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This paper derives central limit and bootstrap theorems for probabilities
that sums of centered high-dimensional random vectors hit hyperrectangles
and sparsely convex sets. Specifically, we derive Gaussian and bootstrap ap-
proximations for probabilities P(n−1/2∑n

i=1 Xi ∈ A) where X1, . . . ,Xn are
independent random vectors in R

p and A is a hyperrectangle, or more gener-
ally, a sparsely convex set, and show that the approximation error converges
to zero even if p = pn → ∞ as n → ∞ and p � n; in particular, p can be
as large as O(eCnc

) for some constants c,C > 0. The result holds uniformly
over all hyperrectangles, or more generally, sparsely convex sets, and does not
require any restriction on the correlation structure among coordinates of Xi .
Sparsely convex sets are sets that can be represented as intersections of many
convex sets whose indicator functions depend only on a small subset of their
arguments, with hyperrectangles being a special case.

1. Introduction. Let X1, . . . ,Xn be independent random vectors in R
p where

p ≥ 3 may be large or even much larger than n. Denote by Xij the j th coordinate
of Xi , so that Xi = (Xi1, . . . ,Xip)′. We assume that each Xi is centered, namely
E[Xij ] = 0, and E[X2

ij ] < ∞ for all i = 1, . . . , n and j = 1, . . . , p. Define the
normalized sum

SX
n := (

SX
n1, . . . , S

X
np

)′ := 1√
n

n∑
i=1

Xi.

We consider Gaussian approximation to SX
n , and to this end, let Y1, . . . , Yn be

independent centered Gaussian random vectors in R
p such that each Yi has the

same covariance matrix as Xi , that is, Yi ∼ N(0,E[XiX
′
i]). Define the normalized

sum for the Gaussian random vectors:

SY
n := (

SY
n1, . . . , S

Y
np

)′ := 1√
n

n∑
i=1

Yi.
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We are interested in bounding the quantity

(1) ρn(A) := sup
A∈A

∣∣P(SX
n ∈ A

)− P
(
SY

n ∈ A
)∣∣,

where A is a class of Borel sets in R
p .

Bounding ρn(A) for various classes A of sets in R
p , with a special emphasis

on explicit dependence on the dimension p in the bounds, has been studied by a
number of authors; see, for example, [5, 7, 9, 24, 29, 35–37] and [40]; we refer
to [18] for an exhaustive literature review. Typically, we are interested in how fast
p = pn → ∞ is allowed to grow while guaranteeing ρn(A) → 0. In particular,
Bentkus [5] established one of the sharpest results in this direction which states
that when X1, . . . ,Xn are i.i.d. with E[XiX

′
i] = I (I denotes the p × p identity

matrix),

(2) ρn(A) ≤ Cp(A)
E[‖X1‖3]√

n
,

where Cp(A) is a constant that depends only on p and A; for example, Cp(A)

is bounded by a universal constant when A is the class of all Euclidean balls
in R

p , and Cp(A) ≤ 400p1/4 when A is the class of all Borel measurable con-
vex sets in R

p . Note, however, that this bound does not allow p to be larger than
n once we require ρn(A) → 0. Indeed by Jensen’s inequality, when E[X1X

′
1] = I ,

E[‖X1‖3] ≥ (E[‖X1‖2])3/2 = p3/2, and hence in order to make the right-hand side
of (2) to be o(1), we at least need p = o(n1/3) when A is the class of Euclidean
balls, and p = o(n2/7) when A is the class of all Borel measurable convex sets.
Similar conditions are needed in other papers cited above. It is worthwhile to men-
tion here that, when A is the class of all Borel measurable convex sets, it was
proved by [29] that ρn(A) ≥ cE[‖X1‖3]/√n for some universal constant c > 0.

In modern statistical applications, such as high-dimensional estimation and mul-
tiple hypothesis testing, however, p is often larger or even much larger than n. It
is therefore interesting to ask whether it is possible to provide a nontrivial class of
sets A in R

p for which we would have

(3) ρn(A) → 0 even if p is potentially larger or much larger than n.

In this paper, we derive bounds on ρn(A) for A = Are being the class of all hy-
perrectangles, or more generally for A ⊂Asi(a, d) being a class of simple convex
sets, and show that these bounds lead to results of type (3). We call any convex set
a simple convex set if it can be well approximated by a convex polytope whose
number of facets is (potentially very large but) not too large; see Section 3 for
details. An extension to simple convex sets is interesting because it allows us to
derive similar bounds for A = Asp(s) being the class of (s-)sparsely convex sets.
These are sets that can be represented as an intersection of many convex sets whose
indicator functions depend nontrivially at most on s elements of their arguments
(for some small s).
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The sets considered are useful for applications to statistics. In particular, the re-
sults for hyperrectangles and sparsely convex sets are of importance because they
allow us to approximate the distributions of various key statistics that arise in infer-
ence for high-dimensional models. For example, the probability that a collection
of Kolmogorov–Smirnov type statistics falls below a collection of thresholds

P
(
max
j∈Jk

SX
nj ≤ tk for all k = 1, . . . , κ

)
= P

(
SX

n ∈ A
)

can be approximated by P(SY
n ∈ A) within the error margin ρn(Are); here {Jk}

are (nonintersecting) subsets of {1, . . . , p}, {tk} are thresholds in the interval
(−∞,∞), κ ≥ 1 is an integer, and A ∈ Are is a hyperrectangle of the form
{w ∈ R

p : maxj∈Jk
wj ≤ tk for all k = 1, . . . , κ}. Another example is the probabil-

ity that a collection of Pearson type statistics falls below a collection of thresholds

P
(∥∥(SX

nj

)
j∈Jk

∥∥2 ≤ tk for all k = 1, . . . , κ
)= P

(
SX

n ∈ A
)
,

which can be approximated by P(SY
n ∈ A) within the error margin ρn(Asp(s));

here {Jk} are subsets of {1, . . . , p} of fixed cardinality s, {tk} are thresholds in
the interval (0,∞), κ ≥ 1 is an integer, and A ∈ Asp(s) is a sparsely convex set
of the form {w ∈ R

p : ‖(wj )j∈Jk
‖2 ≤ tk for all k = 1, . . . , κ}. In practice, as we

demonstrate, the approximations above could be estimated using the empirical or
multiplier bootstraps.

The results in this paper substantially extend those obtained in [17] where we
considered the class A = Am of sets of the form A = {w ∈ R

p : maxj∈J wj ≤ a}
for some a ∈R and J ⊂ {1, . . . , p}, but in order to obtain much better dependence
on n, we employ new techniques. Most notably, as the main ingredient in the new
proof, we employ an argument inspired by Bolthausen [10]. Our paper builds upon
our previous work [17], which in turn builds on a number of works; see [13–15,
21, 23, 31, 33, 34, 38, 39] and [41] (see also [18] for a detailed review and links to
the literature).

The organization of this paper is as follows. In Section 2, we derive a Central
Limit Theorem (CLT) for hyperrectangles in high dimensions; that is, we derive a
bound on ρn(A) for A = Are being the class of all hyperrectangles and show that
the bound converges to zero under certain conditions even when p is potentially
larger or much larger than n. In Section 3, we extend this result by showing that
similar bounds apply for A ⊂ Asi(a, d) being a class of simple convex sets and
for A = Asp(s) being the class of all s-sparsely convex sets. In Section 4, we
derive high-dimensional empirical and multiplier bootstrap theorems that allow
us to approximate P(SY

n ∈ A) for A ∈ Are, Asi(a, d), or Asp(s) using the data
X1, . . . ,Xn. In Section 5, we state an important technical lemma, which constitutes
the main part of the derivation of our high-dimensional CLT. Finally, we provide
all the proofs as well as some technical results in the Appendix.
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1.1. Notation. For a ∈ R, [a] denotes the largest integer smaller than or equal
to a. For w = (w1, . . . ,wp)′ ∈ R

p and y = (y1, . . . , yp)′ ∈ R
p , we write w ≤ y

if wj ≤ yj for all j = 1, . . . , p. For y = (y1, . . . , yp)′ ∈ R
p and a ∈ R, we write

y + a = (y1 + a, . . . , yp + a)′. Throughout the paper, En[·] denotes the average
over index i = 1, . . . , n; that is, it simply abbreviates the notation n−1∑n

i=1[·]. For
example, En[xij ] = n−1∑n

i=1 xij . We also write Xn
1 := {X1, . . . ,Xn}. For v ∈ R

p ,
we use the notation ‖v‖0 :=∑p

j=1 1{vj 
= 0} and ‖v‖ = (
∑p

j=1 v2
j )

1/2. For α > 0,
we define the function ψα : [0,∞) → [0,∞) by ψα(x) := exp(xα) − 1, and for a
real-valued random variable ξ , we define

‖ξ‖ψα := inf
{
λ > 0 : E

[
ψα

(|ξ |/λ)]≤ 1
}
.

