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OUTLIERS IN THE SPECTRUM OF LARGE DEFORMED
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We characterize the possible outliers in the spectrum of large deformed
unitarily invariant additive and multiplicative models, as well as the eigenvec-
tors corresponding to them. We allow both the nondeformed unitarily invari-
ant model and the perturbation matrix to have nontrivial limiting eigenvalue
distributions and spiked outliers in their spectrum. The free subordination
functions play a key role in this analysis.
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1. Introduction.

1.1. Statement of the problem. The set of possible spectra for the sum of two
deterministic Hermitian matrices AN and BN depends in complicated ways on
the spectra of AN and BN (see [23]). Nevertheless, if one adds some random-
ness to the eigenspaces of BN then, as N becomes large, free probability pro-
vides a good understanding of the behavior of the spectrum of this sum. More
precisely, set XN = AN + UNBNU∗

N , where UN is a random unitary matrix dis-
tributed according to the Haar measure on the unitary group U(N), and suppose
that the empirical eigenvalue distributions of AN and BN converge weakly to
compactly supported distributions μ and ν, respectively. Building on the ground-
breaking result of Voiculescu [39], Speicher proved in [36] the almost sure weak
convergence of the empirical eigenvalue distribution of XN to the free additive
convolution μ � ν. This convolution is again a compactly supported probability
measure on R. A similar result holds for products of matrices: if AN,BN are in
addition assumed to be nonnegative definite, then the empirical eigenvalue dis-

tribution of A
1/2
N UNBNU∗

NA
1/2
N converges to the free multiplicative convolution

μ � ν, a compactly supported probability measure on [0,+∞). (We recall that

A
1/2
N UNBNU∗

NA
1/2
N and B

1/2
N UNANU∗

NB
1/2
N have the same eigenvalue distribu-

tion, and that � is a commutative operation.) Finally, if AN and BN are deter-
ministic unitary matrices, their empirical eigenvalue distributions are supported
on the unit circle T = {z ∈ C : |z| = 1} and the empirical eigenvalue distribution
of ANUNBNU∗

N converges to the free multiplicative convolution μ � ν, a prob-
ability measure supported on T. (We refer the reader to [42] for an introduction
to free probability theory. We describe later the mechanics of calculating the free
convolutions � and �.)

The fact that the empirical eigenvalue distribution of XN converges weakly to
μ � ν does not mean that all the eigenvalues of XN are close to the support of this
measure. There can be outliers, though they must not affect the limiting empirical
eigenvalue distribution. Sometimes one can argue that these outliers must in fact
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exist. For instance, the case when the rank r of AN and its nonzero eigenvalues are
fixed is investigated by Benaych-Georges and Nadakuditi in [12]. Denote by

γ1 ≥ · · · ≥ γs > 0 > γs+1 ≥ · · · ≥ γr

these fixed eigenvalues. Of course, in this case μ = δ0 is a point mass at 0, so the
limiting behavior of the empirical eigenvalue distribution of XN is not affected
by such a matrix AN . More precisely, the empirical eigenvalue distribution of
XN = AN + UNBNU∗

N converges weakly almost surely to the limiting empiri-
cal eigenvalue distribution ν of BN . One can however detect, among the outlying
eigenvalues of XN , the influence of the eigenvalues of AN above a certain critical
threshold. We use the notation

λ1(X) ≥ · · · ≥ λN(X)

for the eigenvalues of an N × N matrix X, repeated according to multiplicity. The
Cauchy–Stieltjes transform of a finite positive Borel measure ν on R is given by

Gν(z) =
∫
R

dν(t)

z − t

for z outside the support of ν, and G−1
ν denotes the inverse of this function relative

to composition. When the support of ν is contained in the compact interval [a, b],
the branch of the inverse function G−1

ν that satisfies G−1
ν (0) = ∞ is defined and

real-valued on the interval (α,β), where

α = lim
x↑a

Gν(x), β = lim
x↓b

Gν(x).

The following result is proved in [12], Theorems 2.1 and 2.2.

THEOREM 1.1. (1) Denote by a and b the infimum and supremum of the sup-
port of ν, respectively. Assume that the smallest and largest eigenvalues of BN

converge almost surely to a and b, respectively. Then, almost surely for 1 ≤ i ≤ s,

lim
N→∞λi(XN) =

{
G−1

ν (1/γi), γi > 1/β,

b, otherwise.

Similarly, almost surely for 0 ≤ j ≤ r − s − 1,

lim
N→∞λN−j (XN) =

{
G−1

ν (1/γr−j ), γr−j < 1/α,

a, otherwise.

(2) Fix i0 ∈ {1, . . . , r} such that 1/γi0 ∈ (α,β). For each N , define

λ(N) =
{
λi0(XN), γi0 > 0,

λN−r+i0(XN), γi0 < 0
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and let uN be a unit-norm eigenvector of XN associated to the eigenvalue λ(N).
Then the following almost sure limits hold:

lim
N→∞‖Pker(γi0IN−AN)uN‖2 = −1

γ 2
i0
G′

ν(G
−1
ν (1/γi0))

,

and

lim
N→∞‖Pker(γiIN−AN)uN‖2 = 0, i �= i0.

This result lies in the lineage of recent, and not so recent, works studying the in-
fluence of fixed rank additive or multiplicative perturbations on the extremal eigen-
values of classical random matrix models, the seminal paper being [5], where the
so-called BBP phase transition was observed. See also [5, 6, 29] for sample co-
variance matrices, [19, 22, 24, 32, 33] for deformed Wigner models and [31] for
information-plus-noise models. These investigations were first extended to pertur-
bations of arbitrary rank in [34] and [4] for sample covariance matrices, in [20]
for deformed Wigner models and in [17] for information-plus-noise models. It is
pointed out in [20] that the subordination function (relative to the free additive con-
volution of a semicircular distribution with the limiting empirical eigenvalue distri-
bution of the perturbation) plays an important role in the fact that some eigenvalues
of the deformed Wigner model separate from the bulk. In [16], it is explained how
the results of [34] and [4] in the setting of sample covariance matrices can also
be described in terms of the subordination function related to the free multiplica-
tive convolution of a Marchenko–Pastur distribution with the limiting empirical
eigenvalue distribution of the multiplicative perturbation.

Similar results have been obtained in [12], Theorems 2.7 and 2.8, for multiplica-
tive perturbations of the type A

1/2
N UNBNU∗

NA
1/2
N , where AN − IN ≥ 0 is of fixed

rank p ∈ N and BN ≥ 0.
In this paper, we investigate the asymptotic behavior of the eigenvalues and

corresponding eigenvectors of the following models:

• XN = AN + UNBNU∗
N , where AN = A∗

N,BN = B∗
N are deterministic, and UN

is a Haar-distributed unitary random matrix;
• XN = A

1/2
N UNBNU∗

NA
1/2
N , where AN,BN ≥ 0 are deterministic, and UN is a

Haar-distributed unitary random matrix;
• XN = ANUNBNU∗

N , where AN,BN ∈ U(N) are deterministic unitary matrices
and UN is a Haar-distributed unitary random matrix.

In the first two models, we assume that AN and BN have compactly supported lim-
iting empirical eigenvalue distributions μ and ν, respectively. In the third model,
we assume that the supports of μ and ν are not equal to the entire unit circle.
A fixed number p ∈ N of eigenvalues of AN —the spikes—lay outside the support
of μ for all N ∈ N, but all other eigenvalues of AN converge uniformly to the sup-
port of μ. A similar hypothesis is made about BN and ν. We answer the following
questions:
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• When are some of the eigenvalues of XN almost surely located outside the sup-
port of the limiting empirical eigenvalue distribution μ�ν (resp., μ�ν) of XN ?
In other words, when does the spectrum of XN have outliers almost surely?

• What is the behavior of the eigenvectors corresponding to the outliers of XN ?

The interesting question of the nature of the fluctuations of the outlying eigen-
values around their theoretical limit is beyond the scope of this paper. Although
the spiked models first appeared in the statistical literature [29], they have been
studied from a theoretical probability point of view since then. This is the point
of view we adopt: therefore, we do not claim a statistical relevance for the models
under study, we do not have statistical application in mind and we do not examine
statistical questions such as the estimation of spikes [3].

When there are no spikes, it was shown in [21] that, given a neighborhood V

of the support of μ � ν, the eigenvalues of XN are almost surely contained in V

for large N ∈N. Our paper extends the results of [12] to perturbations of arbitrary
rank, and it also extends the free probabilistic interpretation of outlier phenomena
in terms of subordination functions as described in [20] for deformations of Wigner
models. Indeed, the occurrence and role of Biane’s subordination functions [14] in
the analysis of the interaction spikes/outliers is quite natural. We clarify this in the
additive case through the following heuristics, leaving the precise statements to
Section 2.

1.2. Heuristics. Let a and b be two free self-adjoint random variables in a
tracial W*-probability space. Biane showed ([14], Theorem 3.1) that there exists
an analytic self-map ω : C+ → C+ of the upper half-plane C+ = {x + iy : y > 0}
(depending on a,b) such that

(1.1) EC[a]
[(

z − (a + b)
)−1] = (

ω(z) − a
)−1

, z ∈ C+.

Here, EC[a] denotes the conditional expectation onto the von Neumann algebra
generated by a and 1. The function ω is referred to as a subordination func-
tion. (This formula is a particular case of Biane’s result. Formula (1.1) appears
in this form in [41], Appendix.) The subordination function continues analytically
via Schwarz reflection through the complement in R of the spectrum of a + b. If
AN → a in distribution as N → ∞, while a single eigenvalue θ , common to all of
the matrices AN , stays outside the spectrum of a, this eigenvalue will disappear in
the large N limit, in the sense that it will not influence the spectrum of a. Thus, the
analytic function ω(z) will not be prevented a priori from taking the value θ .

However, if relation (1.1) were true with a, b and EC[a] replaced by AN ,
UNBNU∗

N and E, respectively, and with the same subordination function ω, then
any number ρ in the domain of analyticity of ω such that ω(ρ) = θ must generate a
polar singularity for the right-hand side of (1.1). Therefore, each such ρ must gen-
erate a similar singularity for the term on the left-hand side of the same equality,
thus necessarily producing an eigenvalue of AN + UNBNU∗

N . While this scenario
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is not exactly true, we prove that an approximate version does hold. Namely, we
show that a compression of the matrix

E
[(

z − (
AN + UNBNU∗

N

))−1]−1 + AN

to a certain subspace VN is close to ω(z)IVN
, almost surely as N → ∞. This

insight is crucial in our arguments.
It follows from our results that a remarkable phenomenon (first noted without

proof in [12], Remark 2.12, for finite-rank perturbations) occurs: a single spike of
AN can generate asymptotically a finite, possibly arbitrarily large, set of outliers
for XN . This arises from the fact that the restriction to the real line of some subor-
dination functions may be many-to-one. In other words, with the above notation,
the set ω−1({θ}) may have cardinality strictly greater than 1, unlike the subordina-
tion function related to free convolution with a semicircular distribution that was
used in [20].

The case of multiplicative perturbations is based on similar ideas, with the sub-
ordination function ω replaced by its multiplicative counterparts ([14], Theorems
3.5 and 3.6).

In addition to outliers, we investigate the corresponding eigenspaces of XN . It
turns out that the angle between the outlying eigenvectors and the eigenvectors
associated to the original spikes is determined by Biane’s subordination function,
this time via its derivative.

The paper is organized as follows. In Section 2, we describe in detail the matrix
models to be analysed, and state the main results of the paper. In Section 3, we
introduce free convolutions and the analytic transforms involved in their study.
We give the functional equations characterising the subordination functions. In
Section 4, we collect and prove a number of auxiliary results, and in Section 5 we
prove the main results.

2. Notation and statements of the main results. We denote by C+ = {z ∈
C : 
z > 0} the upper half-plane, by C− = {z ∈ C : 
z < 0} the lower half-plane,
and by D = {z ∈ C : |z| < 1} the unit disc in C. The topological boundary of
the unit disc is denoted by T = ∂D. For any vector subspace E of Cm, PE de-
notes the orthogonal projection onto E. Mm(C) stands for the set of m × m ma-
trices with complex entries, GLm(C) for the subset of invertible matrices, and
U(m) ⊂ GLm(C) for the unitary group. The operator norm of a matrix X is ‖X‖,
its spectrum is σ(X), its kernel is kerX, its trace is Trm(X) and its normalized
trace is trm(X) = 1

m
Trm(X). The eigenvalues of a Hermitian matrix X are denoted

λ1(X) ≥ · · · ≥ λm(X),

and the probability measure

μX = 1

m

m∑
i=1

δλi(X)
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is the empirical eigenvalue distribution of X. When X is unitary, its eigenval-
ues are ordered decreasingly according to the size of their principal arguments
in [0,2π). If X ∈ Mm(C) is a normal matrix, we denote by EX its spectral mea-
sure. Thus, if S ⊆ C is a Borel set, then EX(S) is the orthogonal projection onto
the linear span of all eigenvectors of X corresponding to eigenvalues in S. The
support of a measure ρ on C is denoted supp(ρ). Given any set K ⊆ R, we define
its ε-neighborhood by

Kε = {
x ∈ R : inf

{|x − y| : y ∈ K
}
< ε

}
.

As long as there is no risk of confusion, the same notation will be used when K

and Kε are subsets of T. Open intervals in R and open arcs in T are denoted (a, b).
As already seen in Section 1, the Cauchy (or Cauchy–Stieltjes) transform of a

Borel probability measure ρ on C is an analytic function defined by

(2.1) Gρ(z) =
∫
C

1

z − t
dρ(t), z ∈ C \ supp(ρ).

We only consider finite measures ρ supported on R or T. We denote by Fρ the
reciprocal of Gρ , that is, Fρ(z) = 1/Gρ(z). The moment generating function for
ρ is

(2.2) ψρ(z) =
∫
C

tz

1 − tz
dρ(t), z ∈C

∖ {
z ∈ C : 1

z
∈ supp(ρ)

}
.

The η-transform of ρ is defined as

ηρ(z) = ψρ(z)

1 + ψρ(z)
.

The relevant analytic properties of the transforms above are presented in Sec-
tions 3.1–3.3.

The free additive convolution of the Borel probability measures μ and ν on R
is denoted by μ � ν and the free multiplicative convolution of the Borel proba-
bility measures μ and ν either on [0,+∞) or on T is denoted by μ � ν. Given
μ,ν, denote by ω1 and ω2 the subordination functions corresponding to the free
convolution μ � ν. They are known to be meromorphic on the complement of
supp(μ � ν). As the name suggests, they satisfy an analytic subordination prop-
erty in the sense of Littlewood:

(2.3) Gμ�ν(z) = Gμ

(
ω1(z)

) = Gν

(
ω2(z)

)
.

A similar result holds for the multiplicative counterparts of the subordination func-
tions. We have

(2.4) ψμ�ν(z) = ψμ

(
ω1(z)

) = ψν

(
ω2(z)

)
,

where ω1 and ω2 are analytic on {z ∈ C : 1/z /∈ supp(μ � ν)}. Free convolutions
are defined in Sections 3.1–3.3, and the subordination functions are defined via
functional equations in Sections 3.4.1–3.4.3.
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In the following three subsections, we describe our models and state the main
results. To avoid dealing with too many special cases, we make the following tech-
nical assumption, which will be in force for the remainder of the paper, except for
Remark 2.6.

(2.5) Neither of the two limiting measures μ,ν is a point mass.

Under this assumption, the subordination functions extend continuously to the
boundary of their domains (see Lemmas 3.1, 3.2 and 3.3). Our results, however,
remain substantially valid without this assumption, and we discuss in Remark 2.6
the relevant modifications.

2.1. Additive perturbations. Here are the ingredients for constructing the ad-
ditive matrix model XN = AN + UNBNU∗

N :

• Two compactly supported Borel probability measures μ and ν on R.
• A positive integer p and fixed real numbers

θ1 ≥ θ2 ≥ · · · ≥ θp

which do not belong to supp(μ).
• A sequence (AN)N∈N of deterministic Hermitian matrices of size N × N such

that:
– μAN

converges weakly to μ as N → ∞;
– for N ≥ p and θ ∈ {θ1, . . . , θp}, the sequence (λn(AN))Nn=1 satisfies

card
({

n : λn(AN) = θ
}) = card

({i : θi = θ});
– the eigenvalues of AN which are not equal to some θi converge uniformly to

supp(μ) as N → ∞, that is,

lim
N→∞ max

λn(AN)/∈{θ1,...,θp} dist
(
λn(AN), supp(μ)

) = 0.

