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EINSTEIN RELATION AND STEADY STATES FOR THE RANDOM
CONDUCTANCE MODEL1

BY NINA GANTERT∗, XIAOQIN GUO† AND JAN NAGEL∗

Technische Universität München∗ and Purdue University†

We consider random walk among i.i.d., uniformly elliptic conductances
on Zd , and prove the Einstein relation (see Theorem 1). It says that the deriva-
tive of the velocity of a biased walk as a function of the bias equals the diffu-
sivity in equilibrium. For fixed bias, we show that there is an invariant mea-
sure for the environment seen from the particle. These invariant measures are
often called steady states. The Einstein relation follows at least for d ≥ 3,
from an expansion of the steady states as a function of the bias (see Theo-
rem 2), which can be considered our main result. This expansion is proved
for d ≥ 3. In contrast to Guo [Ann. Probab. 44 (2016) 324–359], we need not
only convergence of the steady states, but an estimate on the rate of conver-
gence (see Theorem 4).

1. Introduction. We consider random walk among i.i.d., uniformly elliptic
random conductances. More precisely, let B(Zd) be the set of nonoriented nearest-
neighbor bonds in Zd , d ≥ 2 and � := (0,∞)B(Zd ). An element ω ∈ � is called
an environment. For (x, y) ∈ B(Zd), the weight ω(x, y) is the conductance of the
bond (x, y). For ω ∈ �, the random walk in the environment ω is the Markov
process (Xn)n≥1 with transition probabilities

P x
ω(Xn+1 = y + e|Xn = y) = ω(y, y + e)∑

|e′|=1 ω(y, y + e′)

and P x
ω(X0 = x) = 1. In other words, the transition probabilities are proportional

to the conductances of the bonds. The distribution P x
ω of the random walk is called

quenched law. For a probability measure P on �, the averaged measure Px =
P × P x

ω := ∫
P x

ωP (dω) is called the annealed law. We will assume throughout
this paper that:

(i) the conductances are uniformly elliptic, that is, there is a κ > 1 such that for
all (x, y) ∈ B(Zd)

κ−1 ≤ ω(x, y) ≤ κ,

(ii) (ω(e))e∈B(Zd ) are i.i.d. under P .
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Now, for λ ∈ (0,1) and � ∈ Rd , |�| = 1, define the perturbed environment ωλ of
ω ∈ � by

ωλ(x, y) = ω(x, y)eλ�·(x+y),

where “·” denotes the scalar product in Rd . We denote the quenched and annealed
measures of the random walks in the perturbed environment as P x

ω,λ := P x
ωλ and

Px
λ := P × P x

ω,λ, respectively. If the starting point x is the origin, we will omit the
superscript x = 0, for instance, we write Pω instead of P 0

ω and P instead of P0.
It goes back to [7] that for λ = 0, the random walk satisfies a functional central
limit theorem under P: it converges under diffusive scaling to a Brownian mo-
tion (Bt )t≥0 with a deterministic, diagonal covariance matrix �. For λ > 0, it was
shown in [23] that the random walk is ballistic, that is, there is a deterministic
vector v(λ) with v(λ) · � > 0 such that

lim
n→∞

Xn

n
= v(λ) Pλ-a.s.

The Einstein relation says that the derivative of the speed with respect to the per-
turbation relates to the covariance matrix of the unperturbed random walk among
random conductances as follows.

THEOREM 1 (Einstein relation).

lim
λ→0

v(λ)

λ
= ��.(1)

We remark that Theorem 1 holds true for d = 1 as well, but in that case, it
can be shown by explicit calculation. Theorem 1 was known for the case when
the conductances take only two values and the dimension is at least 3; see [15].
The Einstein relation is conjectured to be true in general for reversible motions
which behave diffusively. We refer to [9] for a historical reference and to [24]
for further explanations. A weaker form of the Einstein relation holds indeed true
under such general assumptions and goes back to [17]. However, (1) was only
established in examples: [18] and [19] consider a tagged particle in an exclusion
process, [16] and [1] investigate other examples of space–time environments, the
paper [15] mentioned above gives the result for particular random walks among
random conductances, [10] treats reversible diffusions in random environments
and [2] considers biased random walks on Galton–Watson trees. The only result,
to our best knowledge, for a nonreversible situation is given in [12]. For results on
the steady states in the case of diffusions, we also refer to the recent work [20].

Note that in [12], when the random walk is a martingale, the Einstein relation (1)
is a consequence of a more general convergence theorem for the steady states. In
the random conductance model, due to the presence of the corrector, to generalize
(1) we need finer estimates of the rate of the convergence of the steady states, for
which we first introduce some notation.
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When (θzω)(x, y) = ω(z + x, z + y) denotes the environment shifted by z, we
set ω̄n := θXnω,n ≥ 0. The Markov chain (ω̄n) is called the environment seen from
the particle and has generator L acting on bounded functions f : � →R as

(Lf )(ω) = ∑
y:|y|=1

Pω(X1 = y)
(
f (θyω) − f (ω)

)
.

For λ = 0, the Markov chain (ω̄n) has an invariant measure Q0 given by

(2)
dQ0

dP
(ω) = Z−1

∑
y:|y|=1

ω(0, y) ∈ [
1/κ2, κ2]

,

with a normalization constant Z. If λ > 0 and the law of Xn is given by Pω,λ, an
invariant measure Qλ for the Markov chain ω̄n can be defined as the Pλ-a.s. limit

Qλf = lim
n→∞

1

n

n∑
k=1

f (ω̄k),(3)

which has an expression in terms of the regeneration times defined in Section 3;
see (20). The invariant measures Qλ are often called “steady states.” The Einstein
relation (1) is a consequence of a first-order expansion of Qλ around λ = 0; see
Theorem 2 below.

To describe the limit, we let H−1 denote the set of all functions f : � → R in
L2(Q0) such that the limit

lim
n→∞

1

n
Q0Eω

[(
n∑

k=0

f (ω̄k)

)2]
=: σ 2(f )

exists and is finite. For a variational characterization of the space H−1, we refer to
[13, 14]. In the classical paper [13], it is proved that for f ∈H−1, the process(

1√
n

nt∑
k=1

f (ω̄k)

)
t≥0

converges weakly (under P0) to a Brownian motion (N
f
t )t≥0 with variance σ 2(f ).

For our result, we consider the subspace F of bounded continuous functions f :
� →R depending only on a finite set of conductances, that is, f (ω) = f̃ ((ωe)e∈E)

for a finite set E ⊂ B(Zd). We remark that it follows from [21] that if f ∈ F and
d ≥ 3, then f − Q0f ∈ H−1. Consider the 2-dimensional process

1√
n

(
n∑

k=1

f (ω̄k) − Q0f,

n∑
k=1

d(ω̄k,0) · �
)
,

where d(ω,x) = Ex
ω[(X1 − X0)] is the local drift. If f − Q0f ∈ H−1, this pro-

cess converges by [13] in distribution under P0 to a 2-dimensional normal random
variable (N

f
1 ,Nd

1 · �). Define then

(4) 
f = −Cov
(
N

f
1 ,Nd

1 · �)
.
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The following theorem is our main result.

THEOREM 2. If d ≥ 3, we have

(5) lim
λ→0

Qλf − Q0f

λ
= 
f

for any f ∈ F .

We remark that it follows by similar arguments as in [12] that Qλ ⇒ Q0 for
d ≥ 2. The first-order expansion (5) of the measure Qλ is obtained in [12] for
P that satisfies some ballisticity condition, where a regeneration structure creates
enough decorrelation for the environments along the path. In our case where the
unperturbed environment P is not ballistic, the first- order expansion (5) is more
delicate. When d ≥ 3, making use of the optimal variance decay for the environ-
ment seen from the particle in [5], Theorem 1.1 (for the unperturbed environment)
and a 1-dependent regeneration structure (for perturbed environments), we obtain
(5). For d ≤ 2, it is not clear to us whether (5) still holds, since the environment
seen from the particle process decorrelates at a slower rate and our argument does
not go through.

In order to prove Theorem 2, we will show the following two theorems. To
simplify notation, we will write Xt for X�t
 and similarly for summation limits
or other indices which are defined for integer values. In Theorem 3, we center by
Q0f to point out the relation to Theorem 2, but we remark that f ∈ H−1 actually
implies Q0f = 0.

THEOREM 3. For any t ≥ 1 and f ∈ H−1, we have

(6) lim
λ→0

λ2

t
EQ,λ

∑t/λ2

k=0 f (ω̄k) − Q0f

λ
= 
f,

where EQ,λ is the expectation with respect to Q0 × Pω,λ.

THEOREM 4. If d ≥ 3, then for any f ∈ F there exist constants C =
C(κ, d, f ) and λ0 = λ0(κ, d) > 0 such that for any t > 1 and λ < λ0,

(7)
∣∣∣∣

λ2

t
EQ,λ

∑t/λ2

k=0 f (ω̄k) − Qλf

λ

∣∣∣∣ ≤ C

t1/4 .

The paper is organized as follows: In Section 2, we collect some a priori esti-
mates whose proofs are deferred to Section 7. We then define, in Section 3, a re-
generation structure which will enable us to prove Theorem 4. As in [10], we here
have to take into account how the regeneration times and regeneration distances
depend on λ. In Section 4, we prove Theorem 3: the main ingredient is Girsanov
transform and the technique of proof is similar to [10]. In Section 5, using the
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regeneration structure, we prove (7) for a class of functions that satisfies a nice
inequality, namely (32). In Section 6, using the variance estimate of [5, 21], we
prove Theorem 4 by verifying (32) for all f ∈ F when d ≥ 3. We also show how
the Einstein relation (1) follows, at least in the case d ≥ 3, from Theorem 2 and
give a different argument to show (1) for any d . Finally, in Section 7, we prove the
estimates listed in Section 2.

