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OIL AND WATER: A TWO-TYPE INTERNAL
AGGREGATION MODEL
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We introduce a two-type internal DLA model which is an example of
a nonunary abelian network. Starting with n “o0il” and n “water” particles at
the origin, the particles diffuse in Z according to the following rule: whenever
some site x € Z has at least 1 oil and at least 1 water particle present, it fires
by sending 1 oil particle and 1 water particle each to an independent random
neighbor x &+ 1. Firing continues until every site has at most one type of
particles. We establish the correct order for several statistics of this model
and identify the scaling limit under assumption of existence.
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1. Introduction and main results. We investigate a new interacting particle
system on Z that can be considered as a model of mutual diffusion. Two particle
species, called for convenience oil and water, diffuse on Z until there is no site
that has both an oil and water particle. We start with n oil and n water particles at
the origin. At each discrete time step, if at least 1 oil particle and at least 1 water
particle are present at x € Z then x fires by sending 1 oil particle and 1 water
particle each to an independent random neighbor x & 1 with equal probability. The
system fixates when no more firing is possible, that is, when every site has particles
of at most one type.

How many firings are required to reach fixation? How far is the typical particle
from the origin upon fixation? Our main results address these two questions.

DEFINITION 1. For x € Z, let u(x) be the total number of times x fires before
fixation. The random function u : Z — N is called the odometer of the process.

In the above informal description, we have assumed that all sites fire in parallel
in discrete time, but in fact this system has an abelian property: the distribution
of the odometer and of the particles upon fixation do not depend on the order of
firings (Lemma 2.2).

Our first result concerns the order of magnitude of the odometer.
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THEOREM 1.1. There exist positive numbers €,c,C such that for large
enough n:
i.
P(supu(x) > Cn4/3) <e ™,
X€Z
il.

]P’( inf  u(kx) < cn4/3> <e .

x:|x|<cnl/3

The next result shows that most particles do not travel very far: all but a vanish-
ing fraction of the particles at the end of the process are supported on an interval of
length n*, for any exponent o > 1/3. Formally, for r > 0 let F'(r) be the number
of particles that fixate outside the interval [—r, r].

THEOREM 1.2. For sufficiently small € > 0, there exists § > O such that
P(F(n%ﬂ) > nl_%) <e .

Theorem 1.1 shows that the odometer function scales like n*/3. Theorem 1.2
motivates the conjecture that the proper scaling factor in the spatial direction
should be n!/3. We conjecture that the scaling limit of the odometer exists, and
under the assumption of existence we identify the limiting function. Let & := Eu.

CONJECTURE 1.3.

(i) Forany § > 0,

1) ]P’(sup %/;l(x) >8) -0 asn — oo.
X€Z n
(i) There is a function w : R — R such that
a(ln'Pg])
() T A3 — w(§),

uniformly in &.

Simulations support Conjecture 1.3, as shown in Figure 1. Conditionally on
Conjecture 1.3, the following result identifies the limit w(x) exactly.

THEOREM 1.4. Assuming Conjecture 1.3, the function w appearing in (2)
must equal

1 4

(3) 'U.)(.X'): m((lgﬂ)l/3_|x|) , |X| <(187T)1/3,

0 x| > (18m)' /3,
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FI1G. 1. Graph of the odometer function of the oil and water model in 7 with n = 360,000 particles
of each type started at the origin: for each x € Z a box is drawn centered at (x, u(x)) where u(x) is
the number of oil-water pairs fired from x. The curve f(x) = % ((18mn) 173 _ |x|)4 appears in gray.
Red and blue vertical bars represent the final configuration of oil and water particles, respectively;
the height of the bar is proportional to the number of particles.

The oil and water model can be defined on any graph and in particular on higher-
dimensional lattices. Figure 2 shows an oil and water configuration in Z?. In Sec-
tion 7, we conjecture the relevant exponents in Z¢ for d > 2.

1.1. Related models: Internal DLA and Abelian networks. In internal DLA,
each of n particles started at the origin in Z? performs a simple random walk until
reaching an unoccupied site. The resulting random set of n occupied sites is close
to a Euclidean ball [see Lawler, Bramson and Griffeath (1992)]. Internal DLA is
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FIG. 2. Oil and water in Z* with n = 2%2 particles of each type started at the origin. Each site
where particles stop is shaded red or blue according to whether oil or water particles stopped there.
The intensity of the shade indicates the number of particles. We believe that the limit shape is a disk
of radius of order n 174,

one of several models known to have an abelian property according to which the
order of moves does not affect the final outcome.

Dhar (1999) proposed certain collections of communicating finite automata as
a broader class of models with this property. Until recently the only examples
studied in this class have been unary networks [or their “block renormalizations”
as proposed in Dhar (1999)]. Informally, a unary network is a system of local rules
for moving indistinguishable particles on a graph, whereas a nonunary network
has different types of particles. It is not as easy to construct nonunary examples
with an abelian property, but they exist. Alcaraz, Pyatov and Rittenberg (2009)
studied a class of nonunary examples which they termed two-component sandpile
models, and asked whether there is a nontrivial example with two particle species
such that the total number of particles of each type is conserved. Oil and water has
this conservation property, but differs from the two-component sandpile models in
that any number of particles of a single type may accumulate at the same vertex
and be unable to fire.
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Bond and Levine (2016) developed Dhar’s idea into a theory of abelian net-
works and proposed two nonunary examples, oil and water and abelian mobile
agents. Can such models exhibit behavior that is “truly different” from their unary
cousins? This is the question that motivates the present paper. Theorem 1.2 shows
that oil and water has an entirely different behavior than internal DLA: all but a

vanishing fraction of the 2n particles started at the origin stop within distance nite
(versus n for internal DLA).

In contrast to internal DL A where there is now a detailed picture of the fluctua-
tions in all dimensions [see Asselah and Gaudilliere (2013a, 2013b, 2014), Jerison,
Levine and Sheffield (2012, 2013, 2014)], there is not even a limiting shape theo-
rem yet for oil and water. Simulations in Z¢ indicate a spherical limit shape (Fig-
ure 2) with radius of order n!/(@+2),

1.2. Main ideas behind the proofs. In this section, we present informally the
key ideas behind the proofs. We start with a definition.

DEFINITION 2. Forany x e Zandt €{0, 1, ..., 00}, let ni(x,¢) and na(x, 1)
represent the number of oil and water particles, respectively, at position x at time ¢.

From now on, let

P, =" min(ni(x, 1), n2(x, 1))

xX€Z

be the number of co-located oil-water pairs at time ¢.

The process is run in phases: we start by firing a pair at the origin and, in-
ductively, at each time ¢ > 0 we fire one pair from a vertex x; determined ac-
cording to a firing rule.’ By definition, Py = n and the process stops at the
first time t for which P, = 0. Now denote by I; = n1(x; — 1,1) — na(x; — 1, 1)
the excess of oil particles over water particles at the left neighbor of x; and by
re=n1(x; +1,1) — ma(x; + 1, ¢) the excess at the right neighbor.

Conditional upon knowing the process up to time ¢, the random variable

4) Zi=Pp1— P

can have four possible distributions. To distinguish them, we denote the condi-
tional Z; by the random variables &1, &, &3, &4 which are described Table 1.

Note that £; has mean zero, whereas & and &3 have negative means, and &4 is
degenerate at 0. Since all such expected values are less than or equal to zero,

P, is a supermartingale.

SLemma 2.2 shows that certain statistics of the process remain independent of the choice of the
firing rule. The specific rule we use for convenience throughout the article is specified in Lemma 3.5.
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TABLE 1
The four possible conditional distributions for Z;

i P¢; =-1) P(¢; =0) P =1) Used when

1 1/4 1/2 1/4 liry <0

2 1/4 3/4 0 exactly one of /4,77 is O
3 1/2 1/2 0 li=r=0

4 0 1 0 l,rl >0

The main idea of the proof for the upper bound in Theorem 1.1 is as follows:
Define the auxiliary random variables

(5) Ni(t)=#s<t:Z, L&),

It is clear from the definition that
T
> Zi=P, — Py=—n,
i=1

where 7 is the stopping time of the process where all oil and water have been sep-
arated (P; = 0). Now, informally Y 7_, Z; is the sum of N»(t) + N3(t) variables
with mean at most —1/4 and N1 (t) variables with mean 0.

Because of the negative and zero drifts, respectively, the sum of the negative
mean variables is of order O(—(N2(t) + N3(t))), whereas the sum of the zero
mean variables is roughly O (/N1(7)) (by square root fluctuations of the symmet-
ric random walk). Thus, roughly

T
Y Zi < —Ny(1) — N3(v) + /N1 (7).
i=1
We then argue by contradiction: conditional upon the event that the odometer is
“very large” somewhere (i.e., larger than Cn*/3 for a suitable big constant C),

we show that it is likely that No(7) + N3(7) is “sufficiently large” compared to
+/N1(7). This in turn implies that

T
Z Zl' < -—n,
i=1

which is a contradiction.

To prove the lower bound we first establish a gradient bound on the odometer
using the upper bound. In other words, we show that there exists a constant ¢ such
that, with high probability, for x € [0, cn'/3] we have

ux) —u(x+1)>n/2.
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This in turn implies that with high probability,
u(0) = Q(n*?3),
since

0< u(LcnlBJ) <u(0) — %LcnlBJ.

Theorem 1.2 follows from the proof of the lower bound.

Lastly, we discuss the proof of Theorem 1.4. Clearly, by symmetry of the pro-
cess about the origin the function w(-) is symmetric as well. We show that Conjec-
ture 1.3 implies that the limiting function is smooth on the positive real axis and,

in particular, satisfies
7 2
w(x) =,/ —w(x),
b4

with certain boundary conditions. At this point, Theorem 1.4 follows by identify-
ing a solution of the above boundary value problem, and using uniqueness of the
solution.

1.3. Outline. This article is structured as follows. In Section 2, we give a rig-
orous definition of the model. Furthermore, in order to facilitate our proofs, we
define two different versions of the process and prove that they both terminate in
finite time with probability one. We then construct a coupling between the two
versions, which in particular implies that they terminate with the same odometer
function and the same distribution of particles.

