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STOCHASTIC DE GIORGI ITERATION AND REGULARITY OF
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

BY ELTON P. HSU, YU WANG AND ZHENAN WANG

Northwestern University, Goldman Sachs and University of Washington

Under general conditions, we devise a stochastic version of De Giorgi
iteration scheme for semilinear stochastic parabolic partial differential equa-
tion of the form

∂tu = div(A∇u) + f (t, x,u) + gi(t, x,u)ẇi
t

with progressively measurable diffusion coefficients. We use the scheme to
show that the solution of the equation is almost surely Hölder continuous in
both space and time variables.

1. Introduction. Stochastic partial differential equations (SPDEs) arise in
many pure and applied sciences. Regularity of solutions is of central importance
for theoretical development as well as for numerical simulation. For linear equa-
tions with constant diffusion coefficients, the Wn,2-theory has been well developed
(see Pardoux [14] and Rozovskii [16]), and a more general Wk,p-theory has been
established by Krylov [8]. Such equations can also be studied from a semigroup
point of view (Brzèzniak, van Neerven, Veraar and Weis [1] and Da Prato and
Zabczyk [5]). Results concerning nonlinear equations can be found in Debussche,
De Moor and Hofmanova [6] and Pardoux [13]. In particular, many examples of
semilinear SPDEs with measurable coefficients can be found in the survey mono-
graph edited by Carmona and Rozovskii [4]. Although an obviously important
question in applications, regularity of solutions of semilinear SPDEs with random
diffusion coefficients does not seem to have been adequately addressed in the lit-
erature.

In this paper, we consider the following type of semilinear SPDEs on R
n:

(1.1) ∂tu = div(A∇u) + f (t, x, u) + gi(t, x, u)ẇi
t ,

where {wi} is a sequence of independent standard Brownian motions on a fil-
tered probability space (�,F∗,P), the diffusion coefficients A are F∗ = {Ft }-
progressively measurable, and g = {gi} is an �2-valued function such that for each
fixed x and a progressively measurable process h, the process g(t, x,ht ) is also
progressively measurable. We will show that almost surely a stochastically strong
solution with L2-initial data is Hölder continuous in both space and (strictly posi-
tive) time variables and its Hölder norm has finite moments of all orders.
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The basic assumptions on the SPDE (1.1) are as follows:

(1) Uniform ellipticity: A(t, x;ω) is F∗-progressively measurable and uni-
formly elliptic, that is, there is a positive constant λ such that

λI ≤ A(t, x;ω) ≤ λ−1I ∀(t, x,ω) ∈ R+ ×R
n × �.

(2) Linear growth: there exist a nonnegative function K ∈ L2(Rn) ∩ L∞(Rn)

and a positive constant � such that

(1.2)
∣∣f (t, x, u)

∣∣ + ∣∣g(t, x, u)
∣∣
�2 ≤ K(x) + �|u| ∀(t, x, u) ∈ R

+ ×R
n ×R.

We emphasize that no further conditions concerning the continuity A,f or g are
imposed. A stochastic process u = u(t, x;ω) is said to be a (stochastically strong)
solution of (1.1) if it is an almost surely continuous L2 process belonging to the
space L2(� ×R

+,P,W 1,2(Rn)) and satisfies the SPDE (1.1) in the sense that

〈
u(t), ϕ

〉 = 〈
u(0), ϕ

〉 − ∫ t

0

〈
A∇u(s),∇ϕ

〉
ds +

∫ t

0

〈
f

(
u(s)

)
, ϕ

〉
ds

+
∫ t

0

〈
gi

(
u(s)

)
, ϕ

〉
dwi

s

(1.3)

for all ϕ ∈ C∞
c (Rn). Here, P is the completion of the progressively measurable

σ -algebra on � × R+ under the product measure P(dω) × dt , and 〈·, ·〉 denotes
the standard inner product on L2(Rn). The main result of the current work is the
following moment estimate.

