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FINITARY COLORING
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Suppose that the vertices of Zd are assigned random colors via a finitary
factor of independent identically distributed (i.i.d.) vertex-labels. That is, the
color of vertex v is determined by a rule that examines the labels within a
finite (but random and perhaps unbounded) distance R of v, and the same rule
applies at all vertices. We investigate the tail behavior of R if the coloring is
required to be proper (i.e., if adjacent vertices must receive different colors).
When d ≥ 2, the optimal tail is given by a power law for 3 colors, and a tower
(iterated exponential) function for 4 or more colors (and also for 3 or more
colors when d = 1). If proper coloring is replaced with any shift of finite type
in dimension 1, then, apart from trivial cases, tower function behavior also
applies.

1. Introduction. A q-coloring of Zd is a random element X=(Xv)v∈Zd of

{1, . . . , q}Zd
that assigns distinct colors to neighboring sites; that is, almost surely

Xu �= Xv whenever |u − v| = 1, where | · | is the 1-norm on Zd . We say that X

is a factor of an i.i.d. process if it can be expressed as X = F(Y ) for some fam-
ily of i.i.d. random variables Y = (Yv)v∈Zd and some measurable map F that is
translation-equivariant (i.e., that commutes with the action of every translation of
Zd ). We say that X is a finitary factor of an i.i.d. process, or simply that X is ffiid, if
furthermore, for almost every y (with respect to the law of Y ) there exists r < ∞
such that whenever y′ agrees with y on the ball B(r) := {v ∈ Zd : |v| ≤ r}, the
resulting values assigned to the origin 0 ∈ Zd agree, that is, F(y′)0 = F(y)0. In
that case, we write R(y) for the minimum such r , and we call the random variable
R = R(Y ) the coding radius of the factor. In other words, in an ffiid coloring, the
color at the origin can be determined by examining the i.i.d. variables within dis-
tance given by the coding radius (which is a finite but perhaps unbounded random
variable).

We focus on the questions: for which q and d does an ffiid q-coloring of Zd

exist, and what can be said about the tail behavior of its coding radius? As a mo-
tivating example before stating our main results, we briefly describe a simple con-
struction of an ffiid 4-coloring of Z2 whose coding radius has exponential tail
decay; see Figure 1 for an illustration. Let (Bv)v∈Z2 be i.i.d. labels taking values
+ and − with equal probabilities. Since the critical probability for site percolation

Received June 2015; revised May 2016.
MSC2010 subject classifications. 60G10, 05C15, 37A50.
Key words and phrases. Coloring, finitary factor, tower function, shift of finite type.

2867

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/16-AOP1127
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2868 A. E. HOLROYD, O. SCHRAMM AND D. B. WILSON

FIG. 1. An ffiid 4-coloring of Z2 whose coding radius has exponential tails. Each (subcritical) site
percolation cluster is assigned a checkerboard coloring.

is greater than 1
2 , almost surely all (+)-clusters and (−)-clusters are finite. Next,

we color each (+)-cluster with colors 1 and 2 in a checkerboard pattern. To ensure
translation-equivariance, the phase of the checkerboard must be chosen locally.
Here is one way to do this. Assign color 1 to the lexicographically largest site w

in the (+)-cluster, and also to all other sites v in the cluster for which the sum of
the coordinates of w − v is even; assign the remaining sites in the cluster color 2.
Checkerboard the (−)-clusters with colors 3 and 4 in the same manner. The re-
sulting 4-coloring is ffiid. To determine the color of the origin, we must examine
the labels Bv in its cluster and its boundary. Since the radius of the cluster has
exponential tails, so does the coding radius.

In fact, much faster decay than exponential is possible in many cases, while only
a power law is possible in others. For a nonnegative integer r , define the tower
function by tower(r) := expr 1 = exp · · · exp 1, where the exponential is iterated r

times. For convenience, we also write tower(r) := tower�r	 for r ∈ R+. Here are
our main results.

THEOREM 1 (Tower function coloring). Let d = 1 and q ≥ 3, or let d ≥ 2 and
q ≥ 4. There exist positive constants c and C depending on q and d such that the
following hold.

(i) There exists an ffiid q-coloring of Zd whose coding radius R satisfies

P(R > r) < 1/ tower(cr), ∀r ≥ 0.

(ii) Every ffiid q-coloring of Zd satisfies

P(R > r) > 1/ tower(Cr), ∀r ≥ 0.
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THEOREM 2 (Power law 3-coloring). Let d ≥ 2.

(i) There exists a positive constant α (depending on d) and an ffiid 3-coloring of
Zd whose coding radius satisfies

P(R > r) < r−α, ∀r ≥ 0.

(ii) Every ffiid 3-coloring of Zd satisfies

E
(
R2) = ∞.

Since it is easy to see that no ffiid 2-coloring of Zd is possible for any d ≥ 1,
Theorems 1 and 2 determine the functional form (up to the various constants) of
the optimal tail decay of the coding radius for all q and d . Our proofs in principle
yield explicit bounds on the constants c, C and α, but c and C are very far apart in
most cases, while α is much smaller than 2.

Isometry equivariance. We will prove that the colorings in the (i) parts of both
theorems can be chosen to have the stronger property that the map F from the
i.i.d. variables to the coloring is equivariant under all isometries of Zd . To moti-
vate this distinction, note that the percolation-based construction of the 4-coloring
described above is not isometry-equivariant, because using the lexicographic or-
dering of Z2 breaks rotation and reflection symmetry. However, the construction
can be modified as follows. Take (Uv)v∈Z2 i.i.d. uniform on [0,1] and indepen-
dent of (Bv)v∈Z2 , and assign color 1 to the site w in a (+)-cluster with the largest
Uw , and to all other sites of the same parity in the cluster [and similarly for (−)-
clusters]. The resulting process is an isometry-equivariant factor of the i.i.d. vari-
ables Yv := (Bv,Uv), with the same coding radius as before.

Shifts of finite type. Next, we consider some generalizations, focusing on the
case d = 1. Coloring is a special case of the more general notion of a shift of finite
type, in which the requirement that adjacent colors differ is replaced with arbitrary
local constraints. Write [q] := {1, . . . , q}. We call elements of [q]Zd

configura-
tions. Let d = 1. A shift of finite type is a (deterministic) set of configurations
S characterized by an integer k and a set W ⊆ [q]k of allowed local patterns as
follows:

S = S(q, k,W) := {
x ∈ [q]Z : (xi+1, . . . , xi+k) ∈ W ∀i ∈ Z

}
.

We want to exclude a certain uninteresting case. For w ∈ W , let T (w) be the set
of times at which the pattern w can recur, that is, the set of t ≥ 1 for which there
exists x ∈ S with (x1, . . . , xk) and (xt+1, . . . , xt+k) both equal to w. We call the
shift of finite type nonlattice if there exists w ∈ W for which T (w) has greatest
common divisor 1 (and otherwise it is lattice). If S is nonlattice, then necessarily
S �=∅. For example, the set of all deterministic q-colorings of Z is a shift of finite
type, and is nonlattice if and only if q ≥ 3.
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THEOREM 3 (Shifts of finite type). Let S be a shift of finite type on Z.

(i) If S is nonlattice then there exists an ffiid process X such that X ∈ S a.s., with
coding radius R satisfying

P(R > r) ≤ 1/ tower(cr), ∀r > 0.

(ii) If S contains no constant configuration (· · ·aaa · · · ), then for any ffiid process
X such that X ∈ S a.s., the coding radius satisfies

P(R > r) ≥ 1/ tower(Cr), ∀r > 0.

Here, c,C are constants in (0,∞) that depend on S.

It is easily seen that for any lattice shift of finite type S, no ffiid process belongs
a.s. to S. Indeed, no mixing process belongs to S (see Proposition 19). On the other
hand, a constant configuration is trivially an ffiid process with R ≡ 0. Together
with these observations, Theorem 3 thus covers all cases for d = 1.

The concept of a shift of finite type extends in the obvious way to Zd (by re-
quiring that the configuration restricted to every ball of radius k lies in some fixed
set W ). For d ≥ 2, we do not know what possible restrictions on the coding radius
can be imposed by the requirement that an ffiid process belong to a given shift of
finite type, besides the possibilities already seen: tower functions (e.g., 4-coloring),
power laws (e.g., 3-coloring), and the two trivial cases of constant sequences and
lattice shifts of finite type.

Finite dependence. Closely related to ffiid processes is the notion of k-
dependence. A process X = (Xv)v∈Zd on Zd is called k-dependent if (Xv)v∈A

is independent of (Xv)v∈B for any subsets A,B ⊆ Zd that satisfy |u − v| > k for
all u ∈ A and v ∈ B . A process is finitely dependent if it is k-dependent for some k.
A process X is stationary if (Xv+u)v∈Zd and (Xv)v∈Zd are equal in law for all u.
On the other hand, X is a block factor (of an i.i.d. process) if it is an ffiid pro-
cess with bounded coding radius. When d = 1, we say that X is a k-block factor
if there exist i.i.d. Y and a fixed measurable function g of k variables such that
Xi = g(Yi+1, . . . , Yi+k) a.s. for all i ∈ Z.

Clearly, any k-block factor on Z is stationary and (k − 1)-dependent. Much less
obviously, the converse is false. This was an open question for some time (see,
e.g., [17]); the first counterexample appeared in [1]. Furthermore, there exist 1-
dependent stationary processes that are not k-block factors for any k; see [6]. See,
for example, [14] for more on the history of this question, which apparently has its
origins in [16].

Since Theorem 1(ii) implies that no k-block factor q-coloring exists for any k

and q , it is natural to ask whether there is a stationary k-dependent q-coloring. It is
easily seen that the answer is no if k = 0 or if q = 2. We also establish a negative
answer in the first nontrivial case: k = 1 and q = 3.
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THEOREM 4. There is no stationary 1-dependent 3-coloring of Z.

Surprisingly, it has recently been proved [14] that there exist both a stationary
1-dependent 4-coloring and a stationary 2-dependent 3-coloring of Z. Thus, the
above question is answered for all k and q . Moreover, coloring therefore provides
a very clean and natural proof of the nonequivalence of finitely dependent pro-
cesses and block factors. (Previous counterexamples have tended to be somewhat
contrived.)