For α ∈ [1,∞), ‖ · ‖ψα is an Orlicz norm, while for α ∈ (0,1), ‖ · ‖ψα is not a norm
but a quasi-norm, that is, there exists a constant Kα depending only on α such that
‖ξ1 + ξ2‖ψα ≤ Kα(‖ξ1‖ψα +‖ξ2‖ψα). Throughout the paper, we assume that n ≥ 4
and p ≥ 3.

2. High-dimensional CLT for hyperrectangles. This section presents a
high-dimensional CLT for hyperrectangles. We begin with presenting an abstract
theorem (Theorem 2.1); the bound in Theorem 2.1 is general but depends on the
tail properties of the distributions of the coordinates of Xi in a nontrivial way.
Next, we apply this theorem under simple moment conditions and derive more
explicit bounds (Proposition 2.1).

Let Are be the class of all hyperrectangles in R
p; that is, Are consists of all sets

A of the form

(4) A = {
w ∈ R

p : aj ≤ wj ≤ bj for all j = 1, . . . , p
}

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p. We will derive a bound on ρn(Are),
and show that under certain conditions it leads to ρn(Are) → 0 even when p = pn

is potentially larger or much larger than n.
To describe the bound, we need to prepare some notation. Define

Ln := max
1≤j≤p

n∑
i=1

E
[|Xij |3]/n,

and for φ ≥ 1, define

(5) Mn,X(φ) := n−1
n∑

i=1

E
[

max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | > √
n/(4φ logp)

}]
.

Similarly, define Mn,Y (φ) with Xij ’s replaced by Yij ’s in (5), and let

Mn(φ) := Mn,X(φ) + Mn,Y (φ).

The following is the first main result of this paper.
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THEOREM 2.1 (Abstract high-dimensional CLT for hyperrectangles). Sup-
pose that there exists some constant b > 0 such that n−1∑n

i=1 E[X2
ij ] ≥ b for all

j = 1, . . . , p. Then there exist constants K1,K2 > 0 depending only on b such that
for every constant Ln ≥ Ln, we have

(6) ρn

(
Are)≤ K1

[(
L

2
n log7 p

n

)1/6
+ Mn(φn)

Ln

]
with

(7) φn := K2

(
L

2
n log4 p

n

)−1/6
.

REMARK 2.1 (Key features of Theorem 2.1). (i) The bound (6) should be
contrasted with Bentkus’s [5] bound (2). For the sake of exposition, assume that the
vectors X1, . . . ,Xn are such that E[X2

ij ] = 1 and for some sequence of constants
Bn ≥ 1, |Xij | ≤ Bn for all i = 1, . . . , n and j = 1, . . . , p. Then it can be shown
that the bound (6) reduces to

(8) ρn

(
Are)≤ K

(
n−1B2

n log7(pn)
)1/6

for some universal constant K ; see Proposition 2.1 below. Importantly, the right-
hand side of (8) converges to zero even when p is much larger than n; indeed we
just need B2

n log7(pn) = o(n) to make ρn(Are) → 0, and if in addition Bn = O(1),
the condition reduces to logp = o(n1/7). In contrast, Bentkus’s bound (2) requires√

p = o(n1/7) to make ρn(A) → 0 when A is the class of all Borel measurable
convex sets. Hence, by restricting the class of sets to the smaller one, A = Are, we
are able to considerably weaken the requirement on p, replacing

√
p by logp.

(ii) On the other hand, the bound in (8) depends on n through n−1/6, so that our
Theorem 2.1 does not recover the Berry–Esseen bound when p is fixed. However,
given that the rate n−1/6 is optimal (in a minimax sense) in CLT in infinite di-
mensional Banach spaces (see [6]), the factor n−1/6 seems nearly optimal in terms
of dependence on n in the high-dimensional settings as considered here. In addi-
tion, examples in [19] suggest that dependence on Bn is also optimal. Hence, we
conjecture that up to a universal constant,(

n−1B2
n(logp)a

)1/6

for some a > 0 is an optimal bound (in a minimax sense) in the high-dimensional
setting as considered here. The value a = 3 could be motivated by the theory of
moderate deviations for self-normalized sums when all the coordinates of Xi are
independent.

REMARK 2.2 (Relation to previous work). Theorem 2.1 extends Theorem 2.2
in [17] where we derived a bound on ρn(Am) with Am ⊂ Are consisting of all sets
of the form

A = {
w ∈ R

p : wj ≤ a for all j = 1, . . . , p
}
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for some a ∈ R. In particular, we improve the dependence on n from n−1/8 in [17]
to n−1/6. In addition, we note that extension to the class Are from the class Am

is not immediate since in both papers we assume that Var(SX
nj ) is bounded below

from zero uniformly in j = 1, . . . , p, so that it is not possible to directly extend
the results in [17] to the class of hyperrectangles A = Are by just rescaling the
coordinates in SX

n .

The bound (6) depends on Mn(φn) whose values are problem specific. There-
fore, we now apply Theorem 2.1 in two specific examples that are most useful in
mathematical statistics (as well as other related fields such as econometrics). Let
b, q > 0 be some constants, and let Bn ≥ 1 be a sequence of constants, possibly
growing to infinity as n → ∞. Assume that the following conditions are satisfied:

(M.1) n−1∑n
i=1 E[X2

ij ] ≥ b for all j = 1, . . . , p,

(M.2) n−1∑n
i=1 E[|Xij |2+k] ≤ Bk

n for all j = 1, . . . , p and k = 1,2.

We consider examples where one of the following conditions holds:

(E.1) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p,
(E.2) E[(max1≤j≤p |Xij |/Bn)

q] ≤ 2 for all i = 1, . . . , n.

In addition, denote

(9) D(1)
n =

(
B2

n log7(pn)

n

)1/6
, D(2)

n,q =
(

B2
n log3(pn)

n1−2/q

)1/3
.

An application of Theorem 2.1 under these conditions leads to the following propo-
sition.

PROPOSITION 2.1 (High-dimensional CLT for hyperrectangles). Suppose
that conditions (M.1) and (M.2) are satisfied. Then under (E.1), we have

ρn

(
Are)≤ CD(1)

n ,

where the constant C depends only on b; while under (E.2), we have

ρn

(
Are)≤ C

{
D(1)

n + D(2)
n,q

}
,

where the constant C depends only on b and q .

3. High-dimensional CLT for simple and sparsely convex sets. In this sec-
tion, we extend the results of Section 2 by considering larger classes of sets; in
particular, we consider classes of simple convex sets, and obtain, under certain con-
ditions, bounds that are similar to those in Section 2 (Proposition 3.1). Although
an extension to simple convex sets is not difficult, in high-dimensional spaces, the
class of simple convex sets is rather large. In addition, it allows us to derive sim-
ilar bounds for classes of sparsely convex sets. These classes in turn may be of
interest in statistics where sparse models and techniques have been of canonical
importance in the past years.
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3.1. Simple convex sets. Consider a closed convex set A ⊂ R
p . This set can

be characterized by its support function:

SA : Sp−1 →R∪ {∞}, v �→ SA(v) := sup
{
w′v : w ∈ A

}
,

where S
p−1 := {v ∈ R

p : ‖v‖ = 1}; in particular, A = ⋂
v∈Sp−1{w ∈ R

p : w′v ≤
SA(v)}. We say that the set A is m-generated if it is generated by the intersection
of m half-spaces (that is, A is a convex polytope with at most m facets). The
support function SA of such a set A can be characterized completely by its values
{SA(v) : v ∈ V(A)} for the set V(A) consisting of m unit vectors that are outward
normal to the facets of A. Indeed,

A = ⋂
v∈V(A)

{
w ∈ R

p : w′v ≤ SA(v)
}
.

For ε > 0 and an m-generated convex set Am, we define

Am,ε := ⋂
v∈V(Am)

{
w ∈ R

p : w′v ≤ SAm(v) + ε
}
,

and we say that a convex set A admits an approximation with precision ε by an
m-generated convex set Am if

Am ⊂ A ⊂ Am,ε.

Let a, d > 0 be some constants. Let Asi(a, d) be the class of all Borel sets A in
R

p that satisfy the following condition:

(C) The set A admits an approximation with precision ε = a/n by an m-generated
convex set Am where m ≤ (pn)d .

We refer to sets A that satisfy condition (C) as simple convex sets. Note that any
hyperrectangle A ∈ Are satisfies condition (C) with a = 0 and d = 1 (recall that
n ≥ 4), and so belongs to the class Asi(0,1). For A ∈ Asi(a, d), let Am(A) denote
the corresponding set Am that appears in condition (C).