THEOREM 1.1. Let u be a (stochastically strong) solution of the SPDE (1.1)
with (nonrandom) initial data u(0) = u0. Then for every p > 0 there is a constant
C = C(n,λ,�,T ,p) such that

E

∫ 2T

0

∥∥u(t)
∥∥p

L2(Rn)
dt +E‖u‖p

L∞([T ,2T ]×Rn)

≤ C
(‖u0‖L2(Rn) + ‖K‖L2(Rn) + ‖K‖L∞(Rn)

)p
.

Using this moment estimate and following a suggestion from Professor Nicolai
Krylov and the approaches used in Debussche, De Moor and Hofmanova [6], we
will prove the following regularity statement for the solution.

THEOREM 1.2. Let u be a solution of the SPDE (1.1) with a (deterministic)
initial condition u(0) = u0 ∈ L2(Rn). Then there exists a positive exponent α =
α(n,λ,�) such that for all T > 0 the solution u ∈ Cα([T ,2T ]×R

n) almost surely.
Furthermore, for every p > 0, there is a constant C = C(n,λ,�,T ,p) such that

E‖u‖p
Cα([T ,2T ]×Rn) ≤ C

(‖u0‖L2(Rn) + ‖K‖L2(Rn) + ‖K‖L∞(Rn)

)p
.
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REMARK 1.3. In general, (1.1) may not admit a stochastically strong solu-
tion if the coefficients are merely progressively measurable. We have assumed the
existence of such strong solution in our settings.

However, under some general conditions a weak solution exists. This weak so-
lution, under some additional assumptions, can be understood as a strong solution
on another probability space therefore our result can be applied; see Carmona and
Rozovskii [4] or Viot [17] for a detailed exposition.

The novelty of our result is that we do not impose any assumptions on the
smoothness of A, f or g. Indeed, if A and g have some continuity, for exam-
ple, Dini continuity, then the above result follows directly from Krylov [8, 9]. The
approach we adopted in this work is quite different from the usual ones in the study
of SPDEs. Largely motivated by the recent work of Glatt-Holtz, Šverák and Vicol
[7] and Krylov [10], rather than relying on abstract or explicit estimates of the
solution kernel, we analyze the energy of the solution by a combination of PDE
techniques and stochastic analysis. Indeed, our work can be viewed as a stochastic
version of De Giorgi–Nash–Moser theory. As such our flexible method is poten-
tially applicable to other types of nonlinear SPDEs.

The paper is orgainzed as follows. In Section 2, we present a stochastic modifi-
cation of De Giorgi’s iteration. In Section 3, we prove the decay of the tail proba-
bility of the solution. The main results, Theorem 1.1 and Theorem 1.2 stated above
are proved in the last section.

2. Stochastic De Giorgi iteration. De Giorgi’s iteration is a classical method
for studying elliptic and parabolic equations with measurable coefficients. In this
section, we develop a stochastic extension of this method appropriate for the type
of SPDEs under investigation. See Cafarelli and Vasseur [2, 3] for an exposition of
the classical theory without random perturbation.

Throughout the paper, an Lp-norm without specifying a domain is implicitly
assumed to be taken on R

n; thus ‖K‖p = ‖K‖Lp(Rn). For a time interval I ⊂ R
+,

we define the norm

‖g‖p1,p2,I := ‖u‖Lp1 (I,Lp2 (Rn)) =
(∫

I
‖g‖p1

p2
dt

)1/p1

.

The norm most relevant for this paper is ‖ · ‖4,2,I .
Let Ik = [(1 − 2−k)T ,2T ], a sequence of time intervals shrinking from [0,2T ]

to [T ,2T ]. For each a ≥ 1, write uk,a = (u − a(1 − 2−k))+ and let

Uk,a := ‖uk,a‖2
4,2,Ik

=
√∫

Ik

‖uk,a‖4
2 dt

be the energy of u on Ik ×R
n above level a(1 − 2−k).