By combining the 1-dependent 4-coloring of [14] with results of the current ar-
ticle, it is also proved in [14] that for all d ≥ 2 there exists a stationary k-dependent
4-coloring of Zd , for some k = k(d), and also that for any nonlattice shift of finite
type S on Z there exists a stationary k-dependent process that lies in S a.s., for
some k = k(S).

Combined with our Theorem 3(ii), this last result provides an even more strik-
ing illustration of the difference between finitely dependent processes and block
factors: any nonlattice shift of finite type with no constant sequence serves to dis-
tinguish between them.

The argument we use to prove Theorem 2(ii) will also show (Corollary 25) that
no stationary k-dependent 3-coloring of Zd exists for any k and d ≥ 2. See [13,
15] for further recent work on k-dependent coloring.

Outline of proofs. The existence of an ffiid q-coloring of Zd satisfying a
tower function bound with some number of colors q = q(d) depends on a known
method that was originally motivated by applications in distributed computing.
The method appeared first in [7], and was developed further in [11, 19] and many
subsequent articles. The version that we use is essentially that of [19].

Translated to our setting and terminology, the method mentioned above implies
the existence of a block factor of an i.i.d. process that is “almost” a coloring, in
the sense that the probability of a violation (i.e., of two given neighbors having the
same color) is extremely small as a function of the block radius. Such processes
can be constructed by starting with a discrete i.i.d. process and iteratively apply-
ing an appropriate radius-1 block factor that reduces the number of colors by a
logarithmic function without producing new violations.

In order to obtain an ffiid coloring, we next proceed to “stitch together” an
infinite family of the processes described above, with different block radii and vi-
olation probabilities. This can be done even on a general graph of bounded degree.
In fact, the resulting factor satisfies a much stronger property than automorphism
equivariance: to determine the color at a vertex, we do not need to know the graph
structure, except within the coding radius.

The most elaborate and novel part of the proof of Theorem 1(i) involves re-
duction of the number of colors to 4 in all dimensions d ≥ 2. This is done by
applying carefully constructed block factors to colorings with more colors, in or-
der to obtain a 2-valued process with bounded clusters. After this, we conclude
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by checkerboarding the clusters with two pairs of colors in the manner mentioned
earlier. Many of the techniques in this proof are quite general, and have wider
applicability. (One application appears in [14].)

The tower function lower bound Theorem 1(ii) is also a consequence of a known
result from distributed computing, which was proved in [20], building on earlier
work in [18]. We provide a proof that is arguably simpler and more direct than the
original proof.

Turning to Theorem 2, the proof of the existence of an ffiid 3-coloring with
power law coding radius is considerably simpler when d = 2. The construction
in this case is based on critical bond percolation and its dual, on a square lattice
rotated by 45 degrees. We assign colors to individual clusters based on their loca-
tions in a tree structure arising from surrounding circuits. The power law bound is
a consequence of a Russo–Seymour–Welsh estimate.

The proof of Theorem 2(i) for general d ≥ 2 is broadly similar but more in-
volved. Instead of percolation clusters, we use a partition of Zd that we construct
via an iterative scheme. The sets of the partition are not themselves independent
sets, but contain pairs of neighbors. Therefore, each set is assigned a checkerboard
coloring using 2 of the available 3 colors, and this necessitates a more complicated
tree argument. The method is quite general, and can be extended to other graphs.

The second moment bound Theorem 2(ii) is a consequence of the existence of
a height function for 3-colorings of Z2. The total height change around a large
contour must be zero, otherwise it is impossible to extend the 3-coloring to the in-
terior. However, if the coding radius has finite second moment, the height changes
along distant parts of the contour are asymptotically uncorrelated, leading to a
contradiction.

Finally, the result on shifts of finite type is again obtained from the result on
tower function coloring by the use of appropriate block factors, while the impossi-
bility of 1-dependent 3-coloring is proved by a conditioning argument.

2. Tower function lower bound. In this section, we prove Theorem 1(ii).
The following is the key fact. An essentially equivalent result was proved in [20],
building on earlier work of [18]. We give a simple direct proof. Another exposition
and applications appear in [2]. Recall that [q] := {1, . . . , q}.

PROPOSITION 5. Let (Ui)i∈Z be i.i.d. random variables taking values in an
arbitrary set B , and let r and q be positive integers. For any measurable function
f : Br → [q],

P
[
f (U1, . . . ,Ur) = f (U2, . . . ,Ur+1)

] ≥ 1

22
. .

.2
4q

,

where there are r − 1 exponentiation operations in the tower.
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If the Ui’s have a continuous distribution, then

P
[
(U1, . . . ,Ur) = (U2, . . . ,Ur+1)

] = 0,

so it is not obvious a priori that the probability in Proposition 5 must be positive. If
the Ui ’s have a discrete distribution, the probability is positive, but it is not clear a
priori that there is a positive lower bound depending only on r and q that holds for
all such distributions. The results of Section 3 below show that the tower function
bound is essentially tight.

PROOF OF PROPOSITION 5. We will use induction on r . Let δ(r, q) be the
largest number for which

P
[
f (U1, . . . ,Ur) = f (U2, . . . ,Ur+1)

] ≥ δ(r, q)

for all choices of B , f , and the law of the Ui . When r = 1, it is elementary that

P
[
f (U1) = f (U2)

] =
q∑

a=1

P
[
f (U1) = a

]2 ≥ 1

q
,

so δ(1, q) = 1/q ≥ 1/(4q), proving the result when r = 1.
Now suppose r ≥ 2. Let ε := δ(r − 1,2q)/(2q), and define for u1, . . . , ur−1 ∈

B:

S(u1, . . . , ur−1) := {
a ∈ [q] : P[

f (u1, . . . , ur−1,Ur) = a
] ≥ ε

}
.

This is the set of values that f assumes with probability ≥ ε given the first r − 1
arguments. Since S is a function on Br−1 taking at most 2q possible values (the
subsets of [q]), by the definition of δ we have

P
[
S(U1, . . . ,Ur−1) = S(U2, . . . ,Ur)

] ≥ δ
(
r − 1,2q)

.

But the definition of S implies

P
[
f (U1, . . . ,Ur) /∈ S(U1, . . . ,Ur−1)

] ≤ qε,

so we deduce

(1) P
[
f (U1, . . . ,Ur) ∈ S(U2, . . . ,Ur)

] ≥ δ
(
r − 1,2q) − qε.

By the definition of S again, conditional on U2, . . . ,Ur , each element of
S(U2, . . . ,Ur) has probability at least ε as a possible value for the random variable
f (U2, . . . ,Ur+1), and this remains true if we condition also on U1 (since U1 and
Ur+1 are conditionally independent given U2, . . . ,Ur ). Therefore, almost surely

P
[
f (U2, . . . ,Ur+1) = f (U1, . . . ,Ur)|U1, . . . ,Ur

]
≥ 1

[
f (U1, . . . ,Ur) ∈ S(U2, . . . ,Ur)

] × ε.
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Taking the expectation and using (1) gives

P
[
f (U1, . . . ,Ur)=f (U2, . . . ,Ur+1)

] ≥ [
δ
(
r − 1,2q) − qε

]
ε = δ(r − 1,2q)2

4q
.

Thus

(2) δ(r, q) ≥ δ(r − 1,2q)2

4q
.

All that remains is to use (2) to check the claimed bound on δ. For r = 2, we
obtain

δ(2, q) ≥ 1

22q

1

4q
≥ 1

24q

as required. We now use induction on r with base case r = 2. Since obviously

δ(r,1) = 1, we assume q ≥ 2. Suppose δ(r, q) ≥ 1/22···24q

where there are r − 1
exponentiation operations in the tower. Then (2) gives

δ(r + 1, q) ≥ 1(
22

. .
.2

4×2q )2
4q

≥ 1(
22

. .
.2

4×2q )4
= 1

162
. .

.2
4×2q .

Observe that when x ≥ 2
3 we have 162x = 22x+2 ≤ 224x = 216x

, so

δ(r + 1, q) ≥ 1

22
. .

.164×2q .

But 164×2q = 22q+4 ≤ 224q
for q ≥ 2, which completes the induction. �

The following notation will be useful. Suppose X is an ffiid process with under-
lying i.i.d. process Y and coding radius R, and recall that R = R(Y ) where R is a
map from configurations y = (yv)v∈Zd to Z. For v ∈ Zd , define the coding radius
at v to be the random variable

Rv := R(θ−vY ),

where θ−v denotes translation by −v, defined by (θ−vy)(u) := yu+v . Thus, Rv

is the radius around v up to which we need to examine the Y variables in order
to determine Xv . Note that R = R0, and that the random variables (Rv)v∈Zd are
identically distributed.

PROOF OF THEOREM 1(II). Let X be an ffiid q-coloring of Zd . Suppose first
that d = 1. Fix r > 0 and define a modified process X′ by

X′
v :=

{
Xv, Rv ≤ r;
∞, Rv > r.



FINITARY COLORING 2875

Then X′ is an ffiid process with coding radius bounded above by r , that is, X′ is a
(2r + 1)-block-factor. Since X is a coloring,

P
(
X′

0 = X′
1
) = P

(
X′

0 = X′
1 = ∞) = P(R0,R1 > r) ≤ P(R > r).

On the other hand, Proposition 5 gives

P
(
X′

0 = X′
1
) ≥ 1

22
. .

.2
4(q+1)

,

with 2r exponentiations in the tower. This is at least 1/ tower(Cr) for some C

depending only on q , as required.
Now suppose d ≥ 2. The restriction of the coloring X to the axis Z × {0}d−1

is itself an ffiid q-coloring of Z, with underlying i.i.d. process (Zi)i∈Z given by
the slices Zi := (Y(i,w))w∈Zd−1 (where Y is the underlying i.i.d. process for X).
Furthermore, the coding radius of the 1-dimensional process is at most the coding
radius of X, so the required bound follows from the 1-dimensional case proved
above. �

3. Tower coloring on general graphs. In preparation for the proof of Theo-
rem 1(i), in this section we prove that on any graph of maximum degree �, there is
an ffiid (� + 1)-coloring whose coding radius has tower function tails, and that is
an automorphism-equivariant factor of the underlying i.i.d. process. In particular,
on Zd this gives an isometry-equivariant (2d + 1)-coloring—we will improve this
to 4 colors for all d ≥ 2 in the next section.