We will consider subclasses A of the class Asi(a, d) consisting of sets A such
that for Am = Am(A) and X̃i = (X̃i1, . . . , X̃im)′ = (v′Xi)v∈V(Am), i = 1, . . . , n,
the following conditions are satisfied:

(M.1′) n−1∑n
i=1 E[X̃2

ij ] ≥ b for all j = 1, . . . ,m,

(M.2′) n−1∑n
i=1 E[|X̃ij |2+k] ≤ Bk

n for all j = 1, . . . ,m and k = 1,2,

and, in addition, one of the following conditions is satisfied:

(E.1′) E[exp(|X̃ij |/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . ,m,
(E.2′) E[(max1≤j≤m |X̃ij |/Bn)

q] ≤ 2 for all i = 1, . . . , n.

Conditions (M.1′), (M.2′), (E.1′) and (E.2′) are similar to those used in the pre-
vious section but they apply to X̃1, . . . , X̃n rather than to X1, . . . ,Xn.

Recall the definition of ρn(A) in (1) and the definitions of D
(1)
n and D

(2)
n,q in (9).

An extension of Proposition 2.1 leads to the following result.
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PROPOSITION 3.1 (High-dimensional CLT for simple convex sets). Let A be
a subclass of Asi(a, d) such that conditions (M.1′), (M.2′) and (E.1′) are satisfied
for every A ∈ A. Then

(10) ρn(A) ≤ CD(1)
n ,

where the constant C depends only on a, b and d . If, instead of condition (E.1′),
condition (E.2′) is satisfied for every A ∈ A, then

(11) ρn(A) ≤ C
{
D(1)

n + D(2)
n,q

}
,

where the constant C depends only on a, b, d and q .

It is worthwhile to mention that a notable example where the transformed vari-
ables X̃i = (v′Xi)v∈V(Am) satisfy condition (E.1′) is the case where each Xi obeys
a log-concave distribution. Recall that a Borel probability measure μ on R

p is
log-concave if for any compact sets A1,A2 in R

p and λ ∈ (0,1),

μ
(
λA1 + (1 − λ)A2

)≥ μ(A1)
λμ(A2)

1−λ,

where λA1 + (1 − λ)A2 = {λx + (1 − λ)y : x ∈ A1, y ∈ A2}.
COROLLARY 3.1 (High-dimensional CLT for simple convex sets with log-

concave distributions). Suppose that each Xi obeys a centered log-concave dis-
tribution on R

p and that all the eigenvalues of E[XiX
′
i] are bounded from below

by a constant k1 > 0 and from above by a constant k2 ≥ k1 for every i = 1, . . . , n.
Then

ρn

(
Asi(a, d)

)≤ Cn−1/6 log7/6(pn),

where the constant C depends only on a, b, d, k1 and k2.

3.2. Sparsely convex sets. We next consider classes of sparsely convex sets
defined as follows.

DEFINITION 3.1 (Sparsely convex sets). For integer s > 0, we say that A ⊂
R

p is an s-sparsely convex set if there exist an integer Q > 0 and convex sets Aq ⊂
R

p, q = 1, . . . ,Q, such that A =⋂Q
q=1 Aq and the indicator function of each Aq ,

w �→ I (w ∈ Aq), depends at most on s elements of its argument w = (w1, . . . ,wp)

(which we call the main components of Aq ). We also say that A =⋂Q
q=1 Aq is a

sparse representation of A.

Observe that for any s-sparsely convex set A ⊂ R
p , the integer Q in Defi-

nition 3.1 can be chosen to satisfy Q ≤ C
p
s ≤ ps , where C

p
s is the number of

combinations of size s from p objects. Indeed, if we have a sparse representation
A = ⋂Q

q=1 Aq for Q > C
p
s , then there are at least two sets Aq1 and Aq2 with the

same main components, and hence we can replace these two sets by one convex set
Aq1 ∩ Aq2 with the same main components; this procedure can be repeated until
we have Q ≤ C

p
s .



CLT AND BOOTSTRAP IN HIGH DIMENSIONS 2317

EXAMPLE 3.1. The simplest example satisfying Definition 3.1 is a hyperrect-
angle as in (4), which is a 1-sparsely convex set. Another example is the set

A = {
w ∈ R

p : v′
kw ≤ ak for all k = 1, . . . ,m

}
for some unit vectors vk ∈ S

p−1 and coefficients ak , k = 1, . . . ,m. If the number
of nonzero elements of each vk does not exceed s, this A is an s-sparsely convex
set. Yet another example is the set

A = {
w ∈ R

p : aj ≤ wj ≤ bj for all j = 1, . . . , p and w2
1 + w2

2 ≤ c
}

for some coefficients −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p and 0 < c ≤ ∞. This A

is a 2-sparsely convex set. A more complicated example is the set

A = {
w ∈ R

p : aj ≤ wj ≤ bj ,w
2
k + w2

l ≤ ckl, for all j, k, l = 1, . . . , p
}

for some coefficients −∞ ≤ aj ≤ bj ≤ ∞, 0 < ckl ≤ ∞, j, k, l = 1, . . . , p. This
A is a 2-sparsely convex set. Finally, consider the set

A = {
w ∈ R

p : ∥∥(wj )j∈Jk

∥∥2 ≤ tk for all k = 1, . . . , κ
}
,

where {Jk} are subsets of {1, . . . , p} of fixed cardinality s, {tk} are thresholds in
(0,∞), and 1 ≤ κ ≤ C

p
s is an integer. This A is an s-sparsely convex set.

As the proof of Proposition 3.2 below reveals, s-sparsely convex sets are closely
related to simple convex sets. In particular, we can split any s-sparsely convex set
A ⊂ R

p into A ∩ B and A ∩ B ′ for a cube B = {w ∈ R
p : max1≤j≤p |wj | ≤ R}.

Setting R = pn5/2, it is easy to show that both P(SX
n ∈ A∩B ′) and P(SY

n ∈ A∩B ′)
are negligible. On the other hand, A ∩ B is a simple convex set with parameters
a = 1 and d depending only s as long as A ∩ B contains a ball of radius 1/n, and
if A ∩ B does not contain such a ball, both P(SX

n ∈ A ∩ B) and P(SY
n ∈ A ∩ B) are

also negligible.
Fix an integer s > 0, and let Asp(s) denote the class of all s-sparsely convex

Borel sets in R
p . We assume that the following condition is satisfied:

(M.1′′) n−1∑n
i=1 E[(v′Xi)

2] ≥ b for all v ∈ S
p−1 with ‖v‖0 ≤ s.

Then we have the following proposition.

PROPOSITION 3.2 (High-dimensional CLT for sparsely convex sets). Suppose
that conditions (M.1′′) and (M.2) are satisfied. Then under (E.1), we have

(12) ρn

(
Asp(s)

)≤ CD(1)
n ,

where the constant C depends only on b and s; while under (E.2), we have

(13) ρn

(
Asp(s)

)≤ C
{
D(1)

n + D(2)
n,q

}
,

where the constant C depends only on b, q and s.
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REMARK 3.1 (Dependence on s). In many applications, it may be of interest
to consider s-sparsely convex sets with s = sn depending on n and potentially
growing to infinity: s = sn → ∞. It is therefore interesting to derive the optimal
dependence of the constant C in (12) and (13) on s. We leave this question for
future work.

4. Empirical and multiplier bootstrap theorems. So far, we have shown
that the probabilities P(SX

n ∈ A) can be well approximated by the probabilities
P(SY

n ∈ A) under weak conditions for hyperrectangles A ∈ Are, simple convex sets
A ∈ Asi(a, d), or sparsely convex sets A ∈Asp(s). In practice, however, the covari-
ance matrix of SY

n is typically unknown, and direct computation of P(SY
n ∈ A) is

infeasible. Hence, in this section, we derive high-dimensional bootstrap theorems
which allow us to approximate the probabilities P(SY

n ∈ A), and hence P(SX
n ∈ A),

by data-dependent techniques. We consider here multiplier and empirical bootstrap
methods (we refer to [32] for various versions of bootstraps).

4.1. Multiplier bootstrap. We first consider the multiplier bootstrap. Let
e1, . . . , en be a sequence of i.i.d. N(0,1) random variables that are independent
of Xn

1 = {X1, . . . ,Xn}. Let X̄ := (X̄1, . . . , X̄p)′ := En[Xi], and consider the nor-
malized sum:

SeX
n := (

SeX
n1 , . . . , SeX

np

)′ := 1√
n

n∑
i=1

ei(Xi − X̄).

