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BSE’S, BSDE’S AND FIXED-POINT PROBLEMS

BY PATRICK CHERIDITO AND KIHUN NAM

ETH Zurich and Rutgers University

In this paper, we introduce a class of backward stochastic equations
(BSEs) that extend classical BSDEs and include many interesting examples
of generalized BSDEs as well as semimartingale backward equations. We
show that a BSE can be translated into a fixed-point problem in a space of ran-
dom vectors. This makes it possible to employ general fixed-point arguments
to establish the existence of a solution. For instance, Banach’s contraction
mapping theorem can be used to derive general existence and uniqueness re-
sults for equations with Lipschitz coefficients, whereas Schauder-type fixed-
point arguments can be applied to non-Lipschitz equations. The approach
works equally well for multidimensional as for one-dimensional equations
and leads to results in several interesting cases such as equations with path-
dependent coefficients, anticipating equations, McKean–Vlasov-type equa-
tions and equations with coefficients of superlinear growth.

1. Introduction. In this paper, we study backward stochastic equations
(BSEs) of the form

(1.1) Yt + Ft(Y,M) + Mt = ξ + FT (Y,M) + MT .

For a given maturity T ∈ R+, a filtered probability space (�,F, (Ft )0≤t≤T ,P),
a generator F and a terminal condition ξ ∈ Lp(FT )d , a solution to (1.1) consists
of a d-dimensional adapted process Y together with a d-dimensional martingale
M such that equation (1.1) holds for all t ∈ [0, T ]. If F(Y,M) is a finite variation
process, (1.1) is a semimartingale backward equation, which as a special case,
contains the semimartingale Bellman equation introduced by Chitasvili (1983);
see also Mania and Tevzadze (2003) and the references therein. In the case where
F is of the form Ft(Y,M) = ∫ t

0 f (s, Y,M)ds, BSE (1.1) becomes a generalized
backward stochastic differential equation (BSDE),

(1.2) Yt = ξ +
∫ T

t
f (s, Y,M)ds + MT − Mt,

in the spirit of Liang, Lyons and Qian (2011). If in addition, the probability space
carries an n-dimensional Brownian motion W and a Poisson random measure N
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on [0, T ]× (Rm \{0}) such that every square-integrable martingale M has a unique
representation of the form

Mt =
∫ t

0
ZM

s dWs +
∫ t

0

∫
Rm\{0}

UM
s (x)Ñ(ds, dx) + KM

t

for the compensated Poisson random measure Ñ , suitable integrands ZM and UM ,
and a square-integrable martingale KM strongly orthogonal to W and Ñ , one can
write equations of the form

(1.3) Yt = ξ +
∫ T

t
f

(
s, Y,ZM,UM)

ds + MT − Mt.

This generalizes the jump-diffusion extension of Tang and Li (1994) of the clas-
sical BSDEs introduced by Pardoux and Peng (1990) in three directions. First, in
Tang and Li (1994) the filtration is generated by the Brownian motion and the
Poisson random measure, whereas here it is general; second, at any given time,
the driver f in (1.3) can depend on the whole paths of the processes Y , ZM , UM

and not only on their current values; and finally, f can be a function of Y , ZM ,
UM viewed as random elements instead of just their realizations Y(ω), ZM(ω)

and UM(ω). As special cases, (1.3) contains BSDEs with drivers that depend on
the past or future of Y , ZM and UM , such as the time-delayed BSDEs of Delong
and Imkeller (2010a, 2010b) or the anticipating BSDEs of Peng and Yang (2009).
It also includes mean-field BSDEs as in Buckdahn, Li and Peng (2009), or more
generally, McKean–Vlasov-type BSDEs with coefficients depending on the distri-
butions of Y , ZM and UM .

Our approach to proving that a BSE has a solution is to translate it into a fixed-
point problem for a mapping G : Lp(FT )d → Lp(FT )d . This makes it possible to
apply general fixed-point results. For instance, Banach’s contraction mapping the-
orem can be used to derive general existence and uniqueness results for equations
with Lipschitz coefficients. In the non-Lipschitz case, one can employ Schauder-
type fixed-point arguments. This yields results for equations with coefficients of
superlinear growth, but it requires compactness assumptions. By reducing a BSE
to a fixed-point problem in Lp(FT )d , one eliminates the time-dimension. But one
still has to find compact subsets of Lp(FT )d . We do that by making use of Sobolev
spaces corresponding to infinite-dimensional Gaussian measures.

Our method works equally well for multidimensional as for one-dimensional
equations, and in addition to general results for BSEs, it also yields interesting
findings for BSDEs. For instance, in Section 3, we obtain existence and unique-
ness results for BSDEs with functional drivers depending on the whole processes
Y and M . In general, such results require Lipschitz continuity with a small enough
Lipschitz constant or, alternatively, a sufficiently short maturity. But in several in-
teresting special cases, it is possible to derive the existence of a unique solution
for arbitrary Lipschitz constant and maturity. In Section 4, we use compactness
and a theorem by Krasnoselskii (1964), which combines the fixed-point results
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of Banach and Schauder, to derive existence results for multidimensional BSDEs
with functional drivers of superlinear growth. For instance, Corollary 4.7 estab-
lishes the existence of solutions to BSDEs with general path-dependent drivers
and Corollary 4.10 the existence of a solution to a multidimensional mean-field
BSDE with a driver of quadratic growth. The latter complements results by, for
example, Tevzadze (2008) and Cheridito and Nam (2015) on multidimensional
quadratic BSDEs, which are known to not always have solutions [see, e.g., Peng
(1999), or Frei and dos Reis (2011)].

The structure of the paper is as follows. In Section 2, we formally introduce
BSEs and relate them to fixed-point problems in Lp(FT )d . In Section 3, we de-
rive existence and uniqueness results for various BSEs and BSDEs with general
functional Lipschitz coefficients from Banach’s contraction mapping theorem. In
Section 4, we provide existence results for different non-Lipschitz equations using
compactness and Krasnoselskii’s fixed-point theorem.

2. BSEs and fixed points in Lp . In this section, we introduce BSEs and show
how they can be translated into fixed-point problems in Lp-spaces. We fix a finite
time horizon T ∈ R+ and let (�,F,F,P) be a filtered probability space with a fil-
tration F := (Ft )t∈[0,T ] satisfying the usual conditions. Then all martingales admit
a RCLL modification (i.e., right-continuous with left limits). By | · |, we denote the
Euclidean norm on R

d , and for a d-dimensional random vector X, we define

‖X‖p := (
E|X|p)1/p if p < ∞ and ‖X‖∞ := ess sup

ω∈�

|X|.

For p ∈ (1,∞], we set:

• Lp(Ft )
d : all d-dimensional Ft -measurable random vectors X satisfying

‖X‖p < ∞.
• EtX := E[X|Ft ].
• S

p: all R
d -valued RCLL adapted processes (Yt )0≤t≤T satisfying ‖Y‖Sp :=

‖ sup0≤t≤T |Yt |‖p < ∞.
• S

p
0 : all Y ∈ S

p with Y0 = 0.
• M

p
0 : all martingales in S

p
0 .

A BSE is specified by a generator F : Sp × M
p
0 → S

p
0 and a terminal condition

ξ ∈ Lp(FT )d .

DEFINITION 2.1. A solution to the BSE

(2.1) Yt + Ft(Y,M) + Mt = ξ + FT (Y,M) + MT

consists of a pair (Y,M) ∈ S
p ×M

p
0 such that (2.1) holds for all t ∈ [0, T ].



3798 P. CHERIDITO AND K. NAM

DEFINITION 2.2. We say F satisfies condition (S) if for all y ∈ Lp(F0)
d and

M ∈ M
p
0 , the equation

(2.2) Yt = y − Ft(Y,M) − Mt

has a unique solution Y ∈ S
p .

For a given V ∈ Lp(FT )d , one obtains from Jensen’s inequality that yV := E0V

belongs to Lp(F0)
d and from Doob’s Lp-maximal inequality that MV

t := E0V −
EtV is in M

p
0 . If F satisfies (S), we denote by YV the solution of the equation

Yt = yV − Ft(Y,MV ) − MV
t .

A BSE depends on the generator F and terminal condition ξ . Provided that F

satisfies condition (S), then the pair (F, ξ) also defines a map

G : Lp(FT )d → Lp(FT )d through V �→ ξ + FT

(
YV ,MV )

.

To relate solutions of the BSE (2.1) to fixed points of G, we define the two map-
pings:

π : Sp ×M
p
0 → Lp(FT )d and φ : Lp(FT )d → S

p ×M
p
0

by

π(Y,M) := Y0 − MT and φ(V ) := (
YV ,MV )

.

THEOREM 2.3. Assume F satisfies (S). Then the following hold:

(a) V = (π ◦ φ)(V ) for all V ∈ Lp(FT )d . In particular, φ is injective.
(b) If V ∈ Lp(FT )d is a fixed point of G, then φ(V ) is a solution of the

BSE (2.1).
(c) If (Y,M) ∈ S

p ×M
p
0 solves the BSE (2.1), then π(Y,M) is a fixed point of

G and (Y,M) = (φ ◦ π)(Y,M).
(d) V is a unique fixed point of G in Lp(FT )d if and only if φ(V ) is a unique

solution of the BSE (2.1) in S
p ×M

p
0 .

PROOF. (a) Is straightforward to check.
(b) If V ∈ Lp(FT )d is a fixed point of G, then

(2.3) yV − MV
T = (π ◦ φ)(V ) = V = G(V ) = ξ + FT

(
YV ,MV )

.

Since YV satisfies YV
t = yV − Ft(Y

V ,MV ) − MV
t for all t , (2.3) is equivalent to

YV
t + Ft

(
YV ,MV ) + MV

t = ξ + FT

(
YV ,MV ) + MV

T for all t,

which shows that φ(V ) = (YV ,MV ) solves the BSE (2.1).
(c) Let (Y,M) ∈ S

p ×M
p
0 be a solution of the BSE (2.1). Set V := π(Y,M) =

Y0 − MT . Then yV = Y0 and MV
t = Mt . In particular,

Yt = Y0 − Ft(Y,M) − Mt = yV − Ft

(
Y,MV ) − MV

t
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for all t . It follows that (Y,M) = (YV ,MV ) = φ(V ) = (φ ◦ π)(Y,M) and

yV = YV
0 = ξ + FT

(
YV ,MV ) + MV

T = G(V ) + MV
T .

Since yV − MV
T = V , this shows that V = G(V ).

(d) Follows from (a)–(c). �

In the special case, where F does not depend on Y , condition (S) holds trivially,
and it is enough to find a fixed point of the mapping G0(V ) := G(V ) − E0G(V )

in the subspace

L
p
0 (FT )d := {

V ∈ Lp(FT )d : E0V = 0
}
.

COROLLARY 2.4. If F does not depend on Y , the following hold:

(a) If V ∈ L
p
0 (FT )d is a fixed point of G0, then the processes Yt := E0ξ +

E0FT (M) − Ft(M) − Mt and Mt := −EtV form a solution of the BSE (2.1) in
S

p ×M
p
0 .

(b) If (Y,M) ∈ S
p ×M

p
0 solves the BSE (2.1), then −MT is a fixed point of G0.

(c) V is a unique fixed point of G0 in L
p
0 (FT )d if and only if the pair (Y,M)

given by Yt := E0ξ + E0FT (M) − Ft(M) − Mt and Mt := −EtV is a unique
solution of the BSE (2.1) in S

p ×M
p
0 .