For simplicity, we will denote f (t, x, u) and g(t, x, u) by f (u) and g(u), re-
spectively. We have the following iterative inequality.
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PROPOSITION 2.1. Assume that the function K(x) in the linear growth con-
dition (1.2) satisfies ‖K‖∞ ≤ 1. Then for n ≥ 3, there exists a constant C =
C(n,λ,�,T ) such that

(2.1) Uk,a ≤ Ck

a2/(n+1)

(
Uk−1,a + X∗

k−1,a

)
U

1/(n+1)
k−1,a ,

where

(2.2) X∗
k−1,a = sup

(1−2−k)T ≤s≤t≤2T

∫ t

s

〈
gi

(
u(τ)

)
, uk,a(τ )

〉
dwi

τ .

PROOF. Hölder’s inequality with the conjugate exponents (n+1)/n and n+1
gives

(2.3)
∥∥uk,a(t)

∥∥2
2 ≤ ∥∥uk,a(t)

∥∥2
2(n+1)/n · ∣∣{uk,a(t) > 0

}∣∣1/(n+1)
.

Using Chebyshev’s inequality, we have

∣∣{uk,a(t) > 0
}∣∣ = ∣∣{uk−1,a(t) > 2−ka

}∣∣ ≤
(

2k

a

)2∥∥uk−1,a(t)
∥∥2

2.

Squaring (2.3) and integrating with respect to t on Ik , we have

U2
k,a ≤

(
2k

a

)4/(n+1) ∫
Ik

∥∥uk,a(t)
∥∥4

2(n+1)/n

∥∥uk−1,a(t)
∥∥4/(n+1)

2 dt.

Applying Hölder’s inequality again with the same conjugate exponents we obtain

Uk,a ≤
(

2k

a

)2/(n+1)(∫
Ik

∥∥uk,a(t)
∥∥4(n+1)/n

2(n+1)/n dt

)n/2(n+1)

×
(∫

Ik

∥∥uk−1,a(t)
∥∥4

2 dt

)1/2(n+1)

.

(2.4)

The third factor on the right-hand side can be estimated by U
1/(n+1)
k−1,a . The second

factor is exactly ‖uk,a‖2
4(n+1)/n,2(n+1)/n,Ik

. We claim that

(2.5) ‖uk,a‖2
4(n+1)/n,2(n+1)/n,Ik

≤ sup
t∈Ik

∥∥uk,a(t)
∥∥2

2 +
∫
Ik

∥∥uk,a(t)
∥∥2

2n/(n−2) dt.

To prove this inequality, we use the L
p
t L

q
x interpolation inequality

‖u‖r1,r2,I ≤ ‖u‖γ
p1,p2,I

‖u‖1−γ
q1,q2,I

with

1

r1
= γ

p1
+ 1 − γ

q1
,

1

r2
= γ

p2
+ 1 − γ

q2
.
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Using this inequality with the parameters

r1 = 4(n + 1)

n
, r2 = 2(n + 1)

n
, p1 = ∞, q1 = p2 = 2,

q2 = 2n

n − 2
, γ = n + 2

2(n + 1)

followed by the elementary inequality

ab ≤ ap

p
+ bq

q
≤ ap + bq

with p = 2(n + 1)/(n + 2) and q = 2(n + 1)/n we obtain (2.5) immediately.
Applying the Sobolev inequality on R

n to the second term on the right-hand
side of (2.5) and then substituting the result in (2.4), we obtain

(2.6) Uk,a ≤ C

(
2k

a

)2/(n+1)[
sup
t∈Ik

∥∥uk,a(t)
∥∥2

2 +
∫
Ik

∥∥∇uk,a(t)
∥∥2

2 dt

]
U

1/(n+1)
k−1,a .

We now come to the key step of the proof, namely using Itô’s formula to bound
the terms involving the supremum over Ik and the gradient of u. The function
hr(u) = |(u − r)+|2 is piecewise smooth with continuous derivative and its sec-
ond derivative has a single point of discontinuity (a jump) at u = r . The quadratic
variation process of the martingale part of the process u(t) is absolutely contin-
uous with respect to the Lebesgue measure on R+. Thus, formally applying Itô’s
formula and the SPDE (1.1) to the composition hak

(u(t)) = |uk,a(t)|2 we have

d
∥∥uk,a(t)

∥∥2
2 = − 2

〈∇uk,a(t),A∇uk,a(t)
〉
dt + 2

〈
gi(u), uk,a(t)

〉
dwi

t

+
[∫

Rn

{∣∣g(
u(t)

)∣∣2 + 2uk,a(t)f
(
u(t)

)}
1{uk,a(t)>0} dx

]
dt.