• A positive integer q and fixed real numbers

τ1 ≥ τ2 ≥ · · · ≥ τq

which do not belong to supp(ν).
• A sequence (BN)N∈N of deterministic Hermitian matrices of size N × N such

that:
– μBN

converges weakly to ν as N → ∞;
– for N ≥ q and τ ∈ {τ1, . . . , τq}, the sequence (λn(BN))Nn=1 satisfies

card
({

n : λn(BN) = τ
}) = card

({j : τj = τ });
– the eigenvalues of BN which are not equal to some τj converge uniformly to

supp(ν) as N → ∞.
• A sequence (UN)N∈N of unitary random matrices such that the distribution of

UN is the normalized Haar measure on the unitary group U(N).
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It is known from [39] that the asymptotic empirical eigenvalue distribution of
XN is μ � ν. In the following statement, we take advantage of the fact, discussed
later, that the functions ω1 and ω2 extend continuously to the real line. The points
ρ ∈ R \ supp(μ � ν) satisfying ω1(ρ) = θ are isolated but they may accumulate to
supp(μ�ν). We denote by PN and QN the projection onto the space generated by
the eigenvectors corresponding to the spikes of AN and BN , respectively. These
can also be written as

(2.6) PN = EAN

({θ1, . . . , θp}), QN = EBN

({τ1, . . . , τq}),
in terms of the spectral measures of AN and BN . We are now ready to state our
result for the additive model.

THEOREM 2.1. With the above notation, set K = supp(μ � ν), and

K ′ = K ∪
[ p⋃

i=1

ω−1
1

({θi})
]

∪
[ q⋃

j=1

ω−1
2

({τj })
]
,

where ω1,ω2 are the subordination functions satisfying (2.3).

(1) Given ε > 0, we have P(∃N0 ∀N,N > N0, σ (XN) ⊂ K ′
ε) = 1.

(2) Fix a number ρ ∈ K ′ \K , let ε > 0 be such that (ρ −2ε,ρ +2ε)∩K ′ = {ρ},
and set k = card({i : ω1(ρ) = θi}), � = card({j : ω2(ρ) = τj }). Then

P
(∃N0 ∀N,N > N0, card

({
σ(XN) ∩ (ρ − ε,ρ + ε)

}) = k + �
) = 1.

(3) With ρ and ε as in (2), we have

lim
N→∞

∥∥∥∥PNEXN

(
(ρ − ε,ρ + ε)

)
PN − 1

ω′
1(ρ)

EAN

({
ω1(ρ)

})∥∥∥∥ = 0

and

lim
N→∞

∥∥∥∥QNUNEXN

(
(ρ − ε,ρ + ε)

)
U∗

NQN − 1

ω′
2(ρ)

EBN

({
ω2(ρ)

})∥∥∥∥ = 0

almost surely.
(4) With ρ and ε as in (2), suppose in addition that � = 0. Then almost surely,

lim
N→∞ sup

{∣∣∣∣∥∥EAN

({
ω1(ρ)

})
ξ
∥∥2 − 1

ω′
1(ρ)

∣∣∣∣ :
ξ ∈ EXN

(
(ρ − ε,ρ + ε)

)
CN,‖ξ‖2 ≤ 1

}
= 0.

Analogously, if k = 0, then almost surely

lim
N→∞ sup

{∣∣∣∣∥∥EUNBNU∗
N

({
ω2(ρ)

})
ξ
∥∥2 − 1

ω′
2(ρ)

∣∣∣∣ :
ξ ∈ EXN

(
(ρ − ε,ρ + ε)

)
CN,‖ξ‖2 ≤ 1

}
= 0.
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REMARK 2.2. In case k > 0 and � > 0, the result of (3) above implies the
following. Almost surely for ε small enough, if, for N large enough, {ξ1, . . . , ξk+�}
is an orthonormal basis of EXN

((ρ − ε,ρ + ε)), then

lim
N→+∞

k+�∑
n=1

∥∥EAN
(θ)ξn

∥∥2
2 = δω1(ρ),θ k

ω′
1(ρ)

and

lim
N→+∞

k+�∑
n=1

∥∥EUNBNU∗
N
(τ )ξn

∥∥2
2 = δω2(ρ),τ �

ω′
2(ρ)

,

for θ, τ ∈ R, where δω2(ρ),τ is the usual Kronecker symbol. Thus, assertion (4) is
a strengthening of (3) in the special case k� = 0.

We give below two simple examples to illustrate the correspondence between
spikes and outliers for unitarily invariant additive models, emphasizing the phe-
nomenon (first noted without proof in [12], Remark 2.12, for finite rank perturba-
tions) of a single spike generating multiple outliers.

EXAMPLE 2.3. The numerical simulation presented in Figure 1, due to
Charles Bordenave, illustrates the appearance of two outliers arising from a sin-
gle spike. We take N = 1000 and XN = AN + UNBNU∗

N , where AN = 2p − IN ,

FIG. 1. The horizontal grid elements have a width of 2 units, starting at the left end with coordinate
−2. The two outliers appear at approximately −0.07420064427396 and 10.09926345874086.
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with p an orthogonal projection of rank N/2 = 500. The matrix BN is given by
the formula

BN =
⎡⎣ W

2
√

N − 1
0(N−1)×1

01×(N−1) 10

⎤⎦ ,

with W being sampled from a standard 999 × 999 GUE. A few elementary com-
putations based on the results mentioned in Sections 3.1 and 3.4.1, as well as
the fact that the R-transform of the standard Wigner distribution is R(z) = z in-
dicate that the support of the empirical eigenvalue distribution of XN tends as

N → ∞ to [−a,−b] ∪ [b, a] where a =
√

18+2
√

33
4 +

√
18+2

√
33

2+2
√

33
� 1.760172593,

b =
√

18−2
√

33
4 +

√
18−2

√
33

2−2
√

33
� 0.369008729828. Theorem 2.1 indicates the pres-

ence of two outliers at ρ1 = 15
2 − 3

√
11

4 −
√

215+60
√

11
4 � −0.07420064427396

and ρ2 = 15
2 − 3

√
11

4 +
√

215+60
√

11
4 � 10.09926345874086 (some computa-

tions/verifications were performed using Maple).

EXAMPLE 2.4. As noted above, the occurrence of multiple outliers gener-
ated by a single spike may happen also in the case of finite rank perturbations
(see [12], Remark 2.12). In fact, asymptotically even countably many outliers
may appear. The following example, due to Charles Bordenave, illustrates to a
certain extent this phenomenon. In the graph from Figure 2, we present the cu-
mulative distribution function for the empirical eigenvalue distribution of the ma-
trix UNDNU∗

N + 3e1e
∗
1, where N = 211 − 1, DN = Diag(d0, d1, . . . , d10), with

dj = 2−10+j+3I2j , and e∗
1 being the vector (1,0, . . . ,0) ∈CN . One outlier appears

FIG. 2. This time, the vertical grid indicates the sizes of the eigenvalues.
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in each interval of the complement in R ∪ {∞} of the support of μDN
, with the

solution in the component containing infinity occurring, as expected, in (0,+∞).
The reader is invited to imagine the case of (d0, d1, . . . , d10) above being replaced
by (d0, . . . , dm), m → ∞.

2.2. Multiplicative perturbations of nonnegative matrices. Here are the ingre-
dients for constructing the multiplicative model XN = A

1/2
N UNBNU∗

NA
1/2
N :

• Two compactly supported Borel probability measures μ and ν on [0,+∞).
• A positive integer p, and fixed positive numbers

θ1 ≥ θ2 ≥ · · · ≥ θp > 0

which do not belong to supp(μ).
• A sequence (AN)N∈N of deterministic nonnegative matrices of size N ×N such

that:
– μAN

converges weakly to μ as N → ∞;
– for N ≥ p and θ ∈ {θ1, . . . , θp}, the sequence {λn(AN)}Nn=1 satisfies

card({n : λn(AN) = θ}) = card({i : θi = θ});
– the eigenvalues of AN which are not equal to some θi converge uniformly to

supp(μ) as N → ∞.
• A positive integer q , and fixed positive numbers

τ1 ≥ τ2 ≥ · · · ≥ τq > 0

which do not belong to supp(ν).
• A sequence (BN)N∈N of deterministic nonnegative matrices of size N ×N such

that:
– μBN

converges weakly to ν as N → ∞;
– for N ≥ q and τ ∈ {τ1, . . . , τq}, the sequence {λn(BN)}Nn=1 satisfies

card({n : λn(BN) = τ }) = card({j : τj = τ });
– the eigenvalues of BN which are not equal to some τj converge uniformly to

supp(ν) as N → ∞.
• A sequence (UN)N∈N of unitary random matrices such that the distribution of

UN is the normalized Haar measure on the unitary group U(N).

It is known from [39] that the asymptotic empirical eigenvalue distribution of XN

is μ�ν. The projections PN and QN used in the following statement were defined
in (2.6).

THEOREM 2.5. With the above notation, let ω1,ω2 be the subordination func-
tions satisfying (2.4), set K = supp(μ � ν), vj (z) = ωj (1/z), j = 1,2, and

K ′ = K ∪
[ p⋃

i=1

v−1
1

({1/θi})
]

∪
[ q⋃

j=1

v−1
2

({1/τj })
]
.
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(1) Given ε > 0, we have P(∃N0 ∀N,N > N0, σ (XN) ⊂ K ′
ε) = 1.

(2) Fix a positive number ρ ∈ K ′ \ K , let ε > 0 be such that (ρ − 2ε,ρ + 2ε) ∩
K ′ = {ρ} and set k = card({i : v1(ρ) = 1/θi}), � = card({j : v2(ρ) = 1/τj }). Then

P
(∃N0 ∀N,N > N0, card

({
σ(XN) ∩ (ρ − ε,ρ + ε)

}) = k + �
) = 1.

(3) With ρ and ε as in (2), we have

lim
N→∞

∥∥∥∥PNEXN

(
(ρ − ε,ρ + ε)

)
PN − ρω1(1/ρ)

ω′
1(1/ρ)

EAN

({
1/ω1(1/ρ)

})∥∥∥∥ = 0

and

lim
N→∞

∥∥∥∥QNUNEXN

(
(ρ − ε,ρ + ε)

)
U∗

NQN

− ρω2(1/ρ)

ω′
2(1/ρ)

EBN

({
1/ω2(1/ρ)

})∥∥∥∥ = 0

almost surely.
(4) With ρ and ε as in (2), suppose in addition that � = 0. Then almost surely,

lim
N→∞ sup

{∣∣∣∣∥∥EAN

({
1/ω1(1/ρ)

})
ξ
∥∥2

2 − ρω1(1/ρ)

ω′
1(1/ρ)

∣∣∣∣ :
ξ ∈ EXN

(
(ρ − ε,ρ + ε)

)
CN,‖ξ‖2 ≤ 1

}
= 0.

Analogously, if k = 0, then almost surely

lim
N→∞ sup

{∣∣∣∣∥∥EUNBNU∗
N

({
1/ω2(1/ρ)

})
ξ
∥∥2

2 − ρω2(1/ρ)

ω′
2(1/ρ)

∣∣∣∣ :
ξ ∈ EXN

(
(ρ − ε,ρ + ε)

)
CN,‖ξ‖2 ≤ 1

}
= 0.

REMARK 2.6. The analogue of Theorem 2.1 when μ = δ0 was proved in [12]
under the additional assumption that all eigenvalues of A except for the spikes
are equal to zero. Our arguments below provide a proof of this result without this
additional assumption. Similar observations apply to Theorem 2.5 when either μ

or ν is a point mass. The only case in which one needs to be more careful is that
of Theorem 2.5 for the positive half-line when μ or ν is equal to δ0. Suppose,

for instance, that ν = δ0 �= μ. The eigenvalues of XN = A
1/2
N UNBNU∗

NA
1/2
N are

uniformly approximated arbitrarily well by the eigenvalues of

XN,ε = A
1/2
N UN(BN + εIN)U∗

NA
1/2
N = XN + εAN,

and our methods do apply to the perturbed model XN,ε , whose asymptotic eigen-
value distribution is μ � δε . The outliers are calculated explicitly by noting
that ημ�δε (z) = ημ(εz), so ω1(z) = εz, ω2(z) = ημ(εz)/ε. Thus, v1(z) = ε/z



3584 BELINSCHI, BERCOVICI, CAPITAINE AND FÉVRIER

and v2(z) = ημ(ε/z)/ε. The outliers of XN,ε are the solutions of the equations
v1(ρ) = 1/θi , i = 1, . . . , p and v2(ρ) = 1/(τj + ε), j = 1, . . . , q . The first set of
equations yields the outliers εθi , i = 1, . . . , p, while the second set of equations
can be rewritten as

ρ = (τj + ε)

[
ρ

ε
ημ

(
ε

ρ

)]
, j = 1, . . . , q.

As ε → 0, we conclude that the outliers of XN are the numbers τjγ , j = 1, . . . , q ,
where γ = η′

μ(0) = ∫ ∞
0 t dμ(t) is the first moment of μ. If μ = ν = δ0, a similar

argument shows that XN has no outliers at all, that is, limN→∞ ‖XN‖ = 0 almost
surely.

2.3. Multiplicative perturbations of unitary matrices. Finally, we describe
the ingredients for the construction of the multiplicative matrix model XN =
ANUNBNU∗

N with unitary AN and BN :

• Two Borel probability measures μ and ν on T with nonzero first moments such
that supp(μ � ν) �= T.

• A positive integer p and fixed complex numbers θ1, . . . , θp ∈ T which do not
belong to supp(μ) and such that

2π > arg θ1 ≥ · · · ≥ arg θp ≥ 0.

• A sequence (AN)N∈N of deterministic unitary matrices of size N ×N such that:
– μAN

converges weakly to μ as N → ∞;
– for N ≥ p and θ ∈ {θ1, . . . , θp}, the sequence {λn(AN)}Nn=1 satisfies

card
({

n : λn(AN) = θ
}) = card

({i : θi = θ});
– the eigenvalues of AN which are not equal to some θi converge uniformly to

supp(μ) as N → ∞.
• A positive integer q and fixed complex numbers τ1, . . . , τq ∈ T which do not

belong to supp(ν) and such that

2π > arg τ1 ≥ · · · ≥ arg τq ≥ 0.

• A sequence (BN)N∈N of deterministic unitary matrices of size N ×N such that:
– μBN

converges weakly to ν as N → ∞;
– for N ≥ q and τ ∈ {τ1, . . . , τq}, the sequence {λn(BN)}Nn=1 satisfies

card
({

n : λn(BN) = τ
}) = card

({j : τj = τ });
– the eigenvalues of BN which are not equal to some τj converge uniformly to

supp(ν) as N → ∞.
• A sequence (UN)N∈N of unitary random matrices such that the distribution of

UN is the normalized Haar measure on the unitary group U(N).
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It is known from [39] that the asymptotic empirical eigenvalue distribution of
XN is μ � ν. When ρ ∈ T and ε > 0, the interval (ρ − ε,ρ + ε) consists of those
numbers in T whose argument differs from argρ by less than ε. With this conven-
tion, Theorem 2.5 holds verbatim in the unitary case as well.

REMARK 2.7. It is easy to see that our results hold equally well when AN is
random, independent of UN , and has spikes θ1(N), . . . , θp(N) with the property
that limN→∞ θi(N) = θi , 1 ≤ i ≤ p, almost surely. Similarly, BN can be taken to
be random, independent of AN and UN , and with spikes τ1(N), . . . , τq(N) that
converge almost surely to τ1, . . . , τq . The proofs use the general form of Proposi-
tions 5.1 and 5.7, respectively.

REMARK 2.8. The above remark allows us to treat sums or products of
more than two spiked matrices. More precisely, let k ≥ 3 be an integer, let
A

(1)
N , . . . ,A

(k)
N ∈ MN(C) be deterministic Hermitian matrices and let

U
(1)
N , . . . ,U

(k)
N ∈ U(N) be independent Haar-distributed random matrices. Sup-

pose that the eigenvalue distribution of A
(j)
N tends weakly to μj and A

(j)
N has

spikes subject to the hypotheses of Section 2.1. Then X
(k)
N = U

(1)
N A

(1)
N U

(1)∗
N +

· · · + U
(k−1)
N A

(k−1)
N U

(k−1)∗
N + A

(k)
N has asymptotic eigenvalue distribution equal to

μ1 � · · ·�μk , and the outliers in the spectrum of X
(k)
N are described by an appropri-

ate reformulation of Theorem 2.1. The result can be proved by induction on k if we
observe that X

(k+1)
N has the same distribution as A

(k+1)
N +UNBNU∗

N , where BN =
X

(k)
N and UN is a Haar-distributed unitary independent from U

(1)
N , . . . ,U

(k−1)
N ∈

U(N). A similar remark applies to Theorem 2.5 in the case of the circle. For
the multiplicative model on [0,+∞), the corresponding generalization applies to

models of the form A
1/2
k Uk−1A

1/2
k−1 · · ·U2A

1/2
2 U1A1U

∗
1 A

1/2
2 U∗

2 · · ·A1/2
k−1U

∗
k−1A

1/2
k .

