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RECURRENCE AND TRANSIENCE FOR THE FROG MODEL
ON TREES
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The frog model is a growing system of random walks where a particle is
added whenever a new site is visited. A longstanding open question is how
often the root is visited on the infinite d-ary tree. We prove the model under-
goes a phase transition, finding it recurrent for d = 2 and transient for d ≥ 5.
Simulations suggest strong recurrence for d = 2, weak recurrence for d = 3,
and transience for d ≥ 4. Additionally, we prove a 0–1 law for all d-ary trees,
and we exhibit a graph on which a 0–1 law does not hold.

To prove recurrence when d = 2, we construct a recursive distributional
equation for the number of visits to the root in a smaller process and show the
unique solution must be infinity a.s. The proof of transience when d = 5 relies
on computer calculations for the transition probabilities of a large Markov
chain. We also include the proof for d ≥ 6, which uses similar techniques but
does not require computer assistance.

1. Introduction. The frog model is a system of interacting random walks on
a given rooted graph. Initially, the graph contains one particle at the root and some
configuration of sleeping particles on its vertices; unless otherwise stated, we will
assume an initial condition of one sleeping particle per vertex. The particle at the
root starts out awake and performs a simple nearest-neighbor random walk in dis-
crete time. Whenever a vertex with sleeping particles is first visited, all the particles
at the site wake up and begin their own independent random walks, waking parti-
cles as they visit them. A formal definition of the frog model is in [2], and a nice
survey of variations is in [24]. Traditionally, particles are referred to as frogs, a
practice we will continue here.

One of the most basic questions about the frog model on an infinite graph is
whether it is recurrent or transient. Telcs and Wormald determined that the frog
model was recurrent on Z

d for any d , the first published result on the frog model
[29]. On an infinite d-ary tree, this question is more difficult. It was first posed
in [3]. It was asked again in [24] and in [11], which pointed out that the answer
was unknown even on a binary tree.
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Our main result in this paper is that the frog model is recurrent on the binary
tree but transient on the d-ary tree for d ≥ 5, demonstrating a phase transition not
found on Z

d . A branching random walk martingale argument proves transience
when d ≥ 6. Pushing this result down to d = 5 is more complicated and requires
computer assistance. Our proof of recurrence on the binary tree uses a bootstrap-
ping argument in which we iteratively assume that the number of visits to the root
is stochastically large and then prove it even larger; the argument seems novel
to us.

Background on the frog model. It is common to use the frog model as a model
for the spread of rumors or infections, thinking of awakened frogs as informed
or infected agents. See [8] for an overview and [18] for more tailored discussion.
Another perspective on the frog model is as a conservative lattice gas model with
the reaction A + B → 2A. Here, A represents an active particle and B an inert
particle. Active particles disperse throughout the graph, igniting any inert particles
they contact. Several papers taking this perspective study a process identical to the
frog model except that particles move in continuous rather than discrete time [5, 7,
25]. This process and its variants have also seen much study by physicists; see the
references in [7] and [5]. Our results in this paper depend only on the paths of the
frogs and not on the timing of their jumps, and so they apply equally well to this
continuous-time process.

In the larger mathematical context, the frog model is part of a family of self-
interacting random walks which have proven quite difficult to analyze. ([22]
provides a nice survey of this family.) In recent years, progress on a few self-
interacting random walks has generated considerable interest. One of these close
relatives is activated random walk, which is touched on in [16] and studied in depth
in [9, 26, 28]. Activated random walk can be described as a frog model where frogs
fall back asleep at some given rate. Another related process is excited random walk
[4]. This walk has a bias the first time it visits a site but is unbiased each subsequent
time that it returns. The frog model can be thought of as an “excited” branching
process, which branches at a site v only the first time the process visits v.

Initial interest in the frog model was on the graph Z
d . For any d , it was shown

that the process is recurrent [29] and that the set of visited vertices grows linearly
and when rescaled converges to a limiting shape [2]. A similar shape theorem was
proven independently in [25] for the process with continuous-time particles. Both
shape theorems rely on the subadditive ergodic theorem. A technical difficulty
that arises is proving that the expected time to wake a given frog is finite. Thus,
measuring recurrence on a given graph is an initial step in understanding the long-
time behavior of the model. Transience and recurrence continue to attract attention.
Also on Z

d , [23] establishes that the frog model undergoes a phase transition from
transience to recurrence when the density of frogs decays proportional to distance
to the origin. Frog models in which frogs move with a bias in one direction are
studied on Z in [11] and [12] and on Z

d in [10] and [17].
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Our main interest in this paper is in recurrence and transience on Td , the infinite
rooted d-ary tree. We denote the root by ∅. We also study aspects of the process
on T

hom
d , the homogeneous degree (d +1)-tree, by which we mean the infinite tree

where every vertex has degree d + 1.
Some attention has already been given to a relative of our model on T

hom
d in

which awake frogs die after independently taking a geometrically distributed num-
ber of jumps. In [3] and [19], the authors prove a phase transition for survival. De-
pending on the parameter, there will either be frogs alive at all times with positive
probability, or the process will die out almost surely. We study the model in which
frogs jump perpetually—a fundamentally different problem, since it switches the
emphasis from the local to the global behavior of the model.

Statement and discussion of results. For a given rooted graph, we call a re-
alization of the model recurrent if the root is visited infinitely many times and
transient if it is visited finitely often. Our main theorem covers the d-ary tree for
all but two degrees.

THEOREM 1. (i) The frog model on T2 is almost surely recurrent.
(ii) The frog model on Td for d ≥ 5 is almost surely transient.

We also make a conjecture on these two unsolved degrees based on fairly con-
vincing evidence from simulations, presented in Section 5.

CONJECTURE 2. The frog model on Td is recurrent a.s. for d = 3 and tran-
sient a.s. for d = 4.

The simulations suggest the possibility of a three-phase transition as d in-
creases. We call the model strongly recurrent if the probability the root is occupied
is bounded away from zero for all time. We call it weakly recurrent if it is recur-
rent with positive probability, but the probability that the root is occupied decays
to zero.

OPEN QUESTION 3. Is the frog model strongly recurrent on T2 but weakly
recurrent on T3?

Such a transition would give information about the time to wake all children of
the root. For instance, strong recurrence on T2 would imply that this time has finite
expectation and an exponential tail. Should T3 exhibit a weak recurrence phase,
then a tantalizing problem would be to estimate the decay of the occupation time
at the root.

The recurrence of the frog model on the binary tree established in Theorem 1(i)
is the flagship result of this article. The proof goes by coupling the frog model
with a process in which the root is visited less often. Let V be the number of visits
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to the root in this restricted model. The payoff is (2), a recursive distributional
equation (RDE; see [1]) relating V and two independent copies of itself. We find
that V ∼ δ∞ is the unique solution. Thus, the original model is recurrent.

The proof that V ∼ δ∞ is the unique solution of the RDE uses a seemingly
novel bootstrapping argument. We assume that V dominates a Poisson and show
that in fact, V dominates a Poisson with slightly larger mean. It follows by re-
peating this argument that V dominates any Poisson. One obstacle to making this
work is that using the typical definition of stochastic dominance, we cannot es-
tablish a base case for the argument. To get around this, we instead use a weaker
stochastic ordering defined in terms of generating functions, under which the ar-
gument holds even when starting with the trivial base case of V dominating the
distribution Poi(0). The situation is different for the frog model with initial condi-
tions of Poi(μ) frogs per site. In this setting, we use the usual notion of stochastic
dominance and a related bootstrapping argument to prove a phase transition from
transience to recurrence on any d-ary tree as μ increases [14].

