe that |τ + it | ≥ √

2|τ | + 1√
2
(t − |τ |). Integrating, we conclude that∫ ∞

0

∣∣(τ + it)
∣∣u1−u2 dt ≤ |τ |u1−u2+1 + √

2
∫ ∞

0

(√
2|τ | + t

)u1−u2 dt

≤ 2|τ |u1−u2+1.

Applying this bound to (113) and using the definition of J (u, y), we can bound∣∣K̃e(u1, y1;u2, y2)
∣∣

≤ 2|τ |
(

u2

u1

) u1
2
(

2|τ |2
eu2

) u1−u2
2

e2�τ(y2−y1)−√
2u2y2+√

2u1y1 .

(114)

We will now begin the process of substituting τα for τ and maximizing over α.
Both y1 is not much less than

√
2u1, and y2 is not much less than

√
2u2. Recall

that � = 4(
√

u2 − √
u1)
∑

i (yi − √
2ui)− for i = 1,2, we have the bound that for

all α ∈ [0,0.5],
2�τα(y2 − y1) −√2u2y2 +√2u1y1

≤ −2(
√

u2 − √
u1)

√
u2 + 2α(

√
u2 − √

u1)
2 + �.

(115)

Define N(α, t) and H(α, t) by

N(α, t) =
(
α + 1 − α

1 + t

)2
+ 3(1 − α)2

(
1 − 1

1 + t

)2
,

H(α, t) = log(1 + t) − 2t + t2

2
log
(
N(α, t)

)− t −
(

3

2
− 2α

)
t2.

(116)

Setting 1 + t = √
u2/u1, we see that N satisfies

u2N(α,
√

u2/u1 − 1) = (α√
u2 + (1 − α)

√
u1
)2 + 3(1 − α)2(

√
u2 − √

u1)
2

= 2|τα|2.
Thus, combining this bound with (114), (115) and (116), we have

(117)
∣∣K̃e(u1, y1;u2, y2)

∣∣≤ 3
√

u2 max
α∈[0,0.5] exp

(
u1H(α,

√
u2/u1 − 1) + �

)
.

We will see that this bound is monotone increasing in α for α ∈ [0,0.5]. Taking
derivatives, we see that

∂αH(α, t) = 2t2 − 2t + t2

2
∂α

(
log
(
(1 + t)2N(α, t)

))

= 2t2 − (2t + t2) t (1 + αt) − 3(1 − α)t2

(1 + t)2N(α, t)

= (8α2 − 16α + 9)t4 + (5 − 4α)t3

(1 + t)2N(α, t)
.
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This is positive for all (α, t) ∈ [0,0.5] × [0,∞), and hence we may take α = 0.5
in (117).

Evaluating N and H at α = 0.5, we get that

N(0.5, t) =
(

1 + 0.5t

1 + t

)2
+ 3

4

(
1 − 1

1 + t

)2
= 1 − t

(1 + t)2 ,

H(0.5, t) = log(1 + t) − 2t + t2

2

(
log
(
N(0.5, t)

)+ 1
)
.

(118)

We will proceed to bound H(0.5, t) from above using the inequality log(1 + x) ≤
x − x2

2(1+x)
valid for all x ≥ 0:

H(0.5, t) ≤ t − t2

2(1 + t)
− t − t2

2
+ 2t + t2

2
log
(

1 + t

1 + t + t2

)

≤ − t2

2(1 + t)
− t2

2
+ 2t + t2

2

t

1 + t + t2 − 2t + t2

4

t2

(1 + t)2(1 + t + t2)

= −2t3 − 5t4 − 6t5 − 2t6

4(1 + t)2(1 + t + t)2

≤ −c0t
3/(1 + t),

for some sufficiently small constant c0 > 0. Applying this inequality to (117), we
have that

(119)
∣∣K̃e(u1, y1;u2, y2)

∣∣≤ 3
√

u2 exp
(
−c0

(
√

u2 − √
u1)

3

√
u2

+ �

)
,

which is the desired bound.
There still remains to handle the case that y1 > y2. We recall that in this case

we have by (30):