REMARK 2.9. While we assume unitary invariance for our models, we would
like to emphasize that our results apply to models for which the concentration
results from Lemma 4.11, respectively, Corollary 4.12, the strong asymptotic free-
ness results of [21] and an asymptotic version of Lemma 4.7 hold.

3. Free convolutions. Free convolutions arise as natural analogues of classi-
cal convolutions in the context of free probability theory. For two Borel probability
measures μ and ν on the real line, one defines the free additive convolution μ � ν

as the distribution of a + b, where a and b are free self-adjoint random variables
with distributions μ and ν, respectively. Similarly, if both μ,ν are supported on
[0,+∞) or on T, their free multiplicative convolution μ � ν is the distribution of
the product ab, where, as before, a and b are free, positive in the first case, uni-
tary in the second, random variables with distributions μ and ν, respectively. The
product ab of two free positive random variables is usually not positive, but it has



3586 BELINSCHI, BERCOVICI, CAPITAINE AND FÉVRIER

the same moments as the positive random variables a1/2ba1/2 and b1/2ab1/2. We
refer to [42] for an introduction to free probability theory and to [13, 37, 38] for
the definitions and main properties of free convolutions. In this section, we recall
the analytic approach developed in [37, 38] to calculate the free convolutions of
measures, as well as the analytic subordination property [14, 40, 41] and related
results.

3.1. Additive free convolution. Recall from (2.1) the definition of the Cauchy–
Stieltjes transform of a finite positive Borel measure μ on the real line:

Gμ(z) =
∫
R

1

z − t
dμ(t), z ∈C \ supp(μ).

This function maps C+ to C− and limy↑+∞ iyGμ(iy) = μ(R). Conversely, any
analytic function G : C+ → C− for which limy↑+∞ iyG(iy) is finite is of the
form G = Gμ|C+ for some finite positive Borel measure μ on R. When μ has
compact support, the function Gμ is also analytic at ∞ and Gμ(∞) = 0 (see [1],
Chapter 3, for these results). The measure μ can be recovered from its Cauchy–
Stieltjes transform as a weak limit

(3.1) dμ(x) = lim
y↓0

−1

π

Gμ(x + iy) dx.

This is the Stieltjes inversion formula and it holds for signed measures as well.
The density of (the absolutely continuous part of) μ relative to Lebesgue measure
is calculated as

dμ

dx
(x) = lim

y↓0

−1

π

Gμ(x + iy)

for almost every x relative to the Lebesgue measure. In particular, R\ supp(μ) can
be described as the set of those points x ∈ R with the property that Gμ|C+ can be
continued analytically to an open interval I � x such that Gμ|I is real-valued. On
the other hand,

lim
y↓0

−1

π

Gμ(x + iy) = +∞

almost everywhere relative to the singular part of μ. Indeed, these facts follow from
the straightforward observation that (−π)−1
Gμ(x + iy), y > 0, is the Poisson
integral of μ. See [25] for these aspects of harmonic analysis.

It is often convenient to work with the reciprocal Cauchy–Stieltjes transform
Fμ(z) = 1/Gμ(z), which defines an analytic self-map of the upper half-plane. This
function enjoys the following properties:

(a) For any z ∈ C+, 
Fμ(z) ≥ μ(R)−1
z. If equality holds at one point of C+,
then it holds at all points, and μ = μ(R)δ−μ(R)�Fμ(i).
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(b) In particular, the function

(3.2) hμ(z) = Fμ(z) − μ(R)−1z, z ∈ C+,

is a self-map of C+ unless μ is a point mass, in which case hμ is a real constant.
(c) If μ is compactly supported, there exist a real number α and a finite positive

Borel measure ρ on R with supp(ρ) included in the convex hull of supp(μ) such
that

(3.3) Fμ(z) = α + μ(R)−1z +
∫
R

1

t − z
dρ(t), z ∈ C \ supp(ρ).

Conversely, if F : C+ → C+ extends to an analytic real-valued function to the
complement in R of a compact set, and if limy→+∞ F(iy) = ∞, then there exists
a compactly supported positive Borel measure μ on R satisfying F = Fμ. The
value μ(R) is determined by μ(R) = limy→+∞ iy/F (iy).

(d) If μ(R) = 1 and ρ is as in (3.3), then ρ(R) = ∫
R(t − ∫

R s dμ(s))2 dμ(t) and
α = − ∫

R t dμ(t).

Equation (3.3) is a special case of the Nevanlinna representation of analytic self-
maps of the upper half-plane ([1], Chapter 3):

(3.4) F(z) = a + bz +
∫
R

1 + tz

t − z
d�(t), z ∈ C+,

where a ∈ R, b ≥ 0 and � is a finite positive Borel measure on R. We identify
a = �F(i), b = limy→+∞ F(iy)/iy, �(R) = 
F(i) − b. If

∫
R t2 d�(t) < +∞,

then (3.4) reduces to (3.3), with b = μ(R)−1 and dρ(t) = (1 + t2) d�(t), α =
a − ∫

R t d�(t).
The Cauchy–Stieltjes transform of a compactly supported probability measure

μ is conformal in the neighborhood of ∞, and its functional inverse G−1
μ is mero-

morphic at zero with principal part 1/z. The R-transform [37] of μ is the conver-
gent power series defined by

Rμ(z) = G−1
μ (z) − 1

z
.

The free additive convolution of two compactly supported probability measures
μ and ν is another compactly supported probability measure characterized by the
identity

Rμ�ν = Rμ + Rν

satisfied by these convergent power series.



3588 BELINSCHI, BERCOVICI, CAPITAINE AND FÉVRIER

3.2. Multiplicative free convolution on [0,+∞). Recall from (2.2) the def-
inition of the moment-generating function of a Borel probability measure μ on
[0,+∞):

ψμ(z) =
∫
[0,+∞)

zt

1 − zt
dμ(t), z ∈ C

∖ {
z ∈ C : 1

z
∈ supp(μ)

}
.

This function is related to the Cauchy–Stieltjes transform of μ via the relation

ψμ(z) = 1

z
Gμ

(
1

z

)
− 1.

It satisfies the following properties, for which we refer to [13], Section 6:

• ψμ(C+) ⊆ C+.
• ψμ((−∞,0)) ⊆ (μ({0}) − 1,0) and

ψμ

(
iC+) ⊆

{
z ∈ C :

∣∣∣∣z − μ({0}) − 1

2

∣∣∣∣ < 1 − μ({0})
2

}
.

In addition,

lim
x↓−∞ψμ(x) = μ

({0}) − 1, lim
x↑0

ψμ(x) = 0,

lim
x↑0

ψ ′
μ(x) =

∫
[0,+∞)

t dμ(t).

• In particular, if supp(μ) is compact and not equal to {0}, then ψμ is injective on
some neighborhood of zero in C.

• ψμ is injective on iC+.

It is often convenient to work with the eta transform, or Boolean cumulant func-
tion,

ημ(z) = ψμ(z)

1 + ψμ(z)
.

It inherits from ψ the following properties:

(a) π > argημ(z) ≥ arg z for all z ∈ C+, where arg takes values in (0, π)

on C+. Moreover, if equality holds for one point in C+, it holds for all points
in C+, and μ = δημ(z)/z = δη′

μ(0) for any z ∈ C+.
(b) limx↑0 ημ(x) = 0 and limx↑0 η′

μ(x) = ∫
[0,+∞) t dμ(t). In particular, if

supp(μ) is compact and different from {0}, then ημ is injective on some neigh-
borhood of zero in C.

(c) If μ �= δ0, ημ is strictly increasing from (−∞,0] to (μ({0})−1(μ({0}) −
1),0], where μ({0})−1(μ({0}) − 1) should be replaced by −∞ if μ({0}) = 0.
Moreover, ημ is injective on iC+.
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(d) Conversely, if an analytic function η : C+ → C+ satisfies π > argη(z) ≥
arg z for all z ∈ C+ and limx↑0 η(x) = 0, then η = ημ for some Borel probability
measure on [0,+∞) ([9], Proposition 2.2).

The �-transform [13, 38] of a compactly supported Borel probability measure
μ �= δ0 is the convergent power series defined by

�μ(z) = η−1
μ (z)

z
,

where η−1
μ is the inverse of ημ relative to composition. The free multiplicative con-

volution of two compactly supported probability measures μ �= δ0 �= ν is another
compactly supported probability measure characterized by the identity

�μ�ν(z) = �μ(z)�ν(z)

in a neighborhood of 0.

3.3. Multiplicative free convolution on T. The analytic transforms involved in
the study of multiplicative free convolution on T are formally the same ones as in
Section 3.2, but their analytical properties are different. Thus,

ψμ(z) =
∫
T

zt

1 − zt
dμ(t), z ∈C

∖ {
z ∈ C : 1

z
∈ supp(μ)

}
.

It satisfies �ψμ(z) > −1
2 for all |z| < 1. We work almost exclusively with the eta

transform, or Boolean cumulant function,

ημ(z) = ψμ(z)

1 + ψμ(z)
.

The following properties of ημ are relevant to our study:

(a) For any z ∈ D, we have |ημ(z)| ≤ |z|. If equality holds at one point in D \
{0}, it holds at all points in D, and μ = δημ(z)/z = δη′

μ(0) for any z ∈ D \ {0}.
(b) ημ(0) = 0 and η′

μ(0) = ∫
T t dμ(t). In particular ημ is injective on a neigh-

borhood of zero in C if and only if
∫
T t dμ(t) �= 0.

(c) The function ημ continues via Schwarz reflection through the set {z ∈
T : z /∈ supp(μ)}, that is,

ημ(z) = 1

ημ(1
z
)
, |z| > 1.

(d) For almost all points 1/x with respect to the absolutely continuous part of
μ (relative to the Haar measure on T), the nontangential limit of ημ at x [denoted
by � limz→x ημ(z)] belongs to D, and for almost all points 1/x in the complement
of the support of the absolutely continuous part of μ, the nontangential limit of
ημ at x belongs to T. Moreover, if μ has a singular component, then for almost
all points 1/x with respect to this component, the nontangential limit of ημ at x

equals one.
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(e) Conversely, if an analytic function η : D → D satisfies η(0) = 0, then η =
ημ for a unique Borel probability measure on T ([9], Proposition 3.2).

When
∫
T t dμ(t) �= 0, we define the �-transform [13, 38] of μ as the convergent

power series

�μ(z) = η−1
μ (z)

z
.

Again, the free multiplicative convolution of two probability measures μ and ν

with nonzero first moments is another probability measure with nonzero first mo-
ment characterized by the identity

�μ�ν(z) = �μ(z)�ν(z)

in a neighborhood of 0.
If both of μ and ν have zero first moment, then μ � ν is the Haar (uniform)

distribution on T; see [42]. From now on, we always assume that all our probability
measures on T have nonzero first moments.

3.4. Analytic subordination. The analytic subordination phenomenon for free
convolutions, as seen in (2.3) and (2.4), was first noted by Voiculescu in [40]
for free additive convolution of compactly supported probability measures. Later,
Biane [14] extended the result to free additive convolutions of arbitrary probabil-
ity measures on R, and also found a subordination result for multiplicative free
convolution. More importantly, he proved the stronger result (see heuristics in the
Introduction) that the conditional expectation of the resolvent of a sum or product
of free random variables onto the algebra generated by one of them is in fact also a
resolvent. In [41], Voiculescu deduced this property from the fact that such a con-
ditional expectation is a coalgebra morphism for certain coalgebras, and through
this observation he extended the subordination property to free convolutions of
operator-valued distributions. For our purposes, considerably less than that is re-
quired: we essentially only use the complex analytic properties of these functions.

3.4.1. The subordination functions equations for free additive convolution.
Given Borel probability measures μ and ν on R, there exist two unique analytic
functions ω1,ω2 : C+ →C+ such that:

(1) limy→+∞ ωj(iy)/iy = 1, j = 1,2.
(2) For every z ∈ C+, we have

(3.5) ω1(z) + ω2(z) − z = Fμ

(
ω1(z)

) = Fν

(
ω2(z)

) = Fμ�ν(z).

(3) In particular (see [10]), for any z ∈ C+ ∪ R such that ω1 is analytic at z,
ω1(z) is the attracting fixed point of the self-map of C+ defined by

w �→ Fν

(
Fμ(w) − w + z

) − (
Fμ(w) − w

)
.

A similar statement, with μ,ν interchanged, holds for ω2.
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We note that (3.5) implies that the functions ω1,ω2 continue analytically across an
interval (α,β) ⊆R such that ω1|(α,β) and ω2|(α,β) are real-valued if and only if the
same is true for Fμ�ν . For the sake of providing an intrinsic characterization of the
correspondence between spikes and outliers, we formalize and slightly strengthen
this remark in the following lemma. Here, we use the functions hμ,hν defined
by (3.2).

LEMMA 3.1. Consider two compactly supported Borel probability measures
μ and ν, neither of them a point mass. Then the subordination functions ω1 and
ω2 have extensions to C+ ∪ {∞} with the following properties:

(a) ω1,ω2 :C+ ∪ {∞} →C+ ∪ {∞} are continuous.
(b) If x ∈ R \ supp(μ � ν), then the functions ω1 and ω2 continue meromor-

phically to a neighborhood of x, ω1(x) = hν(ω2(x)) + x ∈ (R ∪ {∞}) \ supp(μ),
and ω2(x) = hμ(ω1(x)) + x ∈ (R ∪ {∞}) \ supp(ν). If ω1(x) = ∞, then ω2(x) =
x − ∫

R t dμ(t) ∈R, and if ω2(x) = ∞, then ω1(x) = x − ∫
R t dν(t) ∈ R.

(c) Conversely, suppose that ω1 continues meromorphically to a neighborhood
of a point x ∈R and that ω1(y) ∈ R when y ∈ (x − δ, x + δ) \ {x} for some δ > 0.
If x ∈ supp(μ � ν), then x is an isolated atom for μ � ν.

In the context of Part (b) of the above lemma, we note that hμ is analytic around
infinity, and hμ(∞) = − ∫

R t dμ(t).

PROOF OF LEMMA 3.1. Part (a) was proved in [8], Theorem 3.3. Fix x ∈
R \ supp(μ � ν). Equation (3.5) indicates that ω1 and ω2 must take real values
on (x − δ, x + δ) \ {x} for some δ > 0. Schwarz reflection implies that ω1 and ω2
have meromorphic continuations with real values on R across the corresponding
intervals.

The relation Gμ�ν(z) = Gμ(ω1(z)) shows that the limit limz→y Gμ(ω1(z)) is
real for y ∈ (x − δ, x + δ) and therefore μ({ω1(y) : y ∈ (x − δ, x + δ)}) = 0 by the
Stieltjes inversion formula. In particular, ω1(x) /∈ supp(μ). To conclude the proof
of (b), suppose that ω1(x) = ∞. It follows from (3.5) in conjunction with items (c)
and (d) of Section 3.1 that

ω2(x) = lim
z→x

Fμ

(
ω1(z)

) − ω1(z) + z = x + lim
w→∞Fμ(w) − w = x −

∫
R

t dμ(t),

such that ω2 is analytic at x. The statement for ω2(x) = ∞ follows by symmetry.
Finally, suppose that the hypotheses of (c) are satisfied. It was observed in [8]

that ω2(y) is also real for y ∈ (x − δ, x + δ). [Indeed, if 
ω2(y) > 0, relation (3.5)
implies

(3.6) ω1(y) + ω2(y) = y + Fμ�ν(y) = y + Fν

(
ω2(y)

)
and, therefore, 
Fν(ω2(y)) = 
ω2(y). This relation can only hold when ν is a
point mass, a case which we excluded.] Now, (3.6) implies that Fμ�ν is continuous
and real-valued on (x − δ, x + δ) \ {x}, and this yields the desired conclusion via
the Stieltjes inversion formula. �
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3.4.2. The subordination functions equations for multiplicative free convolution
on [0,+∞). Given Borel probability measures μ,ν on [0,+∞), there exist two
unique analytic functions ω1,ω2 : C \ [0,+∞) →C \ [0,+∞) with the following
properties:

(1) π > argωj(z) ≥ arg z for z ∈ C+ and j = 1,2.
(2) For every z ∈ C \ [0,+∞), we have

(3.7)
ω1(z)ω2(z)

z
= ημ

(
ω1(z)

) = ην

(
ω2(z)

) = ημ�ν(z).

