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THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS
AND RANDOM SIMPLE QUADRANGULATIONS
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McGill University and CNRS

Let Mn be a simple triangulation of the sphere S
2, drawn uniformly at

random from all such triangulations with n vertices. Endow Mn with the uni-
form probability measure on its vertices. After rescaling graph distance by
(3/(4n))1/4, the resulting random measured metric space converges in dis-
tribution, in the Gromov–Hausdorff–Prokhorov sense, to the Brownian map.
In proving the preceding fact, we introduce a labelling function for the ver-
tices of Mn. Under this labelling, distances to a distinguished point are essen-
tially given by vertex labels, with an error given by the winding number of
an associated closed loop in the map. We establish similar results for simple
quadrangulations.
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1. Introduction. We begin by heading straight for a statement of our main
result.3 A graph is simple if it has no loops or multiple edges. For integer n≥ 3, let
�◦

n be the set of pairs (M, ξ), where M is an n-vertex simple triangulation of the
sphere S2, and ξ is a corner of M . Also, for integer n≥ 4, let �◦

n be the set of pairs
(M, ξ) with M an n-vertex simple quadrangulation of S2 and ξ a corner of M .
Then let M= (Mn, n≥ 4) be one of the sequences (�◦

n, n≥ 4) or (�◦
n, n≥ 4).

THEOREM 1.1. For n ≥ 4, let (Mn, ξn) be a uniformly random element of
Mn. Write V (Mn) for the set of vertices of Mn, let dn : V (Mn) → N be graph
distance in Mn and let μn be the uniform probability measure on V (Mn). Finally,
let c = (3/4)1/4 if M = (�◦

n, n ≥ 4) and let c = (3/8)1/4 if M = (�◦
n, n ≥ 4).

Then, as n→∞, (
V (Mn), cn

−1/4dn,μn

) d→ (S, d,μ),

for the Gromov–Hausdorff–Prokhorov distance, where (S, d,μ) is the Brownian
map.

We recall the definition of the Brownian map in Section 1.1, below. Our proof
relies upon the remarkable work of Miermont [29] and, independently, Le Gall

3Precise definitions of almost all the terminology used in the Introduction appear in Sections 2
and 3. After stating our main result, the remainder of the Introduction provides motivation and an
overview of its proof, particularly the novel aspects of said proof.
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[22], which both established convergence for general (nonsimple) random quad-
rangulations. In particular, our results do not constitute an independent proof of
uniqueness of the limit object. A discussion of the constants in the above theorem,
and their relation with those from [22, 29], appears in Appendix A.

The part of Theorem 1.1 pertaining to simple triangulations (sometimes called
type-III triangulations; see [3]) answers a question of Le Gall [22] and Le Gall and
Beltran [5]. One general motivation for establishing convergence to the Brownian
map is its conjectured role as a universal limit object for a wide range of random
map ensembles. However, the case of simple triangulations holds additional in-
terest due to the conjectured link between the Brownian map and the Liouville
quantum gravity constructed by Duplantier and Sheffield [12]; see [16] for fur-
ther discussion of this connection. Le Gall [20] proved that the Brownian map is
almost surely homeomorphic to the 2-sphere (see also [23, 27]). However, homeo-
morphism equivalence is too weak, for example, to deduce conformal information
or to prove dimensional scaling relations. For these, a canonical embedding of the
Brownian map in S2 is needed (or at least would be very useful).

For any simple triangulation M of S2, the Koebe–Andreev–Thurston theorem
(see, e.g., [33], Chapter 7) provides a canonical circle packing in S

2, unique up
to conformal automorphism, whose tangency graph is M ; see Figure 1 for an il-
lustration of a random circle packing. [This uniqueness holds only for simple tri-
angulations; for a uniformly random (nonsimple) triangulation N with n vertices,
for example, the number of degrees of freedom in a circle packing with tangency
graph N is typically linear in n.] The uniqueness provides hope that the conformal
properties of the Brownian map can be accessed by studying the circle packings
associated to large random simple triangulations.

We deduce Theorem 1.1 from a result which provides more general sufficient
conditions for a sequence (Mn,n ∈N) of random planar maps to converge in distri-
bution to the Brownian map. More precisely, Theorem 4.1 states conditions under
which, after suitably rescaling distances, and endowed with the uniform probabil-
ity measure on its vertex set, Mn converges in distribution to the Brownian map
for the Gromov–Hausdorff–Prokhorov distance.

The approach of Theorem 4.1 is based on bijective codings of maps by labelled
plane trees. Its proof is a fairly routine generalization of existing arguments (mostly
due to Jean-François Le Gall). We have formulated Theorem 4.1 in a general form
as we expect it to be useful in proving convergence for other random map models,
in particular, for models falling within the framework of the “master bijection” of
Bernardi and Fusy [6] and of the general bijection for blossoming trees recently
described by Albenque and Poulalhon [1]. We sketch the conditions under which
Theorem 4.1 applies in Section 1.2.

While the conditions under which we establish convergence to the Brownian
map are rather general, verifying that a discrete random map ensemble satisfies
these conditions can be rather involved. In many map ensembles of interest, the
primary missing link is a labelling rule for the vertices of a canonical spanning
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FIG. 1. The circle packing associated to a uniformly random simple triangulation of S2 with 105

vertices. Blue shaded circles form a shortest path between two uniformly random vertices (circles).
Created using Ken Stephenson’s CirclePack program.

tree of the map, such that vertex labels encode distances to a specified root vertex.
For the case of random simple triangulations and quadrangulations, we provide a
labelling that does not precisely encode distances, but we show that the error is
insignificant in the limit. Intriguingly, for distances to a specified root vertex, the
error in the label is bounded by the winding number of an associated closed loop
in the map. In Section 1.3, we briefly describe the bijection between simple trian-
gulations and certain labelled trees, on which our proof of Theorem 1.1 is based,
and further discuss the role of winding numbers. The appearance of a winding
number hints that a discrete complex-analytic perspective may shed further light
on the shape of geodesics in random simple triangulations and eventually in the
Brownian map.

One requirement of Theorem 4.1 is the convergence of a suitable spatial branch-
ing process, after renormalization, to the Brownian snake. Such convergence is
known in many settings, but in others lack of symmetry (symmetry between the
labels of children of a single node, in the coding of maps by labelled trees) has
posed an obstacle. We introduce a technique we call partial symmetrization, in
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which we choose a “representative subtree”, then randomly permute the children
of as many nodes of the subtree as possible without affecting the subtree’s plane
embedding. This introduces enough symmetry that we may appeal to known re-
sults to establish convergence to the Brownian snake. On the other hand, fixing a
large subtree allows the partially symmetrized process to be related to the original
labelled tree and so to the associated map. A detailed explanation of the partial
symmetrization technique is easier to provide for a specific bijection, and we defer
it to Section 6.

We believe partial symmetrization may be used to show that the multi-type spa-
tial branching processes coding random p-angulations (for odd p ≥ 5) converge to
the Brownian snake. Given the work of Miermont [29] and of Le Gall [22], this is
the only missing element in a proof that p-angulations (and perhaps more general
random maps with degrees given by suitable Boltzmann weights) converge to the
Brownian map. We expect to return to this in a subsequent work.

1.1. The Brownian map. Given an interval I ⊂ R or I ⊂ N and a function
f : I → R, for s, t ∈ I with s < t we write f̌ (s, t) = infx∈I∩[s,t] f (x), f̌ (t, s) =
infx∈I\(s,t) f (x). We additionally let f̌ (s, s)= f (s) for all s ∈ I .

Let e = (e(t),0 ≤ t ≤ 1) be a standard Brownian excursion and, conditionally
given e, let Z = (Z(t),0 ≤ t ≤ 1) be a centred Gaussian process such that Z(0)= 0
and for 0 ≤ s ≤ t ≤ 1,

Cov
(
Z(s),Z(t)

)= ě(s, t).

We may and shall assume Z is a.s. continuous; see [18], Section IV, for a more
detailed description of the construction of the pair (e,Z).

Next, define an equivalence relation ∼e as follows. For 0 ≤ x ≤ y ≤ 1, let
x ∼e y if e(x) = e(y) = ě(x, y). The Brownian continuum random tree (Te, dTe)

introduced in [2] is defined as [0,1]/∼e equipped with distance dTe(x, y) =
e(x)+ e(y)− ě(x, y) for 0 ≤ x ≤ y ≤ 1.

It can be verified that almost surely, for all x, y ∈ [0,1], if x ∼e y then Z(x)=
Z(y), so we may view Z as having domain Te. Furthermore, Z remains a.s. con-
tinuous on this domain. Next, for x, y ∈ [0,1] let

(1) dZ(x, y)= Z(x)+Z(y)− 2 max
(
Ž(x, y), Ž(y, x)

)
.

Then let d∗ be the largest pseudo-metric on [0,1] satisfying that (a) for all
s, t ∈ [0,1], if s ∼e t then dZ(s, t)= 0, and (b) d∗ ≤ dZ . Let S = [0,1]/{d∗ = 0},
and let d be the push-forward of d∗ to S. Finally, let μ be the push-forward of
Lebesgue measure on [0,1] to S. The (measured) Brownian map is (a random
variable with the law of) the triple (S, d,μ). This name was first used by Marckert
and Mokkadem [26], who considered a notion of convergence for random maps
different from that of the present work.

For later use, let ρ ∈ S be the equivalence class of the point 0, and, writing
s∗ ∈ [0,1] for the point where Z attains its minimum value (this point is almost
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surely unique), let u∗ ∈ S be the equivalence class of s∗. Then Corollary 7.3 of
[22] states that for U and V uniformly distributed on [0,1], independent of Z and
of each other,

(2) d∗(U,V )
d= d∗

(
U, s∗

) d=−Ž(0,1)
d= Z(V )− Ž(0,1).

1.2. Sufficient conditions for convergence to the Brownian map. Our argument
leans heavily on the rerooting invariance of the Brownian map [(2), above]. Given
the convergence of some discrete ensemble to the Brownian map, if the discrete en-
semble possesses rerooting invariance then this can be transferred to the Brownian
map. However, to date this is the only known technique for establishing rerooting
invariance of the Brownian map (and the key reason why our results depend on
those of [22, 29]).

Informally, to prove convergence we need that the random rooted map Mn

can in some sense be described by a suitable pair of random functions Cn :
[0,1] → [0,∞) and Zn : [0,1] → R. Often Cn will be the (spatially and tem-
porally rescaled, clockwise) contour process of some canonical rooted spanning
tree (Tn, ξn) of Mn, and for the sake of this informal description we assume this
to be so. To establish convergence, we require (versions of) the following. In what
follows, let rn ∈ [0,1] be such that Zn(rn) = min(Zn(x),0 ≤ x ≤ 1), and write
dMn for (suitably rescaled) graph distance on V (Mn):

1. Distances to the minimum given by Zn. There is a vertex un ∈ V (Mn) such
that for all vertices v, if a clockwise contour exploration of Tn visits v at time t

then Zn(t) − Zn(rn) is dMn(v,un) + on(1), where on(1) represents an error that
tends to zero in probability as n→∞.

2. Distance bound via clockwise geodesics to the minimum. For any pair of
vertices v, v′ of Mn, if a clockwise contour exploration of Tn visits v and v′ at
times t and t ′, respectively, then dMn(v, v′) is bounded from above by

Zn(t)+Zn

(
t ′
)− 2 max

(
Žn

(
t, t ′

)
, Žn

(
t ′, t

))+ on(1).

3. Coding by the Brownian snake. The pair (Cn,Zn) converges in distribution
to (e,Z), for the topology of uniform convergence on C([0,1],R)2.

4. Invariance under rerooting. If Un,Vn are independent, uniformly random
vertices of Mn, then dMn(Un,Vn) is asymptotically equal in distribution to
dMn(un,Vn).

Briefly, given these properties the proof then proceeds as follows. Our argument
closely follows one used by Le Gall to prove convergence of rescaled random
(nonsimple) triangulations to the Brownian map, once convergence for quadrangu-
lations is known ([22], Section 8). It is useful to reparameterize so that all the met-
rics and pseudo-metrics under consideration are functions from [0,1]2 to [0,∞);
this can be accomplished by identifying the vertices of each metric space Mn with
a subset of [0,1] and using bilinear interpolation.
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First, 1 and 2 together can be used to prove tightness of the sequence of laws of
the functions (dMn, n ∈N), which implies convergence along subsequences. Thus,
let d : [0,1]2 → [0,∞) be a subsequential limit of dMn . Our aim is to show that
almost surely d and d∗ (defined in Section 1.1) are equal in law.

Next, 1 says that distances to the point of minimum label are given by Zm,
a limiting analogue of which is also true in the Brownian map. Invariance under
rerooting 4 and (2) then yields that for U,V independent and uniform on [0,1],
d(U,V ) is the limit in distribution of −Zn(rn), so by 3 we obtain d(U,V )

d=
−min(Z(x),0 ≤ x ≤ 1)= d∗(U,V ).

Finally, 2 gives a bound for dMn that is a finite-n analogue of the bound (1) for
dZ . Since d∗ is maximal subject to d∗ ≤ dZ , 3 then yields that d is stochastically
dominated by d∗. In other words, by working in a suitable probability space, we
may assume d(x, y) ≤ d∗(x, y) for almost every (x, y) ∈ [0,1]2. The fact that

d(U,V )
d= d∗(U,V ) then implies d and d∗ are almost everywhere equal, so have

the same law.

1.3. Labels and geodesics, and an overview of the proof. In this section (and
throughout much of the rest of the paper), we restrict our attention to simple trian-
gulations, as the details for simple quadrangulations are nearly identical.

Fix a pair (G, ξ) with G a simple triangulation of S2 and ξ a corner of G. View
G as embedded in R

2 so the face containing ξ is the unique unbounded (outer)
face. With this embedding, list the vertices of the face containing ξ in clockwise
order as v,A,B , with v incident to ξ . A 3-orientation of (G, ξ) is an orientation

−→
E

of E(G) such that in
−→
E , A,B and v have outdegrees 0,1 and 2, respectively, and

all other vertices have outdegree three.4 Schnyder [32] showed (G, ξ) admits a 3-
orientation if and only if G is simple, and in this case admits a unique 3-orientation
containing no counterclockwise cycles (we say an oriented cycle is clockwise if ξ

is on its left, and otherwise say it is counterclockwise); this 3-orientation is called
minimal. Let

−→
E be the minimal 3-orientation of (G, ξ).

The definitions of the following paragraph are illustrated in Figure 2. A subtree
of G containing the vertex v incident to ξ is oriented if all edges of the subtree are
oriented towards v in

−→
E . It turns out there is a unique oriented subtree T of G on

vertices V (G) \ {A,B} which is minimal in the sense that for all edges uw ∈ −→
E

with {u,w} /∈ E(T ), if uw attaches to u and w in corners c and c′, respectively,
then c precedes c′ in a clockwise contour exploration of T starting from ξ . We
endow this tree T with a labelling Y : V (T ) → N as follows. For e = uw ∈ −→

E

with {u,w} ∈ E(G), the leftmost oriented path from e to A is the unique oriented
path (u0, u1, . . . , uk) with the following two properties: (i) u0 = u, u1 =w; (ii) for
1 ≤ i < k, if {ui, y} ∈ E(G) and this edge attaches to the path (u0, . . . , uk) on the

4This is equivalent to, but differs very slightly from, the standard definition.
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FIG. 2. Orientations, spanning trees and leftmost paths in simple triangulations.

left, then yui ∈−→
E . For each vertex u ∈ V (T ) distinct from v, there are three such

paths starting at u (since u has outdegree three in
−→
E ); we let P(u) = PG,ξ (u) be

one of the shortest such paths. Then let Y(u) = |P(u)|, the number of vertices in
P(u).

Surprisingly, (G, ξ) may be recovered from the pair (T ,Y ). More strongly, the
above transformation is a bijection mapping planted simple planar triangulations
to a certain set of “validly labelled” planted plane trees. This bijection is essentially
due to Poulalhon and Schaeffer [31], but the connection of vertex labels with the
lengths of certain oriented paths is new.

Since Y(u) is the number of vertices on a certain path from u to A, Y(u) − 1
is an upper bound on dG(u,A), the graph distance between u and A in G. It turns
out that Y(u)− dG(u,A)− 1 is bounded by twice the number of times a shortest
path in G from u to A winds clockwise around the leftmost path PG,ξ (u). More
strongly, if P(u) = (u0, u1, . . . , uk) and Q is a path from ui to uj disjoint from
P(u) except at its endpoints, then |Q| ≥ j − i − 1, and |Q| ≤ j − i + 1 (i.e., Q is
a shortcut from ui to uj ) only if Q leaves ui on the right and rejoins uj on the left.
This fact allows Y(u)− dG(u,A)− 1 to be controlled as follows.

Let n = |V (G)|. If Q is a shortcut from ui to uj then the union of Q and
ui+1, . . . , uj−1 forms a cycle C with 2(j − i)− 1 or 2(j − i)− 2 vertices. If there
are 2k shortcuts between u and A and Q is the kth one, then all vertices of C

have distance at least k both from A and from u. It will follow that typically (i.e.,
for random G), when k and dG(uj ,A) are both large (of order n1/4) then j − i

should also be large (of order n1/4), or else G would contain a cycle of length
o(n1/4) separating two macroscopic regions. On the other hand, a “shortcut” of
length of order n1/4 is rather long; we will straightforwardly show that typically
the diameter of G will be O(n1/4), in which case there can be at most a bounded
number of such long shortcuts on any path. A rigorous version of this argument
allows us to show that typically, for all u ∈ V (T )\ {v} = V (G)\ {v,A,B}, Y(u)−
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dG(u,A)− 1 is much smaller than n1/4. In other words, after rescaling, the labels
Y with high probability provide good approximations for distances to the root A.
This essentially proves 1 from Section 1.2.

A modification of the above argument establishes without too much difficulty
that for u,w ∈ V (T ) with u preceding w in lexicographic order, dG(u,w) is
bounded by Y(u) + Y(w) − 2Y̌ (u,w) + 2, where Y̌ (u,w) is the smallest value
Y(y) for any vertex y following u and preceding w in lexicographic order. This
will establish 2. from Section 1.2.

To establish 3, we use “partial symmetrization” as previously discussed. Finally,
rerooting invariance, 4 will be a straightforward consequence of choosing a ran-
dom root corner. Having verified all the conditions of our general convergence
result (the proof of which was already sketched), Theorem 1.1 for simple triangu-
lations then follows immediately. An essentially identical development establishes
Theorem 1.1 for simple quadrangulations.

1.4. Outline. We conclude the Introduction by fixing some basic notation,
in Section 1.5. In Section 2, we provide definitions related to planar maps and
plane trees, many of which are standard. In Section 3, we introduce the Gromov–
Hausdorff distance and mention some of its basic properties. In Section 4, we
formally state our “universality” result, providing general sufficient conditions for
a random map ensemble to converge to the Brownian map; proofs are deferred to
Appendix B. In Section 5, we describe the bijections for simple triangulations and
quadrangulations on which our proof of Theorem 1.1 is based. In Section 6, we
prove convergence of the spatial branching process associated to a random simple
triangulation to the Brownian snake; this is where partial symmetrization appears.
In Section 7, we study the relation of distances with labels; this is where winding
numbers appear. In Section 8, we use the bounds of Section 7 to show that our la-
belling provides a sufficiently close approximation of distances in random simple
triangulations that the associated conditions of Theorem 4.1 are satisfied. In Sec-
tion 9, we establish rerooting invariance and so complete the proof of Theorem 1.1.
Finally, Section 10 proves Theorem 1.1 for quadrangulations, and Appendix A
contains a derivation of the numerical constants from Theorem 1.1.