In fact, we will construct a coloring with a much stronger property than
automorphism-equivariance: the color at a vertex can be determined locally with-
out knowledge of the graph itself—we need only examine the i.i.d. labels and the
graph structure within the coding radius, and the construction is invariant even
under graph-automorphisms of this local structure. We now make this precise.

Let G = (V ,E) be a simple undirected graph. We write u ∼ v if 〈u, v〉 ∈ E.
A configuration on G is an element z = (zv)v∈V of RV that assigns labels to the
vertices. A labeled rooted graph is a triple (G,o, z) consisting of a simple graph
G = (V ,E), a root o ∈ V , and a configuration z on G. We call two labeled rooted
graphs isomorphic if there is a graph isomorphism between them that preserves
the root and the labels. We call two labeled rooted graphs isomorphic to distance
r if the labeled rooted subgraphs induced by the respective sets of vertices within
graph-distance r of their roots are isomorphic. A local graph function is a func-
tion f from labeled rooted graphs to R, such that for every (G,o, z) there exists
r ≤ ∞ such that f (G,o, z) = f (G′, o′, z′) whenever (G′, o′, z′) and (G,o, z) are
isomorphic to distance r . Let R = R(f,G,o, z) be the minimum such r .

A local graph function f induces a map F between configurations on graphs as
follows. Let G be a graph and let z be a configuration on G. Define the configu-
ration F(z) by (F (z))v := f (G,v, z). We call F a graph-factor map. A process
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on G is a random configuration Z = (Zv)v∈V , and it is A-valued if each Zv takes
values in a set A ⊆ R. If Z is a process on G and X = F(Z) then we say that the
process X is a graph-factor of Z, and for v ∈ V we call Rv := R(f,G,v,Z) the
coding radius at v. If Rv < ∞ a.s. for all v then it is a finitary graph-factor, and if
Rv ≤ r a.s. for all v and some deterministic r < ∞ then it is a block graph-factor.
We call X graph-ffiid if it is a finitary graph-factor of some i.i.d. process. Recall
that [q] := {1, . . . , q}. A process X on a graph G is a q-coloring if it is [q]-valued,
and a.s. Xu �= Xv whenever u ∼ v.

THEOREM 6 (Tower coloring on graphs). Let � ≥ 1 be an integer. There exists
C = C(�) > 0 such that for every graph G of maximum degree �, there is a
graph-ffiid (� + 1)-coloring of G such that for every vertex v, the coding radius
Rv satisfies

P(Rv > r) < 1/ tower(Cr), r > 0.

The proof will actually give an even stronger fact: the same local graph func-
tion may be used for all graphs of maximum degree �. The proof will proceed
by combining in a suitable way a family of block graph-factors that are almost
colorings in the sense that the probability that neighbors share a color decays very
rapidly as a function of the block coding radius. As remarked earlier, the existence
of such block-factor processes is essentially equivalent to known results in the dis-
tributed computing literature. However, the different focus in the latter field makes
it difficult to translate the results directly into mathematical ones of the form we
need. For the reader’s convenience, we therefore provide a complete proof, which
is quite straightforward.

We will make extensive use of the fact that if F and G are block graph-factor
maps with coding radii at most r and s then the composition F ◦ G is a block
graph-factor map with coding radius at most r + s. We also need the following
simple result on set systems. Refinements and generalizations appear in [9].

LEMMA 7 (Set systems). For each positive integer d , there exists c = c(d) > 0
such that, provided n ≤ eck , there exists a family of n sets S1, . . . , Sn ⊆ [k] satisfy-
ing

Si0 � Si1 ∪ · · · ∪ Sid

for all distinct i0, . . . , id ∈ [n].

PROOF. Let S1, . . . , Sn be i.i.d. uniformly random subsets of [k]. The proba-
bility that Sd+1 ⊆ S1 ∪ · · · ∪ Sd is (1 − 2−d)k = Ck , say, where C = C(d) ∈ (0,1).
Therefore, the expected number of vectors (i0, . . . , id) of distinct entries such
that Si0 ⊆ Si1 ∪ · · · ∪ Sid is at most nd+1Ck . This is strictly less than 1 provided
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n < (C−1/(d+1))k , which implies that there exist families of sets for which there
are no such vectors. �

We next prove the existence of “almost colorings” as mentioned above. Fix
� ≥ 1. Let c = c(�) be as in Lemma 7, and define a sequence n1 < n2 < · · · as
follows. Let n1 be the smallest positive integer such that �ecn1	 > n1, and define
inductively for i ≥ 1:

ni+1 := ⌊
ecni

⌋
.

It is easy to check that ni ≥ tower(c′i) for all i and some c′ = c′(�) > 0. The
following is a variant of a result of [19].

PROPOSITION 8 (Almost colorings). Let G = (V ,E) be a graph of maximum
degree �, and define (nk)k≥1 as above. For each k ≥ 1 there exists an [n1] ∪ {∞}-
valued block graph-ffiid process Y = Y k , with coding radius bounded above by k

for every vertex, and with the following properties. For adjacent vertices u ∼ v,
we have either Yu �= Yv or Yu = ∞ = Yv . For any vertex v, we have P(Yv = ∞) ≤
�/nk .

PROOF. We will construct a sequence of processes Zk, . . . ,Z1, each a radius-
1 block graph-factor of the previous one, ending with the required process Y =
Z1. (The reverse indexing is a notational convenience.) The process Zi will be
[ni] ∪ {∞}-valued. Let (Zv)v∈V be i.i.d. random variables, each uniform on [nk].
Define the first process Zk by setting Zk

v := ∞ if Zv = Zu for some u ∼ v, and
otherwise setting Zk

v := Zv .
Now suppose that Zk, . . . ,Zi+1 have been defined. We will construct Zi from

Zi+1. Fix a family of ni+1 subsets (Sj )j∈[ni+1] of [ni] so that none is contained
in the union of any � others; Lemma 7 and the definition of ni ensure that this is
possible. For a vertex v, write S(v) := S

Zi+1
v

for the corresponding set, where we
take S∞ :=∅. Now define

(3) Zi
v := min

(
S(v) \ ⋃

u∼v

S(u)

)
,

where min∅ := ∞.
We claim that for adjacent vertices u ∼ v, and any i, either Zi

u �= Zi
v , or both

are ∞, and moreover, for any v we have Zi
v = ∞ if and only if Zk

v = ∞. This
follows easily by induction on i. It certainly holds for i = k. By (3) and Lemma 7,
if Zi

v = ∞ then either Zi+1
v = ∞ or Zi+1

v = Zi+1
u for some u ∼ v. Moreover, for

u ∼ v, if Zi
u �= ∞ �= Zi

v then Zi
v ∈ S(v) \ S(u) and Zi

u ∈ S(u) \ S(v), so Zi
u �= Zi

v .
Finally, we set Y = Z1. It is evident from the construction that Y is a block

graph-ffiid process with coding radius at most k. We have

P(Yv = ∞) = P
(
Zk

v = ∞) = P(Zv = Zu for some u ∼ v) ≤ �/nk. �
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In addition to the above result, we will use the following simple procedure for
eliminating colors, which has other applications also. Let Z+ denote the positive
integers. Suppose that X is a Z+ ∪ {∞}-valued process on a graph G = (V ,E).
Let a ∈ Z+. We define a new process EaX by

(EaX)v :=
{

min
(
Z+ \ {Xu : u ∼ v}), Xv = a;

Xv, Xv �= a.

Thus, the map Ea replaces color a with the smallest color that is absent from the
neighbors of the vertex. This replacement color is in [� + 1] if G has maximum
degree �. Neighboring vertices have distinct colors in EaX provided they do in X.
Note that Ea is a radius-1 block graph-factor map.

A simple application of the map defined above is that if X is a q-coloring of a
graph of maximum degree �, then E�+2E�+3 · · ·EqX is a (� + 1)-coloring. We
use this idea in a more subtle way in the next proof.

PROOF OF THEOREM 6. Let G = (V ,E) be a graph of maximum degree �.
Let (ni)i≥1 be defined as above, and let Y 1, Y 2, . . . be the processes of Propo-
sition 8, each constructed from the same i.i.d. family (Uv)v∈V (say by taking
Zv = �nkUv� at the beginning of the proof of Proposition 8, where Uv is uni-
form on [0,1]). Recall that each Y k is [n1] ∪ {∞}-valued, and is a coloring except
at the vertices that are labeled ∞ (and that the probability of label ∞ decreases
rapidly with k).

We now construct a sequence of [� + 1] ∪ {∞}-valued processes X0,X1,X2,

. . . . The desired coloring will be formed by taking their limit. First, let X0
v := ∞

for all v. Assuming X0, . . . ,Xk−1 have been defined, we next construct Xk from
Xk−1 and Y k . To do this, we first define an auxiliary [� + 1 + n1] ∪ {∞}-valued
process Wk via

Wk
v := Xk−1

v ∧ (
Y k

v + � + 1
)
.

In other words, we construct Wk from Xk−1 by replacing occurrences of ∞ with
the process Y k from the previous lemma, with the colors increased by � + 1 so
that they are distinct from the existing ones (of course, we take ∞+�+ 1 := ∞).
We now obtain Xk from Wk by eliminating these extra colors:

Xk := E�+2E�+3 · · ·E�+1+n1W
k.