2. A priori estimates. Without loss of generality, assume throughout that � ·
e1 = maxi{� · ei,−� · ei}, where {ei : i = 1, . . . , d} denotes the natural basis for
Zd . Let λ1 = �1/λ
−1, such that 1/λ1 ∈ N and 0 ≤ λ1 − λ = o(λ) as λ → 0. For
m ∈ Z and L ∈N, we define the hyperplane

Hm,L = {
x ∈ Zd |x · e1 = mL/λ1

}
and the hitting time

Tm,L = inf
{
n ≥ 0|(Xn − X0) ∈ Hm,L

}
.

For x ∈ Rd , we denote by |x| the 1-norm of x.
The constants appearing in this paper will be allowed to depend on the dimen-

sion d and the ellipticity constant κ but we emphasize that they do not depend
on λ. In the proofs, we use c,C to denote generic positive constants whose values
may change from line to line.

LEMMA 5 (Bounding the probability to go left before going right). There exist
L0 ∈ N, λ0 > 0, depending only on the ellipticity constant κ and the dimension d ,
such that

Pω,λ(T1,L < T−1,L) ≥ 2

3

for all L ≥ L0,0 < λ ≤ λ0 and for all ω.

In the following, fix L0 as in Lemma 5 and we write shorter Hm for Hm,4L0 and
Tm for Tm,4L0 . For the distance between these hyperplanes, we write

L1 = 4L0/λ1,(8)

tacitly ignoring the dependence on λ.

COROLLARY 6 (Bounding the probability to go far to the left). Let λ0 be the
same constant as in Lemma 5. For any ω ∈ �,n ∈ N and λ ∈ (0, λ0), we have

Pω,λ(T−n/4 < ∞) ≤ 2−n.
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LEMMA 7 (Hitting times of hyperplanes to the right are small with high prob-
ability). There exist positive constants c1,C1 such that for any ω, n ≥ 1 and
λ ∈ (0, λ0) we have

Pω,λ

(
Tn ≥ C1n

λ2

)
≤ e−c1n.

LEMMA 8 (Bounds on the moments of the maximum of the walk). For any
p ≥ 1, there exists a positive constant C2, such that for all λ ∈ (0, λ0) and t ≥ 1
and for any ω,

Eω,λ

[
max

0≤s≤t
|λXs/λ2 |p

]
≤ C2t

p.

Corollary 6 is an immediate consequence of Lemma 5. The proofs of Lemmas
5, 7 and 8 are given in Section 7. The following parabolic Harnack inequality will
be used several times in our paper. Let BR = {x ∈ Zd : |x|2 ≤ R} and BR(x) :=
x + BR .

THEOREM 9 (Parabolic Harnack inequality). Fix R ≥ √
d . Let a ∈ � be a

configuration of conductances such that a(e)
a(e′) ≤ CV for any two bonds e, e′ in B2R .

Assume that u : Zd ×Z →R+ is a nonnegative function that satisfies the parabolic
equation

(PE) u(x,n + 1) = ∑
y

P x
a (X1 = y)u(y,n) in B2R × [

0,4R2 + 1
]
.

Then there exists a constant C = C(d,CV ) such that

(PHI) max
BR×[R,2R2]

u ≤ C min
(x,n)∈BR×[3R2,4R2]

[
u(x,n) + u(x,n + 1)

]
.

We remark that the bound a(e)/a(e′) < CV implies the volume-doubling condi-
tion (cf. [6], Definition 1.1) and uniform ellipticity. For our exponentially growing
conductances ωλ, we can choose the constant CV independent of λ ∈ [0,1], as
long as we consider u defined on a subgraph of size C/λ. For the conductances
with a(x, x) > c > 0, the theorem is [6], Theorem 1.7. In our case a(x, x) = 0,
(PHI) is obtained by applying [6], Theorem 1.7, to even-step jumps of the random
walk; see the remarks below [6], Definition 1.3. The above version of (PHI) can
be found in [11], Definition 2.2. Note that when u is not a function of time, that is,
u(x,n) = u(x,m) =: u(x) for all n,m ∈ Z, then u satisfies the elliptic equation

(EE) u(x) = ∑
y

P x
a (X1 = y)u(y)

and (PHI) becomes the elliptic Harnack inequality

(EHI) max
BR

u ≤ C min
BR

u.
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3. Regeneration structure. In this section, we will construct a 1-dependent
regeneration structure on the random walk path so that the inter-regeneration dis-
tances and inter-regeneration times are roughly of order 1/λ and 1/λ2, respec-
tively. The regeneration structure will then imply the estimate of Theorem 4. For
this, we fix the function f ∈ F and allow the constants in this chapter to depend
on f .

3.1. Auxiliary estimates.

LEMMA 10 (Transversal fluctuations are not too large). There exists a con-
stant C3 so that for all λ ∈ (0, λ0)

Pω,λ

(|XT3/4 | ≥ C3/λ
) ≤ 1 − C−1

3 .

PROOF. By Lemma 7 and Lemma 8, for any θ ≥ 1,

Pω,λ

(|XT3/4 | ≥ θ/λ
)

≤ Pω,λ

(
T3/4 ≥ C1/λ

2) + Pω,λ

(
max

0≤s≤C1/λ
2
|Xs | ≥ θ/λ

)

≤ e−c1 + C1C2/θ.

Taking θ sufficiently large, the lemma follows. �

LEMMA 11 (Bounding the exit measure on a hyperplane to the right). There
exists a probability measure μω,λ,1 on H1, which is independent of σ(ω(x, y) :
x · e1 ≤ L0/λ1, y ∈ Zd), and a constant c4 > 0 such that

Pω,λ(XT1 = ·) ≥ c4μω,λ,1(·).
PROOF. We will prove the lemma by showing that, for any w ∈ H1 and x =

e1 · 3L0/λ1,

Pω,λ(XT1 = w) ≥ CP x
ω,λ(XT1/4 = w|T1/4 < T−1/4).

Indeed, for any w ∈ H1,

Pω,λ(XT1 = w) ≥ ∑
y:|y−x|<C3/λ

Pω,λ(XT3/4 = y)P
y
ω,λ(XT1/4 = w)

≥ C
∑

y:|y−x|<C3/λ

Pω,λ(XT3/4 = y)P x
ω,λ(XT1/4 = w)

Lem. 10≥ CC−1
3 P x

ω,λ(XT1/4 = w)

Lem. 5≥ CP x
ω,λ(XT1/4 = w|T1/4 < T−1/4),

where in the second inequality we applied the elliptic Harnack inequality (EHI) to
the function u(y) := P

y
ω,λ(XT1/4 = w) in the ball B2C3/λ(x). �
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3.2. Construction of the regeneration time. Classical regeneration times are
usually defined as times when the random walker crosses a certain hyperplane for
the first time and then never comes back. To keep the regeneration times robust for
small bias, we allow the path to backtrack a distance of order 1/λ. To decouple
the trajectory between these regeneration times, we will then use the “coin trick”
by [4].

The starting point is that by Lemma 11, the hitting probability P x
ω,λ(XT1 = ·)

of the next hyperplane dominates c4 times a probability measure μx
ω,λ,1, which is

independent of the environment to the left of the hyperplane Hx
0 := x + L0

λ1
e1 +H0.

Hence, for β ∈ (0, c4) the hitting probability can be decomposed as

P x
ω,λ(XT1 = ·) = βμx

ω,λ,1(·) + (1 − β)μx
ω,λ,0(·),

where

μx
ω,λ,0(·) := P x

ω,λ(XT1 = ·) − βμx
ω,λ,1(·)

1 − β
.

By Lemma 11, both μx
ω,λ,1 and μx

ω,λ,0 are probability measures on Hx
1 = {y ∈

Zd |(y − x) · e1 = L1}. Let (εi)
∞
i=0 ∈ {0,1}N0 be i.i.d. Bernoulli random variables

with law qβ :

qβ(εi = 1) = β and qβ(εi = 0) = 1 − β.

Intuitively, when Xn is at x ∈ Hi the coin εi will determine whether the hitting
point of the next hyperplane Hi+1 is sampled via μx

ω,λ,0 or μx
ω,λ,1. Until reaching

Hi+1, the law of the path will then be the original quenched law, conditioned on
the predetermined hitting point.

We now give the formal definition of the regeneration times, for which we first
define inductively a path measure given a set of “hitting rules” as described above.
Sample the sequence ε := (εi)

∞
i=0 according to the product measure qβ and fix it.

Then define P x
ω,λ,ε on the paths by the following steps:

Step 1. For x ∈ Zd , set

P x
ω,λ,ε(X0 = x) = 1,

and for any O ∈ σ(X1,X2, . . . ,XT1), put

νx
ω,λ,εi

(O) := ∑
y

[
εiμ

x
ω,λ,1(y) + (1 − εi)μ

x
ω,λ,0(y)

]
P x

ω,λ(O|XT1 = y).(9)

Step 2. Suppose the P x
ω,λ,ε-law for paths of length ≤ n is defined. For any path

(xi)
n+1
i=0 with x0 = x, define

P x
ω,λ,ε(Xn+1 = xn+1, . . . ,X0 = x0)

:= P x
ω,λ,ε(XI = xI , . . . ,X0 = x0)ν

xI
ω,λ,εJ

(Xn+1−I = xn+1, . . . ,X1 = xI+1),
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where

J = max
{
j ≥ 0 : Hx0

j ∩ {xi,0 ≤ i ≤ n} �=∅
}

is the rightmost hyperplane visited by (xi)
n
i=0 and

I = min
{
0 ≤ i ≤ n : xi ∈ H

x0
J

}
is the hitting time to the J th level.

Step 3. By induction, the law P x
ω,λ,ε is well defined for paths of all lengths.

Intuitively, whenever the walker visits new hyperplanes Hi, i ≥ 0, we make him
flip a coin εi . If εi = 0 (or 1), he then walks following the law νω,λ,0 (or νω,λ,1)
until he reaches the (i + 1)-th hyperplane. The regeneration time τ1 is defined to
be the first time of visiting a new hyperplane Hk such that the outcome εk−1 of the
previous coin-tossing is “1” and the path will never backtrack to level Hk−1 in the
future.