(3) In particular (see [10]), for any z ∈ C+ ∪R such that ω1 is analytic at z, the
point h1(z) := ω1(z)/z is the attracting fixed point of the self-map of C \ [0,+∞)

defined by

w �→ w

ημ(zw)
ην

(
ημ(zw)

w

)
.

A similar statement, with μ,ν interchanged, holds for ω2.

A version of Lemma 3.1 holds for multiplicative free convolution on [0,+∞).
Since the proof is similar to the proof of Lemma 3.1 and of Lemma 3.3 below, we
omit it. Item (a) appears in the proof of [7], Theorem 3.2.

LEMMA 3.2. Consider two compactly supported Borel probability measures
μ,ν on [0,+∞), neither of them a point mass. Then the restrictions of the subordi-
nation functions ω1 and ω2 to C+ have extensions to C+ ∪ {∞} with the following
properties:

(a) ω1,ω2 : C+ ∪ {∞} → C+ ∪ {∞} are continuous.
(b) If 1/x ∈ R \ supp(μ � ν) then the functions ω1 and ω2 continue analyti-

cally to a neighborhood of x, 1/ω1(x) = ω2(x)/xην(ω2(x)) ∈ R \ supp(μ), and
1/ω2(x) = ω1(x)/xημ(ω1(x)) ∈ R \ supp(ν).

3.4.3. The subordination functions equations for multiplicative free convolution
on T. Given Borel probability measures μ,ν on T with nonzero first moments,
there exist unique analytic functions ω1,ω2 : D→D such that:

(1) |ωj(z)| ≤ |z|, z ∈ D, j = 1,2.
(2) For every z ∈ D, we have

(3.8)
ω1(z)ω2(z)

z
= ημ

(
ω1(z)

) = ην

(
ω2(z)

) = ημ�ν(z).

(3) In particular (see [10]), if z ∈ D ∪ T and ω1 is analytic at z, then the point
h1(z) := ω1(z)/z is the attracting fixed point of the self-map of D

D � w �→ w

ημ(zw)
ην

(
ημ(zw)

w

)
∈ D.

A similar statement, with μ,ν interchanged, holds for ω2.
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LEMMA 3.3. Consider two Borel probability measures μ,ν on T with
nonzero first moments, neither of them a point mass. Suppose that T \ supp(μ �
ν) �= ∅. Then the subordination functions ω1 and ω2 have extensions to T with the
following properties:

(a) ω1,ω2 :D∪T →D∪T are continuous.
(b) If 1/x ∈ T \ supp(μ � ν) then the functions ω1 and ω2 continue analyti-

cally to a neighborhood of x, 1/ω1(x) = ω2(x)/xην(ω2(x)) ∈ T \ supp(μ), and
1/ω2(x) = ω1(x)/xημ(ω1(x)) ∈ T \ supp(ν).

PROOF. Part (a) can be found in [7], Theorem 3.6. Fix 1/x ∈ T \ supp(μ �
ν). Equation (3.8) coupled with items (d) and (e) of Section 3.3 indicate
clearly that ω1,ω2 must take values in T at least a.e. on a neighborhood of x.
As proved in [7], Proposition 1.9(a), if, say, ω1 does not reflect analytically
through a neighborhood of x, then for any ε > 0 the set of nontangential limits
{� limz→c ω1(z) : arg(xe−iε) < arg(c) < arg(xeiε)} of ω1 around x is dense in T.
As T\ supp(μ) is nonempty, many of these limits will fall in the domain of analyt-
icity of ημ. In particular, we may choose an arbitrary interval I = {eit : t ∈ [s1, s2]}
strictly included in the domain of analyticity of ημ and we will be able to find
points 1/cn ∈ T \ supp(μ � ν) tending to 1/x so that � limz→cn ω1(z) = dn ∈ I .
Obviously, in that case any limit point of {dn}n∈N will still belong to I , and hence
be in the domain of analyticity of ημ. Pick such a limit point d0. Note that, as a
trivial consequence of the Julia–Carathéodory theorem ([25], Chapter I, Exercises
6 and 7), η′

μ(w) > 0 for any w ∈ T in the domain of analyticity of ημ, and thus
η′

μ(d0) > 0, which implies that ημ is conformal on a neighborhood U of d0 (in C).
Now recall that

ημ�ν(cn) = � lim
z→cn

ημ�ν(z) = � lim
z→cn

ημ

(
ω1(z)

) = ημ(dn).

Letting n go to infinity (along a subsequence, if necessary), and recalling that
1/x /∈ supp(μ � ν), we obtain ημ�ν(x) = ημ(d0). Both functions are analytic
around the two respective points from T, so the conformality of ημ on U allows us
to find ημ(U) as a neighborhood of ημ�ν(x) on which the compositional inverse
η−1

μ can be defined. We write η−1
μ ◦ ημ�ν on some convex neighborhood W of x

which is small enough so ημ�ν(W) ⊂ ημ(U) (the existence of W is guaranteed
by the continuity of ημ�ν around x). Pick points zn ∈ D such that |zn − cn| < 1

n
.

Clearly, limn→∞ zn = x, so that for all n ∈ N large enough, zn ∈ W . Pick a piece-
wise linear path going consecutively through the zn’s, so, by the convexity of W ,
this path stays in W and necessarily converges to x. For any z in this path, we have

ημ�ν(z) = ημ

(
ω1(z)

) =⇒ ω1(z) = (
η−1

μ ◦ ημ�ν

)
(z),

which, by analytic continuation and analyticity of η−1
μ ◦ ημ�ν on W , forces ω1

to be analytic on W , providing a contradiction. Thus, ω1 extends analytically
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through x. The same argument shows that ω2 extends analytically around x. The
last statement of (b) above follows again from the simple remark that ω2(x) =
xημ(ω1(x))/ω1(x). �

Unlike the case of free additive convolution, the functions ω1 and ω2 are
bounded on D, and hence do not have pole singularities on T.

4. Preliminary results. The proofs of our main results will be based largely
on both scalar- and matrix-valued analytic function methods, as well as on some
elementary results from operator theory. We start by collecting some results which
apply to both additive and multiplicative models. We use the notation introduced
in Section 2.

4.1. Boundary behavior and convergence of some families of analytic functions.
The following convergence result for sequences of Nevanlinna-type functions is
necessary in the analysis of eigenvectors corresponding to outliers. C(X) denotes
the space of complex-valued continuous functions on a topological space X. We
use the notation |ρ| for the total variation measure of a signed Borel measure ρ

on R. That is, |ρ| = ρ+ + ρ−, where ρ = ρ+ − ρ− is the Hahn decomposition
of ρ. The total variation of ρ is ‖ρ‖ = |ρ|(R).

LEMMA 4.1. Let {ρN }N∈N be a sequence of signed Borel measures on R sat-
isfying the following properties:

• There exists m ∈ R such that supp(ρN) ⊆ [−m,m] for all N ∈ N;
• ρN → 0 in the weak∗-topology as N → ∞, that is,

lim
N→∞

∫
R

f (t) dρN(t) = 0, f ∈ C
([−m,m]).

Then there exists a sequence {vN }N∈N ⊂ [0,+∞) converging to zero, independent
of z, such that∣∣∣∣∫

R

1

z − t
dρN(t)

∣∣∣∣ < (
1 + 1

(
z)2

)
vN, z ∈C+,N ∈N.

PROOF. The number M = supN∈N ‖ρN‖ is finite by the uniform boundedness
theorem. Suppose, to get a contradiction, that the conclusion of the lemma does
not hold. Passing if necessary to a subsequence, we deduce the existence of v > 0
and of numbers zN ∈ C+ such that

v

(
1 + 1

(
zN)2

)
≤

∣∣∣∣∫
R

1

zN − t
dρN(t)

∣∣∣∣, N ∈ N.

The inequality∣∣∣∣∫
R

1

zN − t
dρN(t)

∣∣∣∣ ≤ M dist
(
zN, [−m,m])−1 ≤ M


zN
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implies that the sequence {|zN |}N∈N is bounded (by m + M/v) and the sequence
{
zN }N≥0 is bounded away from zero (by v/M). Passing to a further subsequence,
we may assume that the limit w = limN→∞ zN exists in C+. The uniform bound-
edness of ρN shows that

lim
N→∞

∣∣∣∣∫
R

1

zN − t
dρN(t) −

∫
R

1

w − t
dρN(t)

∣∣∣∣ = 0.

We conclude that the numbers
∫
R(1/(w − t)) dρN(t) do not converge to zero, con-

trary to the hypothesis. The lemma follows. �

An analogous result holds for T.

LEMMA 4.2. Let {ωN }N∈N be a sequence of analytic self-maps of the unit disc
such that the limit ω(z) = limN→∞ ωN(z) exists for all z ∈ D. Then there exists a
sequence {vN }N∈N ⊂ [0,+∞) converging to zero, independent of z, such that∣∣ωN(z) − ω(z)

∣∣ < vN

1 − |z| , z ∈ D,N ∈ N.

PROOF. Suppose, to get a contradiction, that the conclusion of the lemma is
not true. Passing if necessary to a subsequence, we deduce the existence of v > 0
and of a sequence {zN }N∈N ⊂ D such that

(4.1) v ≤ v

1 − |zN | ≤ ∣∣ωN(zN) − ω(zN)
∣∣, N ∈ N.

Combining this with the obvious inequality∣∣ωN(z) − ω(z)
∣∣ ≤ 2, z ∈ D,

we see that the sequence {zN }N∈N is contained in a compact subset K of D. Mon-
tel’s theorem implies that the convergence of ωN to ω is uniform on K , and this
clearly contradicts (4.1). The lemma follows. �

The following lemma from [18], Appendix, is proved using ideas from [28].
We use the notation D(R) for the space of infinitely differentiable, compactly sup-
ported functions ϕ :R →C.

LEMMA 4.3. Let � be an analytic function on C \R which satisfies∣∣�(z)
∣∣ ≤ (|z| + K

)α
P
(|
z|−1)

for some numbers α ≥ 1, K ≥ 0, and polynomial P with nonnegative coeffi-
cients. Then for every h ∈ D(R) there exists a constant c > 0 depending only on
α,K,P,h such that

lim sup
y→0+

∣∣∣∣∫
R

h(x)�(x + iy) dx

∣∣∣∣ ≤ c.
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We also record a result from [16], Lemma 6.3, on the boundary behavior of
a certain Poisson kernel convolution [see (3.1) and the comments following it].
We use E to denote the expectation. If v : R → C is a continuous function and A

is a self-adjoint matrix, then v(A) is constructed using the continuous functional
calculus.

LEMMA 4.4. Given a deterministic N × N matrix CN , a random N × N

Hermitian matrix XN , and a continuous function h : R →R with compact support,
we have

E
[
TrN

[
h(XN)CN

]] = lim
y↓0

1

π


∫
R
E
[
TrN

[(
XN − (t + iy)IN

)−1
CN

]]
h(t) dt.

4.2. Matrix-valued functions and maps. An essential ingredient in our analy-
sis is the resolvent of AN and of the matrices XN (depending on the model consid-
ered, XN = AN +UNBNU∗

N , XN = A
1/2
N U∗

NBNUNA
1/2
N or XN = ANUNBNU∗

N ).
We denote by

(4.2) RN(z) = (zIN − XN)−1, z /∈ σ(XN)

the resolvent of XN . It is a random matrix-valued rational function with poles in
R for the first two models and T for the third. For the first two models, it has the
following properties:

(1) RN(z) = RN(z)∗. In particular, RN(x) is self-adjoint if x ∈ R \ σ(XN).
(2) RN is analytic at ∞, and limz→∞ zRN(z) = IN , where IN denotes the N ×

N identity matrix. The limit is in the norm topology of MN(C)⊗L∞(U(N),mN),
where mN denotes the Haar measure on U(N).

(3) With the notation �T = (T + T ∗)/2 and 
T = (T − T ∗)/2i for the real
and imaginary parts of T , respectively, we have for z ∈ C+

−
RN(z) = 
z
(
(
z)2IN + (�zIN − XN)2)−1

≥ 
z

|z|2 + 2|�z|‖XN‖ + ‖XN‖2 IN .

This last quantity is uniformly bounded below in N for z in any fixed compact set
K ⊆ C+. In particular, if C > 0 is such that supN ‖XN‖ ≤ C,

(4.3) −
E[
(zIN − XN)−1] ≥ 
z

|z|2 + 2|�z|C + C2 IN .

For the unitary model, a slightly different property is needed.

(a) If z ∈ D, we have σ(zXN) ⊂ D, and thus σ((IN − zXN)−1) ⊂ {w ∈
C : �w > 1/2}. Therefore,

�
[

1

z
RN

(
1

z

)]
>

1

2
IN, z ∈D.

(This observation uses the fact that XN is unitary, and hence normal.)
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The following lemma is a fairly straightforward generalization of a result of
Hurwitz. A similar result appears in [12]. In the statement, we use Kδ to denote
the subset of γ consisting of all points at distance strictly less than δ from K . In
the special case K = {ρ}, we write (ρ − δ, ρ + δ) instead of Kδ .

LEMMA 4.5. Let γ be either R or T, let K � γ be compact, and let r be a
positive integer. Consider an analytic function F : C \K → Mr(C) such that F(z)

is diagonal for each z ∈ C \ K , F(∞) = Ir and z �→ (F (z))ii ∈ C has only simple
zeros, all of which are contained in γ \ K , 1 ≤ i ≤ r . Fix δ > 0 such that det(F )

has no zeros on the boundary of Kδ relative to γ , and let ρ1, . . . , ρs ∈ γ be a list
of those points z ∈ C \ Kδ for which F(z) is not invertible.

Suppose that there exist positive numbers {δN }N∈N and analytic maps FN : C \
KδN

→ Mr(C), N ∈ N, such that:

(1) limN→∞ δN = 0;
(2) FN(z) is invertible for z ∈ C \ γ and N ∈ N; and
(3) FN converges to F uniformly on compact subsets of C \ K .

Then:

(i) dim(ker(F (ρj ))) equals the order of ρj as a zero of z �→ det(F (z));
(ii) Given ε > 0 such that

ε <
1

2
min

{|ρi − ρj |,dist(ρi,Kδ) : 1 ≤ i �= j ≤ s
}
,

there exists an integer N0 such that for N ≥ N0, we have:

– counting multiplicities, det(FN) has exactly dim(ker(F (ρj ))) zeros in (ρj −
ε,ρj + ε) ⊂ γ , j = 1, . . . , s, and

– {z ∈C \ Kδ : det(FN(z)) = 0} ⊂ ⋃s
j=1(ρj − ε,ρj + ε).

PROOF. Assertion (i) is obvious. The functions fN(z) = det(FN(z)) converge
to f (z) = det(F (z)) uniformly on compact subsets of C \K . The theorem of Hur-
witz (see [35], Kapitel 8.5) guarantees that, for sufficiently large N , fN has (count-
ing multiplicities) exactly as many zeros as f in C \ Kδ . All the zeros of fN were
assumed to be in γ and, therefore, these zeros cluster around {ρ1, . . . , ρs} in the
following sense: for any given ε > 0, there exists an Nε ∈ N such that

{
z ∈ C \ Kδ : det

(
FN(z)

) = 0
} ⊂

s⋃
j=1

(ρj − ε,ρj + ε)

when N ≥ Nε . When ε > 0 is small enough, there are (counting multiplicities)
exactly dim(ker(F (ρj ))) zeros of fN in (ρj − ε,ρj + ε). �

Later, we apply this lemma in order to control the behavior of functions related
to the resolvent RN .
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Next, we collect some facts about matrix functions and maps on matrix spaces
which commute with the operation of conjugation by unitary matrices. First, an
analog of the Nevanlinna representation for matrix-valued functions ([26], Sec-
tion 5). Let m > 0 be fixed and let F : C\ [−m,m] → MN(C) be an analytic func-
tion. Assume that 
F(z) = (F (z) − F(z)∗)/2i is nonnegative definite for z ∈ C+,
and F(x) = F(x)∗ for x ∈ R \ [−m,m]. Then F can be represented as

(4.4) F(z) = A + Bz −
∫
[−m,m]

dρ(t)

z − t
, z ∈C \ [−m,m],

where A is a self-adjoint matrix, B ≥ 0, and ρ is a measure with values in MN(C)

such that ρ(S) ≥ 0 for every Borel set S ⊂ R. Observe that

ρ(R) = lim
z→∞ z

(
A + Bz − F(z)

)
.