PROOF. (a) If V = G0(V ), then for Ṽ = V + E0G(V ), one has MṼ = MV ,
and, therefore,

Ṽ = V +E0G(V ) = G(V ) = ξ + FT

(
MV ) = ξ + FT

(
MṼ ) = G(Ṽ ).

So it follows from Theorem 2.3 that the pair (Y,M) given by Yt := E0ξ +
E0FT (M) − Ft(M) − Mt and Mt := −EtV solves the BSE (2.1).

(b) If (Y,M) ∈ S
p ×M

p
0 solves the BSE (2.1), it follows from Theorem 2.3 that

V := Y0 − MT is a fixed point of G. So

G0(−MT ) = G0(Y0 − MT ) = G(V ) −E0G(V ) = V −E0V = −MV
T = −MT .

(c) V is a fixed point of G0 if and only if V + E0G(V ) is a fixed point of G.
Therefore, the result follows from part (d) of Theorem 2.3. �

The following lemma provides a sufficient condition for F to satisfy condi-
tion (S). For (Y,M) ∈ S

p ×M
p
0 and k ∈ N, define

F
(k)
t (Y,M) := Ft

(
Y (k,M),M

)
,

where Y (k,M) is recursively given by

Y (1,M) := Y and Y
(k,M)
t := Y0 − Ft

(
Y (k−1,M),M

) − Mt, k ≥ 2.
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LEMMA 2.5. If for given y ∈ Lp(F0)
d and M ∈ M

p
0 , there exist a number

k ∈ N and a constant C < 1 such that

(2.4)
∥∥F (k)(Y,M) − F (k)(Y ′,M

)∥∥
Sp ≤ C

∥∥Y − Y ′∥∥
Sp

for all Y,Y ′ ∈ S
p with Y0 = Y ′

0 = y, then the SDE (2.2) has a unique solution
Y ∈ S

p .

PROOF. The mapping Y �→ y − F (k)(Y,M) − M is a contraction on {Y ∈
S

p : Y0 = y}. So it follows from Banach’s contraction mapping theorem that there
exists a unique Y ∈ S

p satisfying

Y = y − F (k)(Y,M) − M = Y (k+1,M).

This implies

Y (2,M) = y − Ft(Y,M) − Mt = y − Ft

(
Y (k+1,M),M

) − Mt

= Y (k+2,M) = y − F (k)(Y (2,M),M
) − M,

from which one deduces Y = Y (2,M) = y − F(Y,M) − M . This shows that Y

solves the SDE (2.2). If Y ′ ∈ S
p is another solution of (2.2), then Y ′ = y −

F (k)(Y ′,M) − M , and one obtains Y ′ = Y . �

3. Existence and uniqueness of solutions under Lipschitz assumptions. In
this section, we consider equations with Lipschitz coefficients and use Banach’s
contraction mapping theorem to show that they have unique solutions.

3.1. General existence and uniqueness results. We start with a result for gen-
eral Lipschitz BSEs. Let us denote

c2 = 1

5
, c∞ = 1

4
and cp = p − 1

4p − 1
for p ∈ (1,∞) \ {2}.

Then the following holds.

THEOREM 3.1. Let ξ ∈ Lp(FT )d for some p ∈ (1,∞]. If there exist a number
k ∈ N and a constant C < cp such that∥∥F (k)(Y,M) − F (k)(Y ′,M ′)∥∥

Sp ≤ C
(∥∥Y − Y ′∥∥

Sp + ∥∥M − M ′∥∥
Sp

)
for all Y,Y ′ ∈ S

p and M,M ′ ∈ M
p
0 , then the BSE (2.1) has a unique solution

(Y,M) in S
p ×M

p
0 .

PROOF. Since C < 1, it follows from Lemma 2.5 that F satisfies (S). So by
Theorem 2.3, it is enough to prove that G has a unique fixed point in Lp(FT )d .
This follows from Banach’s contraction mapping theorem if we can show that G is
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a contraction on Lp(FT )d . Since for V ∈ Lp(FT )d , YV is the unique fixed point
of the mapping Y �→ E0V − F(Y,MV ) − MV , it follows from the definition of
F (k) that F(YV ,MV ) = F (k)(Y V ,MV ). Hence, one has for all V,V ′ ∈ Lp(FT )d ,

YV
t − YV ′

t = yV − yV ′ − {
F

(k)
t

(
YV ,MV ) − F

(k)
t

(
YV ′

,MV ′)} − (
MV

t − MV ′
t

)
= Et

(
V − V ′) − {

F
(k)
t

(
YV ,MV ) − F

(k)
t

(
YV ′

,MV ′)}
.

Therefore,

sup
0≤t≤T

∣∣YV
t − YV ′

t

∣∣
≤ sup

0≤t≤T

∣∣Et

(
V − V ′)∣∣ + sup

0≤t≤T

∣∣F (k)
t

(
YV ,MV ) − F

(k)
t

(
YV ′

,MV ′)∣∣,
and it follows that∥∥YV − YV ′∥∥

Sp

≤
∥∥∥ sup

0≤t≤T

∣∣Et

(
V − V ′)∣∣∥∥∥

p
+ ∥∥F (k)(YV ,MV ) − F (k)(YV ′

,MV ′)∥∥
Sp

≤
∥∥∥ sup

0≤t≤T

∣∣Et

(
V − V ′)∣∣∥∥∥

p
+ C

(∥∥YV − YV ′∥∥
Sp + ∥∥MV − MV ′∥∥

Sp

)
.

In particular,

∥∥YV − YV ′∥∥
Sp ≤ 1

1 − C

(∥∥∥ sup
0≤t≤T

∣∣Et

(
V − V ′)∣∣∥∥∥

p
+ C

∥∥MV − MV ′∥∥
Sp

)

and, therefore,∥∥G(V ) − G
(
V ′)∥∥

p

= ∥∥F (k)
T

(
YV ,MV ) − F

(k)
T

(
YV ′

,MV ′)∥∥
p

≤ C
(∥∥YV − YV ′∥∥

Sp + ∥∥MV − MV ′∥∥
Sp

)
≤ C

1 − C

(∥∥∥ sup
0≤t≤T

∣∣Et

(
V − V ′)∣∣∥∥∥

p
+ C

∥∥MV − MV ′∥∥
Sp

)
+ C

∥∥MV − MV ′∥∥
Sp

= C

1 − C

(∥∥∥ sup
0≤t≤T

∣∣Et

(
V − V ′)∣∣∥∥∥

p
+ ∥∥MV − MV ′∥∥

Sp

)
.

By Doob’s Lp-maximal inequality, if we let Cp = p/(p − 1) for p ∈ (1,∞) and
C∞ = 1,∥∥∥ sup

0≤t≤T

∣∣Et

(
V − V ′) −E0

(
V − V ′)∣∣∥∥∥

p
≤ Cp

∥∥V − V ′ −E0
(
V − V ′)∥∥

p
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and ∥∥∥ sup
0≤t≤T

∣∣Et

(
V − V ′)∣∣∥∥∥

p
≤ Cp

∥∥V − V ′∥∥
p.

Hence,∥∥MV − MV ′∥∥
Sp

≤
{

2
∥∥V − V ′ −E0

(
V − V ′)∥∥

2 ≤ 2
∥∥V − V ′∥∥

2, for p = 2,

Cp

∥∥V − V ′ −E0
(
V − V ′)∥∥

p ≤ 2Cp

∥∥V − V ′∥∥
p, for p �= 2,

and

∥∥G(V ) − G
(
V ′)∥∥

p ≤

⎧⎪⎪⎨
⎪⎪⎩

4C

1 − C

∥∥V − V ′∥∥
2, for p = 2,

3Cp

C

1 − C

∥∥V − V ′∥∥
p, for p �= 2.

This shows that G is a contraction. �

REMARK 3.2. One cannot hope to obtain a general existence and uniqueness
result like Theorem 3.1 for equations with path-dependent coefficients without the
assumption that the Lipschitz constant C is sufficiently small. For instance, if the
generator is given by Ft(Y,M) = atY0 for a constant a, the BSE (2.1) takes the
form

(3.1) Yt − a(T − t)Y0 = ξ + MT − Mt.

This is a variant of the equation studied in Example 3.1 of Delong and Imkeller
(2010a), who noticed that time-delayed BSDEs with Lipschtitz coefficients are
not always well-posed. Obviously, F(Y,M) is Lipschitz in (Y,M). But if one sets
t = 0 and takes expectation on both sides of (3.1), one obtains (1 − aT )Y0 = E0ξ .
This shows that for aT = 1 and E0ξ �= 0, (3.1) cannot have a solution. On the other
hand, if aT = 1 and E0ξ = 0 then Yt = (1− t/T )Y0 +Et ξ and Mt = −Et ξ defines
a solution for any initial value Y0 ∈ Lp(F0)

d . So in this case, (3.1) has infinitely
many solutions in S

p ×M
p
0 .

If the generator is of integral form Ft(Y,M) = ∫ t
0 f (s, Y,M)ds for a driver,

(3.2) f : [0, T ] × � × S
p ×M

p
0 →R

d,

the BSE (2.1) becomes a BSDE of the general form

(3.3) Yt = ξ +
∫ T

t
f (s, Y,M)ds + MT − Mt.

If for a RCLL measurable processe X, one denotes

‖X‖
S

p
[0,t]

:=
∥∥∥ sup

0≤s≤t

|Xt |
∥∥∥
p
,

the following holds.
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PROPOSITION 3.3. Let ξ ∈ Lp(FT )d for some p ∈ (1,∞]. Then the BSDE
(3.3) has a unique solution (Y,M) ∈ S

p × M
p
0 for every driver of the form (3.2)

satisfying the following conditions:

(i) For all (Y,M) ∈ S
p × M

p
0 , f (·, Y,M) is progressively measurable with∫ T

0 ‖f (t,0,0)‖p dt < ∞.
(ii) There exist nonnegative constants

C1 > 0 and C2 <
cpC1

eC1T − 1

such that∥∥f (t, Y,M) − f
(
t, Y ′,M ′)∥∥

p

≤ C1
∥∥Y − Y0 + M − (

Y ′ − Y ′
0 + M ′)∥∥

S
p
[0,t]

+ C2
(∥∥Y0 − Y ′

0
∥∥
p + ∥∥M − M ′∥∥

Sp

)
for all (Y,M), (Y ′,M ′) ∈ S

p ×M
p
0 .

PROOF. Let q = p/(p − 1) ∈ [1,∞). It follows from the assumptions that for
all (Y,M) ∈ S

p ×M
p
0 ,∥∥∥∥

∫ T

0

∣∣f (t, Y,M)
∣∣dt

∥∥∥∥
p

= sup
‖X‖q≤1

∫ T

0
E

[∣∣f (t, Y,M)
∣∣|X|]dt

≤ sup
‖X‖q≤1

∫ T

0

∥∥f (t, Y,M)
∥∥
p‖X‖q dt

=
∫ T

0

∥∥f (t, Y,M)
∥∥
p dt

≤
∫ T

0

∥∥f (t,0,0)
∥∥
p dt + T C1‖Y − Y0 + M‖Sp + T C2

(‖Y0‖p + ‖M‖Sp

)
< ∞.