We believe that these ideas are more widely applicable. Aldous and Bandyopad-
hyay study RDEs in general in [1]. Another example of analyzing an RDE through
an induced relation of generating functions can be found in [20]. The RDE (2) in
this paper is specific to our setting and much more complicated than the RDEs an-
alyzed in either of these sources. Still, we think that our argument can be applied to
other RDEs, including ones derived from similar interacting particle systems like
activated random walk and the frog model with death.

For the transience part of Theorem 1, the idea is to dominate the frog model by
a branching process. At the beginning of Section 3, we show in a few lines that a
doubling branching random walk is transient on the 14-ary tree. A simple refine-
ment in Proposition 18 improves this to d ≥ 6. The case d = 5 uses a branching
random walk with 27 particle types. This is significantly more complicated, and
computing the transition probabilities requires computer assistance. Conceptually
our approach could extend to a computer-assisted proof for transience when d = 4,
but the demands of this theoretical program seem well beyond current processing
power.

We present two other results besides Theorem 1. The first is a 0–1 law for tran-
sience and recurrence of the frog model on a d-ary tree that applies under more
general initial conditions than one frog per site. For a given distribution ν on the
nonnegative integers, we consider the frog model on a d-ary tree with the number
of sleeping frogs on each vertex other than the root drawn independently from ν.
The root initially contains one frog, which begins its life awake. Recall that when a
site is visited for the first time, all sleeping frogs at that site are awoken. We refer to
this as the frog model with i.i.d.-ν initial conditions. When ν = δ1, this is the usual
one-per-site frog model. This theorem complements the 0–1 law for recurrence
proven in [11] in a frog model on Z with drift. It also plays an important role in
[14], where we use it to show that the probability of recurrence for the frog model
on a d-ary tree with i.i.d.-Poi(μ) initial conditions jumps abruptly from 0 to 1 as
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μ increases. More recently, [17] proved a 0–1 law for the frog model that applies
in a wide range of circumstances. For instance, it establishes that recurrence holds
either with probability 0 or 1 for the frog model on any transitive graph with i.i.d.
initial conditions. This would apply immediately here, except that we work on Td

rather than on T
hom
d .

THEOREM 4. The frog model on Td for any d and any i.i.d. initial conditions
is recurrent with probability 0 or 1.

Our final related result is that in contrast to the 0–1 law on Td , there is a graph
on which the frog model is recurrent with probability strictly between 0 and 1.

THEOREM 5. Let G be the graph formed by merging the root of T6 and the
origin of Z into one vertex. The frog model on G has probability 0 < p < 1 of
being recurrent.

We remark that [23] exhibits a frog model without a 0–1 law on Z
d . In their

example, the initial distribution of frogs decays in the distance from the origin.
A few of our proofs would be simplified by changing the setting from d-ary to

homogeneous trees. However, we are interested in applying these results to finite
trees, and the infinite d-ary tree is more natural to work with from that perspective.
In any event, the techniques underlying our theorems can all be cleanly modified
to prove similar statements about the homogeneous tree.

2. Recurrence for the binary tree. An outline of our proof is as follows. We
start by a defining a process that we call the self-similar frog model. A conse-
quence of Proposition 7 is that the number of visits to the root in this model is
stochastically smaller than in the original one. Thus, it suffices to prove the self-
similar frog model recurrent. To do this, we define the random variable V to be the
number of returns to the root and set f (x) = ExV , the generating function of V .
The self-similarity of our model established in Proposition 6 allows us to show
in Proposition 9 that the generating function satisfies the relation f = Af for an
explicit operator A. In Lemma 10, we show that A is monotone on a large class of
functions. Combining this with f ≤ 1 on [0,1], we get

f = Anf ≤ An1,

and in Lemma 14, we prove that this converges to 0 as n → ∞. This implies that
f ≡ 0 and V = ∞ a.s.

This proof can be interpreted as an argument about stochastic orders. One can
define a stochastic order by saying that if X and Y are nonnegative integer-valued
random variables and EtX ≥ EtY for t ∈ (0,1), then X is smaller in the probability
generating function order than Y . This order and an equivalent one called the
Laplace transform order are discussed in [27], Section 5.A. From this perspective,
each application of the operator A shows that the distribution of V is slightly larger
in this stochastic order.
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2.1. The nonbacktracking frog model. We will define the nonbacktracking
frog model, in which frogs move as random nonbacktracking walks stopped at
the root. More formally, we define the random nonbacktracking walk (Xn,n ≥ 0)

as a process taking values in Td , with X0 = x0. On its first step, the walk moves to
a uniformly random neighbor of x0. At every subsequent step, it chooses uniformly
from its neighbors other than the one from which it arrived. We emphasize that a
nonbacktracking walk can move toward the root of the tree, though once it moves
away from the root it will continue doing so. Let T = inf{n ≥ 1 : Xn = ∅}, taking
this to be ∞ if the walk never visits ∅. Define the nonbacktracking frog model by
changing the frog’s paths in the definition of the frog model from simple random
walks to the stopped nonbacktracking walks given by (Xn∧T , n ≥ 0). Notice that
the initial frog is never stopped in this model, and only one child of the root is ever
visited. Call this child ∅

′.

2.2. The self-similar frog model. We make one further alteration to the non-
backtracking frog model. Let Td(v) denote the subtree of Td consisting of v and
its descendants. Our goal is to make the process viewed on any Td(v) behave iden-
tically (in distribution) to the original process. To achieve this, we cap the number
of frogs entering Td(v) at one. More formally, the self-similar frog model is the
nonbacktracking frog model with an additional restriction for each nonroot vertex
v′ with parent v:

• Suppose that v′ is visited for the first time, necessarily by one or more frogs
moving from v to v′. Arbitrarily choose all but one of these frogs and stop them
at v′.

• At all subsequent times, if a frog moves from v to v′, stop its path as well.

The result of this rule is that the number of frogs entering any subtree Td(v′) is no
more than one.

We now show that in the self-similar frog model, the number of frogs emerging
from subtrees activated by a frog is identically distributed for all subtrees. Let
V = V∅′ be the number of visits to the root in the self-similar frog model. Note that
only frogs initially sleeping in Td(∅′) have a chance of visiting the root. Suppose
that vertex v is visited by a frog. Conditional on this, let v′ be the child of v that
the waking frog moves to next, and define Vv′ as the number of visits to v from
frogs in Td(v′), the subtree rooted at v′.

PROPOSITION 6. The distribution of Vv′ conditional on some frog visiting v

and moving next to v′ is equal to the (unconditioned) distribution of V .

PROOF. Let x be the frog that wakes vertex v and moves from there to v′.
Besides x, all frogs that start outside of Td(v′) get stopped when they try to enter
this subtree. Thus, from the time that v′ is woken on, if we consider the model
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FIG. 1. Conditional on v being visited, V and Vv′ are identically distributed in the self-similar
model.

restricted to {v} ∪ Td(v′), it looks identical to the original self-similar frog model
(see Figure 1).