The norm of such a function can obviously be estimated as∥∥F(z)
∥∥ ≤ ‖A‖ + ‖B‖|z| + ‖ρ(R)‖


z
, z ∈ C+.

The specific situation we have in mind is as follows. Let X be a random self-
adjoint matrix in MN(C) such that ‖X‖ ≤ m almost surely. Pick b ∈ MN(C) such
that 
b := (b − b∗)/2i > 0 (that is, 
b is positive definite). The matrix E[(�b +
z
b − X)−1] is analytic in z, it is invertible for

z ∈ C \ [−(
m + ‖�b‖)∥∥(
b)−1∥∥, (m + ‖�b‖)∥∥(
b)−1∥∥],

and it is self-adjoint for

z ∈ R \ [−(
m + ‖�b‖)∥∥(
b)−1∥∥, (m + ‖�b‖)∥∥(
b)−1∥∥].

Moreover,


E[
(�b + z
b − X)−1] < 0, z ∈ C+.

It follows that the function F(z) = (E[(�b + z
b − X)−1])−1 satisfies the prop-
erties required for it to have a representation of the form (4.4). The matrices A,B

and ρ(R) are easily determined. Indeed, we have(
E
[(
b − ε(X − �b)

)−1])−1 = 
b − εE[X − �b] − ε2[E[
X(
b)−1X

]
−E[X](
b)−1E[X]] + O

(
ε3)

as ε → 0. Substituting ε = 1/z, we obtain

F(z) = z
b −E[X] + �b
(4.5)

− E[(X −E[X])(
b)−1(X −E[X])]
z

+ O

(
1

z2

)
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as z → ∞. This yields the three equalities below:

A = −E[X] + �b, B = 
b,
(4.6)

ρ(R) = E
[(

X −E[X])(
b)−1(X −E[X])].
We are mostly, but not exclusively, interested in the case 
b = IN .

These observations apply to the variables XN from our models. We begin with
XN = AN + UNBNU∗

N , where (AN) and (BN) are any sequences of deterministic
real diagonal matrices of size N × N with uniformly bounded norms and limit-
ing distributions μ and ν, respectively. As before, RN(z) = (zIN − XN)−1. More
generally, if b ∈ MN(C) satisfies 
b > 0, then RN(b) = (b − XN)−1.

LEMMA 4.6. The function b �→ E[RN(b)] takes values in GL(N) whenever

b > 0. Moreover,


E[
RN(b)

]−1 ≥ 
b and∥∥E[
RN(b)

]−1∥∥ ≤ ‖b‖ + C1 + 4C2
∥∥(
b)−1∥∥, 
b > 0,

where C1 = supN(‖AN‖ + ‖BN‖), and C2 = supN(trN(B2
N) − [trN(BN)]2). In

particular,


E[
RN(z)

]−1 ≥ 
zIN and
(4.7) ∥∥E[

RN(z)
]−1∥∥ ≤ |z| + C1 + 4C2

|
z| , z ∈ C+.

PROOF. It is well known that an element of a C∗-algebra is invertible if its
imaginary part is strictly positive or strictly negative. Since 
RN(b) < 0 for any
b with 
b > 0, and E is completely positive, it follows that 
E[RN(b)] < 0,
so E[RN(b)] ∈ GL(N). The relation 
E[RN(b)]−1 ≥ 
b follows from [11], Re-
mark 2.5. The second inequality follows immediately from the observations pre-
ceding the lemma, and from the fact that for any deterministic matrix Z,

E
[
UNBNU∗

NZUNBNU∗
N

] −E
[
UNBNU∗

N

]
ZE

[
UNBNU∗

N

]
= (

trN
(
B2

N

) − [
trN(BN)

]2)( N2

N2 − 1
trN(Z)IN − 1

N2 − 1
Z

)
. �

In some situations, it is convenient to see how E[(zIN − XN)−1] depends on
AN ; recall that XN = AN + UNBNU∗

N . This is achieved to some extent by the
following lemma (see also [30]).

LEMMA 4.7. Fix a matrix BN ∈ MN(C). Let b ∈ MN(C) be such that b −
UBNU∗ is invertible for every U ∈ U(N), consider the random matrix R(b) =
(b − UNBNU∗

N)−1 and its expected value G(b) = E[(b − U∗
NBNUN)−1]. Then:
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(1) For every Y ∈ MN(C), we have

(4.8) G(b)Y − YG(b) = E
[
R(b)(Yb − bY )R(b)

]
.

If G(b) is invertible, we also have

Y
(
G(b)−1 − b

) − (
G(b)−1 − b

)
Y

(4.9)
= G(b)−1E

[(
R(b) − G(b)

)
(Yb − bY )

(
R(b) − G(b)

)]
G(b)−1.

(2) G(b) ∈ {b}′′, where {b}′′ denotes the double commutant of b in MN(C).

REMARK 4.8. The conclusion of item (2). of the above lemma applies to any
complex differentiable map f defined on an open set in MN(C) with the property
that f (V ∗bV ) = V ∗f (b)V for all V ∈ U(N).

PROOF OF LEMMA 4.7. The analytic function

H(Y) = E
[(

b − eiY UNBNU∗
Ne−iY )−1]

is defined in an open set containing the self-adjoint matrices. Moreover, the invari-
ance of the Haar measure under multiplication implies that H is constant on the
self-adjoint matrices. Since the self-adjoint matrices form a uniqueness set for ana-
lytic functions, we deduce that H is constant in a neighborhood of the self-adjoint
matrices. In particular, given Y ∈ MN(C), the function

E
[(

b − eεY UNBNU∗
Ne−εY )−1]

does not depend on ε for small ε ∈ C. Differentiation at ε = 0 yields the identity

E
[
R(b)

(
UNBNU∗

NY − YUNBNU∗
N

)
R(b)

] = 0.

Using now the fact that R(b)UNBNU∗
N = −IN + R(b)b and UNBNU∗

NR(b) =
−IN + bR(b), we obtain

E
[−YR(b) + R(b)bYR(b) + R(b)Y − R(b)YbR(b)

] = 0

which is equivalent to (4.8) because E[R(b)Y ] = G(b)Y and E[YR(b)] = YG(b).
To prove the second identity in (1), observe that

E
[
R(b)(Yb − bY )R(b)

]
= E

[(
R(b) − G(b)

)
(Yb − bY )

(
R(b) − G(b)

)] + G(b)(Yb − bY )G(b)

so (4.8) implies

G(b)Y − YG(b) − G(b)(Yb − bY )G(b)

= E
[(

R(b) − G(b)
)
(Yb − bY )

(
R(b) − G(b)

)]
.

Relation (4.9) is now obtained multiplying this relation by G(b)−1 on both sides.
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To verify (2), we need to show that G(b) commutes with any matrix Y ∈ {b}′.
This follows immediately from (4.8). �

The preceding lemma shows that G(b) must be of the form u(b) for some ra-
tional function u of a complex variable, and (4.9) allows us to show that in fact
G(b)−1 is close to a matrix of the form b + wIN when the variance of R(b) is
small. This follows from the next result.

LEMMA 4.9. Assume that ε > 0, and T ∈ MN(C) satisfies the inequality∣∣k∗(T Y − YT )h
∣∣ ≤ ε‖Y‖

for every rank one matrix Y ∈ MN(C) and all unit vectors h, k ∈ CN . Then for any
w in the numerical range W(T ) = {h∗T h : ‖h‖ = 1}, we have ‖T − wIN‖ ≤ 2ε.

PROOF. Given two unit (column) vectors h, k ∈ CN , consider the—necessa-
rily rank one—matrix Y = kh∗ ∈ MN(C). The hypothesis implies that∣∣k∗T k − h∗T h

∣∣ = ∣∣k∗(T Y − YT )h
∣∣ ≤ ε.

We deduce that the numerical range W(T ) = {h∗T h : ‖h‖ = 1} has diameter at
most ε and, therefore, there W(T − wIN) ⊂ {λ ∈ C : |λ| ≤ ε} for any w ∈ W(T ).
Thus, any w ∈ W(T ) satisfies the conclusion because the norm of an operator is at
most twice its numerical radius (see [27], Theorem 1.3-1). �

A further property of eigenvectors of Hermitian matrices which are close in
norm to each other appears in the analysis of the behavior of the eigenvectors of
our matrix models. The following lemma appears already in [16]; we offer a proof
for the reader’s convenience.

LEMMA 4.10. Let X and X0 be Hermitian N × N matrices. Assume that
α,β, δ ∈ R are such that α < β , δ > 0, and neither X nor X0 has any eigenvalues
in [α − δ,α] ∪ [β,β + δ]. Then∥∥EX

(
(α,β)

) − EX0

(
(α,β)

)∥∥ <
4(β − α + 2δ)

πδ2 ‖X − X0‖.
In particular, for any unit vector ξ ∈ EX0((α,β))(CN),∥∥(IN − EX

(
(α,β)

))
ξ
∥∥

2 <
4(β − α + 2δ)

πδ2 ‖X − X0‖.

PROOF. Consider the rectangle γ having as corners the complex points α −
(1 ± i)δ/2 and β + (1 ± i)δ/2. By assumptions, we have σ(X) ∩ ([α − δ,α] ∪
[β,β + δ]) = ∅ and σ(X0) ∩ ([α − δ,α] ∪ [β,β + δ]) = ∅. Thus, the spectral
projections can be obtained by analytic functional calculus:

EX

(
(α,β)

) − EX0

(
(α,β)

) = 1

2πi

∫
γ

[
(λ − X)−1 − (λ − X0)

−1]dλ.
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An application of the resolvent equation and elementary norm estimates yield∥∥EX

(
(α,β)

) − EX0

(
(α,β)

)∥∥
= 1

2π

∥∥∥∥∫
γ
(λ − X)−1(X0 − X)(λ − X0)

−1 dλ

∥∥∥∥
≤ 1

2π

∫
γ

∥∥(λ − X)−1(X0 − X)(λ − X0)
−1∥∥dλ

≤ (β − α + 2δ)
‖X − X0‖

π
sup
λ∈γ

1

‖λ − X‖ sup
λ∈γ

1

‖λ − X0‖

<
4(β − α + 2δ)

πδ2 ‖X − X0‖.
The lemma follows. �

For the following concentration of measure result, it is convenient to identify
CN with the subspace of CN+1 consisting of all vectors whose last component is
zero. Similarly, MN(C) is identified with those matrices in MN+1(C) whose last
column and row are zero. We use the notation V for variance.

LEMMA 4.11. Fix a positive integer r , a projection P of rank r and a scalar
z ∈C \R. Then:

(i) limN→∞ ‖PRN(z)P ∗ − PE[RN(z)]P ∗‖ = 0 almost surely.
(ii) Given unit vectors h, k ∈ CN , V(k∗RN(z)h) ≤ C/[N |
z|4].

PROOF. Assertion (i) is equivalent to the statement that, given unit vectors
h, k ∈CN

(4.10) lim
N→∞k∗(RN(z) −E

[
RN(z)

])
h = 0

almost surely. The random variable k∗RN(z)h is a Lipschitz function on the uni-
tary group U(N) with Lipschitz constant C/|
z|2. An application of [2], Corol-
lary 4.4.28, yields the inequality

P

(∣∣k∗(RN(z) −E
[
RN(z)

])
h
∣∣ > ε

N
1
2 −α

)
≤ 2 exp

(−CN2α|
z|4ε2)
for any α ∈ (0,1/2), and (4.10) follows by an application of the Borel–Cantelli
lemma. To prove (ii), apply the same inequality in the usual formula E[X] =∫ +∞

0 P(X > t) dt for a positive random variable X. �

In the following result, the coefficient t4 can be replaced by t2 if we estimate
the operator norm of a matrix by its Hilbert–Schmidt norm.
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COROLLARY 4.12. Fix a positive integer t , matrices Y,Z of rank at most t ,
and a scalar z ∈ C \R. Then:

E
[∥∥Y (

RN(z) −E
[
RN(z)

])
Z
∥∥2] ≤ Ct4‖Y‖2‖Z‖2/

[
N |
z|4].

PROOF. Choose orthonormal vectors h1, . . . , ht whose span contains the
range of Z and orthonormal vectors k1, . . . , kt whose span contains the range
of Y ∗. The corollary follows from the inequality

∥∥Y (
RN(z) −E

[
RN(z)

])
Z
∥∥ ≤

t∑
i,j=1

‖Y‖‖Z‖∣∣k∗
j

(
RN(z) −E

[
RN(z)

])
hi

∣∣
and Part (ii) of the preceding lemma. �

REMARK 4.13. We note for further use that Lemma 4.11 and Corollary 4.12
apply to the resolvent of any self-adjoint polynomial in m+1 noncommuting vari-
ables P(A

(1)
N , . . . ,A

(m)
N ,UNBNU∗

N) as long as the norms of A
(j)
N and BN are uni-

formly bounded in N .

5. Proofs of the main results. The three subsections below provide parallel
treatments of the three models under consideration.

5.1. The additive model XN = AN + UNBNU∗
N . We use the notation from

Section 2.1. Fix α ∈ supp(μ) and β ∈ supp(ν). Due to the left and right invariance
of the Haar measure on U(N) we may, and do, assume without loss of generality
that both AN and BN are diagonal matrices. More precisely, we let AN be the
diagonal matrix

AN = Diag
(
θ1, . . . , θp,α

(N)
1 , . . . , α

(N)
N−p

)
,

where α
(N)
1 ≥ · · · ≥ α

(N)
N−p . We also have θ1 ≥ · · · ≥ θp , but no order relation is

assumed between θi and α
(N)
j other than θi �= α

(N)
j . For N ≥ p, we write AN =

A′
N + A′′

N , where

A′
N = Diag

(
α, . . . , α︸ ︷︷ ︸

p

,α
(N)
1 , . . . , α

(N)
N−p

)
,

and

A′′
N = Diag(θ1 − α, . . . , θp − α,0, . . . ,0︸ ︷︷ ︸

N−p

).

We have A′′
N = P ∗

N�PN , where PN is the p × N matrix representing the usual
projection CN →Cp onto the first p coordinates, and

� = Diag(θ1 − α, . . . , θp − α).
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The operator PN is precisely EAN
({θ1, . . . , θp}) co-restricted to its range. Simi-

larly, BN = B ′
N + B ′′

N , where

B ′
N = Diag

(
β, . . . , β︸ ︷︷ ︸

q

, β
(N)
1 , . . . , β

(N)
N−q

)
,

B ′′
N = Diag(τ1 − β, . . . , τq − β,0, . . . ,0︸ ︷︷ ︸

N−q

) = Q∗
NT QN,

T = Diag(τ1 − β, . . . , τq − β),

and QN is the q × N matrix representing the usual projection CN →Cq .

5.1.1. Reduction to the almost sure convergence of a p × p matrix. Here, we
explain how to reduce, in the spirit of [12], the problem of locating outliers of
AN +UNB ′

NU∗
N to a convergence problem for a random matrix of fixed size p×p.

The matrices A′
N and B ′

N have no spikes and, therefore, [21], Corollary 2.2, applies
to the matrix X′

N = A′
N + UNB ′

NU∗
N . Recall that K = supp(μ � ν). The corollary

states that for any integer k > 0 there exists almost surely Nk ∈N such that for any
N ≥ Nk , we have σ(X′

N) ⊂ K 1
k
. We reformulate this result as follows: there exist

positive random variables (δN)N∈N, such that

σ
(
A′

N + UNB ′
NU∗

N

) ⊆ KδN
, N ∈ N,

and limN→∞ δN = 0 almost surely. Indeed, choose for instance δN = 1
k

for any
Nk ≤ N < Nk+1. Given z ∈ C \ KδN

, we have

zIN − (
AN + UNB ′

NU∗
N

) = zIN − X′
N − A′′

N

= (
zIN − X′

N

)(
IN − (

zIN − X′
N

)−1
A′′

N

)
and, therefore,

det
(
zIN − (

AN +UNB ′
NU∗

N

)) = det
(
zIN −X′

N

)
det

(
IN − (

zIN −X′
N

)−1
P ∗

N�PN

)
.

Using the fact that det(I − XY) = det(I − YX) when XY and YX are square
matrices, we obtain

det
(
IN − (

zIN − X′
N

)−1
P ∗

N�PN

) = det
(
Ip − PN

(
zIN − X′

N

)−1
P ∗

N�
)
,

so

det
(
zIN − (

AN + U∗
NB ′

NUN

))
= det

(
zIN − X′

N

)
det

(
Ip − PN

(
zIN − X′

N

)−1
P ∗

N�
)
.