Note that a path sampled by P x
ω,λ,ε is not a Markov chain, but the law of X·

under

P̄ x
ω,λ := qβ × P x

ω,λ,ε

coincides with P x
ω,λ. That is,

(10) P̄ x
ω,λ(X· ∈ ·) = P x

ω,λ(X· ∈ ·).
We denote by

(11) P̄λ := P × P̄ω,λ

the law of X· averaged over the coins and the environment. Expectations with
respect to P̄ x

ω,λ and P̄λ are denoted by Ēx
ω,λ and Ēλ, respectively. Next, for a path

(Xn)n≥0 sampled according to Pω,λ,ε , we will define the regeneration times. To be
specific, put S0 = 0, M0 = 0, and define inductively the times Sk and Rk and the
distances Mk by

Sk+1 = inf{Tn+1 : nL1 ≥ Mk and εn = 1},
Rk+1 = Sk+1 + T−1/4 ◦ θSk+1,(12)

Mk+1 = XSk+1 · e1 + N ◦ θSk+1 · L1, k ≥ 0.

Here, θn denotes the time shift of the path, that is, θnX· = (Xn+i)
∞
i=0, and

(13) N := inf
{
n : nL1 > (Xi − X0) · e1 for all i ≤ T−1/4

}
.

We use the convention that inf∅= ∞. Set

K := inf{k ≥ 1 : Sk < ∞,Rk = ∞},(14)

τ1 := SK and τk+1 = τk + τ1 ◦ θτk
.(15)

The times (τk)k≥1 are called regeneration times; see Figure 1 for an illustration.



2542 N. GANTERT, X. GUO AND J. NAGEL

FIG. 1. A sample path of the random walk. A black dot at XTn
represents a successful coin toss

εn = 1, a white dot corresponds to εn = 0. After hitting H2, the random walk does not backtrack more
than L1/4, but since ε1 = 0, this is not a regeneration time. Since ε3 = 1 and after reaching H4, the
path does not backtrack more than L1/4, we have τ̃1 = T3, τ1 = T4. Note that ε3 = 1 implies that

the hitting point XT4 was chosen according to μ
XT3
ω,λ,1.

3.3. Renewal property of the regenerations. The regeneration times possess
good renewal properties:

1. Set τ0 = 0. For k ≥ 0, define

S̃k+1 := inf{Tn : nL1 ≥ Mk and εn = 1},
with Mk as in (12). That is, if we divide the space by the hyperplanes Hk at dis-
tance L1 of each other, S̃k+1 is the hitting time of a hyperplane after the previous
maximum Mk is achieved and when the coin toss corresponding to this hyperplane
is a success. Note that Sk+1 is the hitting time of the next hyperplane after S̃k+1.
Let τ̃k be the hitting time to the previous hyperplane of Xτk

. Namely, with K as in
(14), set

τ̃1 := S̃K, τ̃k+1 := τk + τ̃1 ◦ θτk
(k > 1).

Note that at time τ̃k the εi-coin toss is a success and, after arriving at Xτk
, the

hyperplane of Xτ̃k
is never visited again. Conditioning on Xτ̃k

= x, the law of Xτk

is μx
ω,λ,1, which is independent (under the environment measure P ) of σ(ω(y, z) :

y · e1 ≤ x · e1).
Moreover, after time τk , the path will never visit {y : y · e1 ≤ x · e1 + 3L1/4}.

Therefore, τk+1 − τk is independent of what happened before τ̃k−1 and the inter-
regeneration times form a 1-dependent sequence.

2. Since (Xτ̃k+1 − Xτk
)k≥1 are i.i.d. and (Xτk+1 − Xτ̃k+1) · e1 = 1/λ1, the inter-

regeneration distances ((Xτk+1 − Xτk
) · e1)k≥1 are i.i.d.
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3. From the construction, we see that a regeneration occurs after roughly a
geometric number of levels. Thus, we expect (Xτk+1 − Xτk

) · e1 ∼ c/λ and (by
Lemma 7) τk+1 − τk ∼ c/λ2.

The above properties are made more precise in Lemma 12 below, the proof
follows as in [12]. We introduce the σ -field

Gk := σ
(
τ̃k, (Xi)i≤τ̃k

,
(
ω(x, y)

)
x·e1≤Xτ̃k

·e1

)
and set

(16) pλ := E

[ ∑
y∈H1

μω,λ,1(y)P
y
ω,λ(T−1/4 = ∞)

]
.

LEMMA 12. For any appropriate measurable sets B1,B2 and any event

B := {
(Xi)i≥0 ∈ B1,

(
ω(x, y)

)
x·e1>−L1/4 ∈ B2

}
,

we have for k ≥ 1,

P̄λ(B ◦ θ̄τk
|Gk) = E

[ ∑
y∈H1

μω,λ,1(y)P̄
y
ω,λ

(
B ∩ {T−1/4 = ∞})]/

pλ,

where θ̄n is the time-shift defined by

B ◦ θ̄n = {
(Xi)i≥n ∈ B1,

(
ω(x, y)

)
(x−Xn)·e1>−L1/4 ∈ B2

}
.

We say that a sequence of random variables (Yi)i∈N is m-dependent (m ∈N) if

σ(Yi;1 ≤ i ≤ n) and σ(Yj ; j > n + m) are independent, ∀n ∈ N.

The law of large numbers and central limit theorem also hold for a stationary m-
dependent sequence with finite means and variances; see [3], Theorem 5.2. The
following proposition is an immediate consequence of Lemma 12.

PROPOSITION 13. Under P̄λ, (Xτn+1 − Xτn)n≥1 and (τn+1 − τn)n≥1 are sta-
tionary 1-dependent sequences. Furthermore, for all n ≥ 1, (Xτn+1 − Xτn, τn+1 −
τn) has the following law:

P̄λ(Xτn+1 − Xτn ∈ ·, τn+1 − τn ∈ ·)
= E

[ ∑
y∈H1

μω,λ,1(y)P̄
y
ω,λ(Xτ1 ∈ ·, τ1 ∈ ·, T−1/4 = ∞)

]/
pλ.
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3.4. Moment estimates of regeneration times. In this section, we will show
that the rescaled inter-regeneration times λ2(τ2 − τ1) and inter-regeneration dis-
tances λ(Xτ2 − Xτ1) have finite exponential moments.

THEOREM 14. There exist constants c5,C5 > 0 such that for any ω and λ ∈
(0, λ0),

Ēω,λ

[
exp(c5λXτ1 · e1)

] ≤ C5 < ∞.

PROOF. First, observe that

Ēω,λ

[
exp(cλXτ1 · e1)

] = ∑
k≥1

Ēω,λ

[
exp(cλXSk

· e1)1{Sk<∞,τ1=Sk}
]

≤ ∑
k≥1

Ēω,λ

[
exp(cλXSk

· e1)1{Sk<∞}
]
.

Next, by the definition of Sk , when Sk+1 < ∞, we have (recall that L1 = 4L0/λ1)

XS1 · e1 = G1L1

and, recalling (13),

(XSk+1 − XSk
) · e1 = (N ◦ θSk

+ Gk)L1 for k ≥ 1,

where Gk := inf{n ≥ 1 : εn+Mk/L1 = 1} is a geometric random variable with pa-
rameter β . Hence, taking c > 0 small enough, we can achieve

E
[
ecGk

] ≤ 9

8
.

Then, for k ≥ 1, using the Markov property

Ēω,λ

[
exp(cXSk+1 · e1/L1)1{Sk+1<∞}

]
≤ 9

8
Ēω,λ

[
exp(cXSk

· e1/L1 + cN ◦ θSk
)1{Sk<∞}

]

= 9

8

∑
x

Ēω,λ

[
exp(cx · e1/L1)1{Sk<∞,XSk

=x}
]
Ēx

ω,λ

[
ecN1{T−1/4<∞}

]
.

Further, for any ω,

Eω,λ

[
ecN1{T−1/4<∞}

]
≤ ecPω,λ(T−1/4 < ∞) + ∑

n≥2

ecnPω,λ(N = n,T−1/4 < ∞)

≤ ecPω,λ(T−1/4 < ∞)

+ ∑
n≥2

∑
z∈Hn−1

ecnPω,λ(XTn−1 = z)P z
ω,λ(T−(n−1)−1/4 < T1)

Cor. 6≤ ec/2 + ∑
n≥1

(
ec/16

)n ≤ 7/8,
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where the last inequality is achieved by taking c > 0 sufficiently small. Thus, we
conclude that taking c > 0 sufficiently small, for k ≥ 1,

Ēω,λ

[
exp(cXSk+1 · e1/L1)1{Sk+1<∞}

]
≤ 63

64
Ēω,λ

[
exp(cXSk

· e1/L1)1{Sk<∞}
]
.

Therefore,

Ēω,λ

[
exp(cXτ1 · e1/L1)

]
≤ ∑

k≥1

(
63

64

)k−1
Ēω,λ

[
exp(cXS1 · e1/L1)1{S1<∞}

]

= 64E
[
ecG1

] ≤ 72,

which completes the proof. �

COROLLARY 15. There exist constants c6,C6, c7,C7 > 0 such that for any
integer n ≥ 0, any ω and λ ∈ (0, λ0),

Ēλ

[
exp

(
c6λ(Xτn+1 − Xτn) · e1

)]
< C6,(17)

Ēλ

[
exp

(
c7λ

2(τn+1 − τn)
)]

< C7.(18)

PROOF. When n = 0, inequality (17) reduces to Theorem 14. For n ≥ 1, by
Proposition 13,

Ēλ

[
exp

(
c5λ(Xτn+1 − Xτn) · e1

)]
≤ 2E

[ ∑
y∈H1

μω,λ,1(y)Ē
y
ω,λ

[
exp(c5λXτ1 · e1)1{T−1/4=∞}

]] ≤ 2C5,

where we used again Theorem 14 and the fact (see Corollary 6) that Pω,λ(T−1/4 =
∞) ≥ 1/2 for all ω and λ ∈ (0, λ0). This proves (17). To prove (18), it suffices to
show that

(19) P̄λ

(
τn+1 − τn > Cm/λ2) ≤ Ce−c6m, ∀m ≥ 1, n ≥ 0.

