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A SYSTEM OF COALESCING HEAVY DIFFUSION PARTICLES
ON THE REAL LINE

BY VITALII KONAROVSKYI

Max Planck Institut für Mathematik in den Naturwissenschaften
and Yuriy Fedkovych Chernivtsi National University

We construct a modified Arratia flow with mass and energy conservation.
We suppose that particles have a mass obeying the conservation law, and their
diffusion is inversely proportional to the mass. Our main result asserts that
such a system exists under the assumption of the uniform mass distribution
on an interval at the starting moment. We introduce a stochastic integral with
respect to such a flow and obtain the total local time as the density of the
occupation measure for all particles.

1. Introduction and statement of main results. The paper is devoted to a
model of interacting diffusion particles on the real line. Intuitively, the new model
can be understood as follows. The particles start from all points of a fixed inter-
val (for convenience, we consider the interval [0,1]), move independently up to
the meeting time then coalesce and stay together. Each particle carries a mass,
and when two particles coalesce, the resulting particle carries the mass of both.
This implies the mass conservation as, for example, in [16, 31, 40]. In addition,
we suppose that the diffusion rate of each particle is inversely proportional to its
mass. This is a new feature of our model which is not present in the classical
ones. While this new mechanism makes the model physically more realistic it also
makes its investigation more complicated. It should be noted that the dependence
of the diffusion on the mass distinguishes our model from those that are actively
investigated such as the well-known Arratia flow [1, 2, 10, 35], where every sub-
system can be described as a separate system. This fact facilitates the study of fine
properties of the Arratia flow as in [4, 11–14, 18, 32, 34, 39].

Systems of interacting particles with a mass or measure-valued processes cor-
responding to them arise in statistical mechanics, where particles are interpreted
as molecules of gas or liquid, in genetics, where the phase space is a space of
possible genotypes and the mass of a particle corresponds to the share of individ-
uals of a population that have some genotype, in hydrodynamics and cosmology,
where the mass is interpreted as a naturally physical mass of molecules of liq-
uid or gas, in turbulence theory, where particles are interpreted as curls and the
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mass corresponds to circulation. Such models of particles with masses were stud-
ied by Smoluchowski [40], Lang [31], Dawson [6, 7], Wang [41, 42], Fleming [19],
Gorostiza [20, 21], Norris [36], Sinai [16], Dorogovtsev [8, 9, 15], Karlikova [25],
Konarovskyi [26–30] and others. In some models, such as those studied in [16, 31,
40] the mass influences the motion of the particles, but in many other cases this
does not happen [6, 7, 41, 42].

The author has already investigated in [26, 27, 29] simpler discrete models
where the diffusion rate is inversely proportional to the mass. In these papers,
a countable system of particles started with positive mass and the mass of the
whole system was infinite. The difference in this work is the assumption that the
particles start from all points of an interval with “infinitesimal mass.” We prove
existence for such model of particles, which is a delicate issue due to the fact
that particles start with zero mass and, therefore, infinite diffusion rate. The main
reason for existence is the fact that particles coalesce immediately to a finite set
of points. Consequently, the particles have a finite diffusion rate at any positive
time. Since we must simultaneously consider an uncountable number of particles,
another important question is the method of defining the system of processes de-
scribing the evolution of the particles. To do this, we use a martingale approach.
We construct a continuum of martingales that satisfy certain properties character-
izing our model. Let Leb denote the Lebesgue measure on [0,1]. The following
theorem is the main result of the paper.

THEOREM 1.1. There exists an random element {y(u, t), u ∈ [0,1], t ∈
[0, T ]} in the Skorohod space D([0,1],C[0, T ]) such that:

(C1) for all u ∈ [0,1], the process y(u, ·) is a continuous square integrable
martingale with respect to the filtration

(1.1) Ft = σ
(
y(u, s), u ∈ [0,1], s ≤ t

)
, t ∈ [0, T ];

(C2) for all u ∈ [0,1], y(u,0) = u;
(C3) for all u < v from [0,1] and t ∈ [0, T ], y(u, t) ≤ y(v, t);
(C4) for all u ∈ [0,1], the quadratic variation has the form〈

y(u, ·)〉t =
∫ t

0

ds

m(u, s)
,

where m(u, t) = Leb{v : ∃s ≤ ty(v, s) = y(u, s)}, t ∈ [0, T ];
(C5) for all u, v ∈ [0,1] and t ∈ [0, T ],〈

y(u, ·), y(v, ·)〉t∧τu,v
= 0,

where τu,v = inf{t : y(u, t) = y(v, t)} ∧ T .

Here, y(u, t) will be interpreted as the position of the particle starting from
u at a time t . Let us briefly explain conditions (C1)–(C5). Conditions (C1) and
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(C2) are responsible for the fact that we have a set of diffusing particles starting
from all points of [0,1]. Condition (C3) reflects the coalescing behaviour of the
particles. (C4) and (C5) give the diffusion rate, and a sort of “independence” of the
motions up to their collision time. It should be noted, that since the diffusion of
every particle depends on how many particles coalesce to it, we cannot talk about
the usual independence of the movement of particles up to the moment of meeting
as for the Arratia flow (in our case the motion depends on the mass). However, in
between two collision times particles move independently.

At the moment, we do not know whether (C1)–(C5) imply uniqueness. This re-
mains an interesting open problem. It seems reasonable to conjecture that unique-
ness holds. However, as it turns out, this approach is very useful for obtaining
qualitative properties of the system. For example, using (C1)–(C5) in the paper we
construct the stochastic integral with respect to the flow denoted by∫ 1

0

∫ t

0
ϕ
(
y(u, s)

)
dy(u, s) du

(see Proposition 3.1), which is different from the integral with respect to the Ar-
ratia flow introduced by Dorogovtsev [13]. Namely, the integral with respect to
the Arratia flow is the sum of integrals over all pieces of trajectories up to the
moment of coalescing. In our case, we integrate, roughly speaking, over “the mea-
sure” dsy(u, s) du. Using this integral, we obtain the analog of Itô’s formula for
functionals of the form

∫ 1
0 ϕ(y(u, t)) du. Next, using this analog of Itô’s formula,

we establish the existence of the local time {L(a, t), a ∈ R, t ∈ [0, T ]}. This is the
density of the occupation measure

μ(A) =
∫ 1

0

∫ τ(u)∧t

0
IA

(
y(u, s)

)
ds

(we refer to Chapter 7 [13] for the precise meaning of this object). We also estab-
lish a Tanaka formula for the local time:

L(a, t) =
∫ 1

0

(
y(u, t) − a

)+
du −

∫ 1

0
(u − a)+ du

−
∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du.

Here, the definition of the local time exactly coincides with one which was intro-
duced for the Arratia flow in [4].

Let us briefly describe the idea of the proof of Theorem 1.1 and the structure of
the article. To build a system of particles starting from all points of the interval,
we use the thermodynamic limit as in [38], that is, we approximate our system
by the system of particles starting from k

n
, k = 1, . . . , n, with the mass 1

n
. We

construct this approximate system in Proposition 2.1. Next, we pass to the limit as
the number of particles tends to infinity. Since the diffusion rate of the particles at
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the start tends to infinity, we will pass to the limit in two steps. First, in Section 2.2
we show that a sequence approximating the continuum particle system is tight in
the space D([0,1],C(0, T ]), and hence a subsequence is weakly convergent to an
element {y(u, t), u ∈ [0,1], t ∈ (0, T ]} in D([0,1],C(0, T ]). In order to show this,
we use some ideas of the paper [37], in which the author checks the convergence
rescaling homeomorphic isotropic stochastic flows to the Arratia flow. Next, we
extend {y(u, t), u ∈ [0,1], t ∈ (0, T ]} to t = 0 in Section 2.3. To do this, first we
establish a property of the sequence (Proposition 2.4) and using it we show that∫ 1

0
ϕ
(
y(u, t)

)
du →

∫ 1

0
ϕ(u)du in probability, t → 0.

Thanks to this property, the monotonicity of y(u, ·), u ∈ [0,1], and the fact that
y(u, ·) is a continuous martingale for each u (see Lemmas 2.6 and 2.9), we estab-
lish the possibility of extending {y(u, t), u ∈ [0,1], t ∈ (0, T ]} to the whole inter-
val [0, T ]. Section 2.4 is devoted to checking of conditions (C4) and (C5). Using
conditions (C2)–(C5), we derive in Section 2.5 some estimates for the expectation
of the diffusion rate of the particles and show that y(u, ·) is a continuous square
integrable martingale, for each u. In Section 3, we introduce the definition of a
stochastic integral with respect to the flow of heavy diffusion particles, as a limit
of partial sums and obtain an analog of Itô’s formula. In Section 4, we establish
existence of the local time using the Itô formula. From Section 2.5 on, we do not
assume that the set of processes {y(u, t), u ∈ [0,1], t ∈ [0, T ]} is the limit of a
finite systems, but we only assume that it is some process satisfying (C1)–(C5).

2. Construction of the system.

2.1. A finite system of particles. In this section, we construct a system of pro-
cesses that describes an evolution of diffusion particles on the real line. We sup-
pose that particles start from a finite number of points, move independently up to
the moment of the meeting and coalesce, and change their diffusion rates accord-
ingly. Since we approximate a system of particles starting from all points of the
interval [0,1] by a finite system, it is enough to consider the case where particles
start from the points k

n
, k = 1, . . . , n, with the mass 1

n
. So, let n ∈ N be fixed.

Denote [n] = {1,2, . . . , n}.
DEFINITION 2.1. A set π = {π1, . . . , πp} of nonintersecting subsets of [n] is

called an order partition of [n] if:

(1)
⋃p

i=1 πi = [n];
(2) if l, k ∈ πi and l < j < k then j ∈ πi , for all i ∈ [p].
The set of all order partitions of [n] is denoted by �n.
Every element π = {π1, . . . , πp} ∈ �n generates an equivalence relation be-

tween [n] elements. We write i ∼π j provided there exists a number k such that



A SYSTEM OF HEAVY DIFFUSION PARTICLES 3297

i, j ∈ πk . Denote the equivalence class that contains the element i ∈ [n] by îπ , that
is,

îπ = {
j ∈ [n] : j ∼π i

}
.

Using a system of independent Wiener processes {wk(t), t ∈ [0, T ], k ∈ [n]}, we
construct the required system. Denote

τ 0 = 0, π0 = {{k}, k ∈ [n]} ∈ �n

and

w0
k(t) = k

n
+ 1√

n
wk(t), t ∈ [0, T ], k ∈ [n].

Define by induction for p ∈ [n − 1]
τp = inf

{
t > τp−1 : ∃i, j ∈ [n], i �πp−1 j,w

p−1
i (t) = w

p−1
j (t)

}∧ T .

Take πp ∈ �n such that

i ∼πp j ⇔ w
p−1
i

(
τp) = w

p−1
j

(
τp)

and set for k ∈ [n]

w
p
k (t) =

⎧⎪⎪⎨⎪⎪⎩
w

p−1
k (t), t ≤ τp,∑

i∈k̂πp

w0
i (t)

|̂kπp | , t > τp.

Denote for convenience xn
k (t) = wn−1

k (t), t ∈ [0,1], k ∈ [n].
PROPOSITION 2.1. The set of the processes {xn

k (t), k ∈ [n], t ∈ [0, T ]} satis-
fies the following conditions:

(F1) for each k ∈ [n], xn
k (·) is a continuous square integrable martingale with

respect to the filtration

Fn
t = σ

(
xn
l (s), s ≤ t, l ∈ [n]);

(F2) for all k ∈ [n], xn
k (0) = k

n
;

(F3) for all k < l and t ∈ [0, T ], xn
k (t) ≤ xn

l (t);
(F4) for all k ∈ [n], the quadratic variation has the form〈

xn
k (·)〉t =

∫ t

0

ds

mn
k(s)

,

where mn
k(t) = 1

n
|{j : ∃s ≤ txn

j (s) = xn
k (s)}|, t ∈ [0, T ];

(F5) for all k, l ∈ [n] and t ∈ [0, T ],〈
xn
k (·), xn

l (·)〉t∧τk,l
= 0,

where τn
k,l = inf{t : xn

k (t) = xn
l (t)} ∧ T .
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The proof of this proposition can be easily derived from the above construction
of the processes xn

k (·), k ∈ [n]. In [27], the author proved that conditions (F1)–(F5)
of Proposition 2.1 uniquely determine the distribution of (xn

k (·))k∈[n] in the space
of continuous functions from [0, T ] to Rn. In other words, if a set of processes
{ξk(t), k ∈ [n], t ∈ [0, T ]} satisfies (F1)–(F5), then the distributions of (xn

k (·))k∈[n]
and (ξk(·))k∈[n] coincide.

Let us prove a property of the constructed system which will be used.