We conclude that the eigenvalues of AN + UNB ′
NU∗

N outside KδN
are precisely

the zeros of the function det(FN(z)), where

(5.1) FN(z) = Ip − PN

(
zIN − X′

N

)−1
P ∗

N�
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in that open set. This is a random analytic function defined on C\KδN
, with values

in Mp(C). We argue next that the sequence {FN(z)}N converges almost surely to
the deterministic diagonal matrix function

F(z) = Diag
(

1 − θ1 − α

ω1(z) − α
, . . . ,1 − θp − α

ω1(z) − α

)
,

where ω1 is the subordination function from (2.3).

5.1.2. Convergence of FN . We begin with a somewhat more general result.

PROPOSITION 5.1. Fix a positive integer p, and let CN and DN be determin-
istic real diagonal N × N matrices whose norms are uniformly bounded and such
that the limits

ηi = lim
N→∞(CN)ii

exist for i = 1,2, . . . , p. Suppose that the empirical eigenvalue distributions of CN

and DN converge weakly to μ and ν, respectively. Then the resolvent

RN(z) = (
zIN − CN − UNDNU∗

N

)−1
, z ∈ C \R,

satisfies

(5.2) lim
N→∞PNE

[
RN(z)

]
P ∗

N = Diag
(

1

ω1(z) − η1
, . . . ,

1

ω1(z) − ηp

)
,

where ω1 is the subordination function from (2.3).

PROOF. Since all functions involved satisfy f (z) = f (z)∗, it suffices to
consider the case of z ∈ C+. Fix such a scalar z and apply Lemma 4.6 and
Lemma 4.7(2) to b = zIN − CN to conclude that the N × N matrix E[RN(z)]
is invertible and diagonal. Set

(5.3) ωN,i(z) = 1

E[RN(z)]ii + (CN)ii, 1 ≤ i ≤ p,

and observe that 
ωN,i(z) ≥ 
z for z ∈ C+ by Lemma 4.6. We proceed to show
that this function satisfies an approximate subordination relation. We state this
separately for future reference.

LEMMA 5.2. We have

lim
N→∞

∥∥E[
RN(z)

] − (
ωN,i(z)IN − CN

)−1∥∥ = 0, z ∈ C+,1 ≤ i ≤ p.
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PROOF. The existence of

�N(z) = E
[
RN(z)

]−1 + CN, z ∈ C+,

is guaranteed by Lemma 4.6. We apply now Lemma 4.7 with zIN − CN in place
of b and DN in place of BN , so E[RN(z)] = G(zIN − CN). Relation (4.9) shows
that

Y�N(z) − �N(z)Y

= E
[
RN(z)

]−1
E
[(

RN(z) −E
[
RN(z)

])
× (YCN − CNY)

(
RN(z) −E

[
RN(z)

])]
E
[
RN(z)

]−1
, Y ∈ MN(C).

Suppose that Y has rank one and h, k ∈ CN are unit vectors. In this case, there
exist rank one projections p1,p2 and rank two projections q1, q2 (depending on z)
such that

k∗(Y�N(z) − �N(z)Y
)
h

= k∗E
[
RN(z)

]−1

×E
[
p1

(
RN(z) −E

[
RN(z)

])
q1(YCN − CNY)q2

(
RN(z) −E

[
RN(z)

])
p2

]
×E

[
RN(z)

]−1
h.

Indeed, the third and first factors in the product above have rank one, while the
rank of YCN − CNY is at most two. We deduce that∣∣k∗(�N(z)Y − Y�N(z)

)
h
∣∣ ≤ ∥∥E[

RN(z)
]−1∥∥2‖YCN − CNY‖

×E
[∥∥p1

(
RN(z) −E

[
RN(z)

])
q1

∥∥2]1/2

×E
[∥∥q2

(
RN(z) −E

[
RN(z)

])
p2

∥∥2]1/2
.

We use now the estimates from Lemma 4.6 and Corollary 4.12 along with the
inequality ‖YCN − CNY‖ ≤ 2‖CN‖‖Y‖ to obtain a constant C > 0 (independent
of N and z) such that

∣∣k∗(�N(z)Y − Y�N(z)
)
h
∣∣ ≤ C

(|z| + 1 + (1/
z))2

N |
z|4 ‖Y‖.

The number ωN,i(z) is precisely the (i, i) entry of the matrix �N(z), and thus
it belongs to the numerical range W(�N(z)); indeed it equals e∗

i �N(z)ei , where
e1, . . . , eN is the canonical basis in which CN is diagonal. Lemma 4.9 yields the
estimate ∥∥�N(z) − ωN,i(z)IN

∥∥ ≤ 2C
(|z| + 1 + (1/
z))2

N |
z|4 ,

which gives the desired result as N → ∞. �
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Fix now i ∈ {1, . . . , p} and observe that the family of functions (ωN,i)N is nor-
mal on C+. Voiculescu’s asymptotic freeness result shows that

lim
N→∞ trN

(
E
[
RN(z)

]) = Gμ�ν(z) = Gν

(
ω1(z)

)
,

so Lemma 5.2 implies that ωN,i converges uniformly on compact subsets of C+.
This, together with a second application of Lemma 5.2, implies (5.2) and com-
pletes the proof of Proposition 5.1. �

The convergence result for the functions FN also uses a normal family argu-
ment, more specifically the fact that a normal sequence converges uniformly on
compact sets if it converges pointwise on a set with an accumulation point which
belongs to the domain.

PROPOSITION 5.3. Almost surely, the sequence {FN }N converges uniformly
on compact subsets of C \ K to the analytic function F defined by

(5.4) F(z) = Diag
(

1 − θ1 − α

ω1(z) − α
, . . . ,1 − θp − α

ω1(z) − α

)
, z ∈ C \ K.

PROOF. Lemma 3.1, Part (b), and the hypothesis on α, show that the function
z �→ 1/(ω1(z) − α) is analytic on C \ K . Define

D = {
z ∈ C \ K : �z ∈ Q,
z ∈ Q \ {0}}.

The first p diagonal elements of A′
N are all equal to α, and thus Lemma 4.11

(i) and equation (5.2) of Proposition 5.1 (applied to CN = A′
N and DN = B ′

N )
show that given z ∈D, the sequence PN(zIN −X′

N)−1P ∗
N converges almost surely

to (1/(ω1(z) − α))Ip . Moreover, by [21], these functions are almost surely uni-
formly bounded on any compact subset of C \ K . Uniform boundedness on some
neighborhood of infinity in C ∪ {∞} is automatic. We deduce that, almost surely,
this sequence converges uniformly on compact subsets of C \ K to the function
(1/(ω1 − α))Ip . The proposition follows immediately from these facts and (5.1).

�

5.1.3. Proofs of the main results for the additive model.

PROOF OF THEOREM 2.1, PARTS (1) AND (2)—EIGENVALUE BEHAVIOR.
We proceed in two steps.

Step 1. We investigate first the case in which q = 0, that is, BN = B ′
N has no

spikes. Equivalently, we prove our result for the simpler model AN + UNB ′
NU∗

N .
We can work on the almost sure event on which:

• there exists a random sequence {δN }N∈N (as introduced in Section 5.1.1) such
that limN→∞ δN = 0 and σ(A′

N + UNB ′
NU∗

N) ⊆ KδN
for all N , and
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• the sequence (FN)N defined in (5.1) converges to the function F defined by
(5.4) uniformly on the compact subsets of C \ K (guaranteed by Proposi-
tion 5.3).

We apply Lemma 4.5 on this event, with γ =R. We first argue that the hypothe-
ses of that lemma are satisfied. The values of F are clearly diagonal matrices and
F(∞) = Ip . We show that the zeros of (F (z))ii are simple. Indeed,

(
F ′(z)

)
ii = ω′

1(z)(θi − α)

(ω1(z) − α)2 ,

and the zeros of ω′
1 are simple by the Julia–Carathéodory theorem ([25], Chapter I,

Exercises 6 and 7) because ω1(C
+) ⊂ C+.

Hypotheses (1) and (3) of Lemma 4.5 follow from Proposition 5.3. To verify
hypothesis (2) of Lemma 4.5, observe that if FN(z) is not invertible then z is an
eigenvalue of the self-adjoint matrix AN + UNB ′

NU∗
N , hence real. There are arbi-

trarily small numbers δ > 0 such that the boundary points of Kδ are not zeros of
det(F ). When this condition is satisfied, Lemma 4.5 yields precisely the conclu-
sion of Theorem 2.1(1)–(2), when q = 0. Indeed, as explained in Section 5.1.1, the
eigenvalues of AN + UNB ′

NU∗
N in C \ Kδ are exactly the zeros of det(FN), and

the set of points z such that F(z) is not invertible is precisely
⋃p

i=1 ω−1
1 ({θi}). This

completes the first step.
Step 2. Suppose now that q > 0 and use Step 1 above to obtain the existence

of a sequence of positive random variables (δN)N∈N such that limN→∞ δN = 0
almost surely and σ(AN + UNB ′

NU∗
N) ⊆ K ′′

δN
, where

K ′′ = K ∪
p⋃

i=1

ω−1
1

({θi}).
We proceed as in Step 1 (switching the roles of AN and BN ) in order to conclude
that the eigenvalues of XN outside K ′′

δN
are precisely the zeros of the function

det(Iq − QN(zIN − UNANU∗
N − B ′

N)−1Q∗
NT ) in that open set, where

T = Diag(τ1 − β, . . . , τq − β),

and QN is the orthogonal projection CN → Cq . Lemma 4.5 is applied now to the
functions

F̃N(z) = Iq − QN

(
zIN − UNANU∗

N − B ′
N

)−1
Q∗

NT , N ≥ q,

F̃ (z) = Diag
(

1 − τ1 − β

ω2(z) − β
, . . . ,1 − τq − β

ω2(z) − β

)
,

and the compact set K ′′. The convergence of {F̃N }N to F̃ follows by an adaptation
of Proposition 5.3. This completes the proof of Parts (1) and (2) of Theorem 2.1
in the general case q > 0, provided that k = 0. By symmetry, we have also proved
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these assertions in case � = 0. To prove (2) in case k� �= 0, we use a perturba-
tion argument. Fix ρ ∈ R \ K such that ω1(ρ) = θi0 for some i0 ∈ {1, . . . , p} and
ω2(ρ) = τj0 for some j0 ∈ {1, . . . , q}, and fix ε > 0 as in the statement of (2).
Choose δ ∈ (0, ε/3) so small that ω1((ρ − 3δ, ρ + 3δ)) contains no spikes θi �= θi0

and ω2((ρ−3δ, ρ+3δ)) contains no spikes τj �= τj0 . Since ω1 is strictly increasing
on (ρ −3δ, ρ +3δ), we have ω1(ρ +2δ) = θi0 +η, with η > 0. We use the already
established Part 2 of the theorem to conclude that, almost surely for large N , the
perturbed matrix

X′
N = XN + ηEAN

({θi0}
)

has � eigenvalues in (ρ −δ, ρ +δ) and another k eigenvalues in the disjoint interval
(ρ + δ, ρ + 3δ). An application of Lemma 4.10 and Part 1 of the theorem for
sufficiently small δ shows that XN has k + � eigenvalues in (ρ − ε,ρ + ε). �

PROOF OF THEOREM 2.1, PARTS (3) AND (4)—EIGENSPACE BEHAVIOR.
We borrow heavily from the techniques of [16]. There are again two steps.

Step A. We prove Theorem 2.1(3)–(4) under the additional assumption that
θ1 > · · · > θp , τ1 > · · · > τq , k = 1, and � = 0. Thus ω1(ρ) = θi0 for some
i0 ∈ {1, . . . , p}, and ω2(ρ) /∈ {τ1, . . . , τq}. Assertion (3) of Theorem 2.1 follows
if the equalities

lim
N→∞

∥∥∥∥EAN

({θi})EXN

(
(ρ − ε,ρ + ε)

)
EAN

({θi}) − δi0i

ω′
1(ρ)

EAN

({θi})∥∥∥∥ = 0,

and

lim
N→∞

∥∥EBN

({τj })EXN

(
(ρ − ε,ρ + ε)

)
EBN

({τj })∥∥ = 0,

are shown to hold almost surely for all i = 1, . . . , p, j = 1, . . . , q . The Hermitian
matrices in these equations have rank one, so their norm is equal to the absolute
value of their unnormalized trace. Thus, we need to show that

(5.5) lim
N→∞ TrN

[
EAN

({θi})EXN

(
(ρ − ε,ρ + ε)

)] = δi0i

ω′
1(ρ)

, i = 1, . . . , p,

and

(5.6) lim
N→∞ TrN

[
EBN

({τj })EXN

(
(ρ − ε,ρ + ε)

)] = 0, j = 1, . . . , q,

almost surely. It is useful to write the random variable in (5.5) in terms of func-
tional calculus with continuous rather than indicator functions. Choose δ > 0 so
small that each interval [θi − δ, θi + δ] contains exactly one point of σ(AN)

(namely, θi) for i = 1, . . . , p and for large N . For each i = 1, . . . , p, choose a
function fi ∈ D(R) with support in [θi − δ, θi + δ] such that 0 ≤ fi ≤ 1 and
fi(θi) = 1. Also choose a function h ∈ D(R) with support in [ρ − ε,ρ + ε] such
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that 0 ≤ h ≤ 1 and h(x) = 1 for x ∈ [ρ − ε/2, ρ + ε/2]. For sufficiently large N ,
we have EAN

({θi}) = fi(AN). Also, by the already established assertion (1) of the
theorem, we have EXN

((ρ − ε,ρ + ε)) = h(XN) almost surely for N sufficiently
large. Thus, we see that, almost surely for sufficiently large N and for i = 1, . . . , p,
we have

(5.7) TrN
[
EAN

({θi})EXN

(
(ρ − ε,ρ + ε)

)] = TrN
[
h(XN)fi(AN)

]
.

To complete the proof of (5.5), we obtain as in Lemma 4.11 a concentration in-
equality for the right-hand side of (5.7) and then we estimate the expected value.
In the following argument we use the fact that a Lipschitz function on R remains
Lipschitz, with the same constant, when considered as a function on the selfad-
joint matrices endowed with the Hilbert–Schmidt norm. See [16], Lemma A.2, for
a simple proof of this fact, first observed in [15].

LEMMA 5.4. Fix i ∈ {1, . . . , p}, denote by γ the Lipschitz constant of the
function h, and set C = supN ‖BN‖. For N sufficiently large, the random variable
ZN = Tr[h(XN)fi(AN)] satisfies the concentration inequality

P
(∣∣ZN −E(ZN)

∣∣ > η
) ≤ 2 exp

(
− η2N

4C2γ 2

)
, η > 0.

PROOF. The lemma follows from [2], Corollary 4.4.28, once we establish that
the Lipschitz constant of the function

g(U) = TrN
[
h
(
AN + UBNU∗)fn(AN)

]
, U ∈ U(N),

is at most 2Cγ . For any U and V in U(N), we have∣∣g(U) − g(V )
∣∣ = ∣∣TrN

[
fi(AN)

(
h
(
AN + UBNU∗) − h

(
AN + V BNV ∗))]∣∣

≤ ∥∥h(AN + UBNU∗) − h
(
AN + V BNV ∗)∥∥

2

≤ γ
∥∥U∗BNU − V ∗BNV

∥∥
2,

where we used the Cauchy–Schwarz inequality for the Hilbert–Schmidt norm and
the fact that ‖fi(AN)‖2 ≤ 1. Since∥∥UBNU∗ − V BNV ∗∥∥

2 ≤ ∥∥UBN

(
U∗ − V ∗)∥∥

2 + ∥∥(U − V )BNV ∗∥∥
2

≤ 2‖BN‖‖U − V ‖2,

we conclude that |g(U) − g(V )| ≤ 2Cγ ‖U − V ‖2, as desired. �

The above result, combined with the Borel–Cantelli lemma, yields immediately

lim
N→∞

(
TrN

[
h(XN)fi(AN)

] −E
[
TrN

[
h(XN)fi(AN)

]]) = 0, i = 1, . . . , p,
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almost surely. We complete the proof of (5.5) by showing that

lim
N→∞E

[
TrN

[
h(XN)fi(AN)

]] = δi0i

ω′
1(ρ)

, i = 1, . . . , p.

Lemma 4.4 with CN = fi(AN) allows us to rewrite this as

lim
N→∞ lim

y↓0

1

π


∫
R
E
[
TrN

[
RN(t + iy)fi(AN)

]]
h(t) dt = − δi0i

ω′
1(ρ)

,

i = 1, . . . , p,

or more simply, because fi(AN) is the projection of CN onto the ith coordinate,

(5.8) lim
N→∞ lim

y↓0

1

π


∫
R
E
[[

RN(t + iy)
]
ii

]
h(t) dt = − δi0i

ω′
1(ρ)

, i = 1, . . . , p.