Note that for any vertex v, if Xk
v �= ∞ for some k then X

j
v is constant for all

j ≥ k. We therefore define Xv := limk→∞ Xk
v . By Proposition 8, for all k,

P(Xv = ∞) ≤ P
(
Xk

v = ∞) ≤ P
(
Y k

v = ∞) ≤ �/nk
k→∞−−−→ 0,

and it follows that X is a (� + 1)-coloring of G. Now, for any block graph-ffiid
process Z, write r(Z) for the smallest constant r such that the coding radius at
every vertex is bounded above by r . Then

r
(
Xk) ≤ n1 + r

(
Wk) ≤ n1 + [

r
(
Xk−1) ∨ r

(
Y k)] = n1 + [

r
(
Xk−1) ∨ k

]
.
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Hence, we have r(Xk) ≤ n1k + 1 for all k. It follows that X is graph-ffiid with
coding radius Rv satisfying

P(Rv > n1k + 1) ≤ P
(
Xk

v = ∞) ≤ �/nk

for every v. As remarked earlier, we have ni ≤ tower(c′i) for some c′ = c′(�) > 0,
so the claimed bound on P(Rv > r) follows. �

4. Tower 4-coloring. In this section, we prove Theorem 1(i). Theorem 6 in
the last section already gives an isometry-equivariant ffiid (2d + 1)-coloring of
Zd for all d ≥ 1, thus proving the d = 1 case. For d ≥ 2, the idea will be to use
Theorem 6 to obtain a coloring of a spread-out lattice, and then apply carefully
constructed block factors. We start by proving some more general results that have
applications elsewhere also.

We shift our focus back to processes on Zd . A factor map is a measurable map
F : RZd → RZd

between configurations that is translation-equivariant, that is, that
commutes with the action of every translation of Zd . Isometry-equivariance is de-
fined analogously. If X = F(Y ) for a factor map F then we say that X is a factor
of Y . Finitary factors and coding radius are defined as in the Introduction. A block
factor map is a finitary factor map whose coding radius is bounded above, that is,
R ≤ k a.s. for some deterministic k < ∞. Recall that Rv := R ◦ θ−v denotes the
coding radius at vertex v ∈ Zd .

We say that a nonnegative random variable R has tower tails if it satisfies P(R >

r) < 1/ tower(cr) for all r > 0 and some c ∈ (0,∞). We call a process tower ffiid
if it is ffiid and its coding radius has tower tails. The following simple fact will be
used extensively.

LEMMA 9 (Block factors). If X is a tower ffiid process on Zd then any block
factor of X is tower ffiid.

PROOF. Let X be a tower factor of the i.i.d. process Y , and let W be a block
factor of X, with coding radius bounded above by k. Clearly, W is a factor of Y .
Write R for the coding radius of X, and as usual let Rv be the coding radius at
v ∈ Zd . If R′ denotes the coding radius of W viewed as a factor of Y , then

P
(
R′ > r

) ≤ P
[ ⋃
v∈B(k)

{Rv > r − k}
]

≤ c1k
d

tower(c2(r − k))
≤ 1

tower(c3r)
,

for some constants ci = ci(k, d) ∈ (0,∞). �

Let ‖ · ‖p denote the p-norm on Zd , and recall that we usually work with the
1-norm | · | = ‖ · ‖1. For most purposes, the distinction is unimportant, because the
norms are equivalent and we are not concerned with exact constants. However, our
construction of a 4-coloring will use both the 1- and ∞-norms.

A process (Xv)v∈Zd is a range-m q-coloring with respect to the p-norm if it is
[q]-valued, and almost surely Xu �= Xv whenever 0 < ‖u − v‖p ≤ m.
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COROLLARY 10 (Long-range coloring). Fix integers d,m ≥ 1 and a choice
of norm ‖ · ‖p . There exists a tower ffiid range-m q-coloring of Zd with respect
to ‖ · ‖p , for some number of colors q = q(d,m,p). Moreover, the factor may be
chosen to be isometry-equivariant.

PROOF. This is a special case of Theorem 6, applied to the graph Zd
(m) with

vertex set Zd and with an edge between distinct u, v ∈ Zd whenever ‖u−v‖p ≤ m.
We can take q := |{v ∈ Zd : ‖v‖p ≤ m}|. �

Let m ≥ 1 be an integer. A {0,1}-valued process J = (Jv)v∈Zd is an m-net with
respect to the p-norm if a.s. for every vertex u there exists v with ‖u − v‖p ≤ m

and J (v) = 1, but there do not exist distinct vertices u, v with ‖u − v‖p ≤ m and
J (u) = J (v) = 1. In other words, the support of J is a maximal independent set
in the graph Zd

(m) defined in the above proof. In dimension d = 1, the distance
between any two consecutive 1’s of an m-net lies in the interval [m + 1,2m + 1].

COROLLARY 11 (Nets). Fix integers d,m ≥ 1 and a choice of norm ‖ · ‖p .
There exists a tower ffiid m-net on Zd . Moreover, the factor may be chosen to be
isometry-equivariant.

PROOF. By Corollary 10, let X be a tower-ffiid range-m q-coloring. Let Ea

be the color-elimination map defined in Section 3, for the graph Zd
(m) defined in

the last proof. Recall that Ea attempts to eliminate color a by replacing it with the
smallest color that is absent from the range-m neighborhood of a vertex. Now we
attempt to eliminate all colors:

Y := E1E2 · · ·EqX.

The resulting process Y is a coloring, and it is tower ffiid by Lemma 9 (since Ea

is a block-factor map). We claim that Jv := 1[Yv = 1] yields the required m-net J .
Indeed, Y has no two 1’s within distance m, while, if Xv = a say, when we apply
the map Ea , the color at v becomes 1 provided there is currently no other 1 within
distance m (and 1’s remain 1’s at subsequent steps). �

In preparation for the proof of Theorem 1(i), we record the following simple
geometric fact.

LEMMA 12. Fix a norm. Let d ≥ 1 and let c > 0 be a real constant. For any
m ≥ 1 and any m-net J , the number of 1’s of J within distance cm of any fixed
u ∈ Zd is at most C, where C is a constant depending only on c, d and the norm
(not on m).
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PROOF. The balls of radius m/2 centered at different 1’s are disjoint; consider
their volumes. �

The next lemma enables a 4-coloring of Zd to be constructed from a 2-valued
process with bounded clusters (via the checkerboard construction mentioned in the
Introduction). As is customary, we denote by Zd the graph having vertex set Zd

and an edge between u and v whenever ‖u− v‖1 = 1. If X is a process on Zd then
an a-cluster of X is the vertex set of a connected component of the subgraph of
Zd induced by the (random) set of all v with Xv = a. The diameter (with respect
to the ∞-norm) of a set A ⊆ Zd is sup{‖u − v‖∞ : u, v ∈ A}.

LEMMA 13 (Checkerboarding). Fix integers d, b ≥ 1. Suppose Y is a [2]-
valued process on Zd in which each cluster has diameter at most b a.s. There
exists a 4-coloring of Zd that is a block-factor of Y . Moreover, if (Uv)v∈Zd are
i.i.d., uniform on [0,1] and independent of Y , there exists a 4-coloring that is an
isometry-equivariant block-factor of the joint process (Y,U).

PROOF. We checkerboard each 1-cluster with 1’s and 3’s, and each 2-cluster
with 2’s and 4’s. More formally, for v ∈ Zd , let w = w(v) ∈ Zd be the lexico-
graphically largest vertex in the same (1- or 2-)cluster as v. (Or, for the isometry-
equivariant version, let w be the vertex in the cluster for which Uw is largest.) Let
Xv := Yv + 1 + (−1)‖v−w‖1 . Then X is a block-factor of Y because the clusters
are bounded. �

Finally, our proof of Theorem 1(i) will require the following technical lemma.
A slab is a set of edges of Zd that is an image under some isometry of Zd of the
set {〈x, x + e1〉 : x ∈ {0} × {1, . . . ,L}d−1}

,

for some L > 0, where e1 = (1,0, . . . ,0) is the 1st coordinate vector. The slab
has direction j ∈ {1, . . . , d} if coordinate j is the image of coordinate 1 under
the isometry. By the distance between two sets of edges, we mean the distance
between their respective sets of incident sites.

LEMMA 14 (Slabs). Suppose that H is a subgraph of Zd whose edge set is
the union of a collection of slabs, such that no two slabs of a given direction are
within ‖ · ‖∞-distance 2. Each connected component of H has ‖ · ‖∞-diameter at
most 1.

PROOF. Consider the component of 0, and first consider edges in direction 1.
The given condition implies that for either s = 0 or s = 1, all of the edges{〈x, x + e1〉 : x ∈ {s, s − 2} × {−1,0,1}d−1}
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are absent from H . Since similar statements hold for each coordinate, we deduce
that for some cube of ‖ · ‖∞-diameter 1 containing 0, all the edges on the exterior
boundary are absent from H . �

By the box of radius r ∈ Z centered at v ∈ Zd , we mean the ∞-norm ball {u ∈
Zd : ‖u − v‖∞ ≤ r}. The boundary of a subset A of Zd is the set of edges incident
to a site in A and a site in AC . The boundary of a box is a union of a set of 2d

slabs; we call them the faces of the box.

PROOF OF THEOREM 1(I). As remarked earlier, the case d = 1 and q = 3
already follows as a special case of Theorem 6, therefore, we need to construct a
4-coloring of Zd for d ≥ 2. By Lemmas 9 and 13, it suffices to construct a tower
ffiid [2]-valued process Z with bounded clusters.

Let M = M(d) be a (large) positive integer to be fixed later. By Corollary 11,
let J be an M-net on Zd with respect to ‖ · ‖∞, and let S := {v ∈ Zd : J (v) = 1}
be its support. Also, by Corollary 10, let Y be a range-(4M + 3) q-coloring of Zd

with respect to ‖ · ‖∞ (where we allow q to be chosen as a function of M). Take J

and Y to be finitary factors of the same i.i.d. process. We will construct a process
Z with bounded clusters as a block factor of (J,Y ). The coloring Y will appear
in the construction only in the form of its restriction to S. (In fact, an alternative
variant of the proof would be to instead use a coloring of the random graph with
vertex set S and with an edge between elements at distance at most 4M + 3, using
Theorem 6.)

We wish to assign an integer r(s) ∈ [M,2M) to each element s of S in such a
way that, if we place a box of radius r(s) centered at each s ∈ S, then no two faces
of a given direction are within ‖·‖∞-distance 2 of each other. (So that we can apply
Lemma 14.) This will be done iteratively in the order given by the coloring Y .