We are interested in bounding

ρMB
n (A) := sup

A∈A
∣∣P(SeX

n ∈ A | Xn
1
)− P

(
SY

n ∈ A
)∣∣

for A = Are, Asp(s), or A ⊂Asi(a, d).
We begin with the case A⊂ Asi(a, d). Let


̂ := n−1
n∑

i=1

(Xi − X̄)(Xi − X̄)′, 
 := n−1
n∑

i=1

E
[
XiX

′
i

]
.

Observe that E[SeX
n (SeX

n )′ | Xn
1 ] = 
̂ and E[SY

n (SY
n )′] = 
. For A ⊂ Asi(a, d),

define

�n(A) := sup
A∈A

max
v1,v2∈V(Am(A))

∣∣v′
1(
̂ − 
)v2

∣∣.
Then we have the following theorem for classes of simple convex sets.

THEOREM 4.1 (Abstract multiplier bootstrap theorem for simple convex sets).
Let A be a subclass of Asi(a, d) such that condition (M.1′) is satisfied for every
A ∈ A. Then for every constant �n > 0, on the event �n(A) ≤ �n, we have

ρMB
n (A) ≤ C

{
�

1/3
n log2/3(pn) + n−1 log1/2(pn)

}
,

where the constant C depends only on a, b and d .
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REMARK 4.1 (Case of hyperrectangles). From the proof of Theorem 4.1, we
have the following bound when A = Are: under (M.1), for every constant �n > 0,
on the event �n,r ≤ �n, we have

ρMB
n

(
Are)≤ C�

1/3
n log2/3 p,

where the constant C depends only on b, and �n,r is defined by

�n,r = max
1≤j,k≤p

|
̂jk − 
jk|,

where 
̂jk and 
jk are the (j, k)th elements of 
̂ and 
, respectively.

Next, we derive more explicit bounds on ρMB
n (A) for A ⊂ Asi(a, d) under

suitable moment conditions as in the previous section. We will consider sets
A ∈ Asi(a, d) that satisfy the following condition:

(S) The set Am = Am(A) satisfies ‖v‖0 ≤ s for all v ∈ V(Am).

Condition (S) requires that the outward unit normal vectors to the hyperplanes
forming the m-generated convex set Am = Am(A) are sparse. Assuming that (S) is
satisfied for all A ∈ A⊂ Asi(a, d) helps to control �n(A).

For α ∈ (0, e−1), define

D(1)
n (α) =

(
B2

n(log5(pn)) log2(1/α)

n

)1/6
, D(2)

n,q(α) =
(

B2
n log3(pn)

α2/qn1−2/q

)1/3
.

Then we have the following proposition.

PROPOSITION 4.1 (Multiplier bootstrap for simple convex sets). Let α ∈
(0, e−1) be a constant, and let A be a subclass of Asi(a, d) such that conditions
(S) and (M.1′) are satisfied for every A ∈ A. In addition, suppose that condition
(M.2) is satisfied. Then under (E.1), we have with probability at least 1 − α,

ρMB
n (A) ≤ CD(1)

n (α),

where the constant C depends only on a, b, d and s; while under (E.2), we have
with probability at least 1 − α,

ρMB
n (A) ≤ C

{
D(1)

n (α) + D(2)
n,q(α)

}
,

where the constant C depends only on a, b, d, q and s.

REMARK 4.2 (Bootstrap theorems in a.s. sense). Proposition 4.1 leads to
the following multiplier bootstrap theorem in the a.s. sense. Suppose that A is
a subclass of Asi(a, d) as in Proposition 4.1 and that (M.2) is satisfied. We allow
p = pn → ∞ and Bn → ∞ as n → ∞ but assume that a, b, d, q, s are all fixed.
Then by applying Proposition 4.1 with α = αn = n−1(logn)−2, together with the
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Borel–Cantelli lemma (note that
∑∞

n=4 n−1(logn)−2 < ∞), we have with proba-
bility one

ρMB
n (A) =

{
O
{
D(1)

n (αn)
}
, under (E.1),

O
{
D(1)

n (αn) ∨ D(2)
n,q(αn)

}
, under (E.2),

and it is routine to verify that D
(1)
n (αn) = o(1) if B2

n log7(pn) = o(n), and
D

(2)
n,q(αn) = o(1) if B2

n(log3(pn)) log4/q n = o(n1−4/q). Similar conclusions also
follow from other propositions and corollaries below dealing with different classes
of sets and approximations based on multiplier and empirical bootstraps.

When each Xi obeys a log-concave distribution, we have the following corollary
analogous to Corollary 3.1. In this case, instead of condition (S), we will assume
that A ⊂ Asi(a, d) is such that the cardinality of the set

⋃
A∈A V(Am(A)) is at

most (pn)d .

COROLLARY 4.1 (Multiplier bootstrap for simple convex sets with log-concave
distributions). Let α ∈ (0, e−1) be a constant, and let A be a subclass of Asi(a, d)

such that the cardinality of the set
⋃

A∈A V(Am(A)) is at most (pn)d . Suppose
that each Xi obeys a centered log-concave distribution on R

p and that all the
eigenvalues of E[XiX

′
i] are bounded from below by a constant k1 > 0 and from

above by a constant k2 ≥ k1 for every i = 1, . . . , n. Then with probability at least
1 − α,

ρMB
n (A) ≤ Cn−1/6(log5/6(pn)

)
log1/3(1/α),

where the constant C depends only on a, d, k1 and k2.

When A= Are, we have the following corollary.

COROLLARY 4.2 (Multiplier bootstrap for hyperrectangles). Let α ∈ (0, e−1)

be a constant, and suppose that conditions (M.1) and (M.2) are satisfied. Then
under (E.1), we have with probability at least 1 − α,

ρMB
n

(
Are)≤ CD(1)

n (α),

where the constant C depends only on b; while under (E.2), we have with proba-
bility at least 1 − α,

ρMB
n

(
Are)≤ C

{
D(1)

n (α) + D(2)
n,q(α)

}
,

where the constant C depends only on b and q .

Finally, we derive explicit bounds on ρMB
n (A) in the case where A is the class

of all s-sparsely convex sets: A= Asp(s).
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PROPOSITION 4.2 (Multiplier bootstrap for sparsely convex sets). Let α ∈
(0, e−1) be a constant. Suppose that conditions (M.1′′) and (M.2) are satisfied.
Then under (E.1), we have with probability at least 1 − α,

(14) ρMB
n

(
Asp(s)

)≤ CD(1)
n (α),

where the constant C depends only on b and s; while under (E.2), we have with
probability at least 1 − α,

(15) ρMB
n

(
Asp(s)

)≤ C
{
D(1)

n (α) + D(2)
n,q(α)

}
,

where the constant C depends only on b, s and q .

4.2. Empirical bootstrap. Here, we consider the empirical bootstrap. For
brevity, we only consider the case A = Are. Let X∗

1, . . . ,X∗
n be i.i.d. draws

from the empirical distribution of X1, . . . ,Xn. Conditional on Xn
1 = {X1, . . . ,Xn},

X∗
1, . . . ,X∗

n are i.i.d. with mean X̄ = En[Xi]. Consider the normalized sum:

SX∗
n := (

SX∗
n1 , . . . , SX∗

np

)′ := 1√
n

n∑
i=1

(
X∗

i − X̄
)
.

We are interested in bounding

ρEB
n (A) := sup

A∈A
∣∣P(SX∗

n ∈ A | Xn
1
)− P

(
SY

n ∈ A
)∣∣

for A= Are. To state the bound, define

L̂n := max
1≤j≤p

n∑
i=1

|Xij − X̄j |3/n,

which is an empirical analog of Ln, and for φ ≥ 1, define

M̂n,X(φ) := n−1
n∑

i=1

max
1≤j≤p

|Xij − X̄j |31
{

max
1≤j≤p

|Xij − X̄j | > √
n/(4φ logp)

}
,

M̂n,Y (φ) := E
[

max
1≤j≤p

∣∣SeX
nj

∣∣31
{

max
1≤j≤p

∣∣SeX
nj

∣∣> √
n/(4φ logp)

} ∣∣Xn
1

]
,

which are empirical analogs of Mn,X(φ) and Mn,Y (φ), respectively. Let

M̂n(φ) := M̂n,X(φ) + M̂n,Y (φ).

We have the following theorem.

THEOREM 4.2 (Abstract empirical bootstrap theorem). For arbitrary positive
constants b, Ln and Mn, the inequality

ρEB
n

(
Are)≤ ρMB

n

(
Are)+ K1

[(
L

2
n log7 p

n

)1/6
+ Mn

Ln

]
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holds on the event{
En

[
(Xij − X̄j )

2]≥ b for all j = 1, . . . , p
}∩ {L̂n ≤ Ln} ∩ {M̂n(φn) ≤ Mn

}
,

where

φn := K2

(
L

2
n log4 p

n

)−1/6
.