From (17), we get the bound

P̄λ

(
τn+1 − τn > C1m/λ2)
≤ P̄λ

(
(Xτn+1 − Xτn) · e1 ≥ mL1

) + Ēλ

[
P

Xτn

ω,λ

(
Tm > C1m/λ2)]

≤ C6e
−cm + e−c1m

by Lemma 7. �

COROLLARY 16. Let λ ∈ (0, λ0).
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(a) The speed v(λ) satisfies |v(λ)| ∈ (Cλ,C′λ) for positive constants C,C′.
(b) The limit Qλ in (3) exists Pλ-almost surely for any bounded continuous

f , and it defines an invariant measure for the process (ω̄n)n. Moreover, for any
f ∈ F , there exists λ0 > 0 such that for λ < λ0,

(20) Qλf = Ēλ

[ ∑
τ1≤i<τ2

f (ω̄i)

]/
/Ēλ[τ2 − τ1].

PROOF. (a) Since the inter-regeneration distances and inter-regeneration times
are stationary 1-dependent sequences (Proposition 13), and they have exponential
moments (Corollary 15), the law of large numbers gives

v(λ) = lim
n→∞

Xn

n
= lim

n→∞
Xτn

τn

= Ēλ[Xτ2 − Xτ1]
Ēλ[τ2 − τ1]

.

Moreover, by Corollary 15 we have |v(λ)| ≥ 1/λ

c/λ2 > Cλ. On the other hand,

Eω,λ[T1] ≥ t

λ2 Pω,λ

(
T1 ≥ t/λ2) ≥ t

λ2 Pω,λ

(
max

0≤s≤t/λ2
|Xs | ≤ L1

)

= t

λ2

(
1 − Pω,λ

(
max

0≤s≤t/λ2
|Xs | > L1

))
(21)

≥ t

λ2 (1 − Ct) ≥ t/2λ2,

for all ω ∈ � and λ ∈ (0, λ0) and t > 0 a sufficiently small constant (where we
used Lemma 8 for the second-last inequality). Then we also have a lower bound
for the moment of the inter-regeneration time

(22) Ēλ[τn+1 − τn] ≥ c/λ2 for all λ ∈ (0, λ0), n ≥ 0.

So we have |v(λ)| ≤ C ′λ.
(b) For a ballistic random walk in a uniformly elliptic finitely dependent ran-

dom environment, recall that the regeneration times (which are different from the
regeneration times in our paper) constructed by Comets and Zeitouni in [4] di-
vide both the path and the environment into i.i.d. inter-regeneration pieces. This
regeneration structure and the same argument as in the proof of Theorem 3.1 of
[25] yields that the annealed law of ω̄n converges to an ergodic invariant measure,
which we denote by Qλ, of the sequence (ω̄n). Hence,

Qλf = lim
n→∞ Ēλ

[
1

n

n∑
i=0

f (ω̄i)

]
for any f ∈ F .

Suppose f ∈ F is σ(ω(x, ·) : |x| ≤ K)-measurable for some K > 0, then by
Proposition 13, when λ < 1/(4K), the sequence (

∑
τk≤i<τk+1

f (ω̄i)), k ≥ 1, is
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1-dependent and stationary. Therefore, by the moment estimates in Corollary 15
and the law of large numbers for 1-dependent stationary sequences, we have

lim
n→∞ Ēλ

[
1

n

n∑
i=0

f (ω̄i)

]
= lim

k→∞ Ēλ

[
1

τk

τk∑
i=0

f (ω̄i)

]

= Ēλ

[ ∑
τ1≤i<τ2

f (ω̄i)

]/
Ēλ[τ2 − τ1].

�

4. Proof of Theorem 3. Recall the notation EQ,λ in Theorem 3. We start by
writing the expectation with respect to the unperturbed measure,

EQ,λ

[
λ

t

t/λ2∑
k=0

f (ω̄k)

]
= EQ,0

[
λ

t

t/λ2∑
k=0

f (ω̄k)
dPω,λ

dPω

(
Xs;0 ≤ s ≤ t/λ2)]

and first study the Radon–Nikodym derivative

(23) Gω(λ,n) = dPω,λ

dPω

(Xs;0 ≤ s ≤ n).

4.1. An expansion of the Radon–Nikodym derivative. In this subsection, we
will derive a formula (25) for the density Gω(λ,n). For a path (x0, . . . , xn) with
x0 = 0 we have

Pω,λ((x0, . . . , xn))

Pω((x0, . . . , xn))

=
n−1∏
i=0

eλ�·(xi+1−xi)

∑
|e|=1 ω(xi, xi + e)∑

|e|=1 ω(xi, xi + e)eλ�·e

= exp

{
λ� · xn −

n−1∑
i=0

log
[∑

|e|=1 ω(xi, xi + e)eλ�·e∑
|e|=1 ω(xi, xi + e)

]}
.

Note that, for any ω ∈ �,

log
[∑

|e|=1 ω(0, e)eλ�·e∑
|e|=1 ω(0, e)

]

= log
[∑

|e|=1 ω(0, e)(1 + λ� · e + (λ�·e)2

2 + o(λ2))∑
|e|=1 ω(0, e)

]

= log
[
1 + λEω[X1 · �] + λ2

2
Eω

[
(X1 · �)2] + o

(
λ2)]

= λEω[X1] · � + λ2

2
Varω[X1 · �] + o

(
λ2)

,
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where in the last inequality we used the expansion log(1 + x) = x − x2/2 + o(x2)

and we write Varω for the variance with respect to Pω. Then, recalling d(ω,x) =
Ex

ω[X1 − X0], we obtain

Pω,λ((x0, . . . , xn))

Pω((x0, . . . , xn))

= exp

{
λxn · � −

n−1∑
i=0

(
λd(ω,xi) · � + λ2

2
Varθxi

ω

[
(X1 − X0) · �] + o

(
λ2))}

.

Hence, writing

(24) Mn :=
(
Xn −

n−1∑
i=0

d(ω,Xi)

)
· �, D�(ω) := Varω

[
(X1 − X0) · �]

,

we conclude that

Gω(λ,n) = dPω,λ

dPω

(Xs;0 ≤ s ≤ n)

(25)

= exp

{
λMn − λ2

2

n−1∑
i=0

D�(ω̄i) + n · o(
λ2)}

.

4.2. Weak convergence and Girsanov transform. In this subsection, we will
compute the limit of

EQ,λ

[
λ

t/λ2∑
k=0

f (ω̄k)

]

= EQ,0

[
λ

t/λ2∑
k=0

f (ω̄k)Gω

(
λ, t/λ2)]

(26)

= EQ,0

[
λ

t/λ2∑
k=0

f (ω̄k) exp

{
λMt/λ2 − λ2

2

t/λ2−1∑
i=0

D�(ω̄i) + t · o(1)

}]

for f ∈ H−1 and any fixed t > 0, as λ → 0. First, we compute the limits of
the terms in the expectation (26). Recall that for any f ∈ H−1, the process

λ
∑t/λ2

k=0 f (ω̄k) converges weakly (under Q0 × Pω) to a Brownian motion N
f
t .

Furthermore, notice that Mn given in (24) is a Pω-martingale whose increments
are bounded and stationary with respect to Q0 × Pω. Hence, the (joint) martingale
CLT yields the joint convergence

λ

(t/λ2∑
k=0

f (ω̄k),Mt/λ2

)
t≥0

−−−→
λ→0

(
N

f
t ,Nt

)
t≥0,(27)
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in distribution under Q0 × Pω to a 2-dimensional Brownian motion (N
f
t ,Nt)t≥0.

Recall that the process (ω̄n)n≥0 is stationary and ergodic with respect to the initial
measure Q0 defined in (2). By the ergodic theorem, we have

λ2

2

t/λ2−1∑
i=0

D�(ω̄i) −−−→
λ→0

t

2
EQ0

[
D�(ω)

]
Q0 × Pω-almost surely and hence also P-almost surely, where EQ0 denotes the
expectation with respect to Q0.

Next, we will show that Gω(λ, t/λ2) is uniformly bounded in Lp(Pω), p ≥ 1.
In fact, for any p ≥ 1 and small enough λ ≤ λ0 = λ0(p, t), we claim

(28) Eω

[
Gω

(
λ, t/λ2)p] ≤ ep2 t

2 +1.

To show (28), note that by the expansion of the Radon–Nikodym derivative in (25),

logGω

(
pλ, t/λ2) − p logGω

(
λ, t/λ2) = (

p2 − p
)λ2

2

t/λ2−1∑
i=0

D�(ω̄i) + Cp,to(1).

Since D�(ω) = Varω[(X1 − X0) · �] ≤ 1 for all ω, we have∣∣logGω

(
pλ, t/λ2) − p logGω

(
λ, t/λ2)∣∣ ≤ p2t/2 + 1

for all 0 < λ ≤ λ0(p, t), where λ0(p, t) is small enough. Inequality (28) then fol-
lows by recalling that Eω[Gω(pλ, t/λ2)] = 1.

Finally, we will show that

(29) lim
λ→0

EQ,λ

[
λ

t/λ2∑
k=0

f (ω̄k)

]
= t Cov

(
N

f
1 ,N1

)
.

Note that the uniform integrability of Gω(λ, t/λ2) yields

EQ,0
[
Gω

(
λ, t/λ2)] −−−→

λ→0
E

[
exp

{
Nt − t

2
EQ0

[
D�(ω)

]}]

and integrating the density gives EQ,0[Gω(λ, t/λ2)] = 1 for any λ > 0, hence

we have necessarily E[N2
t ] = tEQ0[D�(ω)]. Furthermore, since λ

∑t/λ2

k=0 f (ω̄k) is
bounded in L2 and the density G(λ, t/λ2) is bounded in Lp for any p ≥ 1, their
product is uniformly integrable, which implies

lim
λ→0

EQ,λ

[
λ

t/λ2∑
k=0

f (ω̄k)

]
= lim

λ→0
EQ,0

[
λ

t/λ2∑
k=0

f (ω̄k)Gω

(
λ, t/λ2)]

(26)= E
[
N

f
t eNt− 1

2 E[N2
t ]].

By Girsanov’s formula,

E
[
N

f
t eNt− 1

2 E[N2
t ]] = E

[
N

f
t + Cov

(
N

f
t ,Nt

)] = Cov
(
N

f
t ,Nt

)
,

which proves (29).
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4.3. Remarks on the value of 
f . We have obtained in (29) an expression for
the operator 
 in (5)


f = Cov
(
N

f
1 ,N1

)
.