1.5. Notation. For the remainder of the paper, all graphs are connected, finite,
simple (i.e., without loops nor multiple edges) and planar. Let G= (V (G),E(G))

be such a graph. Given a vertex v ∈ V (G) we write degG(v)= |{e ∈E(G) : v ∈ e}|
for the degree of v in G. If v ∈ e, we say e is incident to v. We write dG : V (G)×
V (G) → N for graph distance on G. Given W ⊂ V (G), we write G[W ] for the
graph with vertices W and edges {{u, v} ∈E(G) : u, v ∈W }.

An oriented edge of G is an ordered pair uw, where {u,w} ∈E(G); we call uw

an orientation of {u,w}. An orientation of G is a set
−→
E = {−→e : e ∈E(G)}, where

for each e ∈ E(G), −→e is an orientation of e. The outdegree of v ∈ V (G) (with
respect to

−→
E ) is deg+(v)= deg+−→

E
(v)= |{w ∈ V (G) : vw ∈−→

E }|.
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If S = (s1, . . . , sr) is any sequence of objects, we say that S has length r and
write |S| = r . A path in G is a sequence P = (u0, u1, . . . , uk) of vertices of G with
{ui, ui+1} ∈ E(G) for 0 ≤ i < k; we say P is a path from u0 to uk , and note that
|P | = k + 1. A path is simple if all its vertices are distinct. A cycle in G is a path
(u0, u1, . . . , uk, uk+1) such that uk+1 = u0; it is simple if (u0, . . . , uk) is a simple
path. If G is a tree (connected and acyclic), then for u,w ∈G we write [[u, v]] for
the unique (shortest) path in G from u to v. Finally, for a nonnegative integer k,
write [k] = {0,1, . . . , k}.

2. Planar maps and plane trees.

2.1. Planar maps. A planar embedding of G is a function φ : V (G) ∪
E(G)→ S

2 satisfying the following properties:

(1) The restriction φ|V (G) is injective.
(2) For each e = uv ∈ E(G), φ(e) is a simple curve with endpoints φ(u) and

φ(v).
(3) For any two distinct edges e, f ∈E(G), the curves φ(e) and φ(f ) are dis-

joint except possibly at their endpoints.

The pair (G,φ) is called a planar map. The faces of (G,φ) are the connected
components of S

2 \ ⋃
x∈V (G)∪E(G) φ(x). Given a face f the vertices and edges

incident to f are given by the set φ−1(∂f ), where ∂f is the boundary of f .
Two planar maps are isomorphic if there exists an orientation-preserving home-

omorphism of S2 that sends one to the other. It is easily verified that planar map
isomorphism is an equivalence relation.

For any planar map (G,φ), for each vertex v ∈ V (G) there is a unique cyclic
(clockwise) ordering Ov of the edges incident to v. Furthermore, up to isomor-
phism, the set of orderings {Ov : v ∈ V (G)} uniquely determines (G,φ). We may
therefore specify the isomorphism equivalence class of (G,φ) by providing G and
the set of cyclic orderings associated to (G,φ). We will henceforth denote (a rep-
resentative from the isomorphism equivalence class of) a planar map simply by G,
leaving implicit both φ and its associated cyclic orderings.

For the remainder of Section 2.1, consider a fixed planar map G. A corner of
G is an ordered pair ξ = (e, e′) where e and e′ are incident to a common vertex v,
and e′ immediately follows e in the clockwise order around v.5 We write v(ξ) =
vG(ξ) = v and say that ξ is incident to v (and also to e and e′). We write C(G)

for the set of corners of G. For ξ, ξ ′ ∈ C(G) we let dG(ξ, ξ ′) = dG(v(ξ),v(ξ ′))
be the graph distance between the vertices incident to ξ and ξ ′, and likewise let
dG(ξ,w)= dG(v(ξ),w) for w ∈ V (G).

If e = {u, v} and e′ = {v,w}, and f is the face on the left when following e

and e′ from u through v to w, then we say ξ = (e, e′) is incident to f and vice

5We allow that e = e′, which can happen if dG(v)= 1.
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versa. The degree of f is the number of corners incident to f . The planar map G

is a triangulation or a quadrangulation if all its faces have respectively degree 3
or degree 4.

Given e = {u, v} ∈E(G), write κ�(u, v)= κ�
G(u, v) [resp., κr(u, v)= κr

G(u, v)]
for the corner incident to u and to {u, v} that is on the left (resp., on the right) when
following e from u to v.

A planted planar map is a pair (G, ξ), where G is a planar map and ξ ∈ C(G).
We call ξ the root corner of (G, ξ), call v(ξ) its root vertex, and call the face of G

incident to ξ its root face. If G′ is a connected subgraph of G containing ξ , then
(G′, ξ) is again a planar map, and we call it a planted submap of (G, ξ).

2.2. Plane trees. A plane tree (resp., planted plane tree) is a planar map G

[resp., planted planar map (G, ξ)] such that G is a tree.6 If T = (T , ξ) is a planted
plane tree, then recalling that v(ξ) is the root vertex of T, we may speak of parents,
children, ancestors, descendants in the usual way. For each w ∈ V (T ), we write
|w| = dT (ξ,w), and call |w| the generation of w. We also write k(w)= kT (w) for
the number of children of w, and if w �= v(ξ) then we write p(w)= pT(w) for the
parent of w.

The Ulam–Harris encoding is the injective function U =UT : V (T )→⋃
i≥0 N

i

defined as follows (let N0 = {∅} by convention). First, set U(v(ξ))=∅. For every
other vertex w ∈ V (T ), consider the unique path v(ξ) = v0, v1, . . . , vk = w from
v(ξ) to w. For 1 ≤ i ≤ k let ni be such that vi is the ni th child of vi−1, in cyclic
order around vi−1 starting from κr(vi−1, vi−2) if i ≥ 2 or from ξ if i = 1. Then set
U(w) = n1n2 · · ·nk ∈ N

k . In other words, the root receives label ∅ and for each
i ≥ 1 the label of any ith child is obtained recursively by concatenating the integer
i to the label of its parent. It is easily verified that (the isomorphism class of) T can
be recovered from the set of labels {U(v) : v ∈ V (T )}.

When there is no ambiguity, we identify planted plane trees with their Ulam–
Harris encodings. In particular, in this case the root vertex is denoted ∅ and if v is
a vertex of T , then its children are denoted v1, . . . , vk, where k = kT (v).

The lexicographic ordering �lex=�lex,T of V (T ) is the total order of V (T )

induced by the lexicographic order on {U(v) : v ∈ V (T )}. This ordering induces
a lexicographic ordering of E(T ) (also denoted �lex=�lex,T by a slight abuse of
notation) by defining {u, v} �lex,T {u′, v′} if and only if u, v �lex,T u′ or u, v �lex,T
v′. These are the orders in which a clockwise contour exploration of the plane tree
T starting from ξ first visits the vertices and edges of T , respectively.

The contour exploration r = rT : [2|V (T )| − 2] → V (T ) is inductively defined
as follows. Let r(0) = v(ξ). Then, for 1 ≤ i ≤ 2|V (T )| − 2, let r(i) be the lexi-
cographically first child of r(i − 1) that is not an element of {r(0), . . . , r(i − 1)},

6It is relatively common to define a planted plane tree as a pair (T , v) where T is a plane tree and
v is a degree-one vertex of T . Our definition, which is equivalent, can be recovered by deleting the
plant vertex and its incident edge, and rooting at the corner thereby created.
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or let r(i) be the parent of r(i − 1) if no such node exists. Note that each ver-
tex v ∈ V (T ) \ {v(ξ)} appears degT (v) times in the contour exploration, and v(ξ)

appears degT (v(ξ))+ 1 times.
The contour exploration induces an ordering of C(T ), as follows. For 0 ≤ i <

2|V (T )| − 2, let e(i) = eT(i) = {r(i), r(i + 1)}. Then let ξ(0) = ξT(0) = ξ , and
for 1 ≤ i < 2|V (T )| − 2 let ξ(i) = ξT(i) = (e(i − 1), e(i)). The contour order-
ing, denoted �ctr=�ctr,T, is the total order of C(T ) induced by (ξ(i),0 ≤ i <

2|V (T )| − 2). For convenience, also let ξ(2|V (T )| − 2) = ξT(2|V (T )| − 2) = ξ .
Finally, write �cyc=�cyc,T for the cyclic order on C(T ) induced by �ctr,T. It can
be verified that �cyc does not depend on the choice of root corner ξ . We define
cyclic intervals accordingly: for c, c′ ∈ C(T ), let

[
c, c′

]
cyc =

{{
c′′ : c �ctr c′′ �ctr c′

}
, if c �ctr c′,{

c′′ : c′′ �ctr c or c′ �ctr c′′
}
, if c′ �ctr c.

Given u, v ∈ V (T ), we say that v is the successor of u if u �lex v and for all
w ∈ V (T ), if u �lex w �lex v then w = u or w = v. We define successorship for
corners similarly.

Given a plane tree T = (T , ξ) and a set R ⊂ V (T ) with v(ξ) ∈ R. Also, the
subtree of T spanned by R, denoted T〈R〉, is the subtree of T induced by the union
of the shortest paths between all pairs of vertices in R. Note that T〈R〉 naturally
inherits a planted plane tree structure from T.

2.3. The contour process and spatial plane trees. A spatial plane tree is a
triple T = (T , ξ,D), where (T , ξ) is a planted plane tree and D :E(T )→R is an
arbitrary function. Given a labelled plane tree, define a function X =XT : V (T )→
R as follows. First, let X(v(ξ)) = 0. Next, given u ∈ V (T ) with X(u) already
defined, for 1 ≤ i ≤ kT(u) let X(ui)=X(u)+D(u,ui). We call XT the labelling
function of T.

Now define C([0,1],R) functions CT and ZT by setting

CT
(
i/
(
2
∣∣V (T )

∣∣− 2
))= dT

(
ξ, r(T ,ξ)(i)

)
and

ZT
(
i/
(
2
∣∣V (T )

∣∣− 2
))=XT

(
r(T ,ξ)(i)

)
,

for i ∈ {0,1, . . . ,2|V (T )| − 2}, and extending each function to [0,1] by linear
interpolation. We refer to CT and ZT as the contour and labelling processes of T,
respectively. Note that the definition of CT does not depend on the function D.

2.4. Spanning trees in planar maps. Given a planar map G, a spanning tree
of G is a subgraph T of G such that T is a tree with V (T ) = V (G). If (G, ξ) is
a planted planar map and T is a spanning tree of G, then we call (T , ξ) a planted
spanning tree of (G, ξ).

Finally, given a planted planar map G = (G, ξ) and an orientation
−→
E of E(G),

we say that a planted spanning tree (T , ξ) of G is oriented with respect to
−→
E if
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in the orientation of E(T ) obtained from
−→
E by restriction, all edges are oriented

towards v(ξ).

3. Distances between metric spaces: Gromov, Hausdorff and Prokhorov.

3.1. The Gromov–Hausdorff distance. For proofs of the assertions in this sec-
tion, and for further details, we refer the reader to [11, 28]. Let X = (X,d) and
X′ = (X′, d ′) be compact metric spaces. Given C ⊂ X ×X′, the distortion of C,
denoted dis(C), is the quantity

dis(C)= sup
{∣∣d(x, y)− d ′

(
x′, y′

)∣∣ : (x, x′
) ∈ C,

(
y, y′

) ∈ C
}
.

A correspondence between X and X′ is a set C ⊂ X × X′ such that for every
x ∈X there is x′ ∈X′ such that (x, x′) ∈ C and vice versa. We write C(X,X′) for
the set of correspondences between X and X′. The Gromov–Hausdorff distance
dGH(X,X′) between metric spaces X = (X,d) and X′ = (X′, d ′) is

dGH
(
X,X′)= 1

2
inf

{
dis(C) : C ∈ C

(
X,X′)}.

We list without proof some basic properties of dGH. Let M be the set of isometry
classes of compact metric spaces:

(1) Given metric spaces X = (X,d) and X′ = (X′, d ′), there exists C ∈
C(X,X′) such that dGH(X,X′)= dis(C)/2.

(2) If X1 and X2 are isometric, and X′
1 and X′

2 are isometric, then dGH(X1,

X′
1)= dGH(X2,X′

2). In other words, dGH is a class function for M.
(3) The push-forward of dGH to M (which we continue to denote dGH) is a

distance on M, and (M, dGH) is a complete separable metric space.

A k-pointed metric space is a triple (X,d, (x1, . . . , xk)) where (X,d) is a
metric space and xi ∈ X for 1 ≤ i ≤ k. We say k-pointed metric spaces X =
(X,d, (x1, . . . , xk)) and X′ = (X′, d ′, (x′1, . . . , x′k)) are isometry-equivalent if there
exists a bijective isometry f :X →X′ such that f (xi)= x′i for 1 ≤ i ≤ k. The k-
pointed Gromov–Hausdorff distance dk

GH between X,X′ is given by

dk
GH

(
X,X′)= 1

2
inf

{
dis(C) : C ∈C

(
X,X′) and

(
xi, x

′
i

) ∈ C,1 ≤ i ≤ k
}
.

Much as before, if M(k) is the set of isometry-equivalence classes of k-pointed
compact metric spaces, then dk

GH is a class function for M(k) so may be viewed
as having domain M(k), and (M(k), dk

GH) then forms a complete separable metric
space.
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3.2. The Gromov–Hausdorff–Prokhorov distance. Following [28], a weighted
metric space is a triple (X,d,μ) such that (X,d) is a metric space and μ is a Borel
probability measure on (X,d). Weighted metric spaces (X,d,μ) and (X′, d ′,μ′)
are isometry-equivalent if there exists a measurable bijective isometry φ :X →X′
such that φ∗μ= μ′, where φ∗μ denotes the push-forward of μ under φ. Write Mw

for the set of isometry-equivalence classes of weighted compact metric spaces.
Given weighted metric spaces X = (X,d,μ) and X′ = (X′, d ′,μ′), a coupling

between μ and μ′ is a Borel measure ν on X × X′ (for the product metric) with
π∗ν = μ and π ′∗ν = μ′, where π : X × X′ → X and π ′ : X × X′ → X′ are the
projection maps. Let M(μ,μ′) be the set of couplings between μ and μ′. The
Gromov–Hausdorff–Prokhorov distance is defined by

dGHP
(
X,X′)
= inf

{
ε > 0 : ∃C ∈ C

(
X,X′),∃ν ∈M

(
μ,μ′), ν(C)≥ 1− ε,dis(C)≤ 2ε

}
.

The push-forward of dGHP to Mw , which we again denote dGHP, is a distance on
Mw , and (Mw,dGHP) is a complete separable metric space (see [28], Section 6
and [13], Section 2).

4. Map encodings. The purpose of this section is to state sufficient conditions
for a family of random maps to converge to the Brownian map after rescaling. The
framework we describe enables us to use the convergence argument the same line
of argument as in Le Gall [22] with only minor modifications (which are essentially
to ensure that the convergence holds in the Gromov–Hausdorff–Prokhorov sense
and not only in the Gromov–Hausdorff sense). Our choice to work in a slightly
more abstract setting was motivated by potential applications to several models
of maps for which convergence to the Brownian map is yet to be established. We
return to this point at the end of the section.

A map encoding is a pair P = (M,T) where M = (M, ζ ) is a planted planar map
and T = (T , ξ,D) is a spatial plane tree with V (T ) ⊂ V (M). Note that although
T shares its vertices with M , it need not be a subgraph of M .

Fix a sequence P = (Pn, n ≥ 1) of random map encodings. Write Pn =
(Mn,Tn), write Cn and Zn for the contour and label processes of Tn, respectively,
and write Xn and rn for the labelling function of Tn and for the contour exploration
of Tn, respectively. The sequence P is good if there exist sequences (an, n ∈N) and
(bn, n ∈N) such that the following three properties hold.

1. As n→∞, (anCn, bnZn)
d→ (e,Z) in the topology of uniform convergence

on C([0,1],R)2, where (e,Z) is as described in Section 1.1.
2. (i) For all ε > 0,

lim
n→∞P

{
bn · max

v∈V (Mn)
dMn

(
v,V (Tn)

)
> ε

}
= 0.
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(ii) Write dProk for the Prokhorov distance between Borel measures on R. For
each n, conditionally given Pn, let Un,Vn be independent uniformly random
elements of V (Tn). Then

lim
n→∞bn · dProk

(
dMn(ζn, ξn), dMn(Un,Vn)

)= 0.

3. (i) Let m=m(n)= 2|V (Tn)| − 2. Then for all ε > 0,

lim
n→∞P

{∃i, j ∈ [m] : dMn

(
rn(i), rn(j)

)≥Zn(i/m)+Zn(j/m)

− 2 max
(
Žn(i/m, j/m), Žn(j/m, i/m)

)+ εb−1
n

}
= 0.

(ii) For all ε > 0,

lim
n→∞P

{∃j ∈ [m] : dMn

(
rn(j), ζn

)≤Zn(j/m)− Žn(0,1)− εb−1
n

}= 0.

For later use, we note one consequence of 3. Let In be minimal such that
Zn(In/m)= Žn(0,1), 3(ii) implies that

lim
n→∞P

{
dMn

(
rn(In), ζn

)
> εb−1

n

}= 0.

Together with 3(i) and 3(ii) this yields that, for all ε > 0,

lim
n→∞P

{
∃j ∈ [m] : ∣∣dMn

(
rn(j), ζn

)− (
Xn

(
rn(j)

)−Xn

(
rn(In)

))∣∣ > ε

bn

}
= 0.(3)

In other words, for u ∈ V (Tn), the distance dMn(u, ζn) is essentially given by the
difference between the label of u and the infimum of labels in Tn.

THEOREM 4.1. If P is a good sequence of random map encodings then, writ-
ing μn for the uniform probability measure on V (Tn)⊂ V (Mn), we have(

V (Mn), bndMn,μn

) d→ (S, d,μ)

for dGHP, where (S, d,μ) is the Brownian map, as defined in Section 1.1.

The proof of Theorem 4.1, which closely follows an argument of Le Gall [22]
(as mentioned above), appears in Appendix B. We conclude the section by men-
tioning one corollary of the theorem; we are slightly informal to avoid notational
excess and as the argument is straightforward. For n, k ≥ 1, conditionally given
Pn, let Un,1, . . . ,Un,k be independent with law μn. Proposition 10 of [28] implies
that if the convergence in Theorem 4.1 holds then also(

V (Mn), bndMn, (Un,1, . . . ,Un,k)
) d→ (

S, d, (U1, . . . ,Uk)
)
,
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for dk
GH, where conditionally given (S, d,μ), U1, . . . ,Uk are independent with law

μ. By Proposition 8.2 of [21], conditionally given (S, d,μ), the points ρ,u∗ ∈ S

are independent with law μ; by 2(ii) it follows that (V (Mn), bndMn, (ξn, ζn))
d→

(S, d, (ρ,u∗)) for d2
GH.

REMARK 4.2. The motivation underlying the introduction of good random
map encodings is to define a general framework which can be used in future work
as a “black box” to establish the convergence of various families of maps towards
the Brownian map. In order to justify this, we provide some specific examples
(though not an exhaustive list) of settings where we believe our generalization will
be of use.

Condition 2(i) states that after rescaling distances by bn, all vertices of the map
Mn are with high probability close to some tree vertex. In the present work, it turns
out that only two vertices of the Mn do not belong to Tn. In some models of maps,
it only holds that at least one vertex per face of the map belongs to the associated
tree. The maximum face degree in a random simple map is typically logarithmic
in the size of the map, so in that setting the strength of Condition 2(i) is useful.

Condition 2(ii) requires the distance between the root of the map and the root of
the tree to be asymptotically equal in distribution to the distance between two uni-
form vertices of the map. In the case of simple triangulations, the distance between
the two roots is actually exactly distributed as the distance between two uniformly
random points. However, it happens frequently that in bijections between maps
and trees, the root of the map plays a special role and is not precisely uniformly
distributed. For example, in studying 3-connected maps, a family of maps nat-
urally arises for which all nonroot faces are quadrangles, but the root face is a
hexagon [15].