Here, K1,K2 > 0 are constants that depend only on b.

As for the multiplier bootstrap case, we next derive explicit bounds on ρEB
n (Are)

under suitable moment conditions.

PROPOSITION 4.3 (Empirical bootstrap for hyperrectangles). Let α ∈ (0, e−1)

be a constant, and suppose that conditions (M.1) and (M.2) are satisfied. In addi-
tion, suppose that log(1/α) ≤ K log(pn) for some constant K . Then under (E.1),
we have with probability at least 1 − α,

(16) ρEB
n

(
Are)≤ CD(1)

n ,

where the constant C depends only on b and K ; while under (E.2), we have with
probability at least 1 − α,

(17) ρEB
n

(
Are)≤ C

{
D(1)

n + D(2)
n,q(α)

}
,

where the constant C depends only on b, q and K .

5. Key lemma. In this section, we state a lemma that plays a key role in the
proof of our high-dimensional CLT for hyperrectangles (Theorem 2.1). Define

�n := sup
y∈Rp,v∈[0,1]

∣∣P(√vSX
n + √

1 − vSY
n ≤ y

)− P
(
SY

n ≤ y
)∣∣,

where the random vectors Y1, . . . , Yn are assumed to be independent of the random
vectors X1, . . . ,Xn, and recall that Mn(φ) := Mn,X(φ) + Mn,Y (φ) for φ ≥ 1. The
lemma below provides a bound on �n.

LEMMA 5.1 (Key lemma). Suppose that there exists some constant b > 0 such
that n−1∑n

i=1 E[X2
ij ] ≥ b for all j = 1, . . . , p. Then �n satisfies the following in-

equality for all φ ≥ 1:

�n � φ2 log2 p

n1/2

{
φLn�n + Ln log1/2 p + φMn(φ)

}+ log1/2 p

φ

up to a constant K that depends only on b.
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Lemma 5.1 has an immediate corollary. Indeed, define

�′
n := sup

A∈Are,v∈[0,1]
∣∣P(√vSX

n + √
1 − vSY

n ∈ A
)− P

(
SY

n ∈ A
)∣∣,

where Are is the class of all hyperrectangles in R
p . Then we have the following.

COROLLARY 5.1. Suppose that there exists some constant b > 0 such that
n−1∑n

i=1 E[X2
ij ] ≥ b for all j = 1, . . . , p. Then �′

n satisfies the following inequal-
ity for all φ ≥ 1:

�′
n � φ2 log2 p

n1/2

{
φLn�

′
n + Ln log1/2 p + φMn(2φ)

}+ log1/2 p

φ

up to a constant K ′ that depends only on b.

APPENDIX A: ANTI-CONCENTRATION INEQUALITIES

One of the main ingredients of the proof of Lemma 5.1 (and the proofs of
the other results indeed) is the following anti-concentration inequality due to
Nazarov [30].

LEMMA A.1 (Nazarov’s inequality, [30]). Let Y = (Y1, . . . , Yp)′ be a centered
Gaussian random vector in R

p such that E[Y 2
j ] ≥ b for all j = 1, . . . , p and some

constant b > 0. Then for every y ∈R
p and a > 0,

P(Y ≤ y + a) − P(Y ≤ y) ≤ Ca
√

logp,

where C is a constant depending only on b.

REMARK A.1. This inequality is less sharp than the dimension-free anti-
concentration bound CaE[max1≤j≤p Yj ] proved in [20] for the case of max hyper-
rectangles. However, the former inequality allows for more general hyperrectan-
gles than the latter. The difference in sharpness for the case of max-hyperrectangles
arises due to dimension-dependence

√
logp, in particular the term

√
logp can be

much larger than E[max1≤j≤p Yj ]. This also makes the anti-concentration bound
in [20] more relevant for the study of suprema of Gaussian processes indexed by in-
finite classes. It is an interesting question whether one could establish a dimension-
free anti-concentration bound similar to that in [20] for classes of hyperrectangles
other than max hyperrectangles.

PROOF OF LEMMA A.1. Let 
 = E[YY ′]; then Y has the same distribution as

1/2Z where Z is a standard Gaussian random vector. Write 
1/2 = (σ1, . . . , σp)′



2324 V. CHERNOZHUKOV, D. CHETVERIKOV AND K. KATO

where each σj is a p-dimensional vector. Note that ‖σj‖ = (E[Y 2
j ])1/2 ≥ b1/2.

Then

P(Y ≤ y + a) = P
(

1/2Z ≤ y + a

)
= P

((
σj/‖σj‖)′Z ≤ (yj + a)/‖σj‖ for all j = 1, . . . , p

)
,

and similarly

P(Y ≤ y) = P
((

σj/‖σj‖)′Z ≤ yj/‖σj‖ for all j = 1, . . . , p
)
.

Since Z is a standard Gaussian random vector, and a/‖σj‖ ≤ a/b1/2 for all j =
1, . . . , p, the assertion follows from Theorem 20 in [25], whose proof the authors
credit to Nazarov [30]. �

We will use another anti-concentration inequality by [30] in the proofs for Sec-
tions 3 and 4, which is an extension of Theorem 4 in [3].

LEMMA A.2. Let A be a p × p symmetric positive definite matrix, and let
γA = N(0,A−1). Then there exists a universal constant C > 0 such that for every
convex set Q ⊂R

p , and every h1, h2 > 0,

γA(Qh1 \ Q−h2)

h1 + h2
≤ C

√‖A‖HS,

where ‖A‖HS is the Hilbert–Schmidt norm of A, Qh = {x ∈ R
p : ρ(x,Q) ≤ h},

Q−h = {x ∈ R
p : B(x,h) ⊂ Q}, B(x,h) = {y ∈R

p : ‖y−x‖ ≤ h}, and ρ(x,Q) =
infy∈Q ‖y − x‖.

PROOF. It is proven in [30] that for every convex set Q ⊂ R
p and every h > 0,

γA(Qh \ Q)

h
≤ C

√‖A‖HS.

Therefore, the asserted claim follows from the arguments in Proposition 2.5 of [16]
or in Section 1.3 of [8]. �

APPENDIX B: PROOF FOR SECTION 5

We begin with stating the following variants of Chebyshev’s association in-
equality.

LEMMA B.1. Let ϕi : R → [0,∞), i = 1,2 be nondecreasing functions, and
let ξi, i = 1,2 be independent real-valued random variables. Then

E
[
ϕ1(ξ1)

]
E
[
ϕ2(ξ1)

]≤ E
[
ϕ1(ξ1)ϕ2(ξ1)

]
,(18)

E
[
ϕ1(ξ1)

]
E
[
ϕ2(ξ2)

]≤ E
[
ϕ1(ξ1)ϕ2(ξ1)

]+ E
[
ϕ1(ξ2)ϕ2(ξ2)

]
,(19)

E
[
ϕ1(ξ1)ϕ2(ξ2)

]≤ E
[
ϕ1(ξ1)ϕ2(ξ1)

]+ E
[
ϕ1(ξ2)ϕ2(ξ2)

]
,(20)
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where we assume that all the expectations exist and are finite. Moreover, (20) holds
without independence of ξ1 and ξ2.

PROOF. Inequality (18) is Chebyshev’s association inequality; see Theo-
rem 2.14 in [12]. Moreover, since ξ1 and ξ2 are independent, (19) follows
from (20). In turn, (20) follows from

E
[
ϕ1(ξ1)ϕ2(ξ2)

]≤ E
[
ϕ1(ξ1)ϕ2(ξ2)

]+ E
[
ϕ2(ξ1)ϕ1(ξ2)

]
≤ E

[
ϕ1(ξ1)ϕ2(ξ1)

]+ E
[
ϕ1(ξ2)ϕ2(ξ2)

]
,

where the first inequality follows from the fact that ϕ2(ξ1)ϕ1(ξ2) ≥ 0, and the sec-
ond inequality follows from rearranging the terms in the following inequality:

E
[(

ϕ1(ξ1) − ϕ1(ξ2)
)(

ϕ2(ξ1) − ϕ2(ξ2)
)]≥ 0,

which follows from monotonicity of ϕ1 and ϕ2. �

Proof of Lemma 5.1. The proof relies on a Slepian–Stein method developed
in [17]. Here, the notation � means that the left-hand side is bounded by the right-
hand side up to some constant depending only on b.

We begin with preparing some notation. Let W1, . . . ,Wn be a copy of
Y1, . . . , Yn. Without loss of generality, we may assume that X1, . . . ,Xn, Y1, . . . , Yn,
and W1, . . . ,Wn are independent. Consider SW

n := n−1/2∑n
i=1 Wi . Then P(SY

n ≤
y) = P(SW

n ≤ y), so that

�n = sup
y∈Rp,v∈[0,1]

∣∣P(√vSX
n + √

1 − vSY
n ≤ y

)− P
(
SW

n ≤ y
)∣∣.