LEMMA 2.1. (i) If C = √
T + 1, then for all n ∈ N, k ∈ [n] and t ∈ [0, T ]

E
∣∣xn

k (t)
∣∣ ≤ C.

(ii) For each 0 < p1 < p2 < 1 there exists a constant C(p1,p2) such that

E max
t∈[0,T ]

(
xn
k (t)

)2 ≤ C(p1,p2),

for all n ≥ 1
p1

and k ∈ [n] satisfying k
n

∈ (p1,p2).

PROOF. Consider the process

ηn(t) = 1

n

n∑
k=1

xn
k (t), t ∈ [0, T ].

Note that by condition (F1), ηn(·) is a continuous square integrable martingale.
Using Itô’s formula and condition (F4), we obtain

η2
n(t) = mart. + 1

n2

n∑
k=1

n∑
l=1

∫ t

0

I{τn
k,l≤s} ds

mn
k(s)

= mart. + t.

So, ηn(·) is a continuous square integrable martingale with the quadratic variation
〈ηn(·)〉t = t , t ∈ [0, T ]. By the martingale characterization of Brownian motion
(see Theorem 2.6.1 [22]), ηn(·) is a Wiener process. To bound the expectation of
|xn

k (t)|, write

E
∣∣xn

k (t)
∣∣ ≤ E

∣∣xn
k (t) − ηn(t)

∣∣+ E
∣∣ηn(t)

∣∣
≤ E

(
xn
n(t) − xn

1 (t)
)+ √

T = √
T + 1.

The latter inequality follows from conditions (F1) and (F2).
Next, we prove the second part of the lemma. Let n ≥ 1

p1
be fixed. Set

A1 =
{
l ∈ [n] : l

n
≤ p1

}
, A2 =

{
l ∈ [n] : l

n
≥ p2

}
.

Note that A1 and A2 is nonempty, by the choice of n. By (F1), the processes

Mi(t) = 1

|Ai |
∑
l∈Ai

xn
l (t), t ∈ [0, T ], i = 1,2,
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are continuous square integrable martingales. Using (F3), we have for all t ∈ [0, T ]

M1(t) ≤ xn
k (t) ≤ M2(t), if

k

n
∈ (p1,p2).

Thus,

E max
t∈[0,T ]

(
xn
k (t)

)2 ≤ E max
t∈[0,T ]

(
M2

1 (t) ∨ M2
2 (t)

)
≤ E max

t∈[0,T ]M
2
1 (t) + E max

t∈[0,T ]M
2
2 (t).

Hence, by the Burkholder–Davis–Gundy inequality

E max
t∈[0,T ]M

2
i (t) ≤ E〈Mi〉T , i = 1,2.

Let us estimate the quadratic variation of Mi . By conditions (F4) and (F5),

〈Mi〉T = 1

|Ai |2
∑
l∈Ai

∑
j∈Ai

∫ T

0

I{τn
j,l≤s}

mn
l (s)

ds.

Using the relation
∑

j∈Ai
I{τn

j,l≤s} = |{j : ∃r ≤ sxn
j (r) = xn

l (r)} ∩ Ai | ≤ nmn
l (s),

we obtain

〈Mi〉T ≤ nT

|Ai |2
∑
l∈Ai

1 = nT

|Ai | ,

where |A1| = �np1� and |A2| = �n(1 − p2)� + 1. It completes the proof of the
lemma. �

2.2. Tightness in Skorohod space D([0,1],C(0, T ]). Let C[a, b] denote the
metric space of continuous functions from [a, b] to R with the uniform distance,
and C(0, T ] denote the metric space of continuous functions from (0, T ] to R with
the metric generated by the uniform convergence on compact subsets of (0, T ].
Denote by D([0,1],E) the space of right continuous functions from [0,1] to a
metric space E with left limits, equipped with the standard Skorohod topology.

Let us set

yn(u, ·) =
⎧⎨⎩xn

k (·), k − 1

n
≤ u <

k

n
, k ∈ [n],

xn
n(·), u = 1,

and note that yn = {yn(u, t), u ∈ [0,1], t ∈ [0, T ]} is a random element of the space
D([0,1],C[0, T ]). We are going to show that the sequence {yn}n≥1 is tight. But
from Condition (F4), we can see that for large enough n the mass of each parti-
cle is small for small time. It means that the fluctuations of the particles grow, so
we cannot talk about tightness on the whole time interval [0, T ]. For this reason,
first we consider an evolution of the particles on the time interval [ε, T ], where
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ε > 0, and using the fact that the particles coalesce quickly we prove the tight-
ness of our system in D([0,1],C[ε, T ]). Then we conclude that the tightness in
D([0,1],C(0, T ]) holds.

PROPOSITION 2.2. For all ε > 0, the sequence {yn(u, t), u ∈ [0,1], t ∈
[ε, T ]}n≥1 is tight in D([0,1],C[ε, T ]).

First, we prove several auxiliary lemmas.

LEMMA 2.2. For all n ∈ N, u ∈ [0,1], h ∈ [0, u] and λ > 0

P
{∥∥yn(u + h, ·) − yn(u, ·)∥∥ ≥ λ,

∥∥yn(u, ·) − yn(u − h, ·)∥∥ ≥ λ
} ≤ 9h2

λ2 .

Here, yn(u, ·) = yn(1, ·), u ∈ [1,2], and ‖ · ‖ is the uniform norm on [0, T ].

PROOF. Let (Fyn
t )t∈[0,T ] be the filtration generated by yn, that is,

(2.1) Fyn
t = σ

(
yn(u, s), s ≤ t, u ∈ [0,1]), t ∈ [0, T ].

Consider the (Fyn
t )-stopping times:

σ+ = inf
{
t : yn(u + h, t) − yn(u, t) ≥ λ

}∧ T ,

σ− = inf
{
t : yn(u, t) − yn(u − h, t) ≥ λ

}∧ T ,

τ = inf
{
t : yn(u + h, t) − yn(u, t) = 0 or yn(u, t) − yn(u − h, t) = 0

}∧ T

and the process

M(t) = (
yn

(
u + h, t ∧ σ+)− yn

(
u, t ∧ σ+))

× (
yn

(
u, t ∧ σ−)− yn

(
u − h, t ∧ σ−)), t ∈ [0, T ].

We show that M(·) is a supermartingale. For this purpose, we calculate the joint
quadratic variation of yn(u1, · ∧σ+) and yn(u2, · ∧σ−), u1 = u+h and u, u2 = u

and u − h: 〈
yn

(
u + h, · ∧ σ+), yn

(
u, · ∧ σ−)〉

t∧τ

=
〈∫ ·

0
I{s≤σ+} dyn(u + h, s),

∫ ·
0
I{s≤σ−} dyn(u, s)

〉
t∧τ

=
∫ t∧τ

0
I{s≤σ+∧σ−} d

〈
yn(u + h, ·), yn(u, ·)〉s = 0,

since 〈yn(u + h, ·), yn(u, ·)〉t = 0, for all t ≤ τ . Similarly,〈
yn

(
u + h, · ∧ σ+), yn

(
u − h, · ∧ σ−)〉

t∧τ = 0,〈
yn

(
u, · ∧ σ+), yn

(
u − h, · ∧ σ−)〉

t∧τ = 0
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and 〈
yn

(
u, · ∧ σ+), yn

(
u, · ∧ σ−)〉

t∧τ =
∫ t∧τ

0
I{s≤σ+∧σ−} d

〈
yn(u, ·)〉s = A(t).

Since yn(u, · ∧ σ+)yn(u, · ∧ σ−) − A(·) is a martingale and the process A(·)
does not decrease, yn(u, · ∧ σ+)yn(u, · ∧ σ−) is a submartingale. Write

M(t) = M(t ∧ τ) = yn

(
u + h, t ∧ σ+ ∧ τ

)
yn

(
u, t ∧ σ− ∧ τ

)
− yn

(
u + h, t ∧ σ+ ∧ τ

)
yn

(
u − h, t ∧ σ− ∧ τ

)
+ yn

(
u, t ∧ σ+ ∧ τ

)
yn

(
u − h, t ∧ σ− ∧ τ

)
− yn

(
u, t ∧ σ+ ∧ τ

)
yn

(
u, t ∧ σ− ∧ τ

)
.

The first three terms are martingales and the last term is a submartingale, so M(·)
is a supermartingale.

Note that M(T ) ≥ λ2I{σ+∨σ−<T }. Hence,

P
{∥∥yn(u + h, ·) − yn(u, ·)∥∥ ≥ λ,

∥∥yn(u, ·) − yn(u − h, ·)∥∥ ≥ λ
}

≤ P
{
σ+ ∨ σ− < T

} ≤ EM(T )

λ2 ≤ EM(0)

λ2

= 1

λ2

(
yn(u + h,0) − yn(u,0)

)(
yn(u,0) − yn(u − h,0)

) ≤ 9h2

λ2 . �

LEMMA 2.3. For all β > 1,

lim
δ→0

sup
n≥1

E
[∥∥yn(δ, ·) − yn(0, ·)∥∥β ∧ 1

] = 0.

PROOF. Set

σδ = {
t : yn(δ, t) − yn(0, t) = 1

}∧ T .

The assertion of the lemma follows from the inequalities

E

[
sup

t∈[0,T ]
(
yn(δ, t) − yn(0, t)

)β ∧ 1

]

= E sup
t∈[0,T ]

(
yn(δ, t ∧ σδ) − yn(0, t ∧ σδ)

)β
≤ CβE

(
yn(δ, T ∧ σδ) − yn(0, T ∧ σδ)

)β
≤ CβE

(
yn(δ, T ∧ σδ) − yn(0, T ∧ σδ)

) ≤ Cβδ. �

LEMMA 2.4. Let ξ(t), t ∈ [0, T ], be a continuous local square integrable
martingale starting from 0 and w(t), t ≥ 0, be a Wiener process. Denote for a
fixed a ∈ R

τ = inf
{
t : ξ(t) = a

}∧ T .
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If there exists a constant b > 0, such that〈
ξ(·)〉t ≥ bt, t ∈ [0, τ ],

then

P{τ ≥ t} ≤ P{σ ≥ t}, t ∈ [0, T ],
and

Eτ ≤ Eσ,

where σ = inf{t : w(bt) = a} ∧ T .

PROOF. Since a continuous local martingale is necessarily a local square inte-
grable martingale, there exists a Wiener process w̃(t), t ≥ 0, such that

ξ(t) = w̃
(〈
ξ(·)〉t ),

by Theorem 2.7.2′ [22]. Denote

σ̃ = inf
{
t : w̃(bt) = a

}
.

It is easy to see that bσ̃ ≥ 〈ξ(·)〉τ ≥ bτ . Since τ ≤ T , τ ≤ σ̃ ∧ T . The latter in-
equality proves the lemma. �

LEMMA 2.5. For all ε > 0 and u ∈ [0,1], the sequence {yn(u, t), t ∈
[ε, T ]}n≥1 is tight in C[ε, T ].

PROOF. To prove the lemma, we use the Aldous tightness criterion (see, e.g.,
Theorem 3.6.5. [5]). So, for the tightness of {yn(u, t), t ∈ [ε, T ]}n≥1 in the space
C[ε, T ] we have to check the following properties:

(A1) for all t ∈ [ε, T ] the sequence {yn(u, t)}n≥1 is tight in R;
(A2) for all r > 0, each set of stopping times {σn}n≥1 taking values in [ε, T ]

and each sequence δn ↘ 0

lim
n→∞ P

{∣∣yn(u,σn + δn) − yn(u,σn)
∣∣ ≥ r

} = 0.

Note that property (A1) follows from Lemma 2.1 and Chebyshev’s inequality. In
order to prove (A2), we will first estimate the probability of the event {mn(u, ε) <

γ }, for all γ ∈ (0, 1
2). We can assume, without loss of generality, that u ∈ [0, 1

2 ].
Set ξ(t) = yn(u + γ, t) − yn(u, t), t ∈ [0, T ], and note that〈

ξ(·)〉t =
∫ t

0

(
1

mn(u + γ, s)
+ 1

mn(u, s)

)
ds ≥ 2t, t ∈ [

0, τ n
u,u+γ

]
.

So, using Lemma 2.4 with b = 2, we obtain

P
{
mn(u, ε) < γ

} ≤ P
{
τn
u,u+γ ≥ ε

} ≤ P{τ̃u,u+γ ≥ ε} ≤ Cγ,
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where

(2.2) mn(u, ·) =
⎧⎨⎩mn

k(·),
k − 1

n
≤ u <

k

n
, k ∈ [n],

mn
n(·), u = 1,

(2.3) τn
u,v = inf

{
t : yn(u, t) = yn(v, t)

}∧ T , u, v ∈ [0,1],
and τ̃u,v is a time of meeting of two independent Wiener processes starting from u

and v respectively. Let ε1 > 0 be fixed. Choose γ > 0 so that

P
{
mn(u, ε) < γ

}
<

ε1

2
.