Finally, for the classical case of uniform quadrangulations, conditions 3(i) and
3(ii) hold true without the term εb−1

n . However, in the present work, we can only
prove that labels of the tree control distances in the maps up to an error term which
is o(bn) in probability, so we require the full strength of 3(i) and 3(ii).

5. Bijections for simple triangulations. We start with a summary of the re-
sults of the section; to do so some definitions are needed. For integer k ≥ 1, a plane
tree T is a k-blossoming tree if each vertex of degree greater than one is incident to
exactly k vertices of degree one. If T is a k-blossoming tree (for some k), we write
B = B(T ) for the set of degree-one vertices of T . When it causes no ambiguity,
we identify vertices of B with their incident corners. Note that both k and B are
uniquely determined by T . We call B the blossoms of T , and V (T ) \ B the inner
vertices of T . Also, an edge between two inner vertices is called an inner edge,
and an edge between an inner vertex and a blossom is a stem. A corner c is an
inner corner if c /∈ B. A planted k-blossoming tree is a planted plane tree (T , ξ)

such that T is a k-blossoming tree and ξ is an inner corner of T . The bijections of
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Section 5 concern 2-blossoming trees, which we simply call blossoming trees for
the remainder of the section.

Write Tn for the set of planted blossoming trees (T , ξ) with n inner vertices. Fix
(T , ξ) ∈ Tn, and note that |E(T )| = |V (T )| − 1 = 3n − 1 so |C(T )| = 6n − 2 =
3|B(T )| − 2. We say (T , ξ) is balanced if ξ = (e, e′) for distinct stems e, e′, and
for all c ∈ C(T ),

(4) 3
∣∣[ξ, c]cyc ∩B

∣∣+ 1 ≥ ∣∣[ξ, c]cyc
∣∣

(recall the definition of [ξ, c]cyc from Section 2.2). For n ≥ 1, let T ◦
n ⊂ Tn be the

set of balanced blossoming trees with n inner vertices.
A valid labelling of a planted plane tree T = (T , ξ) is a labelling d = (de, e ∈

E(T )) of the edges of T by elements of {−1,0,1} such that for all v ∈ V (T ),
writing k = kT(v), the sequence d{v,v1}, . . . , d{v,vk} is nondecreasing. Let T vl

n be
the set of validly labelled plane trees with n vertices. We emphasize that a validly
labelled plane tree is a “normal” tree, not a blossoming tree.

Finally, recall that for n ≥ 3, �◦
n is the set of planted triangulations with n in-

ner vertices. The following diagram summarizes the bijective relations between
Tn,T ◦

n , and �◦
n+2 established in [31] and recalled in the current section:

(5) T vl
n

φn;Proposition 5.4←−−−−−−−−−
bij

Tn
projection−−−−−−−→

(4n−2)—to−2
T ◦

n

bij−−−−−−−−−→
χn;Proposition 5.1

�◦
n+2.

After concluding with bijective arguments, in Section 5.4 we explain how to
sample uniformly random triangulations using conditioned Galton–Watson trees.
We end the section by describing the inverse of the bijection χn : T ◦

n →�◦
n+2,

which we use later.

5.1. A bijection between triangulations and blossoming trees. We first de-
scribe a bijection of Poulalhon and Schaeffer [31] between balanced blossoming
trees and simple, planted triangulations of the sphere (see Figure 3; the orienta-
tions of the arrows in the figure are explained in Section 5.5). Fix a blossoming
tree T . Given a stem {b,u} with b ∈ B(T ), if bu is followed by two inner edges
in a clockwise contour exploration of T —uv and vw, say—then the local closure
of {b,u} consists in removing the blossom b and its stem, and adding a new edge
{u,w} [such that κr(u,w)= ({u,w}, {u, v}) and κ�(w,u)= ({w,v}, {w,u})]. Af-
ter performing the local closure, uw always has a triangle on its right. The edge
{u,w} is considered to be an inner edge in subsequent local closures.

The partial closure of a blossoming tree is the planar map obtained by perform-
ing all possible local closures. Equivalently, for each corner c ∈ B, let s(c) be the
inner corner c′ minimizing |[c, c′]cyc| subject to the condition that

(6) 3
∣∣[c, c′]cyc ∩B

∣∣ < ∣∣[c, c′]cyc

∣∣,
if such a corner exists (recall the definition of �cyc from Section 2.2). The partial
closure operation identifies v(c) with v(s(c)) whenever c ∈ B and s(c) is defined;
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FIG. 3. The closure of a balanced tree into a simple triangulation.

it follows from the latter description that the partial closure does not depend on the
order in which local closures take place. Say v(c) is closed if s(c) is defined, and
otherwise say v(c) is unclosed.

It can be checked that the partial closure is a simple map and contains precisely
one face f of degree greater than three, and all unclosed blossoms are incident
to f . Furthermore, simple counting arguments show that each inner corner incident
to f is adjacent to at least one unclosed blossom, and that there are precisely two
corners, say ξC and ξD , that are incident to two unclosed blossoms. Note that ξC

and ξD are both corners of T (i.e., they are not created while performing the partial
closure). Let C = v(ξC) and D = v(ξD).

Let (T , ξ) be a balanced blossoming tree such that ξ = (e, e′), e = (v(ξ), v) and
e′ = (v(ξ), v′). It follows straightforwardly from (6) that v and v′ are unclosed, or
equivalently ξ is equal to ξC or ξD . We now suppose ξ ∈ {ξC, ξD}. Let SCD (resp.
SDC) be the set of nonblossom vertices v of the distinguished face f of the partial
closure such that in the planted tree (T ,C) [resp. (T ,D)] we have v �ctr D (resp.,
v �ctr C). In other words, vertices of SCD lie after C and before D in a clockwise
tour of f , and likewise for SDC.

To finish the construction, remove the remaining blossoms and their stems. Add
two additional vertices A and B within f , then add an edge between A (resp.,
B) and each of the vertices of SCD (resp. of SDC). In the resulting map, define a
corner c by c = ({C,B}, {C,A}) if v(ξ)= C or c = ({D,A}, {D,B}) if v(ξ)=D.
Finally, add an edge between A and B in such a way that, after its addition, A,B ,
and v(ξ) lie on the same face f . The result is a planar map, rooted at ξ , called the
closure of T . For later use, define a function s ′ : V (T ) → V (T ) as follows. First,
set s′(v)= v for v ∈ V (T ) \ B. For v ∈ B, let u be the unique neighbour of v and
let k be the unique corner incident to v. If s(k) is defined then let s′(v)= v(s(k));
otherwise, if u ∈ SCD let s′(v)=A and if u ∈ SDC let s′(v)= B .

Write χ :⋃n≥1 T ◦
n →⋃

n≥1�◦
n+2 for the function sending a balanced blossom-

ing tree to its closure, and for n ≥ 1 let χn : T ◦
n →�◦

n+2 be the restriction of χ

to T ◦
n .
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PROPOSITION 5.1 ([31]). For all n ≥ 1, χn is a bijection between T ◦
n and

�◦
n+2.

Note that if (T , ξ) is a blossoming tree and χ(T , ξ)= (G, c) then it is natural to
identify the inner vertices and inner edges of T with subsets of V (G) and E(G),
respectively. More formally, we may choose representatives from the isomorphism
equivalence classes of the tree and its closure so that V (T )\B(T )= V (G)\{A,B}
and {{u, v} ∈ E(T ) : u, v /∈ B} ⊂ E(G). We will adopt this perspective in the re-
mainder of the paper.

5.2. Bijection with labels. We now present an alternative description of the
bijection from Proposition 5.1, based on (6). Given a blossoming tree (T , ξ), write
T = (T , ξ) and define λ = λT : C(T ) → Z as follows. Recall the definition of the
contour ordering (ξ(i),0 ≤ i ≤ 2|V (T )| − 2) from Section 2.2, and in particular
that ξ(0)= ξ . Let λ(ξ(0))= 2 and, for 0 ≤ i < 2|V (T )| − 3, set

λ
(
ξ(i + 1)

)=
⎧⎪⎪⎨⎪⎪⎩

λ
(
ξ(i)

)− 1, if ξ(i) /∈ B(T ), ξ(i + 1) /∈ B(T ),

λ
(
ξ(i)

)
, if ξ(i) /∈ B(T ), ξ(i + 1) ∈ B(T ),

λ
(
ξ(i)

)+ 1, if ξ(i) ∈ B(T ), ξ(i + 1) /∈ B(T ).

This labelling is depicted in Figure 4(a). Informally, we perform a clockwise con-
tour exploration of the tree and label the corners as we go. When leaving an inner
vertex and arriving at an inner vertex, decrease the label by one; when leaving an
inner vertex and arriving at a blossom, leave the label unchanged; when leaving a
blossom and arriving at an inner vertex, increase the label by one.

It is not hard to see that T = (T , ξ) is balanced if and only if ξ is incident
to two stems and λ(c) ≥ 2 for all c ∈ C(T ) [see Figure 4(a)]. Assume (T , ξ) is
balanced and write ξ ′ for the unique corner in C(T ) \ {ξ} for which (T , ξ ′) is also
balanced. Given a corner c ∈ C(T ) with v(c) ∈ B(T ), recall the definition of s(c)

from (6). A counting argument shows that when s(c) is defined, it is equal to the

FIG. 4. Closing a balanced tree via the corner labelling.
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first corner c′ following c in clockwise order for which λ(c′) < λ(c) [and in fact
λ(s(c))= λ(c)−1]. Furthermore, s(c) is defined if and only if either λ(c) > 2 and
c �ctr ξ ′, or λ(c) > 3 and ξ ′ �ctr c.

Next, add two vertices, say A and B , within the unique face of the partial clo-
sure with degree greater than three. For each c ∈ C(T ) with v(c) ∈ B(T ) and s(c)

undefined, identify v(c) with A if λ(c)= 2, and with B if λ(c)= 3. At this point,
the unique face of degree greater than three is incident to ξ,A, ξ ′ and B in cyclic
order. Finally, add a single edge between A and B . The following fact, the straight-
forward proof of which is omitted, states that the resulting planar map is χ(T).

FACT 5.2. The triangulation obtained from a balanced blossoming tree by
iterating local closures and the one obtained by the label procedure coincide.

The closure contains corners not present in the blossoming tree, and the new cor-
ners are labelled as follows. For any bud corner c for which s(c) is defined, closing
v(c) may be viewed as splitting a single corner in two, and the two new corners
inherit the label of the corner that was split. An example is shown in Figure 4(b);
the dashed arcs denote corners that are “split” by the partial closure operation. Let
f be the face of χ(T , ξ) incident to ξ . Give the corner of A (resp., B) incident
to f label 0 (resp., 1), and give all other corners incident to A (resp., B) label 1
(resp. 2). We write λ∗ = λ∗(T ,ξ) for this corner labelling of χ(T , ξ), and note that

λ∗ : C(χ(T , ξ))→ Z
≥0 since we have assumed (T , ξ) is balanced. An example of

the resulting corner-labelled triangulation is depicted in Figure 4(c).

5.3. From labels to displacement vectors. We next explain the connection be-
tween blossoming trees and validly labelled plane trees. Fix n≥ 1, let (T , ξ) ∈ Tn

and let λ be the labelling of corners as defined in Section 5.2. We define a func-
tion Y = Y(T ,ξ) : V (T )→ Z by setting Y(v) = min{λ(c) : c ∈ C(T ),v(c) = v} for
all v ∈ V (T ). Next, for each inner edge e ∈ E(T ), writing e = {v,p(v)}, with
v ∈ V (T ) \ {v(ξ)}, set De =De(T , ξ)= Y(v)−Y(p(v)). The following easy fact,
the proof of which is omitted, allows us to recover the locations of stems from the
edge labels.

FACT 5.3. For all e = {v,p(v)} ∈ E(T ), De + 1 = |{e′ �lex e : e′ a stem
incident to p(v)}|.

Now fix v ∈ V (T ), let k = k
(T ,ξ̂ )

(v), and for 1 ≤ i ≤ k let ei = {v, vi}. It follows
from the above fact that for 1 ≤ i ≤ k the number of stems e incident to v with
e �lex ei is Dei

+ 1. In particular, (Dei
,1 ≤ i ≤ k) is a nondecreasing sequence

of elements of {−1,0,1}; this is what allows us to connect blossoming trees with
validly labelled trees.

For n≥ 1, define a map φn : Tn → T vl
n as follows. Given (T , ξ) ∈ Tn, write ξ =

(e−, e+). Let e be the last inner edge incident to v(ξ) preceding e− in clockwise
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FIG. 5. The equivalence between blossoming trees and validly vector-labelled plane trees. The root
corner is indicated via a double arrow.

order (with e = e− if e− is an inner edge), and let e′ be the first inner edge incident
to v(ξ) following e+ in clockwise order (with e = e+ if e+ is an inner edge).
Write ξ ′ = (e, e′), let T ′ be the subtree of T induced by the inner vertices, let D =
(De(T , ξ), e ∈E(T )), and let φn(T , ξ)= (T ′, ξ ′,D). The following proposition is
an immediate consequence of Fact 5.3.

PROPOSITION 5.4. The map φn : Tn → T vl
n is a bijection.

The above bijection and definitions are illustrated in Figure 5. In the next sec-
tion, we explain how the above functions can be used to sample random simple
triangulations with the aid of conditioned Galton–Watson trees.

5.4. Corner-rooted triangulations via conditioned Galton–Watson trees. Let
(Tn, ξn) be uniformly distributed on Tn. We are now able to describe the law of
(Tn, ξn) as a modification of the law of a critical Galton–Watson tree conditioned
to have a given size. (Galton–Watson trees are naturally viewed as planted plane

trees; see, e.g., [19].) Let G
d= Geometric(3/4), and let B have law given by

(7) P{B = c} =
(c+2

2

)
P{G= c}

E
(G+2

2

) , for c ∈N.

FACT 5.5. The distribution B is critical, that is, EB = 1.

This fact follows from simple computations involving the 3 first moments of a
geometric law; its proof is omitted.
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PROPOSITION 5.6. Let (T ′, ξ ′) be a Galton–Watson tree with offspring dis-
tribution B conditioned to have n vertices. For each vertex v of T ′, add two stems
incident to v, uniformly at random from among the

(kT ′ (v)+2
2

)
possibilities. The

resulting planted plane tree (T , ξ) is uniformly distributed over Tn.

PROOF. Fix t ∈ Tn and let t′ = t〈V (T ) \ B(T )〉 be the tree t with its blossoms
removed. List the vertices of t′ in lexicographic order as v1, . . . , vn and recall that
kt′(vi) is the number of children of vi in t′.

Then (T , ξ) is equal to t if and only if (T ′, ξ ′)= t′ and for each v ∈ V (T ′), the
stems are inserted at the right place. Hence,

P
{
(T , ξ)= t

} ∝ n∏
i=1

1(kt′ (vi )+2
2

)P
{
B = kt′(vi)

}

=
n∏

i=1

1(kt′ (vi )+2
2

)
(
kt′(vi)+ 2

2

)
P
{
G= kt′(vi)

}

= 3n−1

42n−1 .

The last equality holds since G is geometric and
∑n

i=1 kt′(vi) = n − 1. Since the
last term does not depend on the shape of t, all elements of Tn appear with the
same probability. �

COROLLARY 5.7. Let (T , ξ̂ ) be uniformly random in Tn and let ξ1, ξ2 ∈ C(T )

be such that (T , ξ i) is balanced for i ∈ {1,2}. Conditionally given (T , ξ̂ ) choose
ξ ∈ {ξ1, ξ2} uniformly at random. Then (G, c) = χ(T , ξ) is uniformly distributed
in �◦

n+2.

PROOF. Let t = (t, c) be a balanced blossoming tree of size n. Consider the
set of triples t• = {(t, c, ĉ) : ĉ an inner corner of t}. Then we have

P
{
(T , ξ)= t

}= P
{
(T , ξ, ξ̂ ) ∈ t•

}= 1

2

∑
(t,c,ĉ)∈t•

P
{
(T , ξ̂ )= (t, ĉ)

}= 2n− 1

|Tn| ,

where the last equality comes from the fact that t has 4n− 2 inner corners (hence,
|t•| = 4n− 2) and that (T , ξ̂ ) is uniformly random in Tn. It follows that (T , ξ) is
uniformly random in T ◦

n , which concludes the proof since χ is a bijection between
T ◦

n and �◦
n+2. �

Proposition 5.4 now allows us to describe the distribution of a uniformly ran-
dom element (T ′, ξ ′,D) of T vl

n . For each k ≥ 1, let νk be the uniform law over
nondecreasing vectors (d1, . . . , dk) ∈ {−1,0,1}k .
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COROLLARY 5.8. Let (T ′, ξ ′) be a Galton–Watson tree with offspring dis-
tribution B conditioned to have n vertices. Conditionally given (T ′, ξ ′), indepen-
dently for each v ∈ V (T ′) let (D{v,vj)},1 ≤ j ≤ k(v)) be a random vector with law
νk(v). Finally, let D = (De, e ∈ E(T ′)). Then (T ′, ξ ′,D) is uniformly distributed
in T vl

n .

PROOF. By Proposition 5.6, the tree (T ′, ξ ′) has the same law as the sub-
tree obtained from a uniformly random element of Tn by removing all stems. The
corollary then follows by Proposition 5.4. �

For later use, we note the following fact. Recall the definition of the labelling
function XT for T a spatial plane tree, from Section 2.3.

FACT 5.9. Fix two inner corners ξ1, ξ2 of C(T ), and let T1 = (T ′, ξ ′1,D1) =
φn(T , ξ1) and T2 = (T ′, ξ ′2,D2) = φn(T , ξ2). Then for all v ∈ V (T ′), XT1(v) =
Y(T ,ξ1)(v)− 2, and |(Y(T ,ξ1)(v)− Y(T ,ξ2)(v))−X(T,ξ1)(v(ξ2))| ≤ 3.

In other words, the labellings XT and YT are related by an additive constant of 2,
and rerooting shifts all labels according to the label of the new root under the old
labelling, up to an additive error of 3. This is a direct consequence of Fact 5.3 and
the definitions of XT and YT; its proof is omitted.

We conclude Section 5 by explaining the inverse of the bijection χn. The de-
scription of the inverse relies the properties of so called 3-orientations for simple
triangulations. We make use of such orientations in Section 7 when studying the
relation between vertex labels and geodesics.

5.5. Orientations and the opening operation. In a planted map endowed with
an orientation, a directed cycle is said to be clockwise if the root corner is situated
on its left and counterclockwise otherwise. An orientation is called minimal if
it has no counterclockwise cycles. Let (G, ξ) be a planted planar triangulation,
and recall from Section 1.3 that (G, ξ) admits a unique minimal 3-orientation.
We next describe how to obtain this 3-orientation via the bijection described in
Proposition 5.1.

Given a balanced 2-blossoming tree T = (T , ξ), orient all stems towards their in-
cident blossom, and orient all other edges towards v(ξ). In the triangulation χ(T),
all edges except {A,B} inherit an orientation from T ; orient {A,B} from B to A.
Then all inner vertices of T not incident to ξ have outdegree 3 in T and the closure
operation does not change this outdegree. It follows easily that the resulting ori-
entation of χ(T) is a 3-orientation. Furthermore, the “clockwise direction” of the
local closures implies that closure never creates counterclockwise cycles, so the
3-orientation is minimal.
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FIG. 6. The opening of a simple triangulation into a 2-blossoming tree.

Given a planted planar triangulation G = (G, ξ), the balanced blossoming
tree χ−1(G, ξ) can be recovered as follows. Let

−→
E be the unique minimal 3-

orientation of E(G). List the vertices of the face incident to ξ in clockwise order
as (v(ξ),A,B). Remove the edge {A,B}, and perform a clockwise contour explo-
ration of G starting from ξ . Each time we see an edge uv for the first time, if it is
oriented in the opposite direction from the contour process then keep it; otherwise
replace it by a stem {u,buv}. This procedure is depicted in Figure 6.