Pick any y ∈ R
p and v ∈ [0,1]. Let β := φ logp, and define the function

Fβ(w) := β−1 log

( p∑
j=1

exp
(
β(wj − yj )

))
, w ∈ R

p.

The function Fβ(w) has the following property:

(21) 0 ≤ Fβ(w) − max
1≤j≤p

(wj − yj ) ≤ β−1 logp = φ−1, for all w ∈ R
p.

Pick a thrice continuously differentiable function g0 : R → [0,1] whose deriva-
tives up to the third order are all bounded such that g0(t) = 1 for t ≤ 0 and
g0(t) = 0 for t ≥ 1. Define g(t) := g0(φt), t ∈ R, and

m(w) := g
(
Fβ(w)

)
, w ∈ R

p.

For brevity of notation, we will use indices to denote partial derivatives of m;
for example, ∂j ∂k∂lm = mjkl . The function m(w) has the following properties



2326 V. CHERNOZHUKOV, D. CHETVERIKOV AND K. KATO

established in Lemmas A.5 and A.6 of [17]: for every j, k, l = 1, . . . , p, there
exists a function Ujkl(w) such that∣∣mjkl(w)

∣∣ ≤ Ujkl(w),(22)
p∑

j,k,l=1

Ujkl(w) �
(
φ3 + φβ + φβ2)� φβ2,(23)

Ujkl(w) � Ujkl(w + w̃) � Ujkl(w),(24)

where the inequalities (22) and (23) hold for all w ∈ R
p , and inequality (24) holds

for all w, w̃ ∈ R
p with max1≤j≤p |w̃j |β ≤ 1 (formally, [17] only considered the

case where y = (0, . . . ,0)′ but the extension to y ∈ R
p is trivial). Moreover, define

the functions

h(w, t) := 1
{
−φ−1 − t/β < max

1≤j≤p
(wj − yj ) ≤ φ−1 + t/β

}
,

(25) w ∈ R
p, t > 0,

ω(t) := 1√
t ∧ √

1 − t
, t ∈ (0,1).

The proof consists of two steps. In the first step, we show that

(26)
∣∣E[In]

∣∣� φ2 log2 p

n1/2

(
φLn�n + Ln log1/2 p + φMn(φ)

)
,

where

In := m
(√

vSX
n + √

1 − vSY
n

)− m
(
SW

n

)
.

In the second step, we combine this bound with Lemma A.1 to complete the proof.

Step 1. Define the Slepian interpolant

Z(t) :=
n∑

i=1

Zi(t), t ∈ [0,1],

where

Zi(t) := 1√
n

{√
t(

√
vXi + √

1 − vYi) + √
1 − tWi

}
.

Note that Z(1) = √
vSX

n + √
1 − vSY

n and Z(0) = SW
n , and so

(27) In = m
(√

vSX
n + √

1 − vSY
n

)− m
(
SW

n

)= ∫ 1

0

dm(Z(t))

dt
dt.

Denote by Z(i)(t) the Stein leave-one-out term for Z(t):

Z(i)(t) := Z(t) − Zi(t).
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Finally, define

Żi(t) := 1√
n

{
1√
t
(
√

vXi + √
1 − vYi) − 1√

1 − t
Wi

}
.

For brevity of notation, we omit the argument t ; that is, we write Z = Z(t), Zi =
Zi(t), Z(i) = Z(i)(t) and Żi = Żi(t).

Now, from (27) and Taylor’s theorem, we have

E[In] = 1

2

p∑
j=1

n∑
i=1

∫ 1

0
E
[
mj(Z)Żij

]
dt = 1

2
(I + II + III),

where

I :=
p∑

j=1

n∑
i=1

∫ 1

0
E
[
mj

(
Z(i))Żij

]
dt,

II :=
p∑

j,k=1

n∑
i=1

∫ 1

0
E
[
mjk

(
Z(i))ŻijZik

]
dt,

III :=
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
(1 − τ)E

[
mjkl

(
Z(i) + τZi

)
ŻijZikZil

]
dτ dt.

By independence of Z(i) from Żij together with E[Żij ] = 0, we have I = 0. Also,
by independence of Z(i) from ŻijZik together with

E[ŻijZik] = 1

n
E
[
(
√

vXij + √
1 − vYij )(

√
vXik + √

1 − vYik) − WijWik

]
= 1

n
E
[
vXijXik + (1 − v)YijYik − WijWik

]= 0,

we have II = 0. Therefore, it suffices to bound III.
To this end, let

χi := 1
{

max
1≤j≤p

|Xij | ∨ |Yij | ∨ |Wij | ≤ √
n/(4β)

}
, i = 1, . . . , n

and decompose III as III = III1 + III2, where

III1 :=
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
(1 − τ)E

[
χimjkl

(
Z(i) + τZi

)
ŻijZikZil

]
dτ dt,

III2 :=
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
(1 − τ)E

[
(1 − χi)mjkl

(
Z(i) + τZi

)
ŻijZikZil

]
dτ dt.
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We shall bound III1 and III2 separately. For III2, we have

|III2| ≤
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
E
[
(1 − χi)Ujkl

(
Z(i) + τZi

)|ŻijZikZil|]dτ dt

� φβ2
n∑

i=1

∫ 1

0
E
[
(1 − χi) max

1≤j,k,l≤p
|ŻijZikZil|

]
dt(28)

� φβ2

n3/2

n∑
i=1

∫ 1

0
ω(t)E

[
(1 − χi) max

1≤j≤p
|Xij |3 ∨ |Yij |3 ∨ |Wij |3

]
dt,

where the first and the second inequalities follow from (22) and (23), respectively.
Moreover, by letting T = √

n/(4β) and using the union bound, we have

1 − χi ≤ 1
{

max
1≤j≤p

|Xij | > T
}

+ 1
{

max
1≤j≤p

|Yij | > T
}

+ 1
{

max
1≤j≤p

|Wij | > T
}
.

Hence, using the inequality

max
1≤j≤p

|Xij |3 ∨ |Yij |3 ∨ |Wij |3

≤ max
1≤j≤p

|Xij |3 + max
1≤j≤p

|Yij |3 + max
1≤j≤p

|Wij |3

together with inequality (20) in Lemma B.1, we conclude that the integral in (28)
is bounded from above up to a universal constant by

E
[

max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | > T
}]

+ E
[

max
1≤j≤p

|Yij |31
{

max
1≤j≤p

|Yij | > T
}]

since Wi’s have the same distribution as that of Yi ’s. Therefore,

|III2| � (
Mn,X(φ) + Mn,Y (φ)

)
φβ2/n1/2 = Mn(φ)φβ2/n1/2.

To bound III1, recall the definition of h(w, t) in (25). Note that mjkl(Z
(i) +

τZi) = 0 for all τ ∈ [0,1] whenever h(Z(i),1) = 0 and χi = 1, so that

(29) χi

∣∣mjkl

(
Z(i) + τZi

)∣∣= h
(
Z(i),1

)
χi

∣∣mjkl

(
Z(i) + τZi

)∣∣.
Indeed if χi = 1, then max1≤j≤p |Zij | ≤ 3/(4β) < 1/β , and so when h(Z(i),1) =
0 and χi = 1, we have h(Z(i) + τZi,0) = 0, which in turn implies that either
Fβ(Z(i) + τZi) ≤ 0 or Fβ(Z(i) + τZi) ≥ φ−1 because of (21); in both cases, the
assertion follows from the definitions of m and g. Hence,

|III1| ≤
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
E
[
χi

∣∣mjkl

(
Z(i) + τZi

)
ŻijZikZil

∣∣]dτ dt

�
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
E
[
χih

(
Z(i),1

)
Ujkl

(
Z(i) + τZi

)|ŻijZikZil|]dτ dt(30)
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�
p∑

j,k,l=1

n∑
i=1

∫ 1

0

∫ 1

0
E
[
χih

(
Z(i),1

)
Ujkl

(
Z(i))|ŻijZikZil|]dτ dt

�
p∑

j,k,l=1

n∑
i=1

∫ 1

0
E
[
h
(
Z(i),1

)
Ujkl

(
Z(i))]E[|ŻijZikZil|]dt,

where the second inequality follows from (22) and (29), the third inequality from
(24), and the fourth inequality from the independence of Z(i) from ŻijZikZil .
Then we split the integral in (30) by inserting χi + (1 − χi) under the first expec-
tation sign. We have

p∑
j,k,l=1

n∑
i=1

∫ 1

0
E
[
(1 − χi)h

(
Z(i),1

)
Ujkl

(
Z(i))]E[|ŻijZikZil|]dt

� φβ2
n∑

i=1

∫ 1

0
E[1 − χi]E

[
max

1≤j,k,l≤p
|ŻijZikZil|

]
dt

� Mn(φ)φβ2/n1/2,

where the last inequality follows from the argument similar to that used to bound
III2 with applying (18) and (19) instead of (20) in Lemma B.1. Moreover, since
h(Z(i),1) = 0 whenever h(Z,2) = 0 and χi = 1 (which follows from the same
argument as before), so that