K̃e(u1, y1;u2, y2) = −J (u2, y2)

J (u1, y1)

1

πi

∫
γ r−

e2z2(y2−y1)

(2z2)u2−u1
dz2,

where we recall that γ r− is the contour that follows γ c
2 from τ to τ . As the integrand

is integrable in the right half-plane, we may replace this by three sides of a large
rectangle whose top and bottom sides are on the lines �z = �τ and �z = −�τ . As
u2 > u1 and y1 > y2, this integral is convergent and we get the representation:

(120) K̃e(u1, y1;u2, y2) = −J (u2, y2)

J (u1, y1)

2

π

∫
τ+R+

� e2z2(y2−y1)

(2z2)u2−u1
dz2.

We can now bound in the same way that we bounded K̃e when y1 ≤ y2, that is,∣∣K̃e(u1, y1;u2, y2)
∣∣

≤ C|τ |
(

u2

u1

) u1
2
(

2|τ |2
eu2

) u1−u2
2

e2�τ(y2−y1)−√
2u2y2+√

2u1y1,

(121)



GUE EXTREMAL EIGENVALUES AND FRACTIONAL LOGARITHM 4157

for some absolute constant C > 0. Hence, we again get (119) with some other
constant in front, and the proof of the lemma is complete. �

The next lemma estimates the supremum of K̃o with u1 ≤ u2.

LEMMA 9.2. Suppose that ỹi ≥ −cu
1/3
i for i = 1,2. Let ξ+(x) = 1/(1 +

(x)+), and let μ(ỹ1, ỹ2) = max(
√

(ỹ1)−,
√

(ỹ2)−). There are absolute constants
c,M,T > 0 so that the following hold:

(1) If u2 ≥ Mu1, then there is an absolute constant C > 0 so that∣∣K̃o(u1, y1;u2, y2)
∣∣≤ C.

(2) If u2 < Mu1 and
√

u2 − √
u1 ≥ T u

1/6
2 μ(ỹ1, ỹ2), then there is an absolute

constant C > 0 so that

∣∣K̃o(u1, y1;u2, y2)
∣∣≤ C

u
1/6
1 u

1/6
2

u
1/6
1 + u

1/6
2

√
ξ+(ỹ1)ξ+(ỹ2).

(3) If u1 = u2, then there is an absolute constant C > 0 so that∣∣K̃o(u1, y1;u2, y2)
∣∣≤ Cu

1/6
1

(√
ξ+(ỹ1)ξ+(ỹ2) + μ(ỹ1, ỹ2)e

c(η2−η1)(ỹ2−ỹ1)
)
.

PROOF. The contours γ c
i are insufficient for this task, as when ỹi < 0 the

contours γ e
i become poor approximations of the true steepest descent contours.

These errors occur in a z̃i -neighborhood of 0 of magnitude O(
√−ỹi), which we

can fix by a simple local contour deformation.
From (36), we have that

uiGi(z̃i , ỹi) = −z̃i ỹi + 1

3
z̃3
i + O

(
u

−1/3
i z̃4

i

)
.

Fix λ with
√

3 > λ ≥ 1√
3
, a constant to be determined later. Set σ̃1 to be the line

segment of �z̃1 = λ�z̃1 + η1 with ηi =√(ỹi)− for i = 1,2 that connects the real
axis to the line through γ̃1. The point of intersection with the line through γ̃1 occurs
at distance 
(η1). Hence, on this line segment O(u

−1/3
1 z̃4

1) = O(1) by assumption
on ỹi , and we have uniformly in λ ≥ 1√

3
:

(122) �u1G1(z̃1, ỹ1) ≤ −2η1u
1/3
1√

3
(�z̃1)

2 + C

for some absolute constant C > 0 and all z̃1 ∈ σ̃1. Likewise, we define σ̃2 to be the
line segment of �z̃2 = −λ�z̃2 + η2. Doing a similar Taylor expansion, we can see
that

(123) −�u2G2(z̃2, ỹ2) ≤ −2η2u
1/3
2√

3
(�z̃2)