Lemma 5.2 suggests writing

(5.9) E
[
RN(z)ii

] = 1

ω1(z) − θi

+ �i,N(z), i = 1, . . . , p, z ∈C+.

We proceed to estimate the functions �i,N .

PROPOSITION 5.5. There exist positive numbers {aN }N such that∣∣�i,N(z)
∣∣ ≤ aN

(
1 + |z|)4(1 + |
z|−1)4

, z ∈ C \R, i = 1, . . . , p,

and limN→∞ aN = 0.

PROOF. Define analytic functions ωN,i for i = 1, . . . , p using (5.3) with
AN,BN in place of CN,DN , respectively. These functions are analytic outside
the interval [−‖AN‖ − ‖BN‖,‖AN‖ + ‖BN‖], and the hypothesis that ‖AN‖ and
‖BN‖ are uniformly bounded implies their analyticity on C \ [−m,m] for some
m > 0 independent of N . The matrix E[RN(z)] belongs to {AN }′′ by Lemma 4.7,
and is therefore a diagonal matrix, so

ωN,i(z) = (
E
[
RN(z)

]−1)
ii + θi, i = 1, . . . , p.

By Lemma 4.6 and the considerations preceding it [especially (4.5) and (4.6)],

lim
z→∞

ωN,i(z)

z
= (IN)ii = 1,

lim
z→∞ωN,i(z) − z = −(

AN +E
[
UNBNU∗

N

])
ii + θi = −trN(BN)

and

lim
z→∞ z

(
ωN,i(z) − z + trN(BN)

) = −E
[(

XN −E
[
(XN)

])2]
ii

= −(
trN

(
B2

N

) − trN(BN)2),
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for N ≥ p and i = 1, . . . , p. It follows that we have, as in (3.3), Nevanlinna repre-
sentations of the form

ωN,i(z) = z − trN(BN) −
∫
[−m,m]

1

z − t
dσN,i(t), z ∈ C \ [−m,m],

where σN,i is a positive measure on [−m,m], with total mass trN(B2
N)− trN(BN)2.

Similarly, the subordination function ω1 from (3.5) can be written as

ω1(z) = z −
∫
R

t dν(t) −
∫
R

1

z − t
dσ (t), z ∈ C+.

The hypothesis that the empirical eigenvalue distribution of BN converges to
ν implies in particular limN→∞ trN(BN) = ∫

R t dν(t). In addition, the fact that
limN→∞ ωN,i = ω1 uniformly on compact subsets of C \ [−m,m] implies that
σ is supported in [−m,m] and that limN→∞ σN,i = σ in the weak∗-topology.
Lemma 4.1, applied to the sequence ρN,i = σN,i − σ yields nonnegative numbers
{vN,i}N≥s such that limN→∞ vN,i = 0 and∣∣ωN,i(z) − ω1(z)

∣∣ < (
1 + 1

(
z)2

)
vN,i +

∣∣∣∣∫
R

t dν(t) − trN(BN)

∣∣∣∣, z ∈ C+.

We can now estimate∣∣∣∣E[
RN(z)ii

] − 1

ω1(z) − θi

∣∣∣∣ = ∣∣∣∣ 1

ωN,i(z) − θi

− 1

ω1(z) − θi

∣∣∣∣
= |ωN,i(z) − ω1(z)|

|ωN,i(z) − θi ||ω1(z) − θi |
<

|ωN,i(z) − ω1(z)|
|
z|2

≤ aN

(
1 + |z|)2 · 2

|
z|4 ,

where

aN = max
{
vN,1, . . . , vN,p,

∣∣∣∣∫
R

t dν(t) − trN(BN)

∣∣∣∣}.

The proposition follows. �

COROLLARY 5.6. We have

lim
N→∞ lim sup

y→0

∣∣∣∣∫
R

�i,N(t + iy)h(t) dt

∣∣∣∣ = 0, i = 1, . . . , p.

PROOF. The preceding proposition allows us to apply Lemma 4.3 to obtain a
positive constant c such that

lim sup
y↓0

∣∣∣∣∫
R

�i,N(t + iy)h(t) dt

∣∣∣∣ ≤ caN
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for N ≥ p and i = 1, . . . , p. The corollary follows. �

The preceding result, combined with (5.9), shows that (5.8) is equivalent to

(5.10) lim
y↓0

1

π


∫ ρ+ε

ρ−ε

h(t)

ω1(t + iy) − θi

dt = − δi0i

ω′
1(ρ)

, i = 1, . . . , p.

This is easily verified. Indeed, denote by �y , y > 0, the rectangle with vertices
ρ ± ε/2 ± iy. Calculus of residues yields

1

2πi

∫
∂�y

1

ω1(z) − θi

dz = δi0i

ω′
1(ρ)

, i = 1, . . . , p.

On the other hand,

1

π


∫ ρ+ε

ρ−ε

h(t)

ω1(t + iy) − θi

dt

= 1

2πi

∫ ρ+ε

ρ−ε

[
h(t)

ω1(t + iy) − θi

− h(t)

ω1(t − iy) − θi

]
dt.

Now we use the fact that h = 1 on (ρ − ε/2, ρ + ε/2) to conclude that

1

π


∫ ρ+ε

ρ−ε

h(t)

ω1(t + iy) − θi

dt + 1

2πi

∫
∂�y

1

ω1(z) − θi

dz,

is a sum of the following four integrals:

1

π


∫ ρ−ε/2

ρ−ε

h(t)

ω1(t + iy) − θi

dt,
1

π


∫ ρ+ε

ρ+ε/2

h(t)

ω1(t + iy) − θi

dt,

1

2πi

∫ ρ−ε/2−iy

ρ−ε/2+iy

1

ω1(z) − θi

dz,
1

2πi

∫ ρ+ε/2+iy

ρ+ε/2−iy

1

ω1(z) − θi

dz,

all of which are easily seen to tend to zero as y ↓ 0. This completes the proof of
(5.10) and therefore of (5.5). We observe now that the proof of (5.5) for i �= i0
uses only the fact that ω1(ρ) �= θi . Therefore, switching the roles of AN and BN

in this argument yields a proof of (5.6) and completes the proof of Part (3). of
Theorem 2.1 in this case if k = 1 and � = 0. The case � = 1 and k = 0 follows by
symmetry.

Assertion (4) of the theorem follows from (3) simply because EXN
((ρ − ε,ρ +

ε)) is a projection of rank one. Indeed, denote by {ei}Ni=1 the canonical basis in
CN , so ANei = θiei . Let ξ be a unit vector in the range of EXN

((ρ − ε,ρ + ε)), so
EXN

((ρ − ε,ρ + ε))h = 〈h, ξ〉ξ for every h ∈ CN . Direct calculation shows that

PNEXN

(
(ρ − ε,ρ + ε)

)
PNei0 =

p∑
i=1

〈ei0, ξ〉〈ξ, ei〉ei
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and thus, almost surely, for all ι > 0, there exists N0 such that if N ≥ N0 and
ξ ∈ EXN

((ρ − ε,ρ + ε)), then∥∥∥∥∥
p∑

i=1

〈ei0, ξ〉〈ξ, ei〉ei − 1

ω′
1(ρ)

ei0

∥∥∥∥∥ < ι.

In particular, we obtain ||〈ei0, ξ〉|2 − 1/ω′
1(ρ)| < ι, which is precisely the first re-

lation in (4). The case k = 0, � = 1 follows by symmetry.

Step B. In this step, we prove (3) and (4) in the general case of spikes with
higher multiplicities and arbitrary values for k and �. We use an idea from [16] to
reduce the problem to the case considered in Step A. Given N ≥ p + q , let η and
δ be positive numbers such that the matrices

AN,η = AN + Diag
(
pη, (p − 1)η, . . . , η,0, . . . ,0︸ ︷︷ ︸

N−p

)
,(5.11)

BN,δ = BN + Diag
(
qδ, (q − 1)δ, . . . , δ,0, . . . ,0︸ ︷︷ ︸

N−q

)
(5.12)

have distinct spikes θi(η) = θi + (p − i + 1)η and τj (δ) = τj + (q − j + 1)δ,
respectively. The fact that ω1 is increasing and continuous at ρ implies that, for
sufficiently small η, there exist exactly k indices i1, . . . , ik such that the equations
ω1(t) = θin(η) each have a solution ρn = ρn(η) ∈ (ρ − ε,ρ + ε), n = 1,2, . . . ,k.
Similarly, for sufficiently small δ there exist � indices j1, . . . , j� and � values
ρk+n = ρk+n(δ) ∈ (ρ − ε,ρ + ε) such that ω2(ρk+n(δ)) = τjn(δ), n = 1, . . . , �.
The numbers η and δ can be chosen such that the intervals (ρn − 2η,ρn + 2η),
n = 1,2, . . . , k + �, are pairwise disjoint and contained in (ρ − ε,ρ + ε). We con-
clude that the arguments of Step A hold with XN,η,δ = AN,η + UNBN,δU

∗
N , ρn,

and η in place of XN , ρ and ε, respectively. Thus,

lim
N→∞

∥∥∥∥PNEXN,η,δ

(
(ρn − η,ρn + η)

)
PN − 1

ω′
1(ρn)

EAN,η

({
ω1(ρn)

})∥∥∥∥ = 0

almost surely for n = 1, . . . , k + �. We have
k+�∑
n=1

EXN,η,δ

(
(ρn − η,ρn + η)

) = EXN,η,δ

(
(ρ − ε,ρ + ε)

)
and also, noting that EAN,η({ω1(ρn)}) = 0 for n = k + 1, . . . , k + �,

k+�∑
n=1

EAN,η

({
ω1(ρn)

}) = EAN

({
ω1(ρ)

})
for small η. In addition, 1/ω′

1(ρn) can be made arbitrarily close to 1/ω′
1(ρ) by

making η sufficiently small. We conclude that for any γ > 0, if η, δ > 0 are suffi-
ciently small, almost surely for all large N∥∥∥∥PNEXN,η,δ

(
(ρ − ε,ρ + ε)

)
PN − 1

ω′
1(ρ)

EAN

({
ω1(ρ)

})∥∥∥∥ < γ.



OUTLIERS IN THE SPECTRUM OF DEFORMED MODELS 3615

Clearly,

‖XN − XN,η,δ‖ ≤ pη + qδ.

An application of Lemma 4.10 shows that almost surely, there exists an N0 de-
pending only on ε such that if N > N0, for any γ > 0, if η, δ > 0 are sufficiently
small (depending only on γ and not on N ), then

(5.13)
∥∥EXN,η,δ

(
(ρ − ε,ρ + ε)

) − EXN

(
(ρ − ε,ρ + ε)

)∥∥ < ι.

The first inequality in (3) follows at once, and the second one is proved similarly.
We now verify assertion (4) when � = 0. Let ξ (N) be a unit vector in the range

of EXN
((ρ − ε,ρ + ε)). Since the quantity in (5.13) is small, we can find, al-

most surely for large N , unit vectors ξ
(N)
η,δ ∈ EXN,η,δ

((ρ − ε,ρ + ε))CN such that

limδ+η→0 ‖ξ (N) − ξ
(N)
η,δ ‖ = 0, uniformly in N . It suffices therefore to prove that

lim sup
N→∞

∣∣∣∣∥∥EAN

({
ω1(ρ)

})
ξ

(N)
η,δ

∥∥2 − 1

ω′
1(ρ)

∣∣∣∣
can be made arbitrarily small for appropriate choices of η and δ. Write ξ

(N)
η,δ =

ξ
(N)
1 +· · ·+ ξ

(N)
k with ξ

(N)
n in the range of EXN,η,δ

((ρn −η,ρn +η)), n = 1, . . . , k.
The case of assertion (4) proved in Step A shows that for any η, δ > 0 sufficiently
small,

lim
N→∞

∥∥EAN,η

({
ω1(ρn)

})
ξ (N)
n

∥∥2 − ‖ξ (N)
n ‖2

ω′
1(ρn)

= 0, n = 1, . . . , k.

We also have limN→∞ ‖EAN,η
({θi(η)})ξ (N)

n ‖ = 0 for i /∈ {i1, . . . , ik}. Since

EAN

({
ω1(ρ)

}) = EAN,η

({
ω1(ρ1), . . . ,ω1(ρk)

})
,

the relation ∣∣∣∣∥∥EAN

({
ω1(ρ)

})
ξ

(N)
η,δ

∥∥2 − 1

ω′
1(ρ)

∣∣∣∣
≤

∣∣∣∣∣
k∑

n=1

∥∥EAN,η

({
ω1(ρn)

})
ξ (N)
n

∥∥2 − ‖ξ (N)
n ‖2

ω′
1(ρn)

∣∣∣∣∣
+

k∑
n=1

∥∥ξ (N)
n

∥∥2
∣∣∣∣ 1

ω′
1(ρn)

− 1

ω′
1(ρ)

∣∣∣∣
+ ∑

m�=n

∥∥EAN,η

({
ω1(ρm)

})
ξ (N)
n

∥∥
implies

lim sup
N→∞

∣∣∣∣∥∥EAN

({
ω1(ρ)

})
ξ

(N)
η,δ

∥∥2 − 1

ω′
1(ρ)

∣∣∣∣ ≤ max
1≤n≤k

∣∣∣∣ 1

ω′
1(ρn)

− 1

ω′
1(ρ)

∣∣∣∣.
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The desired conclusion follows by noting that ω′
1(ρn) = ω′

1(ρn(η)) can be made ar-
bitrarily close to ω′

1(ρ). The second part of assertion (4) follows by symmetry. �

The proofs of the versions of Theorem 2.5 for the positive line and for the unit
circle follow the same outline. We avoid excessive repetition and only indicate the
differences in the tools used throughout the proof.

5.2. The multiplicative model XN = A
1/2
N UNBNU∗

NA
1/2
N . We use the notation

from Section 2.2. As in the previous section, we assume that both AN and BN are
diagonal matrices:

AN = Diag
(
θ1, . . . , θp,α

(N)
1 , . . . , α

(N)
N−p

)
,

BN = Diag
(
τ1, . . . , τq, β

(N)
1 , . . . , β

(N)
N−q

)
.

Since μ,ν �= δ0, fix α ∈ supp(μ) \ {0} and β ∈ supp(ν) \ {0}. We use the following
multiplicative decompositions:

AN = A′
NA′′

N = A′′
NA′

N,

A′
N = Diag

(
α, . . . , α,α

(N)
1 , . . . , α

(N)
N−p

)
,

A′′
N = Diag(θ1/α, . . . , θp/α,1, . . . ,1),

BN = B ′
NB ′′

N = B ′′
NB ′

N,

B ′
N = Diag

(
β, . . . , β,β

(N)
1 , . . . , β

(N)
N−q

)
,

B ′′
N = Diag(τ1/β, . . . , τq/β,1, . . . ,1).

As before, we write A′′
N = P ∗

N�PN + IN − P ∗
NPN , where PN is defined as in

Section 5.1 and

� = Diag(θ1/α, . . . , θp/α).

Similarly, B ′′
N = Q∗

NT QN + IN − Q∗
NQN , where QN is defined as in Section 5.1

and

T = Diag(τ1/β, . . . , τq/β).

We discuss first the behavior of the model A
1/2
N UNB ′

NU∗
NA

1/2
N with spikes only

on AN . The essential step is a reduction to a convergence problem for a sequence
of matrices of fixed size.

5.2.1. Reduction to the almost sure convergence of a p×p matrix. Recall that
K = supp(μ � ν). Corollary 2.2 of [21] yields the existence of positive random
variables {δN }N∈N such that

σ
((

A′
N

)1/2
UNB ′

NU∗
N

(
A′

N

)1/2) ⊆ KδN

and limN→∞ δN = 0 almost surely.
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We argue first that, in case 0 /∈ supp(μ � ν), it follows that XN is almost surely
invertible for large N . Indeed, in this case, 0 /∈ supp(μ) ∪ supp(ν). Therefore, AN

and BN are invertible for large N , and thus so is XN . This observation allows us
to restrict the analysis to nonzero eigenvalues of XN .