χih
(
Z(i),1

)= χih
(
Z(i),1

)
h(Z,2),

we have

p∑
j,k,l=1

n∑
i=1

∫ 1

0
E
[
χih

(
Z(i),1

)
Ujkl

(
Z(i))]E[|ŻijZikZil|]dt

�
p∑

j,k,l=1

n∑
i=1

∫ 1

0
E
[
χih

(
Z(i),1

)
Ujkl(Z)

]
E
[|ŻijZikZil|]dt

�
p∑

j,k,l=1

n∑
i=1

∫ 1

0
E
[
h(Z,2)Ujkl(Z)

]
E
[|ŻijZikZil|]dt(31)

=
p∑

j,k,l=1

∫ 1

0
E
[
h(Z,2)Ujkl(Z)

] n∑
i=1

E
[|ŻijZikZil|]dt

� φβ2
∫ 1

0
E
[
h(Z,2)

]
max

1≤j,k,l≤p

n∑
i=1

E
[|ŻijZikZil|]dt.
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To bound (31), observe that

|ŻijZikZil| � ω(t)

n3/2

(|Xij |3 + |Yij |3 + |Wij |3

+ |Xik|3 + |Yik|3 + |Wik|3 + |Xil|3 + |Yil|3 + |Wil|3),
which, together with the facts that E[|Wij |3] = E[|Yij |3] and E[|Yij |3] �
(E[|Yij |2])3/2 = (E[|Xij |2])3/2 ≤ E[|Xij |3], implies that

max
1≤j,k,l≤p

n∑
i=1

E
[|ŻijZikZil|]� ω(t)

n3/2 max
1≤j≤p

n∑
i=1

(
E
[|Xij |3]+ E

[|Yij |3])� ω(t)

n1/2 Ln.

Meanwhile, observe that

E
[
h(Z,2)

]= P(Z ≤ I ) − P(Z ≤ I ),

where

Z = 1√
n

n∑
i=1

(√
tvXi +√

t (1 − v)Yi + √
1 − tWi

)
d= 1√

n

n∑
i=1

(
√

tvXi + √
1 − tvYi),

and I = y −φ−1 −2β−1, I = y +φ−1 +2β−1; here the notation d= denotes equal-
ity in distribution, and I and I are vectors in R

p (recall the rules of summation of
vectors and scalars defined in Section 1.1). Now by the definition of �n,

P(Z ≤ I ) ≤ P
(
SY

n ≤ I
)+ �n, P(Z ≤ I ) ≥ P

(
SY

n ≤ I
)− �n,

and by Lemma A.1,

P
(
SY

n ≤ I
)− P

(
SY

n ≤ I
)
� φ−1 log1/2 p

since β−1 � φ−1 and E[(SY
nj )

2] = E[(SX
nj )

2] = n−1∑n
i=1 E[X2

ij ] ≥ b for all j =
1, . . . , p. Hence

E
[
h(Z,2)

]
� �n + φ−1 log1/2 p.

By these bounds, together with the fact that
∫ 1

0 ω(t) dt � 1, we conclude that

(31) � φβ2Ln

n1/2

(
�n + φ−1 log1/2 p

)
� φ2 log2 p

n1/2

(
φLn�n + Ln log1/2 p

)
,

where we have used β = φ logp. The desired assertion (26) then follows.
Step 2. We are now in position to complete the proof. Let

Vn := √
vSX

n + √
1 − vSY

n .
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Then we have

P
(
Vn ≤ y − φ−1)≤ P

(
Fβ(Vn) ≤ 0

)≤ E
[
m(Vn)

]
≤ P

(
Fβ

(
SW

n

)≤ φ−1)+ (
E
[
m(Vn)

]− E
[
m
(
SW

n

)])
≤ P

(
SW

n ≤ y + φ−1)+ ∣∣E[In]
∣∣

≤ P
(
SW

n ≤ y − φ−1)+ Cφ−1 log1/2 p + ∣∣E[In]
∣∣,

where the first three lines follow from the properties of Fβ(w) and g(t) [recall that
m(w) = g(Fβ(w))], and the last inequality follows from Lemma A.1. Here, the
constant C depends only on b. Likewise we have

P
(
Vn ≤ y − φ−1)≥ P

(
SW

n ≤ y − φ−1)− Cφ−1 log1/2 p − ∣∣E[In]
∣∣.

The conclusion of the lemma follows from combining these inequalities with the
bound on |E[In]| derived in Step 1.

Proof of Corollary 5.1. Pick any hyperrectangle

A = {
w ∈ R

p : wj ∈ [aj , bj ] for all j = 1, . . . , p
}
.

For i = 1, . . . , n, consider the random vectors X̃i and Ỹi in R
2p defined by X̃ij =

Xij and Ỹij = Yij for j = 1, . . . , p, and X̃ij = −Xi,j−p and Ỹij = −Yi,j−p for
j = p + 1, . . . ,2p. Then

P
(
SX

n ∈ A
)= P

(
SX̃

n ≤ y
)
, P

(
SY

n ∈ A
)= P

(
SỸ

n ≤ y
)
,

where the vector y ∈ R
2p is defined by yj = bj for j = 1, . . . , p and yj = −aj−p

for j = p+1, . . . ,2p, and SX̃
n and SỸ

n are defined as SX
n and SY

n with Xi’s and Yi’s
replaced by X̃i’s and Ỹi’s. Hence, the corollary follows from applying Lemma 5.1
to X̃1, . . . , X̃n and Ỹ1, . . . , Ỹn.

APPENDIX C: PROOFS FOR SECTION 2

Proof of Theorem 2.1. The proof relies on Lemma 5.1 and its Corollary 5.1.
Let K ′ denote a constant from the conclusion of Corollary 5.1. This constant de-
pends only on b. Set K2 := 1/(K ′ ∨ 1) in (7), so that

φn = 1

K ′ ∨ 1

(
L

2
n log4 p

n

)−1/6
.

Without loss of generality, we may assume that φn ≥ 2; otherwise, the assertion of
the theorem holds trivially by setting K1 = 2(K ′ ∨ 1).

Then applying Corollary 5.1 with φ = φn/2, we have

�′
n ≤ �′

n

8(K ′ ∨ 1)2 + 3(K ′ ∨ 1)2L
1/3
n log7/6 p

n1/6 + Mn(φn)

8(K ′ ∨ 1)2Ln

.
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Since 8(K ′ ∨ 1)2 > 1, solving this inequality for �′
n and observing that ρn(Are) ≤

�′
n leads to the desired assertion.

Before proving Proposition 2.1, we shall verify the following elementary in-
equality.

LEMMA C.1. Let ξ be a nonnegative random variable such that P(ξ > x) ≤
Ae−x/B for all x ≥ 0 and for some constants A,B > 0. Then for every t ≥ 0,
E[ξ31{ξ > t}] ≤ 6A(t + B)3e−t/B .

PROOF. Observe that

E
[
ξ31{ξ > t}]= 3

∫ t

0
P(ξ > t)x2 dx + 3

∫ ∞
t

P(ξ > x)x2 dx

= P(ξ > t)t3 + 3
∫ ∞
t

P(ξ > x)x2 dx.

Since P(ξ > x) ≤ Ae−x/B , using integration by parts, we have∫ ∞
t

P(ξ > s)x2 dx ≤ A
(
Bt2 + 2B2t + 2B3)e−t/B,

which leads to

E
[
ξ31{ξ > t}]≤ A

(
t3 + 3Bt2 + 6B2t + 6B3)e−t/B ≤ 6A(t + B)3e−t/B,

completing the proof. �

Proof of Proposition 2.1. The proof relies on application of Theorem 2.1.
Without loss of generality, we may assume that

(32)
B2

n log7(pn)

n
≤ c := min

{
(c1/2)3, (K2/2)6},

where K2 appears in (7) and c1 > 0 is a constant that depends only on b (c1 will
be defined later), since otherwise we can make the assertions trivial by setting C

large enough.
Now by Theorem 2.1, we have

ρn

(
Are)≤ K1

[(
L

2
n log7 p

n

)1/6
+ Mn,X(φn) + Mn,Y (φn)

Ln

]
,

where φn = K2{n−1L
2
n log4 p}−1/6, and Ln is any constant such that Ln ≥ Ln.