To complete the proof of Theorem 3, we now show that this coincides with the
definition of 
 in (4),


f = −Cov
(
N

f
1 ,Nd

1 · �)
,

where (Nd
t )t≥0 denotes the weak (Gaussian) limit of the process λ

∑t/λ2

k=0 d(ω̄k,0)

as λ → 0. In the following, we denote by

�Xk := Xk+1 − Xk,

the increments of the random walk. Noting that for any n ≥ 1, the sequence
(�X0, . . . ,�Xn−1, ω̄0, . . . , ω̄n) has the same distribution as (−�Xn−1, . . . ,

−�X0, ω̄n, . . . , ω̄0) under Q0 × Pω, we have

EQ,0

[
(Xn − X0) ·

(
n∑

k=0

f (ω̄k)

)]
= EQ,0

[
(X0 − Xn) ·

(
n∑

k=0

f (ω̄k)

)]
= 0.(30)

Consequently,

Cov
(
N

f
1 ,N1

) = lim
n→∞

1

n
EQ,0

[(
n∑

k=0

f (ω̄k)

)(
Xn −

n∑
i=0

d(ω,Xi)

)
· �

]

= − lim
n→∞

1

n
EQ,0

[(
n∑

k=0

f (ω̄k)

)(
n∑

i=0

d(ω,Xi) · �
)]

= −Cov
(
N

f
1 ,Nd

1 · �)
.

We also remark that replacing the process λ
∑t/λ2

k=0 f (ω̄k) by λXt/λ2 in (26), the
same argument gives

lim
λ→0

1

t
EQ,λ[λXt/λ2] = Cov(B1,N1 · �)

= lim
n→∞

1

n
EQ,0

[
Xn

(
Xn −

n∑
i=0

d(ω,Xi)

)
· �

]
(31)

= lim
n→∞EQ,0

[
Xn(Xn · �)] = ��.

5. A uniform LLN. In this section, we show a quantitative result for the con-
vergence to the steady state of a function g of the environment seen from the
particle and the increments of the process, provided that we can control maxima
of the sum over g. In the next section, we will show that for functions f ∈ F , we
can control the maxima and can use the following theorem to prove Theorem 4.
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THEOREM 17. Let g : � × {e ∈ Zd : |e| ≤ 1} → R be a function such that
g(·, e) ∈ F for any |e| ≤ 1. Assume that for all λ smaller than some λ0 > 0 and
n ≥ 0,

(32)

∥∥∥∥∥ max
0≤m≤n/λ2

∣∣∣∣∣λ
m∑

k=0

g(ω̄k,�Xk)

∣∣∣∣∣
∥∥∥∥∥
L3/2(Q0×Pω,λ)

≤ Cec
√

n.

Then there exists a constant C8 = C8(κ, d, g) such that for any t > 1 and λ ∈
(0, λ0),

(33)
∣∣∣∣

λ2

t
EQ,λ[∑t/λ2

k=0 g(ω̄k,�Xk)] − EQλ
[g(ω,�X0)]

λ

∣∣∣∣ ≤ C8

t1/4 .

Note that the sequence (ω̄k,�Xk)k≥0 is stationary under the measure

(34) Qλ := Qλ × Pω,λ.

Let us denote ξn = ∑n
k=0 g(ω̄k,�Xk) and

ξ∗
m,n = max

m≤j≤n

∣∣∣∣∣
j∑

k=m

g(ω̄j ,�Xj)

∣∣∣∣∣, ξ∗
n := ξ∗

0,n.

We first show the following consequence of inequality (32).

LEMMA 18. Assume that (32) holds. Then there exists a constant C > 0 such
that

ĒQ,λ

[(
λξ∗

τ2

)4/3] ≤ C, ∀λ ∈ (0, λ0).

PROOF. Let P̄Q,λ = Q0 × P̄ω,λ. Since (ξ∗
n )n≥0 is monotonically increasing,

by Minkowski’s and Hölder’s inequalities,

∥∥λξ∗
τ2

∥∥
L4/3(P̄Q,λ) ≤

∥∥∥∥∥
∞∑

n=0

λξ∗
n/λ2,(n+1)/λ21{τ2≥n/λ2}

∥∥∥∥∥
L4/3(P̄Q,λ)

≤
∞∑

n=0

∥∥λξ∗
n/λ2,(n+1)/λ21{τ2≥n/λ2}

∥∥
L4/3(P̄Q,λ)

≤
∞∑

n=0

∥∥λξ∗
n/λ2,(n+1)/λ2

∥∥
L3/2(P̄Q,λ)P̄Q,λ

(
τ2 ≥ n/λ2)1/12

.

By Corollary 15 and the fact that dQ0/dP is bounded [cf. (2)], we have

P̄Q,λ

(
τ2 ≥ n/λ2) ≤ CP̄λ

(
τ2 ≥ n/λ2) ≤ Ce−cn ∀n ≥ 0.

Then the lemma follows by applying inequality (32). �



2552 N. GANTERT, X. GUO AND J. NAGEL

An immediate consequence of (22) and Lemma 18 is

(35)
∣∣EQλ

[
g(ω,�X0)

]∣∣ (20)=
∣∣∣∣ Ēλ[ξτ2 − ξτ1]
Ēλ[τ2 − τ1]

∣∣∣∣ ≤ ĒQ,λ[ξ∗
τ1

+ ξ∗
τ2

]
c/λ2 ≤ Cλ.

PROOF OF THEOREM 17. Note that by (35), inequality (32) still holds if g

is replaced by g − EQλ
[g(ω,�X0)]. Thus without loss of generality, we assume

that

EQλ

[
g(ω,�X0)

] = 0.

1. First, we will show that

(36) ĒQ,λ

[
max

1≤k≤n
|λξτk

|4/3
]
≤ Cn, ∀n ≥ 1.

Indeed, for m ≥ 0, let Nm = ∑τm+1−1
i=τm

g(ω̄i,�Xi). Then for any m ≥ 1 by similar
arguments as in the proof of (20),

Ēλ[Nm] = EQλ

[
g(ω,�X0)

]
Ēλ[τ2 − τ1] = 0.

Hence, (
∑n

m=0 Nm)n≥1 is a sequence with 1-dependent zero-mean increments un-
der the measure P × Pω,λ, and hence by (2) also under Q0 × Pω,λ. Moreover, by
Lemma 18, we have

ĒQ,λ

[|λNm|4/3] = ĒQ,λ

[|λN1|4/3] ≤ 2ĒQ,λ

[∣∣λξ∗
τ2

∣∣4/3] ≤ C, ∀m ≥ 0.

By von Bahr–Esseen’s inequality [26], Theorem 2, we have

ĒQ,λ

[∣∣∣∣ ∑
m ≤ n is odd

λNm

∣∣∣∣4/3]
≤ 2

∑
m ≤ n is odd

ĒQ,λ

[|λNm|4/3] ≤ Cn

and then by Doob’s Lp-martingale inequality,

ĒQ,λ

[
max
k≤n

∣∣∣∣ ∑
m ≤ k is odd

λNm

∣∣∣∣4/3]
≤ CĒQ,λ

[∣∣∣∣ ∑
m ≤ n is odd

λNm

∣∣∣∣4/3]
≤ Cn.

Similarly, we have

ĒQ,λ

[
max
k≤n

∣∣∣∣ ∑
m ≤ k is even

λNm

∣∣∣∣4/3]
≤ Cn.

Combining these inequalities, we conclude that

ĒQ,λ

[
max
k≤n

∣∣∣∣∣
k∑

m=0

λNm

∣∣∣∣∣
4/3]

≤ Cn,

which is exactly (36).
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2. Next, for t > 0 fixed, we let r = r(λ, t) ∈ N be the integer that satisfies

Ēλ[τr−1] ≤ 4t/λ2 < Ēλ[τr ].
We will show that

(37) P̄λ

(
t/λ2 ≥ τr

) ≤ Ce−ct .

Note that by Corollary 15 and (22), we have

cr ≤ t < Cr.

Since by Corollary 15 the sequences (λ2τ1)λ∈(0,λ0) and (λ2(τ2 − τ1))λ∈(0,λ0) are
uniformly integrable [with respect to the measures P̄λ, λ ∈ (0, λ0)], by the lower
bound (22), there exists a constant M > 0 such that for all n ≥ 0 and λ ∈ (0, λ0),

Ēλ

[
M ∧ λ2(τn+1 − τn)

] ≥ 1

2
Ēλ

[
λ2(τn+1 − τn)

]
.

We set

τ̄n =
n−1∑
k=0

(τk+1 − τk) ∧ (
M/λ2)

.

Then, noting that t/λ2 − Ēλ[τ̄r ] ≤ t/λ2 − 1
2 Ēλ[τr ] < −t/λ2, we have

P̄λ

(
t/λ2 ≥ τr

) ≤ P̄λ

(
t/λ2 − Ēλ[τ̄r ] ≥ τ̄r − Ēλ[τ̄r ])

≤ P̄λ

(
λ2∣∣τ̄r − Ēλ[τ̄r ]

∣∣ ≥ t
)

≤ C exp
(
− ct2

M2r

)
≤ Ce−ct ,

where in the third inequality we applied Azuma–Hoeffding’s inequality to λ2(τ̄r −
Ēλ[τ̄r ]), which is a sum of bounded 1-dependent increments. Estimate (37) is
proved.