Denote X′
N = A

1/2
N UNB ′

NU∗
NA

1/2
N . Fix z ∈ C \ (KδN

∪ {0}) such that the matrix
zIN − (A′

N)1/2UNB ′
NU∗

N(A′
N)1/2 is invertible. Using Sylvester’s identity det(I −

XY) = det(I − YX), we obtain for large N

det
(
zIN − X′

N

)
= zN det

(
IN − z−1A′′

N

(
A′

N

)1/2
U∗

NB ′
NUN

(
A′

N

)1/2)
= zN det

(
IN − A′′

N + A′′
N

(
IN − z−1(A′

N

)1/2
UNB ′

NU∗
N

(
A′

N

)1/2))
= det

((
IN − A′′

N

)(
IN − z−1(A′

N

)1/2
UNB ′

NU∗
N

(
A′

N

)1/2)−1 + A′′
N

)
× det

(
zIN − (

A′
N

)1/2
UNB ′

NU∗
N

(
A′

N

)1/2)
.

The matrix (IN − A′′
N)(IN − 1

z
(A′

N)1/2UNB ′
NU∗

N(A′
N)1/2)−1 + A′′

N is of the form[
FN(z) ∗

0 IN−p

]
,

where FN is the analytic function with values in Mp(C) defined on C\ (KδN
∪{0})

by

(5.14) FN(z) := (Ip − �)PN

(
IN − 1

z

(
A′

N

)1/2
UNB ′

NU∗
N

(
A′

N

)1/2
)−1

P ∗
N + �,

and � is the diagonal p × p matrix defined earlier. Thus, for large N , the nonzero
eigenvalues of X′

N outside KδN
are precisely the zeros of det(FN) in that open set.

As in Section 5.1, the random matrix functions sequence {FN }N converges a.s. to
a diagonal deterministic p × p matrix function:

5.2.2. Convergence of FN . We start with the analogue of Proposition 5.1.

PROPOSITION 5.7. Fix a positive integer p, and let CN and DN be determin-
istic nonnegative diagonal N × N matrices with uniformly bounded norms such
that, for all i = 1, . . . , p, (CN)ii �= 0 and the limits

ηi = lim
N→∞(CN)ii

exist. Suppose that the empirical eigenvalue distributions of CN and DN converge
weakly to μ and ν, respectively. Then the resolvent

RN(z) = (
zIN − C

1/2
N UNDNU∗

NC
1/2
N

)−1
, z ∈ C \R

satisfies

lim
N→∞PNE

[
zRN(z)

]
P ∗

N = Diag
(

1

1 − η1ω1(z−1)
, . . . ,

1

1 − ηpω1(z−1)

)
.
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PROOF. We consider without loss of generality elements z ∈ C+. If CN is
invertible, then Lemma 4.7(2) applied to b = zC−1

N implies that E[RN(z)] is diag-
onal. If CN is not invertible, then

lim
ε↓0

E
[(

zIN − (CN + εIN)1/2UNDNU∗
N(CN + εIN)1/2)−1] = E

[
RN(z)

]
.

The limit of diagonal matrices is diagonal, so E[RN(z)] is diagonal. Define

(5.15) ωN,i(z) := 1

(CN)ii

(
1 − z

E[RN(z−1)]ii
)
, 1 ≤ i ≤ p.

We prove the uniform convergence on compact subsets of C \ R+ of the se-
quences {ωN,i}N≥p of analytic functions to ω1. The multiplicative counterpart of
Lemma 5.2 is as follows.

LEMMA 5.8. Assume that CN ≥ εIN for some ε > 0. We have

lim
N→∞

∥∥zE[
RN(z)

] − (
IN − ωN,i

(
z−1)CN

)−1∥∥ = 0, z ∈C \R, i ∈ {1, . . . , p}.

PROOF. For z ∈ C+, define

�N(z) = (CN)−1E
[
RN

(
z−1)]−1 = E

[(
(zCN)−1 − UNDNU∗

N

)−1]−1
.

This function is well defined by Lemma 4.6, and the second equality is justified by
Lemma 4.7(2). We apply Lemma 4.7(1) with b = (zCN)−1 to obtain

Y
(
�N(z) − (zCN)−1) − (

�N(z) − (zCN)−1)Y
= �N(z)E

[((
(zCN)−1 − UNDNU∗

N

)−1 − �N(z)−1)
×(

Y(zCN)−1 − (zCN)−1Y
)

× ((
(zCN)−1 − UNDNU∗

N

)−1 − �N(z)−1)]�N(z).

Consider arbitrary norm one vectors h, k ∈ CN and an Y of rank one to conclude
the existence of rank one projections p1,p2 and rank 2 projections q1, q2 such that∣∣k∗(Y (

�N(z) − (zCN)−1) − (
�N(z) − (zCN)−1)Y )

h
∣∣

≤ ∥∥�N(z)
∥∥2∥∥Y(zCN)−1 − (zCN)−1Y

∥∥
×E

[∥∥p1
((

(zCN)−1 − UNDNU∗
N

)−1 − �N(z)−1)q1
∥∥2]1/2

×E
[∥∥q2

((
(zCN)−1 − UNDNU∗

N

)−1 − �N(z)−1)p2
∥∥2]1/2

.

Lemma 4.6 yields ‖�N(z)‖ < ‖(zCN)−1‖ + ‖DN‖ + 4c‖(1/
(1/z))CN‖, with
c ∈ (0,+∞). Remark 4.13 provides estimates for the last two factors. The estimate
‖Y(zCN)−1 − (zCN)−1Y‖ < 2‖Y‖|z−1|ε−1 is obvious. Thus,∣∣k∗(Y (

�N(z) − (zCN)−1) − (
�N(z) − (zCN)−1)Y )

h
∣∣ ≤ C(z, ε)

N
‖Y‖
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for some constant C(z, ε) independent of N . The (i, i) entry of the matrix �N(z)−
(zCN)−1 is precisely e∗

i (�N(z) − (zCN)−1)ei , which belongs to the numerical
range of �N(z) − (zCN)−1. Lemma 4.9 yields∥∥�N(z) − (zCN)−1 − (

e∗
i

(
�N(z) − (zCN)−1)ei

)
IN

∥∥ < 2
C(z, ε)

N
.

Since CN is diagonal, the lemma follows by letting N → ∞. �

The proof of Proposition 5.7 when CN is bounded from below by a posi-
tive multiple of IN is now completed by an application of the above lemma. In-
deed, using Biane’s subordination formula (2.4) and the asymptotic freeness result
of Voiculescu [39], we obtain

lim
N→∞ trN

(
zE

[
RN(z)

]) = 1 + ψμ�ν(1/z) = 1 + ψμ

(
ω1(1/z)

)
.

Clearly, trN((IN − ωN,i(1/z)CN)−1) → 1 + ψμ(limN→∞ ωN,i(1/z)). The result
follows by analytic continuation. The general case follows by replacing a nonin-
vertible CN by CN + εIN . The approximation is uniform in N , so a normal family
argument yields the desired result as ε → 0. �

Observe that

FN(z) = (Ip − �)PN

(
zR′

N(z)
)
P ∗

N + �,

where R′
N denotes the resolvent of (A′

N)1/2UNB ′
NU∗

N(A′
N)1/2. An application

of Proposition 5.7 to CN = A′
N and DN = B ′

N , Remark 4.13, as well as of
Lemma 3.2, yield the following result. We leave the details, similar to the ones
in the proof of Proposition 5.3, to the reader.

PROPOSITION 5.9. Almost surely, the sequence {FN }N converges uniformly
on the compact subsets of C \ K to the analytic function F defined on C \ K by

F(z) = diag
((

1 − θj

α

)
1

1 − αω1(z−1)
+ θj

α

)p

j=1
.

5.2.3. Proofs of the main results for the positive multiplicative model.

PROOF OF THEOREM 2.5(1)–(2)—EIGENVALUE BEHAVIOR. Step 1. We
prove our result for the model A

1/2
N UNB ′

NU∗
NA

1/2
N in which only AN has spikes.

We consider the almost sure event, whose existence is guaranteed by Proposi-
tion 5.9, on which there exist a sequence {δN }N ⊂ (0,+∞) converging to zero
such that:

• σ(A
′1/2
N UNB ′

NU∗
NA

′1/2
N ) ⊆ KδN

, and
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• the sequence {FN(z)}N≥p converges to

F(z) = diag
((

1 − θj

α

)
1

1 − αω1(z−1)
+ θj

α

)p

j=1

uniformly on the compact subsets of C \ K .

On this event, we apply Lemma 4.5 with γ = R, the sequence {FN }N≥p and its
uniform on compacts limit F . We argue first that the function FN(z) given by
equation (5.14) is invertible for z /∈ R. Indeed, the relations preceding (5.14) imply
that, if FN(z) is not invertible, then z is an eigenvalue of the selfadjoint matrix
X′

N , and hence it is a real number. This verifies hypothesis 2. Hypotheses 1 and 3
follow from Proposition 5.9. Finally, F(∞) = Ip ,

(
F ′(z)

)
jj = ω′

1(1/z)(θj − α)

z2(1 − αω1(1/z))2 ,

and the zeros of ω′
1 are simple by the Julia–Carathéodory theorem. Thus,

Lemma 4.5 applies to FN and F .
For almost every δ > 0, the boundary points of Kδ are not zeros of det(F ).

When this condition is satisfied, Lemma 4.5 yields precisely the conclusion of
Theorem 2.5(1)–(2), when q = 0. Indeed, as noted above, the nonzero eigenvalues
of X′

N in C \ Kδ are exactly the zeros of det(FN), and the set of points z such that
F(z) is not invertible is precisely

⋃p
i=1 v−1

1 ({1/θi}). This completes the first step.
Step 2. This is completely analogous to the reasoning from the second step of

the proof of Theorem 2.1(1)–(2). We omit the details. �

PROOF OF THEOREM 2.5, PARTS 3 AND 4—EIGENSPACE BEHAVIOR. Step A.
We assume first that θ1 > · · · > θp > 0, τ1 > · · · > τq > 0, � = 0 and k = 1.
Step A of the proof of Theorem 2.1 is modified as follows: XN is replaced by

A
1/2
N UNBNU∗

NA
1/2
N , the analogue of Lemma 5.4 holds with the constant C re-

placed by supN ‖AN‖‖BN‖, and Proposition 5.5 is replaced by the following state-
ment.

PROPOSITION 5.10. There is a polynomial P with nonnegative coefficients, a
sequence {aN }N of nonnegative real numbers converging to zero when N goes to
infinity and some nonnegative integer number t , such that for every i = 1, . . . , p

and z ∈C \R,

(5.16) E
[
RN(z)ii

] = 1

z

1

1 − θiω1(1/z)
+ �i,N(z),

with ∣∣�i,N(z)
∣∣ ≤ (

1 + |z|)tP (|
z|−1)aN .
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PROOF. We set

ωN,i(z) = 1

θi

(
1 − z

E[RN(1
z
)]ii

)
, z ∈ C \ [0,+∞).

As established in Proposition 5.7, limN→∞E[zRN(z)]ii = (1 − θiω1(1/z))−1. It
follows that ωN,i converges to ω1 uniformly on compacts of C \ [0,+∞). Clearly,
ωN,i is also defined on a neighborhood of zero. Note that

lim
y→+∞ωN,i(−1/iy) = 1

θi

(
1 − 1

lim
y→+∞E[−iyRN(−iy)]ii

)
= 1

θi

(
1 − 1

1

)
= 0

and

lim
y→+∞ iyωN,i

(−1

iy

)
= − 1

θi

lim
y→+∞

E[iyXN(iy + XN)−1]ii
E[iy(iy + XN)−1]ii = − 1

θi

E[XN ]ii .
In addition, since ‖XN‖ ≤ ‖AN‖‖BN‖ which is uniformly bounded, the map z �→
ωN,i(−1/z) is analytic and real on the complement of an interval [−m,0], with
m = supN ‖AN‖‖BN‖. Thus, the maps z �→ ωN,i(−1/z) and z �→ ω1(−1/z) are
Nevanlinna maps (3.3), and hence can pe represented as

ωN,i

(−1

z

)
=

∫
[−m,0]

1

t − z
d�N,i(t), z ∈ C+,

and

ω1

(−1

z

)
=

∫
[−m,0]

1

t − z
d�(t), z ∈ C+.

Here, �N,i,� are positive measures on [−m,0], �N,i([−m,0]) = 1
θi
E[XN ]ii ,

and �([−m,0]) =
∫
R

td(μ�ν)(t)∫
R

t dμ(t)
= ∫

R t dν(t). Thus, Lemma 4.1 applies to ρN,i =
�N,i − � to allow the estimate∣∣∣∣ωN,i

(−1

z

)
− ω1

(−1

z

)∣∣∣∣ < vN,i

(
1 + 1

(
z)2

)
.

We have ∣∣∣∣E[
RN(z)

]
ii − 1

z
· 1

1 − θiω1(
1
z
)

∣∣∣∣
=

∣∣∣∣1z · 1

1 − θiωN,i(
1
z
)

− 1

z
· 1

1 − θiω1(
1
z
)

∣∣∣∣
= θi

|z|
|ωN,i(

1
z
) − ω1(

1
z
)|

|(1 − θiω1(
1
z
))(1 − θiωN,i(

1
z
))|

<
1

|
z|3
(

1 + 1

(
z)2

)
(|z| + m)4

θi�N,i([−m,0])�([−m,0])vN,i .

The proposition follows. �
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To complete the argument of Step A, it suffices now to observe that the residue
of the function 1/(z(1 − θiω1(z

−1))) at ρ is equal to

δω1(1/ρ),1/θi

ω1(1/ρ)ρ

ω′
1(1/ρ)

, i = 1, . . . , p.

Step B: We use the same perturbation argument as in Step B of the proof of
Theorem 2.1. We reduce the problem to the case of a spike with multiplicity one,
to which we apply Step A. The only change from the argument in Step B of The-
orem 2.1 comes from the form of the subordination functions. We use perturba-
tions (5.11) and (5.12) and define XN,δ,η = A

1/2
N,δUNBN,ηU

∗
NA

1/2
N,δ . The quantity

‖XN,δ,η − XN‖ tends to zero uniformly in N as δ + η → 0. The details are omit-
ted. �

5.3. The unitary multiplicative model XN = ANUNBNU∗
N . We use the nota-

tion from Section 2.3. The tools used are identical to the ones used in the analysis
of the positive model XN = A

1/2
N UNBNU∗

NA
1/2
N . However, the domains of defi-

nition of the analytic transforms involved are different. We indicate the relevant
differences. Choose α,β ∈ T such that 1/α ∈ supp(μ) and 1/β ∈ supp(ν). The re-
duction to the almost sure convergence of a p × p matrix is performed the same
way, and the same concentration inequality holds [this time with Lipschitz con-
stant 2

(1−|z|)2 ] in Lemma 4.11. The counterparts of Propositions 5.7 and 5.9 hold,
but in Proposition 5.9 we must consider z ∈ C \T. The resolvent RN is defined by
RN(z) = (zIN − ANUNBNU∗

N)−1. The function ωN,i defined by

ωN,i(z) = 1

(AN)ii

(
1 − z

E[RN(z−1)]ii
)
, z ∈D,

is easily seen to map D into itself and fix the origin. Indeed, |(AN)ii | = |(A′
N)ii | =

1. In the unitary version of Lemma 5.8, no supplementary condition on A′
N is

required, and for �N defined as in the proof of Lemma 5.8, the estimate becomes
‖�N(z)‖ < 2/|z| if |z| < 1. The estimates for the corresponding resolvents are
provided by Lemma 4.6.

5.3.1. Proofs of the main results for the unitary multiplicative model.

PROOF OF THEOREM 2.5(1)–(2)—EIGENVALUE BEHAVIOR. We must now
apply Lemma 4.5 with γ = T. It will be applied to γ = T, the sequence {FN(z)}N
defined by

FN(z) = z(Ip − �)PN

(
zIN − A′

NUNB ′
NU∗

N

)−1
P ∗

N + �, z ∈C \T,

and the limit F provided by Proposition 5.9. Observe that FN(z) is invertible for
z /∈ T. Indeed, it is easy to see that, if FN(z) is not invertible, z belongs to the
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spectrum of the unitary operator ANUNB ′
NU∗

N . The convergence of FN to F fol-
lows from the appropriate version of Proposition 5.9. Clearly, F(z) is diagonal
and, again by the Julia–Carathéodory theorem, this time applied to the disk, its
diagonal entries have only simple zeros. The remainder of the argument requires
no further adjustments. �

PROOF OF THEOREM 2.5(3)–(4)—EIGENSPACE BEHAVIOR. The relevant
changes for this part of the proof occur in Proposition 5.10, where (1−|z|)−1 must
be used instead of |
z|−1 and an application of Lemma 4.2 in place of Lemma 4.1.
Also, the perturbations (5.11) and (5.12) are applied to the arguments of θi and τj ,
respectively. �
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