(2.7)

The validity of the above application of Itô’s formula can be fully justified; see
Remark 2.3 below.

We now apply the uniform ellipticity assumption to the first term on the right-
hand side of (2.7). For the third term, we observe that if uk,a > 0, then the in-
equalities 1 ≤ a ≤ 2kuk−1,a and 0 < u ≤ uk−1,a +a ≤ (1 + 2k)uk−1,a hold. By the
linear growth condition (2) on f and g, the fact uk,a ≤ uk−1,a and the assumption
‖K‖∞ ≤ 1, this term is bounded by Ck‖uk−1,a‖2

2 dt for some C. Now, integrating
(2.7) from t0 to t with t0 ∈ Ik−1 \ Ik and t ∈ Ik gives

∥∥uk,a(t)
∥∥2

2 + λ

∫ t

t0

∥∥∇uk,a(s)
∥∥2

2 ds

≤ ∥∥uk,a(t0)
∥∥2

2 + CkUk−1,a +
∫ t

t0

〈
gi

(
u(s)

)
, uk,a(s)

〉
dwi

s.
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Taking the supremum over t ∈ Ik , we have for some constant C depending only on
n, λ and �,

sup
t∈Ik

∥∥uk,a(t)
∥∥2

2 +
∫ 2

t0

∥∥∇uk,a(s)
∥∥2

2 ds

≤ C
∥∥uk,a(t0)

∥∥2
2 + CkUk−1,a + CX∗

k−1,a

(2.8)

with X∗
k−1,a as defined in (2.2). Noting the fact that uk,a ≤ uk−1,a , we can find a

t0 ∈ Ik−1 \ Ik by the mean value theorem such that

(2.9)
∥∥uk,a(t0)

∥∥2
2 = 1

|Ik−1 \ Ik|
∫
Ik−1\Ik

∥∥uk,a(t)
∥∥2

2 dt ≤ 2kT −1Uk−1,a.

Combining (2.6), (2.8) and (2.9), we obtain the desired iterative inequality (2.1).
�

REMARK 2.2. In the cases n = 1 or 2, the proof in this section shows that for
any μ ∈ (0,1/3), there is a constant C = C(n,λ,�,T ,μ) such that

Uk,a ≤ Ck

a2μ

(
Uk−1,a + X∗

k−1,a

)
U

μ
k−1,a.

This is sufficient for estimating the tail probability of ‖u‖∞ in the next section, for
all we need is that the factor Uk−1,a carries an exponent strictly greater than 0.

REMARK 2.3. For the justification of the Itô expansion in (2.7), we use a
sequence ϕε of smooth approximations of the function hr(u) = |(u − r)+|2. In the
definition (1.3) of a solution, we use an approximation of the identity ζδ as the test
function. The desired expansion is obtained by letting δ → 0 and then ε → 0. The
details of these passing to the limit are very similar to those in Krylov [10].

3. Estimate of the tail probability. In the context of the stochastic De Giorgi
iteration, controlling the size of ‖u+‖∞,[T ,2T ]×Rn means estimating the decay of
the tail probability P{‖u‖∞,[T ,2T ]×Rn ≥ a}. In order to use the iterative inequality
in Propostion 2.1 for this purpose, we need to show that X∗

k−1,a is comparable with
Uk−1,a . This is accomplished in Lemma 3.2 below, whose proof depends on the
following simple result from stochastic analysis (see Norris [12], page 123).