2 + C

for some absolute constant C > 0, all z̃2 ∈ σ̃2 and all λ ≥ 1√
3
.
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Define σ1 and σ2 to be the images of σ̃1 and σ̃2 under the changes of variables
z̃1 �→ z1 and z̃2 �→ z2. The intersections of σi and the line through γi occur at
distance O(u

1/6
i ηi) = O(u

1/3
i ). Thus, by taking c > 0 sufficiently small, we can

assure that σi and γi intersect. Let σm
i be the portion of γi between its intersection

with σ1 and γ e
i , and let σe

i = γ e
i . Finally, define

σc
1 = σe

1 ∪ σm
1 ∪ σ1 ∪ σ1 ∪ σm

1 ∪ σe
1 ,

σ c
2 = σe

2 ∪ σm
2 ∪ σ2 ∪ σ2 ∪ σm

2 ∪ σe
2 ,

oriented in the same way as γ c
i . For notational convenience, when for either i =

1,2, ỹi ≥ 0, we let σi = ∅, σm
i = γi and σe

i = γ e
i .

Define

(124) K̃σ = 1

2(πi)2

∫
σc

2

∫
σc

1

eu1G1(z̃1,ỹ1)

eu2G2(z̃2,ỹ2)

dz1 dz2

z1 − z2
,

and set � = K̃o − K̃σ .
Fix an ε > 0 and define

(125) ψi(z̃i, ỹi) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(−εηiu

1/3
i (�z̃i )

2) if z̃i ∈ σi ∪ σi,

exp
(−ε

(|z̃i |3 − |z̃i |(ỹi)+
))

if z̃i ∈ σm
i ∪ σm

i ,

exp
(−εu

1/3
i

(|z̃i |2 + (ỹi)+
))

if z̃i ∈ σe
i ∪ σe

i ,

for i = 1,2. Using (106) and (109) on σm
i , (107) and (110) on σe

i and (122) and
(123) on σi , we get that

sup
σc

2 ×σc
1

{∣∣∣∣e
u1G(z̃1,ỹ1)

eu2G(z̃2,ỹ2)

∣∣∣∣ 1

ψ1(z̃1, ỹ1)ψ2(z̃2, ỹ2)

}
≤ C,

provided ε > 0 is chosen sufficiently small, C > 0 is chosen sufficiently large.
Recall that τ is always at least distance �((

√
u2 − √

u1)) in zi coordinates
from either of

√
ui/2 [see (111)], and the intersection of σi and γi occurs at dis-

tance O(u
1/6
i ηi). Hence, in the case

√
u2 −√

u1 ≥ T u
1/6
2 · max(

√
(ỹ1)−,

√
(ỹ2)−),

we may choose T > 0 sufficiently large so that the intersections of σi and γi oc-
cur at points of smaller imaginary part than τ . In this case, we can perform the
deformation from γ c

i to σc
i without producing any additional residues, so � = 0.

In the case that u1 = u2, we may acquire a residue, which will be given by

(126) �(u1, y1;u1, y2) = −J (u1, y2)

J (u1, y1)

1

πi

∫
	
e2z2(y2−y1) dz2,

where, after deformation, 	 is a vertical line segment connecting the intersection
of σ1 ∪ σm

1 and σ2 ∪ σm
2 to the intersection of σ1 ∪ σm

1 and σ2 ∪ σm
2 . Denote the

point of intersection between σ1 ∪ σm
1 and σ2 ∪ σm

2 by ζ . If the intersection is
between σm

1 and σm
2 , it necessarily occurs at ζ = √

u1/2, in which case there
is no residue. Note that each of these contours cross the line �z1 = √

u1/2 at
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iη1u
1/6
1 /

√
2 and iη2u

1/6
1 /

√
2, respectively, as it must be σ1 and σ2 that cross this

vertical line. In particular, we have sgn(�ζ − √
u1/2) = − sgn(y2 − y1). Further,

by this observation, we must have �ζ ≤ max(η1, η2)u
1/6
1 /

√
2.