So Ft(Y,M) := ∫ t
0 f (s, Y,M)ds is a well-defined mapping from S

p × M
p
0 to S

p
0

for all p ∈ (1,∞].
For given Y,Y ′ ∈ S

p and M,M ′ ∈M
p
0 , set

δ := C2

C1

(∥∥Y0 − Y ′
0
∥∥
p + ∥∥M − M ′∥∥

Sp

)
,

H 0
t := H 0 := 2

(∥∥Y − Y ′∥∥
Sp + ∥∥M − M ′∥∥

Sp

)
,

Hk
t := ∥∥F (k)(Y,M) − F (k)(Y ′,M ′)∥∥

S
p
[0,t]

.
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Then

Hk
t ≤

∫ t

0

∥∥f (
s, Y (k,M),M

) − f
(
s,

(
Y ′)(k,M ′)

,M ′)∥∥
p ds

≤
∫ t

0

(
C1H

k−1
s + C2

(∥∥Y0 − Y ′
0
∥∥
p + ∥∥M − M ′∥∥

Sp

))
ds

≤ C1

∫ t

0

(
Hk−1

s + δ
)
ds,

and by iteration,

Hk
t ≤ (C1t)

k

k! H 0 +
(
C1t + · · · + (C1t)

k

k!
)
δ.

In particular,

∥∥F (k)(Y,M) − F (k)(Y ′,M
)∥∥

Sp ≤ 2
(C1T )k

k!
(∥∥Y − Y ′∥∥

Sp + ∥∥M − M ′∥∥
Sp

)

+ (
eC1T − 1

)C2

C1

(∥∥Y0 − Y ′
0
∥∥
p + ∥∥M − M ′∥∥

Sp

)
.

So for k large enough, there exists a constant C < cp such that∥∥F (k)(Y,M) − F (k)(Y ′,M ′)∥∥
Sp ≤ C

(∥∥Y − Y ′∥∥
Sp + ∥∥M − M ′∥∥

Sp

)
,

and the proposition follows from Theorem 3.1. �

REMARK 3.4. The backward stochastic dynamics

Yt =
∫ T

t
f0

(
s, Ys,L(M)s

)
ds +

∫ T

t
f (s, Ys) dBs − (MT − Mt)

studied by Liang, Lyons and Qian (2011) can be viewed as a BSE with generator

Ft(Y,M) =
∫ t

0
f0

(
s, Ys,L(M)s

)
ds +

∫ t

0
f (s, Ys) dBs.

But it also fits into the framework (3.3) if the transformation

M̃t =
∫ t

0
f (s, Ys) dBs,−Mt and

f̃ (t, Y, M̃) = f0

(
t, Yt ,L

(∫
f (s, Ys) dBs − M̃

)
t

)

is applied. In addition, (3.3) includes BSDEs with drivers depending on the past or
future of the processes Y and M , such as the time-delayed BSDEs of Delong and
Imkeller (2010a, 2010b) or the anticipating BSDEs of Peng and Yang (2009). Pre-
vious existence and uniqueness results like Theorem 3.3 of Liang, Lyons and Qian
(2011), Theorem 2.1 of Delong and Imkeller (2010a) or Theorem 2.1 of Delong
and Imkeller (2010b), can all be recovered as special cases of Proposition 3.3.
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REMARK 3.5. Let f : [0, T ] × � × S
p × M

p
0 → R

d be a driver satisfying
condition (i) of Proposition 3.3 for some p ∈ (1,∞]. If there exist nonnegative
constants D1,D2 such that∥∥f (t, Y,M) − f

(
t, Y ′,M ′)∥∥

p ≤ D1
∥∥Y − Y ′∥∥

S
p
[0,t]

+ D2
∥∥M − M ′∥∥

Sp

for all Y,Y ′ ∈ S
p and M,M ′ ∈ M

p
0 , then∥∥f (t, Y,M) − f

(
t, Y ′,M ′)∥∥

p ≤ D1
∥∥Y − Y0 + M − (

Y ′ − Y ′
0 + M ′)∥∥

S
p
[0,t]

+ D1
∥∥Y0 − Y ′

0
∥∥
p + (D1 + D2)

∥∥M − M ′∥∥
Sp .

So the assumptions of Proposition 3.3 only hold if the constants D1 and D2 are
small enough, or alternatively, the maturity T is sufficiently short. This is in line
with Remark 3.2 above [note that (3.1) is a path-dependent BSDE of the form (3.3)
with f (t, Y,M) = aY0].

The following corollary gives conditions under which it directly follows from
Proposition 3.3 that the BSDE (3.3) has a unique solution for arbitrary Lipschitz
constant and maturity. More examples of (3.3) admitting solutions under general
Lipschitz assumptions are given in Section 3.2 below.

COROLLARY 3.6. Let p ∈ (1,∞] and consider a terminal condition ξ ∈
Lp(FT )d together with a driver f of the form (3.2) fulfilling condition (i) of
Proposition 3.3 such that f (t, Y,M) = h(t, Y − Y0 + M) for a mapping h :
[0, T ] × � × S

p
0 →R

d . If∥∥h(t,X) − h
(
t,X′)∥∥

p ≤ C
∥∥X − X′∥∥

S
p
[0,t]

, X,X′ ∈ S
p
0

for a constant C ≥ 0, then the BSDE (3.3) has a unique solution (Y,M) ∈ S
p ×

M
p
0 .

3.2. Generalized Lipschitz BSDEs based on a Brownian motion and a Poisson
random measure. Let W be an n-dimensional Brownian motion and N an inde-
pendent Poisson random measure on [0, T ]×E for E =R

m \ {0} with an intensity
measure of the form dtμ(dx) for a measure μ over the Borel σ -algebra B(E) of
E satisfying ∫

E

(
1 ∧ |x|2)

μ(dx) < ∞.

Denote by Ñ the compensated random measure N(dt, dx)−dtμ(dx), and assume
that, for A ∈ B(E) with μ(A) < ∞, Ñ([0, t] × A) and W are martingales with
respect to F. We need the following spaces of integrands:
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(i) H
2: all Rd×n-valued predictable processes Z satisfying

‖Z‖H2 :=
(∫ T

0
E|Zt |2 dt

)1/2
< ∞.

(ii) L2(Ñ): all P ⊗ B(E)-measurable mappings U : [0, T ] × � × E → R
d

such that

‖U‖
L2(Ñ)

:=
(∫ T

0

∫
E
E

∣∣Ut(x)
∣∣2μ(dx)dt

)1/2
< ∞,

where P is the σ -algebra of F-predictable subsets of [0, T ] × �.

Any square-integrable F-martingale M ∈ M
2
0 has a unique representation of the

form

(3.4) Mt =
∫ t

0
ZM

s dWs +
∫ t

0

∫
E

UM
s (x)Ñ(ds, dx) + KM

t

for a triple (ZM,UM,KM) ∈ H
2 × L2(Ñ) × M

2
0 such that KM is strongly or-

thogonal to W and Ñ [see, e.g., Jacod (1979)]. This makes it possible to consider
BSDEs

(3.5) Yt = ξ +
∫ T

t
f

(
s, Y,ZM,UM)

ds + MT − Mt

for terminal conditions ξ ∈ L2(FT )d and drivers

(3.6) f : [0, T ] × � × S
2 ×H

2 × L2(Ñ) →R
d .

In the special case where the filtration F is generated by W and N , the orthog-
onal part KM in the representation (3.4) vanishes [see, e.g., Ikeda and Watanabe
(1989)], and as a result, (3.5) can be written as

Yt = ξ +
∫ T

t
f

(
s, Y,ZM,UM)

ds +
∫ T

t
ZM

s dWs

(3.7)

+
∫ T

t

∫
E

UM
s (x)Ñ(ds, dx).

This generalizes the classical BSDEs of Pardoux and Peng (1990) and Tang and
Li (1994), which have drivers that at time s only depend on the realizations Ys(ω),
ZM

s (ω), UM
s (ω), to equations with functional drivers that can depend on the full

processes Y , ZM and UM .
In the rest of this subsection, we consider different specifications of (3.5) with

drivers depending on the future, present or past of the processes Y , ZM and UM .
In all instances, we are able to derive the existence of a unique solution for an
arbitrary Lipschitz constant and maturity. In the following proposition, the driver
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can depend on the present and future of Y , ZM and UM , but not on their past—this
is ruled out by condition (ii). For its proof, we need the isometry

(3.8) E|Mt |2 =
∫ t

0
E

∣∣ZM
s

∣∣2 ds +
∫ t

0

∫
E
E

∣∣UM
s (x)

∣∣2μ(dx)ds +E
∣∣KM

t

∣∣2
[see, e.g., Jacod (1979)].

PROPOSITION 3.7. The BSDE (3.5) has a unique solution (Y,M) ∈ S
2 ×M

2
0

for every terminal condition ξ ∈ L2(FT )d and driver

f : [0, T ] × � × S
2 ×H

2 × L2(Ñ) →R
d

satisfying the following two conditions:

(i) For all (Y,Z,U) ∈ S
2 × H

2 × L2(Ñ), f (t, Y,Z,U) is progressively mea-
surable with

∫ T
0 ‖f (t,0,0,0‖2 dt < ∞.

(ii) There exists a constant C ≥ 0 such that∫ T

t

∥∥f (s, Y,Z,U) − f
(
s, Y ′,Z′,U ′)∥∥

2 ds

≤ C

∫ T

t

∥∥Ys − Y ′
s

∥∥
2 + ∥∥Zs − Z′

s

∥∥
2 + ∥∥Us − U ′

s

∥∥
L2(P⊗μ) ds

for all t ∈ [0, T ] and (Y,Z,U), (Y ′,Z′,U ′) ∈ S
2 ×H

2 × L2(Ñ).

PROOF. Choose δ > 0 so that

C
√

3δ(δ + 1) <
1

5
and k := T/δ ∈N.

By (3.8), one has for every M ∈ M
2
0,

(∫ t

0

∥∥ZM
s

∥∥
2 + ∥∥UM

s

∥∥
L2(P⊗μ) ds

)2

≤ t

∫ t

0

(∥∥ZM
s

∥∥
2 + ∥∥UM

s

∥∥
L2(P⊗μ)

)2
ds

≤ 2t

∫ t

0

∥∥ZM
s

∥∥2
2 + ∥∥UM

s

∥∥2
L2(P⊗μ) ds ≤ 2t‖Mt‖2

2.