In Section 3, we show a polynomial bound on the stopping time t. We start by
showing that the number of pairs P; can be stochastically dominated by a certain
lazy random walk with long holding times, started and reflected at . In order to get
arough upper bound on 7, it suffices to bound the hitting time of zero for this walk,
which we show is of order n*. Consequently, we get direct polynomial bounds on
the support and the maximum of the odometer function. We then improve the last
bound, proving the upper bound in Theorem 1.1 in Section 4.

Section 5 is devoted to proving the lower bound in Theorem 1.1. As a byproduct
of the proof, Theorem 1.2 follows.

In Section 6, we prove the conditional Theorem 1.4. Section 7 consists of open
questions and a conjecture about the process on higher dimensional lattices.

2. Rigorous definition of the model. As the underlying randomness for our
model, we will take a countable family of independent random variables

(©6) = (X i) rezren

with P(X} = £1) = P(Y})! = £1) = % For each x € Z, the sequences (X )i>1
and (Y} )r>1 are called the stacks at x. Denote by 2 the set of all stacks w.
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The stacks will have the following interpretation (described formally below):
On the kth firing from site x, an oil particle steps from x to x + X; and a water
particle steps from x to x + Y.

For any value K € N, a firing sequence is a sequence of vertices s =
(x0,...,xg—1) with each x; € Z. Recall from Definition 2 that the random vari-
ables n; (x, t) represent the number of particles of type i (type 1 are oil and type
2 are water particles) at location x at time ¢. Given such a sequence and an initial
state n1(-,0), n2(-,0) we define the oil and water process (n(-, k), n2(, k)),f=0
inductively by

™ MGk +1) =010,k = 8000 + (v + X;),
®) mCk+ 1) =na(, k) = 8a) + 8 (v + Y1),

where iy =#{j <k :x; = x;}. Here, §(x) is the function taking value 1 at x and 0
elsewhere.

2.1. Least action principle and Abelian property.

DEFINITION 3. Lets = (xg,...,Xxg—1) be a firing sequence. We say that s is
legal for (771(" O)a 772('7 0)) lf
min(n; (xx, k), n2(xk, k) > 1,
for all k, 0 <k < K — 1. We say that s is complete for (n1(-,0), n2(-, 0)) if the
final configuration (1 (-, K), n2(-, K)) satisfies
min(n; (x, K), n2(x, K)) <0,

forall x € Z.

Making Definition 1 precise, we define the odometer of a firing sequence s to
be the function u, : Z — N given by

9 ug(x) =#{0<k < K : x; = x}.

How does u; depend on s? The least action principle for abelian networks ad-
dresses this question.

LEMMA 2.1 [Least action principle, Bond and Levine (2016)]. Let s and
s’ be firing sequences. If s is legal for (n1(-,0),n2(-,0)) and s’ is complete for
1(-,0),n2(-,0)), then usy(x) < uy(x) for all x € 7.

We remark that this statement holds pointwise for any stacks w, even if s and s’
are chosen by an adversary who knows the stacks.

In this paper, we will not use the full strength of Lemma 2.1. Only the following
corollaries will be used.
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LEMMA 2.2 [Abelian property, Bond and Levine (2016)].  For fixed stacks w
and fixed initial state (n1(-,0), n2(-,0)):

(1) If there is a complete firing sequence of length K, then every legal firing
sequence has length < K .
(ii) If firing sequences s and s’ are both legal and complete, then ug = uy.
(ii1) Any two legal and complete firing sequences result in the same final state

(m(, K), m(-, K)).

2.2. Constant convention. To avoid cumbersome notation, we will often use
the same letter (generally C, C’, ¢, ¢/, € and §) for a constant whose value may
change from line to line.

3. Preliminary bound on the stopping time. We denote by 7 € NU {00}, the
stopping time of the process:

(10) T =min{k > 0: min(n; (x, k), n2(x, k)) =0 for all x € Z}.

In this section, we prove a preliminary bound on the stopping time t. The bound
is very crude and will be improved in the next section where we prove the upper
bound in Theorem 1.1. However, this bound will be used in several places through-
out the article. Note that by Lemma 2.2, given the stacks [see (6)], the stopping
time 7 and the odometer function u := u; are well defined and do not depend on
the firing sequence s.

PROPOSITION 3.1. Almost surely for any realization of the stacks, T is finite.
Moreover:

i. For any given € > 0, there exists c = c(€) > 0 such that

P(r > n4+2€) <e ™,

ii. E(r) <16n®.
This result has an immediate consequence, given by the next corollary.

COROLLARY 3.2. Given € > 0, there exists a constant ¢ such that

c

Pu(x) =0,¥x € Z: |x| > n*T) > 1 —e™,

Before proving Proposition 3.1, we recall from Section 1.2 that
(1) P =) min(ni(x, 1), m2(x, 1))
Xe€Z

denotes the total number of co-located oil and water pairs at time ¢. By definition,
the process stops at T when P; = 0. In order to prove Proposition 3.1, we follow
the four steps described in the following:
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e First, we define a lazy reflected random walk R; on {0, 1,...,n} started and
reflected at n, and stopped upon hitting 0. Define the following stopping time:
(12) 7’ :=min{R; =0}.
i>1

e Consequently, we use P; to define a series of stopping times 7;, and we show
that we can bound the tails of the waiting times defined as

(13) Wait; :=1t;11 — ¢;.

e Next, we show that P, is stochastically dominated by R;.
e Finally, we prove Proposition 3.1 by combining information about the distribu-
tions of 7/ and the waiting times Wait; .

The lazy reflected random walk R; is defined as follows. It starts with Rg = n.
Inductively, if R; =n then R;;1 =n or n — 1, with probability 3/4 and 1/4, re-
spectively. Otherwise, if R; € (0, n) then it performs a lazy random walk, that is,

R; +1, w.p. 1/4,
R,‘+1 = Rl' — 1, W.p. 1/4,
R;, w.p. 1/2.

The walk terminates at the stopping time 7/, defined in equation (12).

To perform the second and third steps, we analyze P; and show that it is a
supermartingale. This was described heuristically in Section 1.2, and here we make
this concept formal, as this fact is the key to many of the subsequent arguments.

If at time ¢ a site x emits a pair, then P;41 is either P, — 1, Py, or P; + 1.
Moreover, the distribution of P;;1 — P; depends on the state of the neighbors of x
at time ¢ in a fairly simple way.

Define G; to be the filtration given by the first ¢ firings. Recall from Definition 2
that 01 (x, ) and n2(x, t) are the number of oil and water particles, respectively, at
X at time ¢.

DEFINITION 4. Define for any x € Z and nonnegative integer time ¢ including
infinity:
(14) g (x) :==mi(x, 1) — m(x, 7).

We say that at time ¢ a site x € Z has type oil, 0 or water depending on the type
of the majority of particles at the site, that is, whether g;(x) is positive, zero or
negative, respectively.

We look at how P; changes conditional on the filtration at time 7. Formally, we
look at

(15) Zl‘ = Pz+1 —P[.
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At this point, we observe that Z, can have four possible distributions condi-
tioned on G;. Namely, define four random variables &1, &, &3, &4 as follows:

0, w.p. 1/2,
0, w.p. 3/4,
E&1:=11, w.p. 1/4, & =
—1, w.p. 1/4,
-1, w.p. 1/4,
0 wp. 1/2
=1 ’ =0, w.p. 1.
SEL wpip P

REMARK 1. Every time that a vertex x fires, we divide the possible types of
the neighbors of x into four groups which determine the law of Z;:

&1, if the neighbors have different fypes but neither is 0,
Z, law &, if exactly one of the neighbors has fype 0,

&3, if both neighbors have fype 0,

&s, if the neighbors have the same nonzero type.

DEFINITION 5. A firing rule is an inductive way to determine a legal firing
sequence. More formally, it is a function that is defined for any ¢ and any atom
A C G; such that Py > 0. The firing rule outputs an integer z such that there is at
least one pair at z at time ¢ in A.

The stacks combined with a firing rule determine the evolution of the process.
Given a firing rule, we inductively define the set of stopping times #;. Set f; = 1.

Then, inductively, given ¢, ..., t; set t;+ to be the first time j after #; such that
Z; does not have distribution &4. Let 77 be the last stopping defined. Thus,

law
(16) L:=#{i<t:Z; # &).
Note that with this definition of the stopping times we have

Py = Py

Thus, the distribution of Py, | — Py, is either &1, & or &3. Finally, define the waiting
times:

Wait; =41 — 1;.
With these definitions, we are ready to complete the second and third steps of our

outline.

LEMMA 3.3.  For any firing rule the sequence R; stochastically dominates Py, .
This in particular implies that T’ stochastically dominates L.
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PROOF. The proof is by induction, and the starting configuration is given by
Ro = Py =n. If R; = n, then the distribution of R;;1 — R; is &3, by definition of
the reflected random walk.

Inductively, if P;, > R; = n then P;, must also be n. This means that all sites
have type 0 and the distribution of P;,_, — P, is &3. Thus we can couple R;; and
P, suchthat Rj11 > Py, .

On the other hand, if 0 < R; < n then the distribution of R; | — R; is & while
the distribution of P, — Py, is either &1, & or &3. As all of &, & and &3 are
stochastically dominated by & we can couple R;1; and Py, such that R4 >
P lit1- O

LEMMA 3.4. For any € > 0, there exists § such that

P(L > n2+6) <P(z'> n2+€) < e*"(s,

where t' and L are defined in (12) and (16), respectively.

PROOF. The first inequality follows from the fact that 7’ stochastically dom-
inates L. The second inequality is a standard fact about lazy random walk (stated
later in Lemma 5.1). [

LEMMA 3.5. Let E; be ani.i.d. sequence of random variables whose distribu-
tion is the same as the time taken by simple symmetric random walk started from
the origin to hit £2n. There exists a firing rule such that Wait; is stochastically
dominated by Ej.

PROOF. At time 1, and at all times j > 1 such that Z; _; does not have dis-
tribution &4, we fire the leftmost oil-water pair. For the remaining times j, either
both neighbors of the site x fired at time j — 1 had an excess of water, in which
case we fire a pair from the neighbor of x which just received an oil particle; or
both neighbors of x had an excess of oil, in which case we fire a pair from the
neighbor of x which just received a water particle. This neighbor has the uniform
distribution on {x + 1, x — 1} independent of the past. Thus, for each time interval
ti < j <tiy1 (where ty = 1 and #; is the first time j > #; that Z; does not have
distribution &) the location of the site fired at time j performs a simple random
walk on Z. We now show that this firing rule allows us to control the waiting times.