LEMMA 3.1. Suppose that {Mt } is a continuous local martingale. Then we
have

P

{
sup

0≤s≤t≤S

(Mt − Ms) ≥ a, 〈M〉S ≤ b
}

≤ 2e−a2/4b.
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PROOF. According to the Dambis, Dubins–Schwarz theorem (see Revuz and
Yor [15], Chapter V, Section 1, Theorem 1.6), there is a Brownian motion B

such that Mt − M0 = B〈M〉t , hence the event in the statement implies the event
{sup0≤t≤b Bt ≥ a/2} or {inf0≤t≤b Bt ≤ −a/2}. Since sup0≤t≤b Bt has the same
distribution as

√
b|B1| by the reflection principle, we obtain the inequality from

the explicit density function of a standard Gaussian random variable. �

Consider the continuous martingale

Xt :=
∫ t

0

〈
gi

(
u(s)

)
, uk+1,a(s)

〉
dwi

s

and recall from (2.2) that X∗
k,a = sup(1−2−k−1)T ≤s≤t≤2T (Xt − Xs).

LEMMA 3.2. Assume that ‖K‖∞ ≤ 1. There exists a constant C = C(n,λ,�)

such that for all positive α and β ,

P
{
X∗

k,a ≥ αβ,Uk,a ≤ β
} ≤ Ce−α2/Ck

.

PROOF. Let Tk = (1 − 2−k−1)T for simplicity. If we can show that there is a
constant C such that

(3.1) 〈X〉2T − 〈X〉Tk
≤ CkU2

k,a,

then{
X∗

k,a ≥ αβ,Uk,a ≤ β
} ⊂

{
sup

Tk≤s≤t≤2T

(Xt − Xs) ≥ αβ, 〈X〉2T − 〈X〉Tk
≤ Ckβ2

}

and the desired estimate follows immediately from Lemma 3.1. To prove (3.1), we
start with

〈X〉2T − 〈X〉Tk
= ∑

i∈N

∫
Ik

〈
gi(u), uk+1,a

〉2
ds,

which follows from the definition of Xt . We observe that if uk+1,a > 0, then the
inequalities 1 ≤ a ≤ 2k+1uk,a and 0 < u ≤ uk,a + a ≤ (1 + 2k+1)uk,a hold. By
Minkowski’s inequality (integral form), the linear growth condition (2) on f and
g and the fact uk+1,a ≤ uk,a we have

∑
i∈N

(∫
Rn

gi(u)uk+1,a dx

)2
≤

(∫
Rn

|g(u)|uk+1,a dx

)2
≤ Ck

(∫
Rn

u2
k,a dx

)2
.

Integrating over the interval Ik , we obtain the desired inequality (3.1). �

Armed with the iterative inequality (2.1) and the comparison result Lemma 3.2,
we are in a position to control the size of ‖u+‖∞,[T ,2T ]×Rn by estimating its tail
probability. Without loss of generality, we will only work with the case T = 1. It
is important that the constant M0 in the following proposition is independent of a.
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PROPOSITION 3.3. Assume that ‖K‖∞ ≤ 1. There exists a constant M0 =
M0(n,λ,�) such that for all a ≥ 1 and M > M0,

P
{∥∥u+∥∥∞,[1,2]×Rn > a,M

∥∥u+∥∥
4,2,[0,2] ≤ a

} ≤ e−Mδ

.

Here, δ = 1/(n + 1) when n ≥ 3 and δ can be any value from (0,1/3) when n = 1
or 2.

PROOF. As in the classical theory, we start with the observation that
{‖u+‖∞,[1,2]×Rn > a} ⊂ Gc

a , where Ga = {limk→∞ Uk,a = 0}. Consider the events
Ek = {Uk,a ≤ (a/M)2γ k} for a constant γ < 1 to be determined later. Since
‖u‖4,2,[0,2] = √

U0,a , it suffices to prove

P
{
Gc

a ∩ E0
} ≤ e−Mδ

.

It is clear that

Gc
a ⊂ ⋃

k≥0

Ec
k ⊂ Ec

0 ∪
[⋃
k≥1

(
Ec

k ∩ Ek−1
)]

,

which implies

(3.2) P
{
Gc

a ∩ E0
} ≤ ∑

k≥1

P
{
Ec

k ∩ Ek−1
}
.