Next, set

ξn(t) = yn(u,σn + t) − yn(u,σn)

and estimate the following probability:

P
{∣∣ξn(t)

∣∣ ≥ r
} ≤ P

{∣∣ξn(t)
∣∣I{mn(u,ε)≥γ } ≥ r

}+ P
{
mn(u, ε) < γ

}
.

To prove the smallness of the first term for large n, we will show that
ξn(·)I{mn(u,ε)≥γ } is an (Fyn

σn+t )-martingale. So, assume s ≤ t and consider

E
(
ξn(t)I{mn(u,ε)≥γ }|Fyn

σn+s

)
= E

((
yn(u,σn + t) − yn(u,σn)

)
I{mn(u,ε)≥γ }|Fyn

σn+s

)
= I{mn(u,ε)≥γ }E

(
yn(u,σn + t) − yn(u,σn)|Fyn

σn+s

)
= I{mn(u,ε)≥γ }

(
yn(u,σn + s) − yn(u,σn)

) = ξn(s)I{mn(u,ε)≥γ }.
Here, we used the optional sampling theorem (see, e.g., Theorem 1.6.11 [22]) and
the inclusion Fyn

ε ⊆ Fyn
σn+s . Now we are ready to estimate

P
{∣∣ξn(δn)

∣∣I{mn(u,ε)≥γ } ≥ r
}

≤ 1

r2 E
[
ξ2
n (δn)I{mn(u,ε)≥γ }

]
= 1

r2 E
[
E
((

yn(u,σn + δn) − yn(u,σn)
)2
I{mn(u,ε)≥γ }|Fyn

σn

)]
= 1

r2 E
[
I{mn(u,ε)≥γ }E

((
yn(u,σn + δn) − yn(u,σn)

)2|Fyn
σn

)]
= 1

r2 E
[
I{mn(u,ε)≥γ }E

(∫ σn+δn

σn

ds

mn(u, s)

∣∣∣Fyn
σn

)]

= 1

r2 E
[
I{mn(u,ε)≥γ }

∫ σn+δn

σn

ds

mn(u, s)

]

≤ 4

r2 E
[∫ σn+δn

σn

ds

γ ∨ mn(u, s)

]
≤ δn

r2γ
.
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Thus, there exists N ∈ N such that for all n ≥ N P{|ξn(δn)|I{mn(u,ε)≥γ } ≥ r} < ε1
2 .

This completes the proof. �

PROOF OF PROPOSITION 2.2. By Lemmas 2.2, 2.3 and 2.5, Theorems 3.8.6
and 3.8.8 [17], Remark 3.8.9 [17], we obtain the assertion of the proposition. �

Proposition 2.2 and Proposition A.1 immediately imply the tightness of
{yn(u, t), u ∈ [0,1], t ∈ (0, T ]}.

PROPOSITION 2.3. The sequence {yn(u, t), u ∈ [0,1], t ∈ (0, T ]} is tight in
D([0,1],C(0, T ]).

2.3. Extension to the space D([0,1],C[0, T ]). It should be noted that since
the sequence {yn(u, t), u ∈ [0,1], t ∈ (0, T ]} is tight in the separable metric space
D([0,1],C(0, T ]), it has limit points (in the weak topology), by Prokhorov’s the-
orem. In this section, we will show that every limit point of the sequence can
be extended to the space D([0,1],C[0, T ]). Denote by C2

b(R) the set of twice
continuously differentiable functions on R which are bounded together with their
derivatives.

PROPOSITION 2.4. Let ϕ ∈ C2
b(R) and

(2.4) ξn(t) =
∫ 1

0
ϕ
(
yn(u, t)

)
du, t ∈ [0, T ].

Then the sequence {ξn(t), t ∈ [0, T ]}n≥1 is tight in C[0, T ].
PROOF. We use the Aldous tightness criterion to prove the proposition. By the

boundedness of ϕ, the sequence {ξn(t)}n≥1 is bounded for each t ∈ [0, T ]. Hence,
it is enough to check that for all ε > 0, a set of stopping times {σn}n≥1 on [0, T ]
and a sequence δn ↘ 0 one has

(2.5) lim
n→∞ P

{∣∣ξn(σn + δn) − ξn(σn)
∣∣ ≥ ε

} = 0.

To show (2.5), we consider the difference ξn(σn+ t)−ξn(σn) and use Itô’s formula.
So, we obtain

ξn(σn + t) − ξn(σn) = 1

n

n∑
k=1

[
ϕ
(
xn
k (σn + t)

)− ϕ
(
xn
k (σn)

)]

= 1

n

n∑
k=1

∫ t

0
ϕ̇
(
xn
k (σn + s)

)
dxn

k (σn + s)

+ 1

2n

n∑
k=1

∫ t

0

ϕ̈(xn
k (σn + s))

mn
k(σn + s)

ds

= M(t) + 1

2
A(t).
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Next, estimate E|A(t)| and E|M(t)|.
Denote the number of distinct points xn

k (σn + t), k ∈ [n], by χn(t), that is,

χn(t) = ∣∣{xn
k (σn + t), k ∈ [n]}∣∣.

So,

E
∣∣A(t)

∣∣ ≤ ‖ϕ̈‖
n

n∑
k=1

∫ t

0

ds

mn
k(σn + s)

= ‖ϕ̈‖E
∫ t

0
χn(s) ds = ‖ϕ̈‖

n∑
k=1

Eγ n
k (t),

where

γ n
1 (t) = t,

γ n
k (t) = inf

{
s : xn

k (σn + s) = xn
k−1(σn + s)

}∧ t, k = 2, . . . , n.

Let {zn
k (t), t ∈ [0, T ], k ∈ [n]} be the set of coalescing Brownian particles start-

ing from nonrandom points and possessing zn
k(0) ≤ zn

k+1(0), k ∈ [n−1], t ∈ [0, T ],
and let {x̃n

k (t), t ∈ [0, T ], k ∈ [n]} be the set of processes which satisfy condi-
tions (F1), (F3)–(F5). Define γ̂ n

k (t), k ∈ [n], and γ̃ n
k (t), k ∈ [n], in the same way as

γ n
k (t), k ∈ [n], replacing xn

k (σn + ·) with zn
k (·), k ∈ [n], and xn

k (σn + ·) with x̃n
k (·),

k ∈ [n], respectively.
Using Markov’s property of {xn

k (t), t ∈ [0,1], k ∈ [n]} [28] and Lemma 2.4 we
have

Eγ n
k (t) = E

(
E
(
γ n
k (t)|Fn

σn

)) = E
(
Exn(σn)γ̃

n
k (t)

) ≤ E
(
Exn(σn)γ̂

n
k (t)

)
.

It is well known that there exists a constant C, which does not depend on n and
zn
k (0), k ∈ [n], such that for all t ∈ [0, T ]

E

(
n∑

k=1

γ̂ n
k (t)

)
≤ C

(
zn
n(0) − zn

1(0)
)√

t

(see Section 7.1. [13]). Thus,

E
∣∣A(t)

∣∣ ≤ ‖ϕ̈‖
n∑

k=1

E
(
Exn(σn)γ̂

n
k (t)

) ≤ CE
(
xn
n(σn) − xn

1 (σn)
)√

t ≤ C
√

t .

Next, consider

(
E
∣∣M(t)

∣∣)2 ≤ EM2(t) = E

(
1

n

n∑
k=1

∫ t

0
ϕ̇
(
xn
k (σn + s)

)
dxn

k (σn + s)

)2

= 1

n2

n∑
k=1

n∑
l=1

E
∫ t

0

ϕ̇(xn
k (σn + s))ϕ̇(xn

l (σn + s))

mn
k(σn + s)

I{τn
k,l≤σn+s} ds

= 1

n

n∑
k=1

E
∫ t

0
ϕ̇2(xn

k (σn + s)
) n∑

l=1

I{τn
k,l≤σn+s}

nmn
k(σn + s)

ds

= 1

n

n∑
k=1

E
∫ t

0
ϕ̇2(xn

k (σn + s)
)
ds ≤ ∥∥ϕ̇2∥∥t.
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Now from the obtained estimations of E|A(t)| and E|M(t)| and Chebyshev’s
inequality, we have (2.5). The proposition is proved. �

Note that, since the space D([0,1],C(0, T ]) is separable, there exists a se-
quence {n′} and a random element {y(u, t), u ∈ [0,1], t ∈ (0, T ]} in this space
such that yn′ tends to y in distribution in D([0,1],C(0, T ]), by Prokhorov’s the-
orem [3]. Next, from Skorohod’s theorem (see Theorem 3.1.8 [17]), we have the
following result.

LEMMA 2.6. There exists a probability space with random elements
{ỹn′(u, t), u ∈ [0,1], t ∈ (0, T ]}n′ and {ỹ(u, t), u ∈ [0,1], t ∈ (0, T ]} taking val-
ues in D([0,1],C(0, T ]) such that:

(1) for all n′ Law(ỹn′) = Law(yn′);
(2) ỹn′ → ỹ in D([0,1],C(0, T ]) a.s.

REMARK 2.1. Since for every n′, {ỹn′(u, t), u ∈ [0,1], t ∈ (0, T ]} satisfies 1)

of Lemma 2.6, we may suppose that ỹn′ is a random element in D([0,1],C[0, T ])
considering ỹn′(·,0) = yn′(·,0).

REMARK 2.2. By Lemma A.2, property (2) is equivalent to:

(2′) for all ε > 0, ỹn′(·, ε ∨ ·) → ỹ(·, ε ∨ ·) in D([0,1],C[0, T ]) a.s.

REMARK 2.3. Note that the index n in yn or in xn· means that we have a sys-
tem of particles which start from the set of the points k

n
, k ∈ [n], with the mass 1

n
.

Since we are not going to use this fact any more, for convenience we will suppose
that ỹn′ = yn and ỹ = y, namely we will suppose that for each ε > 0

yn(·, ε ∨ ·) → y(·, ε ∨ ·) in D
([0,1],C[0, T ]) a.s.

We are going to extend {y(u, t), u ∈ [0,1], t ∈ (0, T ]} to D([0,1],C[0, T ]). We
will be able to do it due to the following lemmas.

LEMMA 2.7. Let ϕ ∈ C2
b(R) and y(u,0) = u, u ∈ [0,1]. Then the random

process ξ(t) = ∫ 1
0 ϕ(y(u, t)) du, t ∈ [0, T ], is continuous a.s.

PROOF. Let us consider the map Fϕ : D([0,1],C(0, T ]) → C(0, T ]

Fϕ(g)(t) =
∫ 1

0
ϕ
(
g(u, t)

)
du, t ∈ (0, T ], g ∈ D

([0,1],C(0, T ]).
It is easy to see that Fϕ is continuous. Let ξn(t), t ∈ [0, T ], be defined by (2.4).
Thus,

ξn = Fϕ(yn) → ξ in C(0, T ] a.s.
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On the other hand, by Proposition 2.4, {ξn}n≥1 is tight in C[0, T ]. It implies that ξ

is continuous on [0, T ] a.s. �

Let CK(R) denote the class of continuous functions on R with compact support
and H be a dense subset of CK(R).

LEMMA 2.8. Let {z(u, t), u ∈ [0,1], t ∈ (0, T ]} ∈ D([0,1],C(0, T ]),
z(u, t) ≤ z(v, t), u < v, t ∈ (0, T ], and for all ϕ ∈ H

(2.6)
∫ 1

0
ϕ
(
z(u, t)

)
du →

∫ 1

0
ϕ(u)du, t → 0.

Then for each u ∈ (0,1), limt→0 z(u, t) = u. Moreover, if limt→0 z(0, t) = 0 and
limt→0 z(1, t) = 1, then the extension of z on [0, T ]

z(u, t) =
{
z(u, t), t ∈ (0, T ],
u, t = 0,

u ∈ [0,1],

belongs to D([0,1],C[0, T ]).

PROOF. Note that the density of H implies that (2.6) holds for all ϕ ∈ CK(R).
Let {tn}n≥1 ⊂ (0, T ] be a sequence that converges to zero. Next, we will consider
z(·, tn), n ∈N, as random elements in the probability space ([0,1],B([0,1]),Leb).
For each n ∈ N we denote the distribution of z(·, tn) in R by μn, that is, μn =
Leb ◦ z(·, tn)−1. Then μn converges vaguely to μ, where μ coincides with the
Lebesgue measure on [0,1] and μ([0,1]c) = 0. Since μ(R) = 1, μn converges to
μ weakly, by Lemma 5.20 [24]. Set

Fn(x) = Leb
{
u : z(u, tn) ≤ x

}
, x ∈ R.

Then using Theorem 2.1 [3], we get

(2.7) Fn(x) = μn

(
(−∞, x])→ μ

(
(−∞, x])= x as n → ∞,

for all x ∈ [0,1]. By the monotonicity and the right continuity of z(·, tn), for all
fixed n,

z(u, tn) = sup
{
x : Fn(x) ≤ u

}
, u ∈ (0,1).