Let z be the location of the leftmost pair at time #; and let I = (a, b) be the
interval of integers containing z where every location has at least one particle at
time #;. As there are at most 2n particles, we have that I = (a,b) C (z —2n,z +
2n).

If there are firings only in the interior of /, then there are no particles at a or
b. If the site being fired reaches the boundary of [ at time k, then the distribution
of Zj is not &4, as one of the neighbors of the pair to be fired (either a or b) has
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no particles and is of type 0. Thus, t;+1 < k. This tells us that the distribution of
the waiting time Wait; = t; 1 — t; is bounded by the time taken by simple random
walk started at the origin to leave the interval (—2n, 2n). Since this is true for each
i independently, the lemma is proven. [

PROOF OF PROPOSITION 3.1. We first notice that by Lemma 2.2, t defined
in (10) is independent of the firing rule. For the purposes of the proof, we will fix
our firing rule to be the one described in Lemma 3.5. Now by Lemmas 3.3 and 3.5,

.[/

Z E; stochastically dominates t.
i=1
Thus, P(t > n*t€) < P(Y7_, E; > n*t€). If Y.7_| E; > n**€ then either,
0.1n2+6/2
or Z E; > n*te/2,
i=1

' > 0.1p2te/2

Therefore,
0.1}’!2+€/2
P(r > n4+6) <P(<' > O.1n2+€/2) + ]P’( Z E; > n4+€>.
i=1

The first term is bounded by Lemma 3.4. The second is bounded using standard
bounds on the distribution of the time for simple random walk started at the origin

to leave a fixed interval (—k, k). Both of these probabilities are bounded by e’
for some § =5(¢) > 0.

Furthermore, by Lemma 3.5 we have that the E;’s are all i.i.d., hence we can
apply Wald’s identity [see, e.g., Section 3.1 in Durrett (2010)] and get that

E(r) < E(c")E(E)) < 16n*,
which completes the proof. [J
For definiteness, throughout the rest of the article we run the process according

to the firing rule described in the proof of Lemma 3.5. We remark that any other
firing rule would work as well.

4. Proof of Theorem 1.1 (upper bound).
4.1. Notation. In order to proceed, we need to introduce some further nota-
tion. Let
llu |0 = max{u(x): x € Z}.
In this section, we will bound from below the probability of the event

(17) G = {llullo < Cn*?3)
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for some large constant C. To this purpose, we define
Returns(x) :=#{r <t :m1(x, 1) =m(x, 1), x; € {x — 1, x + 1}},

(x; is the location of firing at time #). Thus, Returns(x) is the number of times such
that:

1. x has type 0, (the same number, possibly 0 of oil and water particles), and
2. a pair of particles is emitted from x — 1 or x + 1.

Then define

(18) Returns = Z Returns(x).

x€eZ

Recall the definition of N;(¢) from equation (5) and notice that
(19) Returns = Ny (t) 4+ 2N3(7).

Our goal is to show that Returns is large. The advantage of the decomposition
in (18) is that it will allow us to show the relationship between Returns and the
odometer function.

Finally, recall that G; is the o-algebra generated by the movement of the first
t pairs that are emitted and notice that, from the definition of P; (11) we have
that

P, = min[n;(x, 1), n(x,1)]

X€EZ

is the number of pairs at the time of the #th emission. We recall that P; is a super-
martingale with respect to G;.

4.2. QOutline. In order to show that it is unlikely that ||« is greater than a
big constant times n*/3, we rely on three main ideas.

(i) The odometer is fairly regular. Typically,
Ju(x) —u(x + 1| < 2n+u(x)'/2.

This regularity implies that under the assumption that u(xg) is much bigger than
n*3 then it is likely that u(x) is much bigger than n*/3 for all x such that |x — xo| <
1/3
n.
(i) The variable Returns can be expressed approximately in term of the
odometer function. Fix x € Z and consider 1 (x, k) — n2(x, k) (difference of num-
ber of oil particles and water particles) as a function of k. This function performs
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a lazy random walk that takes about
(u(x — 1) +u(x + 1)) ~ 2u(x)

steps, (the approximation is because of the previously mentioned regularity). Thus,
we expect Returns(x) to be on the order of u(x)!/?. Summing up over all x, we
expect

(20) Returns = Z Returns(x) ~ Z u(x)l/ 2,

X€Z x€Z

Combined with the previous paragraph this implies that if ||u| o is much larger
than n*/3 then it is likely that Returns is much larger than 7.

(iii) The process P; is a supermartingale. The sum of the negative drifts until
the process terminates is, by equation (19),

1 1
_Z(NZ(T) +2N3(7)) = —ZReturns.

Since P; starts at n and stops when it hits 0, the typical value of Returns should be
around 4n.

We use the Azuma—Hoeffding inequality to show that the probability of the
event “Returns is much larger than 4n” is decaying very rapidly. By the previous
paragraphs, we also will get that the probability that ||u||s is much larger that n*/3
is decaying very rapidly.

The main difficulty in implementing this outline comes in the second step as the
odometer function and Returns are correlated in a complicated way.

4.3. The bad events. To make our outline formal, we now define our set of bad
events. The first three of these deal with the odometer function. But first we use
the odometer function to define

Base = {x :u(x) > 0} C Z.

(0) By = {Base ¢ [-n°, n’]}.
) B ={llulloc =n*?).

(i1) Gradient of the Odometer. It is natural to expect the odometer to decrease
as one goes away from the origin (see Figure 1). The next event B, is the event
where the gradient of the odometer function, u(x) — u(x 4 1), is too large or has
the wrong sign.

Let

min{n, min u(y)}, for x > 0 and

m(x): OSny

min{n, min u(y)}, for x <0.
x<y=<0
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We define:

0.5

By :={3x € [—ns,ns] cu(x) >n"> and

JuCe + 1) = u(x)| > 2m(x) + max (u(x), ux + 1))

U {3x €0, n5] cu(x) >n" and

(ux + 1) = u(x)) > max(u(x), ux + D)™}

Uf{dx e [—n5, 0] :u(x) > n%3 and

(u(x — 1) —u(x)) > max(u(x), u(x + 1))0'51 .
In all the three events above, the max(u(x), u(x + 1))%! corrections are an upper
bound on the fluctuations. The definition of the events are then based on the fact
that ignoring corrections due to fluctuation, for any x > 0, one has 0 < u(x) —

u(x+1) <2mas u(x) —u(x + 1) represents the number of particles eventually to
the right of x. More details are provided in the proof of Lemma 4.5.

REMARK 2. While the definition of B, is quite technical, we now give one
consequence of it that is representative of how we will use it. Let Bj N B3 occur and
consider the set of x such that n < u(x) < n'% [or equivalently 1 < log, (u(x)) <
1.96]. Then

(1) u(x) — u(x + 1| < 2m ) + u@)® <20 + (n19)°" < 3p.

For any x and y in a connected component of this set, then (21) implies

1
if [log, (u(x)) — log, (u(y))] = 0.05  then |x —y| > gn°~05.
This is because our conditions on x and y imply |u(x) — u(y)| = n'% —n >
0.5n95. So between x and y the odometer changes by at least 0.512!% in incre-
ments of at most 3n.

Our proof makes heavy use of this and similar estimates that follow from Bj N
B5. Much of the complication of our proof comes from the fact that we need to
use different estimates depending on whether m(x) = n or m(x) < n and whether
log, (u(x)) is greater than 1.96, between 1 and 1.96 or less than 1. These estimates
are used in Lemmas 4.12 and 4.13 which are used to prove Lemma 4.14. The
conclusion of Lemma 4.14 is useful in showing that Returns is large because of
our next bad event.
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(iii) Regularity of returns

By =13, j, k:il,|j| <n’ ke[n®, n’], j —i>0.1n"0,

j—1
and u(x) >k Vx €[i, j], and Z Returns(x) < 0.01(j — i)\//; .
x=i+1
Finally, define the event
(22) By = {Returns > 20(n + t°°1)}.

To complete our outline, we show that:
e G°cUjoBi and
o P(B;) are small fori =1,...,4.

4.4. P; is a supermartingale. Recall from (4) that
Zi = Pry1 — Pr.
Recall from Remark 1 that conditional on the past, each Z; has one of four possible

distributions &1, ..., &4.

LEMMA 4.1. P is a supermartingale and

s 1
ZE(Z,+1 |F) = —ZReturns.

t=1

PROOF. This follows from the discussion in Section 1.2. The summands on
the left-hand side are all O, —% or —%. By (19) and (5), Returns is the sum of the

number of —}‘ terms in the sum plus twice the number of —% terms. [

/

LEMMA 4.2. There exist C, C’' such that P(B4) < Ce ¢

PROOF. As Returns < 7, we have that

By = U ByN{t =r}.

r>20n

Note that by Lemma 4.1 and because Pr =0 (i.e., Y. Z; = —n), for every r >
20n,

Bin{t =r} C 1Y Zi —E(Z/|Fim1) 2 4n +5r%1 .
i=1
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Also note that Z; —E(Z;|F;—1) are the increments of a martingale and are bounded
by 1. Thus, we can apply the Azuma-Hoeffding inequality to get the bound P(34N

{t=rh)<e™” * The lemma follows from the union bound. [J

Now define the new event
(23) E=G°NByNBINB;,
where all the events are defined in Section 4.3. Remember the event G is that the
odometer at the origin is less than a large constant times n*/3 and the events B3,
B{ and BS are regularity conditions on the odometer. The key lemma needed for
the proof of the upper bound is the following.

LEMMA 4.3.
(24) ENDBS C By,
where B4 was defined in (22). Thus,
(25) P(G) < P(Bo) + P(B1) + P(By) + P(B3) + P(By).

Assuming (24), (25) follows by taking the union bound. We postpone the proof

of (24) to Section 4.8 and proceed to completing the proof of the upper bound in
Theorem 1.1.

LEMMA 4.4. There exist positive constants D, C' and y such that

P(Bo), P(B1), P(Ba), P(B3), P(By) < De €™

PROOF. P(Bp) and P(B;) are bounded by Proposition 3.1. P(B4) is bounded
by Lemma 4.2. The bounds for P(3,) and P(533) appear as Lemmas 4.5 and 4.10,
which appear in Sections 4.6 and 4.7, respectively. [J

4.5. Proof of the upper bound. Thus, by (25) and Lemma 4.4, there exists
€ > 0, such that for large enough #,

(26) PG)>1—e ™,

where G was defined in (17). The proof of the upper bound is hence complete.
In the following sections, we bound P(57) and P(133).