To turn this into a precise statement, consider the model from the time x visits
v on. Ignore the frog initially at v. Freeze frogs when they visit v from Td(v′).
Since no frogs ever enter Td(v′), the process depends only on the frogs initially
in Td(v′) and the initial frog x. Relabeling vertices {v} ∪ Td(v′) as {∅} ∪ Td(∅′)
in the obvious way then produces a process identically distributed as the original
self-similar frog model. Thus, V and Vv′ are functionals of identically distributed
processes. �

2.3. Coupling the models. Suppose we wanted to couple a simple and a non-
backtracking random walk starting from a vertex v on the homogeneous tree Thom

d .
Almost surely, there is a unique geodesic from v to infinity that intersects the walk
infinitely many times, obtained by trimming away the backtracking portions from
the walk. By symmetry, this geodesic is a uniformly random nonbacktracking walk
on T

hom
d , coupled so that its path is a subset of the simple random walk’s path. If

we were working on T
hom
d and not Td , we could couple the nonbacktracking and

usual frog models as desired by coupling each frog in this way. To address the
asymmetry of Td at its root, our coupling of nonbacktracking and normal frogs on
Td will involve an intermediate coupling with a random walk on T

hom
d .

PROPOSITION 7. There is a coupling of the nonbacktracking, the self-similar
and the usual frog models so that the path of every nonbacktracking (self-similar)
frog is a subset of the path of the corresponding frog in the usual model.

PROOF. First, we couple a nonbacktracking walk to a simple random walk
not on Td , but on T

hom
d . Let (Yn, n ≥ 0) be a simple random walk on T

hom
d starting

at x0. This random walk diverges almost surely to infinity, and there is a unique
geodesic from x0 to the path’s limit. Let (Xn,n ≥ 0) be the path of this geodesic.
By the symmetry of T

hom
d , the process (Xn) is a random nonbacktracking walk

from x0.
Next, we consider Td as a subset of T

hom
d and define a new random walk

(Zn,n ≥ 0) by modifying (Yn) as follows. First, delete all excursions of (Yn) away
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FIG. 2. V is the total number of visits to ∅ in the self-similar process, Vv and Vu are the number
of visits to ∅

′ from frogs originally in T2(v) and T2(u), respectively. In the self-similar model, V,Vv

and Vu | {u is visited} are identically distributed.

from Td . This might leave the walk sitting at the root for consecutive steps; if so,
we replace all consecutive occurrences of the root by a single one. This results in
either an infinite path on Td or a finite path on Td truncated at a visit to the root. In
the second case, we extend the path by tacking on an independent simple random
walk to its end. It follows from the independence of excursions in simple random
walk that the resulting process (Zn) is a simple random walk on Td .

Let T be the first time past 0 that (Xn) hits the root, or ∞ if it never does. By
our construction, {X0, . . . ,XT } ⊆ {Zn,n ≥ 0}. Thus, we have coupled the stopped
nonbacktracking walks and simple random walks on Td . Coupling each frog in the
nonbacktracking frog model to the corresponding frog in the usual model gives the
desired coupling between the nonbacktracking and usual frog models. As the self-
similar model is obtained by stopping frogs in the nonbacktracking model, we
obtain a coupling for it as well. �

2.4. Generating function recursion. We now apply the self-similarity de-
scribed in Proposition 6 to obtain a relation satisfied by the generating function
for the number of visits to the root in the self-similar model.

DEFINITION 8. Let V be the number of visits to the root in the self-similar
frog model on T2. Define f : [0,1] → [0,1] by f (x) = ExV with the convention
that if V = ∞ a.s. then f (1) = 0.

PROPOSITION 9. Define A, an operator on functions on [0,1], by

Ag(x) = x + 2

3
g

(
x + 1

2

)2
+ x + 1

3
g

(
x

2

)(
1 − g

(
x + 1

2

))
.(1)

The generating function f satisfies f = Af .

PROOF. If P[V = ∞] = 1, then f ≡ 0. This is easily checked to be a fixed
point of A. So, for the remainder of the argument suppose that P[V = ∞] < 1.

The frog at the root in the self-similar model follows a nonbacktracking path and
visits one of its children and then one of this child’s children; call these vertices
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∅
′ and v, respectively. We label the yet to be visited child u (see Figure 2). Define

Vv and Vu to be the number of frogs which visit ∅′ that were originally sleeping
in T2(v) and T2(u), respectively.

Proposition 6 guarantees that, since v has been visited, the random variable Vv is
distributed identically to V . Conditionally on u being visited, the random variable
Vu is also distributed identically to V . In fact, because frogs outside of T2(u)

affect T2(u) only by determining whether or not u is visited, we can express Vu

as Vu = 1{u is visited}V ′, where V ′ is distributed as V and is independent of Vv .
This yields a description of V in terms of a pair of independent copies of itself:

V = 1
{
frog at ∅′ visits ∅

}
︸ ︷︷ ︸

term 1

+1{u is visited}Bin
(
V ′, 1

2

)
︸ ︷︷ ︸

term 2

+Bin
(
Vv,

1

2

)
︸ ︷︷ ︸

term 3

.(2)

Term 1 accounts for a possible visit to ∅ by the frog started at ∅′. The conditional
binomial distributions in terms 2 and 3 arise because each frog that visits ∅′ from
u or v has a 1

2 chance of jumping back to ∅.
Despite the independence between Vv and V ′, the three terms are dependent.

For example, if term 1 is zero, then term 2 is more likely to be nonzero, since the
frog at ∅′ not visiting ∅ makes it more likely to visit u. We unearth the pairwise
independence of Vv and V ′ from (2) by conditioning on the following three disjoint
events (see Figure 3):

A. the frog starting at ∅′ visits u;
B . the frog at ∅′ does not visit u, and a frog returns to ∅

′ through v and visits u;
C. no frog ever visits u.

Event A occurs with probability 1/3. Given that k frogs return to ∅
′ through

v, the probability of C is (2/3)2−k . Since the number of frogs returning to ∅
′

through v is distributed identically to V , the probability of C is 2
3E(1

2)V , which we
call 2q/3. Event B then occurs with the remaining probability, which is 1 − 1/3 −
2q/3 = 2(1 − q)/3. Note that under our assumption P[V = ∞] < 1 it follows that
0 < q < 1.

Conditional on event A, B or C, the terms in (2) are independent. Indeed, condi-
tioning on whether u is visited makes terms 2 and 3 independent, and conditioning

FIG. 3. Outcomes that would result in events A, B and C, respectively. The path of the frog at ∅′
is red and the path of a frog from the subtree T(v) is blue.
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further on whether the frog at ∅′ visits u then makes term 1 independent of the
other two. Now, we describe the distributions of each term in (2) conditional on
events A, B and C. For a given random variable X, we use Bin(X,p) to denote
the random variable

∑X
i=1 Bi , where {Bi}i∈N are distributed as Bernoulli(p), inde-

pendent of each other and of X:

• Conditional on A, term 1 is 0 and terms 2 and 3 are distributed as independent
Bin(V ,1/2).

• Conditional on B , term 1 is Bernoulli(1/2), term 2 is Bin(V ,1/2), and term 3
is Bin(V ,1/2) conditional on being strictly less than V (since at least one frog
will visit u and not move to ∅).

• Conditional on C, term 1 is Bernoulli(1/2), term 2 is 0, and term 3 is
Bin(V ,1/2) conditional on being equal to V (since every frog counted by Vv

will return to ∅).