Next, let u ∈ (0,1) and ε > 0 be fixed and u + ε,u − ε ∈ (0,1). By (2.7), there
exists N such that for all n ≥ N , Fn(u − ε) ≤ u < Fn(u + ε). Hence,

u − ε ≤ z(u, tn) ≤ u + ε, if n ≥ N.

Since ε > 0 was arbitrary small, we have that z(·, tn) → u, for all u ∈ (0,1). Hence,
for all u ∈ (0,1),

lim
t→0

z(u, t) = u, u ∈ (0,1).
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This proves the first part of the lemma.
Let limt→0 z(0, t) = 0 and limt→0 z(1, t) = 1. Then for each sequence {vn}n≥1

decreasing to u and for all t ∈ [0, T ], z(vn, t) ↓ z(u, t). By Dini’s theorem,
z(vn, ·) → z(u, ·) in C[0, T ]. So, z(u, ·), u ∈ [0,1], is right continuous. Using
Dini’s theorem for an increasing sequence {vn}n≥1 again, we obtain that z(u, ·),
u ∈ [0,1], has left limits. �

Let us prove the main result of this section.

PROPOSITION 2.5. Set

y(u,0) = u,u ∈ [0,1].
Then {y(u, t), u ∈ [0,1], t ∈ [0, T ]} is a random element in D([0,1],C[0, T ]).
Furthermore, for all u ∈ [0,1] the process y(u, ·) is a continuous (Ft )-martingale,
where

Ft = σ
(
y(u, s), u ∈ [0,1], s ≤ t

)
.

To prove the proposition, we first show that y(u, · ∨ ε) is a martingale, for all
u ∈ [0,1]. Then using Lemmas 2.7 and 2.8, we extend y to D([0,1],C[0, T ]). To
prove that y(u, · ∨ ε) is a martingale we are going to use the fact that {yn(u, · ∨
ε)}n≥1 is also a martingale. It should be noted that in general, property (2′) does
not imply the convergence of {yn(u, · ∨ ε)}n≥1 to y(u, · ∨ ε). So, we need the
following result, which by a standard property of the Skorohod topology then does
give this convergence (see Corollary 2.1 below).

LEMMA 2.9. For all ε > 0 and u ∈ [0,1], one has

P
{
y(u, ε ∨ ·) �= y(u−, ε ∨ ·)} = 0.

PROOF. Let u ∈ [0,1] and ε > 0 be fixed. Since for all n ≥ 1, yn(·, ε ∨ ·) is
nondecreasing in the first argument, y(·, ε∨·) is nondecreasing also. So, for γ > 0,
δ > 0 and β > 1, we have

P
{∥∥y(u, ε ∨ ·) − y(u − δ, ε ∨ ·)∥∥ > γ

}
≤ P

{∥∥y(u + δ, ε ∨ ·) − y(u − δ, ε ∨ ·)∥∥ > γ
}

≤ P

{ ∞⋃
n=1

∞⋂
k=n

{∥∥yk(u + 2δ, ε ∨ ·) − yk(u − 2δ, ε ∨ ·)∥∥ > γ
}}

≤ lim
n→∞ P

{ ∞⋂
k=n

{∥∥yk(u + 2δ, ε ∨ ·) − yk(u − 2δ, ε ∨ ·)∥∥ > γ
}}

≤ lim
n→∞ P

{∥∥yn(u + 2δ, ε ∨ ·) − yn(u − 2δ, ε ∨ ·)∥∥ > γ
}

≤ 1

γ β
lim

n→∞ E
[∥∥yn(u + 2δ, ·) − yn(u − 2δ, ·)∥∥β ∧ 1

] ≤ 4δCβ

γ β
.
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Next, passing to the limit as δ tends to 0 and using the monotonicity of
{‖y(u, ε ∨ ·) − y(u − δ, ε ∨ ·)‖ > γ } in δ we obtain

P
{∥∥y(u, ε ∨ ·) − y(u−, ε ∨ ·)∥∥ > γ

} = 0.

This proves the lemma. �

COROLLARY 2.1. For all ε > 0 and u ∈ [0,1],
yn(u, ε ∨ ·) → y(u, ε ∨ ·) in C[0, T ] a.s.

PROOF OF PROPOSITION 2.5. Set

Fε
t = σ

(
y(u, s), u ∈ [0,1], s ∈ [ε, t ∨ ε]), t ∈ [0, T ].

Reasoning as in the proof of Proposition 9.1.17 [23], we can prove, using Corol-
lary 2.1, that y(u, t ∨ ε), t ∈ [0, T ], is an (Fε

t )-local martingale, for all u ∈ [0,1].
By Lemma 2.1(i) and Fatou’s lemma, there exists a constant C, independent on
u, t and ε, such that

(2.8) E
∣∣y(u, t)

∣∣ ≤ C, u ∈ [0,1], t ∈ [0, T ].
Using the second part of the Lemma 2.1, it is easy to see that y(u, t ∨ ε), t ∈
[0, T ], is an (Fε

t )-martingale for all u ∈ (0,1). Since for each t and ε, y(·, t ∨ ε) is
nondecreasing with respect to the first variable and continuous at u = 0 and u = 1,
y(u, t ∨ ε), t ∈ [0, T ], is an (Fε

t )-martingale for u = 0 and u = 1, by the monotone
convergence theorem and (2.8).

Note that

Ft = σ

( ⋃
0<ε≤t

Fε
t

)
, t ∈ (0, T ].

Take ε ≤ s ≤ t and consider

E
(
y(u, t ∨ ε)|Fε

s

) = y(u, s ∨ ε),

that is equivalent to

E
(
y(u, t)|Fε

s

) = y(u, s).

By Lévy’s theorem (see, e.g., Theorem 1.5 [33])

E
(
y(u, t)|Fε

s

) → E
(
y(u, t)|Fs

)
a.s., ε → 0

so

(2.9) E
(
y(u, t)|Fs

) = y(u, s)

and it means that y(u, t), t ∈ (0, T ], is an (Ft )-martingale.
Let H ⊂ C2

b(R) be a countable dense subset of CK(R). By Lemma 2.7, there
exists �′ such that P{�′} = 1 and for all ω ∈ �′ and ϕ ∈ H,

∫ 1
0 ϕ(y(u, t,ω)) du, t ∈
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[0, T ], is continuous. Consequently,
∫ 1

0 ϕ(y(u, t,ω)) du converges to
∫ 1

0 ϕ(u)du as
t → 0. Hence, Lemma 2.8 implies the continuity of y(u, t,ω), t ∈ [0, T ], for all
u ∈ (0,1) and ω ∈ �′.

Next, using Lemma 2.9 and the martingale property of y(u, ·), we will show
that limt→0 y(1, t) = 1 and limt→0 y(0, t) = 0 a.s. Thus, we will be able to use the
second part of Lemma 2.8 in order to state that {y(u, t), u ∈ [0,1], t ∈ [0, T ]} ∈
D([0,1],C[0, T ]) a.s.

Since y(u, t), t ∈ (0, T ], is an (Ft )-martingale

y(u, t) = E
(
y(u,T )|Ft

)
, u ∈ [0,1].

By Lévy’s theorem,

E
(
y(u,T )|Ft

) → E
(
y(u,T )|F0+

)
a.s., t → 0.

So, E(y(u,T )|F0+) = u a.s. for all u ∈ (0,1). Let us prove that E(y(0, T )|F0+) =
0 and E(y(1, T )|F0+) = 1.

Let vn ↓ 0 then by Lemma 2.9 and the monotone convergence theorem for con-
ditional expectations (see, e.g., Theorem 1.1 [33])

0 = lim
n→∞vn = lim

n→∞ E
(
y(vn, T )

∣∣F0+
) = E

(
y(0, T )

∣∣F0+
)
,

where we understand lim as the limit almost surely. Similarly,

E
(
y(1, T )|F0+

) = 1.

Thus, by Lemma 2.8, {y(u, t), u ∈ [0,1], t ∈ [0, T ]} belongs to D([0,1],C[0, T ])
a.s. Moreover, since for each u ∈ [0,1], y(u, ·) is a random element of C[0, T ],
{y(u, t), u ∈ [0,1], t ∈ [0, T ]} is a random element of D([0,1],C[0, T ]), by
Proposition 3.7.1 [17].

Note that the martingale property of y(u, t), t ∈ [0, T ], follows from (2.9) and
the equality E(y(u,T )|F0+) = u, u ∈ [0,1]. The proposition is proved. �

2.4. Verification of conditions (C4) and (C5). In this section, we will show
that the process {y(u, t), u ∈ [0,1], t ∈ [0, T ]} satisfies conditions (C4) and (C5)
of Theorem 1.1. To check this, first we state some properties of a sequence of
stopping times which are defined by a sequence of local martingales, then we will
prove that the joint local quadratic variation of y(u, ·) and y(v, ·) is the limit of the
joint local quadratic variation of yn(u, ·) and yn(v, ·).

It should be noted that {y(u, t), u ∈ [0,1], t ∈ [0, T ]} satisfies conditions (C2)
and (C3) (see Proposition 2.5). Let us prove an auxiliary lemma.

LEMMA 2.10. Let zn(t), t ∈ [0, T ], n ≥ 1, be a set of continuous local mar-
tingales such that for all n ≥ 1 and s, t ∈ [0, τn], s < t ,

(2.10)
〈
zn(·)〉t − 〈

zn(·)〉s ≥ p(t − s),
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where τn = inf{t : zn(t) = 0} ∧ T and p is a nonrandom positive constant. Let
z(t), t ∈ [0, T ], be a continuous process such that

z(· ∧ τ) = lim
n→∞ zn(· ∧ τn)

(
in C

([0, T ],R)) a.s.,

where τ = inf{t : z(t) = 0} ∧ T . Then

(2.11) τ = lim
n→∞ τn in probability.

REMARK 2.4. If the function 〈zn(·)〉t , t ∈ [0, T ], is absolutely continuous
with d

dt
〈zn(·)〉t ≥ p, t ∈ (0, T ], then it satisfies (2.10).

PROOF. Set A = {ω : z(· ∧ τ(ω),ω) = limn→∞ zn(· ∧ τn(ω),ω)}. Take ε > 0,
ω ∈ A and suppose that τ(ω) > 0. Denote the subset {z(t,ω) : t ∈ [0, (τ (ω)− ε)∨
0]} of R by Kε(ω).

Since z is a continuous process, Kε(ω) is a compact set as image of a compact
set and 0 /∈ Kε(ω). Hence, there exists δ(ω) > 0 such that 0 /∈ Kδ

ε (ω), where

Kδ
ε (ω) = {

a ∈ R : inf
{|a − b|, b ∈ Kε(ω)

}
< δ

}
.

Since z(· ∧ τ(ω),ω) = limn→∞ zn(· ∧ τn(ω),ω), there exists N(ω) such that for
every n ≥ N(ω) zn(t,ω) ∈ Kδ

ε (ω), t ∈ [0, (τ (ω)− ε)∨0]. It implies the inequality

τn(ω) ≥ τ(ω) − ε.

For the case τ(ω) = 0, the latter inequality is obvious. So, we have

lim
n→∞ P{τ − τn ≥ ε} = 0.

To prove the equality limn→∞ P{τn −τ ≥ ε} = 0, we need the following lemma.

LEMMA 2.11. Let w(t), t ≥ 0, be a Wiener process and σx = inf{t : w(t) =
x}. Then for every ε > 0,

sup
x∈R

P
{
σx ≥ ε, sup

t∈[σx−ε,σx ]
∣∣w(t) − x

∣∣ < δ
}

→ 0 as δ → 0.

PROOF. Take ε1 > 0 and consider

F(x, δ) := P
{
σx ≥ ε, sup

t∈[σx−ε,σx ]
∣∣w(t) − x

∣∣ < δ
}

≤ P{σx ≥ ε}.

It is clear that there exists ρ > 0 such that for all |x| < ρ and all δ > 0 F(x, δ) < ε1.
Let |x| ≥ ρ and δ < ρ, estimate

F(x, δ) = P
{
σx−δ·sgnx ≤ σx − ε, sup

t∈[σx−ε,σx ]
∣∣w(t) − x

∣∣ < δ
}

≤ P{σx−δ·sgnx ≤ σx − ε} ≤ P
{

max
t∈[0,ε]w(t) < δ

}
.
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Here, we used the strong Markov property of a Wiener process. Hence, there exists
ρ1 ≤ ρ such that for all δ < ρ1 and |x| ≥ ρ:

F(x, δ) ≤ P
{

max
t∈[0,ε]w(t) < δ

}
< ε1.