6. Convergence to the Brownian snake. Fix a probability distribution μ on
N, and a sequence ν = (νk, k ≥ 1), where for each k ≥ 1, νk is a probability distri-
bution on R

k . We denote νi
k , the ith marginal of νk .

For n ∈ N, we write LGW(μ, ν,n) for the law on spatial plane trees T =
(T , ξ,D) such that:

• The pair (T , ξ) has the law of the genealogical tree of a Galton–Watson process
with offspring distribution μ, conditioned to have total progeny n.7

• Conditionally on (T , ξ), D : E(T ) → R has the following law. Independently
for each u ∈ V (T ), if u has k children then (D({u,u1}), . . . ,D({u,uk})) is
distributed according to νk .

Here is the connection with random simple triangulations. If (Tn, ξn,Dn) is uni-
formly distributed in T vl

n , then Corollary 5.8 states that the law of (Tn, ξn,Dn) is
LGW(μ, ν,n), where μ is the law defined in (7) and for k ≥ 1, νk is the uniform
law on nondecreasing vectors in {−1,0,1}k .

Recall the definition of the pair (e,Z) from Section 1.1, and the definitions
of the functions CT, XT and ZT from Section 2.3. We establish the following
convergence.

7To avoid trivial technicalities, we assume μ is such that the support of μ has greatest common
divisor 1, so that such conditioning is well defined for all n sufficiently large.
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PROPOSITION 6.1. For n ≥ 1, let Tn = (Tn, ξn,Dn) be uniformly random in
T vl

n . Then as n→∞,

(8)
(
(3n)−1/2CTn(t), (4n/3)−1/4ZTn(t)

)
0≤t≤1

d→ (
e(t),Z(t)

)
0≤t≤1,

for the topology of uniform convergence on C([0,1],R)2.

Before proving this proposition, we place it in the context of the existing lit-
erature on invariance principles for spatial branching processes. Fix μ and ν and
let (Tn, n ∈ N) be such that Tn = (Tn, ξn,Dn) has law LGW(μ, ν,n) for n ∈ N.
In what follows, given a measure η on R and p > 0 write |η|p = (

∫
R
|x|p dη)1/p .

Aldous ([2], Theorem 2) showed that if |μ|1 = 1 and σ 2
μ := |μ|22 − |μ|21 ∈ (0,∞),

then

(9)
(

σμ

2

CTn(t)

n1/2

)
0≤t≤1

d→ e

as n →∞, for the topology of uniform convergence on C([0,1],R). Now addi-
tionally suppose that for each k, the marginals {νi

k : 1 ≤ i ≤ k} of νk are identi-
cally distributed, that |ν1

k |1 <∞, that νk is centred [i.e.,
∫
R

x dν1
k (x)= 0 for every

1 ≤ i ≤ k], and that

sup
k

ν1
k

([y,∞)
]= o

(
y−4) for every k ≥ 1.

Under these conditions, writing σν = σν1
1
, Janson and Marckert ([17], Theorem 2)

prove that

(10)
(

σμ

2

CTn(t)

n1/2 ,
(σμ/2)1/2

σν

ZTn(t)

n1/4

)
0≤t≤1

(d)−→
n→∞

(
e(t),Z(t)

)
0≤t≤1

in the same topology as in Proposition 6.1. (In fact, Theorem 2 of [17] is stated with
the additional assumption that νk is a product measure for all k. However, it is not
difficult to see, and was explicitly noted in [17], that straightforward modifications
of the proof allow this additional assumption to be removed.) Under the same as-
sumptions, the convergence in (10) can also be obtained as a special case of [25],
Theorem 8. In the latter article, the marginals of νk are not required to be iden-
tically distributed but they are assumed to be locally centred meaning that for all
1 ≤ i ≤ k,

∫
R

x dνi
k(x)= 0. In our setting, the law of the spatial plane tree is given

by Corollary 5.8. In this case, the entries are clearly not identically distributed, and
neither are they locally centred: observe for instance that

∫
R

x dν1
2(x)=−1/3.

In [24], the “locally centred” assumption is replaced by a global centering as-
sumption, namely that ∑

k≥0

μ
({k}) k∑

i=1

∫
R

x dνi
k(x)= 0,

which is satisfied by our model. However, [24] requires that μ has bounded sup-
port, which is not the case in Corollary 5.8.
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We expect that the technique we use to prove Proposition 6.1 can be used to
extend the results of [24] to a broad range of laws LGW(μ, ν,n) for which μ

does not have compact support, under the slightly stronger centering assumption
that

∑k
i=1

∫
R

x dνi
k(x)= 0 for every k. However, for the sake of concision we have

chosen to focus on the random spatial plane trees that arise from random sim-
ple triangulations (the treatment for random simple quadrangulations differs only
microscopically and is omitted).

For the remainder of Section 6, let μ be as defined in (7), and for k ≥ 1 let νk

be the uniform law on nondecreasing vectors in {−1,0,1}k . For n ≥ 1 let Tn =
(Tn, ξn,Dn) be uniformly random in T vl

n as in Proposition 6.1; by the comments
preceding that proposition, Tn has law LGW(μ, ν,n). To prove Proposition 6.1,
we establish the following facts.

LEMMA 6.2 (Random finite-dimensional distributions). Let (Ui, i ≥ 1) be in-
dependent Uniform[0,1] random variables, independent of the trees (Tn, n ≥ 1),
and for j ≥ 1 let (U

↑
i ,1 ≤ i ≤ j) be the increasing ordering of U1, . . . ,Uj . Then

for all j ≥ 1,

(11)
(
(3n)−1/2CTn

(
U
↑
i

)
, (4n/3)−1/4ZTn

(
U
↑
i

))
1≤i≤j

d→ (
e
(
U
↑
i

)
,Z

(
U
↑
i

))
1≤i≤j ,

as n→∞.

LEMMA 6.3 (Tightness). The family of laws of the processes ((4n/3)−1/4ZTn,

n≥ 1) is tight for the space of probability measures on C([0,1],R).

PROOF OF PROPOSITION 6.1. It is immediate from (9) and Lemma 6.3 that
the collection of laws of the processes (((3n)−1/2CTn, (4n/3)−1/4ZTn), n ≥ 1)

forms a tight family in the space of probability measures on C([0,1],R)2. It there-
fore remains to establish convergence of (nonrandom) finite-dimensional distribu-
tions. For this, it suffices to show that for all m≥ 1, 0 ≤ t1 < t2 < · · ·< tm ≤ 1 and
for all bounded Lipschitz functions F : (R2)m →R,

E
[
F
((

(3n)−1/2CTn(ti), (4n/3)−1/4ZTn(ti)
)
1≤i≤m

)]
(12)

→ E
[
F
((

e(ti),Z(ti)
)
1≤i≤m

)]
.

For the remainder of the proof, we fix m, F and (ti,1 ≤ i ≤ m) as above. Write
‖F‖∞ for the uniform norm of F , and let ‖F‖lip be the Lipschitz constant of F

with respect to the uniform norm on R
2m.

Tightness implies (see [7], Theorem 8.2) that for all δ > 0 there exists α = α(δ)

such that

lim sup
n→∞

P
{

sup
x,y∈[0,1],|x−y|≤α

( |CTn(x)−CTn(y)|
(3n)1/2

(13)

+ |ZTn(x)−ZTn(y)|
(4n/3)1/4

)
> δ

}
< δ.
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Since e and Z are almost surely uniformly continuous, by decreasing α(δ) if nec-
essary we may additionally ensure that

(14) P
{

sup
x,y∈[0,1],|x−y|≤α

(∣∣e(x)− e(y)
∣∣+ ∣∣Z(x)−Z(y)

∣∣) > δ
}

< δ.

Given δ > 0, let α = α(δ) be as above, and let j = j (δ) > 2/α be large enough
that

P
{

max
1≤i≤j

∣∣∣∣U↑
i − i

j

∣∣∣∣≥ α

2

}
< δ.

Since j > 2/α, we may choose integers k1, . . . , km so that for 1 ≤ i ≤m, |ki/j −
ti |< α/2. It follows that

(15) P
{

max
1≤i≤m

∣∣U↑
ki
− ti

∣∣≥ α
}

< δ.

Write A,B and C for the events whose probabilities are bounded in (13), (14)
and (15), respectively, and let E = (A∪B ∪C)c. Note that P{E}> 1− 3δ. When
E occurs, we have∣∣F ((

(3n)−1/2CTn(ti), (4n/3)−1/4ZTn(ti)
)
1≤i≤m

)
− F

((
(3n)−1/2CTn

(
U
↑
ki

)
, (4n/3)−1/4ZTn

(
U
↑
ki

))
1≤i≤m

)∣∣≤ δ‖F‖lip.

We thus have∣∣E[
F
((

(3n)−1/2CTn(ti), (4n/3)−1/4ZTn(ti)
)
1≤i≤m

)]
−E

[
F
((

(3n)−1/2CTn

(
U
↑
ki

)
, (4n/3)−1/4ZTn

(
U
↑
ki

))
1≤i≤m

)]∣∣(16)

≤ δ‖F‖lip + 6δ‖F‖∞.

Furthermore, when E occurs, |e(ti)− e(U↑
ki
)| + |Z(ti)−Z(U

↑
ki
)|< δ, thus we get

similarly: ∣∣E[
F
((

e(ti),Z(ti)
)
1≤i≤m

)− F
((

e
(
U
↑
ki

)
,Z

(
U
↑
ki

))
1≤i≤m

)]∣∣
(17)

≤ δ‖F‖lip + 6δ‖F‖∞.

Finally, by Lemma 6.2, as n→∞,

E
[
F
((

(3n)−1/2CTn

(
U
↑
ki

)
, (4n/3)−1/4ZTn

(
U
↑
ki

))
1≤i≤m

)]
→ E

[
F
((

e
(
U
↑
ki

)
,Z

(
U
↑
ki

))
1≤i≤m

)]
which, together with (16) and (17), implies (12). �

The remainder of the section is devoted to proving Lemmas 6.2 and 6.3. Before
proceeding to this, we state a definition which plays a key role. Given a probability
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measure π on Rk , its symmetrization π̂ is obtained by permuting the marginals uni-
formly at random. More precisely, if (X1, . . . ,Xk) has law π and, independently,
σ is a uniformly random permutation of {1, . . . , k}, then (Xσ(1), . . . ,Xσ(k)) has
law π̂ .

For the remainder of Section 6, let μ be the law of the random variable B defined
in (7). Also, for k ≥ 1 let νk be as in Corollary 5.8, and let ν̂k be the symmetrization
of νk . Note that since

∑
i

∫
R

x dνi
k(x) = 0, we have

∫
R

x dν̂i
k(x) = 0 for each 1 ≤

i ≤ k; in other words, ν̂ = (ν̂k, k ≥ 1) is locally centred. The proofs of Lemmas 6.2
and 6.3 both rely on couplings between LGW(μ, ν,n) and LGW(μ, ν̂, n).

6.1. Symmetrization of plane trees. Fix a spatial plane tree t = (t, ξ, d). For
the remainder of the section it is convenient to conflate t and its Ulam–Harris en-
coding. This allows us to identify t with its vertex set; also, since with this coding
the root vertex is always ∅= v(ξ), we write t = (t, d) instead of t = (t, ξ, d).

Denote by S(t) the set of vectors σ = (σ v : v ∈ t, kt (v) > 0) indexed by the
nonleaf vertices of t, with σv a permutation of {1, . . . , kt (v)}. For σ ∈S(t), the
symmetrization of t with respect to σ is the tree tσ obtained from t by permuting
the order of the subtrees rooted at the children of v according to σv , for each v ∈ t .
More formally,

tσ = {
σ(v), v ∈ t

}
,

where if v = n1n2 · · ·nk ∈ t then

σ(v)= σ∅(n1)σ
n1(n2) · · ·σn1···nk−1(nk).

We then let tσ = (tσ , dσ ), where dσ (σ (u), σ (ui))= d(u,ui) for all edges {u,ui}
of t . Visually, displacements are attached to edges, and follow their edges when
the tree is permuted. Observe that t and tσ are isomorphic as rooted edge-labelled
trees (but need not be isomorphic as spatial plane trees). The local effect of sym-
metrization is depicted in Figure 7(a).

CLAIM 6.4. Let T = (T ,D) have law LGW(μ, ν,n), and let � be a uniformly
random element of S(T). Then T� has law LGW(μ, ν̂, n).

FIG. 7. Examples of the local rules for symmetrization and partial symmetrization at the square
vertex [which in 7(b) is presumed to lie in path(t, r)].
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PROOF. Since T and T � are isomorphic as rooted trees, it follows from the
branching property of Galton–Watson processes that they have the same law. The
definition of ν̂, and the fact that � uniformly permutes labels at every vertex, then
imply that T� has law LGW(μ, ν̂, n). �

COROLLARY 6.5. For n ≥ 1 let Tn = (Tn,Dn) be uniformly random in T vl
n ,

and let �n be a uniformly random element of S(Tn). Then as n→∞,

(18)
(
(3n)−1/2CT�n

n
(t), (4n/3)−1/4ZT�n

n
(t)

)
0≤t≤1

d→ (
e(t),Z(t)

)
0≤t≤1,

for the topology of uniform convergence on C([0,1],R)2.

PROOF. By Corollary 5.8, Tn has law LGW(μ, ν,n), so T�n
n has law

LGW(μ, ν̂, n) by Claim 6.4. Since ν̂ is bounded and locally centred and its
marginals are uniformly distributed on {−1,0,1}, the result follows by (10),
and the computation (see Appendix A) that |μ|1 = 1, σμ/2 = 3−1/2, and σν =
(2/3)1/2. �

Now fix a vector r of vertices of t , and let path(t, r) be the set of “path-points” of
t〈r〉: the vertices of t〈r〉 that have at exactly one child in t〈r〉. Write S(t, r) for the
set of vectors σ = (σ v : v ∈ path(t, r)) with each σv a permutation of {1, . . . , k(v)}.
Given σ ∈S(t, r), extend σ to a vector τ ∈S(t) by setting

τv =
{
σv, if v ∈ path(t, r),

Idk(v), otherwise.

Then the partial symmetrization of t with respect to r and σ is the labelled
tree t̄ = (t̄ , d̄) with vertices t̄ = {τ(v), v ∈ t} = tτ and displacements d̄ given
by d̄(τ (u), τ (u)i) = d(u,ui) for all edges {u,ui} of t . Visually, the vector
(d(v, vi),1 ≤ i ≤ k(v)) is now attached to the vertex v; this vector follows the
vertex when the tree is permuted, but does not change the order of its entries. The
partial symmetrization depends on σ and on r, but we omit this from the notation.
The local rule for partial symmetrization is illustrated in Figure 7(b), and Figure 8
contains an example of partial symmetrization of an entire tree.

In what follows, for v ∈ t we write v̄ = τ(v) for the image of v under the partial
symmetrization. If r = (r1, . . . , rj ), then we write r̄ = (r̄1, . . . , r̄j ). We also let σ̄

be the pushforward of σ to path(t̄ , r̄), so σ̄ (v̄)= σ(v) for v ∈ path(t̄ , r̄). Note that
we then have (σ̄ (v) : v ∈ path(t̄ , r̄)) ∈S(t̄ , r̄).

We remark that t and t̄ are isomorphic as rooted trees, but need not be isomor-
phic as plane trees or as labelled trees. Here are some comments regarding partial
symmetrization:

• In forming t̄, the order of the children at branchpoints of t〈r〉 is not changed.
This implies that t〈r〉 and t̄〈r̄〉 are isomorphic as plane trees.



2796 L. ADDARIO-BERRY AND M. ALBENQUE

FIG. 8. Illustration of partial symmetrization of a tree t = (t, d). The vertices in r are represented by
bigger, solid blue disks. The edges of t〈r〉 are thicker and are blue. On the left, σ ∈S(t, r) is indicated
by listing the permutation at each vertex of path(t, r). On the right, the partial symmetrization t of t
with respect to r and σ is shown, as are the images of the elements of r.

• In particular, if r = (r1, . . . , rk) is increasing with respect to lexicographic order
in t then r̄ = (r̄1, . . . , r̄k) is likewise ordered lexicographically in t̄ .

• Partial symmetrization is invertible: t, r and σ may be recovered from t̄, r̄ and σ̄ .
When we wish to make the dependencies of the symmetrization more explicit,
we write sym(t, r, σ ) instead of (t̄, r̄, σ̄ ).

PROPOSITION 6.6. Let T = (T ,D) have law LGW(μ, ν,n), let R = (R1, . . . ,

Rj ) be a vector of j independent and uniformly random vertices of T , and let
� = (�v, v ∈ path(T ,R)) be a uniformly random element of S(T ,R). Write T̄ =
(T̄ , D̄) for the partial symmetrization of T with respect to � and R, and write
R̄ = (R̄1, . . . , R̄j ) for the images of (R1, . . . ,Rj ) in T̄ . Then (T,R) and (T̄, R̄) are
identically distributed.

PROOF. Fix any pair t′ = (t ′, d ′) ∈ T vl
n , and any vector r′ = (r ′1, . . . , r ′j ) of

nodes of t′. Next, fix σ ′ ∈S(t ′, r′), and let (t, r, σ ) be the unique triple for which
sym(t, r, σ )= (t′, r ′, σ ′). Then

P
{
(T,R,�)= (t, r, σ )

}= P{T = t} · 1

nj
· ∏
v∈path(t,r)

1

kt (v)!

= P
{
T = t′

} · 1

nj
· ∏
v′∈path(t ′,r′)

1

kt ′(v′)! .

The second equality holds since t and t′ are isomorphic as rooted trees and the
vector of labels at each vertex of t is the same as at the one at its image in t ′. Since
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σ ′ ∈S(t ′, r′) is arbitrary and |S(t ′, r′)| =∏
v′∈path(t ′,r′) kt ′(v′)!, it follows that

P
{
(T̄, R̄)= (

t′, r ′
)}= P{T = t′}

nj
,

as required. �

COROLLARY 6.7. Let T = (T ,D) and R = (R1, . . . ,Rj ) be as in Proposi-
tion 6.6. Let T̂ = (T̂ , D̂) have law LGW(μ, ν̂, n) and let R̂ = (R̂1, . . . , R̂j ) be a
vector of j uniformly random vertices of T̂ .

Write (V1, . . . , Vj ) and (V̂1, . . . , V̂j ) for the lexicographic orderings of R and
of R̂. For 1 ≤ i ≤ j , let

Ai =
∑

v∈[[∅,Vi ]]:p(v)∈path(T ,R)

D
(
p(v), v

)
and

Âi =
∑

v∈[[∅,V̂i ]]:p(v)∈path(T̂ ,R̂)

D̂
(
p(v), v

)
.

Then (|V1|, . . . , |Vj |,A1, . . . ,Aj

) d= (|V̂1|, . . . , |V̂j |, Â1, . . . , Âj

)
.

PROOF. Let (T̄, R̄) be as in Proposition 6.6. If {p(u),u} is an edge of T and
p(u) ∈ path(T ,R) then the partial symmetrization uniformly permutes the children
of p(u). Since displacements are not permuted, and are independent on child edges
of distinct vertices, it follows that the random variables{

D̄
(
p(ū), ū

) : p(u) ∈ path(T ,R)
}= {

D̄
(
p(ū), ū

) : p(ū) ∈ path(T̄ , R̄)
}

are independent and uniformly distributed on {−1,0,1}. The conclusion of Propo-
sition 6.6 then implies the same holds for the random variables {D(p(u),u) :
p(u) ∈ path(T ,R)}.