Therefore, one obtains from the assumptions for all (Y,M) ∈ S
2 ×M

2
0∥∥∥∥

∫ T

T −δ

∣∣f (
s, Y,ZM,UM)∣∣ds

∥∥∥∥
2

≤
∫ T

T −δ

∥∥f (
s, Y,ZM,UM)∥∥

2 ds
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≤
∫ T

T −δ

∥∥f (s,0,0,0)
∥∥

2 ds

+ C

∫ T

T −δ

(‖Ys‖2 + ∥∥ZM
s

∥∥
2 + ∥∥UM

s

∥∥
L2(P⊗μ)

)
ds < ∞,

where the first inequality follows from the same argument as in the proof of Propo-
sition 3.3. In particular, for every pair (Y,M) ∈ S

2 ×M
2
0,

Ft(Y,M) :=
∫ t

0
f

(
s, Y,ZM,UM)

1[T −δ,T ](s) ds

defines a process in S
2
0. Furthermore, one has∥∥F(Y,M) − F

(
Y ′,M ′)∥∥

S2

≤
∥∥∥∥
∫ T

T −δ

∣∣f (
s, Y,ZM,UM) − f

(
s, Y ′,ZM ′

,UM ′)∣∣ds

∥∥∥∥
2

≤
∫ T

T −δ

∥∥f (
s, Y,ZM,UM) − f

(
s, Y ′,ZM ′

,UM ′)∥∥
2 ds

≤ C

∫ T

T −δ

∥∥Ys − Y ′
s

∥∥
2 + ∥∥ZM

s − ZM ′
s

∥∥
2 + ∥∥UM

s − UM ′
s

∥∥
L2(P⊗μ) ds

≤ C

√
δ

∫ T

T −δ

(∥∥Ys − Y ′
s

∥∥
2 + ∥∥ZM

s − ZM ′
s

∥∥
2 + ∥∥UM

s − UM ′
s

∥∥
L2(P⊗μ)

)2
ds

≤ C

√
3δ

∫ T

T −δ

∥∥Ys − Y ′
s

∥∥2
2 + ∥∥ZM

s − ZM ′
s

∥∥2
2 + ∥∥UM

s − UM ′
s

∥∥2
L2(P⊗μ) ds

≤ C

√
3δ2

∥∥Y − Y ′∥∥2
S2 + 3δ

∥∥M − M ′∥∥2
S2

≤ C
√

3δ(δ + 1)
(∥∥Y − Y ′∥∥

S2 + ∥∥M − M ′∥∥
S2

)
for all (Y,M), (Y ′,M ′) ∈ S

2 × M
2
0. Since C

√
3δ(δ + 1) < 1/5, one obtains from

Theorem 3.1 that the BSDE

Yt = ξ +
∫ T

t
f

(
s, Y,ZM,UM)

1[T −δ,T ](s) ds + MT − Mt

has a unique solution (Y (k),M(k)) in S
2 ×M

2
0. Now, consider the BSDE

(3.9) Yt = Y
(k)
T −δ +

∫ T −δ

t
f (k−1)(s, Y,ZM,UM)

1[T −2δ,T −δ](s) ds + MT −δ − Mt

on the time interval [0, T − δ], where f (k−1) is given by

f (k−1)(s, Y,Z,U) := f
(
s, (Y,Z,U)1[0,T −δ) + (

Y (k),ZM(k)

,UM(k))
1[T −δ,T ]

)
.
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Then the conditions (i)–(ii) still hold. So (3.9) has a unique solution (Y (k−1),

M(k−1)) in S
2 ×M

2
0 over the time interval [0, T −δ]. Repeating the same argument,

one obtains solutions (Y (j),M(j)), j = 1, . . . , k. If one sets Yt := Y
(1)
t , Mt := M

(1)
t

for 0 ≤ t ≤ δ and Yt := Y
(j)
t , Mt − M(j−1)δ := M

(j)
t − M

(j)
(j−1)δ for (j − 1)δ < t ≤

jδ, j = 2, . . . , k, then (ZM
t ,UM

t ) = (ZM(j)

t ,UM(j)

t ) for (j − 1)δ < t ≤ jδ. Since
this construction is backwards in time and by condition (ii), f (t, Y,ZM,UM) can-
not depend on the past of the processes Y,ZM and UM , the pair (Y,M) forms a
unique solution of (3.5) in S

2 ×M
2
0. �

REMARK 3.8. The assumptions of Proposition 3.7 allow for drivers f such
that f (t, Y,Z,U) depends on the future of the processes Y,Z,U in a general Ft -
measurable way. This covers BSDEs with anticipating drivers of the form

−dYt = f (t, Yt ,Zt ,EtYt+δ(t),EtZt+ζ(t)) dt + Zt dWt, t ∈ [0, T ]
(Yt ,Zt ) = (ξt , ηt ), t ∈ [T ,T + K]

or more generally,

(3.10)
−dYt = f (t, Yt ,Zt , Yt+δ(t),Zt+ζ(t)) dt + Zt dWt, t ∈ [0, T ]

(Yt ,Zt ) = (ξt , ηt ), t ∈ [T ,T + K]
for a Brownian motion (Wt)t∈[0,T ], continuous functions δ, ζ : [0, T ] → R+, and
stochastic processes (ξt )t∈[T ,T +K], (ηt )t∈[T ,T +K]. Equations of the form (3.10)
were introduced by Peng and Yang (2009) as duals of time-delayed forward SDEs.
Their existence and uniqueness result, Theorem 4.2, as well as extensions for equa-
tions with jumps, can easily be derived from Proposition 3.7.

As an immediate consequence of Proposition 3.7 one obtains the following re-
sult for BSDEs with functional drivers depending on Ys , ZM

s and UM
s .

COROLLARY 3.9. The BSDE

(3.11) Yt = ξ +
∫ T

t
f

(
s, Ys,Z

M
s ,UM

s

)
ds + MT − Mt

has a unique solution (Y,M) ∈ S
2 ×M

2
0 for every terminal condition ξ ∈ L2(FT )d

and driver

f : [0, T ] × � × L2(FT )d × L2(FT )d×n × L2(
� × E,FT ⊗B(E),P⊗ μ;Rd)

→R
d

satisfying the following two conditions:

(i) For all (Y,Z,U) ∈ S
2 ×H

2 ×L2(Ñ), f (t, Yt ,Zt ,Ut ) is progressively mea-
surable with

∫ T
0 ‖f (t,0,0,0‖2 dt < ∞.
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(ii) There exists a constant C ≥ 0 such that∥∥f (t, Yt ,Zt ,Ut ) − f
(
t, Y ′

t ,Z
′
t ,U

′
t

)∥∥
2

≤ C
(∥∥Yt − Y ′

t

∥∥
2 + ∥∥Zt − Z′

t

∥∥
2 + ∥∥Ut − U ′

t

∥∥
L2(P×μ)

)
for all t ∈ [0, T ] and (Y,Z,U), (Y ′,Z′,U ′) ∈ S

2 ×H
2 × L2(Ñ).

Corollary 3.9 can be used in conjunction with Theorem 2.3 to deduce that the
following time-delayed BSDE has a unique solution. This extends Theorem 2.3 of
Delong and Imkeller (2010a) to the case of multidimensional BSDEs with jumps
and functional dependence in the driver. In addition, our integrability condition on
the terminal condition is a bit weaker.

PROPOSITION 3.10. Let ξ ∈ L2(FT )d and ν be a finite Borel measure on
[0, T ]. Then the BSDE

(3.12) Yt = ξ +
∫ T

t

∫
[0,s]

g
(
s − r,ZM

s−r ,U
M
s−r

)
ν(dr) ds + MT − Mt

has a unique solution (Y,M) ∈ S
2 ×M

2
0 for every mapping

g : [0, T ] × � × L2(FT )d×n × L2(
� × E,FT ⊗B(E),P⊗ μ;Rd) →R

d

satisfying the following two conditions:

(i) For all (Z,U) ∈H
2 ×L2(Ñ), g(t,Zt ,Ut ) is progressively measurable, and∫ T

0 ‖g(t,0,0‖2 dt < ∞.
(ii) There exists a constant C ≥ 0 such that∥∥g(t,Zt ,Ut ) − g

(
t,Z′

t ,U
′
t

)∥∥
2 ≤ C

(∥∥Zt − Z′
t

∥∥
2 + ∥∥Ut − U ′

t

∥∥
L2(P⊗μ)

)
for all t ∈ [0, T ] and (Z,U), (Z′,U ′) ∈ H

2 × L2(Ñ).

PROOF. The generator corresponding to the BSDE (3.12) is given by

Ft(M) =
∫ t

0

∫
[0,s]

g
(
s − r,ZM

s−r ,U
M
s−r

)
ν(dr) ds.

Since it does not depend on Y , it satisfies condition (S). So, by Theorem 2.3, it is
enough to show that there exists a unique V ∈ L2(FT )d such that

(3.13) V = G(V ) = ξ +
∫ T

0

∫
[0,s]

g
(
s − r,ZMV

s−r ,U
MV

s−r

)
ν(dr) ds.

From Fubini’s theorem and a change of variable, one obtains∫ T

0

∫
[0,s]

g
(
s − r,ZMV

s−r ,U
MV

s−r

)
ν(dr) ds =

∫ T

0
ν
([0, T − s])g(

s,ZMV

s ,UMV

s

)
ds.
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Since the driver h(s,Zs,Us) = ν([0, T − s])g(s,Zs,Us) satisfies the conditions
of Corollary 3.9, the BSDE

Yt = ξ +
∫ T

t
h
(
s,ZM

s ,UM
s

)
ds + MT − Mt

has a unique solution in S
2 ×M

2
0. The associated generator, F̃t (M) = ∫ T

0 h(s,ZM
s ,

UM
s ) ds, does not depend on Y either. So it also satisfies condition (S), and one ob-

tains from Theorem 2.3 that there exists a unique V ∈ L2(FT )d satisfying (3.13).
This completes the proof. �

As special cases of Corollary 3.9 and Proposition 3.10, one obtains exis-
tence and uniqueness results for McKean–Vlasov-type BSDEs with drivers de-
pending on the realizations Ys(ω), ZM

s (ω), UM
s (ω) as well as the distributions

L(Ys),L(ZM
s ), L(UM

s ) of Ys , ZM
s and UM

s . We recall that if M(X ) is the set of
all probability measures defined on the Borel σ -algebra of a normed vector space
(X ,‖ · ‖), the p-Wasserstein metric on Mp(X ) := {η ∈ M(X ) : ∫

X ‖x‖pη(dx) <

∞} is given by

Wp

(
η,η′) := inf

{∫
X×X

∥∥x − x′∥∥p
ψ

(
dx, dx′) :

ψ ∈ Mp(X ×X ) with marginals η and η′
}1/p

.

The following is a consequence of Corollary 3.9 and generalizes the existence and
uniqueness result for mean-field BSDEs of Buckdahn, Li and Peng (2009).

COROLLARY 3.11. Consider a BSDE of the form

Yt = ξ +
∫ T

t
f

(
s, Ys,Z

M
s ,UM

s ,L(Ys),L
(
ZM

s

)
,L

(
UM

s

))
ds

(3.14)
+ MT − Mt

for a terminal condition ξ ∈ L2(FT )d and a driver f from [0, T ] × � × R
d ×

R
d×n×L2(E,B(E),μ;Rd)×M2(R

d)×M2(R
d×n)×M2(L

2(E,B(E),μ;Rd))

to R
d . Then (3.14) has a unique solution (Y,M) in S

2 × M
2
0 if for fixed

(y, z, u, η, ζ, κ) in R
d ×R

d×n × L2(E,B(E),μ;Rd) ×M2(R
d) ×M2(R

d×n) ×
M2(L

2(E,B(E),μ;Rd)), f (·, y, z, u, η, ζ, κ) is progressively measurable, and
the following two conditions hold:

(i)
∫ T

0 ‖f (t,0,0,0,L(0),L(0)),L(0)‖2 dt < ∞.
(ii) There exists a constant C ≥ 0 such that∣∣f (t, y, z, u, η, ζ, κ) − f

(
t, y′, z′, u′, η′, ζ ′, κ ′)∣∣

≤ C
(∣∣y − y′∣∣ + ∣∣z − z′∣∣ + ∥∥u − u′∥∥

L2(μ) +W2
(
η,η′)

+W2
(
ζ, ζ ′) +W2

(
κ, κ ′)).
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PROOF. It follows from the assumptions that the driver f is progressively
measurable in (t,ω) and continuous in (y, z, u, η, ζ, κ). Since

R
d ×R

d×n × L2(
E,B(E),μ;Rd) ×M2

(
R

d) ×M2
(
R

d×n)
×M2

(
L2(

E,B(E),μ;Rd))
is a separable metric space, one obtains from Lemma 4.51 of Aliprantis and Bor-
der (2006) that f is jointly measurable in all its arguments. This implies that
f (t, Yt ,Zt ,Ut ,L(Yt ),L(Zt ),L(Ut)) is progressively measurable for every triple
(Y,Z,U) ∈ S

2 × H
2 × U ∈ L2(Ñ). It follows that condition (i) of Corollary 3.9

holds, and it just remains to show that∥∥f (
t, Yt ,Zt ,Ut ,L(Yt ),L(Zt ),L(Ut )

) − f (t, Y ′
t ,Z

′
t ,U

′
t ,L

(
Y ′

t

)
,L

(
Z′

t

)
,L

(
U ′

t

)∥∥
2

≤ D
(∥∥Yt − Y ′

t

∥∥
2 + ∥∥Zt − Z′

t

∥∥
2 + ∥∥Ut − U ′

t

∥∥
L2(P×μ)

)
for some constant D. But this is a consequence of condition (ii) since one has

W2
2
(
L(Yt ),L

(
Y ′

t

)) ≤
∫
Rd×Rd

∣∣y − y′∣∣2L(
Yt , Y

′
t

)(
dy, dy′) = ∥∥Yt − Y ′

t

∥∥2
2,

and analogously,

W2
2
(
L(Zt ),L

(
Z′

t

)) ≤ ∥∥Zt − Z′
t

∥∥2
2,

W2
2
(
L(Ut ),L(Ut )

) ≤ ∥∥Ut − U ′
t

∥∥2
L2(P×μ). �

Using the same arguments as in the proof of Corollary 3.11, one obtains from
Proposition 3.10 the following result for time-delayed McKean–Vlasov-type BS-
DEs.