This proves Lemma 2.11. �

Let us continue the proof of Lemma 2.10. Take ε1 > 0 and consider for a fixed
ε > 0

P{τn − τ ≥ ε} ≤ P
{
τ + ε ≤ τn, sup

[τn−ε,τn]
∣∣zn(t)

∣∣ < δ
}

+ P
{
τ + ε ≤ τn, sup

[τn−ε,τn]
∣∣zn(t)

∣∣ ≥ δ
}

≤ P
{
τ + ε ≤ τn, sup

[τn−ε,τn]
∣∣zn(t)

∣∣ < δ
}

+ P
{

sup
[τn−ε,τn]

∣∣zn(t ∧ τn) − z(t ∧ τ)
∣∣ ≥ δ

}
≤ P

{
τ + ε ≤ τn, sup

[τn−ε,τn]
∣∣zn(0) + wn

(〈zn〉t )∣∣ < δ
}

+ P
{

sup
[0,T ]

∣∣zn(t ∧ τn) − z(t ∧ τ)
∣∣ ≥ δ

}
.

(2.12)

Here, {wn(t), t ≥ 0, n ≥ 1} is a system of Wiener processes such that

zn(t) = zn(0) + wn

(〈
zn(·)〉t ), t ∈ [0, T ].

Set
σn = inf

{
t : zn(0) + wn(t) = 0

}
and

ε̃ = pε,

where p is defined by (2.10). It should be noted that 〈zn(·)〉τn = σn. So, since
〈zn(·)〉0 = 0, (2.10) implies pτn ≤ σn. Moreover, by (2.10),〈

zn(·)〉τn−ε ≤ 〈
zn(·)〉τn

− p
(
τn − (τn − ε)

) = σn − ε̃.

Now we can estimate

P
{
τ + ε ≤ τn, sup

[τn−ε,τn]
∣∣zn(0) + wn

(〈zn〉t )∣∣ < δ
}

≤ P
{
pε ≤ pτn, sup

[〈zn(·)〉τn−ε,〈zn(·)〉τn ]
∣∣zn(0) + wn(t)

∣∣ < δ
}

≤ P
{̃
ε ≤ σn, sup

[σn−ε̃,σn]
∣∣zn(0) + wn(t)

∣∣ < δ
}

=
∫
R

F(x, δ)
(
P ◦ zn(0)−1)(dx) ≤ sup

x∈R
F(x, δ).
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By Lemma 2.11, there exists δ1 > 0 such that

sup
x∈R

F(x, δ1) <
ε1

2
.

Next, choosing N ∈ N such that for all n ≥ N

P
{

sup
[0,T ]

∣∣zn(t ∧ τn) − z(t ∧ τ)
∣∣ ≥ δ1

}
<

ε1

2

and using estimate (2.12) we obtain

P{τn − τ ≥ ε} < ε1, for all n ≥ N.

Lemma 2.10 is proved. �

LEMMA 2.12. Let u, v ∈ [0,1], the sequence {τn
u,v}n≥1 be defined by (2.3)

and

(2.13) τu,v = inf
{
t : y(u, t) = y(v, t)

}∧ T .

Then

lim
n→∞ τn

u,v = τu,v in probability.

PROOF. Let u < v and ε > 0. Set

zn(t) = yn(v, ε + t) − yn(u, ε + t), t ∈ [0, T − ε],
z(t) = y(v, ε + t) − y(u, ε + t), t ∈ [0, T − ε],

τn = inf
{
t : zn(t) = 0

}∧ T , τ = inf
{
t : z(t) = 0

}∧ T .

Then 〈
zn(·)〉t∧τn

= 〈
yn(u, ·)〉t∧τn

+ 〈
yn(v, ·)〉t∧τn

≥ 2(t ∧ τn).

By Lemma 2.10, limn→∞ τn = τ in probability. The equalities τn + ε = τn
u,v ∨ ε

and τ + ε = τu,v ∨ ε easily imply the assertion of the lemma. �

LEMMA 2.13. For all u, v ∈ [0,1] and t ∈ [0, T ], 〈y(u, ·), y(v, ·)〉t∧τu,v = 0.

PROOF. For fixed u, v ∈ [0,1] denote

Mε
n(t) = yn

(
u,

(
t ∧ τn

u,v

)∨ ε
)
yn

(
v,

(
t ∧ τn

u,v

)∨ ε
)
, t ∈ [0, T ].

First, we will show that Mε
n(·) is an (Fyn

(t∧τn
u,v)∨ε)-martingale, where (Fyn

t ) is gen-
erated by yn [see (2.1)].
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It is well known that Mε
n(·) − 〈yn(u, ·), yn(v, ·)〉(·∧τn

u,v)∨ε is an (Fyn

(t∧τn
u,v)∨ε)-

martingale. Note that 〈yn(u, ·), yn(v, ·)〉(·∧τn
u,v)∨ε is also an (Fyn

(t∧τn
u,v)∨ε)-mar-

tingale because 〈
yn(u, ·), yn(v, ·)〉(t∧τn

u,v)∨ε = 〈
yn(u, ·), yn(v, ·)〉ε

and it is measurable with respect to Fyn

(0∧τn
u,v)∨ε . Thus, Mε

n(·) is an (Fyn

(t∧τn
u,v)∨ε)-

martingale. Passing to the limit as n → ∞ and using the continuity of the map
(f, a) → f (· ∧ a) from C[0, T ] × [0, T ] to C[0, T ] and Lemma 2.12 we have

Mε
n(·) → y

(
u, (· ∧ τu,v) ∨ ε

)
y
(
v, (· ∧ τu,v) ∨ ε

)
in C[0, T ], in probability.

By Proposition 9.1.17 [23], y(u, (· ∧ τu,v) ∨ ε)y(v, (· ∧ τu,v) ∨ ε) is a local mar-
tingale. Since

y
(
u, (· ∧ τu,v) ∨ ε

)
y
(
v, (· ∧ τu,v) ∨ ε

) → y(u, · ∧ τu,v)y(v, · ∧ τu,v)

a.s., ε → 0,

again, y(u, · ∧ τu,v)y(v, · ∧ τu,v) is a local martingale. It proves the lemma. �

To check Condition (C4), we will verify that for each t ∈ (0, T ] the set
{y(u, t), u ∈ [0,1]} is finite.

LEMMA 2.14. Let N(t) denote the number of distinct points of {y(u, t), u ∈
[0,1]}, for each t ∈ (0, T ], that is,

N(t) = ∣∣{y(u, t), u ∈ [0,1]}∣∣.
Then there exists a constant C such that EN(t) ≤ C√

t
, t ∈ (0, T ].

COROLLARY 2.2. For all t ∈ (0, T ], y(·, t) is a step function.

PROOF OF LEMMA 2.14. Denote by Nn(t) the number of distinct points of
{yn(u, t), u ∈ [0,1]}. First, we prove that there exists a constant C which does not
depend on n such that ENn(t) ≤ C√

t
, t ∈ (0, T ]. To show this, it is enough to con-

sider the system {xn
k (t), t ∈ [0, T ], k ∈ [n]}, which was constructed in Section 2.1,

and check that EÑn(t) ≤ C√
t
, t ∈ (0, T ], where

Ñn(t) = ∣∣{xn
k (t), k ∈ [n]}∣∣.

Denote

γ n
1 (t) = t,

γ n
k (t) = inf

{
s : xn

k−1(s) = xn
k (s)

}∧ t, k = 2, . . . , n,

γ n(t) =
n∑

k=1

γ n
k (t).
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Let {zn
k (t), t ∈ [0, T ], k ∈ [n]} be the system of coalescing Brownian particles

which start from k
n

, k ∈ [n]. Define γ̂ n(t), t ∈ (0, T ], similarly as γ n(t), t ∈ (0, T ],
replacing xn

k (·), k ∈ [n], with zn
k (·), k ∈ [n]. By Lemma 2.4 and Lemma 7.1.1 [13],

there exists a constant C such that

Eγ n(t) ≤ Eγ̂ n(t) ≤ C
√

t, t ∈ (0, T ], n ≥ 1.

Note that

tÑn(t) ≤ γ n(t), t ∈ (0, T ],
so

EÑn(t) ≤ C√
t
, t ∈ (0, T ].

It is easy to check that

N(t) ≤ lim
n→∞

Nn(t).

Hence, by Fatou’s lemma, EN(t) ≤ C√
t
, t ∈ (0, T ]. The lemma is proved. �

LEMMA 2.15. For every u ∈ [0,1] and t ∈ [0, T ],〈
y(u, ·)〉t =

∫ t

0

ds

m(u, s)
,

where m(u, t) = Leb{v : ∃s ≤ ty(v, s) = y(u, s)}.

PROOF. Let u ∈ [0,1] be fixed and let τn
u,v and τu,v be defined by (2.3)

and (2.13), respectively. Denote

�u = {
ε ∈ (0, T ) : P

{
τu,v �= ε, for all v ∈ Q∩ [0,1]} = 1

}
.

Note that (0, T ) \ �u is countable because it is a subset of the countable set {ε ∈
(0, T ) : ∃v ∈ Q ∩ [0,1] P{τu,v = ε} > 0}. By the definition of m(u, t), it is clear
that

(2.14) m(u, t) =
∫ 1

0
I{τu,v≤t} dv.

Similarly,

(2.15) mn(u, t) =
∫ 1

0
I{τn

u,v≤t} dv,

where mn(u, t) is defined by (2.2). Using Lemma 2.12 and Lemma 4.2 [24], we
choose a sequence {n′} such that for each v ∈Q∩ [0,1]

τn′
u,v → τu,v a.s., n′ → ∞.
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Fix ε ∈ �u and set

�′ = {∀v ∈ Q∩ [0,1] τn′
u,v → τu,v

}∩ {∀v ∈ Q∩ [0,1] τu,v �= ε
}

∩ {
τu,·, τ n′

u,· is nondecreasing on [u,1]
and nonincreasing on [0, u], for all n′}
∩ {

yn′, y ∈ D
([0,1],C[0, T ]), for all n′}∩ {

N(ε) < ∞}
.

It is clear that P{�′} = 1. For every ω ∈ �′, set

R(ω) = {
τu,v(ω) : v ∈ Q∩ [0,1]}∩ [ε, T ].

It should be noted that ε /∈ R(ω) and R(ω) is countable. Take ω ∈ �′ and t ∈
[ε, T ] \ R(ω) and show that

(2.16) mn′(u, t,ω) → m(u, t,ω), n′ → ∞.

To prove it, observe that, since t /∈ R(ω), for all v ∈ Q∩ [0,1]
I{τn′

u,v(ω)≤t} → I{τu,v(ω)≤t}, n′ → ∞.

Next, denote

v+(ω) = sup
{
v : τu,v(ω) < t

}
,

v−(ω) = inf
{
v : τu,v(ω) < t

}
and take v ∈ (v−(ω), v+(ω)). Then τu,v(ω) < t . Let ṽ be a rational point from
(v−(ω), v+(ω)) such that ṽ > v > u or ṽ < v < u. Then τu,ṽ(ω) < t . Since

τn′
u,ṽ(ω) → τu,ṽ(ω) �= t,

I{τn′
u,v(ω)≤t} ≥ I{τn′

u,ṽ(ω)≤t} → I{τu,ṽ(ω)≤t} = I{τu,v(ω)≤t} = 1.

So, we obtain that for all v ∈ (v−(ω), v+(ω))

(2.17) I{τn′
u,v(ω)≤t} → I{τu,v(ω)≤t}, n′ → ∞.

Now consider v ∈ [0,1] \ [v−(ω), v+(ω)]. Note that, by the choice of the set R(ω)

there is no interval [a, b] ⊂ [0,1] (a < b), such that τu,v(ω) = t , v ∈ [a, b], be-
cause the interval contains rational points and we know that for these points the
equality is false. So, by the monotonicity of τu,·(ω), we have that

τu,v(ω) > t.

Again, we can show that (2.17) holds for all v ∈ [0,1] \ [v−(ω), v+(ω)]. Thus, by
the dominated convergence theorem, (2.14) and (2.15), we can conclude that (2.16)
is valid.
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Next, note that ε /∈ R(ω) so

mn′(u, ε,ω) → m(u, ε,ω), n′ → ∞.

Since y(·, ε,ω) belongs to D([0,1],R) and it is a step function (see Corollary 2.2),
m(u, ε,ω) > 0. So,

1

mn′(u, ε,ω)
→ 1

m(u, ε,ω)
< ∞, n′ → ∞.

Hence, there exists a constant C(u, ε,ω) such that

1

mn′(u, t,ω)
≤ 1

mn′(u, ε,ω)
≤ C(u, ε,ω), t ∈ [ε, T ] \ R(ω),n′ ≥ 1.

Noting that the Lebesgue measure of R(ω) equals 0 and using the dominated con-
vergence theorem, we get

sup
t∈[ε,T ]

∣∣∣∣∫ t

ε

ds

mn′(u, s,ω)
−
∫ t

ε

ds

m(u, s,ω)

∣∣∣∣
≤
∫ T

ε

∣∣∣∣ 1

mn′(u, s,ω)
− 1

m(u, s,ω)

∣∣∣∣ds → 0, n′ → ∞.