Finally, the trees T and T̂ have the same law, so (|V1|, . . . , |Vj |) d= (|V̂1|, . . . ,
|V̂j |). More strongly, the subtrees T 〈R〉 = T 〈V〉 and T̂ 〈R̂〉 = T̂ 〈V̂〉 are identi-
cally distributed. By the definition of ν̂, the displacements {D̂(p(û), û) : p(û) ∈
path(T̂ , R̂)} are independent and uniform on {−1,0,1}, and the result follows.

�

6.2. Proof of Lemma 6.2. For n≥ 1 let Tn = (Tn,Dn) have law LGW(μ, ν,n).
Fix j ≥ 1, let U1, . . . ,Uj be independent Uniform[0,1] random variables indepen-

dent of the trees Tn, and let U
↑
1 , . . . ,U

↑
j be the increasing ordering of U1, . . . ,Uj .

For 1 ≤ i ≤ j , let ui be such that{
rTn

(⌊
(2n− 2) ·Ui

⌋)
, rTn

(⌈
(2n− 2) ·Ui

⌉)}= {
p(ui), ui

}
,

so that {p(ui), ui} ∈E(Tn) is the edge of Tn being traversed at time Ui by CTn .
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Next, write u
↑
1 , . . . , u

↑
j for the lexicographic ordering of u1, . . . , uj . It is

straightforward that if none of u1, . . . , uj is an ancestor of another, then the order
statistics of u1, . . . , uj and of U1, . . . ,Uj coincide. In this case, for each 1 ≤ i ≤ j ,

at time U
↑
i the edge {p(u

↑
i ), u

↑
i } is being traversed by CTn . Furthermore, the prob-

ability that one of u1, . . . , uj is an ancestor of another is easily seen to tend to zero
as n→∞.

Recalling the notation |ui | = dTn(∅, ui), now observe that |CTn(Ui)− |ui || ≤ 1
and |ZTn(Ui)−XTn(ui)| ≤ 1 for all 1 ≤ i ≤ j . If none of u1, . . . , uj is an ancestor

of another, then it follows from the preceding paragraph that |CTn(U
↑
i )−|u↑i || ≤ 1

and |ZTn(U
↑
i ) − XTn(u

↑
i )| ≤ 1 for all 1 ≤ i ≤ j . As this occurs with probability

tending to one, to prove the lemma it suffices to show that

(19)
(
(3n)−1/2∣∣u↑i ∣∣, (4n/3)−1/4XTn

(
u
↑
i

))
1≤i≤j

d→ (
e
(
U
↑
i

)
,Z

(
U
↑
i

))
1≤i≤j .

The elements of (u1, . . . , uj ) are independent and uniformly distributed over
Tn \ {∅}. We may thus couple (u1, . . . , uj ) with a sequence W = (w1, . . . ,wj )

of independent uniformly random elements of Tn so that P{(u1, . . . , uj ) �=
(w1, . . . ,wj )} → 0 as n → ∞. [Here and below, we suppress the dependence
of (w1, . . . ,wj ) on n for readability.] But if (u1, . . . , uj )= (w1, . . . ,wj ) then the

lexicographic reorderings of these vectors are also equal. Writing (w
↑
1 , . . . ,w

↑
j )

for the lexicographic ordering of (w
↑
1 , . . . ,w

↑
j ), it follows that replacing u

↑
i by w

↑
i

for 1 ≤ i ≤ j does not affect the convergence (or lack thereof) in (19).
Next, for each 1 ≤ i ≤ j write Ai =∑

v∈[[∅,w
↑
i ]]:p(v)∈path(Tn,W)

Dn(p(v), v). The

tree Tn〈R〉 has at most j leaves, so |Ai −XTn(w
↑
i )| ≤ j − 1. It follows that replac-

ing XTn(w
↑
i ) by Ai for each 1 ≤ i ≤ j likewise does not affect whether or not (19)

converges in distribution. It thus suffices to establish the convergence(
(3n)−1/2∣∣w↑

i

∣∣, (4n/3)−1/4Ai

)
1≤i≤j

d→ (
e
(
U
↑
i

)
,Z

(
U
↑
i

))
1≤i≤j .

Now let T̂n = (T̂n, D̂n) have law LGW(μ, ν̂, n), let Ŵ = (ŵ1, . . . , ŵj ) be uni-

formly random vertices of Tn and let (ŵ
↑
1 , . . . , ŵ

↑
j ) be their lexicographic reorder-

ing. With Âi = ∑
v∈[[∅,w

↑
i ]]:p(v)∈path(T̂n,R̂)

D̂n(p(v), v), Corollary 6.7 implies that

we may replace w
↑
i by ŵ

↑
i and Ai by Âi , without affecting distributional conver-

gence. We may even replace Ai by X
T̂n

(ŵ
↑
i ), since |Âi −X

T̂n
(ŵ

↑
i )| ≤ j − 1.

In sum, by the above reductions, it suffices to prove that

(20)
(
(3n)−1/2∣∣ŵ↑

i

∣∣, (4n/3)−1/4XT̂n

(
ŵ
↑
i

))
1≤i≤j

d→ (
e
(
U
↑
i

)
,Z

(
U
↑
i

))
1≤i≤j .

To accomplish this, we essentially reverse the above chain of reductions, and con-
clude by applying a known convergence result for globally centered snakes.
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Let V1, . . . , Vj be independent Uniform[0,1] random variables independent

of everything else and let V
↑
1 , . . . , V

↑
j be the increasing ordering of V1, . . . , Vj .

Then let vi be such that {p(vi), vi} is being traversed at time Vi by CT̂n
, and let

(v
↑
1 , . . . , v

↑
j ) be the lexicographic ordering of (v1, . . . , vj ).

Reprising the argument from the start of the proof, we see that with prob-
ability tending to one, for all 1 ≤ i ≤ j the edge {p(v

↑
i ), v

↑
i } is being tra-

versed at time V
↑
i . When this occurs, we have |CT̂n

(V
↑
i ) − dT̂n

(∅, v
↑
i )| ≤ 1 and

|ZT̂n
(V

↑
i )−XT̂n

(v
↑
i )| ≤ 1. It then follows from Corollary 6.5 that

(21)
(
(3n)−1/2dT̂n

(
∅, v

↑
i

)
, (4n/3)−1/4XT̂n

(
v
↑
i

))
1≤i≤j

d→ (
e
(
V
↑
i

)
,Z

(
V
↑
i

))
1≤i≤j .

Finally, v1, . . . , vj are independent uniformly random nonroot vertices of T̂, so the
total variation distance between the laws of (v1, . . . , vj ) and of (ŵ1, . . . , ŵj ) tends

to zero. It follows that the total variation distance between the laws of (v
↑
1 , . . . , v

↑
j )

and (ŵ
↑
1 , . . . , ŵ

↑
j ) also tends to zero, so we may replace v

↑
i by ŵ

↑
i in (21) without

changing the limit. The right-hand sides of (20) and (21) are identically distributed,
so this completes the proof.

6.3. Proof of Lemma 6.3. For n ≥ 1, let Tn = (Tn,Dn) have law LGW(μ,

ν,n). Recall that ZTn is obtained from XTn by the identity ZTn(i/(2n − 2)) =
XTn(r(i)) and by linear interpolation. We shall prove that for all ε > 0 there exists
δ > 0 such that

(22) lim sup
n→∞

P
{

sup
|i−j |≤δn

∣∣XTn

(
r(i)

)−XTn

(
r(j)

)∣∣ > εn1/4
}

< ε.

In the above supremum, it should be understood that we restrict to i, j ∈ [2n− 2],
but we omit this from the notation. Due to the relation between ZTn and XTn , this
immediately implies tightness of the family laws of (ZTn, n ≥ 1), and so proves
the lemma.

For each n≥ 1, let �n be a uniformly random element of S(Tn), and let T̂n be
the symmetrization of Tn with respect to �n. By Corollary 6.5, as n→∞,

(23)
(
(3n)−1/2CT̂n

(t), (4n/3)−1/4ZT̂n
(t)

)
0≤t≤1

d→ (
e(t),Z(t)

)
0≤t≤1,

for the topology of uniform convergence on C([0,1],R)2. It follows in particular
that the family of laws of the processes (ZT̂n

, n ≥ 1) is tight. Since ZT̂n
and XT̂n

are related in the same way as ZTn and XTn , this implies that for all ε > 0 there
exists α = α(ε) > 0 such that

(24) sup
n≥1

P
{

sup
|i−j |≤αn

∣∣XT̂n

(
r̂(i)

)−XT̂n

(
r̂(j )

)∣∣ > εn1/4
}

< ε,

where we write r̂ for the contour exploration of T̂n. We also fix ε > 0 and let
α = α(ε) be small enough that (24) holds.
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Recall from Section 1.1 the definition of the Brownian CRT (Te, dTe). As noted
in that section, the process Z can be seen as having domain (Te, dTe) and remains
a.s. uniformly continuous on this domain. It follows that for all ε > 0, there exists
β > 0 such that

P
{
sup

{∣∣Z(x)−Z(y)
∣∣, for x, y ∈ [0,1] such that dTe(x, y)≤ β

}
> ε

}
< ε.

Together with the convergence in (23) and the relation between ZT̂n
and XT̂n

, this
implies that for all ε > 0 there exists β = β(ε) > 0 such that

(25) sup
n≥1

P
{

sup
u,v∈T̂n:dT̂n

(u,v)≤βn1/2

∣∣XT̂n
(u)−XT̂n

(v)
∣∣ > εn1/4

}
< ε.

For v ∈ Tn, we write v̂ for the image of v in T̂n. The only subtlety of the proof
is that v and v̂ may be visited at very different times in the contour explorations of
Tn and T̂n. In other words, we typically do not have r̂(i)= r̂(i). Observe, however,
that for any i and j , the paths [[r(i), r(j)]] in Tn and [[r̂(i), r̂(j)]] in T̂n are iden-
tical: they have the same length and visit edges with the same labels, in the same
order. In particular, we have

dTn

(
r(i), r(j)

)= d
T̂n

(
r̂(i), r̂(j)

)
,

XTn

(
r(i)

)−XTn

(
r(j)

)=XT̂n

(
r̂(i)

)−XT̂n

(
r̂(j )

)
.

Taking β = β(ε) as above, (25), then yields that for all n≥ 1,

P
{

sup
|i−j |≤δn

∣∣XTn

(
r(i)

)−XTn

(
r(j)

)∣∣ > εn1/4
}

= P
{

sup
|i−j |≤δn

∣∣XT̂n

(
r̂(i)

)−XT̂n

(
r̂(j )

)∣∣ > εn1/4
}

≤ P
{∃u, v ∈ T̂n : dT̂n

(u, v)≤ βn1/2,
∣∣XT̂n

(u)−XT̂n
(v)

∣∣≥ εn1/4}
+ P

{∃i, j : |i − j | ≤ δn, d
T̂n

(
r̂(i), r̂(j)

)
> βn1/2}

≤ ε + P
{∃i, j : |i − j | ≤ δn, d

T̂n

(
r̂(i), r̂(j)

)
> βn1/2}

= ε + P
{∃i, j : |i − j | ≤ δn, dTn

(
r(i), r(j)

)
> βn1/2}.

Now note that

sup
{
dTn

(
r(i), r(j)

) : |i − j | ≤ δn
}≤ 2 sup

{∣∣CTn(x)−CTn(y)
∣∣ : |x − y| ≤ δ

}
.

By the distributional convergence in (9) and the a.s. continuity of Brownian excur-
sion, it follows that if δ > 0 is sufficiently small then

sup
n

P
{∃i, j : |i − j | ≤ δn, dTn

(
r(i), r(j)

)
> βn1/2} < ε.



THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS 2801

For such δ, we then have

sup
n

P
{

sup
|i−j |≤δn

∣∣XTn

(
r(i)

)−XTn

(
r(j)

)∣∣ > εn1/4
}

< 2ε,

which establishes (22) and completes the proof.

7. Blossoming trees, labelling, and distances. The goal of this section is to
deterministically relate labels in a validly-labelled plane tree with the distances
in the corresponding triangulation. For the remainder of Section 7, we fix n ∈ N

and (T , ξ̂ ) ∈ Tn, let ξ ∈ C(T ) be such that T = (T , ξ) is balanced. Finally, let
G = (G, c)= χ(T , ξ) and let (T ′, ξ ′,D)= φn(T , ξ̂ ).

Writing B for the buds of T , we suppose throughout that V (T ′)= V (T ) \ B =
V (G) \ {A,B}. Finally, define Y = YT as in Section 5.3, and note that since T is
balanced, Y(v) ≥ 2 for all v ∈ V (T ). It will be useful to extend the domain of Y

by setting Y(A)= 1 and Y(B)= 2, and we adopt this convention.

7.1. Bounding distances using leftmost paths. To warm up, we prove a basic
lemma bounding the difference between labels of adjacent vertices.

LEMMA 7.1. For all {u,w} ∈E(G), |Y(u)− Y(w)| ≤ 3.

PROOF. First, recall from page 2786 that if u ∈ V (T ) and {u,A} ∈ E(G)

or {u,B} ∈ E(G) then there is a corner ζ incident to u with λ(ζ ) ≤ 3, so
Y(u) ≤ 3. From this, if {u,w} ∩ {A,B} �= ∅ then the result is immediate. Next,
if {u, v} ∈ E(T ) then it is an inner edge of T , in which case Y(u) − Y(v) =
D{u,v}(T , ξ) ∈ {−1,0,1}. Finally, if {u,w} /∈ E(T ) but u,w ∈ V (T ) then there
are corners c1, c2 of T such that v(c1) = u, v(c2) = w, and either c2 = s(c1) or
c1 = s(c2). Assuming by symmetry that c2 = s(c1), we have λ(c2)= λT(c1)− 1.
Since the labels on corners incident to a single vertex differ by at most two, the
result follows in this case. �

The above lemma, though simple, already allows us to prove the labels provide
a lower bound for the graph distance to A in G, up to a constant factor.

COROLLARY 7.2. For all u ∈ V (G), dG(u,A)≥ Y(u)/3.

PROOF. Let (u0, u1, . . . , ul) be a shortest path from u = u0 to A = ul in G.
By Lemma 7.1, since Y(A) = 1 we have Y(u) = |Y(u0) − Y(ul) − 1| < 3l, so
dG(u,A)= l ≥ Y(u)/3. �

We next aim to prove a corresponding upper bound. For this, we use the leftmost
paths briefly introduced in Section 1.3. Let (G, c)= χ(T , ξ) as above, and let

−→
E

be its unique minimal 3-orientation (defined in Section 5.5). Given an oriented
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edge e = uw with {u,w} ∈ E and x ∈ V (G), a path from e to x is a path Q =
(v0, v1, . . . , vm) in G with v0v1 = uw and vm = x. (In the preceding, we do not
require that uw ∈ −→

E .) Given e = {u0, u1} ∈ E(G) with u0u1 ∈ −→
E , the leftmost

path from e to A is the unique directed path P(e) = P(G,c)(e) = (u0, u1, . . . , u�)

with u� = A such that for each 1 ≤ i ≤ � − 1, uiui+1 is the first outgoing edge
incident to ui when considering the edges incident to ui in clockwise order starting
from {ui−1, ui}. The following fact establishes two basic properties of leftmost
paths.

FACT 7.3. For all e ∈ E(G), P(e) is a simple path. Furthermore, if P(e) =
(u0, u1, . . . , u�) and P(e′)= (v0, v1, . . . , vm) are distinct leftmost paths to A with
u0 = v0 = u, and ui = vj for some i, j > 0, then ui+k = vj+k for all 0 ≤ k ≤
�− i =m− j .

PROOF. Let P(e)= (u0, u1, . . . , u�) be the leftmost path from u0u1 to A. Sup-
pose there are 0 ≤ i < j ≤ � such that ui = uj , and choose such i, j for which
|j − i| is minimum. Then C = (ui, ui+1, . . . , uj ) is an oriented cycle with j − i

vertices; let V ′ ⊂ V (G) be the vertices lying on or to the right of this cycle. Since−→
E is minimal, C is necessarily a clockwise cycle, so v(c) /∈ V ′. Also, neither A

nor B are in any directed cycles, and it follows that {A,B,v(c)} ∩ V ′ =∅. Since−→
E is a 3-orientation it follows that for all x ∈ V ′, deg+−→

E
(x) = 3. Furthermore,

for all x ∈ V ′ \ {ui}, since P(e) is a leftmost path, all out-neighbours of x are
elements of V ′. Writing G′ for the sub-map of G induced by V , it follows that
|E(G′)| ≥ 3|V ′ \ {ui}|. But G′ is a simple planar map, and C is a face of G′ of de-
gree j − i ≥ 3. It follows by Euler’s formula that |E(G′)| ≤ 3|V ′| − 3− (j − i)≤
3|V ′ \ {ui}| − 3, a contradiction.

The proof that two leftmost paths merge if they meet after their starting point
follows the same lines and is left to the reader. �

The next proposition provides a key connection between the corner labelling
λ= λT and the lengths of leftmost paths.

PROPOSITION 7.4. For any edge e = {u,w} ∈ E(G) with uw ∈ −→
E and u �=

B , λ(κ�(u,w))= |P(e)|.

PROOF. First, a simple counting argument shows that if {x, y1} is an in-
ner edge of T , and {x, y2} is the first stem following {x, y1} in clockwise order
around x, then writing ζ for the corner of T incident to y2 we have λ(κr(x, y1))=
λ(ζ ). Recall the definition of the successor function s from (6) and the equivalent
definition from Section 5.2. Since {x, y2} is a stem, in G, y2 is identified with s(ζ ),
and by definition λ(s(ζ ))= λ(c)− 1.
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Next, recall the definition of the labelling λ∗ = λ∗T : C(G)→ Z
≥0 from the end

of Section 5.2. It follows from that definition that for any oriented edge xy ∈ −→
E ,

λ∗(κr(y, x))= λ∗(κ�(x, y))− 1. In other words, the label on the left decreases by
exactly one when following any oriented edge.

Now write P(e) = (u0, u1, . . . , u�). Since there are no edges oriented away
from P(e) leaving P(e) to the left, it follows from the two preceding para-
graphs that for 0 < i < � we have λ∗(κr(ui+1, ui)) = λ∗(κ�(ui, ui+1)) − 1 =
λ∗(κr(ui, ui−1))− 1, so

λ∗
(
κr(u�, u�−1)

)= λ∗
(
κ�(u0, u1)

)− �= λ∗
(
κ�(u,w)

)− �.

Finally, λ∗(κr(u�, u�−1))= 1 by definition since u� =A and u�−1 �= v(ξ). We thus
obtain λ∗(κ�(u,w))= �+ 1 = |P(e)|. �

COROLLARY 7.5. For all u ∈ V (G), dG(u,A)≤ Y(u)− 1.

PROOF. Recall the convention that Y(B) = 2 and Y(A) = 1; since also
Y(v(ξ)) = 2, it suffices to prove the result for u ∈ V (G) \ {A,B,v(ξ)}. For such
u, if {u,w} is the first stem incident to u in clockwise order around u starting from
{u,p(u)}, then Y(u)= λ(κ�(u,w)). The claim then follows from Proposition 7.4.

�

7.2. Bounding distances between two points using modified leftmost paths. In
this section, we use arguments similar to those of the preceding section; this time
to prove deterministic upper bounds on pairwise distances in G. Fix two inner
corners ζ1, ζ2 of T , and define

Y̌T(ζ1, ζ2)= min
{
YT(w) : ∃ζ ∈ [ζ1, ζ2]cyc,w = v(ζ )

}
.

PROPOSITION 7.6. For all u, v ∈ V (G)\{A,B}, and for any corners ζu, ζv of
T respectively incident to u and v, we have

dG(u, v)≤ YT(u)+ YT(v)− 2 max
{
Y̌ (ζu, ζv), Y̌ (ζv, ζu)

}+ 6.