To summarize, let X′ and X be distributed as Bin(V ,1/2). Let Y be distributed as
Bin(V ,1/2) conditional on Bin(V ,1/2) < V . Let Z be distributed as Bin(V ,1/2)

conditional on Bin(V ,1/2) = V . Let I ∼ Bernoulli(1/2). Take all of these to be
independent. Conditioning on events A, B and C, equation (2) yields

V
d=

⎧⎪⎪⎨
⎪⎪⎩

X′ + X with probability 1/3,

I + X′ + Y with probability 2(1 − q)/3,

I + Z with probability 2q/3.

(3)

From this description of the distribution of V ,

(4)
ExV = 1

3
ExX′+X + 2(1 − q)

3
ExI+X′+Y + 2q

3
ExI+Z

= 1

3
ExX′

ExX + 2(1 − q)

3
ExI ExX′

ExY + 2q

3
ExI ExZ.

Recall that a Bernoulli(p) random variable has generating function px + 1 − p

and that a random sum of i.i.d. random variables,
∑N

1 Xi , has generating function
gN(gX1(x)), where gN and gX1 are the generating functions of N and X1. From
these facts,

ExI = x + 1

2
,

ExX′ = ExX = f

(
x + 1

2

)
.

The generating functions ExY and ExZ are a bit more complicated. The random
variable Y is distributed as X conditional on X < V . Using the basic formula for
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conditional probability,

P[Y = k] = P[X = k | X < V ] = P[X = k and X < V ]
P[X < V ]

= P[X = k] − P[X = V = k]
1 − q

= P[X = k] − 2−kP[V = k]
1 − q

.

Thus, the probability generating function of Y is

ExY = 1

1 − q

∞∑
k=0

xk(P[X = k] − 2−kP[v = k])

= 1

1 − q
E

[
xX −

(
x

2

)V ]
(5)

= 1

1 − q

(
f

(
x + 1

2

)
− f

(
x

2

))
.

In (5), we are making use of the general fact that
∑

(an − bn) = ∑
an − ∑

bn so
long as each sum is finite. Similarly,

P[Z = k] = P[X = k | X = V ] = 2−kP[V = k]
q

,

and so

ExZ = 1

q

∞∑
k=0

xk2−kP[V = k] = 1

q
f

(
x

2

)
.

Using all of these generating functions and (4)

f (x) = 1

3
ExX′

ExX + 2(1 − q)

3
ExI ExX′

ExY + 2q

3
ExI ExZ

= 1

3
f

(
x + 1

2

)2

+ 2(1 − q)

3

(
x + 1

2
f

(
x + 1

2

)
1

1 − q

(
f

(
x + 1

2

)
− f

(
x

2

)))

+ 2q

3

(
x + 1

2q
f

(
x

2

))

= x + 2

3
f

(
x + 1

2

)2
− x + 1

3
f

(
x + 1

2

)
f

(
x

2

)
+ x + 1

3
f

(
x

2

)
= Af (x),

which establishes our claim. �
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2.5. Proving recurrence. We have reduced the problem to understanding the
properties of the operator A defined in (1). In Lemma 10, we prove that A is mono-
tonic for functions belonging to the set S = {g : [0,1] → [0,1], nondecreasing}.
In Lemma 11, we show that A maps S into itself, so that we can apply Lemma 10
after applying A iteratively. Finally, we show in Lemmas 12 and 14 that An1 → 0.
Starting at the conclusion of Proposition 9 (that the generating function f is a fixed
point of A), we will then apply these results to show that f ≡ 0, thus proving that
the number of visits to the root in the self-similar frog model is a.s. infinite.

LEMMA 10. Let g,h ∈ S . If g ≤ h, then Ag ≤ Ah.

PROOF. For 0 ≤ t ≤ 1, define the interpolation between g and h by

it (x) = (1 − t) · g(x) + t · h(x).

Since Ai0 = Ag and Ai1 = Ah it suffices to prove that d
dt
Ait (x) ≥ 0. Fix x and

set a = it (
x+1

2 ) and b = it (
x
2 ) so that

Ait (x) = 2 + x

3
a2 + 1 + x

3
b(1 − a).

Define s(a, b) = Ait (x). The chain rule implies

d

dt
Ait (x) = ∂

∂a
s(a, b)

da

dt
+ ∂

∂b
s(a, b)

db

dt
.

To prove d
dt
Ait ≥ 0, it suffices to prove each term in the above formula is non-

negative:

• The assumption that g ≤ h implies that d
dt

it (x) = h(x) − g(x) ≥ 0 for all t

and x. In particular, this implies da
dt

, db
dt

≥ 0.
• First, we compute the partials

∂

∂a
s(a, b) = 2a

2 + x

3
− b

1 + x

3
and

∂

∂b
s(a, b) = (1 − a)

1 + x

3
.

As g and h are nondecreasing, it is also nondecreasing in x for any fixed t .
Hence, b ≤ a. Along with the bound a ≤ 1, this immediately implies both par-
tials are positive. �

LEMMA 11. If g ∈ S , then Ag ∈ S .

PROOF. All summands in (1) are nonnegative when g(x) ≤ 1, which implies
that Ag ≥ 0. By the previous lemma, Ag ≤ A1 ≤ 1. We can conclude then that
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0 ≤ Ag ≤ 1. To see that Ag is nondecreasing, suppose that x ≤ y, and let a =
g(

y+1
2 ) − g(x+1

2 ). Then we have

Ag(y) ≥ x + 2

3
g

(
x + 1

2

)
g

(
y + 1

2

)
+ x + 1

3
g

(
x

2

)(
1 − g

(
y + 1

2

))

= Ag(x) +
(

x + 2

3
g

(
x + 1

2

)
− x + 1

3
g

(
x

2

))
a ≥ Ag(x). �

We now analyze the behavior of A on the family of generating functions for
Poisson random variables. Recall that the generating function of Poi(a) is ea(x−1).

LEMMA 12. Define ga(x) = ea(x−1) for all a ≥ 0. For all x ∈ [0,1],
Aga(x) ≤ ga+ca (x),

where

ca =

⎧⎪⎪⎨
⎪⎪⎩

1

3
e−2 0 ≤ a ≤ 4,

1

3
e−a/2 a ≥ 4.

(6)

PROOF. Applying the operator A, we have

Aga(x) = x + 2

3
ea(x−1) + x + 1

3
eax/2−a(

1 − ea(x−1)/2)
= ga(x)ra/2(x),

(7)

where

rb(x) = 2 + x

3
+ 1 + x

3

(
e−bx − e−b)

.

Note that ga(x)gb(x) = ga+b(x). It thus suffices to establish

CLAIM. For x ∈ [0,1], we have rb(x) ≤ gc2b
(x).

PROOF. We drop subscripts and let r(x) = rb(x) and c = c2b. Calculus and a
little algebra show that

r ′(x) = 1

3

(
1 − e−b + e−bx(−bx − b + 1)

)
and

r ′′(x) = 1

3
e−bx(

b2(x + 1) − 2b
)
.

We break the proof up into cases.
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• If b ≤ 1, then r(x) is concave down on [0,1] and the graph of r(x) lies below
its tangent line at x = 1. Thus,

r(x) ≤ 1 + r ′(1)(x − 1) = 1 + 1

3

[
1 − 2be−b]

(x − 1)

≤ exp
[

1

3

(
1 − 2be−b)

(x − 1)

]
.