COROLLARY 3.12. Consider a BSDE of the form

Yt = ξ +
∫ T

t

∫ s

0
g
(
s − r,ZM

s−r ,U
M
s−r ,L

(
ZM

s−r

)
,L

(
UM

s−r

))
ν(dr) ds

(3.15)
+ MT − Mt

for a terminal condition ξ ∈ L2(FT )d , a finite Borel measure ν on [0, T ] and a
mapping

g : [0, T ] × � ×R
d×n × L2(

E,B(E),μ;Rd) ×M2
(
R

d×n)
×M2

(
L2(

E,B(E),μ;Rd)) →R
d .

Then (3.15) has a unique solution (Y,M) in S
2 ×M

2
0 if for fixed

(z, u, ζ, κ) ∈ R
d×n × L2(

E,B(E),μ;Rd) ×M2
(
R

d×n)
×M2

(
L2(

E,B(E),μ;Rd))
,

g(·, z, u, ζ, κ) is progressively measurable, and the following two conditions hold:
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(i)
∫ T

0 ‖g(t,0,0,L(0)),L(0)‖2 dt < ∞.
(ii) There exists a constant C ≥ 0 such that∣∣g(t, z, u, ζ, κ) − g

(
t, z′, u′, ζ ′, κ ′)∣∣

≤ C
(∣∣z − z′∣∣ + ∥∥u − u′∥∥

L2(μ) +W2
(
ζ, ζ ′) +W2

(
κ, κ ′)).

4. Existence of solutions to non-Lipschitz equations. In this section, we use
compactness assumptions to derive existence results for different BSEs and BS-
DEs with non-Lipschitz coefficients. To find compact sets in the space L2(FT )d ,
we assume in all of Section 4 that the sample space � is an infinite-dimensional
separable Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖ · ‖. We
fix a complete orthonormal system ej , j ∈ N, of � together with positive numbers
λj , j ∈ N satisfying

∑
j∈N λj < ∞. Then Qej := λjej defines a positive self-

adjoint trace class operator Q : � → �. The mean zero Gaussian measure P with
covariance Q is the unique probability measure on the Borel σ -algebra B(�) of �

under which the functions φj (ω) = 〈ω,ej 〉, j ∈ N, are independent normal random
variables with mean zero and variance λj , j ∈ N; see Da Prato (2006) for details.
The map ej �→ φj/

√
λj has a unique continuous linear extension W : � → L2(�),

called white noise mapping. It is an isometry between � and the closed subspace
of L2(�) generated by φj , j ∈ N.

To define the Sobolev space W 1,2(�) in L2(�), let E(�) be the linear span of
all real and imaginary parts of functions of the form ω �→ ei〈ω,η〉 for some η ∈ �.
For ϕ ∈ E(�), we denote by Djϕ the derivative of ϕ in the direction of ej :

Djϕ(ω) = lim
ε→0

ϕ(ω + εej ) − ϕ(ω)

ε
.

The mapping D : E(�) ⊆ L2(�) → L2(�;�), ϕ �→ Dϕ := ∑
j∈N Djϕej is clos-

able. We maintain the notation D for the closure of D and denote its domain by
W 1,2(�). Endowed with the inner product

〈ϕ,ψ〉W 1,2 := E
(
ϕψ + 〈Dϕ,Dψ〉),

the Sobolev space W 1,2(�) becomes a Hilbert space. For ϕ ∈ L2(�)d and ψ ∈
W 1,2(�)d , we set

‖ϕ‖2
2 :=

d∑
i=1

Eϕ2
i , ‖Dψ‖2

2 :=
d∑

i=1

E〈Dψi,Dψi〉

and ‖ψ‖2
W 1,2 := ‖ψ‖2

2 + ‖Dψ‖2
2. Theorem 10.25 of Da Prato (2006) shows that

every ϕ ∈ W 1,2(�)d satisfies the Poincaré inequality:

(4.1) E|ϕ −Eϕ|2 ≤ λ‖Dϕ‖2
2 for λ := max

j
λj .

Moreover, by Theorem 10.16 of Da Prato (2006), every bounded set in W 1,2(�)d

is relatively compact in L2(�)d .
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We say a function ϕ : � →R
d is ω-Lipschitz with constant L ≥ 0 if∣∣ϕ(ω) − ϕ

(
ω′)∣∣ ≤ L

∥∥ω − ω′∥∥ for all ω,ω′ ∈ �.

It follows from Proposition 10.11 of Da Prato (2006) that every ω-Lipschitz func-
tion ϕ : � → R

d with constant L belongs to W 1,2(�)d with ‖Dϕ‖2 ≤ L. In par-
ticular, one obtains that for given numbers K,L ≥ 0, the set of all ω-Lipschitz
ϕ : � → R

d with constant L satisfying |Eϕ| ≤ K is compact in L2(�)d . More-
over, the following holds.

LEMMA 4.1. Let h : l1 →R
d be a mapping satisfying |h(x)−h(y)| ≤ K‖x −

y‖1 for some constant K ≥ 0. Then for any x ∈ l2,

ϕ = h
(√

λjxjW(ej ), j ∈ N
)

is an ω-Lipschitz random variable with constant K‖x‖2.

PROOF. One has∣∣ϕ(ω) − ϕ
(
ω′)∣∣ ≤ K

∥∥xj

〈
ω − ω′, ej

〉
, j ∈ N

∥∥
1 ≤ K‖x‖2

∥∥ω − ω′∥∥. �

REMARK 4.2. The assumptions on � in this section are not restrictive for
the purpose of studying BSEs and BSDEs. For instance, they allow for prob-
ability spaces rich enough to support an n-dimensional Brownian motion to-
gether with an independent Poisson random measure on [0, T ] × R

m \ {0}. For
an explicit construction, one can, for example, choose � to be of the form
� = L2([0, T ];Rn) ⊕ l2, where L2([0, T ];Rn) is the space of square-integrable
measurable functions from [0, T ] to R

n and l2 the space of square-summable se-
quences. The inner product on L2([0, T ];Rn) ⊕ l2 is given by

〈
(h, x),

(
h′, x′)〉 = ∫ T

0
h(s) · h′(s) ds + ∑

j∈N
xjx

′
j ,

where · denotes the standard scalar product on R
n. Let P be a mean zero Gaus-

sian measure corresponding to a positive self-adjoint trace class operator given by
Qej = λjej for a complete orthonormal system (ej ) of � and positive numbers
(λj ) satisfying

∑
j∈N λj < ∞. If W : � → L2(�) is the corresponding white noise

mapping, bi denotes the ith unit vector in R
n and (cj ) is a complete orthonormal

system in l2, then Wi
t := W(bi1[0,t],0) defines an n-dimensional Brownian motion

independent of the sequence ζj := W(0, cj ) of independent standard normals. For
a given σ -finite measure μ on the Borel σ -algebra of Rm \ {0}, a Poisson random
measure N on [0, T ] × R

m \ {0} with intensity measure dtμ(dx) can be realized
as a function of ζj , j ∈ N. Alternatively, N can be realized with only ζ2j−1, j ∈ N,
and ζ2j , j ∈ N, can be used to model additional noise.
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4.1. Non-Lipschitz BSEs and BSDEs with path-dependent generators. Denote
by F the completion of the Borel σ -algebra B(�) with respect to P, and let F =
(Ft )t∈[0,T ] be a general filtration satisfying the usual conditions. The following
theorem provides a general existence result for non-Lipschitz BSEs. It uses the
theorem of Krasnoselskii (1964), which combines the fixed-point results of Banach
and Schauder; for a textbook treatment see, for example, Smart (1974).

THEOREM 4.3. Let ξ ∈ L2(FT )d and assume F is of the form F = F 1 + F 2

for mappings F 1,F 2 : S2 ×M
2
0 → S

2
0. Then the BSE (2.1) has a solution (Y,M) ∈

S
2 ×M

2
0 if there exist constants C < 1 and R1,R2,R3 ≥ 0 such that the following

hold:

(i) ‖F(Y,M)−F(Y ′,M)‖S2 ≤ C‖Y −Y ′‖S2 and F(Y,M) ∈ S
2
0 is continuous

in M ∈ M
2
0.

(ii) ‖F 1
T (Y,M) − F 1

T (Y ′,M ′)‖2 ≤ C
√

‖Y0 − Y ′
0‖2

2 + ‖M − M ′‖2
S2/4.

(iii) For all (Y,M) ∈ S
2 × M

2
0 satisfying

√
‖Y0‖2

2 + ‖M‖2
S2/4 ≤ R1, one has

F 2
T (Y,M) ∈ W 1,2(�)d with

∥∥F 2
T (Y,M)

∥∥
2 ≤ R2 and

∥∥DF 2
T (Y,M)

∥∥
2 ≤ R3.

(iv) ‖ξ‖2 + ‖F 1
T (0,0)‖2 + CR1 + R2 ≤ R1.

PROOF. By Lemma 2.5, it follows from condition (i) that F satisfies (S).
So by Theorem 2.3, it is enough to show that the mapping V �→ G(V ) = ξ +
FT (YV ,MV ) has a fixed point in L2(FT )d . To do that, we define C := {V ∈
L2(FT )d : ‖V ‖2 ≤ R1}, G1(V ) := ξ +F 1

T (YV ,MV ), G2(V ) := F 2
T (YV ,MV ) and

show the following: (1) G1 is a contraction on L2(FT )d ; (2) G2 is continuous
with respect to ‖ · ‖2; (3) G2 maps C into a compact subset of L2(FT )d ; and
(4) G1(V ) + G2(V ′) ∈ C for all V,V ′ ∈ C. Then it follows from Krasnoselskii’s
theorem that G has a fixed point.

Step 1: G1 : L2(FT )d → L2(FT )d is a contraction with respect to ‖ · ‖2: It
follows from (ii) that∥∥G1(V ) − G1(

V ′)∥∥2
2 = ∥∥F 1

T

(
YV ,MV ) − F 1

T

(
YV ′

,MV ′)∥∥2
2

≤ C2
(∥∥YV

0 − YV ′
0

∥∥2
2 + 1

4

∥∥MV − MV ′∥∥2
S2

)
.

By Doob’s L2-maximal inequality, one has∥∥MV − MV ′∥∥
S2 ≤ 2

∥∥MV
T − MV ′

T

∥∥
2.