Assuming radii have been chosen for all s of colors Ys < j (which is vacuously
true when j = 1), we will simultaneously choose a radius r(s) for each s ∈ S

of color Ys = j in such a way that no faces of the box of radius r(s) centered
at s come within distance 2 of those faces already chosen. By Lemma 12, there
are at most C elements of S within ‖ · ‖∞-distance 4M + 2 of s, where C is a
constant that depends only on d (not on M , j , q or s). Any face of an existing box
centered at one of these elements prohibits at most 7 possible values for r(s) in
[M,2M). Therefore, at most C′ := 14dC possible values for r(s) are prohibited
by the condition on faces (in particular, this C ′ depends only on d). Also, since
all radii are less than 2M but Y is a range-(4M + 3) coloring, the radii r(s) for
all those s ∈ S with color j can be chosen simultaneously without interfering with
each other (i.e., without two of them violating the face condition). Therefore, if we
choose M = C′ + 1 then these radii can indeed be chosen for each j = 1, . . . , q in
turn. For definiteness and to ensure isometry-equivariance, choose each r(s) to be
the smallest allowable value in [M,2M) at the appropriate step.
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Now construct a {+1,−1}-valued process Z as follows. Any vertex v is covered
by at least one of the boxes chosen above (since J is an M-net), but by only finitely
many. Let s = s(v) ∈ S be the center of the one that has the lowest numbered color
in Y . Let Zv := (−1)‖s−v‖1 . In other words, each box is labeled checkerboard-
fashion, with the parity determined by the position of its center, and with lower-
colored boxes taking priority over higher ones. (We are not using Lemma 13 here,
despite the similarity of the construction.)

Let G be the (random) subgraph of Zd in which two adjacent vertices u, v are
connected by an edge if and only if Zu = Zv . By the construction of the boxes, G

is a subgraph of a graph H satisfying the conditions of Lemma 14, so each cluster
of Z has ‖ · ‖∞-diameter at most 1, as required.

In each step 1, . . . , q of the above procedure, a site s ∈ S only needed to exam-
ine S, Y and the earlier choices of radii within a neighborhood of radius 4M + 2 in
order to determine its radius r(s). Thus, the entire procedure constitutes a block-
factor map from (J,Y ) to Z (and indeed it is an isometry-equivariant map). There-
fore, Lemma 9 gives that Z is tower ffiid. �

We note that the above argument actually gives the following fact. This has been
used in [14] to prove the existence of k-dependent 4-colorings of Zd for all d ≥ 2.

COROLLARY 15. Let d ≥ 1. There exists m such that for any q there exists
a block factor map F with the following property. If X is a range-m q-coloring
of Zd then F(X) is a 4-coloring of Zd . In addition, if (Uv)v∈Zd are i.i.d. uniform
on [0,1] and independent of X then similarly there exists an isometry-equivariant
block factor map F ′ such that F ′((X,U)) is a 4-coloring of Zd .

PROOF. We take m = 4M + 3 in the proof of Theorem 1(i) above. Since a
range-(4M + 3) coloring is also a range-M coloring, the construction in the proof
of Corollary 11 gives us an M-net J as a block factor of X, and we also take
Y = X. �

5. Shifts of finite type. In this section, we prove Theorem 3, for which we
will use the following construction. Let S = S(q, k,W) be a shift of finite type
on Z. Let G = GS be the directed graph with vertex set W , and with a directed
edge from u = (u1, . . . , uk) to v = (v1, . . . , vk) if and only if (u2, . . . , uk) =
(v1, . . . , vk−1). For any x ∈ [q]Z, clearly we have x ∈ S if and only if the sequence
((xi+1, . . . , xi+k))i∈Z forms a directed (bi-infinite) path in G.

PROPOSITION 16 (Shifts of finite type from nets). Let S be a nonlattice shift
of finite type on Z. There exist an integer m ≥ 1 and a block-factor map F such
that if J is an m-net then F(J ) belongs to S a.s.
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PROOF. Let S = S(q, k,W) and let G = GS be the directed graph defined
above. For w ∈ W , the set of recurrence times T (w) is precisely the set of positive
integers t for which there exists a (not necessarily self-avoiding) directed cycle of
length t in G that contains the vertex w. Suppose that the greatest common divisor
of T (w) is 1. Since T (w) is closed under addition, it is a standard fact of number
theory that there exists some m such that T (w) contains all integers greater than m.

Therefore, for each integer t ∈ [m + 1,2m + 1], we can fix a directed cycle of
G of length t containing w. Let w = yt

0, t
t
1, . . . , y

t
t = w be its vertices in order. Let

J be an m-net. Construct a W -valued process Z from J as follows. For each i ∈ Z
with Ji = 1, let Zi = w. If i < j are the locations of two consecutive 1’s in J ,
let t = j − i ∈ [m + 1,2m + 1], and let (Zi, . . . ,Zj ) = (yt

0, t
t
1, . . . , y

t
t ). Finally,

define a process X by letting Xi be the first entry of the k-vector Zi for each i ∈ Z.
Clearly, X ∈ S, and X is a block factor of J because the intervals between 1’s of
J have bounded lengths. �

PROOF OF THEOREM 3(I). This follows immediately from Corollary 11 and
Proposition 16. �

We note that our argument yields the following, which is used in [14].

COROLLARY 17. Let S be a nonlattice shift of finite type on Z. There exist m

such that for any q , there exists a block-factor map F such that if X is a range-m
q-coloring of Z then F(J ) belongs to S.

PROOF. This follows from Proposition 16 and the proof of Corollary 11. �

PROOF OF THEOREM 3(II). Suppose that S = S(q, k,W). If S contains no
constant sequence, then the graph G = GS has no self-loops. Suppose X is an
ffiid process that belongs to S a.s. Then the block process W = (Wi)i∈Z given
by Wi := (Xi+1, . . . ,Xi+k) is a qk-coloring of Z, and it is clearly a block fac-
tor of X. Let R be the coding radius of X, and let R′ be the coding radius
of W viewed as a factor of the i.i.d. process underlying X. Theorem 1(ii) im-
plies P(R′ > r) ≥ 1/ tower(Cr) for all r and some c, while as in the proof
of Lemma 9, P(R′ > r) ≤ kP(R > r − k). Hence, P(R > r) ≥ 1/ tower(C ′r) for
some C′ = C′(C, k). �

Finally, in this section, we show that a lattice shift of finite type admits no ffiid
process, as mentioned in the Introduction. In fact, we prove a stronger statement.
A process X on Z is called mixing if for any events A and B in the σ -field gener-
ated by X we have P(A ∩ θnB) → P(A)P(B) as n → ∞. [Here, if A is the event
{X ∈ A} then θnA is the translated event {(Xi+n)i∈Z ∈ A}.] The following is a
standard fact.
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LEMMA 18. Any factor of an i.i.d. process on Z is mixing.

PROOF. Suppose X is a factor of the i.i.d. process Y . Fix events A,B ∈ σ(X)

and any ε > 0. There exist cylinder events Aε,Bε of Y such that P(A�Aε),

P(B�Bε) < ε, and by translation-equivariance, P(θnB�θnBε) < ε. For n suffi-
ciently large, Aε and θnBε are independent, and hence |P(A ∩ θnB) −
P(A)P(B)| < 4ε. �

PROPOSITION 19. Let S be a lattice shift of finite type on Z. There is no
mixing stationary process X for which X ∈ S a.s.

PROOF. Suppose that such an X does exist. Since X is mixing, it is er-
godic. Hence, there exists some w ∈ W that a.s. appears infinitely often in the
process W given by Wi := (Xi+1, . . . ,Xi+k). Fix such a w, and let t be the
greatest common divisor of the recurrence set T (w). Then a.s. the random set
{i ∈ Z : Wi = w} lies in L + tZ for some random L in [t]. Since the set is a.s.
nonempty, L is measurable with respect to σ(X), and by stationarity L must be
uniformly distributed over [t]. Therefore, letting A be the event that L = t , we have
P(A∩ θnA) = 1[t divides n]/t , which does not converge as n → ∞, contradicting
the fact that X is mixing. �

6. Power law coloring. In this section, we construct ffiid 3-colorings of Zd

for d ≥ 2 with power law tails, proving Theorem 2(i). A simpler version of the
argument is available when d = 2; we give this first.

PROOF OF THEOREM 2(I), CASE d = 2. First, construct a random graph H

with vertex set Z2 by choosing, for each unit square of Z2, exactly one of the
two diagonals to be an edge of H , with each diagonal having probability 1/2,
and where the choices are independent for different squares. It is of course triv-
ial to do this as a translation-equivariant block factor of an i.i.d. process indexed
by the vertices. For an isometry-equivariant construction, one can proceed as fol-
lows. Let (Uv)v∈Z2 be i.i.d. uniform on [0,1] and let (Bv)v∈Z2 be i.i.d. uniform on
{±1}, independent of each other. For a unit square s, define B ′

s := ∏4
i=1 Bsi , where

s1, . . . , s4 are the vertices (in counterclockwise order, say). Then (B ′
s)s is an i.i.d.

uniform ±1-valued family indexed by unit squares (as can be seen by considering
in lexicographic order the unit squares that make up an n by n square, and noting
that each is independent of those preceding it). Now place an edge between s1, s3
if (Us1 + Us3 − Us2 − Us4)Bs > 0, and otherwise place it between s2, s4.

Observe that H is precisely a critical bond percolation model on the even sub-
lattice of Z2 (interpreted as a copy of Z2 rotated by π/4 and enlarged by

√
2)

together with its planar dual on the odd sublattice. See Figure 2. Note that for the
purpose of constructing an ffiid process, it is important that we treat the even and
odd sublattices identically.
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FIG. 2. Random diagonals, the resulting bond percolation process (solid lines), its planar dual
(dashed lines) and a corresponding 3-coloring.

Call the connected components of H clusters, and call two clusters adjacent
if some vertex of one is adjacent in Z2 to some vertex of the other. (Adjacent
clusters belong to sublattices of opposite parity, of course.) We will assign one of
the 3 colors to each cluster. This will result in a coloring of Z2 provided adjacent
clusters receive distinct colors, as in Figure 2.