4.6. The probability of the bad events.

LEMMA 4.5. There exist positive constants C, C' and y such that

P(By) < Ce €™
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We first introduce a definition.

DEFINITION 6. Let A*(k) denote the quantity such that, after k pairs have
been emitted from x, there are k + A* (k) particles that moved to the right (i.e., to
x + 1) and k — A* (k) particles that have moved to the left (i.e., to x — 1). Notice
that this is just a function of the stack of variables X7, Y;" at the site x.

PROOF OF LEMMA 4.5. Without loss of generality, we assume that x > 0.
Recall from Section 4.3(ii) that

m(x) = min{n, Oglyigxu(y)}.

Suppose that at some time ¢ exactly k pairs have been emitted from x, and exactly
k' pairs have been emitted from x + 1. Then the number of particles to the right of
X is

k4 A* (k) — (K — A*TL(K)).

This holds for all times ¢, in particular for the time when the process stops [at which
time k = u(x) and k' = u(x + 1)]. Let A = A*(u(x)) and A"t = A*H (u(x +
1)). Since for any 0 < y < x, the number of particles that settle to the right of x
is at most the number 2u(y) of particles emitted from y (recall u counts emitted
pairs), we have

0<u(x)+ A" — (u(x+1) — A" <2m(x).
Rearranging, we get
—A" = AT <u(x) —u(x +1) <2m(x) — AY — AL
Then the event B, implies that
Ix € [—ns, ns] and k, n% <k <n*!: |A (k)| > 0.5k91,

The result follows from standard concentration results of random walks (cf. Ap-
pendix A.1) and union bounding over all possible values of x and k. Thus, the
result holds for some appropriate C, C’ and y. We omit the details. [J

We bound the probability of B3 next. However, we need a few preliminary re-
sults first. Furthermore, in this context we work with a slightly modified but an
equivalent setting.
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4.7. Merged stacks. We describe another process (7] (-, -), 15 (-, -)) which has
the same law as the process (11(-, -), n2(:, -)) defined in Definition 2.

In this version, analogous to (6) the source of randomness is a set of independent
variables (modified stacks):

(27) o = (X7, Y X5 YY) eszien

with P(X = £1) = P(¥} = £1) = P(X} = £1) = (¥ = £1) = 1. Denote by
Q' the set of all stacks ’. Note that stacks are located only at every x € 3Z.

Informally, the ith firing from x € 3Z uses moves X; and Y;* as before, but
the ith firing from the ser {x — 1, x + 1} uses moves :l:)_(f and i?ix according to
whether the firing was from x — 1 or x + 1, respectively. We refer to (X x Yix )i>1
as the merged stacks of x — 1 and x + 1.

Formally, given a firing sequence s = (xg,...,Xg—1), we define the pair
(1} (-, k), n5 (-, k)) inductively as follows. If x; € 3Z, then

MGk 1) = 07, K) = 8a) + 8 (i + X,

5 (k1) =ny(, k) — 8 () +8(xk + ;. F),
where iy =#{j <k:x; =x}. If x; € 3Z £ 1, then

MGk D) =7 (k) = 80a) + 8 (ue F X317,

MGk 4 1) = 1y k) = 8 + 8w F 7).

where i, =#{j <k:x; € {xx, xx F2}}.
To compare the modified process to the original, we use the following proposi-
tion.

PROPOSITION 4.6. Let (Z;)ics be independent uniform £1-valued random
variables indexed by a countable set I. Let i1,i>,... € I be a sequence of dis-
tinct random indices and &1,&, ... a sequence of *1-valued random variables
such that for all k > 1 both iy and & are measurable with respect to Fy_1 :=
0(Zi,)1<t<k—1. Then (§xZi, )k>1 is an i.i.d. sequence.

PROOF. We proceed by induction on £ to show that (§x Z;, )1 <k <¢ is 1.1.d. Since
& and iy are F;_1-measurable, and i, is distinct from iy, ..., iy_1, we have

E(€eZi | Fe—1) = §E(Zi,| Fe—1) = 0.
Since &¢Z;, is =1-valued the proof is complete. [

Recall € the set of all stacks w defined by the original process, and 2, the set
of all stacks ' defined by the modified process. Let 7 (w) denote the stopping time
of the sequence w, and similarly t(w’). Furthermore, denote by (0;, w;)(w) the
final configuration after performing w, and by (0, w’.)(®’) the final configuration
of the process after performing o’
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LEMMA 4.7. There is a measure-preserving map ¢ : Q' — Q such that with
the firing rule described in the proof of Lemma 3.5,

()G 5 () & (1) e, ).

In particular, (¢ (o)) = T(@'), (0L, w,) (@) = (07, wr) (P (@')) and the odome-
ter counts in both the processes are same.

PROOF. Given o’ € €/, let x1, x3, ... be the resulting sequence following the
firing rule described in the proof of Lemma 3.5, and let u(x) be the number of
firings performed at x in the modified process. We set ¢ (w') = (XF, Y ) rezieN
where if i < u(x) then X7 (resp., Y¥;*) is the direction in which the ith oil (resp.,
ith water) exited x in the modified process.

If i > u(x), then we make an arbitrary choice (e.g., split the unused portion of
each merged stack into even and odd indices).

It is important to note, that each xj is measurable with respect to the o -algebra
F'k—1 generated by the stack variables in ' used before time &, and that each stack
variable in o' is used at most once. The stack variables used at time k have the
form £ X, £Y where X, Y are stack variables not yet used and § = 1,, c37032+1) —
1,,e37—1 is a random sign that is measurable with respect to F'x_;. Conditional
on F'x_1, £X and £Y are independent uniform +1 random variables, and ¢ is
measure-preserving by Proposition 4.6. []

Lemma 4.7 allows us to switch between events defined in one version to the
other. For x € 3Z, let
Xy - vy
2 b
where X 7> Y ; are defined in (27). This represents the change in the difference of oil
and water particles at x when the £th firing takes place from the set {x — 1, x 4+ 1}.

Clearly, W* (£) has the same distribution as one step of a symmetric lazy random
walk. Now define

W* () =

J
RY(k)=#]10<j<k:Y W (0)=0¢.
=1
Define 8’3 to be the event that there exist three integers i, j, k such that:
Q) lil,1jl <n’,

(i) j—i>0.1n"01,
(iii) k € [n*3,n°] and
(lV) ZXGUJ),:”M Rx(09k) < OOIN/E(.] - l)

We now state a standard fact about number of returns to origin for the simple
random walk on Z.
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LEMMA 4.8. Let {S;}i>0 be a lazy simple random walk on Z started at the
origin. Let

Zeros(l) =#{i :0<i <l and S; = 0}.
Then for all 1,

1
P(Zeros(0.91) > 0.1v/1) > >

PROOF. See Chapter III, Section 5 of Feller (1968). [

LEMMA 4.9. There exist positive constants C, C' and y such that

P(Bj) < Ce €M
PROOF. Fix i, j, k and x € (i, j). Then, from Lemma 4.8 it follows

P(R*(0.9k) > 0.1v/k) > %

Now using the independence of the stacks at the multiples of three, we get

IP’( > RE(0.9%) < 0.01Vk(j — i)>
xe(i,j),3|x
< ]P’(#{x € (i, j), 3|x : R*(0.9k) > 0.1v/k} < %(j — i))

_ 7,01
<ce "

where ¢, ¢’ are positive constants.
As there are at most 4n'> choices of i, j and k there exists positive constants
¢, ¢ and y’ such that

P(B;) < 4n'Sce=n”
so the lemma is true for some choice of C,C’ and y. O
The bound on P(33) is now a corollary.
LEMMA 4.10. There exist positive constants C, C' and y such that
P(B3) < Ce ™.

PROOF. Consider the map ¢ defined in Lemma 4.7 and the event ¢! (33).
By the measure preserving property of ¢, we have P(B3) = P(¢~'(3)) where
the two probabilities are in the two different probability spaces mentioned in the
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statement of Lemma 4.7. Note that the event ¢~ (133) implies Bg. This is because
(iv) in the definition of B says

Y R*(0.9%) <0.01vk(j —i)
xe(i,j),3|x

whereas in the definition of 33 we have

3" R*(0.9k) <0.01Vk(j —i).

x€(i, j)

The proof now follows from Lemma 4.9. [

The rest of this section is devoted to the key technical proof of Lemma 4.3,
which is all that remains to finish off the proof of the upper bound in Theorem 1.1.

4.8. Proof of Lemma 4.3. We split the proof of Lemma 4.3 into several lem-
mas. In particular, it will suffice to show that

1
(28) EReturns > 20n,

1
(29) EReturns > 207971,

Recall that on the event & [see (23)], the height is much bigger than n*/3 but less
than n*9% the odometer is supported inside [—n°, n°] and gradient of the odometer
is such that B occurs.

LEMMA 4.11. Ifthe event € occurs, then
(30) t >n3

and if £ N B occurs, then

1
EReturns > 20n.

PROOF. As usual, we choose to give a direct proof with explicit constants
(which might be far from optimal), for sake of exposition.
If B occurs, then there exists

Xy € [-n3,n°], such that u(xx) = [|i]so-

We now consider two cases.
Case 1: If ||u ||g'o5 I < 2n, then the events G¢ and BS imply that

G u(x) > 700,000n%> > (800n2/3)?,
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for all x in the interval,
Xo =[x — 100n'73, x, + 100n1/3] N [—nS, ns].

This follows from the event Bj N BS by the same argument as in Remark 2.

Then | Xo| > 1001173, because by B, we have x, € [—n5, n5] so at least one of the
intervals

[xs — 100n1/3,x*] or [xs xs+ 100n1/3]

is entirely contained in [—n>, n°]. Thus, looking at the volume of the odometer in
X0, we have

(32) T> ) u(x) =700,000n*3|Xo| > n/?

xeXgp

and

Returns > ) Returns(x) > (100n'/7)(0.01)(800n*/%) > 40n.

XEX()

The next to last inequality is by (31), the size of X and the definition of 5. Thus,
we have obtained inequality (28).