It is easily verified that 1
3(1 − 2be−b) ≥ 1

3(1 − 2e−1) ≥ e−2/3 for b ≤ 1, and
hence that r(x) ≤ gc(x).

• If b ≥ 2, then r(x) is concave up on [0,1] and the graph of r(x) lies below the
secant line between (0, r(0)) and (1, r(1)). Thus, as r(1) = 1 we have

r(x) ≤ 1 + (
1 − r(0)

)
(x − 1) = 1 + 1

3
e−b(x − 1)

≤ exp
[

1

3
e−b(x − 1)

]
= gc(x).

• If 1 < b < 2, then there is a unique inflection point at I = 2
b
−1 where r switches

from concave down to concave up. Since r is concave up on [I,1], the graph of
r lies below the line connecting (1,1) to (I, r(I )). Since r is concave down on
[0, I ], to the left of I the graph of r lies below its tangent line at (I, r(I )). Thus,
the line segment from (I, r(I )) to (0, r(I )− r ′(I )I ) lies above r , as in Figure 4.

FIG. 4. Above the graph of y = r(x) sits the secant line from (I, r(I )) to (1,1) and the tangent
line to r(x) at x = I , both depicted in blue. Above them in red is the line y = 1 + (1 − r(I ) +
I r ′(I ))(x − 1).
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Therefore, r lies below the line between (1,1) and (0, r(I ) − r ′(I )I ), and

r(x) ≤ 1 + (
1 − r(I ) + Ir ′(I )

)
(x − 1).(8)

Next, we evaluate

1 − r(I ) + Ir ′(I ) = 1 − 1

3

(
2 +

(
4

b
− 1

)
eb−2 − e−b

)
(9)

and try to bound this expression from below for b ∈ (1,2). We proceed as cal-
culus students, looking for critical points in this interval. The derivative with
respect to b is

−1

3

((
4

b
− 1 − 4

b2

)
eb−2 + e−b

)
,

and a bit of algebra shows that the zeros of this expression are the solutions to

e2(b−1)

(
2 − b

b

)2
= 1.

Taking logarithms, we are interested in solutions to

b − 1 + log(2 − b) − logb = 0

on (1,2). On this interval, we can replace the logarithms with their power series
expansions around 1 to rewrite the left-hand side as

b − 1 + 2
(

(b − 1)2

2
+ (b − 1)4

4
+ (b − 1)6

6
+ · · ·

)
,

which is strictly positive for b ∈ (1,2). Thus, (9) has no critical values on (1,2),
and its minimum on [1,2] is e−2/3, occurring at b = 2. Applying this to (8), we
have shown that

r(x) ≤ 1 + 1

3
e−2(x − 1) ≤ exp

[
1

3
e−2(x − 1)

]
= gc(x).

This concludes the proof of both the claim and the lemma. � �

REMARK 13. Though the preceding lemma was an exercise in calculus, it
has a probabilistic interpretation. If we think of A as acting directly on distribu-
tions instead of on their generating functions, this lemma shows that the result
of applying A to Poi(a) is larger than Poi(a + ca) in the probability generating
function stochastic order described at the beginning of Section 2. The reason that
Aga simplifies so nicely in (7) is the Poisson thinning property, and the fact that
ga(x)gb(x) = ga+b(x) is just the statement that the sum of independent Poissons
is Poisson. There is a temptation to interpret Aga(x) = ga(x)ra/2(x) as saying that
the distribution resulting from applying A to Poi(a) is a convolution of Poi(a) and
another distribution, but ra/2(x) is not monotone in x and hence not the generating
function of a probability distribution.
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LEMMA 14. For x ∈ [0,1),

lim
n→∞Ang0(x) = 0.

PROOF. Define the sequence an by a0 = 0 and an+1 = an + can . By Lemmas
10, 11 and 12,

Ang0(x) ≤ gan(x) = ean(x−1).

We need to show that an → ∞ as n → ∞. Suppose this does not hold. Since
the sequence is increasing, an → a for some constant a. Looking back at (6),
this implies that can converges to a strictly positive limit. We can then choose n

sufficiently large that an + can > a, a contradiction. �

PROOF OF THEOREM 1(i). Let f be the generating function f (x) = ExV

with V the number of visits to the root in the self-similar model frog model on
the binary tree. By Proposition 9, we know that f satisfies the recursion relation
Af = f . Since f is a probability generating function, it satisfies f (x) ≤ 1 = g0(x)

for x ∈ [0,1]. Proposition 9 and Lemmas 10 and 11 imply f (x) ≤ Ang0(x) for
all n. By Lemma 14, f is identically zero on [0,1). Thus, the probability of any
finite number of returns to the root is 0. This implies there are a.s. infinitely many
returns to the root in the self-similar model. By the coupling in Proposition 7, each
return in the self-similar model corresponds to a distinct return in the frog model.
So, the frog model on the binary tree is a.s. recurrent. �

3. Transience for d ≥ 5. The nonbacktracking model was useful in the previ-
ous section because it was dominated by the usual frog model but was still recur-
rent. To prove transience, we instead seek processes that dominate the frog model
and can be proven transient. For example, consider a branching random walk on
Td whose particles split in two at every step. Let Cn be the nth Catalan number,
which is the number of Dyck paths of length 2n. By a union bound, the probability
that any of the 22n particles at time 2n are at the root is at most

22n

(
d

d + 1

)n(
1

d + 1

)n

Cn = O
((

16d/(d + 1)2)n)
.

When d ≥ 14, this quantity is summable, and hence the branching random walk
visits the root finitely many times. As this walk can be naturally coupled to the
frog model so that every awake frog has a corresponding particle, this proves that
the frog model is transient for d ≥ 14.

In this section, we will present a series of refinements to this argument to ulti-
mately prove Theorem 1(ii). In Proposition 18, we use a branching random walk
on the integers and martingale techniques to prove transience for d ≥ 6. We use
this argument as a base for our proofs of Proposition 19, transience on the deter-
ministic tree which alternates between five and six children, and Theorem 1(ii),
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transience for d ≥ 5. Both proofs use a multitype branching random walk. We
included Proposition 19 because its calculations can easily be done by hand. In
Theorem 1(ii), on the other hand, we use a branching random walk with 27 types.
The necessary calculations are intractable by hand, but they take only a few sec-
onds on a computer. To get started, we first address some difficulties that arise
from reflection at the root. In doing so, we also prove the 0–1 law described in
Theorem 4.

3.1. Couplings and 0–1 law. We will need to consider the frog model on sev-
eral modifications of a rooted tree. We can handle these special cases all at once
by working in a more general setting. Let � be any infinite rooted graph and H

any graph. Enumerate finitely or countably many copies of � by �(i), and form
a graph G by adding an edge from the root of each �(i) into H . Our next lemma
shows that regardless of the number of sleeping frogs placed on H , a frog model
is less transient on G than on �. Our motivation is the case when � = Td , as in
Corollaries 16 and 17.

LEMMA 15. We consider two frog models. The first is on � with i.i.d.-ν initial
conditions, for any measure ν on the nonnegative integers. The second is on G with
the following initial conditions: one initially active frog at the root of �(1); i.i.d.-ν
sleeping frogs at all other vertices of

⋃
i �(i); and any configuration of sleeping

frogs in H . Assume H is such that a random walk on G a.s. escapes H .
Let VG be the number of times the root of any �(i) is visited in the frog model

on G, not counting steps from H to a root. Let V� be the number of times the root
is visited in the frog model on �. Then the two frog models can be coupled so that
VG ≥ V�.