All clusters are finite a.s. (since there is no percolation at the critical point 1/2
of bond percolation on Z2; see, e.g., [12]). For each cluster K , there is precisely
one cluster π(K) that surrounds K (i.e., intersects every infinite path from K) and
is adjacent to K (see, e.g., [12]). We call π(K) the parent of K , and K a child of
π(K). Any two adjacent clusters are parent and child in exactly one direction. If
K ′ = πm(K) for some m ≥ 0 (where πm denotes the mth iterate of π ) then we
say that K ′ is an ancestor of K and that K is a descendant of K ′. Note that each
cluster has infinitely many ancestors but only finitely many descendants.

Next, we assign a label YK to each cluster K , in such a way that conditional
on H the labels are i.i.d. and uniform on {±1}. To do this, take (Vv)v∈Z2 i.i.d.
uniform on [0,1] and (Wv)v∈Z2 i.i.d. uniform on {±1}, and let YK = Wu where u

is the vertex of K for which Vu is greatest. Call a cluster K special if YK = 1 but
Yπ(K) = −1. Now we define the coloring. Assign color 1 to each special cluster.
For a nonspecial cluster K , let m ≥ 1 be the smallest positive integer for which the
ancestor πm(K) is special, and assign K color 2 or 3 according to whether m is
odd or even, respectively.

The above clearly gives a coloring. To check that it is ffiid and bound the cod-
ing radius, note that to determine the color of the origin, it suffices to examine
the various i.i.d. labels of the parent of the most recent special ancestor of the
cluster of the origin, together with those of all its descendants, and the vertices
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of Z2 within distance 2 of these clusters. The coding radius R is at most the ra-
dius around 0 of this set of vertices. To bound R, define a family of nested annuli
An := {x ∈ Z2 : 2n ≤ |x| < 2n+1} centered at the origin. By the Russo–Seymour–
Welsh theorem, the probability that H contains a circuit in the even sublattice that
lies in An and surrounds the origin is bounded strictly away from 0 as n → ∞, and
similarly for the odd sublattice; see, for example, [12]. Take p > 0 and N ≥ 1 such
that both probabilities are at least p for all n > N . Now let Em be the event that the
following all hold: A4m and A4m+2 each contain such a circuit in the even sublat-
tice, while A4m+1 and A4m+3 each contain one in the odd sublattice, and moreover,
the cluster that contains the outermost such circuit in A4m+1 is special. Now the
events (Em)m≥1 are independent, and P(Em) > p4/4 if 4m > N . If Em occurs,
then the cluster of the origin has a special ancestor whose parent lies within the
ball B(24m+4). Therefore, P(R > 24m+4 + 2) ≤ (1 − p4/4)m for 4m > N , which
gives the claimed power law tail bound. �

Unfortunately, the above method gives only a very small positive power α

in the bound P(R > r) < cr−α . The best available lower bound for the Russo–
Seymour–Welsh circuit probability p is roughly 2−36. And, even with more elab-
orate bookkeeping, the best that can be obtained from the above argument is
P(R > 2m) ≤ (1 − p/2)m, giving α ≈ p/(2 log 2). It would be of interest to obtain
a more reasonable power (either for this 3-coloring of Z2 or another one).

We now move on to the case of general d ≥ 2. The strategy will be broadly
similar to that for d = 2 above, but with the following main differences. We can
no longer use critical percolation together with its planar dual; instead, we use
an iterative procedure to construct a partition of Zd with a similar tree structure.
However, unlike the percolation clusters, individual sets of this partition will them-
selves contain pairs of neighboring vertices. Therefore, rather than a single color,
each set will be assigned a checkerboard 2-coloring comprising 2 of the 3 avail-
able colors. This in turn will necessitate a more subtle version of the family tree
coloring procedure. The method of proof is quite general, and can be applied to
other graphs (with an appropriate number of colors that depends on the graph).

The first part of the construction is deterministic, and can be done on any
graph. (In fact, it can be generalized to metric spaces.) Let G = (V ,E) be a sim-
ple undirected graph, and let δ denote graph-distance on V . Denote the closed
ball B(u, r) := {v ∈ V : δ(u, v) ≤ r}. As usual, the diameter of a set S ⊆ V is
diam(S) := sup{δ(u, v) : u, v ∈ S}, the radius around a point u ∈ S is radu(S) :=
sup{δ(u, v) : v ∈ S}, and the (graph) distance between two sets S,T ⊆ V is
δ(S,T ) := inf{δ(s, t) : s ∈ S, t ∈ T }.

Here is the construction. Define

rj := 13j , j ≥ 1

and suppose we are given a family of sets V1,V2, . . . ⊆ V . (In our application
below, the sets will be chosen randomly, in such a way that no two elements of Vj
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are within distance 4rj of each other.) We call elements of Vj j -centers. Call the
ball of radius rj centered at any j -center a j -ball. To each j -ball, we will associate
a subset of V , called a j -tile. The collection of all tiles will be our partition.

The 1-tiles are precisely the 1-balls. Now assume that j -tiles have been defined
for all j ≤ n, and let Tn denote the set of all such tiles. Let Gn be the graph with
vertex set Tn in which two tiles are neighbors in Gn if the distance between them
is at most 2. Define an n-clump to be the union of the tiles that correspond to
a connected component of Gn. By the n-clump of a tile, we mean the n-clump
containing that tile.

Now let B be an (n+1)-ball. Let SB denote the union of B and all the n-clumps
that are within distance at most 2 from B . Define the (n + 1)-tile TB to be the set
of all v ∈ V that are within distance at most 1 from SB but are not in

⋃Tn. The
(n + 1)-tiles are all such TB .

At the same time as defining tiles, we impose a family tree structure on them.
Every tile T ′ of Tn that is a subset of SB is declared a child of TB , provided T ′ was
not already declared a child of some other tile at some earlier stage. If T ′ is a child
of T , then T is a parent of T ′. A priori a tile might have no parents, or more than
one, but we will see next that for our choice of Vj ’s the parent is unique.

Each tile has a center, defined to be the center of the ball B used to define the
tile TB . (The center is not necessarily an element of the tile.)

LEMMA 20 (Tiling). Let G = (V ,E) be an infinite connected graph, let
V1,V2, . . . ⊆ V be sets of centers, and construct tiles as described above. Sup-
pose that every v ∈ V lies in some ball, and that no two j -centers are within
distance 4rj (for each j ≥ 1). Then the set of all tiles is a partition of V . Each tile
is nonempty, and has exactly one parent. If T ,T ′ are distinct tiles neither of which
is a child of the other then δ(T ,T ′) > 1. If there is a j -tile centered at v, then the
tile and its associated j -clump are subsets of the ball B(v, 3

2rj ), and are functions
of V1, . . . , Vj restricted to this ball.

PROOF. The key step is to prove by induction that the diameter of a j -clump
is at most 3rj . This certainly holds for j = 1. Assume that it holds for j = n. Let
B be an (n + 1)-ball with center u. Recalling the definition of the associated tile
TB , we can bound its radius:

radu(TB) ≤ rn+1 + 2 + 3rn + 1.

Let T̂B be the union of TB with all the n-clumps that are within distance at most 2
from TB . Then

radu(T̂B) ≤ radu(TB) + 2 + 3rn ≤ rn+1 + 6rn + 5 <
3

2
rn+1,

by our choice of rj . For distinct (n + 1)-balls B1,B2, the centers are at distance at
least 4rn+1, therefore, δ(T̂B1, T̂B2) > (4−2 · 3

2)rn+1 = rn+1 > 2. It follows that the
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(n + 1)-clump of TB is T̂B , and hence that this clump has diameter at most 3rn+1.
This completes the induction.

From the above inequality, in fact the radius of TB ’s clump T̂B is at most 3
2rn+1,

and by the construction of TB , the tile and the clump are functions of V1, . . . , Vj

restricted to the ball of radius 3
2rn+1 centered at u, as claimed.

Now, if v lies in an n-ball B then either v lies in TB , or it lies in some tile of
Tn−1. Thus, every v lies in some tile. On the other hand, we showed above that
any two n-tiles are disjoint (and in fact are at distance greater than 2), while by the
construction, an n-tile is disjoint from

⋃Tn−1. Thus, the tiles partition V .
To see that the n-tile TB is nonempty, recall that TB ⊇ B \ ⋃Tn−1. But we can-

not have
⋃Tn−1 ⊇ B , because B is connected, while each component of

⋃Tn−1
lies in an (n − 1)-clump, and thus has strictly smaller diameter than B .

Let T ,T ′ be distinct tiles neither of which is a child of the other. As remarked
above, if both are n-tiles then δ(T ,T ′) > 2 > 1. On the other hand, if T = TB is an
n-tile and T ′ ∈ Tn−1 then, by the definition of SB , either T ′ ⊆ SB or δ(T ′, SB) > 2.
In the former case, T ′ was already assigned a parent before stage n, and thus all
vertices of V that are within distance 1 of T ′ lie in

⋃Tn−1, so δ(T ,T ′) > 1. In the
latter case, the definition of TB implies that δ(T ,T ′) > 1 also.

If B is an n-ball, then SB is contained in the n-clump of TB , but we showed
above that for distinct n-balls B1 and B2, the clumps of TB1 and TB2 are disjoint.
Thus, any tile has at most one parent. It remains to show that an n-tile T has at least
one parent. Since G is infinite and connected but the n-clump of T is bounded,
there exists w ∈ V that is at distance 1 from the clump but not in

⋃Tn. This w lies
in some ball B , which must be a m-ball for some m > n (otherwise w would lie in⋃Tn), and thus SB contains T . Hence, either TB is the parent of T , or another tile
was declared the parent of T before TB was constructed. �

As before, we write π(T ) for the parent of a tile T . If T ′ = πm(T ) for some
m ≥ 0 then we call T ′ an ancestor of T , and T a descendant of T ′. Let F denote
the graph whose vertices are the tiles, and where two tiles are adjacent if they are
at distance 1. Thus, F is a forest with exactly one end per component. (In our
application below, F will actually be a tree.)