We estimate the probability P{Ec
k ∩ Ek−1}. We take α = (2C)k/2Mδ with the C

from Lemma 3.2, and apply the lemma with this α and β = a2γ k−1/M2. If
X∗

k−1,a ≤ αβ and Uk−1,a ≤ β , then by the iterative inequality (2.1) in Proposi-
tion 2.1 we have (after canceling a2δ!)

Uk,a ≤ Ck
1

a2δ
(β + αβ)βδ = (C1γ

δ)k(1 + (2C)k/2Mδ)

γ 1+δM2δ
· γβ ≤ γβ.

The last inequality holds if we choose γ sufficiently small such that (C1γ
δ)k(1 +

(2C)k/2Mδ) ≤ Mδ for all k ≥ 1 and M ≥ 1 and then M sufficiently large such that
γ 1+δMδ ≥ 1.

Now the above inequality implies that Ec
k ∩Ek−1 ⊂ {X∗

k−1,a > αβ,Uk−1,a ≤ β}.
Its probability is estimated by Lemma 3.2 and we have

P
{
Ec

k ∩ Ek−1
} ≤ Ce−α2/Ck = Ce−2kM2δ

.

Using this in (3.2) we obtain, again for sufficiently large M ,

P
{
Gc

a ∩ Ec
0
} ≤ C

∞∑
k=1

e−2kM2δ ≤ e−Mδ

.

This completes the proof of Proposition 3.3. �
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4. Moment estimate and Hölder continuity. In this section, we first prove
our main result, namely the moment estimate of the solution of the SPDE (1.1)
subject to the conditions stated in Section 1. Then we will prove the almost surely
Hölder continuity of the solution. We restate the moment estimate here.

THEOREM 4.1. Let u be a (stochastically strong) solution of the SPDE (1.1)
with (nonrandom) initial data u(0) = u0. Then for every p > 0 there is a constant
C = C(n,λ,�,T ,p) such that

E

∫ 2T

0

∥∥u(t)
∥∥p

2 dt +E‖u‖p
∞,[T ,2T ]×Rn ≤ C

(‖u0‖2 + ‖K‖2 + ‖K‖∞
)p

.

PROOF. By scaling it suffices to consider the case T = 1, ‖K‖2 +‖K‖∞ ≤ 1,
and ‖u0‖2 ≤ 1. We need to show that there exists a constant C (depending on p of
course) such that

(4.1) E

∫ 2

0

∥∥u(t)
∥∥p

2 dt ≤ C and E‖u‖p
∞,[1,2]×Rn ≤ C.

As P is a probability measure, we may assume p ≥ 4. We start with the first in-
equality. Let ϕ(t) = ‖u(t)‖2

2 + 1. By Itô’s formula,

(4.2) dϕ(t) = ϕ(t)
(
F(t) dt + dGt

)
,

where

F(t) = −〈A∇u,∇u〉 + 〈f (u),u〉 + ‖g(u)‖2
2

‖u‖2
2 + 1

and Gt =
∫ t

0

〈gi(u), u〉
‖u‖2

2 + 1
dwi

s.

The solution of SDE (4.2) is explicitly given by

ϕ(t) = ϕ(0) exp
[∫ t

0
F(s) ds + Gt − 1

2
〈G〉t

]
.

By the assumptions, we have 〈G〉t ≤ 2(� + 1)2 for all t ≤ 2, therefore, Novikov’s
condition ensures that

exp
[
pGt − p2

2
〈G〉t

]

is a martingale for any p > 0 and 0 ≤ t ≤ 2. This plus the fact F(t) ≤ 4(� + 1)2

give

Eϕp(t) = ϕ(0)pE

[
expp

(∫ t

0
F(s) ds + Gt − 1

2
〈G〉t

)]
≤ Cϕ(0)p.