Thus,〈
yn′(u, · ∨ ε)

〉
· =

∫ ·∨ε

ε

ds

mn′(u, s,ω)
→

∫ ·∨ε

ε

ds

m(u, s,ω)
a.s. in C[0, T ].

Since

yn′(u, · ∨ ε) → y(u, · ∨ ε) a.s. in C[0, T ],
it is easy to see that

〈
y(u, · ∨ ε)

〉
t =

∫ t∨ε

ε

ds

m(u, s,ω)
, t ∈ [0, T ].

But on the other hand,〈
y(u, · ∨ ε)

〉
t = 〈

y(u, ·)〉t∨ε − 〈
y(u, ·)〉ε

so ∫ t∨ε

ε

ds

m(u, s,ω)
= 〈

y(u, ·)〉t∨ε − 〈
y(u, ·)〉ε, t ∈ [0, T ].

Since 〈y(u, ·)〉· is the quadratic variation of a continuous martingale, it is contin-
uous and nondecreasing. Consequently, passing to the limit as �u � ε → 0, we
obtain the proof of the lemma. �
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2.5. Verification of (C1). In this section, we will show that {y(u, t), u ∈
[0,1], t ∈ [0, T ]} satisfies Condition (C1), that is, we will prove that y(u, t) has
a second moment for all u, t . Since y(u, ·) is a local square integrable martingale,
it is enough to establish E〈y(u, ·)〉t < ∞. To check this, we will prove an estima-
tion of P{ 1

m(u,t)
> r} and using it we will estimate E 1

m(u,t)
. The following lemma

holds.

LEMMA 2.16. For each β ∈ (0, 3
2), there exists a constant C such that for all

u ∈ [0,1],

E
1

mβ(u, t)
≤ C√

t
, t ∈ (0, T ].

PROOF. Let us estimate the probability

P
{

1

m(u, t)
> r

}
, r ≥ 2, t ∈ (0, T ].

We can assume, without any restriction of generality, that u ∈ [0, 1
2 ]. Denote

M(t) = y

(
u + 1

r
, t

)
− y(u, t)

and

At =
{

1

m(u, t)
> r

}
.

Since M(·) is a continuous martingale (see Proposition 2.5), M(·) is a continuous
local square integrable martingale. To calculate the quadratic variation of M(·), we
have 〈

M(·)〉t =
〈
y

(
u + 1

r
, ·
)〉

t

+ 〈
y(u, ·)〉t − 2

〈
y

(
u + 1

r
, ·
)
, y(u, ·)

〉
t

.

Note that, by Lemma 2.13,〈
y

(
u + 1

r
, ·
)
, y(u, ·)

〉
t

I{M(t)>0} = 0, t ∈ [0, T ].

Take ω ∈ At , then ω ∈ {M(t) > 0} because y(u + 1
r
, ·,ω) and y(u, ·,ω) do not

meet by time t . Hence,

〈
M(·)〉t (ω) =

〈
y

(
u + 1

r
, ·
)〉

t

(ω) + 〈
y(u, ·)〉t (ω)

≥ 〈
y(u, ·)〉t (ω) =

∫ t

0

ds

m(u, s,ω)
≥ rt.
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Next, since M(·) is a continuous martingale, there exists a Wiener process
w(t), t ≥ 0, such that

M(t) = 1

r
+ w

(〈
M(·)〉t ).

Set

τ = inf
{
t : M(t) = 0

}∧ T , σ = inf
{
t : 1

r
+ w(t) = 0

}
.

As in the proof of Lemma 2.4, we can prove that〈
M(·)〉τ ≤ σ.

Note that if ω ∈ At then τ(ω) > t , and hence, by the last inequality σ(ω) ≥
〈M(·)〉τ(ω)(ω) ≥ 〈M(·)〉t (ω) ≥ rt . Now we are ready to estimate the probability
of At . So,

P{At } = P
{
At,M(t) > 0

} = P{At, τ > t} ≤ P{At, σ ≥ rt}

≤ P{σ ≥ rt} = P
{

max
s∈[0,rt]w(s) <

1

r

}
≤ P

{
max

s∈[0,1]w(s) <
1√
tr3

}

≤ 2√
2π

∫ 1√
tr3

0
e− x2

2 dx ≤ 2√
2π

1√
tr3

.

Thus,

E
1

mβ(u, t)
= E

∫ ∞
0

I{ 1
mβ(u,t)

>r} dr =
∫ ∞

0
P
{

1

m(u, t)
> r

1
β

}
dr

≤ 2 +
∫ ∞

2

2√
2π

1
√

tr
3

2β

dr ≤ C√
t
.

The lemma is proved. �

LEMMA 2.17. There exists a constant C such that for all u ∈ [0,1]
E
∫ t

0

ds

m(u, s)
≤ C

√
t, t ∈ [0, T ].

PROOF. The assertion of the lemma immediately follows from Lemma 2.16.
�

This lemma allows us to obtain the following result.

LEMMA 2.18. There exists a constant C such that for all u ∈ [0,1]
E
(
y(u, t) − u

)2 ≤ C
√

t, t ∈ [0, T ].
Moreover, y(u, ·) is a continuous square integrable martingale.
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REMARK 2.5. Since we did not use the fact that {y(u, t), u ∈ [0,1], t ∈
[0, T ]} was a limit of a finite system of particles, we claim that all the results of
this subsection are valid for every random element {y(u, t), u ∈ [0,1], t ∈ [0, T ]}
of D([0,1],C[0, T ]) which satisfies conditions (C2)–(C5) and:

(C1′) for all u ∈ [0,1] the process y(u, ·) is a continuous martingale with re-
spect to the filtration

Ft = σ
(
y(u, s), u ∈ [0,1], s ≤ t

)
, t ∈ [0, T ].

3. Stochastic integral with respect to the constructed flow and an analog
of Itô’s formula. Hereafter, we will suppose that {y(u, t), u ∈ [0,1], t ∈ [0, T ]}
is a random element of D([0,1],C[0, T ]) which satisfies conditions (C1)–(C5).
For such a flow, we will construct a stochastic integral

∫ 1
0
∫ t

0 ϕ(y(u, s)) dy(u, s) du

and using the constructed integral we obtain an analog of Itô’s formula. First, let
us establish a property of {y(u, t), u ∈ [0,1], t ∈ [0, T ]}.

LEMMA 3.1. For all t ∈ (0, T ], the function y(u, t), u ∈ [0,1], is a step
function in D([0,1],R). Moreover, P{for all u, v ∈ [0,1], if y(u, t) = y(v, t) then
y(u, t + ·) = y(v, t + ·)} = 1.

Note that earlier this property followed from the fact that {y(u, t), u ∈ [0,1], t ∈
[0, T ]} was approximated by a finite particle system. But in fact this property fol-
lows from (C1)–(C5).

PROOF OF LEMMA 3.1. This is the same proof as the one of a similar result
for a coalescing Brownian motion (see, e.g., Section 7.1 [13]). �

Let M denote the space of continuous square integrable martingales on [0, T ]
with respect to the filtration defined by (1.1) and let

(M,N) = EM(T )N(T ), M,N ∈M
be an inner product on M. It is well known that M is a Hilbert space.

Consider for n ≥ 1 a partition 0 = un
0 < · · · < un

n = 1. Let vn
k ∈ [un

k−1, u
n
k ], k ∈

[n], λn = maxk∈[n] �un
k , where �un

k = un
k − un

k−1, k ∈ [n], and let ϕ is a bounded
piecewise continuous function from R to R. Set

Mn(t) =
n∑

k=1

∫ t

0
ϕ
(
y
(
vn
k , s

))
dy

(
vn
k , s

)
�un

k, t ∈ [0, T ].

Note that Mn(·) belongs to M. The following proposition holds.

PROPOSITION 3.1. The sequence {Mn(·)}n≥1 is convergent in M as λn → 0
and its limit does not depend on the choice of the partition un

k , k ∈ [n], and the
points vn

k , k ∈ [n].
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PROOF. To prove the proposition, it is enough to check that {Mn(·)}n≥1 is a
Cauchy sequence. So, consider(

Mn(·),Mp(·)) = EMn(T )Mp(T ) = E
〈
Mn(·),Mp(·)〉T

= E
n∑

k=1

p∑
l=1

∫ T

0

ϕ(y(vn
k , s))ϕ(y(v

p
l , s))√

m(vn
k , s)m(v

p
l , s)

I{τ
vn
k
,v

p
l
≤s}�un

k�u
p
l ds

= E
∫ T

0

n∑
k=1

ϕ2(y(vn
k , s

))
�un

k

∑p
l=1 I{τvn

k
,v

p
l
≤s}�u

p
l

m(vn
k , s)

ds

(3.1)

= E
∫ T

0

n∑
k=1

ϕ2(y(vn
k , s

))
�un

k ds

+ E
∫ T

0

n∑
k=1

ϕ2(y(vn
k , s

))
�un

k

[∑p
l=1 I{τvn

k
,v

p
l
≤s}�u

p
l

m(vn
k , s)

− 1
]
ds

= I 1
n,p + I 2

n,p.

By the dominated convergence theorem,

I 1
n,p → E

∫ T

0

∫ 1

0
ϕ2(y(u, s)

)
duds, λn, λp → 0.

Estimate the second term of the right-hand side of (3.1):

∣∣I 2
n,p

∣∣ ≤ E
∫ T

0

n∑
k=1

ϕ2(y(vn
k , s

))
�un

k

∣∣∣∣
∑p

l=1 I{τvn
k
,v

p
l
≤s}�u

p
l

m(vn
k , s)

− 1
∣∣∣∣ds

≤ ∥∥ϕ2∥∥∫ T

0

n∑
k=1

�un
kE

∣∣∣∣
∑p

l=1 I{τvn
k
,v

p
l
≤s}�u

p
l

m(vn
k , s)

− 1
∣∣∣∣ds

≤ ∥∥ϕ2∥∥∫ T

0
sup

u∈[0,1]
E

|∑p
l=1 I{τu,v

p
l
≤s}�u

p
l − m(u, s)|

m(u, s)
ds

≤ ∥∥ϕ2∥∥∫ T

0
sup

u∈[0,1]
E

2λp

m(u, s)
ds ≤ 2λp

∥∥ϕ2∥∥C√
T .

Here, the latter inequality follows from Lemma 2.16. Hence, In,p → 0 as
λn, λp → 0. Thus, {Mn(·)}n≥1 is a Cauchy sequence in M and, therefore,
{Mn(·)}n≥1 is convergent. By the method of mixing of two sequences, it is easy to
show that the limit does not depend on the choice of the permutation. The propo-
sition is proved. �
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Denote ∫ 1

0

∫ ·
0

ϕ
(
y(u, s)

)
dy(u, s) du = lim

λn→0
Mn(·) in M.

PROPOSITION 3.2. For each bounded piecewise continuous function ϕ,∫ 1
0
∫ t

0 ϕ(y(u, s)) dy(u, s) du, t ∈ [0, T ], is a continuous square integrable (Ft )-
martingale with the quadratic variation

(3.2)
〈∫ 1

0

∫ ·
0

ϕ
(
y(u, s)

)
dy(u, s) du

〉
t

=
∫ 1

0

∫ t

0
ϕ2(y(u, s)

)
ds du, t ∈ [0, T ].

PROOF. The martingale property of
∫ 1

0
∫ ·

0 ϕ(y(u, s)) dy(u, s) du follows from
its construction. Let us check (3.2). As in the proof of Proposition 3.1, we can
show that for each t ∈ [0, T ]

〈
Mn(·)〉t →

∫ 1

0

∫ t

0
ϕ2(y(u, s)

)
ds du in L1.

Next, take r ≤ t and consider

E
(
M2

n(t) − 〈
Mn(·)〉t |Fr

) = M2
n(r) − 〈

Mn(·)〉r .
By the dominated convergence theorem, for the conditional expectations one has

E
((∫ 1

0

∫ t

0
ϕ
(
y(u, s)

)
dy(u, s) du

)2
−
∫ 1

0

∫ t

0
ϕ2(y(u, s)

)
ds du

∣∣∣Fr

)

=
(∫ 1

0

∫ r

0
ϕ
(
y(u, s)

)
dy(u, s) du

)2
−
∫ 1

0

∫ r

0
ϕ2(y(u, s)

)
ds du.

Hence, (3.2) is valid. It completes the proof of the proposition. �

Now we are ready to establish an analog of Itô’s formula.