In order to bound the coding radius of our coloring, we need the following
additional property.

LEMMA 21. Assume the conditions of Lemma 20. If the ball B contains the
vertex v then some descendant of tile TB contains the vertex v.

PROOF. Suppose B is an n-ball. Either v lies in TB itself, or it lies in some
previously constructed tile T that is a subset of SB . In the latter case, either T is a
child of TB , or T was earlier declared a child of some other tile π(T ) = TB ′ , say,
where B ′ is an n′-ball and n′ < n. In that case, SB ′ contains T (by the definition of
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FIG. 3. The graph Q of checkerboard colorings of Z2. (A small part of each coloring is shown.)

child). Since the n′-clump of T is a subset of the n-clump of T (by the definition
of clump), we have that SB ′ ⊆ SB and therefore π(T ) ⊆ SB . Now we iterate this
argument: the parent π2(T ) of π(T ) is either TB , or it is some other tile constructed
after π(T ) but before TB , in which case π2(T ) ⊆ SB , and so on. Eventually, we
conclude that TB is an ancestor of T . �

PROOF OF THEOREM 2(i) FOR GENERAL d ≥ 2. We first construct a random
tiling of Zd . Define rj = 13j as above. For j ≥ 1, let Wj be a random subset of Zd

in which each vertex is included with probability r−d
j , independently for different

vertices. Let Vj be the set of elements of Wj that have no other element of Wj

within distance 4rj . Let the sets (Vj )j≥1 be independent of each other. Construct
tiles using the sets of centers (Vj )j≥1 as described above. Note that the probability
that v ∈ Zd lies in some j -ball is at least η for some η = η(d) > 0 that does not
depend on j . Therefore, every v lies in some ball, so Lemma 20 applies.

Let Q be the set of all deterministic colorings of Zd that use any 2 colors from
{1,2,3}. Then Q has 6 elements, since there are

(3
2

)
choices of 2 colors, and 2

possible checkerboard phases. Consider the graph Q with vertex set Q, and with
an edge between two colorings if one can be obtained from the other by exchanging
one color for the unused color, together with a self-loop at each vertex. Thus, Q is
a hexagon with self-loops, and hence has diameter D := 3. See Figure 3. We will
assign a coloring in Q to each tile, and this will result in a coloring of Zd provided
adjacent tiles receive colorings that are adjacent in Q. For every pair of vertices
of Q, fix a canonical shortest path between them.

Conditional on the tiling, flip an independent fair coin for each tile (e.g., by
flipping a coin for every vertex of Zd and using the coin at the center of the tile).
Call a tile T special if its coin is Heads but no ancestor πm(T ) with 1 ≤ m < D

has Heads. Let A be the random set of special tiles. For any tile T , let a(T ) be
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its most recent special strict ancestor, that is, the tile πm(T ) where m ≥ 1 is the
smallest positive integer for which this tile is special. (Such an m exists a.s.)

To each special tile T , assign a uniformly random element h(T ) of Q (again,
this can be done via the center). The idea will be that h(T ) will be used to color
certain descendants of T . However, the phase must be chosen locally. Therefore,
let h′(T ) denote the 2-coloring h(T ) translated by u, where u is the center of T .
Thus, h′(T ) is either h(T ) or the coloring that results from exchanging the 2 colors,
according to the parity of u.

We now construct a new function g from the tiles to Q. The idea is that a special
tile T tries to force its descendants to use h′(T ), succeeding if they are at least D

levels below, but any special descendants get to take over this task.
To make this precise, for any tile T , we choose a shortest path in Q from

h′(a(a(T ))) to h′(a(T )). Here, we again need to be careful with phase: let u be the
center of a(a(T )), and first consider the canonical path between h(a(a(T )) and the
translation of h′(a(T )) by −u, then translate all the colorings of this path by u to
obtain a new path. Let h′(a(a(T ))) = z0, z1, . . . , z
 = h′(a(T )) denote this path.
Now, if the distance from T to a(T ) in F is j , let g(T ) = zmin(j,
). We claim that
g is a graph homomorphism from F to Q. Indeed, consider the parent T ′ := π(T )

of T . If T ′ is not special, then a(T ′) = a(T ), so by the path construction, g(T )

and g(T ′) are neighbors in Q. On the other hand, if T ′ is special, then a(T ′) is at
distance at least D from T ′ in F , so g(T ′) = h′(a(T ′)); but T is at distance 1 from
a(T ) = T ′ in F , so g(T ) is a neighbor of h′(a(a(T )) = h′(a(T ′)), so again g(T )

and g(T ′) are neighbors in Q.
Now we define X by assigning the checkerboard coloring g(T ) ∈ Q to all the

vertices of the tile T . By Lemma 20, each edge of the lattice either connects two
vertices in the same tile, or connects a vertex in one tile to a vertex in that tile’s
parent. Since the colorings g(T ) and g(π(T )) are neighbors in Q, they are com-
patible, so X is in fact a 3-coloring.

It is immediate from the construction that X is an automorphism-equivariant
factor of the various i.i.d. labels. To check that it is ffiid and bound the coding
radius, note that the color X0 can be determined by examining the tile a(πD(T ))

and its descendants, where T is the tile containing 0. For m ≥ 1, let Em be the event
that there is a j -ball containing 0 for each of j = 2Dm,2Dm + 1, . . . ,2D(m +
1)−1, and the coins associated to the corresponding tiles Tj are Heads for T2Dm+D

and Tails for T2Dm+D+1, . . . , T2D(m+1)−1. On Em, tile T2Dm+D is special while
tiles T2Dm+1, . . . , T2Dm+D−1 tiles are not, and this is enough to determine the
coloring of tile T2Dm. By Lemma 21, tile T2Dm has a descendent containing 0. But
all the descendants of a tile are in its clump, so from Lemma 20 it follows that the
coding radius is at most (3

2 + 4)r2D(m+1)−1. (The 4 comes from the construction
of Vj from Wj ). On the other hand, the events (Em)m≥1 are independent, and
their probabilities are bounded below by some p = p(d) > 0. Thus, P(R > 11

2 ×
132D(m+1)) ≤ (1 − p)m, giving the required power law bound. �
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7. Second moment bound. In this section, we prove Theorem 2(ii), which
will follow from a lower bound on spatial correlations that holds for any stationary
3-coloring of Z2. The key to the proof is that there is a height function associated
to the 3-colorings. If correlations were to decay too fast, then the height changes
around a large contour would not cancel.

We need the following simple lemma, the proof of which is deferred to the
end of the section. A process Z on Z is called right-tail-trivial if every event in
T+ := ⋂

n∈Z σ(Zn,Zn+1, . . .) has probability zero or one.

LEMMA 22. If (Zi)i∈Z is a ±1-valued stationary right-tail-trivial process,
either it is a.s. deterministic or lim supn→∞ Var

∑n
i=1 Zi = ∞.

Let X be a 3-coloring of Z2. We will prove a lower bound on spatial corre-
lations involving pairs of edges. Let u, v ∈ Z2 be neighboring vertices. Since X

is a coloring, Xv − Xu ≡ ±1 (mod 3). Therefore, define h(u, v) ∈ {−1,+1} by
h(u, v) ≡ Xv − Xu (mod 3). Now define

ρ(r) := sup
{
Cov

[
h(u1, v1), h(u2, v2)

] :
‖u1 − v1‖1 = ‖u2 − v2‖1 = 1,‖u1 + v1 − u2 − v2‖1 ≥ 2r

}
.

Note that ρ is nonnegative (since interchanging u1 and v1 reverses the sign of the
covariance), and nonincreasing.

PROPOSITION 23 (Correlations). Let X be a stationary 3-coloring of Z2, and
suppose that its restriction (X(i,0))i∈Z to the axis is right-tail-trivial. Then with ρ

defined as above,

∞∑
r=1

rρ(r) = ∞.

The key point is that the function h defined above can be interpreted as the
difference along an edge of a height function. (See, e.g., [4, 10] for background.)
Indeed, suppose w0, . . . ,w3 are the vertices of a unit square of Z2 in counterclock-
wise order, and write w4 = w0. Then

∑3
j=0 h(wj ,wj+1) = 0 (since the sum lies

in {0,±2,±4} but equals 0 modulo 3). Therefore, for arbitrary vertices u, v ∈ Z2

we can define h(u, v) := ∑m−1
j=0 h(wj ,wj+1) where u = w0,w1, . . . ,wm = v is

any path from u to v; it follows from the above observation that this sum does not
depend on the choice of path.

PROOF OF PROPOSITION 23. Let X be a 3-coloring with the given properties,
and suppose for a contradiction that

∑∞
r=1 rρ(r) = C < ∞.
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Write vj := (j,0), and let n ≥ 1. We will bound the variance of h(v0, vn) by
expressing it in two different ways. Summing along the axis gives

h(v0, vn) =
n∑

j=1

h(vj−1, vj ),

while by summing around three sides of a square:

h(v0, vn) =
n∑

j=1

h
(
(0, j − 1), (0, j)

) +
n∑

j=1

h
(
(j − 1, n), (j, n)

)

+
n∑

j=1

h
(
(n,n − j + 1), (n,n − j)

)
.

Thus, we may compute Varh(v0, vn) = Cov[h(v0, vn), h(v0, vn)] as the covariance
of the two representations. This gives

(4) Varh(v0, vn) ≤ 2
2n∑

r=1

rρ(r) +
2n∑

r=n

2nρ(r) ≤ 4C.

Now let Zi := h(vi, vi+1). The assumption on the coloring X implies that the
process Z = (Zi)i∈Z is right-tail-trivial, so using (4) and applying Lemma 22
shows that Z is deterministic, which is to say that either Zi = 1 for all i a.s. or
Zi = −1 for all i a.s. Without loss of generality, consider the former case. Then the
coloring (X(i,0))i∈Z restricted to the axis is supported on the set of three 3-periodic
colorings of the form · · ·123123 · · · . Stationarity implies that these three colorings
must each have probability 1/3, but the resulting process is not right-tail-trivial.