3. To conclude the proof of Theorem 17, we will show

(38) EQ,λ

[|ξt/λ2 |] ≤ Ct3/4/λ, ∀t ≥ 1,

as this implies (33). Now, by (37) and (32),

ĒQ,λ

[|ξt/λ2 |1{t/λ2≥τr }
] ≤ ∥∥ξ∗

t/λ2

∥∥
L3/2(Q0×Pω,λ)P̄λ

(
t/λ2 ≥ τr

)1/3 ≤ C/λ.

(39)

On the other hand,

ĒQ,λ[ξt/λ21{t/λ2<τr }]

≤ ĒQ,λ

[
max

1≤k≤r
|ξτk

|
]
+

r−1∑
k=0

ĒQ,λ

[
ξ∗
τk,τk+1

1{τk≤t/λ2<τk+1}
]
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(36)≤ Cr3/4

λ
+

r−1∑
k=0

∥∥ξ∗
τk,τk+1

∥∥
L4/3(P̄Q,λ)P̄Q,λ

(
τk ≤ t/λ2 < τk+1

)1/4

≤ Ct3/4

λ
+ C

λ

r−1∑
k=0

P̄Q,λ

(
τk ≤ t/λ2 < τk+1

)1/4
,

where we used Lemma 18 and r ≤ Ct in the last step. Since by Hölder’s inequality,

r−1∑
k=0

P̄Q,λ

(
τk ≤ t/λ2 < τk+1

)1/4 ≤ r3/4

(
r−1∑
k=0

P̄Q,λ

(
τk ≤ t/λ2 < τk+1

))1/4

≤ Ct3/4,

we conclude that

(40) ĒQ,λ

[|ξt/λ2 |1{t/λ2<τr }
] ≤ Ct3/4/λ.

The combination of (39) and (40) yields (38). �

6. Proofs of Theorem 4 and the Einstein relation.

6.1. Proof of Theorem 4. For f ∈ F , let g(ω,x) := f (ω). By Theorem 17,
we only need to show that (32) holds for g in dimension d ≥ 3. Note that now
ξn = ∑n

k=0 f (ω̄k) and recall that ξ∗
m,n = maxm≤j≤n |∑j

k=m f (ω̄k)|. In fact, we
will obtain an estimate stronger than (32).

THEOREM 19. Let d ≥ 3. Let f ∈ F be a function that satisfies Q0f = 0.
Then for all λ ∈ [0, λ0) and n ≥ 1,∥∥λξ∗

n/λ2,(n+1)/λ2

∥∥
L3/2(Q0×Pω,λ) ≤ Cn6d+14.

Our proof contains several steps.

1. First, we will obtain a moment estimate under the unperturbed measure

(41)
∥∥ξ∗

n

∥∥
L2(Q0×Pω) ≤ C

√
n ∀n ∈ N.

To prove inequality (41), recall the following theorem.

THEOREM 20 ([5, 21]). If d ≥ 3 and f : � → R is an L2(Q0) local function
with Q0f = 0, then for all n ∈ N,

EQ0

[
Eω

[
f (ω̄n)

]2] ≤ Cf n−d/2.

Moreover, (
√

nξnt )t≥0 converges weakly to a Brownian motion.
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Noting that f (ω̄n) is a stationary sequence under Q0 × Pω, by the maximal
inequality for stationary sequences in [22], Theorem 1, we have∥∥ξ∗

n

∥∥
L2(Q0×Pω) ≤ C

√
n
(‖f ‖L2(Q0)

+ δf

)
,

where δf = ∑∞
m=1 m−3/2‖Eω[ξm]‖L2(Q0)

. We only need to show that δf < ∞.
When d ≥ 3, using the Cauchy–Schwarz inequality,

∥∥Eω[ξm]∥∥2
L2(Q0)

= EQ0

[(
m∑

j=1

Eω

[
f (ω̄j )

])2]

≤ EQ0

[
m∑

j=1

1

jd/4 ·
m∑

j=1

jd/4(
Eω

[
f (ω̄j )

])2

]

Thm. 20≤ Cf

(
m∑

j=1

j−d/4

)2

d≥3≤ Cf m1/2.

Hence, δf ≤ Cf

∑∞
m=1 m−3/2+1/4 < ∞ for d ≥ 3 and (41) is proved.

2. Next, we will show that

(42)
∥∥λξ∗

1/λ2

∥∥
L5/3(Q0×Pω,λ) ≤ C.

Recalling the definition of the Radon–Nikodym derivative Gω(λ, t) in (23),∥∥λξ∗
1/λ2

∥∥5/3
L5/3(Q0×Pω,λ)

= EQ,0
[
Gω

(
λ,1/λ2)(

λξ∗
1/λ2

)5/3]
≤ EQ,0

[
Gω

(
λ,1/λ2)6]1/6

EQ,0
[(

λξ∗
1/λ2

)2]5/6

(28), (41)≤ C,

which proves (42).
3. For any fixed λ ∈ (0, λ0), let

(43) h(ω) = h(λ,ω) = Eω,λ

[(
λξ∗

1/λ2

)3/2]
.

Let �n = {x ∈ Zd : ‖x‖∞ ≤ n�1/λ
} denote the box of side-length 2n�1/λ
 and
set

Ah(ω) := 1

|�1|
∑

x∈�1

h(θxω)

to be an average of h in the box �1. We will show that for any integer n ≥ 0,

(44) EQ,λ

[
h(ω̄n/λ2)

] ≤ CEQ,λ

[
Ah(ω̄(n+1)/λ2) + Ah(ω̄1+(n+1)/λ2)

]
.
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To this end, we only need to prove that

EQ,λ

[
h(ω̄n/λ2)

] ≤ CEQ,λ

[
h(θxω̄(n+1)/λ2) + h(θxω̄1+(n+1)/λ2)

]
, ∀x ∈ �1.

Further, noting that

Eω,λ

[
h(ω̄n)

] = ∑
y

Pω,λ(Xn = y)h(θyω),

it suffices to show that for any y ∈ Zd and x ∈ �1,

Pω,λ(Xn/λ2 = y)
(45)

≤ C
[
Pω,λ(X(n+1)/λ2 = y + x) + Pω,λ(X1+(n+1)/λ2 = y + x)

]
.

Indeed, for k ∈ Z and y ∈ Zd , set

u(y, k) = P
y
ω,λ(Xk = 0).

Then, by reversibility and uniform ellipticity,

Pω,λ(Xk = y) =
∑

e ωλ(y, y + e)∑
e′ ωλ(0, e′)

u(y, k) � e2λy·�u(y, k),

where A � B means cB ≤ A ≤ CB for some constants c,C > 0. Thus (45) is
equivalent to

u
(
y,n/λ2) ≤ C

[
u
(
y + x, (n + 1)/λ2) + u

(
y + x,1 + (n + 1)/λ2)]

for all x ∈ �1, y ∈ Zd , which follows by (PHI) and the fact that u(·, ·) satisfies the
parabolic equation (PE) for the environment ωλ in B2

√
d/λ(y) × [(n − 2)/λ2, (n +

2)/λ2]. Our proof of (44) is complete.
4. Note that by the Markov property,∥∥λξ∗

n/λ2,(n+1)/λ2

∥∥3/2
L3/2(Q0×Pω,λ)

= EQ,λ

[
h(ω̄n/λ2)

]
.

Thus by (44), to prove Theorem 19, it suffices that EQ,λ[Ah(ω̄n/λ2)] ≤ Cn9d+21,
which by the bounds of dQ0/dP in (2) is equivalent to

(46) Eλ

[
Ah(ω̄n/λ2)

] ≤ Cn9d+21, ∀n ∈ N.

5. We say that a box �1(x) := x + �1 centered at x ∈ Zd is k-good (with
respect to the environment ω) if

Ah(θzω) ≤ k9d+18 for all z ∈ �1(x).

Otherwise, we say that �1(x) is k-bad. We claim that

(47) P(�1 is k-bad) ≤ Ck−10d−20.
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Indeed, observing that
∑

y∈�2
h(θyω)/|�2| ≥ 2−dAh(θzω) for all z ∈ �1, we have

P(�1 is k-bad) ≤ P

( ∑
y∈�2

h(θyω)/|�2| ≥ 2−dk9d+18
)

≤ CE

[(
1

|�2|
∑

y∈�2

h(θyω)

)10/9]/
k10d+20

≤ CE

[
1

|�2|
∑

y∈�2

h(θyω)10/9
]/

k10d+20

= CE
[
h10/9]

/k10d+20 (43)≤ Eλ

[(
λξ∗

1/λ2

)5/3]
/k10d+20,

where we used the translation-invariance of the measure P in the second to last
equality. Display (47) then follows by (42) and (2).

6. Finally, we will prove (46). Clearly,

Eλ

[
Ah(ω̄n/λ2)

] ≤
∞∑

k=0

(k + 1)9d+18Pλ

(
Ah(ω̄n/λ2) ∈ [

k9d+18, (k + 1)9d+18))

≤ 1 + C

∞∑
k=1

k9d+18Pλ

(
Ah(ω̄n/λ2) ≥ k9d+18)

.

Further, for each k ∈ N, we can decompose the box �k into kd boxes (�(i))1≤i≤kd

of side-length 2�1/λ
. Hence,

Pλ

(
Ah(ω̄n/λ2) ≥ k9d+18)
≤ Pλ

(
max

0≤s≤n/λ2
|Xs | ≥ k/λ

)
+ P

(
one of the kd boxes �(i) is k-bad

)
Lem. 8, (47)≤ C

n9d+20

k9d+20 + Ckdk−10d−20.

Therefore, for any n ∈ N,

Eλ

[
Ah(ω̄n/λ2)

] ≤ C

∞∑
k=1

n9d+20

k2 ≤ Cn9d+20.

Inequality (46) is proved.
Our proof of Theorem 19 is now complete.

6.2. Proof of Theorem 1. We note that by the ergodic theorem we can write
the velocity as

v(λ) = lim
n→∞

Xn

n
= Qλ

[
d
(
ωλ,0

)] = EQλ
[X1], Pλ-a.s.
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Let g(ω, e) = e · ei for a fixed unit vector ei . Then, by Lemma 8, (32) holds for
this choice of g and by Theorem 17 we have

∣∣∣∣
λ2

t
EQ,λ[Xt/λ2 · ei] − EQλ

[X1 · ei]
λ

∣∣∣∣ ≤ C

t1/4 .