THEOREM 3.1. For each twice continuously differentiable function ϕ : R →
R having bounded derivatives we have∫ 1

0
ϕ
(
y(u, t)

)
du =

∫ 1

0
ϕ(u)du

+
∫ 1

0

∫ t

0
ϕ̇
(
y(u, s)

)
dy(u, s) du

+ 1

2

∫ t

0

∫ 1

0

ϕ̈(y(u, s))

m(u, s)
duds, t ∈ [0, T ].
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PROOF. Let ε > 0 and 0 = un
0 < · · · < un

n = 1. By Itô’s formula,

n∑
k=1

ϕ
(
y
(
un

k, t
))

�un
k =

n∑
k=1

ϕ
(
y
(
un

k, ε
))

�un
k +

n∑
k=1

∫ t

ε
ϕ̇
(
y
(
un

k, s
))

dy
(
un

k, s
)
�un

k

+ 1

2

n∑
k=1

∫ t

ε

ϕ̈(y(un
k, s))

m(un
k, s)

ds�un
k

= I 1
n + I 2

n + I 3
n .

Note that

I 1
n →

∫ 1

0
ϕ
(
y(u, ε)

)
du a.s., λn → 0

and

I 2
n → M(t) − M(ε) in L2, λn → 0,

where

M(t) =
∫ 1

0

∫ t

0
ϕ̇
(
y(u, s)

)
dy(u, s) du, t ∈ [0, T ].

Hence, these sequences converge in probability. Denote

Sn(s) =
n∑

k=1

ϕ̈(y(un
k, s))

m(un
k, s)

�un
k, s ∈ [ε, t].

By Lemma 3.1, almost surely m(·, s) is a step function with a finite number of
discontinuity points and supu∈[0,1] 1

m(u,s)
< ∞, for all s ∈ [ε, t], so

Sn(s) →
∫ 1

0

ϕ̈(y(u, s))

m(u, s)
du a.s., λn → 0, s ∈ [ε, t].

Next, by the monotonicity of m(u, s), s ∈ [ε, t], for all u ∈ [0,1], we have

Sn(s) ≤ ‖ϕ̈‖ sup
u∈[0,1]

1

m(u, ε)
< ∞, s ∈ [ε, t], a.s.

Thus, by the dominated convergence theorem,∫ t

ε
Sn(s) ds →

∫ t

ε

∫ 1

0

ϕ̈(y(u, s))

m(u, s)
duds a.s., λn → 0.

So,

I 3
n →

∫ t

ε

∫ 1

0

ϕ̈(y(u, s))

m(u, s)
duds in probability, λn → 0.
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Hence, ∫ 1

0
ϕ
(
y(u, t)

)
du =

∫ 1

0
ϕ
(
y(u, ε)

)
du + M(t) − M(ε)

+ 1

2

∫ t

ε

∫ 1

0

ϕ̈(y(u, s))

m(u, s)
duds.

Note that the integral
∫ t

0
∫ 1

0
ϕ̈(y(u,s))
m(u,s)

duds exists a.s., since

E
∫ t

0

∫ 1

0

|ϕ̈(y(u, s))|
m(u, s)

duds ≤ sup
x∈R

∣∣ϕ̈(x)
∣∣E∫ t

0

∫ 1

0

duds

m(u, s)
< ∞,

by Lemma 2.17. So, passing to the limit as ε → 0 and using the dominated conve-
nience theorem, we obtain

lim
ε→0

1

2

∫ t

ε

∫ 1

0

ϕ̈(y(u, s))

m(u, s)
duds = −

∫ 1

0
ϕ(u)du

− M(t) +
∫ 1

0
ϕ
(
y(u, t)

)
du,

where lim we understand as the limit almost surely. The theorem is proved. �

4. Total local time. In this section, we define a local time for the constructed
flow and prove its existence.

DEFINITION 4.1. A random process {L(a, t), a ∈ R, t ∈ [0, T ]} is said to be
the local time for the process {y(u, t), u ∈ [0,1], t ∈ [0, T ]} if:

(a) (a, t) → L(a, t) is a continuous map a.s.;
(b) for every continuous function f with compact support∫ 1

0

∫ τ(u)∧t

0
f
(
y(u, s)

)
ds = 2

∫ +∞
−∞

f (a)L(a, t) da,

where the integral in the left-hand side is defined by Dorogovtsev (see, e.g., [13]
or Appendix B).

THEOREM 4.1. The local time for the flow {y(u, t), u ∈ [0,1], t ∈ [0, T ]} ex-
ists. Moreover,

L(a, t) =
∫ 1

0

(
y(u, t) − a

)+
du −

∫ 1

0
(u − a)+ du

−
∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du.

(4.1)
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PROOF. Let gn be a continuous positive function on R such that its support is
contained in (− 1

n
+ a, 1

n
+ a), gn(a + u) = gn(a − u), u ∈ R, and∫ +∞

−∞
gn(u)du = 1.

Set

fn(u) =
∫ u

−∞
dp

∫ p

−∞
gn(q) dq.

By Itô’s formula (see Theorem 3.1) and Corollary B.1,∫ 1

0
fn

(
y(u, t)

)
du −

∫ 1

0
fn(u)du −

∫ 1

0

∫ t

0
ḟn

(
y(u, s)

)
dy(u, s) du

= 1

2

∫ 1

0

∫ t

0

f̈n(y(u, s))

m(u, s)
ds du = 1

2

∫ 1

0

∫ τ(u)∧t

0
f̈n

(
y(u, s)

)
ds.

If the local time exists then passing to the limit in previous expression, we deduce
that it should have the form (4.1).

In what follows, we will show that the family of random variables {L(a, t), a ∈
R, t ∈ [0, T ]} satisfies properties (a) and (b) of Definition 4.1. Since (y(u, t) −
a)+ − (u − a)+ is continuous in (a, t) with probability 1, for all u ∈ [0,1],∫ 1

0

(
y(u, t) − a

)+
du −

∫ 1

0
(u − a)+ du

is also continuous in (a, t) a.s. Next, let us show that the C[0, T ]-valued process

ξ(a, ·) =
∫ 1

0

∫ ·
0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du, a ∈ R,

has a continuous modification. Note that for a < b

ξ(a, t) − ξ(b, t) =
∫ 1

0

∫ t

0
I(a,b]

(
y(u, s)

)
dy(u, s) du, t ∈ [0, T ],

is a continuous square integrable martingale with the quadratic variation

〈
ξ(a, ·) − ξ(b, ·)〉t =

∫ 1

0

∫ t

0
I(a,b]

(
y(u, s)

)
ds du, t ∈ [0, T ].

By Theorem 3.3.1 [22],

E sup
t∈[0,T ]

∣∣ξ(a, t) − ξ(b, t)
∣∣4 ≤ CE

〈
ξ(a, ·) − ξ(b, ·)〉2T

= CE
(∫ 1

0

∫ T

0
I(a,b]

(
y(u, s)

)
ds du

)2
.
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Let ψ : R → R be a twice continuously differentiable function with bounded
derivatives such that

ψ̈(u) ≥ 2I(a,b](u),
∣∣ψ̇(u)

∣∣ ≤ 2(b − a), u ∈ R.

Then, by Theorem 3.1,∫ 1

0

∫ T

0
I(a,b]

(
y(u, s)

)
ds du

≤ 1

2

∫ 1

0

∫ T

0
ψ̈
(
y(u, s)

)
ds du

≤ 1

2

∫ 1

0

∫ T

0

ψ̈(y(u, s))

m(u, s)
ds du

=
∫ 1

0
ψ
(
y(u,T )

)
du −

∫ 1

0
ψ(u)du −

∫ 1

0

∫ T

0
ψ̇
(
y(u, s)

)
dy(u, s) du

≤ ‖ψ̇‖
∫ 1

0

∣∣y(u,T ) − u
∣∣du +

∣∣∣∣∫ 1

0

∫ T

0
ψ̇
(
y(u, s)

)
dy(u, s) du

∣∣∣∣.
Next, estimate

E
(∫ 1

0

∫ T

0
ψ̇
(
y(u, s)

)
dy(u, s) du

)2
= E

∫ 1

0

∫ T

0
ψ̇2(y(u, s)

)
ds du

≤ 4T (b − a)2.

Consequently, by Lemma 2.18,

E sup
t∈[0,T ]

∣∣ξ(a, t) − ξ(b, t)
∣∣4

≤ 2‖ψ̇‖2E
(∫ 1

0

∣∣y(u,T ) − u
∣∣du

)2
+ 2E

(∫ 1

0

∫ T

0
ψ̇
(
y(u, s)

)
dy(u, s) du

)2

≤ 8(b − a)2E
∫ 1

0

(
y(u,T ) − u

)2
du + 8T (b − a)2

≤ C1(b − a)2.

So, ξ(a, ·) has a continuous modification. Further, we will consider only this mod-
ification. Hence, L(a, t), a ∈ R, t ∈ [0, T ], is a continuous process. Let us check
Condition (b) of Definition 4.1. Let f be a continuous function on R with a com-
pact support. Set

F(x) =
∫ +∞
−∞

f (a)(x − a)+ da, x ∈ R.

It is clear that F is a twice continuously differentiable function with

Ḟ (x) =
∫ x

−∞
f (a) da, F̈ (x) = f (x), x ∈ R.
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By Itô’s formula (see Theorem 3.1),∫ 1

0
F
(
y(u, t)

)
du −

∫ 1

0
F(u)du −

∫ 1

0

∫ t

0
Ḟ
(
y(u, s)

)
dy(u, s) du

= 1

2

∫ 1

0

∫ t

0

F̈ (y(u, s))

m(u, s)
ds du = 1

2

∫ 1

0

∫ τ(u)∧t

0
f
(
y(u, s)

)
ds.

Rewrite the left-hand side of the previous relation:∫ +∞
−∞

f (a)

[∫ 1

0

(
y(u, t) − a

)+
du −

∫ 1

0
(u − a)+ du

]
da

−
∫ 1

0

∫ t

0

∫ +∞
−∞

f (a)I(a,+∞)

(
y(u, s)

)
da dy(u, s) du.

If we could rearrange the order of integration in the last integral, then we would
obtain∫ +∞

−∞
f (a)

[∫ 1

0

(
y(u, t) − a

)+
du −

∫ 1

0
(u − a)+ du

−
∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du

]
da = 1

2

∫ 1

0

∫ τ(u)∧t

0
f
(
y(u, s)

)
ds.

Let us show that we can rearrange the order of integration. First, prove that

I (t) =
∫ +∞
−∞

(
f (a)

∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du

)
da, t ∈ [0, T ],

has a continuous modification. To check it, we estimate

E
∫ +∞
−∞

∣∣f (a)
∣∣ max
t∈[0,T ]

∣∣∣∣∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du

∣∣∣∣da

≤
∫ +∞
−∞

∣∣f (a)
∣∣(E max

t∈[0,T ]

∣∣∣∣∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du

∣∣∣∣2) 1
2
da

≤ C

∫ +∞
−∞

∣∣f (a)
∣∣(E

∫ 1

0

∫ T

0
I(a,+∞)

(
y(u, s)

)
ds du

) 1
2
da

≤ CT

∫ +∞
−∞

∣∣f (a)
∣∣da < +∞.

Since ξ(a, t), a ∈ R, t ∈ [0, T ], is continuous a.s., ξ(a, ·) is continuous with prob-
ability 1, for all a ∈ R. From the last estimation, it easily follows that I (t), t ∈
[0, T ], is continuous a.s.

Next, let suppf ⊆ [−M,M],
−M = a0 ≤ ã1 ≤ a1 ≤ ã2 ≤ · · · ≤ an = M
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and λn = maxk∈[n](ak − ak−1). Consider for t ∈ [0, T ]

In(t) =
n∑

k=1

f (ãk)

∫ 1

0

∫ t

0
I(ãk,+∞)

(
y(u, s)

)
dy(u, s) du�ak

=
∫ 1

0

∫ t

0

n∑
k=1

f (ãk)I(ãk,+∞)

(
y(u, s)

)
�ak dy(u, s) du.

Note that for a fixed t ∈ [0, T ]
In(t) →

∫ +∞
−∞

(
f (a)

∫ 1

0

∫ t

0
I(a,+∞)

(
y(u, s)

)
dy(u, s) du

)
da λn → 0, a.s.

On the other hand,〈∫ 1

0

∫ ·
0

[
n∑

k=1

f (ãk)I(ãk,+∞)

(
y(u, s)

)
�ak

−
∫ +∞
−∞

f (a)I(a,+∞)

(
y(u, s)

)
da

]
dy(u, s) du

〉
t

=
∫ 1

0

∫ t

0

[
n∑

k=1

f (ãk)I(ãk,+∞)

(
y(u, s)

)
�ak

−
∫ +∞
−∞

f (a)I(a,+∞)

(
y(u, s)

)
da

]2

ds du → 0, λn → 0, a.s.,

by the dominated convergence theorem. So,

In(t) →
∫ 1

0

∫ t

0

(∫ +∞
−∞

f (a)I(a,+∞)

(
y(u, s)

)
da

)
dy(u, s) du,

λn → 0, in L2.