Case 2: If ||u ||2551 > 2n, then one expects Returns to be even larger. Note that
by BS every gradient is at most 2||u||g;>5 ! Thus, the odometer is at least ||u| oo /2

over an interval of length ||u ||g'o49 /2 > n%1. We take X to be this interval. Thus,
by 55,

Returns > ) Returns(x) > ([lull% /2)(0.01)(Jlu]|%) > 40n.
xeXo O

4.9. Partitioning Base. Inequality (29) is more involved to verify. However, it
relies on the observation that at most sites, Returns(x) ~ 4/u(x), [since the number
of returns to the origin for a random walk in u(x) steps is roughly about /u(x)].
Now if the value of u (x) does not change sharply (this is where the gradient bounds
in the definition of B, are used) this then implies that

Returns = Z Returns(x) > /Z ux) =4/7.

Thus, the proof proceeds by showing that there is a subset of Z which can be
written as the union of not too small intervals, where the odometer is uniformly
high and not too rough and contributes a constant fraction of ), u(x). On this set,
the above inequality can be made precise.

Formally, we partition Base up into smaller intervals:

K
Base = U Base;,
i=—K'
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where, for each i, we set each Base; = [q;, b;] for some a; and b; which we de-
scribe in the following. We inductively define the Base; in a way so that on the
event £ and for most i we have

(33) bi —a; > 0.1n%01,
This will involve a series of estimates like in Remark 2. Define h; = n4-05-0.05;

for j =0to j =68 and heg = 0. Let
H={h;:j=1,...,68}.
Let ;' be such that & j 18 the closest value in H to u(0). Let
bo=inf{x :x >0and u(x +1) & (hjr11,hjr_1)}.

We say that Baseo starts at height 4 and ends at height /;» € H where ;" is
defined so that & j» is the closest element of H to u(bg + 1).

Now we inductively define Base; 1. Suppose we have defined Base; = [a;, b;]
which ends at height h;. We will inductively define Base; | = [a;+1, bi+1]. We let
ai+1 = 1 + b; and say Base; | starts at height h; € H. Then we define

bit1 =inf{x x>ag;andu(x + 1) & (M1, hk—l)}-

We say the block Base; | ends at height iy € H where Ay is the closest element
of Hto u(b; + 1) and Ay is the closest element of H to u(b; + 1).

For the case of negative indices, the procedure is totally analogous. Finally, for
all j €{0,..., 68} define

(34) B :=the union of all Base; that start at /; and have |Base;| > 0.12°01,

LEMMA 4.12. If a block Base; with i > 0 starts at height h; and ends at
height hj then j' # j. On the event £ and j' < j < 68, then

b; —a; > 0.1n%01,

PROOF. The first statement is true because

u(l+b;) & (hgs1, hi—1)

so the closest element of H to u(1 + b;) is not h;. Consider an interval Base; with
i > 0 where Base; starts at height /; and ends at height 4 ;; with j* < j. Over the
course of such an interval the odometer increased by at least 0.494; 1, going from
less than 0.5(h; +h;_1) to atleast h;_;. Since j < 68, we have

u(x) >hjy1 > heg = n9635 5 505

for all x € Base;. Thus, the event £ implies

u(x+1)—ulkx) < u(x)o'51 < (hj_1)0'51.
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Thus, by the choice of the &; these intervals must have width at least

0.49% ;_
Il > 0.49(h;_1)** > 0.49n03 > 0.12001.

bi —a; = )01 =

The next to last inequality follows because j <68 so hj_1 > n%7. 0O

LEMMA 4.13. If £ occurs and a block Base; with i > 0 starts at height h
and ends at height h j with j' > j then:

1. bi —a; > 0.1n°01 o
2. 68 > j > 60 and for no k,0 < k < i the block Basey starts at hj and ends at
a height hy with k' > j.

PROOF. Consider an interval Base; with i > 0 where Base; starts at height
hj and ends at height 4 ;; with j* > j. Over the course of such an interval, the
odometer decreased by at least 0.49% ;, going from at least 0.5(h; 4+ h ;1) to at
most 14 q.

First, we consider the case that j < 60. We have

u(x) > hjp1 > heo=n""

for all x € Base;. Thus, the event £ implies
u(x) —u(x + 1) < 2m(x) +ux)*" =21 4+ u(x)*' < 3(h;)*%.
Thus, by the choice of the £; these intervals must have width at least

0.49h

bi—aiiwi

0.15(h ;)% > 0.12°01.

Next, we consider the case that Base; ends at 4; with 60 < j < 68. Suppose
there exists k < i such that Basey starts at 7 and ends at a height iy with k' > .
This implies that j < 68 and

m(x) <hji < (hjn= 00

65

for all x € Base;. Thus, the event £ and j < 67 implies u(x) > n%63 and

u(x) —u(x + 1) < 2m(x) +ux)*' <3700
Thus, these intervals must have width at least

0.49h ;
b —a; > ————— >0.15n%% > 0.1n%9",
3(hj)n=005 0
REMARK 3. We need to only worry about the case j' > j since otherwise the
odometer does not decrease and only helps us in our arguments. The reason for
separating the study of the case j' > j into j < 60 and 68 > j > 60 is that a priori
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we have not ruled out that most of the contribution to T = ), u(x) comes from
small values of u(x). In the gradient bound of m (x) = min{n, ming<y<, u(y)} for
x > 0 (see definition of B;), we use n as an upper bound for m(x) when u(x) is
large (j < 60) and we use ming<y<, #(y) as an upper bound for m(x) when u(x)
is small (68 > j > 60).

4.10. Consequences of a regular gradient. Recall the definition of B;
from (34).

LEMMA 4.14. On the event £, there exists i € {1, ..., 68} such that

> u(x)>0.01t.

X€B;

PROOF. Define

B* = U Base;.

i:|Base; |<0.1n0-01

We first show that
(35) Z ulx) < 20n12.

xeB*

The lemma will follow easily from (30), (35) and the pigeonhole principle.

Let I = {i : |Base;| < 0.1n901}. First, we show that || < 20. By Lemmas 4.12
and 4.13 for every i € I, there exists j, 60 < j < 68 such that Base; starts at
height / ;. From this, we draw two conclusions. First, by the definitions of B* and
the Base; we have u(x) < n'"13 on B*. Also for each such j, Lemma 4.13 implies
there exist at most two i € I with Base; starting at height 4, at most one with
i > 0 and at most one with i < 0. These two facts combine to establish (35) which
completes the proof. [

REMARK 4. If we perform the analysis in the previous lemma to nonempty
intervals Base; that start at 4 ; > nl4 we get that |Base; | > 0.172%4. This implies

T > 0.1n0'4hj+1 = O.1n0’3h]~_1.

LEMMA 4.15. If Bj # @ and £ occurs, then

‘L’O'49

0.1
()03 =

PROOF. 1If h; < n!33 then the result follows from the first part of Lem-
mad.ll.Ifh; > n'4, then it follows from the previous remark. [
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4.11. Consequences of regular returns. Recall the sequence /; defined in Sec-
tion 4.9.

LEMMA 4.16. Forevery j € {1,...,68}, the set B satisfies
Y u(x) <|Bjlhj1.
xij

Conditional on £ N B for every j € {0, ..., 67} the set B; satisfies
> Returns(x) > 0.01| B[ (hj41)"/%.
X€B;
PROOF. From the choice of the intervals Base; and B;, we have that
hit1 <u(x) <hi-y,

for all x € B;. Also, by definition, B; consists of a union of intervals of width at
least 0.1129-01 [cf. equation (34)]. Therefore, the second statement follows from the
definition of B5. [

LEMMA 4.17. For all sufficiently large n conditional on £ N B, we have

1
EReturns > 207931,

PROOF. As £ occurs, by Lemma 4.14 we obtain that there exists a j such that

> u(x)>0.01r.

xij
First, consider the case that j € {1, ..., 67}. In this case, from Lemma 4.16 it fol-
lows that
(36) |Bjlhj—1> > u(x)>0.0lz.

XGB_,‘
Conditional on the event B5, the set B; satisfies ergj Returns(x) >
0.01|B;|(h j4+1)'/2, which implies

Y Returns(x) > 0.01B;|(hj51)"/?

XGBj
(36) 0.01
e (e
hj—

Bt ) 12 049 051
hj—1)  (hj—1)

0‘0001’1—0.05”0.1 _L,O.Sl

407031,

= 0.0001(

v

(Y
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The next to last line follows from Lemma 4.15, together with the definition of /4
and h 1, whereas the last inequality holds whenever 7 is sufficiently large.

Now consider j = 68. In this case, by Lemma 4.11 we have t > n°/3 so *
n%8 and

49 o

0.01t  0.01¢%>1049
07 = 1707

)" Returns(x) > |Bgg| > > 407931,

x€Bgg

which completes the proof. [

PROOF OF LEMMA 4.3. The proof is an easy consequence of Lemmas 4.11
and 4.17. [

5. Proofs of Theorem 1.1 (lower bound) and Theorem 1.2. The goal of this
section is to prove part ii of Theorem 1.1. Theorem 1.2 will follow. The proof
begins by using the upper bound (part i) of Theorem 1.1 to deduce a lower bound
on the gradient of the odometer: Namely, there exists a constant € such that, with
high probability, for x € [0, en'/3] we have

u(x) —u(x+1)>n/4.

This in turn implies the lower bound (part ii) of Theorem 1.1: since u(en'’3) >0,
we have u(x) > %en4/3 for all x € [0, %en4/3].

5.1. Maximum of lazy random walk. We collect here a few standard results
about the running maximum of R;, the lazy simple symmetric random walk on Z
whose increments R; | — R; are =1 with probability % each and 0 with probability
%. Let
(37) M (1) = sup |R;]|.

i<t
LEMMA 5.1.

(1) Given € > 0, for all large t > 0,

P(M (1) > t1/2+¢) < e~

(i) Given € > 0, for all large t > 0,
(38) P(M (1) < 21) <™.
(iii) E(M (1)) = O (V7).
(iv) E(M(1)*) =0().

(V) limy oot~V 2E R = /1.
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PROOF. The proofs of parts (i)—(iv) are standard. We refer the reader to Sec-
tions 21 and 23 in Spitzer (1976). By the central limit theorem, t~'/2R; 4z
where Z ~ N (O, %), hence E|Z| = 4/1/x. Part (v) follows since the random

variables 1/ 2R, are uniformly integrable; see, for instance, Theorem 3.5 of
Billingsley (1999). 0O

LEMMA 5.2. Let
1/3

)izt

4
be a sequence of i.i.d. random variables with the same law as M (n3). Then there
exist positive constants D,y such that

2173
]P’(ZMi(n%) < Dn) >1—e ",

i=1

4
3

(M (n

Proof of Lemma 5.2 is deferred to the Appendix.