PROOF. Have the frog x, awake at the root ∅ ∈ �, mime the frog x′ that starts
at the root of �(1). As depicted in Figure 5, whenever x ′ enters H the frog x

pauses at ∅; when x′ re-enters any �(i), the frog x begins following x′ again.
When x visits a vertex that has yet to be visited, so will x′. Couple the number of

sleeping frogs at the vertices occupied by x and x′, and couple the newly awoken
frogs to each other as with x and x′. In this way, x and all descendants on �

perform simple random walks coupled to a frog on some �(i). Thus, every visit to
the root in � corresponds to a visit to level 0 in G, showing that VG ≥ V� under
this coupling. �

We give two corollaries. The first will help us prove our transience results, and
the second will help us prove a 0–1 law for transience and recurrence.

COROLLARY 16. Consider the frog model on the (d + 1)-homogeneous tree
T

hom
d starting with a single active frog at the root, and with no sleeping frog at

direct ancestors of the root. If level 0 is almost surely visited finitely many times in
this model, then the frog model on Td is almost surely transient.
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FIG. 5. The paths of frog x in � and frog x′ in G. Frog x follows the blue steps of x′ and ignores
the red steps.

PROOF. Let G = T
hom
d , thinking of it as countably many copies of Td each

joined at its root to a leaf of the infinite graph consisting of all the negative levels
of G. The statement then follows immediately from Lemma 15. �

COROLLARY 17. Run the frog model on Td , starting with an active frog not at
the root but at level k. Assume that there are no sleeping frogs at levels 0, . . . , k−1
and i.i.d.-ν sleeping frogs at level k and beyond, with the exception of the location
of the initial frog. The probability that the root is visited infinitely often in this
model is at least the probability that the root is visited infinitely often in the usual
frog model on Td with i.i.d.-ν initial conditions.

PROOF. To set up our alternate frog model, let G = Td , thinking of it as dk

copies of Td joined by a graph consisting of levels 0 to k − 1 of the original graph.
Let p be the probability that the root is visited infinitely often in the usual frog
model. Let Y be the number of visits from level k + 1 to k in the alternate model.
It follows immediately from Lemma 15 that P[Y = ∞] ≥ p.

Let X be the number of visits to the root. We would like to show that

P[Y = ∞,X < ∞] = 0,(10)

thus proving that P[X = ∞] ≥ p. Call it a dash if a frog moves from level k+1 to a
vertex v at level k, walks directly to the root, and then walks directly back to v. Let
X′ be the total number of dashes that occur. Conditional on a frog stepping from
level k + 1 to k, it makes a dash independently of all other frogs, since the model
has no sleeping frogs at levels 0 to k − 1. Whether or not it makes a dash is also
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independent of its own future number of visits from level k + 1 to k and of dashes.
Thus, at every visit from level k + 1 to k, there is an independent 1/d(d + 1)2k−1

chance of a dash, showing that

P
[
Y = ∞,X′ < ∞] = 0.

Since X′ < X, this shows (10) and completes the proof. �

We are now ready to prove the 0–1 law.

PROOF OF THEOREM 4. Suppose the probability that the root is visited in-
finitely often in the frog model on Td with i.i.d.-ν initial conditions is p > 0. We
wish to show that p = 1. The idea of the proof is to turn this statement into a more
finite event, and then show that there are infinitely many independent opportunities
for this event to occur. To this end, fix a constant N . We will show that at least N

frogs visit the root with probability 1.

CLAIM. For any k and N , there is a constant K = K(k,N) such that the
following statement holds. Consider the frog model on Td starting with a frog at
level k, with i.i.d.-ν sleeping frogs at levels k, k + 1, . . . ,K − 1 with the exception
of the vertex of the initial frog, and with no sleeping frogs outside of this range.
With probability at least p/2, this process makes at least N visits to the root.

PROOF. Consider the frog process with no sleeping frogs below level k, as in
Corollary 17. Let EK be the event that there are at least N visits to the root by frogs
that are woken without the help of any frogs at level K or beyond. As K → ∞,
the event EK converges upward to the event that there are at least N visits to the
root by any active frog, which occurs with at least probability p by Corollary 17.
Thus, for sufficiently large K , we have P[EK ] ≥ p/2. �

Now, we can find infinitely many independent events with probability p/2, each
implying N visits to the root. Let k0, k

′
0 = 0, and inductively choose ki, k

′
i as fol-

lows. Let k′
i = K(ki−1,N) from the claim. Let ki be the level of the first frog that

wakes up at level k′
i or beyond (assuming that ν is not a point mass at 0, there

will be such a frog). Now, imagine a frog process starting with this frog, with no
sleeping frogs below level ki or at level ki+1 or beyond. These processes can all
be embedded into the original frog process on Td , and each one independently has
a p/2 chance of visiting the root at least N times, by the claim. Thus, the root is
visited at least N times almost surely, for arbitrary N . �

3.2. Proving transience. Consider the branching random walk where each
particle gives birth at each step either to one child to its left or to two children
to its right. Formally, we define this as a sequence of point processes. Start with ξ0
as a single particle at 0. With probability 1/(d +1), the point process ξ1 consists of
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a single particle at −1; with probability d/(d + 1), it consists of two particles at 1.
After this, each particle in ξn produces children in ξn+1 in the same way relative
to its position, independently of all other particles. We will use this branching ran-
dom walk to prove the frog model transient for d ≥ 6 and closely related processes
to extend this down to d = 5.

PROPOSITION 18. For d ≥ 6, the frog model on Td is almost surely transient.

PROOF. Consider the frog model on T
hom
d , starting with no sleeping frogs at

direct ancestors of the root, as in Corollary 16. When a frog jumps backward in
this process, it never spawns a new frog, and when it moves forward, it sometimes
does. Thus, the projection of this frog model onto the integers can be coupled
with (ξn, n ≥ 0) so that every frog has a corresponding particle. By Corollary 16,
proving that ξn visits 0 finitely many times a.s. proves that the frog model on Td

is transient a.s.
To determine the behavior of ξn, we define a weight function w on point process

configurations. We refer to the position of a particle i in a point process configura-
tion by P(i) and define

w(ξ) = ∑
i∈ξ

e−θP (i),(11)

with θ to be chosen later. Letting μ = Ew(ξ1) we have

E
[
w(ξn+1) | ξn

] = μw(ξn),

and so the sequence w(ξn)/μ
n is a martingale. As it is positive, it converges almost

surely. When μ < 1, this means w(ξn) → 0. If a particle in ξn occupies the origin,
then w(ξn) ≥ 1, and so infinitely many visits to the origin prevents w(ξn) from
converging. Hence, μ < 1 implies the a.s. transience of ξn. (In fact, this holds
when μ = 1 as well, though we will not need this.) It then suffices to show that
there exists θ making μ < 1. We compute

μ = 1

d + 1
eθ + 2

d

d + 1
e−θ .

This is minimized by setting θ = log(2d)/2, which makes μ = 2
√

2d/(d + 1).
A bit of algebra shows that μ < 1 when d > 3 + 2

√
2 ≈ 5.83. �

By using a multitype branching process, we can extend this proof to show tran-
sience for T5. Before we do so, we will show how it works in a setting where
humans can do the math without much assistance.