Hence, by the continuity of the integrals in t we have∫ +∞
−∞

(∫ 1

0

∫ ·
0

f (a)I(a,+∞)

(
y(u, s)

)
dy(u, s) du

)
da

=
∫ 1

0

∫ ·
0

(∫ +∞
−∞

f (a)I(a,+∞)

(
y(u, s)

)
da

)
dy(u, s) du.

This proves the theorem. �

APPENDIX A: SOME RESULTS ABOUT TIGHTNESS IN SPACE
D([0,1],C(0, T ])

Here we will show that the tightness of a system of probability measures
{Pn}n≥1 in the space D([0,1],C(0, T ]) is equivalent to the tightness of the set



A SYSTEM OF HEAVY DIFFUSION PARTICLES 3329

of probability measures {Pn ◦ π−1
ε }n≥1 in D([0,1],C[ε, T ]) for all ε > 0, where

πε is a restriction map on D([0,1],C[ε, T ]), which will be defined later.
Denote by C(0, T ] the space of continuous functions from (0, T ] to R with the

metric

ρ(f, g) =
∞∑

k=1

1

2k

(
sup

t∈[ 1
k
,T ]

∣∣f (t) − g(t)
∣∣∧ 1

)
.

For a function f : [0,1] × (0, T ] → R and ε > 0, set

(πεf )(u, t) = πεf (u, t) = f (u, t), u ∈ [0,1], t ∈ [ε, T ].
Note that πεf : [0,1] × [ε, T ] → R.

LEMMA A.1. A function f : [0,1]×(0, T ] → R belongs to D([0,1],C(0, T ])
if and only if for every ε > 0 πεf ∈ D([0,1],C[ε, T ]).

The proof is a standard technical exercise.

LEMMA A.2. Let {fn}n≥1 be a sequence of functions in D([0,1],C(0, T ]):
(i) If the sequence {fn}n≥1 converges to a function f in D([0,1],C(0, T ]) then

for every ε > 0 {πεfn}n≥1 converges to πεf in D([0,1],C[ε, T ]).
(ii) If for every ε > 0 {πεfn}n≥1 converges to a function gε in D([0,1],C[ε, T ])

then the function

(A.1) f (u, t) = gε(u, t), u ∈ [0,1], t ∈ (0, T ], ε ≤ t,

is well defined and {fn}n≥1 converges to f in D([0,1],C(0, T ]).

PROOF. Let d0 and dε be the Skorohod metrics in D([0,1],C(0, T ]) and
D([0,1],C[ε, T ]) respectively. The inequality

dε(πεf,πεg) ≤ Cd0(f, g), f, g ∈ D
([0,1],C(0, T ]),

implies the assertion of the first part of the lemma.
To prove the second part, we first recall the definition of the Skorohod metric.

Let � denote a set of strictly increasing Lipschitz continuous functions from [0,1]
onto [0,1]. Set for λ ∈ �

γ (λ) = sup
0≤s<t≤1

∣∣∣∣ln λ(t) − λ(s)

t − s

∣∣∣∣.
Then the metric on D([0,1],C(0, T ]) is defined by

d0(f, g) = inf
λ∈�

[
γ (λ) ∨ sup

u∈[0,1]
ρ
(
f
(
λ(u), ·), g(u, ·))∧ 1

]
.
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The metric dε is defined similarly as d0 replacing ρ with ρε , where ρε is uniform
distance on C[ε, T ].

Let f be defined by (A.1). Prove that f is well defined. Take t ∈ [ε1 ∨ ε2, T ].
Then for each n ≥ 1

πε1fn(·, t) = πε2fn(·, t).
Since πεi

fn(·, t) → gεi
(·, t) in D([0,1],R), i = 1,2, gε1(·, t) = gε2(·, t). So, f

is well defined. Note that for each ε > 0, πεf = gε so by Lemma A.1, f ∈
D([0,1],C(0, T ]).

Next, fix δ > 0 and take p ∈N such that 1
2p < δ

2 . Since

d 1
p
(π 1

p
fn,π 1

p
f ) → 0, as n → ∞,

there exist a sequence {λn}n≥1 ⊂ � and a number N ∈N such that for each n ≥ N

(A.2) γ (λn) <
δ

2

and

sup
u∈[0,1]

ρ 1
p

(
π 1

p
fn

(
λn(u), ·), π 1

p
f (u, ·)) <

δ

2
.

Note that

sup
u∈[0,1]

ρ 1
k

(
π 1

k
fn

(
λn(u), ·), π 1

k
f (u, ·))<

δ

2
, k ∈ [p], n ≥ N.

Hence, for all u ∈ [0,1],
p∑

k=1

1

2k
ρ 1

k

(
π 1

k
fn

(
λn(u), ·), π 1

k
f (u, ·)) <

δ

2
, n ≥ N.

By the choice of p and the latter inequality, for each n ≥ N and u ∈ [0,1],
ρ
(
fn

(
λn(u), ·), f (u, ·)) < δ.

This and (A.2) imply the inequality

d0(fn, f ) ≤ δ, n ≥ N.

The lemma is proved. �

PROPOSITION A.1. A set {Pn}n≥1 of probability measures in
D([0,1],C(0, T ]) is tight if and only if for every ε > 0 the set {Pn ◦ π−1

ε }n≥1

is tight in D([0,1],C[ε, T ]).
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PROOF. The necessity follows from the continuity of the map:

πε : D([0,1],C(0, T ]) → D
([0,1],C[ε, T ])

[see Lemma A.2(i)]. Let us prove the sufficiency. Let εq = 1
q

and Kq be a compact
set in D([0,1],C[εq, T ]), q ∈N. Show that

(A.3) K =
∞⋂

q=1

π−1
εq

(Kq)

is compact in D([0,1],C(0, T ]). Since K is closed and D([0,1],C(0, T ]) is a
metric space, to prove the compactness of K , it suffices to show that every se-
quence of elements of K has a convergent subsequence. So, let {fn}n≥1 ⊆ K .
Note that {πεq fn}n≥1 ⊆ Kq , for each q ∈ N. Hence, {πεq fn}n≥1 has a conver-
gent subsequence. By Cantor’s diagonal argument, we can choose a sequence
{n′} ⊆ N such that for all q ∈ N the sequence {πεq fn′ }n′ tends to some function
gq in D([0,1],C[εq, T ]). By Lemma A.2(ii), the sequence {fn′ }n′ is convergent in
D([0,1],C(0, T ]). Thus, we obtain that K is compact.

Let δ > 0 be fixed. By the tightness of {Pn ◦ π−1
ε }n≥1, we can take a compact

set Kq in D([0,1],C[εq, T ]) such that

inf
n≥1

Pn

(
π−1

ε (Kq)
) ≥ 1 − δ

2q
, q ≥ 1.

Defining K by (A.3) and using the standard argument we have the estimation

Pn(K) ≥ 1 − δ, n ≥ 1.

This completes the proof of the proposition. �

APPENDIX B: A SPECIAL INTEGRAL FOR A STOCHASTIC
COALESCING FLOW

In this section, we recall the construction of an integral with respect to a
stochastic flow that was defined by Dorogovtsev and state the fact used in the
proof of Theorem 4.1. Let {y(u, t), u ∈ [0,1], t ∈ [0, T ]} be a random element
of D([0,1],C[0, T ]) which satisfies conditions (C1)–(C5). For a set of points
{uk, k ∈N} ⊂ [0,1], denote

τ(u1) = T ,

τ(uk) = inf
{
t : ∃l ∈ [k − 1] y(ul, t) = y(uk, t)

}∧ T , k = 2,3, . . . .

LEMMA B.1. Let {uk, k ∈ N} be dense in [0,1]. Then for each continuous
bounded function ϕ :R →R and t ∈ [0, T ] the series

∑+∞
k=1

∫ τ(uk)∧t
0 ϕ(y(uk, s)) ds

converges almost surely. Moreover, its sum is independent of the choice of {uk, k ∈
N} and equals

∫ 1
0
∫ t

0
ϕ(y(u,s))
m(u,s)

ds du.
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PROOF. To prove the lemma, first show that the series is absolutely convergent
a.s. For each n ∈ N let

Sn =
n∑

k=1

∣∣∣∣∫ τ(uk)∧t

0
ϕ
(
y(uk, s)

)
ds

∣∣∣∣
and {un

k, k ∈ [n]} be the set of {uk, k ∈ [n]} ordered by increasing. Set

τ̃
(
un

1
) = T ,

τ̃
(
un

k

) = inf
{
t : y(un

k−1, t
) = y

(
un

k, t
)}∧ T , k = 2, . . . , n.

Then

Sn =
n∑

k=1

∣∣∣∣∫ τ̃ (un
k )∧t

0
ϕ
(
y
(
un

k, s
))

ds

∣∣∣∣
and hence

ESn =
n∑

k=1

E
∣∣∣∣∫ τ̃ (un

k )∧t

0
ϕ
(
y
(
un

k, s
))

ds

∣∣∣∣ ≤ ‖ϕ‖
n∑

k=1

E
(
τ̃
(
un

k

)∧ t
)
.

By Lemma 7.1.1 [13], there exists a constant C such that for all n ∈ N ESn ≤ C.
So, the sequence {Sn}n≥1 is convergent a.s., and consequently

+∞∑
k=1

∫ τ(uk)∧t

0
ϕ
(
y(uk, s)

)
ds

converges a.s.
In order to prove the second part of the lemma, set

�′ = {
y ∈ D

([0,1],C[0, T ])}∩ {
y(u, t) ≤ y(v, t), u < v, t ∈ [0, T ]}

∩ {y(·, t) is a step function, t ∈ (0, T ]} ∩ {
m(u, t) > 0, u ∈ [0,1], t ∈ (0, T ]}

∩ {
for all u, v ∈ [0,1] if y(u, t) = y(v, t) then y(u, t + ·) = y(v, t + ·)}.

By Theorem 1.1, Lemmas 2.18, 3.1, Remark 2.5, taking into account the relation
E
∫ 1

0
∫ t

0
1

m(u,s)
ds du = ∫ 1

0 E(y(u, t) − u)2 du and the monotonicity of m(u, t), t ∈
[0, T ], for all u ∈ [0,1], we conclude that P{�′} = 1.

Next, fix ω ∈ �′ and denote for s ∈ (0, t]
A(u, s) = {

v ∈ [0,1] : ∃r ≤ s y(u, r,ω) = y(v, r,ω)
}

and B(s) = {minA(u, s), u ∈ [0,1]}. From the choice of ω, it easily follows that
B(s) is finite. Since {uk, k ∈ N} is dense in [0,1] and intA(u, s) �= ∅ [because
m(u, s,ω) > 0], u ∈ [0,1], there exists N(s) ∈ N such that A(u, s) ∩ {uk, k ∈
[N(s)]} �= ∅, for all u ∈ [0,1].
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Let ε < t . Then for all n ≥ N(ε),∫ 1

0

∫ t

ε

ϕ(y(u, s,ω))

m(u, s,ω)
duds

=
∫ t

ε

∑
v∈B(s)

∫
A(v,s)

ϕ(y(u, s,ω))

m(u, s,ω)
duds

=
∫ t

ε

∑
v∈B(s)

ϕ
(
y(v, s,ω)

)
ds =

n∑
k=1

∫ (ε∨τ(uk,ω))∧t

ε
ϕ
(
y(uk, s,ω)

)
ds.

So, we obtain that for all ω ∈ �′ and ε < t∫ 1

0

∫ t

ε

ϕ(y(u, s,ω))

m(u, s,ω)
duds =

+∞∑
k=1

∫ (ε∨τ(uk,ω))∧t

ε
ϕ
(
y(uk, s,ω)

)
ds.

Next, if ϕ is nonnegative, then by the monotone convergence theorem,∫ 1

0

∫ t

0

ϕ(y(u, s,ω))

m(u, s,ω)
duds =

+∞∑
k=1

∫ τ(uk,ω)∧t

0
ϕ
(
y(uk, s,ω)

)
ds,

where the integral in the left-hand side is finite a.s., by Lemma 2.17. To get the
statement for any continuous bounded function ϕ, it is needed to apply the obtained
result to its positive and negative parts. This completes the proof. �

Lemma B.1 implies that the sum
∑+∞

k=1

∫ τ(uk)∧t
0 ϕ(y(uk, s)) ds does not depend

on the choice of a dense set {uk, k ∈N}. So we set∫ 1

0

∫ τ(u)∧t

0
ϕ
(
y(u, s)

)
ds =

+∞∑
k=1

∫ τ(uk)∧t

0
ϕ
(
y(uk, s)

)
ds.

COROLLARY B.1. Let ϕ be a bounded continuous function. Then a.s.,∫ 1

0

∫ t

0

ϕ(y(u, s))

m(u, s)
ds du =

∫ 1

0

∫ τ(u)∧t

0
ϕ
(
y(u, s)

)
ds.
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