5.2. Lower bound on the gradient of the odometer. For x € 7. and a positive
integer i, we define the variable

(39) D*(i) = 1(xr=1) — Liyr=1),

where the variables X7, Y;* appear in (6) in Section 2. Clearly,

-1, w.p. 1/4,
D*(i) =10, w.p. 1/2,
1, w.p. 1/4.

Let C be the constant appearing in the upper bound (part i) of Theorem 1.1. For
X €, let

i
(40) Se= sup | D*(j)|,
i<Cn*3|j=0
i X* i Y*
(41) Te= sup |> =L+ sup |D -+
i<Cn?/3 j=0 2 i<Cn*/3 j=0 2

Recall from (14) that g (x) is the signed count of particles at x at the end of the
oil and water process. Since one side of the origin has at least n/2 particles at the
end of the process, without loss of generality we assume that

(42) > |ge ()| =n/2.

x=0
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Next, we claim that for any x € Z,

u(x—1) u(x+1)
43) g)= > D" 'i)— Y D),
i=1

i=1

where D*(-) is defined in (39). To see this, note that the right-hand side is the
difference between the number of oil particles sent to x and the number of water
particles sent to x, whereas the emission of an oil-water pair from x does not
change the signed count of particles at x.

Recall G defined in (17). Also given € > 0 define the following events:

enl/3
(44) gl={ » sxsl”‘—z},

x=—enl/3

en/3
45) gz=< ) sz%},

x=—enl/3
where Sy and T, are defined in (40) and (41). We suppress the dependence on €, n
in the notation for brevity.

LEMMA 5.3.  For small enough €, there exists ¢ > 0 such that

(46) PGNGING)>1—e.
PROOF. The proof follows from (26) and Lemma 5.2. [

We now state the following lemma establishing a lower bound on the gradient
of the odometer function.

LEMMA 5.4. Assume (42). There exists a constant € > O such that
. . n
u(j)—u(j+1= 1

forall 0 < j < en'/3, with failure probability at most e for some positive con-
stant c.

PROOF. Recalling Definition 6 notice that

o

u(H+ A () —uG+D+AT @G +D) = Y g
y=j+1

We claim that for any x € Z,

|AY (u(x))|1(G) < Ty,
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where T is defined in (41). This follows from definitions and the observation that
u(x) u(x)

A ()= [1(X) =1)—1/2] +Z =1)—1/2]

i=1
u(x) Xx u(x) Yx
_ Z i Z i
Thus, we have
@47 [u(j) —u(+D]G) = Z lgcMG) — (Tj + Tj+D1G).
y=j+1

Now ontheevent GNG; NGy, Vj < enl/3,

o
(48) Y lgc @) =n/3.
i=j
To show this, we upper bound Z{:l |gz(i)]. By (43), on the event G we have for

all0<i < en1/3,

(49) lgz ()] < Si—1 + Sit1,
where S; is defined in (40). Hence, on the event G NG| N Gy,

L1/3

Z|gf(z>\ <2 Z St

i=—1

Thus, by (42) we have forall 0 < j <en 173,

o0
> ge (i) = 5~ Z|gf<z>|
i=j
Therefore, by (47) and (48), on the event G NG NG, we have forall 0 < j < en!/3

k
n n
N—u(j+D>==Y T, >-.
u()—u(+Dz3 gx_4 -

5.3. Lower bound on the odometer. The proof of the lower bound in Theo-
rem 1.1 follows readily.

PROOF OF THEOREM 1.1(11). Since u > 0, Lemma 5.4 implies that for all
large enough n and j < enl/ 3, we have

1
u(j) = §€n4/3.
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Hence, by (46) it follows

1 c
(50) P( inf  u(j) < §6n4/3) <e .

0<j<gen'/?

To complete the proof, we use the symmetric version of (47) to get the following
bound: For j <0,

u(j) —u(j—1) — A (w(j)) = A (u(j — Z g ()]
y——OO
The following bound
> g ()| <2n
y=—00

is trivial since the total number of particles is 2n. Using the above and the definition
of Go, we get forall —en'/? < j <0

u(0) — u(j) §j<2n+%)-

Thus, u(0) > }‘en4/3 implies that for all j < 1L6en]/3

u(—j)=> Een‘”3

which together with (50) completes the proof. [

5.4. Upper bound on the number of accumulated particles. The next lemma
will be used in the proof of Theorem 1.2.

LEMMA 5.5. There exists a constant C > 0 such that

(51) supE(|ge (x)]) < Cn3.
X€Z
Moreover, for any € > 0 there exists ¢ > 0
(52) P[sup|ge (v)] = ni+e] <™.
xX€Z

PROOF. For any x € Z, we have

(53) |87 ()] < [Sx—1 + Se111(G) + 2n1(G°),

where the event G is defined in (17). The first term follows from (49) and the sec-
ond term is obvious since the total number of particles is 2n. The proof of (51) now
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follows from (iii) of Lemma 5.1 and (26). Additionally, using (i) of Lemma 5.1 we
get that for any x € Z there exists ¢ > 0 such that
(54) P(|g: (x)] zn%Jre) <e ™,
Corollary 3.2 says that with probability at least 1 — e~ for all |x| > n°
g (x)| =0,

and (52) now follows from (54) by union bound over all x € [—n,n°]. O

REMARK 5. For small enough € and k = en!/3, by (46) and (53)

Kk
P[ > g ()] Sn} >1—e™

i=—k

for some positive constant c¢. Thus, at least n particles are supported outside the
. . oy c
interval [—en'/3, en'/3] with probability at least 1 — e™"".

5.5. Proof of Theorem 1.2. Let x = n'/3*€_ Under the assumption that there
are at least n! —¢/2 many particles to the right of x, for all £ < x,

o0
> g ()] = n' /2

i={

Recalling (47), we have

(©0) —u@)G =D g MG — 2> Ti1(G).

i=1y=i i=0

Now by part (i) of Lemma 5.1 and union bound over 1 < £ < x there existsac > 0
such that with probability at least 1 — ™",

Z T, = 0(n1+2€).
(=1

Thus, on the event that there are at least n!—¢/2

have

many particles to the right of x we

u(0) — u(x) > xn'=¢/2 — 0 (n'+e),

n

except on a set of measure at most e . However, this implies that

Hence, by the upper bound in Theorem 1.1 we conclude that the probability of the
event that there are at least n'~€/2 many particles to the right of x = n'/3+€ is less
than e for some positive ¢ > 0. The argument for x = —n'/3+€ is symmetric.
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6. Scaling limit for the odometer. The goal of this section is to prove Theo-
rem 1.4. The first step will be to show that Conjecture 1.3 implies some regularity
of the limiting function: we will argue that w(-) is decreasing and three times dif-
ferentiable on the positive real axis. Moreover, it is the solution of the boundary
value problem:

w =

n_ |2
_u)7
T

. w(h) —w()
lim ——~ =

-1,
h—07t h

lim w(h) = 0.
h—00

At this point, Theorem 1.4 follows by identifying an explicit solution to the above
problem and arguing that it is the unique solution.

6.1. Properties of the expected odometer. We first make some easy observa-
tions about the expected odometer function, denoted by
i(x) :=E(u(x)).

Existence of i (x) follows from (ii) of Proposition 3.1 which says that the stopping
time of the process t has finite expectation, and clearly for all x € Z

ulx)<r.

We first make the following easy observation.

LEMMA 6.1. For x € Z, we have

i(x) —i(x + 1) = E[#{particles moving from x to x + 1} <n  forx >0,

u(x) —u(x — 1) =E[#{particles moving from x to x + 1}] <n for x <0.

Clearly, every time there is an emission at a site x € Z, on average one particle
moves to x — 1 and another to x + 1. Also by symmetry, the number of particles to
the right of any positive x is on an average at most n. It is straightforward to make
this formal and we omit the details. Similar arguments yield the following as well,
whose proof we omit, too.

LEMMA 6.2. u(x) satisfies the following properties:

(1) u(x) is an even function,
(ii) restricted to Z4, u(x) is strictly decreasing,
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(iii) for every x #£0,
o0 o0
i) = (e 01 = 3 ) =Bl ) =0
y=x y=x+1
where A is the discrete Laplacian, that is,
(55) Au(x)=u(x —1)+u(x+1) —2u(x).
6.2. The differential equation w” = /2w/m. In this section, we work toward
the proof of Theorem 1.4. We recall Conjecture 1.3 stated in the Introduction.

Note that we have not assumed a priori that w is continuous. Proving this is our
first order of business.

LEMMA 6.3. w is continuous, (in fact, 1-Lipschitz) on R. Moreover, it is non-
increasing on the positive real axis.

PROOF. (i) of Lemma 6.2 implies that w is an even function. Hence, it suffices
to prove that w is 1-Lipschitz on [0, cc). By Lemma 6.1, for any x, k € Z>o we
have

k—1
0<i(x)—i(x+k)=)Y [a(x+j)—i(x+j+1)] <kn.
j=0

Now let x = [n'/3& | and k = |n'/3(& + h)| — |n'/3€]. Dividing by n*/® and tak-
ing n — 0o, we obtain

O<w@) —wé+h)=<h

thus completing the proof of the lemma. [J

Recall the set of random variables
X',y
defined in (6). To go further, we define the following quantities: For y =x £ 1,

k
OF =Y 1(X}y ==1),
i=0

k
Wi =Y 1Y =£1).
i=0

In other words,

0)]; y :=#{oil particles sent from x to y within the first & firings at x},

Wffv y := #{water particles sent from x to y within the first k firings at x}.
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To relate these sums to our earlier notation, recalling Definition 6 we have
O;’f, 1t Wf’ v41 =k + A%(k), and the signed count of particles remaining at
x is given by

(56) gr(x) _ Ou(x—l) + 0u(x+1) _ Wu(x—l) _ Wu(x—H)

x—1,x x+1,x x—1,x x+1,x
where g;(-) was defined in (14).
Consider now the analogous expression using a deterministic portion of each
stack [recall u(x) = Eu(x)]:
(57) gr (x) - OLIZ(X*I)J 4 OLﬂ()H‘])J _ WLL;(X*I)J _ WLIZ(X‘H)J‘

x—1,x x+1,x x—1,x x+1,x

Because u is deterministic the four terms on the right-hand side are independent.
Moreover, each term Of’y and W)’f’ y for |x — y[ =11s a sum of k independent
Bernoulli(1/2) random variables. So the right-hand side is a sum of [i#(x — 1)] +
Li(x + 1)] independent random variables with the same law as a single step of
a lazy symmetric random walk as defined in (39). Setting x = |n'/3& | for a real
number & > 0, by (ii) in Conjecture 1.3 we have

B lu(x = D]+ lu(x+1)] . 2u(x)
e 243 = 18 A3

=2w(§).
This is because by Lemma 6.1, |i(x) — u#(x 4+ 1)| and |u(x — 1) — &i(x)| are both

less than n. As n — oo by the central limit theorem, since each variable in (39)
has variance 1/2, we obtain

(58) 235 (x) -5 N (0, w(E)).
By Lemma 5.1(v), we also have
(59) n"*PE|g. (x)|— %w@.