Before proving the proposition, we establish some preliminary results. Given an
edge e = u0u1 with {u0, u1} ∈E(T ) for which u0 /∈ B(T ), we define the modified
leftmost path from e to A to be the unique (not necessarily oriented) path Q(e)=
(u0, u1, . . . , u�) in G with u� = A and such that for each 1 ≤ i ≤ �− 1, uiui+1 is
the first edge (considering the edges incident to ui in clockwise order starting from
{ui−1, ui}) which is either an outgoing edge (with respect to the orientation

−→
E )

incident to ui or an inner edge of T . Equivalently, it is the leftmost oriented path,
with the modified orientation obtained by viewing edges of E(T ) as unoriented
(or as oriented in both directions).

We view Q(e) as an oriented path from e to A (though the edge orientations
given by the path need not agree with

−→
E ); we may thus speak of the left-hand and

right-hand side of Q(e).
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FACT 7.7. For 1 ≤ i ≤ � − 1, λ∗(κ�(ui, ui+1)) = λ∗(κ�(ui−1, ui)) − 1. In
other words, the labels along the left of a modified leftmost path decrease by one
along each edge.

PROOF. First, by the definitions of λ and λ∗, for any edge {ui−1, ui} of a
modified leftmost path, λ∗(κr(ui, ui−1))= λ∗(κ�(ui−1, ui))− 1. Moreover, from
the definition of a modified leftmost path, there is no stem incident to ui in T

that lies strictly between {ui−1, ui} and {ui, ui+1} (in clockwise order around ui

starting from {ui−1, ui}). Hence, κ�(ui, ui+1) = κr(ui, ui−1) in T (see the proof
of Proposition 7.4 for more details). The result follows. �

Given {u, v} ∈ E(G), if {u, v} /∈ E(T ) and {u, v} �= {A,B} then by symmetry
we may assume there is an edge {u,b} ∈E(T ) such that v = v(s(b)). In this case,
by a slight abuse of notation we write κ�(u, v)= κ�(u, b).

In the statement and proof of the next fact, write L = λ∗(κ�(u0, u1)) and let
M = min{λ(ξ) : ξ ∈ C(T ), κ�(u0, u1) �ctr ξ}, where we view {u0, u1} as an edge
of E(T ). By the discussion on page 2786, M ∈ {2,3} and M = 3 precisely if
ξ̄ �ctr κ�(u0, u1), where ξ̄ is the unique element of C(T ) \ {ξ} for which (T , ξ̄ ) is
balanced.

Let c∗e (0) = κ�(u0, u1), and for 1 ≤ j ≤ L − M let c∗e (j) be the first corner
ζ following c∗e (0) in T for which λ(ζ ) = L − j . For 1 ≤ j ≤ L − M , c∗e (j) is
necessarily an inner corner of T .

FACT 7.8. For all 0 ≤ j ≤ L − M , c∗e (j) = κ�(uj , uj+1), so vT (c∗e (j)) =
uj ∈Q(e).

Before giving the proof, observe that this property need not hold for a regular
leftmost path; this is the reason we require modified leftmost paths.

PROOF OF FACT 7.8. For j = 0, this holds by definition; we now fix j ≥ 1 and
argue by induction. The definition of λ yields that c∗e (j) �ctr,T c∗e (j + 1), for any
0 ≤ j < L− 2. We consider two cases. First, suppose {uj−1, uj } is an inner edge
of T . Let w ∈ V (T ) be such that κr(uj , uj−1)= ({uj−1, uj }, {uj ,w}). If w is an
inner vertex, then w = uj+1. Likewise, if w is a blossom then v(s(w))= uj+1. In
either case, κ�(uj , uj+1) = κr(uj , uj−1) in T . Hence, κ�(uj , uj+1) is the corner
immediately following κ�(uj−1, uj ) in the contour exploration of T . By Fact 7.7,
λ∗(κ�(uj , uj+1)) = λ∗(κ�(uj−1, uj )) − 1, and c∗e (j − 1) = κ�(uj−1, uj ) by the
inductive hypothesis. It follows that c∗e (j)= κ�(uj , uj+1).

Second, suppose {uj−1, uj } is not an inner edge. By definition, there is no edge
in T incident to uj and lying strictly between {uj−1, uj } and {uj ,uj+1} in clock-
wise order around uj . Hence, in T , s(uj−1)= κ�(uj , uj+1). In this case, the result
follows by the definition of s(uj−1) and by induction. �
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FIG. 9. Path between u and v formed by concatenating sections of two modified leftmost paths.
Arrows indicate orientation in

−→
E . Straight arrows along the path are edges of E(T ); curved arrows

are edges of E(G) \E(T ).

PROOF OF PROPOSITION 7.6. By symmetry, we may assume that ζu �ctr,T ζv .
Let su and sv be the edges lying to the right of these corners in T , and let eu

and ev be the corresponding edges in G. Write Q(eu) = (u0, u1, . . . , uλ(ζu)−1)

with u0 = u and eu = {u0, u1}, and likewise write Q(ev) = (v0, v1, . . . , vλ(ζv)−1).
Observe that λ∗(κ�(u0, u1))= λ(ζu) and likewise λ∗(κ�(u0, u1))= λ(ζu).

We assume for simplicity that Y̌ (u, v) > 3 [when Y̌ (u, v) ≤ 3 there is a minor
case analysis involving the presence of vertices A and B in Q(eu) and Q(ev);
the details are straightforward and we omit them]. By Fact 7.8 and the definition
of Y̌ (u, v), necessarily ceu(λ(ζu)− Y̌ (u, v)+ 1) and c∗ev

(λ(ζv)− Y̌ (u, v)+ 1) are
incident to the same vertex z = u

λ(ζu)−Y̌ (u,v)+1 = v
λ(ζv)−Y̌ (u,v)+1. Let P be the

concatenation of the subpath of Q(eu) from u= u0 to z with the subpath of Q(ev)

from z to v0 = v (see Figure 9 for an illustration). Then P connects u and v in G,
so

dG(u, v) ≤ |P | − 1

= λ(ζu)+ λ(ζv)− 2Y̌ (ζu, ζv)+ 2

≤ Y(u)+ Y(v)− 2Y̌ (ζu, ζv)+ 6,

where the last inequality comes from the fact that |λ(ζu)−Y(u)| ≤ 2 and |λ(ζv)−
Y(v)| ≤ 2. A symmetric argument proves the existence of a path P ′ in G between
v and u of length λ(ζu)+ λ(ζv)− 2Y̌ (v, u)+ 6; this gives the desired bound. �

7.3. Winding numbers and distance lower bounds. It turns out that the lower
bound on dG(u,A) given by Corollary 7.2 can be improved by considering wind-
ing numbers around u; we now remind the reader of their definition.

Consider a closed curve γ : [0,1] → R
2 \ {0}, and parametrize γ in polar co-

ordinates as ((r(t), θ(t)),0 ≤ t ≤ 1) so that θ is a continuous function. We define
the winding number of γ around zero to be (θ(1) − θ(0))/(2π). Next, fix a ref-
erence point r ∈ S

2. For x ∈ S
2 \ {r} and a closed curve γ : [0,1] → S

2 \ {r, x},



2806 L. ADDARIO-BERRY AND M. ALBENQUE

let ϕ : S2 \ {r} to R
2 be a homeomorphism with ϕ(x)= 0, and define the winding

number windr (x, γ ) of γ around x to be the winding number of ϕ◦γ : [0,1]→R
2

around zero. It is straightforward that this definition does not depend on the choice
of ϕ(x).

In what follows, it is useful to imagine having chosen a particular representative
from the equivalence class of G, or in other words a particular planar embedding (it
is straightforward to verify that the coming arguments do not depend on which em-
bedding is chosen). Let r be any point in the interior of the face of G incident to c.

DEFINITION 7.9. Fix an oriented edge e = uw ∈ −→
E and a simple path Q =

(v0, v1, . . . , vm) from u to A. Define the winding number w(Q,e) = wG(Q, e)

of Q around e as follows. Write P(e) = (u0, u1, . . . , u�). Note that u0 = v0 = u,
u1 = w and u� = vm = A. Form a cycle C = (v0, v1, . . . , vm = u�,u�−1, . . . , u0).
Then fix a point x in the interior of the face incident to κr(u,w), and let w(Q,e)=
windr (x,C).

In the preceding definition, we conflate C with its image in S
2 under the embed-

ding of G (and likewise with x); it is straightforward to verify that w(Q,e) does
not depend on the choice of such embeddings.

PROPOSITION 7.10. For all e = uw ∈ −→
E , if Q is a simple path from u to A

then |Q| ≥ |P(e)| + 2(w(Q,e)− 2).

PROOF. Write P(e)= (u0, u1, . . . , u�). Let R = (w0,w1, . . . ,wk) be a simple
path meeting P(e) only at w0 and wk , with w0 = ui , wk = uj for some 0 ≤ i <

j ≤ �. If j < � then let ĉ = κr(uj , uj+1) and if j = � (so uj =A) then let ĉ be the
corner of the root face of (G, c) incident to A.

We say R leaves P(e) from the right if i > 0 and the corner κr
G(ui, ui+1) pre-

cedes κr
G(ui,w1) in clockwise order around ui starting from κr

G(ui, ui−1). Other-
wise say that R leaves P(e) from the left; in particular, if i = 0 then R leaves from
the left by convention. Likewise, R returns to P(e) from the right if ĉ precedes
κr(uj ,wk−1) in clockwise order around uj starting from κr(uj , uj−1); otherwise
say that R returns to P(e) from the left.

The key to the proof is the following set of inequalities. Note that k = |R| − 1:

(1) If R leaves P(e) from the right and returns from the left, then k ≥ j − i−2.
(2) If R leaves P(e) from the left and returns from the left, then k ≥ j − i.
(3) If R leaves P(e) from the left and returns from the right, then k ≥ j − i −

1+ 2(1[i>0] + 1[j<�]).
(4) If R leaves P(e) from the right and returns from the right, then k ≥ j − i −

1+ 21[j<�].
For later use, we say R has type 1 if R leaves P(e) from the right and returns
from the left, and define types 2, 3 and 4, accordingly. Let C = (w0, . . . ,wk =
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uj , . . . , ui) be the cycle contained in the union of R and P(e). We provide the
details of the bounds from (1) and (3), as (2) and (4) are respectively similar.

Note that although C does not respect the orientation of edges given by
−→
E ,

it is nonetheless an oriented cycle, so it makes sense to speak of the right- and
left-hand sides of C. For (1), let V ′ be the set of vertices on or to the right of C,
and let G′ be the submap of G induced by V ′. All faces of G′ have degree three
except C, which has degree k+j− i. By Euler’s formula, it follows that |E(G′)| =
3|V ′| − 3− (k + j − i).

For i < m < j , since P(e) is a leftmost path, |{x ∈ V ′ : umx ∈ −→
E }| = 1. Also,

since R returns from the left, we must have wk−1uj ∈ −→
E [or else wk−1 = uj+1,

which contradicts that P(e) meets R only at its endpoints], so |{x ∈ V ′ : ujx ∈−→
E }| = 0. Since

−→
E is a 3-orientation, it follows that E(G′)≤ 3|V ′| − 2(j − i)− 1,

which combined with the equality of the preceding paragraph yields that k ≥ j −
i − 2.

For (3), let V ′ be the set of vertices on or to the left of C. Euler’s formula
again yields |E(G′)| = 3|V ′| − 3 − (k + j − i). For x ∈ V ′ not lying on C, we
have x /∈ {A,B,v(c)}, so since

−→
E is a 3-orientation, |{y ∈ V ′ : xy ∈−→

E }| = 3. For
i < m < j − 1, we have m < �− 1, so um is not on the root face; since R returns
from the right, it follows that |{y ∈ V ′ : umy ∈−→

E }| = 3. Lastly, |{x ∈ V ′ : uj−1x ∈−→
E }| ≥ 1 since uj−1, uj lies on C, and likewise |{x ∈ V ′ : uix ∈ −→

E }| ≥ 1. The
edges of R are disjoint from the sets of edges counted above, so∣∣E(

G′)∣∣≥ 3
∣∣V ′ \ {w1, . . . ,wk,ui, uj−1}

∣∣+ 2+ k = 3
∣∣V ′∣∣− 2k − 4.

Combined with the equality given by Euler’s formula, this yields k ≥ (j − i)− 1.
Next, since P(e) is leftmost, um /∈ {A,B,v(c)} for m < �−1, which is straightfor-
wardly seen. Thus, if j < � then since

−→
E is a 3-orientation, we in fact have |{x ∈

V ′ : uj−1x ∈−→
E }| = 3, and the same counting argument yields that k ≥ (j − i)+1.

Similarly, if i > 0 then |{x ∈ V ′ : uix ∈−→
E }| = 3 and again k ≥ (j − i)+1. Finally,

if 0 < i < j < � then the same argument yields k ≥ (j − i)+ 3.
To conclude, subdivide the path Q into edge-disjoint sub-paths R1, . . . ,Rt , each

of which is either a sub-path of P(e) or else meets P(e) only at its endpoints. We
assume R1, . . . ,Rt are ordered so that Q is the concatenation of R1, . . . ,Rt , so in
particular, u = u0 is the first vertex of R1, A= u� is the last vertex of Rt , and for
1 ≤ s < t the last vertex of Rs is the first vertex of Rs+1.

For 1 ≤ i ≤ 4, let ni be the number of sub-paths of type i among {R1, . . . ,Rt }.
Since Rt is the only sub-path that intersects the root face, and R1 is the only sub-
path which may contain u= u0, the above inequalities and a telescoping sum give

|Q| = 1+
t∑

s=1

(|Ri | − 1
)

≥ ∣∣P(e)
∣∣− 2n1 + 3n3 + n4 − 2(1[R1 has type 3] + 1[Rt has type 3 or 4]).
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In particular, we obtain the bound |Q| ≥ |P(e)| + 2(n3 − n1 − 2). Finally, sub-
paths that leave from the right and return from the left correspond to clockwise
windings of C around u, and subpaths that leave from the left and return from
the right correspond to counterclockwise windings of C around u. It follows that
n3 − n1 is precisely the winding number w(Q,e); this completes the proof. �

In what follows, if C is an oriented cycle in G then we write V l(C) [resp.,
V r(C)] for the sets of vertices lying on or to the left (resp., on or to the right) of C,
and note that V l(C)∩ V r(C)= V (C).

PROPOSITION 7.11. For all e = uw ∈−→
E , if Q is a shortest path from u to A

and w(Q,e) < 0 then there is a cycle C in G such that G[V l(C)] and G[V r(C)]
each have diameter at least �−w(Q,e)/2�−2, and such that maxy∈V h(C) YT(y)−
miny∈V h(C) YT(y)≥ �−w(Q,e)/2� for h ∈ {l, r}.

PROOF. We write Q = (u0, u1, . . . , u�), and partition Q into edge-disjoint
sub-paths R1, . . . ,Rt as at the end of the proof of Proposition 7.10. For 1 ≤ s ≤ t

and 1 ≤ i ≤ 4, let ni(s) be the number of sub-paths of type i among {R1, . . . ,Rs}.
If u0u1 �= e, then by definition R1 leaves P(e) from the left, so n1(1)= 0.

Let m= �−w(Q,e)/2�, and let s be minimal so that n1(s)−n3(s)=m; neces-
sarily, Rs has type 1. Also, s ≥m+ 1, and since n1(t)− n3(t)=−w(Q,e)≥ 2m

we also have m ≤ t − m. Write Rs = (w0,w1, . . . ,wk), with w0 = ui , w1 = uj

for distinct i, j ∈ {1, . . . , �}. By reversing Rs if necessary, we may assume i < j ,8

and write C = (w0,w1, . . . ,wk,uj−1, . . . , ui =w0). Since m+ 1 ≤ s ≤ t −m, the
concatenation of R1, . . . ,Rs−1 has length at least m and so does the concatena-
tion of Rs+1, . . . ,Rt . Since Q is a shortest path from u to A, it follows that for
0 ≤ i ≤ k, dG(u,wi)≥m+ i + 1 and dG(A,wi)≥m+ (k − i).

Fix 0 < a < j − i and let S be a shortest path from u to ui+a . The concatenation
of S, (ui+a, . . . , uj ), and Rs+1, . . . ,Rt has dG(u,ui+a)+ (j − i− a)+ dG(uj ,A)

edges. On the other hand, by the inequality in (1) from the proof of Proposi-
tion 7.10, we have k ≥ j− i−2, so Q has at least dG(u,ui)+j− i−2+dG(uj ,A)

edges. Since Q is a shortest path, it follows that

dG(u,ui+a)≥ dG(w,ui)+ a − 2 ≥m+ a − 2 ≥m− 1.

A similar argument shows that for all 0 < a < j − i, dG(A,ui+a) ≥ m − 1. Fi-
nally, one of G[V l(C)] or G[V r(C)] contains R1, . . . ,Rs , and the other contains
Rs, . . . ,Rt . Therefore, each of G[V l(C)] and G[V r(C)] contains at least m ver-
tices of P(e); since vertex labels strictly decrease along P(e), the final claim of
the proposition follows. �

8It is not hard to prove that there is always some shortest path Q for which the ordered sequence
of intersections with P(e) respect the orientation of P(e), so that there is no need to reverse Rs to
ensure i < j . However, we do not require such a property for the current proof.
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PROPOSITION 7.12. For all e = uw ∈ −→
E , if Q is a shortest path from

u to A and w(Q,e) < −2 then there is an oriented cycle C in G of length
at most 6(|Q| − 1)/(−w(Q,e) − 2) such that G[V l(C)] and G[V r(C)] each
have diameter at least �−w(Q,e)/3� − 2 and such that maxy∈V h(C) YT(y) −
miny∈V h(C) YT(y)≥ �−w(Q,e)/3� for h ∈ {l, r}.

PROOF. The proof is very similar to that of Proposition 7.11, so we omit most
details. Partition Q into R1, . . . ,Rt and define ni(s), 1 ≤ s ≤ t , 1 ≤ i ≤ 4 as before.
Let m = �−w(Q,e)/3�. There are at least m values of s such that Rs has type 1
and m+ 1 ≤ n1(s)− n3(s)≤ 2m; among these, let s� minimize |Rs� |. Then

dG(u,A)≥m · (|Rs� | − 1
)≥ −(w(Q, e)+ 2)

3
· (|Rs� | − 1

)
.

The sub-path of P(e) joining the endpoints of Rs� has at most two more edges than
Rs� , so the cycle formed by this sub-path of P(e) and Rs� has at most 2|Rs� | ≤
6(dG(w,A) + 1)/(−w(Q,e) − 2) = 6(|Q| − 1)/(−w(Q,e) − 2) vertices. The
remainder of the proof closely follows that of Proposition 7.11. �

8. Labels approximate distances for random triangulations. Fix n ∈ N,
and let (T,ξ̂ ) be uniformly distributed in Tn. [We will later take n →∞, but sup-
press the dependence of (T , ξ̂ ) on n for readability.] Define (T ′, ξ ′,D)= φn(T , ξ̂ ).
Next, as in Corollary 5.7, let ξ1, ξ2 ∈ C(T ) be such that (T , ξ i) is balanced for
i ∈ {1,2}. Conditionally given (T , ξ̂ ), choose ξ ∈ {ξ1, ξ2} uniformly at random.
Write T = (T , ξ) and define G = (G, c) = χ(T). By Corollary 5.7, (G, c) is uni-
formly distributed in �◦

n and T′ = (T ′, ξ ′,D′) is uniformly distributed in T vl
n .

Again define Y = YT as in Section 5.3 and again extend Y to V (G) by taking
Y(A) = 1 and Y(B) = 2. We note that, since the function φn identifies T ′ as a
subtree of T , Y(v) is defined for v ∈ V (T ′).

Using Corollary 7.5 and Proposition 7.10, we now show that with high proba-
bility, the labelling Y : V (G) → Z

≥0 gives distances to A in G up to a uniform
o(n1/4) correction.