With these estimates, we turn to bounding �. By a supremum bound of the
integrand of (126), we have

∣∣�(u1, y1;u1, y2)
∣∣≤ 2

π
�ζ · e2(�ζ−√

u1/2)(y2−y1).

Let ζ̃ be the position ζ in z̃1 coordinates, so that
∣∣�(u1, y1;u1, y2)

∣∣≤ 2

π
�ζ · e(�ζ̃ )(ỹ2−ỹ1).

There are three possibilities for the location of ζ̃ , at the intersection of σ1 ∩ σ2,
σm

1 ∩ σ2, or σ1 ∩ σm
2 . In each of these cases, we get that �ζ̃ is, respectively, the

first, second or third entry of(
η2 − η1

2λ
,

η2√
3 + λ

,
−η1√
3 + λ

)
.

If {ζ } = σm
1 ∩ σ2, then we have that �ζ > 0. In particular, it must be that σ1 ∪ σm

1
crosses �ζ1 = √

u1/2 below σ2 ∪ σm
2 , and hence η2 > η1. Hence, if η2 > 0, we

must have x2 < x1. Thus, in this case we conclude, for any values of ỹi , that

�ζ̃ (ỹ2 − ỹ1) = η2√
3 + λ

(ỹ2 − ỹ1) ≤ η2 − η1√
3 + λ

(ỹ2 − ỹ1).

The same conclusion holds if instead {ζ } = σ1 ∩ σm
2 . As sgn(ζ̃ (ỹ2 − ỹ1)) ≤ 0, we

can therefore bound, in all three cases,

�ζ̃ (ỹ2 − ỹ1) ≤ η2 − η1√
3 + λ

(ỹ2 − ỹ1).

Hence, we reach the conclusion

(127)
∣∣�(u1, y1;u1, y2)

∣∣≤ u
1/6
1 max(η1, η2)e

c(η2−η1)(ỹ2−ỹ1)

with c = (
√

3 + λ)−1.
From the definition of ψ , we have

(128)
∣∣K̃σ (u1, y1;u2, y2)

∣∣≤ C

∫
σc

2 ×σc
1

∣∣∣∣ψ1(z̃1, ỹ1)ψ2(z̃2, ỹ2) dz1 dz2

z1 − z2

∣∣∣∣.
We will begin by showing that there is a C > 0 so that∫

σc
2 ×σc

1

∣∣∣∣ψ1(z̃1, ỹ1)ψ2(z̃2, ỹ2) dz1 dz2

z1 − z2

∣∣∣∣
< C

(
u

1/6
1 + u

1/6
2

)
max

(
ξ+(ỹ1), ξ+(ỹ2)

)(129)

for all u1, u2. This combined with (127) will complete the u1 = u2 part of the
proof.
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Let μ(x) be an absolutely continuous finite measure on R with connected sup-
port and with density at most 1. The following bound holds for all c, y > 0 and all
such μ:

(130)
∫
R

dμ(x)

|cx − z| ≤ inf
R>0

{
8

c
log
(

1 + cR

d(z, supp(μ))

)
+ 2μ(R)

Rc + d(z, supp(μ))

}
.

This can be checked by letting x0 ∈ supp(μ) achieve the minimum distance to z

and dividing the integral into an interval around x0 of radius R and the rest of R.
Both of

∫
σc

i
|ψ(z̃i) dz̃i | ≤ Cξ+(ỹi) for i = 1,2 are bounded above by some uni-

versal constant C > 0. For σ̃ m
i and σ̃ e

i , this is clear. For σ̃i , the ηi in the exponent in
ψi may cause worry, but the length of the segment is only O(ηi), from which one
can show that the contribution of this segment to the integral is at most O(1/u

1/12
i ).