Next, we observe that under (i) in Conjecture 1.3, the same kind of central limit
theorem holds for g; itself.

LEMMA 6.4. Let& >0. For x = |n'/3¢ |, we have as n — 00
1)
_ d
n* g (x) == N(0, w(®))
(ii)

n~* Elg. (x)] — %w(s»
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REMARK 6. (ii) along with (55) implies

. An(x) [2
(60) HE}HOIOW—) ;w(f)-

To prove Lemma 6.4, we need the next two results.
LEMMA 6.5. E[t1(t > n°)] = O(1) where T is defined in (10).

COROLLARY 6.6. There exists a constant C| > 0 such that
supi(x) < C1n4/3,
X€EZL

where it = E(u).
The proofs of the above two results are deferred to the Appendix.

6.2.1. Proof of Lemma 6.4. By (58) and (59), it suffices to show
(61) lim 1= Egr (x) - & ()] =0.
n—

Referring to the definitions of g and g in (56) and (57), respectively, this will be
accomplished if we show that asn — oo for y =x + 1:

nPE| (00 ~ WD) - (04 — W)
tend to 0. For y = x & 1, the above differences have identical distributions. Hence,
it suffices to look at any one. The quantity (O;',(f) - W;‘,(xy)) — (O;',f) — W;,xy)) is
a sum of

N=|la(y)| —u(y)|

independent random variables X1, ..., Xy with the same law as in (39). By Con-
jecture 1.3(1), N/n*3 — 0 in distribution. Fix € > 0. Let

o Al =1(N <en*3)sup|_pceptrn | 0 Xil,
Ay = 1(N > en*?)1(G) SUP | <p<(C+Cpn#/3 | 2oimq Xils

Az =2n51(G)1(t < nd),
Ag =271(G)1(z > nd),

where C and C; are the constants appearing in the statement of Theorem 1.1 and
Corollary 6.6, respectively, t is defined in (10) and G is defined in (17). We now
claim that

62) (0L — wlEW]) — (04D — WED)| < Al + As + A3 + Aq.

The first two terms correspond to the cases:
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° N§Gn4/3,
e {N>en*3)ng.

For the last two terms, we use the naive bound that

N
2 Xi
i=1
where the last inequality uses Corollary 6.6. Using the above bound and looking
at the events {T <n°} N G¢ and {t > n} N G° gives us (62).

e By Lemma 5.1(iii), E(A41) = O(/en?/?).
e By the Cauchy—Schwarz inequality and Lemma 5.1(iv)

<N <supi(x) +supu(x) < Cin* + 7,

xX€Z x€Z

(63)

E(A2) = O(n*?)\/B(N > en*/3).
e E(A3+ A4) = O(1) by Theorem 1.1 and Lemma 6.5, respectively.
Thus, for any € > 0

4
E|g: (x) — - ()| < D E(A) =n*3(0 (Ve + /P(N > en*/?))).

i=l

4/3

Hence, (61) follows using the above and Conjecture 1.3(1) (N/n"/> goes to 0 in

distribution) and we are done.
REMARK 7. Note that we actually prove (61) uniformly over x, that is,

lim supn~E|g (x) — §.(x)| = 0.

n—=>Uxez

We now prove an uniform version of (60).

LEMMA 6.7. Given € > 0 and x < y such that w(x), w(y) > 0, for large
enough n,

Ai(j) gw( j )\56‘

1273 T\ /3

sup
Lxn!/3|<j<|yn!/3]

PROOF. Since w is continuous by Lemma 6.3, and hence uniformly continu-
ous on [x, y], for € > 0 there exists real numbers:
X=X)<X| <+ <Xr=Yy
such that

sup (x; —xj—1) <€,
1<i<k

sup (w(xi—1) —w(x;)) <e.
1<i<k
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By Conjecture 1.3(ii) and (60), we have for large enough n:

i([n'x:])
(64) sup [F G —w)| =e
A Px)) |2
(65) sup |20 i) 2| <l
1<i<k n?/3 T

Now for any lxn'/3| < j < |yn'3| find 0 < i < k such that
[xin'?| < j < |xiqn'].
Clearly, it suffices to show
|Aii(j) — Adi(|xin"2 )| = O (Jen?")
or by (55)
[E|g ()] = Elge (Lxin'?)[| = O (Ven®?).
Notice that by (61) and Remark 7 we have

(66) IE|g: ()] — E|g: ()| = o(n*?),

(67) [Elge (ln'xi )| = Elge([n'xi])|| = 0(n*?).

Hence, it suffices to show

(68) E|[g: ()| — E|g:([n'x:])|| = O(Ven®?),

(69) E|gc([n'xit1])| - Elg: ()] = 0(Ven®?).
By (64)

a(j) —a(|n'Pxi]) < en?,
i(|n'Pxi1]) —a(j) < en*’.

Now by (57) the quantities on the left-hand side of (68) and (69) are absolute
values of a lazy symmetric random walk run for time u(j) — a(ln'3x;]) and
a(lnl/ 3x,-+1j) — u(j), respectively. The result now follows from Lemma 5.1(v).

]
/w,/zw(odq =
0 T

lim w(x)=0.
X—>00

COROLLARY 6.8.

which in particular implies
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PROOF. By Lemma 6.1,

(70) E(Z|gf<y)|> =" Adi(y) =i(0) —ii(1) <n.
=1

y=1
Thus, for any positive number A

[An'/3]

> Ad(y) =n.

y=1

By Lemma 6.7 and the approximation of an integral by Riemann sum, we have

Anl'/3
1 A
1= lim Y — Z§§> /,/ w()de.
=1

y

Since w is nonnegative, it follows that

o0 2
/ \ Tw@)ds < 1.
0 T

By Lemma 6.3 w is nonincreasing, hence this implies that

xlgrgo w(x) =0. n

REMARK 8. Note that we assumed only convergence of & in Conjec-
ture 1.3(ii) but were able to use a special feature of the oil and water model
[namely, the identity Au(x) = E|g;(x)|] to obtain something stronger, conver-
gence of the discrete Laplacian Au.

Next, we use this to argue that the scaling limit w(£) is actually a twice differ-
entiable function of & > 0.

For any € > 0 by Conjecture 1.3(i) and the above corollary, we can choose L
large enough so that for large enough n,

sup i(|n'3g]) < e2n*3

|§1=L

forall |£| > L.

LEMMA 6.9. Given € > 0, let L be as chosen above. Then

> Adx) <e'/?

|x|>n1/3L
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PROOF. Since the n'/3¢ differences ii(x) — i(x + 1) for x = [n'/3L], ...,
|n'3(L +¢)] — 1 are nonnegative and sum to at most a(ln'PL]) < &2n?/3 the
smallest of them (which is the last one) must be at most en. Therefore,

Z Al(x) <en.
|x|>n1/3(L+¢)
Now the fact that

[n!3(L+e))
> Ai(x) < 0(e)n

x=|nl/3L]
follows from Lemma 5.5 and the fact that Au(x) = E|g; (x)] [see (55)]. Combin-
ing the above two results the proof follows. [J

LEMMA 6.10. w is differentiable on the positive real line, and for any & > 0,

/ o0 2
(71) uwa=—£ [Sw@de.

PROOF. By summation by parts, for positive integers x, k,

1 1
(72) o [u(x) —u(x + k) Z min(j, k)Au(x + j).
_/ 1

For positive real numbers &, L,k let x = [En'/3], Z = |Ln'/?|, k = |hn'/3] and
consider the first part of the sum in (72):

Z 1 mln(J, k) Au(x + J)

1
PPt

Wi

nd s n
Now given § > 0, by Lemma 6.7 for large enough n:

%XZ:me(],k)Au(x—i-]) %ZZ:L (m ) %w(éJril)

1 2 1
j=1n3 ns n3 j=1n3 n3

<4L.

Notice that

PR GO NER )

J

is a Riemann sum approximation of the integral

1 pL+E hzd
EL min(¢ — & b, Zw()de.
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Thus, as n goes to co we see that

1. & 1 min(j, k) Ai(x+j) 1 L+ 2
-y - +J aﬁf min(¢ — £, h),| Zw()de.
j:1n§ n3 n3 & T

Fixing € > 0 and choosing the same L as in the statement of Lemma 6.9, we
get that the sum of the remaining terms in (72) % Z?’;Z 41 1s at most el/2 vy
Lemma 6.9. Hence, as n — oo we get from (72):

©—wE+h) 1L 2
ve) - vk :Efs min(¢ — £, 1), Zw(©)dz +0(e'/?).

Sending & to O followed by € to 0 (L to co), we are done. [

The right-hand side of (71) is manifestly a differentiable function of &, so we
obtain the following.

COROLLARY 6.11. Under Conjecture 1.3, the function w restricted to the
positive real axis is twice continuously differentiable and obeys the differential
equation:

(73) w' =, [—w.

LEMMA 6.12. w is compactly supported. Moreover, on the positive region of

support,
1/32 1/4 ) 4

Before proving the above, we quote the well known Picard existence and
uniqueness result for ODEs.

for some b > 0.