THEOREM 8.1. For all ε > 0,

lim
n→∞P

{∃u ∈ V (G) : dG(u,A) /∈ [
Y(u)− εn1/4, Y (u)− 1

]}= 0.

The upper bound dG(u,A)≤ Y(u)−1 holds deterministically by Corollary 7.5.
To prove the lower bound (in probability), we begin by stating a lemma whose
proof, postponed to the end of the section, is based on soft convergence arguments
and the continuity of the Brownian snake. Recall the definition of the contour
exploration (rT(j),0 ≤ j ≤ 2n − 2). Given 0 ≤ i ≤ 2n − 2 = 2|V (T )| − 2 and
� > 0, let

gT(i,�)= sup
{
j < i : ∣∣Y (

rT(j)
)− Y

(
rT(i)

)∣∣≥� or j = 0
}
,

dT(i,�)= inf
{
j > i : ∣∣Y (

rT(j)
)− YT

(
rT(i)

)∣∣≥� or j = 2n− 2
}
.
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Then let N(i,�) = {v ∈ V (T ) : ∃gT(i, δ) ≤ j ≤ dT(i,�), rT(j) = v} be the set
of vertices of T visited by the contour exploration between times gT(i,�) and
dT(i,�).

LEMMA 8.2. For all ε > 0 and β > 0, there exist α > 0 and n0 ∈N such that
for n≥ n0,

P
{
inf

{∣∣N(
i, βn1/4)∣∣ : 0 ≤ i ≤ 2n− 2

}≥ αn
}≥ 1− ε.

PROOF OF THEOREM 8.1. As mentioned, we need only prove the lower
bound. It suffices to show that for all ε > 0,

lim sup
n→∞

P
{∃e = uv ∈−→

E : dG(u,A) < YT(u)− 6
(
εn1/4 + 2

)}≤ 4ε

(we have done a little anticipatory selection of constants in the preceding for-
mula). Write diam(G) for greatest distance between any two vertices of G.
By Corollary 7.5, diam(G) ≤ 2 maxu∈V (G)(YT(u) − 1) = 2(maxu∈V (T ) YT(u) −
minu∈V (T ) YT(u)) + 2, so by Fact 5.9, diam(G) ≤ maxu∈V (T ′) X(T ′,ξ ′,D)(u) −
minu∈V (T ′) X(T ′,ξ ′,D)(u)+ 8. Finally,

max
u∈V (T ′)

XT′(u)− min
u∈V (T ′)

XT′(u)= max
x∈[0,1]ZT′(x)− min

x∈[0,1]ZT′(x),

and Proposition 6.1 implies that (maxx∈[0,1]ZT′(x)−minx∈[0,1]ZT′(x))n−1/4 con-
verges in distribution as n= |V (T ′)| →∞, to an almost surely finite random vari-
able. It follows that there is y = y(ε) > 0 such that P{diam(G) ≥ yn1/4} < ε.
Choose such y, and let B be the event that G contains a cycle C of length at most
2y/ε such that with V l(C) and V r(C) as defined earlier, for h ∈ {l, r} we have

max
u∈V h(C)

YT(u)− min
u∈V h(C)

YT(u)≥ εn1/4.

Next, suppose there exists e = uv ∈ −→
E for which dG(u,A) < YT(u)− 6(εn1/4 +

2). Fix such an edge e, and any shortest path Q from u to A; by Proposition 7.10
we have w(Q,e) ≤ −3εn1/4 − 2. It follows from Proposition 7.12 that either
diam(G)≥ yn1/4 or else B occurs. It thus suffices to show that

(26) P
{
B,diam(G)≤ yn1/4}≤ 3ε.

Suppose B occurs, let C be as in the definition of B , and let F be the subgraph
of T induced by V (T ) \ V (C). Then F is a forest, and each component of F

is contained within G[V l(C)] or G[V r(C)] since T is a subgraph of G. Also,
for {u,w} ∈ E(G) we have |YT(u)− YT(w)| ≤ 1. It follows that, for h ∈ {l, r}, if
G[V h(C)] contains k components of F then one such component Th must have

max
u∈V (Th)

YT(u)− min
u∈V (Th)

YT(u) > εn1/4/k − 1.
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But F has at most |E(C)| ≤ 2(|Q| − 1)/(εn1/4) connected components. When
diam(G)≤ yn1/4 we have 2(|Q|−1)/(εn1/4)≤ 2y/ε, so for each h ∈ {l, r}, some
component Th of F contained in G[V h(C)] must have

max
u∈V (Th)

YT(u)− min
u∈V (Th)

YT(u)≥ ε2n1/4

2y
− 1.

Using again that labels of adjacent vertices differ by at most one, if diam(G) ≤
yn1/4 then for h ∈ {l, r} there is vh ∈ V h(C) such that

min
v∈V (C)

∣∣Y(vh)− YT(v)
∣∣≥ ε2n1/4

4y
− 1

2
− 2y

ε
.

Now for h ∈ {l, r} let jh = jh(T)= inf{0 ≤ i ≤ 2n− 2 : rT(i)= vh}. Also, fix any
β ∈ (0, ε2/2y). By Lemma 8.2 there is α > 0 such that for n sufficiently large,

P
{
min

(
N
(
jl, βn1/4),N(

jr , βn1/4))≤ αn
}≤ ε.

For n large enough that ε2n1/4/(4y)− 1/2− 2y/ε > βn1/4, for h ∈ {l, r} we also
have N(jh,βn1/4)⊂ V h(C), and it follows that for n sufficiently large

P
{
B,diam(G)≤ yn1/4}

(27)

≤ 2ε + P
{
∃C a cycle in G, |C| ≤ 2y

ε
,min

(∣∣V l(C)
∣∣, ∣∣V r(C)

∣∣)≥ αn

}
.

The event in the last probability is that G contains a separating cycle of length at
most 2y/ε that separates G into two subtriangulations, each of size at least αn. The
number tn,m of simple triangulations of an (m+ 2)-gon with n inner vertices has
been computed in [9], and has the asymptotic form tn,m ∼Amαnn−5/2, where Am

and α are explicit constants. (Observe that, in this notation, the number of rooted
simple triangulations with n vertices is equal to tn−3,1.) For K ∈N and α > 0, de-
note by �K(α) the event that a random simple triangulation with n vertices admits
a separating cycle γn of length at most K that separates Gn into two components
each of size at least αn. Then

(28) P
{
�K(α)

}∼ (tn−3,1)
−1

K−2∑
k=1

∫ 1−α

α
t�un�,kt�(1−u)n�,k du∼AK,αn−5/2,

where AK,α depends only on α and K . The event within the last probability in (27)
is contained within the event ��2y/ε�(α), so for n sufficiently large its probability
is at most ε. In view of (26), this completes the proof. �

PROOF OF LEMMA 8.2. Fix ε > 0 and β > 0 as in the statement of the
lemma. List the elements of V (T ′

n) according to lexicographic order in Tn as
vn(1), . . . , vn(n), and for 1 ≤m≤ n let in(m)= inf{i ≥ 0 : rTn(i)= vn(m)}.
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By considering the height process, a straightforward argument (almost identical
that given for equations (12) and (13) of [19]) shows that

sup
0≤t≤1

∣∣∣∣ in(�tn�)2n− 2
− t

∣∣∣∣ d→ 0

from which it follows that for any δ > 0,

P
{

inf{|N(i,βn1/4)| : 0 ≤ i ≤ 2n− 2} + δn

inf{dTn(i, βn1/4)− gTn(i, βn1/4) : 0 ≤ i ≤ 2n− 2} <
1

2

}
→ 0.

In particular, given α > 0, for n large, if dTn(i, βn1/4) − gTn(i, βn1/4) > αn for
all 0 ≤ i ≤ 2n− 2 then with high probability inf{|N(i,βn1/4)| : 0 ≤ i ≤ 2n− 2}>

αn/3. It therefore suffices to prove there exists α > 0 such that for all n sufficiently
large,

(29) P
{
inf

{
dTn

(
i, βn1/4)− gTn

(
i, βn1/4) : 0 ≤ i ≤ 2n− 2

}≥ αn
}
> 1− ε.

By Proposition 6.1 and Skorohod’s embedding theorem, we now work in a space
in which

(30)
(
(3n)−1/2CTn(t), (4n/3)−1/4ZTn(t)

)
0≤t≤1

a.s.→ (
e(t),Z(t)

)
0≤t≤1.

Let A = A(Z) = inf{|x − y| : x, y ∈ [0,1], |Z(x)− Z(y)| > β/(2 · (4/3)1/4)}, or
let A(Z)= 1 if the set in the preceding infimum is empty. When (dTn(i, βn1/4)−
gTn(i, βn1/4))/(2n− 2) < 1 either dTn(i, βn1/4) �= 0 or gTn(i, β

1/4) �= 2j − 2, so
either ZTn(dTn(i, βn1/4)/(2n − 2)) − ZTn(i/(2n − 2)) > βn1/4 or ZTn(i/(2n −
2))−ZTn(gTn(i, βn1/4)/(2n− 2)) > βn1/4. By (30), it follows that a.s.

(2n− 2)−1 · inf
{
dTn

(
i, βn1/4)− gTn

(
i, βn1/4) : 0 ≤ i ≤ 2n− 2

}
> A

for all n sufficiently large. Finally, since Z is a.s. uniformly continuous on [0,1],
almost surely A > 0, and (29) follows immediately. �

9. The proof of Theorem 1.1 for triangulations. For each n ∈ N, construct
a map encoding Pn = (Mn,Tn) as follows. Let (T , ξ̂ ) be uniformly random in Tn

and let Tn = (Tn, ξn,Dn) := φn(T , ξ̂ ). Next let ξ1, ξ2 ∈ C(T ) be such that (T , ξ i)

is balanced for i ∈ {1,2}. Conditionally given (T , ξ̂ ) choose ξ ∈ {ξ1, ξ2} uniformly
at random. Then let Mn = (Mn, ζn) := χn(T , ξ).

To prove Theorem 1.1 for triangulations, we verify that P = (Pn, n ∈ N) is
a good sequence of map encodings, with sequences an = (3n)−1/2 and bn =
(4n/3)−1/4. Assuming this, to conclude note that, by Corollary 5.7, (Mn, ζn) is
a uniformly random element of �◦

n+2. Since bn+2/bn → 1 as n →∞, the result
then follows from Theorem 4.1.

In what follows, our usage of the notation Cn, Zn, Xn and rn agrees with
that of Section 4. By Proposition 5.4 and Corollaries 5.7 and 5.8, Tn has law
LGW(μ, ν,n), where the law of μ is given by (7) and ν = (νk, k ≥ 1) is as in
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Corollary 5.8. Condition 1 then holds by Proposition 6.1. Condition 2(i) is imme-
diate from the construction as Mn contains only two vertices (A and B) that are
not elements of V (Tn).

Next, recall that m=m(n)= 2|V (Tn)|− 2. For u, v ∈ V (Mn)\{A,B}, let i and
j be such that u = rn(i) and v = rn(j). Then, combining Fact 5.9 and Proposi-
tion 7.6 [with ζu = ξTn(i) and ζv = ξTn(j)] yields:

dMn(u, v)≤Zn(i/m)+Zn(j/m)− 2 max
(
Žn(i/m, j/m), Žn(j/m, i/m)

)+ 18,

where the additive constant 18 arises from the 6 in Proposition 7.6, plus four times
the additive error of 3 from Fact 5.9. It follows that for all 0 ≤ i, j ≤m,

dMn

(
rn(i), rn(j)

)
≤Zn(i/m)+Zn(j/m)− 2 max

(
Žn(i/m, j/m), Žn(j/m, i/m)

)+ 18,

which verifies 3(i). Condition 3(ii) follows directly from Theorem 8.1. It remains
to establish 2(ii). Since Xn(ξn)= 0, it follows from (3) that

bn ·
∣∣dMn(ζn, ξn)+ Žn(0,1)

∣∣ d→ 0,

so by 1,

(31) bndMn(ζn, ξn)
d→−Ž(0,1)

d=Z(V )− Ž(0,1),

where V
d= Uniform[0,1] is independent of Z; the last equality in distribution is

from (2). Now let Vn be a uniformly random element of V (Tn). Arguing from (3)
and 1 as above, we obtain

(32) bndMn(Vn, ζn)
d→Z(V )− Ž(0,1).

Next, recall that (Mn, ζn) is uniformly random in �◦
n+2. It follows that, condi-

tionally given Mn, ζn is a uniformly random element of C(Mn); let cn be another
uniformly random element of C(Mn), independent of ζn and of Vn. It follows that

(33) dMn(Vn, ζn)
d= dMn(Vn, cn).

Let
−→
E be the minimal 3-orientation associated to Mn. Writing cn = ({xn, yn},

{yn, zn}), let ṽ(cn) = yn if ynzn ∈ −→
E , and ṽ(cn) = zn otherwise. Note that ṽ(cn)

is either equal to or incident to v(cn), so |dMn(Vn,v(cn)) − dMn(Vn, ṽ(cn))| ≤ 1.
Further, since cn is a uniformly random corner of Mn, {yn, zn} is a uniformly
random edge of Mn, so for all v ∈ V (Mn), P{ṽ(cn) = v} is proportional to the
outdegree of v in

−→
E . Since all inner vertices of Mn have outdegree 3 in

−→
E , and cn

is independent of Vn, we may couple ṽ(cn) with a uniformly random element Un of
V (Tn), independent of Vn, such that P{Un �= ṽ(cn)}→ 0 as n→∞. Furthermore,
dMn(v(cn),Un)≤ 1 on {Un = ṽ(cn)}, so bndMn(cn,Un)→ 0 in probability, as n→
∞. It then follows from (32) and (33) that

bndMn(Vn,Un)
d→Z(V )− Ž(0,1).

With (31), this establishes 2(ii) and completes the proof.
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10. The proof of Theorem 1.1 for quadrangulations. The results on which
the proof for simple triangulations rely all have nearly exact analogues for simple
quadrangulations, which makes the proof for quadrangulations quite straightfor-
ward. In this section, we state the required results, with an emphasis on the details
that differ between the two cases.

10.1. Simple quadrangulations and blossoming trees. The counterpart of the
bijection between simple triangulations and 2-blossoming trees is a bijection be-
tween simple quadrangulations and 1-blossoming trees, due to Fusy [14]. In this
section, by “blossoming trees” we mean 1-blossoming trees, and write T ,n for the
set of blossoming trees with n inner vertices. Fix a blossoming tree T . Given a
stem {b,u} with b ∈ B(T ), if bu is followed by three inner edges in a clockwise
contour exploration of T —uv, vw and wz, say—then the local closure of {b,u}
consists in removing the blossom b [from both V (T ) and B] and its stem, and
adding a new edge {u, z}.

After all local closures have been performed, all unclosed blossoms are incident
to a single face f . A simple counting argument shows that there exist exactly
two edges {u, v} and {x, y} of f such that u, v, x and y are each incident to one
unclosed stem; between any two other consecutive unclosed stems, there are two
edges of f . Assume by symmetry that f lies to the left of both uv and xy, and
write ξC = κr(v, u), ξD = κr(y, x), C = v(ξC) and D = v(ξD) [see Figure 10(b)].

Given ξ ∈ C(T ), the planted blossoming tree (T , ξ) is balanced if ξ = ξC or
ξ = ξD . Suppose ξ ∈ {ξC, ξD} and write v = v(ξ). Let SCD (resp. SDC) be the set
of nonblossom vertices u incident to an unclosed blossom in the partial closure,
such that in the planted tree (T ,C) [resp., (T ,D)] we have C �ctr v ≺ctr D (resp.,
D �ctr v ≺ctr C).

To finish the construction, remove the remaining blossoms and their stems. Add
two additional vertices A and B within the outer face, and an edge between A

FIG. 10. The closure of a balanced 1-blossoming tree into a simple quadrangulation.
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(resp., B) and each of the vertices of SCD (resp., of SDC). In the resulting map,
define a corner c by c = ({C,B}, {C,A}) if v = C or c = ({D,A}, {D,B}) if v =
D. Finally, add an edge between A and B in such a way that, after its addition,
c lies on the same face as A,B , and v [see Figure 10(c)]. Write χ (T) for the
resulting map.

Fix a planted planar quadrangulation (Q, ξ), and view (Q, ξ) as embedded in
R

2 so that the face containing ξ is the unique unbounded face. A 2-orientation
of a (Q, ξ) is an orientation for which α(v) = 2 for each vertex v not incident to
the root face and, listing the vertices of the unbounded face in clockwise order as
v,A,B,w with v = v(ξ), we have α(A) = 0, α(B) = α(v) = 1 and α(w) = 2.
Write

−→
E for the resulting quadrangulation. Ossona de Mendez [30] showed that

a quadrangulation admits a 2-orientation if and only if it is simple, and in this case
admits a unique minimal 2-orientation.

PROPOSITION 10.1 ([14]). The closure operation χ ,n is a bijection between
the set T ◦

,n of balanced 1-blossoming trees with n inner vertices and the set
�◦

n+2 of planted quadrangulations with n+ 2 vertices. Furthermore, for T ∈ T ,n,
χ ,n(T) is naturally endowed with its minimal 2-orientation by viewing stems of T
as oriented towards blossoms, and all other edges as oriented towards the root.

10.2. Sampling simple quadrangulations. Given a blossoming tree T =
(T , ξ), define λ := λ ,T : C(T )→ Z as follows. Let (ξ (i),0 ≤ i ≤ 2|V (T )|−2)

be the contour ordering from Section 2.2, with ξ0 = ξ . Let λ (ξ0) = 2 and, for
0 ≤ i < 2|V (T )| − 3, set

λ
(
ξ (i + 1)

)=
⎧⎪⎪⎨⎪⎪⎩

λ
(
ξ (i)

)− 1, if ξ (i) /∈ B, ξ (i + 1) /∈ B,

λ
(
ξ (i)

)
, if ξ (i) /∈ B, ξ (i + 1) ∈ B,

λ
(
ξ (i)

)+ 2, if ξ (i) ∈ B, ξ (i + 1) /∈ B.

As opposed to Section 5.2, here the label increases by 2 after each stem.
It is not hard to see that T = (T , ξ) is balanced if and only if ξ is incident to

one stem and λ (c) ≥ 2 for all c ∈ C(T ). With the same definition of successors
for corners, and the same construction as in Section 5.2, this labelling yields an-
other description of the bijection from Section 10.1. Let T vl

,n be the set of triples
(T , ξ ′, d) where (T , ξ ′) is a planted plane tree and d = (de, e ∈ E(T )) is a ±1 la-
belling of E(T ) such that for all v ∈ V (T ), listing the edges from v to its children
in lexicographic order as e1, . . . , ek , the sequence de1, . . . , dek

is nondecreasing.

Let X
d= Geometric(2/3), and let B have law given by

(34) P{B = k} = (k + 1)P{X = k}
E(X + 1)

, for k ∈N.

The following is the analogue of Corollary 5.8 for quadrangulations.
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PROPOSITION 10.2. Let (T ′, ξ ′) be a Galton–Watson tree with offspring dis-
tribution B conditioned to have n vertices. Conditionally given (T ′, ξ ′), indepen-
dently for each v ∈ V (T ′), list the children of v in clockwise order as v1, . . . , vk

and let (D{v,vj},1 ≤ j ≤ k) be a random vector with law ν ,k , where ν ,k is
the uniform law over nondecreasing vectors (d1, . . . , dk) ∈ {−1,1}k . Finally, let
D = (De, e ∈ E(T ′)). Then (T ′, ξ ′,D) is uniformly distributed in T vl

,n and the
closure χ ,n(T

′, ξ ′,D) is uniformly distributed in �◦
n+2.

The proof of Proposition 6.1 extends immediately to this setting and we obtain
the following convergence (see Appendix A for the computation of the constants).