�

PROOF OF THEOREM 2(ii). Let X be an ffiid 3-coloring of Zd with d ≥ 2, and
suppose for a contradiction that the coding radius satisfies ER2 < ∞. Similar to the
proof of Theorem 1(ii), we may assume without loss of generality that d = 2, since
restricting an ffiid process to the plane Z2 ×{0}d−2 gives another ffiid process, and
does not increase the coding radius. We claim also that X restricted to Z × {0} is
right-tail-trivial as required for Proposition 23. This is a consequence of a fact from
ergodic theory: any process that is a factor of an i.i.d. process and takes values in
AZ, where A is a finite set, is right-tail-trivial; see, for example, [8], Theorem 1 on
page 283, Exercise 1 on page 280 and Definition 3 on page 181. Alternatively, an
elementary argument shows that an ffiid process with ER2 < ∞ satisfies a stronger
tail-triviality condition; we explain this at the end of the section—specifically we
use Lemma 24 with d = 2.

We now bound ρ(r). Let ‖u1 + v1 − u2 − v2‖1 ≥ 2r and ‖ui − vi‖1 = 1 for
i = 1,2. Write Hi := h(ui, vi) −Eh(ui, vi), so that EHi = 0 and |Hi | ≤ 2. Recall
that Rv denotes the coding radius at vertex v, and define the event Ei := {Rui

∨
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Rvi
> r/2 − 1}. Thus, the random variables H11E1

and H21E2
are independent,

since they are functions of disjoint sets of i.i.d. variables. Writing ε = ε(r) :=
P(R > r/2 − 1), note that P(Ei) ≤ 2ε, and also E(Hi1Ei

) = −E(Hi1Ei
) ≤ 4ε.

Therefore,

E(H1H2) = E(H1H21E1∪E2) +E(H1H21E1
1E2

)

≤ 4P(E1 ∪ E2) +E(H11E1
)E(H21E2

)

≤ 16ε + 16ε2 ≤ 32ε,

and thus ρ(r) ≤ 32P(R > r/2 − 1). Proposition 23 gives
∑

r rρ(r) = ∞, so∑
r rP(R > r/2 − 1) = ∞, which implies ER2 = ∞. �

We conclude the section by giving the proof of Lemma 22, and also the elemen-
tary argument for tail-triviality mentioned above.

PROOF OF LEMMA 22. Let (Zi)i∈Z be stationary and ±1-valued, and suppose
Var

∑n
i=1 Zi ≤ C2 for all n. We will deduce that Z is deterministic.

Let Fj be the σ -field generated by Zj ,Zj+1, . . . , and consider the space of
random variables L2(Fj ), with the norm ‖X‖2 := (EX2)1/2. Write μ := EZ0 and
Sk

j := ∑k−1
i=j (Zi − μ), so that ‖Sk

j ‖2
2 ≤ C2 and in particular Sk

j ∈ L2(Fj ). Now

define φj : L2(Fj ) → [0,∞) by

φj (X) := lim sup
n→∞

E
(
X + Sn

j

)2
.

We will prove that φj has a unique global minimizer in L2(Fj ).
First note that by the Cauchy–Schwarz inequality and the uniform bound on

‖Sk
j ‖2

2, the function φj satisfies the bounds

‖X‖2
2 − 2C‖X‖2 ≤ φj (X) ≤ ‖X‖2

2 + 2C‖X‖2 + C2,

and, therefore, φj (X) < ∞ for all X ∈ L2(Fj ), while φj (X) → ∞ as ‖X‖2 → ∞.
We next claim that φj is continuous and strictly convex. To check continuity, let

X,Y ∈ L2(Fj ) satisfy ‖X − Y‖2 = ε. Writing Y + Sn
j = (X + Sn

j ) + (Y − X) and
using Cauchy–Schwarz again,

(5) φj (Y ) ≤ φj (X) + 2εφj (X)1/2 + ε2.

Applying (5) in both directions, using (5) again to bound φj (Y ) in terms of φj (X)

on the right-hand side, and simplifying, we obtain∣∣φj (Y ) − φj (X)
∣∣ ≤ 2εφj (X)1/2 + 3ε2,

from which continuity follows.
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To check that φj is strictly convex, observe that for X,Y ∈ L2(Fj ),

φj

(
X + Y

2

)
= lim sup

n→∞
E

[((X + Sn
j ) + (Y + Sn

j )

2

)2]

= lim sup
n→∞

E
[(X + Sn

j )2 + (Y + Sn
j )2

2
− (X − Y)2

4

]

≤ φj (X) + φj (Y )

2
− ‖X − Y‖2

2

4
.

It now follows (see, e.g., [3], Theorem 2.11, Remarks 2.12, 2.13) that φj has a
unique mimimizer. Let Xj ∈ L2(Fj ) minimize φj . For j < k < n we have Sn

j =
Sk

j + Sn
k , and hence φk(X + Sk

j ) = φj (X). Therefore,

Xj + Sk
j = Xk.

By construction, (Xi)i∈Z is stationary. Since Xj = Xj+1 −S
j+1
j = Xj+1 −Zj +μ

we have

(6) Xj ≡ Xj+1 + 1 + μ mod 2.

Thus, Xj mod 2 ∈ L2(Fj+1), and by iterating we see that Xj mod 2 is in the right
tail of (Zi)i∈Z. Therefore, Xj mod 2 is an a.s. constant for each j . Since (Xi)i∈Z
is stationary, we have X0 ≡ X1 mod 2 a.s. Hence, (6) gives μ ≡ 1 mod 2, that is,
μ ∈ {−1,+1}, so Z0 is a.s. deterministic. �

A process X on Zd is called fully tail-trivial if every event in T (X) :=⋂
r≥0 σ(Xv : v /∈ B(r)) has probability zero or one. Of course, the restriction of

a fully tail-trivial process to the axis is also fully tail-trivial and, therefore, right-
tail-trivial. Hence, the following lemma suffices for our needs in the proof of The-
orem 2(ii) above.

LEMMA 24. Suppose X is an ffiid process on Zd . If the coding radius R sat-
isfies ERd < ∞ then X is fully tail-trivial.

PROOF. Let X be a finitary factor of the i.i.d. process Y with coding radius
satisfying ERd < ∞. For u, v ∈ Zd we write u ↪→ v for the event {|u − v| ≤ Rv},
that is, the event that u is within the ball that must be examined to determine Xv .

For positive integers n < N , define

En,N := {∃u ∈ B(n) and v /∈ B(N) s.t. u ↪→ v
}
.

We claim that for any n we have P(En,N) → 0 as N → ∞. Indeed, by translation-
invariance and the assumption on R,∑

v∈Zd

P(0 ↪→ v) = ∑
v∈Zd

P(−v ↪→ 0) = ∑
v∈Zd

P(v ↪→ 0) = E
∣∣B(R)

∣∣ < ∞.
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(This is an instance of the “mass-transport principle”—see [5] for background.)
Hence for any n, ∑

u∈B(n),v∈Zd

P(u ↪→ v) < ∞,

and thus

P(En,N) ≤ ∑
u∈B(n),v /∈B(N)

P(u ↪→ v) → 0 as N → ∞,

as claimed.
Now, fix ε > 0 and a tail event A ∈ T (X). Since X is a function of Y , we

have A ∈ σ(Y ), so we can find an approximating cylinder event: there exist n and
A′ ∈ σ(Yv : v ∈ B(n)) such that P(A�A′) < ε. Let A′′ = A \ En,N . By the above
claim, for N large enough we have P(A�A′′) < ε. On the other hand, since A is
a tail event, A ∈ σ(Xv : v /∈ B(N)), and so by the definition of En,N we deduce
A′′ ∈ σ(Yv : v /∈ B(n)). Thus, A′′ and A′ are independent. Since ε was arbitrary
this implies that A is independent of itself, that is, P(A) ∈ {0,1}. �

8. Finitely dependent coloring. In this section, we prove two results on k-
dependent coloring. See [14] for more on this topic.

PROOF OF THEOREM 4. Suppose (Xi)i∈Z is a translation-invariant 1-
dependent coloring. Let Fi := σ(. . . ,Xi−1,Xi), and define the random variable

Yi := P(Xi+1 = 1 | Fi ).

Let m = ess supY1; then since X2 �= 1 on the event X1 = 1 we have a.s.

Y1 ≤ m1[X1 �= 1].
Since X2 is independent of F0, we deduce

P(X2 = 1) = P(X2 = 1 | F0) = E(Y1 | F0)

≤ mP(X1 �= 1 | F0) = m(1 − Y0),

and since this holds a.s. we deduce

P(X2 = 1) ≤ m(1 − m) ≤ 1/4.

Similarly, we have P(X2 = k) ≤ 1/4 for each color k = 1, . . . , q , so q ≥ 4. �

Finally, we note the following consequence of the results of the previous section.

COROLLARY 25. Let d ≥ 2 and k ≥ 1. There exists no stationary k-dependent
3-coloring of Zd .
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PROOF. By restricting to a plane, it is enough to prove the d = 2 case. We
use Proposition 23. It is elementary to check that the restriction of a k-dependent
process to the axis is right-tail-trivial, and that the correlation function ρ(r) is zero
for r > k + 2. �

In contrast with Corollary 25, in dimension d = 1, a stationary 2-dependent
3-coloring was constructed in [14].

Open problems.

(i) What is the largest α for which there exists an ffiid 3-coloring of Zd whose
coding radius has finite α-moment, for each d ≥ 2? (Our results show that it
is at most 2, and at least some small positive number.)

(ii) Does there exist, for some d ≥ 2, a shift of finite type S on Zd that contains
no constant configuration, but that admits some ffiid process X with X ∈ S

a.s. whose coding radius tail decays strictly faster than a tower function?
(iii) Does there exist, for some d ≥ 2, a shift of finite type S that admits an ffiid X

with all moments of the coding radius finite, but that admits no X with tower
function decay? (For example, can the optimal tail decay be exponential?)

(iv) Does there exist, for some d ≥ 2, a shift of finite type S that admits an ffiid X,
but such that all moments of the coding radius are infinite for every such X?

Our results imply negative answers to (ii), (iii), (iv) in dimension d = 1.
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