Hence, for z2 /∈ σc
1 , we can apply (130) to each of the 6 straight segments of σc

1
to get ∫

σc
1

∣∣∣∣ψ1(z̃1, ỹ1) dz1

z1 − z2

∣∣∣∣=
∫
σc

1

∣∣∣∣ ψ1(z̃1, ỹ1)2−1/2u
1/6
1 dz̃1

2−1/2u
1/6
1 z̃1 + √

u1/2 − z2

∣∣∣∣
≤ C

[
log
(

1 + Ru
1/6
1

d(z2, σ
c
1 )

)
+ u

1/6
1 ξ+(ỹ1)

Ru
1/6
1 + d(z2, σ

c
1 )

]
(131)

≤ C

[
log
(

1 + Ru
1/6
1

d(z2, σ
c
1 )

)
+ ξ+(ỹ1)

R

]

for some absolute constant C > 0 and any R > 0.
Under the same assumptions as in (130), we also have

(132)
∫
R

log
(

1 + c

|x|
)

dμ(x) ≤ (c + μ(R)
)

log 4.

We apply this to the integral of (131) over σc
2 . We show the bound explicitly for

σm
2 ; analogous bounds hold for the other segments. Set ζ ∈ σm

2 to be the point that
achieves the minimum distance minz2∈σm

2
d(z2, σ

c
1 ). This point is unique and we

have that d(z2, σ
c
1 ) ≥ c0d(z2, ζ ) for some c0 > 0 and all z2 ∈ σm

2 . Let ζ̃ be the
image of ζ under the change of variables z2 �→ z̃2 Hence, changing variables and
applying (132), there is an absolute constant C > 0 so that∫

σm
2

ψ(z̃2) log
(

1 + Ru
1/6
1

d(z2, σ
c
1 )

)
|dz2|

≤
∫
σ̃m

2

ψ(z̃2)
u

1/6
2

21/2 log
(

1 + u
1/6
1 21/2R

c0u
1/6
2 |z̃1 − ζ̃ |

)
|dz̃2|

≤ Cu
1/6
2

(
ξ+(ỹ2) + Ru

1/6
1

u
1/6
2

)
.

(133)
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Combining this with (131), we have∫
σc

2 ×σc
1

∣∣∣∣ψ1(z̃1, ỹ1)ψ2(z̃2, ỹ2) dz1 dz2

z1 − z2

∣∣∣∣
< C

(
u

1/6
2 ξ+(ỹ2) + Ru

1/6
1 + ξ+(ỹ1)ξ+(ỹ2)

R

)
.

(134)

Taking R = √ξ+(ỹ1)ξ+(ỹ2), and noting that we could run the same argument by
integrating over z̃2 first, we find this is equivalent to what we set out to show
in (129). This completes cases (2) and (3), as this for any M > 1, this bound is
equivalent to the stated one in case (2) after adjusting constants.

Finally, we turn to case (1), in whose proof we will determine M . Let V =
{z̃1 : Mu

1/3
1 ≤ z̃1}. By making M sufficiently large, we can assure that for all u2 ≥

Mu1 ≥ u0 for some large u0:

(1) V ∩ σc
1 = V ∩ (σ e

1 ∪ σe
1 ).

(2) τ is the intersection of σe
1 and σm

2 .

(3) 2Mu
1/3
1 < |τ |.

It follows that for any (z1, z2) ∈ Q = (σ c
1 × σc

2 ) \ (V × (σm
2 ∪ σm

2 )), we have

that there is some c0(M) so that |z1 − z2| ≥ c0(M)u
1/2
2 . Hence, for z ∈ Q, we have

(135)
∫
Q

∣∣∣∣ψ1(z̃1, ỹ1)ψ2(z̃2, ỹ2) dz1 dz2

z1 − z2

∣∣∣∣≤ u
1/6
1 u

1/6
2

2c0(M)u
1/2
2

,

which is negligible. Meanwhile, on either of V ∩ σc
1 or σ2, we have that |z̃i | =