PROPOSITION 10.3. For n ∈N, let Tn = (Tn, ξn,Dn) be a uniformly random
element of T vl

,n. Then as n→∞,

(35)
(

3

4n1/2 CTn(t),

(
3

8n

)1/4
ZTn(t)

)
0≤t≤1

d→ (
e(t),Z(t)

)
0≤t≤1,

for the topology of uniform convergence on C([0,1],R)2.

10.3. Labels and distance in simple quadrangulations. We next state ana-
logues of the results of Sections 7 and 8 for quadrangulations. Fix n ∈ N and
(T , ξ) ∈ T ◦

,n, let (Q, c) = χ ,n(T , ξ) be endowed with its minimal 2-orientation−→
E and let (T ′, ξ ′,D) ∈ T vl

,n be the validly-labelled tree associated to (T , ξ). Fi-
nally, write Q = (Q, c) and T = (T , ξ).

The definition of leftmost paths for simple quadrangulations is an obvious mod-
ification of that for triangulations. Together with the fact that (with YT defined as
before) for {u,w} ∈ E(Q), |YT (u) − YT (w)| ≤ 3, we obtain the following facts.
The lemma is a counterpart of Lemma 7.1 and Corollary 7.5; the proposition is a
counterpart of Proposition 7.6, and uses an identical definition for Y̌T (u, v).

LEMMA 10.4. For all u ∈ V (Q), YT (u)/3 ≤ dQ(u,A)≤ YT (u)− 1.

PROPOSITION 10.5. For all u, v ∈ V (Q),

dQ(u, v)≤ YT (u)+ YT (v)− 2 max
{
Y̌T (u, v), Y̌T (v, u)

}+ 2.

The winding number introduced in Definition 7.9 is used in the following ana-
logue of Proposition 7.10.

PROPOSITION 10.6. For all e = uw ∈ −→
E , if Q is a simple path from e to A

then |Q| ≥ |P(e)| + 2(w(Q, e)− 1).

PROOF. The proof of Proposition 7.10 extends readily to the case of quadran-
gulations. Keeping the same notation, the following inequalities (proofs of which
are left to the reader) allow one to conclude along the same lines:
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(1) If R leaves P(e) from the right and returns from the left, then k ≥ j − i−2.
(2) If R leaves P(e) from the left and returns from the left, then k ≥ j − i.
(3) If R leaves P(e) from the left and returns from the right, then k ≥ j − i +

2(1[i>0] + 1[j<�]).
(4) If R leaves P(e) from the right and returns from the right, then k ≥ j − i +

21[j<�]. �

Combining Lemma 10.4 and Proposition 10.6, we obtain that with probability
tending to one, distances to A in Q are given by labels in T up to a o(n1/4)

perturbation.

THEOREM 10.7. For all ε > 0,

lim
n→∞P

{∃u ∈ V (Q) : dQ(u,A) /∈ [
YT (u)− εn1/4, YT (u)− 1

]}= 0.

PROOF. The only element of the proof of Theorem 8.1 that cannot be directly
applied here is the approximation of P{�K(α)} given in (36) that relies on the
number tn,m of simple triangulations of an (m+ 2)-gon. This has an easy fix: for
α > 0, write � ,K(α) for the event that a uniformly random simple quadrangu-
lation Qn with n faces admits a separating cycle of length at most K , separating
Qn into two components each of size at least αn. An explicit expression for the
number qn,m of simple quadrangulations of a 2m-gon with n inner vertices is de-
rived in [10], and has the asymptotic form qn,m ∼ Amαnn−5/2, where Am and α

are explicit constants. (Observe that, in this notation, the number of rooted simple
quadrangulations with n vertices is equal to qn−4,2.). Then

(36) P
{
�K(α)

}∼ (qn−4,2)
−1

K∑
k=0

∫ 1−α

α
t�un�,kt�(1−u)n�,k du∼A ,K,αn−5/2,

where A ,K,α depends only on α and K . �

APPENDIX A: NOTES ABOUT CONSTANTS

In this section, we briefly derive the forms of the constant coefficients arising in
Theorem 1.1 and Proposition 6.1.

For simple triangulations, we work with a critical Galton–Watson tree with a
offspring distribution B uniquely specified by the following facts:

(1) Criticality: EB = 1.
(2) There exists p ∈ (0,1) such that if G is Geometric(p) then the law of B is

given by setting, for each k ∈N,

P{B = k} =
(k+2

2

)
P{G= k}

E
(G+2

2

) .
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From these conditions, a straightforward calculation shows that p = 3/4, and an-
other easy computation yields that E[B2] = 7/3 so Var{B} = 4/3. In the notation
of Section 6, this yields σμ = 2/31/2.

Next, the displacement D between a node in our tree and a uniformly selected
child is equal to one of {−1,0,1}, each with equal probability; it follows that
E[D2] = 2/3. Let νk be the law of the displacement vector for a vertex with k

children, then let ν̂k be its symmetrization (as defined in Section 6), and write ν̂i
k for

the ith marginal of ν̂k . It follows that σ 2
ν̂i
k

= 2/3 for all 1 ≤ i ≤ k, so σ 2
ν̂
= σ 2

ν = 2/3

and (σμ/2)1/2/σν = (3/4)1/4. Together with Theorem 4.1, this explains the values
of constants relating to triangulations.

We remark that the scaling required for convergence of triangulations in The-
orem 1.1 agrees with the intuition described in [8], Section 4.1. It differs by a
factor 81/4 from the scaling for general triangulations that arises in Theorem 1.1
of [22], which can be understood as follows. First, in [22], the index n denotes
the number of faces rather than the number of vertices, which accounts for a fac-
tor 21/4. The size of the simple core of a loopless triangulation with m vertices is
typically ∼m/2 (see Table 4 of [4]); this explains another factor 21/4. Finally, the
loopless core of a simple triangulation with m vertices is again typically of order
∼m/2 (this is not proved in [4] but may be handled using the same technology);
this explains the final factor 21/4. The latter factor does not arise in considering
quadrangulations, which cannot contain loops; this may be viewed as explaining
the different form of the constant for triangulations versus those of bipartite maps
in Theorem 1.1 of [22].

For simple quadrangulations, we work with a critical Galton–Watson tree with
offspring distribution B uniquely specified by the following facts:

(1) Criticality: EB = 1.
(2) There exists p ∈ (0,1) such that if G is Geometric(p) then the law of B is

given by setting, for each c ∈N,

P{B = c} = (c+ 1)P{G= c}
E[G+ 1] .

From these calculations, a straightforward calculation shows that p = 2/3, and
another easy computation then yields that E[B2] = 5

2 , so Var{B} = 3/2. Next,
the displacement D between a node v and a uniformly selected child is equal to
−1 or to 1, each with equal probability, so has E[D] = 0 and Var{D} = 1. Using
Theorem 4.1 as above then yields the scaling for quadrangulations in Theorem 1.1,
and agrees with the two-point calculation for simple quadrangulations by Bouttier
and Guitter [8].
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APPENDIX B: CONVERGENCE FOR GOOD SEQUENCES
OF MAP ENCODINGS

Throughout the section, we let P = (Pn, n ≥ 0) be a good sequence of random
map encodings. We write Pn = (Mn,Tn), Mn = (Mn, ζn) and Tn = (Tn, ξn), and
let Cn,Zn, rn and Xn be as in Section 4.

Next, for n≥ 1, list the vertices of Tn according to their lexicographic order as
vn(1), . . . , vn(|Tn|). Given 1 ≤ j ≤ |V (Tn)|, let in(j) = inf{i : rn(i) = vn(j)} be
the index at which vn(j) first appears in the contour exploration. Let m = mn =
2|V (Tn)| − 2.

LEMMA B.1. As n→∞, we have

sup
0≤t≤1

∣∣∣∣ in(�t · |V (Tn)|�)
mn

− t

∣∣∣∣ d→ 0.

PROOF. As in Lemma 8.2, a straightforward argument using the height pro-
cess (following (12) and (13) of [19]) shows that when mn ≥ 2, deterministically

sup
0≤t≤1

∣∣∣∣ in(�t · |V (Tn)|�)
mn

− t

∣∣∣∣≤ max{|v|, v ∈ V (Tn)} + 4

mn

.

Since mn →∞, it thus suffices to show that (max{|v|, v ∈ V (Tn)} + 4)/mn
d→ 0.

To see this, let U and V be independent Uniform[0,1] random variables. If the
latter convergence fails to hold then for infinitely many n, with uniformly positive
probability, a single path from the root in Tn contains a macroscopic proportion of
the elements of the vertices of Tn. It follows easily that

lim sup
n→∞

P
{
U < V,Cn(U)= min

U≤x≤V
Cn(x)

}
> 0.

On the other hand, P{U < V, e(U)= minU≤x≤V e(x)} = 0, so the preceding equa-
tion implies that e is not the distributional limit of any rescaling of Cn. Thus 1 does
not hold, a contradiction. �

PROOF OF THEOREM 4.1. We claim that it suffices to establish

(37)
(
V (Tn), bndMn,μn

) d→ (S, d,μ)

for dGHP. [In the above, by dMn we really mean the distance on V (Tn) in-
duced by dMn . This slight notational abuse should cause no confusion.] Indeed,
suppose the latter convergence holds. By Skorohod’s representation theorem,
we may work in a space in which the convergence (37) is almost sure. Fix
ε > 0, and let En be the event that maxv∈V (Mn) bn · dMn(v,V (Tn)) ≤ ε/2 and
d2

GH((V (Tn), bndMn,v(ξn),v(ζn)), (S, d, ρ,u�)) ≤ ε/2. Now let R0
n = {(x, y) ∈
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V (Tn) × V (Mn);bndMn(x, y) ≤ ε/2}; then R0
n has distortion at most ε. Further-

more, (v(ζn),v(ζn)) ∈R0
n and (v(ξn),v(ξn) ∈R0

n). Let νn be the probability mea-
sure on V (Tn) × V (Mn) whose restriction to {(v, v) : v ∈ V (Tn)} is the uniform
probability measure. Then νn is a coupling of μn [as a measure on V (Tn)] and μn

[as a measure on V (Mn)], and νn(R0
n)= 1. On En we have that R0

n is a correspon-
dence, so on En,

dGHP
((

V (Mn), bndMn,μn

)
,
(
V (Tn), bndMn,μn

))≤ ε/2,

and by the triangle inequality it follows that on En,

dGHP
((

V (Mn), bndMn,μn

)
, (S, d,μ)

)≤ ε.

Finally, in this space, since P is good sequence of map encodings, P{En} → 1 as

n →∞, and it follows that (V (Mn), bndMn,μn)
d→ (S, d,μ) for dGHP. We thus

turn our attention to proving (37).
The first part of our argument is based on that of [20], Proposition 3.2; the

second part follows closely the argument of Section 8.3 of [22]. Define a function
dn : [0,1]2 → [0,∞) as follows. Define as above m = mn = 2|V (Tn)| − 2, and
for i, j ∈ [m], let dn(i/m, j/m) = dMn(rn(i), rn(j)). Then extend dn to [0,1]2
by “bilinear interpolation”: if (x, y) = ((i + α)/m, (j + β)/m) for 0 ≤ α < 1,
0 ≤ β < 1 then let

dn(x, y)= αβdn

(
(i + 1)/m, (j + 1)/m

)+ α(1− β)dn

(
(i + 1)/m, j/m

)
+ (1− α)β dn

(
i/m, (j + 1)/m

)+ (1− α)(1− β)dn(i/m, j/m).

Using 1, we now work in a space in which

(38) (anCn, bnZn)
a.s.→ (e,Z).

We will show that in such a space, additionally

(39) bndn
a.s.→ d∗,

for the topology of uniform convergence on C([0,1]2). Assume (39) holds, and for
n ∈N, consider the correspondence Rn between (S, d) and (V (Tn), bndMn) given
by letting [s] ∈ [0,1]/{d∗ = 0} = S correspond to rn(i) if and only if �s ·m� = i,
for 0 ≤ i ≤m.9 By (39), the distortion of Rn tends to zero.

Let μ−
n be the uniform probability measure on V (Tn) \ {v(ξn)}. Define a cou-

pling between μ−
n and μ as follows. Fix s ∈ [0,1]. Let f1(s)= [s] ∈ S. If s = i/m

then let f2(s)= rn(i). If s ∈ (i/m, (i+ 1)/m) and {rn(i), rn(i+ 1)} = {u,p(u)} ∈
E(Tn) then let f2(s)= u. Finally, let f = (f1, f2) : [0,1] → S × V (Tn), let λ de-
note one-dimensional Lebesgue measure on [0,1], and let ν = f∗λ. Write π and
π ′ for the projection maps from S × V (Tn) to S and to V (Tn), respectively. We

9A similar technique is used at the end of Section 8 of [22].
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clearly have π∗ν = μ. Also, for each edge e ∈ E(T ), there are precisely two in-
dices i, j ∈ {0,1, . . . ,mn} for which {rn(i), rn(i + 1)} = {u,p(u)}; it follows that
π ′∗ν = μ−

n .
For any pair ([s], rn(i)) ∈Rn, either f2(s)= rn(i) or f2(s)= p(rn(i)), the two

possibilities due to the two directions in which the edge {p(rn(i)), rn(i)} is tra-
versed during the contour exploration. We thus let

R+
n = {([s],w) : ([s],w) ∈Rn or

([s],p(w)
) ∈Rn

}
.

Since Rn was a correspondence, R+
n is again a correspondence, and

ν(R+
n ) = 1. Finally, dis(R+

n ) ≤ dis(Rn) + 2bn so dis(R+
n ) → 0 as n → ∞. It

follows by definition that(
V (Mn), bndMn,μ

−
n

) d→ (S, d,μ)

for dGHP. Finally, the Prokhorov distance between μ−
n and μn is 1/|V (Tn)|, which

tends to zero as n →∞. We may therefore replace μ−
n by μn and the preceding

convergence still holds, which establishes (37) and so proves the theorem. It thus
remains to prove (39).

Define a function d◦n : [0,1]2 →[0,∞) as follows: for x, y ∈ {i/m,0 ≤ i ≤m},
let

d◦n(x, y)= Zn(x)+Zn(y)− 2 max
(
Žn(x, y), Žn(y, x)

)
.

Then extend d◦n to [0,1]2 by bilinear interpolation as with dn. Recalling that for
integer 0 ≤ i ≤ m, Zn(i/m) = Xn(rn(i)), it follows straightforwardly from 1 that
for all ε, δ > 0,

lim sup
n→∞

P
{

sup
|x−y|≤δ

bnd
◦
n(x, y)≥ ε

}
≤ P

{
sup

|x−y|≤δ

(
Z(x)+Z(y)− 2 max

(
Ž(x, y), Ž(y, x)

))≥ ε
}

(the derivation of this inequality is spelled out in a little more detail in [20], Sec-
tion 3). Since Z is almost surely continuous, it follows that for any η > 0 and
k ∈N, there exist δk > 0 and nk ∈N such that for all n≥ nk ,

P
{

sup
|x−y|≤δk

bnd
◦
n(x, y)≥ 2−(k+1)

}
≤ η

2k+1 .

Next, by 3(i), after increasing nk if necessary, for n≥ nk ,

(40) P
{

sup
x,y∈[0,1]

bn

(
dn(x, y)− d◦n(x, y)

)≥ 2−(k+1)
}
≤ η

2k+1 .

By decreasing δk if necessary, we may also ensure that for n < nk ,

P
{

sup
|x−y|≤δk

bn max
(
dn(x, y), d◦n(x, y)

)≤ 2−(k+1)
}
= 1.
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Combining the three preceding estimates yields that for all n≥ 1,

P
{

sup
|x−y|≤δk

bndn(x, y)≥ 2−k
}
≤ η

2k
,

so for all n,

P
{
∀k, sup

|x−y|≤δk

bndn(x, y) < 2−k
}
≥ 1− η.

In other words, with (δk)k≥0 as above, for all n, with probability at least 1− η the
function bndn belongs to the compact

K =
{
f ∈ C

([0,1]2,R) : f (0,0)= 0,∀k, sup
|x−y|≤δk

f (x, y)≤ 2−k
}
,

which implies that {bndn, n ∈N} is tight in C([0,1]2,R). For the remainder of the
proof, we let d̃ ∈ C([0,1]2,R) be any almost sure subsequential limit of bndn; we
suppress the subsequence from the notation for readability.

Recall that we work in a space where (38) holds. In such a space, it follows
from the continuity of Z that bnd

◦
n

a.s.→ dZ , where dZ : [0,1]2 → R is as defined in
Section 1.1. By (40), it follows that for any η > 0 and p ≥ 1,

lim sup
n→∞

P
{

sup
x,y∈[0,1]

(
bndn(x, y)− dZ(x, y)

)≥ 2−p
}
≤ η2−p,

so a.s. d̃ ≤ dZ .
We next claim that a.s. d̃(x, y) = 0 for all x �= y ∈ [0,1] for which x ∼e y.

To see this, suppose that x ∼e y for some x, y ∈ [0,1], and assume by symmetry
that x < y. Continuing to write m = mn = 2|V (Tn)| − 2, (38) implies there ex-
ist random integer sequences (xn, n ∈ N) and (yn, n ∈ N) such that xn/mn

a.s.→ x,
yn/mn

a.s.→ y, and

Cn(xn/mn)= Cn(yn/mn)= min
{
Cn(z) : xn ≤mn · z≤ yn

}
.

It follows that rn(xn)= rn(yn), or equivalently that in(xn)= in(yn), so

dn(xn/mn, yn/mn)= dMn

(
rn
(
in(xn)

)
, rn

(
in(yn)

))= 0.

Since bndn
a.s.→ d̃ (along a subsequence) and xn/mn

a.s.→ x, yn/mn
a.s.→ y, this implies

that

0 = dn(xn/mn, yn/mn)
a.s.→ d̃(x, y),

so d̃(x, y)
a.s.= 0 as claimed.

Since, almost surely, d̃ = 0 on {{x, y} : x ∼e y}, and d̃ ≤ dZ , we must have
d̃ ≤ d∗ since d∗ is the largest pseudo-metric on [0,1] satisfying these constraints.
We now show that in fact, almost surely d̃ = d∗.
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Let U,V be independent and uniform on [0,1]. Letting In be minimal such that
Zn(In/m)= Žn(0,1), then by 1 we have

bnXn

(
rn(In)

)= bnŽn(0,1)
d→ Ž(0,1)

d=−d∗(U,V ),

the last identity by (2) (which is Corollary 7.3 of [22]). Since v(ξn) = rn(0) and
Xn(rn(0))= 0, by (3) we also have

lim
n→∞P

{
bn ·

∣∣dMn(ζn, ξn)+Xn

(
rn(In)

)∣∣ > ε
}= 0,

so since Xn(rn(In))= Žn(0,1), we obtain

bndMn(ζn, ξn)
d→ d∗(U,V ).

Since the Prokhorov metric topologizes weak convergence, by 2(ii) it follows that
for Un and Vn two independent random elements of Rn, then

bndMn(Un,Vn)
d→ d∗(U,V ).

Now let 1 ≤ Jn,Kn ≤ |v(Tn)| be such that vn(Jn) = Un and vn(Kn) = Vn. The

preceding convergence implies bndn(Jn,Kn)
d→ d∗(U,V ). Lemma B.1 implies

that (Jn,Kn)
d→ (U,V ), so the tightness of the collection (bndn, n≥ 1) then yields

bndn(U,V )
d→ d∗(U,V ).

Finally, along the subsequence where bndn
a.s.→ d̃ , we also have bndn(U,V )

d→
d̃(U,V ), so it must be that d̃(U,V )

d= d∗(U,V ). Since a.s. d̃ ≤ d∗, it must there-
fore hold that d̃

a.s.= d∗.
We have now shown that in the space where (38) holds, any subsequential limit

d̃ of bndn must satisfy d̃
a.s.= d∗; this implies that in fact, in this space we have

bndn
a.s.→ d̃ , which establishes (39) and so completes the proof. �
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