THEOREM 6.13 [Kelley and Peterson (2010), Theorem 8.13]. Consider an
initial value problem (IVP):
(74) Y'(x) = f(y@), x),
(75) y(x0) = yo

with the point (xq, yo) belonging to some rectangle (a,b) x (A, B), that is, a <
ap <band A < yg < B. Also assume that f is M-Lipschitz for some M > 0, that
is,

|f(z,%) = f(w, x)| < M|z = w|

for all x € (a,b) z,w € (A, B). Then there exists a h = h(xg, yo, M) > 0 such
that:
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e Existence: There exists a solution to the IVP on the interval (xo — h, xo + h).
e Uniqueness: Any two solutions of the IVP agree on the interval (xo — h, xo + h).

PROOF OF LEMMA 6.12.  Multiplying (73) by w’ on both sides, we get

2
ww = Zww
T

/

Integrating both sides from & to oo and using the fact that
lim w(x) = lim w'(x) =0
X—> 00 X—> 00

(from Corollary 6.8 and Lemma 6.10) and that w’ is nonpositive we see that w(x)
satisfies the first-order ODE:

(76) = _<%)1/4f3/4.

Now suppose w is positive on the entire real axis. Given any z € R then w(z)
and w’(z) are both nonzero. Thus, we can find a, b such that

(az + b)4 =w(z),
da(az + b)’ = w'(2).

32 1/4
4a = — (—) .

I
Because of the particular choice of a and b the function (ax + b)* also satisfies
(76). Now since w(z) and w’(z) are both nonzero the function w3/4(z) is Lipschitz
in a neighborhood of z. Hence, by Theorem 6.13 ODE (76) has an unique solution
in some neighborhood of z. Thus, the functions w(x) and (ax + b)* are equal in
a neighborhood of z. Now looking at the biggest interval / containing z such that
w(x) = (ax + b)* on I we conclude that w(x) = (ax + b)* on R4 N supp(w). In
particular, since (ax + b)* is positive only on a compact set this implies that w (x)
has compact support. [J

By (76),

Now we find the value for » which completely determines w.

LEMMA 6.14.

_dab® = fim 2O W)
h—0t h

9\ 1/12
b= (—”) .
32

1.

In particular,
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PROOF. That —4ab’ = limy,_, o+ M follows from Lemma 6.12. To see
that, the quantity equals 1 fix 2 > 0. Consider the telescopic sum:

hnl/3
1(0) —ii(hn'P) = >" (i) —iiGi +1).

i=0

Now u(i) — u(i 4+ 1) is the expected number of particles on the right of i by
Lemma 6.1. By symmetry of the process about the origin and Lemma 5.5,

Y g ()| =n—0(n*?).

x>0
Moreover, for any i > 0
i) — i+ 1) =n—0(n")i.
Summing over i, we get
ii(0) — i (|hn'? |) = hn*? — B2 0 (n*?).
Dividing throughout by n*/3 and taking limit as n goes to infinity, we get
w(0) — w(h) =h+ O(h?).

Thus, dividing by % and sending % to O we are done. [

6.3. Proof of Theorem 1.4. From Lemmas 6.12 and 6.14 and using the sym-
metry of w about the origin, we get

wix) = ((93_7;>1/12_ (%>1/4%)4

on the region of support. Rearranging we get

a7 T2

1
i) = |77 (80 =)l < s,
0, x| = (18) /3.
7. Open questions. Conjecture 1.3 is an obvious target. In this concluding
section, we collect some additional open questions.

7.1. Location of the rightmost particle. For the oil and water process with n
particles of each type started at the origin Z, let R, be the location of the rightmost
particle upon fixation. Is the sequence of random variables R, /n'/? tight? Does it
converge in distribution to a constant? If it does, then Theorem 1.4 suggests that
the limit should be at least (187)!/3 (and perhaps equal to this value).
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7.2. Order of the variance. We believe that the standard deviation of the
odometer u is of order n’/® in the bulk. Note that Conjecture 1.3 asserts some-
thing weaker, namely o(n*/3).

Here is a heuristic argument for the exponent 7/6. The total number of particle
exits from x is 2u(x); let N, be the total number of particle entries to x. Equating
entries minus exits with the number of particles left behind, we find that

(78) Aux):=ux—1)+ux+1) —2ulx)=2Z(x)+ |g; (x)| —2ndp(x),

where Z(x) =u(x —1)4+u(x + 1) — Ny, and g (x) is the signed count of particles
remaining at x in the final state (counting oil as positive, water as negative). Both
Z(x) and g;(x) (without the absolute value!) are expressible as sums of indepen-
dent indicators involving the stack elements at x &= 1. The limits of summation are
u(x = 1). Assuming Conjecture 1.3 and arguing as in Lemma 6.4, we can replace
the limits of summation by their expected values #(x & 1), incurring only a small
error. The resulting sums Z and g, are asymptotically normal with mean zero and
variance of order n*/3 [assuming x is in the bulk, |x| < ((187) 1/3 _ ¢)nl/3]. More-
over, the function Z + |g.| is 2-dependent: its values at x and y are independent if
|x — y| > 2. By summation by parts,

w(x) = jAulx+j).
j=1

Since most of the support of u is on an interval of length O(n!/?), truncating
this sum at Cn'/3 for a large constant C should not change its variance by much.
Replacing Au by its approximation Z + |g;| and using the 2-dependence, we arrive
at
Cn1/3
Varu(x)= Y j20(n*?) =0(@"").
j=1

7.3. Conjectured exponents in higher dimensions. For the oil and water model
in Z% starting with n oil and n water particles at the origin, we believe that the
typical order of the odometer (away from 0 and the boundary) is n*/(?*2) and the
radius of the occupied cluster is of order n!/+2) The reason is by analogy with
Section 6.2: if w : R — R solves the PDE:

[2
(79) Aw = -8+, —w
T

then its rescaling

v(x) = t4w(x/t)

[2
Av = —td+25o + .,/ —v.
b4

satisfies
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If the odometer for n particles has a scaling limit w that satisfies (79), then v is
the scaling limit of the odometer for r4*2n particles. So increasing the number of
particles a factor of r%*2 increases the radius by by a factor of ¢ and the odometer
by a factor of *. This motivates the following conjecture.

CONJECTURE 7.1. Let u be the odometer for the oil and water model started
from n particles of each type at the origin in Z%. There exists a deterministic func-
tion w : RY — R such that for all € € R — {0} we have almost surely,

u(Lnl/(d+2)$J)
W — w(§).

Moreover, w is rotationally symmetric, twice differentiable on R? — {0} and satis-

fies
[2
Aw=,—w,
T
wé) _

on R¢ — {0} and limg ¢ ® = 1 where g is the Green function for the Laplacian
on R4,

The fourth power scaling is reflected in the even spacing between contour lines
of the odometer function in Figure 3.

F1G. 3. Contour lines of the odometer function u of the oil and water model in 7% with n =222
particles of each type started at the origin. Each site is shaded according to the fractional part of
1.1

SM
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APPENDIX

A.1l. Concentration estimates.

LEMMA A.1. Suppose for all x € Z we have
X1, Yf
X3,Y5

a sequence of independent uniform £1 valued random variables. The sequences
across x are also independent of each other. Then there exists constants C,C', y >
0 such that for n large enough, with probability at least 1 — C exp(—C'n") for all
k> /n and —n’ < j < n> we have:

@) Iz iy = k721 < K2
(i) 1 3Eo 1y — K20 < k12
(i) 1 220mr i 2y Loy — K741 < K12HS
(iv) |25, Voo dyioyy —K/AL <K

PROOF. Proof follows by standard bounds from Azuma—Hoeffding’s inequal-
ity for Bernoulli random variables and union bound over k > ,/n followed by
Jj € [—n5,n5]. O

A.2. Proof of Lemma 5.2. Let us define the truncated variable:
Y = M(n3)1(M(n3) <n3te)

for some small but a priori fixed €. Let ¥; be i.i.d. copies of Y. Now by using
Azuma’s inequality,

W1/3 i
P(Z(Yi - E))) > t) < o WA

i=1

5/3+3¢

Taking t> =n , we get that

nl/3

IP(Z(Y,- - E))) > t) <e™.

i=1

Now by (iv) Lemma 5.1 E(Y) = O (n*/3). Thus,
n'PE(Y)+t < Dn
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for some large D as t = n3/6t2¢ Hence,

L1/3
P(Z Y; > Dn) <e™".
i=I
This implies that
nl/3
IP’(Z Mi(n%) > Dn) <Ce™
i=1

since by (i) Lemma 5.1 and union bound, there exists a positive constant ¢ > 0
such that

c

P31 <i <n'suchthat ¥; # M) <e™™.

A.3. Proof of Lemma 6.5. We use the variables E; defined in the statement
of Lemma 3.5. Let

,r/
Y=Y E,
i=1

where 7’ was defined in (12). As mentioned in proof of Proposition 3.1 by Lemmas
3.3 and 3.5 7 is stochastically dominated by Y. Thus,

E[t1(r > ns)] <E[Y1(Y > nS)]
Hence, to prove the lemma it suffices to show the right-hand side is O (1). Now

80)  E[YL(Y >n%)] <E[Y1(z' > n})] +E[Y1(r' <nD)1(Y > n’)]

_}’l% n%
81 5E[Yl(‘r'>n%)]+ﬂ§ ZEi1<ZEiZn5):|

(82) 5E[Yl(r'>n%)]+E nXZ:Ei}[il(Eizn%)},

n% n2 5
1<ZE,- an) <Y 1(E; = n?).

i=1

We use the following tail estimate for £ and t’: there exists a constant ¢ < 1 such
that for k > n?:

(83) max(P(z' = k), P(E) = k) < (1 — o),
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which easy follows from the fact that starting from any point in [—2n, 2n] there
exists a constant chance ¢ for the random walk to exit the interval in the next n>
steps. Using (83), independence of 7/, E's, the theorem now follows from (82).
The details are omitted.

A.4. Proof of Corollary 6.6. The proof follows from the following observa-
tion:

(84) u(x) < Cn*1(G) +n°1(G)1(r <n’) + t1(z = n)1(G°),

where C is the constant appearing in the statement of Theorem 1.1, t is defined in
(10) and G is defined in (17). The first term follows from the definition of G. For
the second and third term, we use the trivial bound that

ulx)<r.
Taking expectation, we get
ii(x) < Cn*? 4+ nP(G°) + E(t1(t > n°)).

The last two terms are O (1) by Theorem 1.1 and Lemma 6.5, respectively. Hence,
we are done.
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