�(u
1/3
i ), for i = 1,2. Hence,∫

V ∩σe
1

∣∣ψ1(z̃1, ỹ1) dz̃1
∣∣≤ C

u
1/6
1

,

∫
σm

2

∣∣ψ2(z̃2, ỹ2) dz̃2
∣∣≤ C

u
1/6
2

,

for some absolute constant C > 0. Hence, for z2 �= τ , setting R = √
2u

−1/6
1 in

(130) implies that
∫
V ∩σe

1

∣∣∣∣ψ1(z̃1, ỹ1) dz1

z1 − z2

∣∣∣∣=
∫
V ∩σe

1

∣∣∣∣ ψ1(z̃1, ỹ1)2−1/2u
1/6
1 dz̃1

2−1/2u
1/6
1 z̃1 + √

u1/2 − z2

∣∣∣∣
≤ C

[
log
(

1 + 1

d(z2, σ
e
1 )

)
+ 1

1 + d(z2, σ
e
1 )

]

≤ C

[
log
(

1 + 1

d(z2, σ
e
1 )

)
+ 1
]
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for some absolute constant C > 0. Thus, by (132), we have that∫
V ∩(σ e

1 ×σm
2 )

∣∣∣∣ψ1(z̃1, ỹ1)ψ2(z̃2, ỹ2)dz1 dz2

z1 − z2

∣∣∣∣≤ C

for some absolute constant C > 0. Combining this with (134), we have the desired
bound. �

10. Decorrelation estimate proofs. In what follows, we set

IM = ⋃
i=1,2

{ui} × (√2ui + u
−1/6
i

[
ti/

√
2, (logu1)

100]).
We also define

EM(u1, t1;u2, t2) = ∣∣det(I − K̃|IM
) − det

(
I − K̃D|IM

)∣∣.
By Lemma 7.3, for all ti ≤ (logu1)

100

(136)
∣∣E(u1, t1;u2, t2) − EM(u1, t1;u2, t2)

∣∣≤ 2Ce− log(u1)
150/C.

This is smaller than the bounds we wish to show for E, and hence it suffices to
show the bounds for EM .

For trace class kernels K , L on L2(I ), recall that that the 2-regularized deter-
minant det2(I −K) = det(I −K)e− trK . These determinants satisfy the following
perturbation bound:∣∣det2(I − K) − det2(I − L)

∣∣
≤ ‖K − L‖HS exp

(
1

2

(
1 + ‖K‖HS + ‖L‖HS

)2)
,

(137)

see [13], page 196.
To apply (137), we begin by estimating the Hilbert–Schmidt norm of K̃D|IM

.

LEMMA 10.1. Provided that u1 ≥ u2 + u
2/3
2 e(logu1)

2/3
, then uniformly in ti ≥

−(logui)
5/12,

‖K̃e|IM
‖2

HS = O
(
e−�(exp((logu1)

2/3))).
PROOF. For K̃e, we have, in the notation of Lemma 9.1,

� ≤ 8(
√

u1 − √
u2)u

−1/6
2 log(u2)

5/12

≤ 8e(logu1)
2/3

(logu2)
5/12.

The condition that u1 ≥ u2 + u
2/3
2 e(logu1)

2/3
implies that u1 ≥ u2 + 0.5u

2/3
1 ×

e(logu1)
2/3

once u0 is made sufficiently large, and hence

−(
√

u1 − √
u2)

3

√
u1

≤ −(u1 − u2)
3

8u2
1

≤ −e3(logu1)
2/3

64
.
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Hence, we have by Lemma 9.1 that |K̃e(u2, y2;u1, y1)| ≤ e−�(exp((logu1)
2/3)) uni-

formly over IM . As we may assure that η > 1
3 , we have that

(138) ‖K̃e|IM
‖2

HS = O
(
e−�(exp((logu1)

2/3))),
as the measure of IM is O((logu1)

200). �

LEMMA 10.2. Provided that u1 ≥ u2 + u
2/3
2 e(logu1)

2/3
, then uniformly in ti ≥

−(logui)
5/12,

‖K̃o|IM
‖2

HS = O
(
log(u1)

5/6).
PROOF. Set τi(x) = x√

2
ui

−1/6 + √
2ui , so that τi(ỹi) = yi . Let t∗ =

(logu1)
100, and consider the following four integrals:

Ii,j =
∫ t∗

−ti

∫ t∗

−tj

∣∣K̃o

(
ui, τi(ỹ1);uj , τj (ỹ2)