The collection of these inequalities for i = 1, . . . , d , together with (31), yields
Theorem 1.

6.3. Einstein relation as a corollary of Theorem 2. We remark that Theorem 2
can be considered a more general statement than the Einstein relation (1). Indeed,
since

v(λ) = EQλEω,λ[X1] (25)= EQλEω

[
eλM1+O(λ2)X1

]
= EQλEω

[
(1 + λM1)X1

] + o(λ)

= Qλ

[
d(ω,0)

] + λEQλEω[M1X1] + o(λ),

we have by Theorem 2, applied to the collection of local functions d(ω,0) · ei for
i = 1, . . . , d ,

lim
λ→0

v(λ)

λ
= −Cov

(
Nd

1 ,Nd
1 · �) +EQ,0[M1X1].

By the ergodic theorem and the fact that �Xk − d(ω̄k,0) are Pω-martingale dif-
ferences,

Cov
(
B1 − Nd

1 ,N1
)

= lim
n→∞

1

n
EQ,0

[(
Xn −

n−1∑
k=0

d(ω̄k,0)

)(
Xn −

n−1∑
k=0

d(ω̄k,0)

)
· �

]

= lim
n→∞

1

n
EQ,0

[
n−1∑
k=0

(
�Xk − d(ω̄k)

)(
�Xk − d(ω̄k)

) · �
]

= EQ,0
[(

X1 − d(ω,0)
)(

X1 − d(ω,0)
) · �]

= EQ,0[X1M1].
Therefore,

lim
λ→0

v(λ)

λ
= −Cov

(
Nd

1 ,Nd
1 · �) + Cov

(
B1 − Nd

1 ,N1
)

= −E
[
Nd

1
(
Nd

1 · �)] + E
[(

B1 − Nd
1
)(

B1 − Nd
1
) · �]

= E
[
B1(B1 · �)] = ��,

since by (30), E[B1N
d
1 ] = 0. Note that we proved Theorem 2 only for d ≥ 3.

Hence, it does not cover the case d = 2 of Theorem 1.
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7. Proof of the a priori estimates.

7.1. Proof of Lemma 5. We will prove Lemma 5 by contradiction. Let u(x) =
P x

ω,λ(T1,L < T−1,L) and assume that for some ω we have

u(0) <
2

3
.

Recall that Tm,L is the hitting time of {z ∈ Zd |z · e1 = nL/λ1} with λ1 = �1/λ
−1.
For a set G ⊂ Rd , define its discrete boundary as

∂G = {
x ∈ Zd ∩ G : x ∼ y for some y ∈ Zd \ G

}
.

For a function h : G →R, denote its Dirichlet energy on G as

E(h,G) = ∑
x,y∈G,x∼y

ωλ(x, y)
(
h(x) − h(y)

)2
.

We let SG = SG(u,ω) be the set of functions v : G → R such that v = u on ∂G.
Since u solves the elliptic equation (EE) in {x ∈ Zd : |x ·e1| ≤ L/λ1}, by Dirichlet’s
principle (see [8]), we have

E(u,G) = min
v∈SG

E(v,G) for any G ⊂ {
x ∈ Zd : |x · e1| ≤ L/λ1

}
.

We first find a lower bound for the Dirichlet energy of u on the set �0 =
[− L

λ1
, L

λ1
] × [− 1

λ1
, 1

λ1
]d−1 by ignoring all edges which are not in the direction of

e1. The conductance of such an edge in �0 connecting (x1, x̄) with (x1 + 1, x̄),
where we write x = (x1, x̄) with x̄ ∈ Zd−1, is bounded from below by cκe2λ�1x1 .
A lower bound for the energy is then

E(u,�0) ≥ ∑
‖x̄‖≤1/λ1

L/λ1−1∑
i=0

cκe2λ�1i
(
u(i + 1, x̄) − u(i, x̄)

)2

≥ C
∑

‖x̄‖≤1/λ1

(L/λ1−1∑
i=0

u(i + 1, x̄) − u(i, x̄)

)2(L/λ1−1∑
i=0

e−2λ�1i

)−1

≥ C
∑

‖x̄‖≤1/λ1

(
1 − u(0, x̄)

)2(
1 − e−2λ�1

)
,

where we used the Cauchy–Schwarz inequality in the second inequality. Note that
(1 − e−2λ�1) > cλ when λ < λ0 for some small enough λ0 > 0. Since u sat-
isfies (EE) on [− L

λ1
, L

λ1
] × [− 2

λ1
, 2

λ1
]d−1, the elliptic Harnack inequality yields

1 − u(0, x̄) ≥ C(1 − u(0)) whenever |x| ≤ 1/λ1. Thus,

E(u,�0) ≥ Cλ · λ−(d−1)(1 − u(0)
)2 ≥ Cλ2−d(48)

by our assumption.
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Next, we will derive an upper bound for the energy. Define the function

ū(x) = e2L − e−2λ1x1

e2L − e−2L
,

the potential of a nonrandom biased random walk. Then ū(x) = 0 when x1 =
−L/λ1 and ū(x) = 1 when x1 = L/λ1, that is, ū satisfies in the strip −L/λ1 ≤
e1 · x ≤ L/λ1 the same boundary conditions as u. Let R1 = R1(λ) = L

λ1
�eL/d
 and

R2 = 2R1. We will calculate energies on shifted sets �1(y) = y + [− L
λ1

, L
λ1

] ×
[−R1,R1]d−1 and �2(y) = y + [− L

λ1
, L

λ1
] × [−R2,R2]d−1. For L,λ fixed, let

EL,λ = sup
y∈Zd :y1=0

E
(
u,�1(y)

)
< ∞

and choose y = y(L,λ) ∈ Zd such that

E(u,�0) ≤ E
(
u,�1(0)

) ≤ E
(
u,�1(y)

)
and

E
(
u,�1(y)

) + E
(
ū,�1(y)

)
> EL,λ,

which is possible, since E(ū,�1(y)) has for all λ,L a positive lower bound in-
dependent of y. From now on, we fix such a y and write �1 for �1(y) and �2
for �2(y). We will show that for some positive constants c1, c2 independent of
L,λ,

E(u,�1) ≤ c1λ · λ−(d−1)e−c2L,(49)

which contradicts (48) if L is large enough, since E(u,�0) ≤ E(u,�1).
To show (49), set

v(x) = (
1 − d(x)

)
ū(x) + d(x)u(x) for x ∈ �2,

where d(x) = dis t (x,�1)/R1 ≤ 1. Note that v = ū in �1 and v = u on ∂�2. By
Dirichlet’s principle, E(u,�2) ≤ E(v,�2). For x, y ∈ �2 and y ∼ x

v(x) − v(y) = (
1 − d(x)

)(
ū(x) − ū(y)

) + d(x)
(
u(x) − u(y)

)
+ (

d(x) − d(y)
)(

u(y) − ū(y)
)
.

Hence, observing |d(x) − d(y)| ≤ R−1
1 1x,y /∈�1 for x ∼ y, by Jensen’s inequality,(

v(x) − v(y)
)2 ≤ (

1 − d(x)
)(

ū(x) − ū(y)
)2 + d(x)

(
u(x) − u(y)

)2

+ R−2
1 1x,y /∈�1

(
ū(y) − u(y)

)2

+ 2R−1
1 1x,y /∈�1

∣∣ū(y) − u(y)
∣∣[(1 − d(x)

)∣∣ū(x) − ū(y)
∣∣

+ d(x)
∣∣u(x) − u(y)

∣∣].
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Multiplying both sides by ωλ(x, y) and summing over all x, y ∈ �2, this yields

E(v,�2) ≤ E(ū,�2) + E
(
u,�2 \ �+

1

)

(a) +R−2
1

∑
y∈�2\�1,x∼y

ωλ(x, y)
(
u(y) − ū(y)

)2

+ 2R−1
1

∑
y∈�2\�1,x∼y

ωλ(x, y)
∣∣ū(y) − u(y)

∣∣[∣∣ū(x) − ū(y)
∣∣

(b)
+ ∣∣u(x) − u(y)

∣∣],
where �+

1 := �1 \ ∂�1. We will find upper bounds for the sums (a) and (b). Start-
ing with the first one,

(a) ≤ 2R−2
1

∑
y∈�2\�1,x∼y

ωλ(x, y)
(
u(y) − 1

)2

+ 2R−2
1

∑
y∈�2\�1,x∼y

ωλ(x, y)
(
ū(y) − 1

)2

with

(
u(y) − 1

)2 =
(L/λ1∑

i=y1

u(i, ȳ) − u(i + 1, ȳ)

)2

≤ 2
L

λ1

L/λ1∑
i=y1

(
u(i, ȳ) − u(i + 1, ȳ)

)2

by Cauchy–Schwarz’s inequality. Bounding (ū(y) − 1)2 analogously, we get

(a) ≤ 2R−2
1

L

λ1

( ∑
y∈�2\�1,x∼y

ωλ(x, y)

L/λ1∑
i=y1

(
u(i, ȳ) − u(i + 1, ȳ)

)2

+ (
ū(i, ȳ) − ū(i + 1, ȳ)

)2

)

≤ cR−2
1

L

λ1

( ∑
y∈�2\�1

L/λ1∑
i=y1

ωλ(
(i, ȳ), (i + 1, ȳ)

)[(
u(i, ȳ) − u(i + 1, ȳ)

)2

+ (
ū(i, ȳ) − ū(i + 1, ȳ)

)2])

≤ cR−2
1

(
L

λ1

)2(
E

(
u,�2 \ �+

1

) + E
(
ū,�2 \ �+

1

))

≤ cR−1
1

L

λ1

(
E

(
u,�2 \ �+

1

) + E
(
ū,�2 \ �+

1

))
.
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For the summand (b), Hölder’s inequality yields

(b) ≤ 2R−1
1

( ∑
y∈�2\�1,x∼y

ωλ(x, y)
(
ū(y) − u(y)

)2
)1/2

×
( ∑

y∈�2\�1,x∼y

ωλ(x, y)
(
u(x) − u(y)

)2

+ ∑
y∈�2\�1,x∼y

ωλ(x, y)
(
ū(x) − ū(y)

)2
)1/2

.