This implies the first inequality in (4.1). Next, we show the second inequality in
(4.1). Let

X = ‖u‖∞,[1,2]×Rn and Y =
(∫ 2

0
‖u‖4

2 dt

)1/4
.
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By considering u and −u, we have from Proposition 3.3 with δ defined there,

(4.3) P

{
X > a,Y ≤ a

M

}
≤ 2e−Mδ

for all a ≥ 1 and M ≥ M0, hence

P{X > a,Y ≤ √
a} ≤ 2e−aδ/2

for a ≥ M2
0 , assuming that M0 ≥ 1. By the first inequality in (4.1), we have

EY 2p ≤ 2(p−2)/2
E

∫ 2

0

∥∥u(t)
∥∥2p

2 dt ≤ C.

Hence,

E‖u‖p
∞,[1,2]×Rn = p

∫ ∞
0

P(X > a)ap−1 da

≤ M
2p
0 + p

∫ ∞
M2

0

P(Y >
√

a)ap−1 da

+ p

∫ ∞
M2

0

P{X > a,Y ≤ √
a}ap−1 da.

The second term is bounded by EY 2p , and the third term is finite by (4.3). This
proves the second inequality in (4.1). �

We can now prove the almost sure Hölder continuity result, which we state again
for easy reference.

THEOREM 4.2. Let u be a solution of the SPDE

∂tu = div(A∇u) + f (t, x, u) + gi(t, x, u)ẇi
t

whose coefficients satisfy the conditions stated in Section 1. Then there exists a
positive exponent α = α(n,λ,�) such that almost surely u ∈ Cα([T ,2T ]×R

n) for
all T > 0. Furthermore, for every p > 0, there is a constant C = C(n,λ,�,T ,p)

such that

E‖u‖p
Cα([T ,2T ]×Rn) ≤ C

(‖u0‖L2(Rn) + ‖K‖L2(Rn) + ‖K‖L∞(Rn)

)p
.

PROOF. By scaling it suffices to assume T = 1, ‖u0‖2 ≤ 1 and ‖K‖∞ +
‖K‖2 ≤ 1. Following a suggestion of Professor Nicolai Krylov and the approaches
used in Debussche, De Moor and Hofmanova [6], we consider the solution v of an
SPDE with the same stochastic perturbation but simpler diffusion coefficients:

dv = �v dt + gi(u) dwi
t , v

(
2−1) = 0.
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The function φ = u − v satisfies

(4.4) ∂tφ = div(A∇φ) + f (φ + v) + div(A∇v) − �v on
[
2−1,2

] ×R
n.

From the linear growth assumption (1) for g and Proposition 4.1, we have

E

∫ 2

2−1

∥∥g(u)
∥∥p
p dt ≤ C.

According to Krylov’s W 1,p-theory (see Krylov [8]) v ∈ Cα1([2−1,2] × R
n) for

some exponent α1. Furthermore, we have the estimates

(4.5) E‖v‖p

Cα1 ([2−1,2]×Rn)
≤ E

∥∥g(u)
∥∥
Lp([2−1,2]×Rn) ≤ C

and

(4.6) E

∫ 2

1/2

∥∥D2v
∥∥p

W−1,p dt ≤ Cp.

Since (4.4) does not have a stochastic perturbation, the usual regularity theory
(see Lieberman [11], Section VI.13, pages 143–149) applies and we have φ ∈
Cα2([1,2] ×R

n) for some small exponent α2 ∈ (0,1) and

‖φ‖Cα2 ([1,2]×Rn)

≤ C
(‖φ‖∞,[2−1,2]×Rn + ∥∥D2v

∥∥
Lp([1,2],W−1,p)

)
≤ C

(‖u‖∞,[2−1,2]×Rn + ‖v‖∞,[2−1,2]×Rn + ∥∥D2v
∥∥
Lp([2−1,2],W−1,p)

)
.

Using the estimates (4.5) and (4.6), we conclude that E‖φ‖p

Cα2 ([1,2]×Rn) ≤ C.
From this inequality, (4.5) and u = φ + v, we obtain the desired inequality
E‖u‖p

Cα[1,2]×Rn ≤ C with α = min{α1, α2}. �
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