)∣∣2 dỹ1 dỹ2

2u
1/6
i u

1/6
j

for i, j ∈ {1,2}. As ‖K̃o|IM
‖2

HS = ∑
Ii,j , it suffices to show that each of these

integrals has the desired bound.
Bounding I1,1 and I2,2:
The details of the proof are nearly identical for I1,1 and I2,2, and so we give

the full proof for just I1,1. All bounds on |K̃o| that we use come from case (3)
of Lemma 9.2. We break the integral into four parts, according to the signs of ỹi

which we denote by I±±
1,1 . For both ỹ1 ≤ 0 and ỹ2 ≤ 0, we have

|K̃o(u1, τ1(ỹ1);u1, τ1(ỹ2))|2
u

1/3
1

≤ C + C max
(|ỹ1|, |ỹ2|)e−2c(

√|ỹ1|−
√|ỹ2|)2(

√|ỹ1|+
√|ỹ2|)

for some C > 0. Let si = (ti)−. Hence, changing variables in I−−
1,1 by w± =√−ỹ1 ±√−ỹ2 we have, adjusting constants,

I−−
1,1 ≤ Cs2

1 +
∫ 2

√
s1

0

∫ ∞
0

Cw3+e−2c(w−)2w+ dw− dw+

≤ Cs2
1 + C′

∫ 2
√

s1

0
w

5/2
+ dw+ = O

(
s2

1 + s
7/4
1

)
.

For I+−
1,1 , where ỹ1 ≥ 0 and ỹ2 ≤ 0, we have

|K̃o(u1, τ1(ỹ1);u1, τ1(ỹ2))|2
u

1/3
1

≤ Cξ+(ỹ1) + C|ỹ2|e−2cỹ1
√|ỹ2|.
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Therefore, changing variables and integrating,

I+−
1,1 ≤ Cs2

∫ t∗

0

1

1 + ỹ1
dỹ1 + C

∫ s2

0

∫ t∗

0
ỹ2e

−2cỹ1
√

ỹ2 dỹ1 dỹ2

= O
(
s2 log t∗ + s

3/2
2

)= O
(
(logu1)

5/6).
A symmetric argument holds for I−+

1,1 .
For I++

1,1 , we have

|K̃o(u1, τ1(ỹ1);u1, τ1(ỹ2))|2
u

1/3
1

≤ Cξ+(ỹ1)ξ+(ỹ2).

Changing variables and integrating,

I++
1,1 ≤ C

(∫ t∗

0

dỹ1

1 + ỹ1

)2
= O

(
(log t∗)2).

Thus, we have shown that I1,1 = O((logu1)
5/6).

Bounding I2,1:
Here, we use cases (1) and (2) of Lemma 9.2. These integrals are similar to or

simpler than the ones in I1,1 and are easily checked to be O((logu1)
5/6).

Bounding I1,2:
Here, we use Lemma 8.2, which when we integrate gives the following:

(139) I1,2 ≤ u
1/6
1 u

1/6
2

(
√

u1 − √
u2)2

(
C + eC(t1)

3/2
− +C(t2)

3/2
− )

for some absolute constant C > 0. By assumption on u1 and u2, we have
√

u1 −√
u2 = �(u

1/6
1 e(logu1)

2/3
) uniformly in u2. Hence, we have

I1,2 = e−�((logu1)
2/3). �

PROOF OF PROPOSITION 2.2. The proof follows from (137), Lemma 10.1,
Lemma 10.2 and the observation that by (139), ‖K̃|IM

− K̃D|IM
‖HS =√I1,2. �

PROOF OF PROPOSITION 2.1. The only difference between this case and
the one in the proof of Proposition 2.2 is that we can sharpen the estimate of√

I1,2 = ‖K̃|IM
− K̃D|IM

‖HS. Using Lemma 8.1, we have that for the range of ti
considered, there is a constant C > 0 so that

‖K̃o|IM
‖2

HS ≤ C
u

1/6
1 u

1/6
2

(
√

u1 − √
u2)2 e− 2

3 ((t1)
3/2+(t2)

3/2). �
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