The first sum can be bounded as we did for (a) by C(L/λ1)
2(E(u,�2 \ �+

1 ) +
E(ū,�2 \ �+

1 )) such that

(b) ≤ cR−1
1

L

λ1

(
E

(
u,�2 \ �+

1

) + E
(
ū,�2 \ �+

1

))
.

Collecting the upper bounds for (a), (b) and rearranging, using E(u,�2) −
E(u,�2 \ �+

1 ) = E(u,�1) and E(u,�2) ≤ E(v,�2), we arrive at

(50) E(u,�1) ≤ E(ū,�2) + cR−1
1

L

λ1

(
E

(
u,�2 \ �+

1

) + E(ū,�2)
)
.

Next, we estimate the energy of ū. Since ū(x) = ū(y) if x1 = y1, we have

E(ū,�2) = ∑
‖x̄‖≤R2

L/λ1−1∑
x1=−L/λ1

ωλ(
(x1, x̄), (x1 + 1, x̄)

)

×
(

e2L − e−2λ1x1

e2L − e−2L
− e2L − e−2λ1(x1+1)

e2L − e−2L

)2

≤ cRd−1
2

(
e2L − e−2L)−2

L/λ1−1∑
x1=−L/λ1

e2λ1x1
(
e−2λ1x1 − e−2λ1(x1+1))2

,

where we used that ωλ(x, y) ≤ κeλ�·(x+y) ≤ κe2λ1x1 . Now simple calculations give
the upper bound (recall that R1 = L

λ1
�eL/d
)

E(ū,�2) ≤ cRd−1
1

(
e2L − e−2L)−2

L/λ1−1∑
x1=−L/λ1

e−2λ1x1
(
1 − e−2λ1

)2

≤ cRd−1
1 λ

(
e2L − e−2L)−2

L/λ1−1∑
x1=−L/λ1

λe−2λ1x1

≤ cRd−1
1 λ

(
e2L − e−2L)−1

≤ c

(
L

λ

)d−1
λe−L.
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Since �1 and �2 are of comparable size, and the energy over a box with the size
of �1 is bounded by EL,λ, we have

E
(
u,�2 \ �+

1

) ≤ 3d−1EL,λ ≤ 3d−1(
E(ū,�1) + E(u,�1)

)
.

Using this inequality, the definition of R1 and (50), we obtain

E(u,�1) ≤ E(ū,�2) + ce−cL(
E(ū,�2) + E(u,�1)

)
.

Therefore,

E(u,�1) ≤ 1 + ce−cL

1 − ce−cL
E(ū,�2) ≤ C

(
L

λ

)d−1
λe−L.

For L large enough, this implies (49) which then contradicts the lower bound (48).

7.2. Proof of Lemma 7. Let T̃1 = T1 ∧ T−1. We will begin by estimating an
upper bound for Pω,λ(T̃1 > cn/λ2) for all n ∈ N and λ > 0 small enough. Note
that this quantity depends only on the environments between the hyperplanes H−1
and H1, thus we let a ∈ � be a modified environment such that a(x, y) = ωλ(x, y)

for any x, y ∈ {z ∈ Zd : z · e1 ∈ (−L1,L1)} [recall the definition of L1 in (8)] and
a satisfies a(e)

a(e′) < C for any bonds e, e′ in Zd . Clearly,

Pω,λ

(
T̃1 ≤ (4L1)

2) = Pa

(
T̃1 ≤ (4L1)

2) ≥ Pa(e1 · X(4L1)
2 > L1).

By the heat-kernel estimate in [11], Theorem 3.1(i), there exist positive constants
c1, c2 such that

Pa(Xn = y) ≥ c1m(y)

V (0,
√

n)
e−c2|y|2/n,

whenever |y| ≤ n and |y| + n is even, where m(y) = ∑
z∼y a(y, z) and V (x, r) =∑

z:|x−z|≤r m(z). Define the set

A =
{
z ∈ Zd

∣∣∣4L0

λ1
≤ e1 · z ≤ 8L0

λ1
, |ei · z| ≤ 4L0

λ1
for i = 2, . . . , d

}
,

then A ⊂ B4L1 and e1 · z ≥ L1 for all z ∈ A. Set n = (4L1)
2 and let A′ be the set

of y ∈ A such that |y| + (4L1)
2 is even, then we get

Pa

(
T̃1 ≤ (4L1)

2) ≥ ∑
y∈A′

Pa(X(4L1)
2 = y)

≥ C
∑
y∈A′

m(y)

V (0,4L1)
e−c2|y|2/(16L/λ)2

≥ C
∑
y∈A′

eλ�·y

κ2 ∑
z:|z|≤4L1

eλ�·z e−c2 > C.
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This shows that there are positive constants c, δ > 0 such that

Pω,λ

(
T̃1 ≤ c

λ2

)
> δ for all ω ∈ �.(51)

Then, by the Markov property and (51) we get for any m ≥ 1,

Pω,λ

(
T̃1 >

mc

λ2

)
≤ sup

−L1≤x·e1≤L1

P x
ω,λ

(
T̃1 >

c

λ2

)m

≤ (1 − δ)m.

If we set t0 = 0 and define recursively ti+1 = ti + T̃1 ◦ θti , where θn denotes the time
shift of the trajectory (recall that Tm is defined relative to the starting position), the
exponential tail of T̃1 implies by the exponential Markov inequality

Pω,λ

(
tn >

Cn

λ2

)
≤ e−2n(52)

for some C sufficiently large. We define the one-dimensional process Yn = (Xtn ·
e1)/L1, which indicated the subsequent hyperplanes visited by (Xn)n, then by
Lemma 5, Yn jumps to the right with probability at least 2

3 and then

Pω,λ

(
sup

k≤Cn

Yk < n
)

≤ e−2n(53)

for C sufficiently large. If we combine (52) and (53), we obtain

Pω,λ

(
Tn >

Cn

λ2

)
≤ P x

ω,λ

(
sup

k≤Cn

Yk < n
)

+ Pω,λ

(
tn >

Cn

λ2

)
≤ 2e−2n.

7.3. Proof of Lemma 8. We first find a uniform lower bound for the probability
Pω,λ(D1/λ ≥ r

λ2 ) for r ≤ 1 small enough, where D1/λ is the exit time from the ball

B1/λ of radius 1
λ

in the 1-norm. Note that Pω,λ(D1/λ ≥ r
λ2 ) depends only on the

environments inside the box. Hence, as in Section 7.2, we let a ∈ � be a modified
environment such that a(e) = ω(e) for any bond e in B2/λ, and a(e′)/a(e′′) < C

for all bonds e′, e′′ in Zd . Then Pω,λ(D1/λ ≤ 4r
λ2 ) = Pa(D1/λ ≤ 4r

λ2 ), and

Pa

(
D1/λ ≤ 4r

λ2

)
≤ Pa

(
|X4r/λ2 | ≥ 1

2λ

)

+ Pa

(
|X4r/λ2 | < 1

2λ
,D1/λ ≤ 4r

λ2

)

≤ Pa

(
|X4r/λ2 | ≥ 1

2λ

)

+ Ea

[
P

XD1/λ
a

(
|X4r/λ2−D1/λ

| ≥ 1

2λ

)
1{D1/λ≤ 4r

λ2 }
]
.
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By the heat kernel upper bound in [11], Theorem 3.1(i), we get for 1/2λ1 ≤ k ≤
4r/λ2

1

Pa

(
|Xk| ≥ 1

2λ1

)
=

k∑
m=1/2λ1

∑
|x|=m

Pa(Xk = x)

≤ C

k∑
m=1/2λ1

∑
|x|=m

m(x)

V (0,
√

k)
e−c2|x|2/k

≤ Ck−d/2
k∑

m=1/2λ1

md−1e−c2m
2/k.

Comparing this sum with an integral and using k ≤ 4r/λ2
1, the last line is bounded

by Ce−c/r which is smaller than 1
4 for r small enough. This yields Pω,λ(D1/λ ≤

4r
λ2 ) ≤ 1

2 and so

Eω,λ

[
e−λ2D1/λ

] ≤ 1 − δ

for some δ > 0 when r, λ > 0 are small enough. Now we can proceed similarly to
the proof of Lemma 4.5 in [10]:

Eω,λ

[
max

0≤s≤t
|λXs/λ2 |p

]
=

∫ ∞
0

pyp−1Pω,λ

(
max

0≤s≤t
|λXs/λ2 |p ≥ y

)
dy

=
∫ ∞

0
pyp−1Pω,λ

(
Dy/λp ≤ t

λ2

)
dy

≤ et
∫ ∞

0
pyp−1Eω,λ

[
e−λ2Dy/λ

]
dy.

The exit time of the ball of radius y

λ2 can be bounded as

Dy/λ2 ≥ D1/λ2 + D1/λ2 ◦ θD1/λ2 + · · · + D1/λ2 ◦ θD
(�y
−1)/λ2 .

The Markov property and the inequality Eω,λ[e−λ2D1/λ] ≤ 1 − δ imply then for
t ≤ 1

Eω,λ

[
max

0≤s≤t
|λXs/λ2 |p

]
≤ et

∫ ∞
0

pyp−1(1 − δ)�y
 dy ≤ C,

with C depending only on p, the bounds for the conductances and the dimension.
The Markov property implies then for t ≥ 1

Eω,λ

[
max

0≤s≤t
|λXs/λ2 |p

]
≤ Eω,λ

[( �t�∑
k=1

max
k−1≤s≤k

∣∣λ(Xs/λ2 − X(k−1)/λ2)
∣∣)p]

≤ �t�p−1
�t�∑
k=1

Eω,λ

[
max

k−1≤s≤k

∣∣λ(Xs/λ2 − X(k−1)/λ2)
∣∣p]

≤ C · tp,
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which is equivalent to the claimed inequality.
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