Therefore,∥∥G1(V ) − G1(
V ′)∥∥2

2 ≤ C2(∥∥E0
(
V − V ′)∥∥2

2 + ∥∥MV
T − MV ′

T

∥∥2
2

)
≤ C2∥∥V − V ′∥∥2

2,

which shows that G1 is a contraction.
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Step 2: G2 : L2(FT )d → L2(FT )d is continuous with respect to ‖ · ‖2: By
Doob’s L2-maximal inequality, V �→ MV is a continuous mapping from L2(FT )d

to M
2
0. Moreover, since

YV
t = M̂V

t − Ft

(
YV ,MV )

for M̂V
t := EtV = E0V − MV

t ,

one obtains from the first part of condition (i) that∥∥YV − YV ′∥∥
S2 ≤ ∥∥M̂V − M̂V ′∥∥

S2 + ∥∥F (
YV ,MV ) − F

(
YV ′

,MV ′)∥∥
S2

≤ 2
∥∥V − V ′∥∥

2 + ∥∥F (
YV ,MV ) − F

(
YV ,MV ′)∥∥

S2

+ ∥∥F (
YV ,MV ′) − F

(
YV ′

,MV ′)∥∥
S2

≤ 2
∥∥V − V ′∥∥

2 + ∥∥F (
YV ,MV ) − F

(
YV ,MV ′)∥∥

S2

+ C
∥∥YV − YV ′∥∥

S2 .

Therefore,

(1 − C)
∥∥YV − YV ′∥∥

S2 ≤ 2
∥∥V − V ′∥∥

2 + ∥∥F (
YV ,MV ) − F

(
YV ,MV ′)∥∥

S2,

and it follows from the second part of (i) that V �→ YV is continuous from
L2(FT )d to S

2. Since F 2 = F −F 1, one obtains from (i) and (ii) that (Y V ,MV ) �→
F 2

T (YV ,MV ) is continuous from S
2 ×M

2
0 to L2(FT )d . This proves the continuity

of G2.
Step 3: G2(C) is contained in a compact subset of L2(FT )d : For V ∈ C, one has

(4.2)
∥∥YV

0

∥∥2
2 + 1

4

∥∥MV
∥∥2
S2 ≤ ‖E0V ‖2

2 + ∥∥MV
T

∥∥2
2 = ‖V ‖2

2 ≤ R2
1 .

So it follows from (iii) that F 2
T (YV ,MV ) is in W 1,2(�)d with ‖F 2

T (YV ,MV )‖2 ≤
R2 and ‖DF 2

T (YV ,MV )‖2 ≤ R3. Since bounded subsets of W 1,2(�)d are rela-
tively compact in L2(�)d , this shows that G2(C) is contained in a compact subset
of L2(FT )d .

Step 4: G1(V ) + G2(V ′) ∈ C for all V,V ′ ∈ C: If V ∈ C, one obtains from (4.2)
that ‖YV

0 ‖2
2 + ‖MV ‖2

S2/4 ≤ R2
1 . So it follows from (ii) that∥∥G1(V )

∥∥
2 ≤ ‖ξ‖2 + ∥∥F 1

T

(
YV ,MV )∥∥

2

≤ ‖ξ‖2 + ∥∥F 1
T (0,0)

∥∥
2 + C

(∥∥YV
0

∥∥2
2 + ∥∥MV

∥∥2
S2/4

)1/2

≤ ‖ξ‖2 + ∥∥F 1
T (0,0)

∥∥
2 + CR1.

By (iii), one has ‖G2(V ′)‖2 ≤ R2. Therefore, one obtains from (iv) that ‖G1(V )+
G2(V ′)‖2 ≤ R1.

So Krasnoselskii’s theorem applies, and one can conclude that G has a fixed
point in L2(FT )d . �
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Assumption (i) of Theorem 4.3 is needed to ensure that condition (S) holds and
F 2

T (Y,M) is continuous in (Y,M). In the following special case, it is not needed.

PROPOSITION 4.4. Let ξ ∈ L2(FT )d and assume F is of the form F(Y,M) =
F 1(Y0,M) + F 2(Y0,M) for mappings F 1,F 2 : L2(F0)

d × M
2
0 → S

2
0. Then the

BSE (2.1) has a solution (Y,M) ∈ S
2 × M

2
0 if there exist a constant C < 1 and a

nondecreasing function ρ :R+ →R+ satisfying

(4.3) lim sup
x→∞

ρ(x)

x
< 1 − C

such that the following two conditions hold:

(i) ‖F 1
T (Y0,M) − F 1

T (Y ′
0,M

′)‖2 ≤ C
√

‖Y0 − Y ′
0‖2

2 + ‖M − M ′‖2
S2/4.

(ii) F 2
T : L2(F0)

d × M
2
0 → L2(FT )d is continuous and takes values in

W 1,2(�)d with∣∣EF 2
T (Y0,M)

∣∣2 + λ
∥∥DF 2

T (Y0,M)
∥∥2

2 ≤ ρ2
(√

‖Y0‖2
2 + ‖M‖2

S2/4
)
.

PROOF. Since F only depends on Y0 and M , condition (S) holds trivially.
By Theorem 2.3, the proposition follows if we can show that V �→ G(V ) = ξ +
FT (YV

0 ,MV ) has a fixed point in L2(FT )d . To do that, we fix a constant R1 ≥ 0
and define C, G1 and G2 as in the proof of Theorem 4.3. Then one obtains from (i)
like in the proof of Theorem 4.3 that G1 is a contraction on L2(FT )d . Condition
(ii) implies that G2 is continuous with respect to ‖ · ‖2, and since

ρ2
(√∥∥YV

0

∥∥2
2 + ∥∥MV

∥∥2
S2/4

)
≤ ρ2

(√∥∥YV
0

∥∥2
2 + ∥∥MV

T

∥∥2
2

)
= ρ2(‖V ‖2

)
,

that G2(C) is relatively compact in L2(FT )d . Due to (4.3), one has

‖ξ‖2 + ∥∥F 1
T (0,0)

∥∥
2 + CR1 + ρ(R1) ≤ R1

if R1 is chosen large enough. Then for V,V ′ ∈ C,∥∥G1(V )
∥∥

2 ≤ ‖ξ‖2 + ∥∥F 1
T

(
YV

0 ,MV )∥∥
2

≤ ‖ξ‖2 + ∥∥F 1
T (0,0)

∥∥
2 + C

(∥∥YV
0

∥∥2
2 + ∥∥MV

T

∥∥2
2

)1/2

≤ ‖ξ‖2 + ∥∥F 1
T (0,0)

∥∥
2 + CR1

and, by Poincaré’s inequality,∥∥G2(
V ′)∥∥2

2 ≤ ∣∣EF 2
T

(
YV ′

0 ,MV ′)∣∣2 + λ
∥∥DF 2

T

(
YV ′

0 ,MV ′)∥∥2
2

≤ ρ2
(√∥∥YV ′

0

∥∥2
2 + ∥∥MV ′∥∥2

S2/4
)

≤ ρ2
(√∥∥YV ′

0

∥∥2
2 + ∥∥MV ′

T

∥∥2
2

)
= ρ2(∥∥V ′∥∥

2

)
.



3818 P. CHERIDITO AND K. NAM

Therefore,∥∥G1(V ) + G2(
V ′)∥∥

2 ≤ ‖ξ‖2 + ∥∥F 1
T (0,0)

∥∥
2 + CR1 + ρ(R1) ≤ R1,

and it follows from Krasnoselskii’s theorem that G has a fixed point in L2(FT )d .
�

As a consequence of Proposition 4.4, one obtains an existence result for BSDEs

(4.4) Yt = ξ +
∫ T

t
f (s, Y0,M)ds + MT − Mt

with drivers f depending on Y0 and the whole martingale M .

COROLLARY 4.5. Let ξ ∈ L2(FT )d and assume f to be of the form f =
f 1 +f 2 for mappings f 1, f 2 : [0, T ]×�×L2(F0)

d ×M
2
0 →R

d . Then the BSDE
(4.4) has a solution (Y,M) ∈ S

2 × M
2
0 if there exist a constant C < T −1 and a

nondecreasing function ρ :R+ →R+ satisfying

lim sup
x→∞

ρ(x)

x
< 1 − CT

such that the following two conditions hold:

(i) For all (Y0,M) ∈ L2(F0)
d ×M

2
0, f 1(·, Y0,M) is progressively measurable

with
∫ T

0 |f 1(t,0,0)|dt ∈ L2(FT ), and
∥∥f 1(t, Y0,M) − f 1(

t, Y ′
0,M

′)∥∥
2 ≤ C

√∥∥Y0 − Y ′
0

∥∥2
2 + ∥∥M − M ′∥∥2

S2/4.

(ii) For all (Y0,M) ∈ L2(F0)
d ×M

2
0, f 2(·, Y0,M) is progressively measurable

with
∫ T

0 |f 2(t, Y0,M)|dt ∈ L2(FT ), and

J (Y0,M) :=
∫ T

0
f 2(t, Y0,M)dt

defines a continuous mapping J : L2(F0)
d × M

2
0 → L2(FT )d with values in

W 1,2(�)d such that∣∣EJ (Y0,M)
∣∣2 + λ

∥∥DJ(Y0,M)
∥∥2

2 ≤ ρ2
(√

‖Y0‖2
2 + ‖MT ‖2

S2/4
)
.

PROOF. It follows from the assumptions that for all Y0 and M , F i
t (Y0,M) =∫ t

0 f i(s, Y0,M)ds belongs to S
2
0 for i = 1,2 and

E
∣∣F 1

T (Y0,M) − F 1
T

(
Y ′,M ′)∣∣2 ≤ C2T 2(∥∥Y0 − Y ′

0
∥∥2

2 + ∥∥M − M ′∥∥2
S2/4

)
.

So the conditions of Proposition 4.4 hold with CT instead of C, and the corollary
follows. �

If F does not depend on Y , the assumptions of Theorem 4.3 can be relaxed
further, and one obtains the following.
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THEOREM 4.6. Let ξ ∈ L2(FT )d and assume F is of the form F(Y,M) =
F 1(M) + F 2(M) for mappings F 1,F 2 : M2

0 → S
2
0. Then the BSE (2.1) has a so-

lution (Y,M) ∈ S
2 × M

2
0 if there exist a constant C < 1/2 and a nondecreasing

function ρ :R+ →R+ satisfying

(4.5) lim sup
x→∞

ρ(x)

x
<

1/2 − C√
λ

such that the following two conditions hold:

(i) ‖F 1
T (M) −E0F

1
T (M) − (F 1

T (M ′) −E0F
1
T (M ′))‖2 ≤ C‖M − M ′‖S2 .

(ii) F 2
T : M2

0 → L2(FT )d is continuous and takes values in W 1,2(�)d with
‖DF 2

T (M)‖2 ≤ ρ(‖M‖S2).

PROOF. By Corollary 2.4, it is enough to show that the mapping

V �→ G0(V ) = ξ −E0ξ + FT

(
MV ) −E0FT

(
MV )

has a fixed point in L2
0(FT )d . For a given constant R ≥ 0, define

C : = {
V ∈ L2

0(FT )d : ‖V ‖2 ≤ R
}
,

G1
0(V ) : = ξ −E0ξ + F 1

T

(
MV ) −E0F

1
T

(
MV )

and

G2
0(V ) : = F 2

T

(
MV ) −E0F

2
T

(
MV )

.

By (i) and Doob’s L2-maximal inequality, one has∥∥G1
0(V ) − G1

0
(
V ′)∥∥

2 ≤ ∥∥F 1
T

(
MV ) −E0F

1
T

(
MV ) − (

F 1
T

(
MV ′) −E0F

1
T

(
MV ′))∥∥

2

≤ C
∥∥MV − MV ′∥∥

S2 ≤ 2C
∥∥MV

T − MV ′
T

∥∥
2 ≤ 2C

∥∥V − V ′∥∥
2.