PROPOSITION 19. Let T5,6 be the tree whose levels alternate between vertices
with 5 children and vertices with 6 children, starting with the root having either 5
or 6 children. The frog model on this tree is transient a.s.
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PROOF. Let Thom
5,6 be the five-six children alternating homogeneous tree which

contains T5,6 and place a sleeping frog at each vertex except for direct ancestors
of the root of T5,6. Lemma 15 implies that it suffices to prove transience of this
frog model on T

hom
5,6 .

First, note that a frog at a vertex with five children has different probabilities of
moving forwards or backwards than a frog at a vertex with six children. By design,
the tree deterministically alternates, so a frog also alternates between each state.

When a frog moves backwards there is chance it immediately jumps forward
to the same vertex, which will never spawn a new frog. Similarly, when two frogs
occupy the same site there is a chance both jump forward to the same vertex,
spawning at most one frog, not two. The idea is to introduce additional particle
types that act like frogs in these more advantageous states.

Consider a multitype branching random walk on Z with six particle types, F5,
D5, B5, F6, D6 and B6. The subscript accounts for whether a frog is at a vertex
with 5 or 6 children. B particles represent frogs that have just stepped backward.
D particles represent two frogs at once, the waker and wakee at a vertex where
a frog has just woken up. Last, F particles represent single frogs with sleeping
frogs present at all children. A visual depiction of these particle types is provided
in Figure 6, and the distribution of children for each particle type is defined in
Figure 7.

Let ζn be the branching random walk in which particles reproduce indepen-
dently with the given child distributions. These distributions are chosen to match
how the projections of frogs on the integers behave. Ignoring for a moment whether
a frog is at a site with five or six children, when a frog jumps back it becomes of
type B and when a new frog wakes it and its waker consolidate into a type D

particle. Any extra frogs become a type F particle. These particles then reproduce

FIG. 6. A depiction of the six particle types from the proof of Proposition 19. Each asterisk is a
frog represented by the particle. The symbol � signifies a vertex with a sleeping frog, and the symbol
� represents a vertex with no sleeping frog.
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FIG. 7. The distribution of children for each particle type in the proof of Proposition 19.

independently on a “fresh” tree configured so that the particles always generate at
least as many frogs as the projection of the actual frog model. For this reason, we
can couple the integer projection of the frog model on T

hom
5,6 with ζn so that the

particles representing awake frogs are a subset of ζn. It therefore suffices to prove
that ζn is transient.

To analyze ζn, we use a generalization of the martingale from Proposition 18 to
the multitype setting, introduced in [6]. Let ζn = ∑

i ζ
i
n, where i ranges over the six

particle types and ζ i
n denotes the restriction of ζn to particles of type i. Recalling

the weight function w given by (11), we define a matrix 	(θ) by

	ij (θ) = Ei

[
w

(
ζ

j
1

)]
.

Here, we use Ei to denote expectation when ζ0 is a single particle at the origin of
type i. Let wn denote a row vector whose ith entry is w(ζ i

n). Then

E[wn+1 | ζn] = wn	(θ).(12)

Thus, for any eigenvalue λ and associated right eigenvector v of 	(θ),

E[wn+1v | ζn] = wn	(θ)v = λwnv,

and so wnv/λn is a martingale.
Since 	(θ) is a nonnegative irreducible matrix, there is a positive eigenvalue

φ(θ) equal to the spectral radius of 	(θ) by the Perron–Frobenius theorem. The
eigenvector v(θ) associated with φ(θ) has strictly positive entries. We then have a
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positive martingale wnv(θ)/φ(θ)n. If φ(θ) < 1, then it follows as in Proposition 18
that the branching random walk visits 0 finitely often, thus proving that the frog
model is almost surely transient.

All that remains is to find some value of θ such that φ(θ) < 1. Ordering the rows
and columns F5, D5, B5, F6, D6, B6 and reading off Ei[w(ζ

j
i )] from Figure 7,

	(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
5

6
e−θ 1

6
eθ

0 0 0
5

36
e−θ 1

36
eθ + 55

36
e−θ 5

18
eθ

0 0 0
1

6
e−θ 2

3
e−θ 1

6
eθ

0
6

7
e−θ 1

7
eθ 0 0 0

6

49
e−θ 1

49
eθ + 78

49
e−θ 12

49
eθ 0 0 0

1

7
e−θ 5

7
e−θ 1

7
eθ 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Computing the eigenvalues of this matrix numerically, one can confirm that there
exists θ with φ(θ) < 1; for example, φ(log 3) ≈ 0.9937. To be completely certain
that this is not an artifact of rounding, we will justify that φ(log 3) < 1 without
using floating-point arithmetic. Observe that 	(log 3) has rational entries. Using
the computer algebra system SAGE, we calculated (	(log 3))66 using exact arith-
metic, and we found that its largest row sum was less than 1. (The only significance
of the 66th power is that it is the lowest one for which this is true.) This implies that
all eigenvalues of (	(log 3))66 are less than 1, which implies that all eigenvalues
of 	(log 3) are less than 1 as well. The source code in [15] includes this matrix
and has instructions so that readers can easily check these claims. �

REMARK 20. We chose to include this proof to illustrate the technique we
use to prove Theorem 1(ii). Furthermore, this provides an example of proving the
frog model is transient on an interpolation between different degree trees. This is
relevant because the sharpest proof of Conjecture 2 would find exactly where the
phase transition occurs between recurrence and transience on Td , perhaps between
d = 3 and d = 4. Last, a natural generalization is a frog model on Galton–Watson
trees. Our argument depends on the deterministic structure of T5,6 and we do not
see an obvious way to generalize it.

Having proven transience for the frog model on Td with d ≥ 6 and on T5,6, we
present our final refinement to prove the T5 case. The proof is essentially the same
as the previous one, but with more particle types and a more difficult calculation.
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PROOF OF THEOREM 1(ii). We define a particle type P(a, b, c), for a ≥ 1
and b, c ≥ 0. A particle of type P(a, b, c) represents a frogs on one vertex. There
are no sleeping frogs on at least b of the vertex’s children and on at least c of
the vertex’s siblings. In this scheme, the F types from the previous proof would
translate to P(1,0,0), the D types would translate to P(2,0,0) and the B types
would translate to P(1,1,0).

We use 27 of these particles, P(a, b, c) with 1 ≤ a ≤ 3 and 0 ≤ b, c ≤ 2. For
particle type P(a, b, c), consider the frog model on the homogeneous tree, starting
with a frogs at the root. As usual, remove the sleeping frogs from direct ancestors
of the root. Also remove the sleeping frogs from b children of the root and from
c siblings. From each of these 27 initial states, we compute all possible states to
which the frog model could transition in two steps, along with the exact proba-
bilities of doing so. We then represent each of these final states as a collection of
particles of the 27 types, at levels −2, 0, and 2 on the tree. In this way, we de-
termine child distributions for each particle type, as in Figure 7. There is a slight
ambiguity in how to do this, as a state of frogs can be represented in more than
one way by these particle types. For example, four frogs on one vertex with one
sibling vertex with no sleeping frog could be represented as two particles of type
P(2,0,1), or as one of type P(3,0,1) and one of type P(1,0,1). We always chose
particles greedily, opting for as many 3-frog particles as possible. Whatever choice
we make here, our branching random walk will still dominate the frog model, since
when we assign new particles we “reset” the tree below them so the particles wake
at least as many frogs as their counterpart in the frog model.