So G1
0 is a contraction on L2

0(FT )d . Moreover, it follows from (ii) that G2
0 :

L2
0(FT )d → L2

0(FT )d is continuous and G2
0(C) is relatively compact in L2

0(FT )d .
Finally, let V,V ′ ∈ C. Then∥∥G1

0(V )
∥∥

2 ≤ ‖ξ −E0ξ‖2 + ∥∥F 1
T (0) −E0F

1
T (0)

∥∥
2 + 2CR

and ∥∥G2
0
(
V ′)∥∥

2 = ∥∥F 2
T

(
MV ′) −E0F

2
T

(
MV ′)∥∥

2

≤ √
λ
∥∥DF 2

T

(
MV ′)∥∥

2 ≤ √
λρ

(∥∥MV ′∥∥
S2

) ≤ √
λρ(2R).

By (4.5), one has G1
0(V ) + G2

0(V
′) ∈ C for R large enough. So it follows like in

the proof of Theorem 4.3 from Krasnoselskii’s theorem that G0 = G1
0 + G2

0 has a
fixed point in L2

0(FT )d . �
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COROLLARY 4.7. A BSDE of the form

Yt = ξ +
∫ T

t

(
f 1(s,M) + f 2(s,M)

)
ds + MT − Mt

for a terminal condition ξ ∈ L2(FT )d and mappings f 1, f 2 : [0, T ] × � ×M
2
0 →

R
d has a solution (Y,M) ∈ S

2 × M
2
0 if there exist a constant C < (2T )−1 and a

nondecreasing function ρ :R+ →R+ satisfying

lim sup
x→∞

ρ(x)

x
<

1/2 − CT√
λ

such that the following two conditions hold:

(i) For all M ∈ M
2
0, f 1(·,M) is progressively measurable with∫ T

0 |f 1(t,0)|dt ∈ L2(FT ), and
∥∥f 1(t,M) − f 1(

t,M ′)∥∥
2 ≤ C

∥∥M − M ′∥∥
S2 .

(ii) For all M ∈ M
2
0, f 2(·,M) is progressively measurable with∫ T

0 |f 2(t,M)|dt ∈ L2(FT ), and J (M) := ∫ T
0 f 2(t,M)dt defines a continuous

map J : M2
0 → L2(FT )d such that for all M ∈ M2

0 , J (M) is ω-Lipschitz with
constant ρ(‖M‖S2).

PROOF. As in Corollary 4.5, it follows from the assumptions that F i
t (M) =∫ t

0 f i(s,M)ds is in S
2
0 for i = 1,2 and all M ∈ M

2
0. Moreover,

E
∣∣F 1

T (M) − F 1
T

(
M ′)∣∣2 ≤ C2T 2∥∥M − M ′∥∥2

S2,

and since
∫ T

0 f 2(s,M)ds is ω-Lipschitz with constant ρ(‖M‖S2), one has
‖DF 2

T (M)‖2 ≤ ρ(‖M‖S2). So the conditions of Theorem 4.6 hold with CT in-
stead of C, and the corollary follows as a consequence. �

REMARK 4.8. As a special case of Corollary 4.7, one obtains that the BSDE

Yt = ξ +
∫ T

t
f (s,M)ds + MT − Mt

has a solution for every terminal condition ξ ∈ L2(FT )d and driver f satisfying
condition (ii) of Corollary 4.7. This provides an existence result for multidimen-
sional BSDEs with drivers exhibiting general dependence on the whole process
M . In contrast to the BSDE results in Section 3, here the driver is not required to
be Lipschitz in M . On the other hand, it is supposed to satisfy the ω-Lipschitzness
assumption contained in condition (ii) of Corollary 4.7.
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4.2. Non-Lipschitz BSDEs based on a Brownian motion and a Poisson random
measure. We now focus on BSDEs with non-Lipschtiz coefficients that depend
on an n-dimensional Brownian motion W and an independent Poisson random
measure N on [0, T ] × E, where E = R

m \ {0}, with an intensity measure of the
form dtμ(dx) for a measure μ over the Borel σ -algebra B(E) of E satisfying∫

E

(
1 ∧ |x|2)

μ(dx) < ∞
(see Remark 4.2 above for a construction of W and N in the case where P is a mean
zero Gaussian measure on the infinite-dimensional separable Hilbert space �).

As in Section 4.1, we denote by F the completed Borel σ -algebra on � and
let F = (Ft )0≤t≤T be a filtration satisfying the usual conditions. Let Ñ be the
compensated random measure N(dt, dx) − dtμ(dx), and assume that, for A ∈
B(E) with μ(A) < ∞, Ñ([0, t] × A) and W are martingales with respect to F.
The next proposition gives an existence result for BSDEs with functional drivers
of the form

(4.6) Yt = ξ +
∫ T

t
f

(
s,ZM

s ,UM
s

)
ds + MT − Mt.

PROPOSITION 4.9. Let ξ ∈ L2(FT )d and assume the driver is of the form
f = f 1 + f 2 for mappings

f 1, f 2 : [0, T ] × � × L2(FT )d×n × L2(
� × E,FT ⊗B(E),P⊗ μ

)d →R
d .

Then the BSDE (4.6) has a solution (Y,M) ∈ S
2 × M

2
0 if there exist a constant

C ≥ 0 and a nondecreasing function ρ : R+ → R+ such that for all M,M ′ ∈ M
2
0,

the following two conditions hold:

(i) f 1(t,ZM
t ,UM

t ) is progressively measurable with
∫ T

0 ‖f 1(t,0,0)‖2 dt <

∞, and ∥∥f 1(
t,ZM

t ,UM
t

) − f 1(
t,ZM ′

t ,UM ′
t

)∥∥
2

≤ C
(∥∥ZM

t − ZM ′
t

∥∥
2 + ∥∥UM

t − UM ′
t

∥∥
L2(P⊗μ)

)
.

(ii) f 2(t,ZM
t ,UM

t ) is progressively measurable with
∫ T

0

∥∥f 2(t,0,0)
∥∥

2 dt < ∞,
and ∥∥∥∥

∫ T

0

∣∣f 2(
t,ZM

t ,UM
t

) − f 2(
t,ZM ′

t ,UM ′
t

)∣∣dt

∥∥∥∥
2

≤ ρ
(∥∥ZM

∥∥
H2 + ∥∥ZM ′∥∥

H2 + ∥∥UM
∥∥
L2(Ñ)

+ ∥∥UM ′∥∥
L2(Ñ)

)
× (∥∥ZM − ZM ′∥∥

H2 + ∥∥UM − UM ′∥∥
L2(Ñ)

)
,

and f 2(t,ZM
t ,UM

t ) is ω-Lipschitz with constant C(1 +‖ZM
t ‖2 +‖UM

t ‖L2(P⊗μ)).
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PROOF. Choose δ > 0 so that
√

2δC(1 + √
λ) <

1

2
and k := T/δ ∈N.

Set F i
t (M) = ∫ t

0 f i(s,ZM
s ,UM

s )1[T −δ,T ](s) ds. It follows from the assumptions
that F i(M) ∈ S

2
0 for i = 1,2 and all M ∈ M

2
0. Moreover,∥∥F 1

T (M) −E0F
1
T (M) − (

F 1
T

(
M ′) −E0F

1
T

(
M ′))∥∥2

2

≤ ∥∥F 1
T (M) − F 1

T

(
M ′)∥∥2

2

≤ 2δC2
∫ T

T −δ

(∥∥ZM
s − ZM ′

s

∥∥2
2 + ∥∥UM

s − UM ′
s

∥∥2
L2(P⊗μ)

)
ds

≤ 2δC2∥∥M − M ′∥∥2
S2 .

From condition (ii), one obtains that M ∈ M
2
0 �→ F 2

T (M) ∈ L2(FT )d is continuous,
and ∣∣∣∣

∫ T

T −δ
f 2(

s,ZM
s ,UM

s

)
(ω) − f 2(

s,ZM
s ,UM

s

)(
ω′)ds

∣∣∣∣
≤

∫ T

T −δ

∣∣f 2(
s,ZM

s ,UM
s

)
(ω) − f 2(

s,ZM
s ,UM

s

)(
ω′)∣∣ds

≤ C

(∫ T

T −δ

(
1 + ∥∥ZM

s

∥∥
2 + ∥∥UM

s

∥∥
L2(P⊗μ)

)
ds

)∥∥ω − ω′∥∥

≤
(
δC + √

δC

√∫ T

T −δ
2
(∥∥ZM

s

∥∥2
2 + ∥∥UM

s

∥∥2
L2(P⊗μ)

)
ds

)∥∥ω − ω′∥∥
≤ (

δC + √
2δC‖M‖S2

)∥∥ω − ω′∥∥.
It follows that for all M ∈ M

2
0, F 2

T (M) is in W 1,2(�)d with ‖DF 2
T (M)‖2 ≤ δC +√

2δC‖M‖S2 . So the conditions of Theorem 4.6 hold with
√

2δC instead of C and
ρ(x) = δC + √

2δCx. Therefore,

Yt = ξ +
∫ T

t

(
f 1(

s,ZM
s ,UM

s

) + f 2(
s,ZM

s ,UM
s

))
1[T −δ,T ](s) ds + MT − Mt

has a solution (Y (k),M(k)) ∈ S
2 ×M

2
0. From the same argument, one obtains that,

for t ≤ T − δ,

Yt = Y
(k)
T −δ +

∫ T −δ

t

(
f 1(s,Zs) + f 2(s,Zs)

)
1[T −2δ,T −δ](s) ds + MT −δ − Mt,

has a solution (Y (k−1),Z(k−1)) ∈ S
2 × M

2
0. Iterating this procedure, one obtains

(Y (j),Z(j)), j = 1, . . . , k. Now, define

Yt := Y
(1)
t , Mt := M

(1)
t for 0 ≤ t ≤ δ and
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Yt := Y
(j)
t , Mt − M(j−1)δ := M

(j)
t − M

(j)
(j−1)δ

for (j − 1)δ < t ≤ jδ, j = 2, . . . , k. Then (ZM
t ,UM

t ) = (ZM(j)

t ,UM(j)

t ) for (j −
1)δ < t ≤ jδ. So (Y,M) is a solution of (4.6) in S

2 ×M
2
0. �

As a consequence of Proposition 4.9, one obtains the following existence re-
sult for multidimensional mean-field BSDEs with drivers of quadratic growth and
square integrable terminal conditions. While there exist general existence and
uniqueness results for one-dimensional BSDEs with drivers of quadratic growth
[see, e.g., Kobylanski (2000), Briand and Hu (2006, 2008) or Delbaen, Hu and
Richou (2011)], multidimensional quadratic BSDEs do not always admit solutions
[see Peng (1999), or Frei and dos Reis (2011)]. An existence and uniqueness result
for multidimensional BSDEs with general drivers of quadratic growth was given
by Tevzadze (2008). But it only holds for terminal conditions with small L∞-norm.
Other results, such as the ones in Cheridito and Nam (2015), require the driver to
have special structure.