As in Proposition 19, it suffices to compute the matrix 	(θ) and show that for
some choice of θ , its highest eigenvalue is less than one. Our attached source code
[15] computes 	(θ) exactly. We include additional documentation there explain-
ing how we performed this calculation and describing the steps we took to make
sure it was trustworthy. To avoid rounding issues, we proceeded as with Proposi-
tion 19. We exactly computed (	(log 3))1024 by successively squaring the matrix
ten times, and we then checked that all of its row sums were less than 1. (There is
no significance to the value log 3; it just happens to work.) Thus, all eigenvalues
of (	(log 3))1024 are less than 1, implying that all eigenvalues of 	(log 3) are less
than 1 as well. �

4. A frog model without a 0–1 law. We obtain a graph on which the frog
model does not satisfy a 0–1 law by combining the transient graph T6 with the
recurrent graph Z and proving that there is a positive probability that the frogs in
each do not interact much.

To this end, we first prove two lemmas. The first shows there is a positive prob-
ability that the rightmost frog on the Z part of the combined graph escapes to ∞
while avoiding 0. This is necessary to rule out the possibility that too many frogs
from Z get lost forever in T6. The second lemma proves there is a positive prob-
ability a frog model on T6 never returns to the origin, thus establishing a chance
that the frog model on G gets lost in the transience of T6.
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LEMMA 21. Consider the frog model on G, the graph formed by merging
the root of T6 and the origin of Z. With positive probability, the frogs starting at
1,2, . . . in Z all wake up.

PROOF. Let

δn = 1

8

n−1∏
k=1

(
1 − 1

(k + 1)2

)
,

taking δ1 = 1/8. We will show by induction that the frogs at 1, . . . , n wake up with
probability at least δn. When n = 1, this holds because the initial frog moves right
on its first step with probability 1/8. Now, assume the statement for n. Condition
on the frogs at 1, . . . , n being woken. From the time when the frog at n is woken
on, the two frogs there are independent random walkers, and at least one of them
reaches n + 1 before 0 with probability 1 − 1/(n + 1)2 by a standard martingale
argument. Thus, frog n+1 is woken with probability at least δn(1−1/(n+1)2) =
δn+1, completing the induction.

Taking a limit of increasing events, the probability of the frogs at 1,2, . . . all
waking is at least limn→∞ δn > 0. �

LEMMA 22. Let p′ be the probability that the root is never visited past the
initial frog’s first move in the frog model on T6. It holds that p′ > 0.

PROOF. As in Proposition 18, consider the frog model on T
hom
6 , starting with

no sleeping frogs at direct ancestors of the root. By Lemma 15, following the
reasoning of Corollary 16, there is a coupling so that the number of visits to level
0 in the frog model on T

hom
6 is at least the number of visits to the root in the frog

model on T6.
Now, recall from Proposition 18 the point process ξ , a branching random walk

on Z in which particles split whenever they move in the positive direction. This
process dominates the projection of the frog model on T

hom
6 onto the integers.

Putting this all together, it suffices to show that with positive probability, ξn avoids
0 for all n ≥ 1.

Suppose not, so ξ a.s. revisits 0. Since particles in ξ reproduce independently,
this implies that ξ returns to the origin infinitely often. This is a contradiction, as
we showed the opposite in proving Proposition 18. �

PROOF OF THEOREM 5. In two steps, we bound the probability p of recur-
rence on G = (Z∪T6)/{0 ∼ ∅}:

(p > 0) The probability is 0 that any frog starting in Z wakes but fails to visit
0, by the recurrence of simple random walk on Z. All frogs at 1,2, . . . wake up
with positive probability by Lemma 21, and on this event they therefore all visit 0.
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(p < 1) With probability 6/8, the first jump of the frog at 0 ∈ G will be
into T6. Conditional on this, Lemma 22 guarantees a frog model in this con-
figuration will never again visit the origin with probability p′ > 0. Therefore,
1 − p ≥ 6

8p′. �

5. Conjectures. Simulations suggest that for d = 3 the frog model on Td is
recurrent a.s., while for d = 4 the model is transient a.s. Our approach was to
consider the frog model with the addition of stunning fences at each depth. When
a frog jumps on a fence for the first time, it is stunned and stops moving. When all
frogs are stunned at depth k, the fence turns off, and frogs resume their motion until
they reach depth k + 1 and are stunned again. Let Ad,k be the number of stunned
frogs that pile up on the fence at depth k before it turns off. We then examined
the growth of Ad,k in k for different choices of d . (The more obvious approach of
directly simulating the frog model and counting visits to the root does not yield any
obvious conclusions, as the rapid growth of the frog model makes it impossible to
simulate very far.)

Martingale techniques tell us that the probability a frog at distance k from the
root reaches the root before visiting depth k + 1 is greater than cd−k for some
c > 0 independent of k. It follows that

E
[
visits to root between kth and (k + 1)th stunnings

] ≥ cd−kE[Ad,k].
So, if

∑∞
k=1 d−kE[Ad,k] = ∞, then the expected number of visits to the root is

infinite, which strongly suggests the model is recurrent.
This occurs if kd−kE[Ad,k] is bounded from below. The data in Figure 8 sum-

marizes the behavior of kd−kE[Ad,k] to the maximum k we could easily simulate,
k = 18. For d = 4, the slow growth of Ad,k makes us suspect that the model is
transient. The plot for d = 2 confirms Theorem 1(i). Interestingly, d = 3 appears
to be recurrent but very near criticality. The different growth for d = 3 is grounds
for further investigation: it is possible d = 2 and d = 3 exhibit different forms of
recurrence.

For d = 2, the simulated values of k2−kE[A2,k] appear to be growing linearly.
This suggests a constant expected number of returns between each successive stun-
ning. As the average number of steps for an individual frog between stunnings is
constant, this could indicate that the average time between returns is also bounded
away from infinity. If this is the case then the probability that there is a frog at the
origin at time t would be bounded away from 0 as t gets large. However, for d = 3
it appears that k3−kE[A3,k] is sublinear. This might indicate that the average time
between returns is unbounded and the probability of a frog occupying the origin at
time t is approaching 0 as t approaches infinity. This leads us to ask the following.

OPEN QUESTION 3. Is the frog model strongly recurrent on T2, but only
weakly recurrent on T3?
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FIG. 8. Plots of simulated values of kd−kAd,k against k for d = 2,3,4. The number of simulations
used in each estimate is shown in the chart.

Such a result would have analogues with other interacting particle systems on
trees. For example, percolation on T6 × Z has a three phases: no infinite compo-
nents, infinitely many infinite components and a unique infinite component [13].
Similarly, the contact process on trees can have strongly recurrent, weakly recur-
rent and extinction phases [21].
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SUPPLEMENTARY MATERIAL

Computer code and corresponding explanation for the proofs of Proposi-
tion 19 and Theorem 1(ii) (DOI: 10.1214/16-AOP1125SUPP; .zip). We provide
the source code referred to in the proofs of Proposition 19 and Theorem 1(ii), as
well as some documentation.

http://dx.doi.org/10.1214/16-AOP1125SUPP
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