COROLLARY 4.10. Let ξ ∈ L2(FT )d and assume the driver is of the form

f (t,Zt ,Ut ) = Ẽa(t,Zt , Z̃t ,Ut , Ũt ) + B
(
t,Eb(t,Zt ,Ut )

)
for mappings

a : [0, T ] × � × (
R

d×n)2 × (
L2(μ)

)2 →R
d,

b : [0, T ] × � ×R
d×n × L2(μ) →R

l , and

B : [0, T ] × � ×R
l →R

d,

where (Z̃t , Ũt ) is a copy of (Zt ,Ut ) living on a separate probability space
(�̃, F̃, P̃), and Ẽa(t,Zt , Z̃t ,Ut , Ũt ) means

∫
�̃ a(t,Zt , Z̃t ,Ut , Ũt ) dP̃.

Then the BSDE (4.6) has a solution (Y,M) ∈ S
2 × M

2
0 if there exists a con-

stant C ≥ 0 such that for all z, z̃, z′, z̃′ ∈ R
d×n, u, ũ, u′, ũ′ ∈ L2(μ) and x, x′ ∈ R

k ,
a(·, z, z̃, u, ũ), b(·, z, u) and B(·, x) are progressively measurable and the follow-
ing hold:

(i) a(·,0,0,0,0) ∈ H
2 and∣∣a(t, z, z̃, u, ũ) − a

(
t, z′, z̃′, u′, ũ′)∣∣

≤ C
(∣∣z − z′∣∣ + ∣∣z̃ − z̃′∣∣ + ∥∥u − u′∥∥

L2(μ) + ∥∥ũ − ũ′∥∥
L2(μ)

)
(ii) |b(t,0,0)|, |B(t,0)| ≤ C and at least one of the following two conditions is

satisfied:
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(a) For any given t ∈ [0, T ], x, x′ ∈ R
l , z, z′ ∈ R

d×n, and u,u′ ∈ L2(μ),
B(t, x) is ω-Lipschitz with constant C(1 + √|x|), and∣∣b(t, z, u) − b

(
t, z′, u′)∣∣

≤ C
(
1 + |z| + ∣∣z′∣∣ + ‖u‖L2(μ) + ∥∥u′∥∥

L2(μ)

)
× (∣∣z − z′∣∣ + ∥∥u − u′∥∥

L2(μ)

)
,∣∣B(t, x) − B

(
t, x′)∣∣ ≤ C

∣∣x − x′∣∣.
(b) For any given t ∈ [0, T ], x, x′ ∈ R

l , z, z′ ∈ R
d×n, and u,u′ ∈ L2(μ),

B(t, x) is ω-Lipschitz with constant C(1 + |x|), and∣∣b(t, z, u) − b
(
t, z′, u′)∣∣ ≤ C

(∣∣z − z′∣∣ + ∥∥u − u′∥∥
L2(μ)

)
,∣∣B(t, x) − B

(
t, x′)∣∣ ≤ C

(
1 + |x| + ∣∣x′∣∣)∣∣x − x′∣∣.

PROOF. It is enough to show that

f 1(t,Zt ,Ut ) := Ẽa(t,Zt , Z̃t ,Ut , Ũt ) and f 2(t,Zt ,Ut ) := B
(
t,Eb(t,Zt ,Ut )

)
satisfy the conditions of Proposition 4.9. As in the proof of Corollary 3.11, one
can deduce from Lemma 4.51 of Aliprantis and Border (2006) that f i(t,Zt ,Ut ) is
progressively measurable and satisfies

∫ T
0 ‖f i(t,0,0)‖2 dt < ∞ for i = 1,2 and

all Z ∈ H
2 and U ∈ L2(Ñ).

Now consider Z,Z′ ∈ H
2, U,U ′ ∈ L2(Ñ), and let (Z̃, Ũ , Z̃′, Ũ ′) be a copy of

(Z,U,Z′,U ′) on �̃. Then, for fixed t ∈ [0, T ],
E

∣∣Ẽa(t,Zt , Z̃t ,Ut , Ũt ) − Ẽa
(
t,Z′

t , Z̃
′
t ,U

′
t , Ũ

′
t

)∣∣2
≤ EẼ

∣∣a(t,Zt , Z̃t ,Ut , Ũt ) − a
(
t,Z′

t , Z̃
′
t ,U

′
t , Ũ

′
t

)∣∣2
≤ 4C2(

E
∣∣Zt − Z′

t

∣∣2 + Ẽ
∣∣Z̃t − Z̃′

t

∣∣2 +E
∥∥Ut − U ′

t

∥∥2
L2(μ) + Ẽ

∥∥Ũt − Ũ ′
t

∥∥2
L2(μ)

)
= 8C2(∥∥Zt − Z′

t

∥∥2
2 + ∥∥Ut − U ′

t

∥∥2
L2(P⊗μ)

)
.

On the other hand, if condition (ii)(a) holds, then∥∥∥∥
∫ T

0

∣∣B(
t,Eb(t,Zt ,Ut )

) − B
(
t,Eb

(
t,Z′

t ,U
′
t

))∣∣dt

∥∥∥∥
2

≤ C

∫ T

0

∣∣Eb(t,Zt ,Ut ) −Eb
(
t,Z′

t ,U
′
t

)∣∣dt

≤ CE

∫ T

0

∣∣b(t,Zt ,Ut ) − b
(
t,Z′

t ,U
′
t

)∣∣dt

≤ C2
E

∫ T

0

(
1 + |Zt | +

∣∣Z′
t

∣∣ + ‖Ut‖L2(μ) + ∥∥U ′
t

∥∥
L2(μ)

)
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× (∣∣Zt − Z′
t

∣∣ + ∥∥Ut − U ′
t

∥∥
L2(μ)

)
dt

≤ C2

√
E

∫ T

0

(
1 + |Zt | +

∣∣Z′
t

∣∣ + ‖Ut‖L2(μ) + ∥∥U ′
t

∥∥
L2(μ)

)2
dt

×
√
E

∫ T

0

(∣∣Zt − Z′
t

∣∣ + ∥∥Ut − U ′
t

∥∥
L2(μ)

)2
dt

≤ C2
√

10
√

T + ‖Z‖2
H2 + ∥∥Z′∥∥2

H2 + ‖U‖2
L2(Ñ)

+ ∥∥U ′∥∥2
L2(Ñ)

×
√∥∥Z − Z′∥∥2

H2 + ∥∥U − U ′∥∥2
L2(Ñ)

≤ C2
√

10
(√

T + ‖Z‖H2 + ∥∥Z′∥∥
H2 + ‖U‖

L2(Ñ)
+ ∥∥U ′∥∥

L2(Ñ)

)
× (∥∥Z − Z′∥∥

H2 + ∥∥U − U ′∥∥
L2(Ñ)

)
.

Moreover, B(t,Eb(t,Zt ,Ut )) is ω-Lipschitz with constant C(1 +√|Eb(t,Zt ,Ut )|), and∣∣Eb(t,Zt ,Ut )
∣∣ ≤ E

∣∣b(t,Zt ,Ut )
∣∣

≤ CE
(
1 + |Zt | + ‖Ut‖L2(μ)

)(|Zt | + ‖Ut‖L2(μ)

)
≤ C

(
1 + ‖Zt‖2 + ‖Ut‖L2(P⊗μ)

)(‖Zt‖2 + ‖Ut‖L2(P⊗μ)

)
,

from which one obtains that B(t,Eb(t,Zt ,Ut )) is ω-Lipschitz with constant

C
(
1 + √

C
(
1 + ‖Zt‖2 + ‖Ut‖L2(P⊗μ)

))
.

Similarly, if condition (ii)(b) holds, one has∣∣B(
t,Eb(t,Zt ,Ut )

) − B
(
t,Eb

(
t,Z′

t ,U
′
t

))∣∣
≤ C

(
1 + ∣∣Eb(t,Zt ,Ut )

∣∣ + ∣∣Eb
(
t,Z′

t ,U
′
t

)∣∣)∣∣Eb(t,Zt ,Ut ) −Eb
(
t,Z′

t ,U
′
t

)∣∣
≤ C

(
1 +E

∣∣b(t,Zt ,Ut )
∣∣ +E

∣∣b(
t,Z′

t ,U
′
t

)∣∣)E∣∣b(t,Zt ,Ut ) − b
(
t,Z′

t ,U
′
t

)∣∣
≤ C2(

1 + 2E
∣∣b(t,0,0)

∣∣ + CE
(|Zt | +

∣∣Z′
t

∣∣ + ‖Ut‖L2(μ) + ∥∥U ′
t

∥∥
L2(μ)

))
×E

(∣∣Zt − Z′
t

∣∣ + ∥∥Ut − U ′
t

∥∥
L2(μ)

)
.

Hence,∥∥∥∥
∫ T

0

∣∣B(
t,Eb(t,Zt ,Ut )

) − B
(
t,Eb

(
t,Z′

t ,U
′
t

))∣∣dt

∥∥∥∥
2

≤ C2

√∫ T

0

(
1 + 2C + CE

(|Zt | +
∣∣Z′

t

∣∣ + ‖Ut‖L2(μ) + ∥∥U ′
t

∥∥
L2(μ)

))2
dt
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×
√∫ T

0

(
E

∣∣Zt − Z′
t

∣∣ +E
∥∥Ut − U ′

t

∥∥
L2(μ)

)2
dt

≤ C3

√∫ T

0
6
(
C−2 + 4 + ‖Zt‖2

2 + ∥∥Z′
t

∥∥2
2 + ‖Ut‖2

L2(P⊗μ)
+ ∥∥U ′

t

∥∥2
L2(P⊗μ)

)
dt

×
√∫ T

0
2
(∥∥Zt − Z′

t

∥∥2
2 + ∥∥Ut − U ′

t

∥∥2
L2(P⊗μ)

)
dt

≤ C3
√

12
(√

T
(
C−2 + 4

) + ‖Z‖H2 + ∥∥Z′∥∥
H2 + ‖U‖

L2(Ñ)
+ ∥∥U ′∥∥

L2(Ñ)

)
× (∥∥Z − Z′∥∥

H2 + ∥∥U − U ′∥∥
L2(Ñ)

)
.

Moreover, B(t,Eb(s,Zt ,Ut )) is ω-Lipschitz with constant C(1+|Eb(t,Zt ,Ut )|).
So since ∣∣Eb(t,Zt ,Ut )

∣∣ ≤ E
∣∣b(t,Zt ,Ut )

∣∣ ≤ C
(
1 +E

(|Zt | + ‖Ut‖L2(μ)

))
≤ C

(
1 + ‖Zt‖2 + ‖Ut‖P⊗L2(μ)

)
,

B(t,Eb(t,Zt ,Ut )) is ω-Lipschitz with constant C(1 + C(1 + ‖Zt‖2 +
‖Ut‖P⊗L2(μ))). This shows that the conditions of Proposition 4.9 hold, and the
corollary follows. �

EXAMPLE 4.11. A simple example of a driver satisfying the conditions of
Corollary 4.10 is given by

f (Zt) = f 1(Zt ) + f 2(Zt ),

for a Lipschitz function f 1 : Rd×n → R
d and a mapping f 2 : L2(FT )d×n → R

d

of the form

f 2(Zt ) := α +E
(
Zt |Zt |)β

with constant vectors α ∈ R
d×1 and β ∈ R

n×1. In particular, if W is an n-
dimensional Brownian motion generating the filtration F, the BSDE

Yt = ξ +
∫ T

t
f (Zs) ds +

∫ T

t
Zs dWs

has a solution (Y,Z) ∈ S
2 ×H

2 for every terminal condition ξ ∈ L2(FT )d .
Since f 2 has quadratic growth, the contraction mapping principle used by Buck-

dahn, Li and Peng (2009) cannot be applied here. Also, if d > 1 and f 2 were a
function with quadratic growth of the realizations Zt(ω), the existence of a global
solution could not be guaranteed; see Frei and dos Reis (2011) for a counterexam-
ple.
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