Recall that

Ln = max
1≤j≤p

n∑
i=1

E
[|Xij |3]/n,

Mn,X(φn) = n−1
n∑

i=1

E
[

max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | > √
n/(4φn logp)

}]
,

and Mn,Y (φn) is defined similarly with Xij ’s replaced by Yij ’s.
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It remains to choose a suitable constant Ln such that Ln ≥ Ln and bound
Mn,X(φn) and Mn,Y (φn). To this end, we consider cases (E.1) and (E.2) sepa-
rately. In what follows, the notation � means that the left-hand side is bounded
by the right-hand side up to a positive constant that depends only on b under case
(E.1), and on b and q under case (E.2).

Case (E.1). Set Ln := Bn. By condition (M.2), we have Ln ≤ Bn = Ln. Ob-
serve that (E.1) implies that ‖Xij‖ψ1 ≤ Bn for all i and j . In addition, since each
Yij is Gaussian and E[Y 2

ij ] = E[X2
ij ], ‖Yij‖ψ1 ≤ C1Bn for all i and j and some uni-

versal constant C1 > 0. Hence, by Lemma 2.2.2 in [42], we have for some univer-
sal constant C2 > 0, ‖max1≤j≤p Xij‖ψ1 ≤ C2Bn logp and ‖max1≤j≤p Yij‖ψ1 ≤
C2Bn logp. Together with Markov’s inequality, this implies that for every t > 0,

P
(

max
1≤j≤p

|Xij | > t
)

≤ 2 exp
(
− t

C2Bn logp

)
.

Applying Lemma C.1, we have

Mn,X(φn) �
(√

n/(φn logp) + Bn logp
)3 exp

(
−

√
n

4C2φnBn log2 p

)
.

Here,
√

n

4C2φnBn log2 p
= c1n

1/3

B
2/3
n log4/3 p

(
c1 := 1

4K2C2

)
≥ c1c

−1/3 log(pn) ≥ 2 log(pn)
(
by (32)

)
.

Moreover, by (32) and φ−1
n = K−1

2 {n−1B2
n log4 p}1/6 ≤ c1/6/K2 ≤ 1, we have

(
√

n/(φn logp) + Bn logp)3 � n3/2, which implies that

Mn,X(φn) � n3/2 exp
(−2 log(pn)

)≤ n−1/2.

The same reasoning also gives Mn,Y (φn) � n−1/2. The conclusion of the proposi-
tion in this case now follows from the fact that n−1/2B−1

n ≤ D
(1)
n .

Case (E.2). Without loss of generality, in addition to (32), we may assume that

(33)
Bn log3/2 p

n1/2−1/q
≤ (K2/2)3/2.

Set

Ln :=
{
Bn + B2

n

n1/2−2/q log1/2 p

}
.

Then Ln ≤ Bn ≤ Ln. As the map x �→ x1/3 is sub-linear, {n−1L
2
n log7 p}1/6 ≤

D
(1)
n + D

(2)
n,q ≤ K2, so that φ−1

n = K−1
2 {n−1L

2
n log4 p}1/6 ≤ 1.
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Note that for any real-valued random variable Z and any t > 0, E[|Z|31(|Z| >

t)] ≤ E[|Z|3(|Z|/t)q−31(|Z| > t)] ≤ t3−qE[|Z|q]. Hence,

Mn,X(φn) � B
q
nφ

q−3
n logq−3 p

nq/2−3/2 .

Here, using the bound L
−1
n ≤ B−2

n n1/2−2/q log1/2 p, we have that φn �
n1/3−2/(3q)B

−2/3
n (logp)−1/2, so that

Mn,X(φn) � B
q/3+2
n (logp)q/2−3/2

nq/6+1/6−2/q
,

which implies that

Mn,X(φn)/Ln � B
q/3+2
n (logp)q/2−3/2

nq/6+1/6−2/q
· n1/2−2/q log1/2 p

B2
n

� 1

logp

(
B2

n log3 p

n1−2/q

)q/6
� D(2)

n,q .

Meanwhile, as in the previous case, we have Mn,Y (φn) � n−1/2, which leads to
the desired conclusion in this case.

APPENDIX D: PROOFS FOR SECTION 3

Proof of Proposition 3.1. Here, C denotes a generic positive constant that
depends only on a, b and d if (E.1′) is satisfied, and on a, b, d and q if (E.2′)
is satisfied; the value of C may change from place to place. Pick any A ∈ A ⊂
Asi(a, d). Let Am = Am(A) be an approximating m-generated convex set as in
condition (C). By assumption, Am ⊂ A ⊂ Am,ε , so that by letting

ρ := ∣∣P(SX
n ∈ Am)− P

(
SY

n ∈ Am)∣∣∨ ∣∣P(SX
n ∈ Am,ε)− P

(
SY

n ∈ Am,ε)∣∣,
we have P(SX

n ∈ A) ≤ P(SX
n ∈ Am,ε) ≤ P(SY

n ∈ Am,ε) + ρ. Here, observe that
(v′SY

n )v∈V(Am) is a Gaussian random vector with dimension Card(V(Am)) = m ≤
(pn)d such that, by condition (M.1′), the variance of each coordinate is bounded
from below by b. Hence, by Lemma A.1, we have

P
(
SY

n ∈ Am,ε)= P
{
v′SY

n ≤ SAm(v) + ε for all v ∈ V
(
Am)}

≤ P
{
v′SY

n ≤ SAm(v) for all v ∈ V
(
Am)}+ Cε log1/2 m

= P
(
SY

n ∈ Am)+ Cε log1/2(pn),

so that

P
(
SX

n ∈ A
)≤ P

(
SY

n ∈ Am)+ Cε log1/2(pn) + ρ

≤ P
(
SY

n ∈ A
)+ Cε log1/2(pn) + ρ

(
by Am ⊂ A

)
.
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Likewise we have P(SX
n ∈ A) ≥ P(SY

n ∈ A) − Cε log1/2(pn) − ρ, by which we
conclude ∣∣P(SX

n ∈ A
)− P

(
SY

n ∈ A
)∣∣≤ Cε log1/2(pn) + ρ.

Recalling that ε = a/n and Bn ≥ 1, we have ε log1/2(pn) ≤ CD
(1)
n . Hence, the

assertions of the proposition follow if we prove

ρ ≤
{
CD(1)

n , if (E.1′) is satisfied,

C
{
D(1)

n + D(2)
n,q

}
, if (E.2′) is satisfied.

However, this follows from application of Proposition 2.1 to X̃1, . . . , X̃n instead
of X1, . . . ,Xn.

Proof of Corollary 3.1. Since Xi is a centered random vector with a log-
concave distribution in R

p , Borell’s inequality (see [11], Lemma 3.1) implies that
‖v′Xi‖ψ1 ≤ c(E[(v′Xi)

2])1/2 for all v ∈R
p for some universal constant c > 0 (see

[28], Appendix III); hence, if the maximal eigenvalue of each E[XiX
′
i] is bounded

by a constant k2, then every simple convex set A ∈ Asi(a, d) obeys conditions
(M.2′) and (E.1′) with Bn replaced by a constant that depends only on c and k2.
Besides if the minimal eigenvalue of each E[XiX

′
i] is bounded from below by a

constant k1, then every simple convex set A ∈ Asi(a, d) obeys condition (M.1′)
with b replaced by a positive constant that depends only on k1. Hence, the conclu-
sion of the corollary follows from application of Proposition 3.1.

Proof of Proposition 3.2. Here, C denotes a positive constant that depends
only on b and s if condition (E.1) is satisfied, and on b, s and q if condition (E.2)
is satisfied; the value of C may change from place to place. Without loss of gener-
ality, we may assume that B2

n ≤ n since otherwise the assertions are trivial.
Let R := pn5/2 and V R := {w ∈ R

p : max1≤j≤p |wj | > R}. Fix any A ∈
Asp(s). Then A = Ǎ ∪ (A ∩ V R) for some s-sparsely convex set Ǎ ⊂ R

p such
that sup

w∈Ǎ
max1≤j≤p |wj | ≤ R. Now observe that by Markov’s inequality,

P
(
max
i,j

|Xij | > pn2
)

≤ E[maxi,j |Xij |]
pn2 ≤ E[∑i,j |Xij |]

pn2

≤ max
i,j

E
[|Xij |]/n ≤ CBn/n ≤ C/n1/2,

where maxi,j stands for max1≤i≤n max1≤j≤p . Hence,

P
(
SX

n ∈ V R)≤ C/n1/2,

and similarly,

P
(
SY

n ∈ V R)≤ C/n1/2.
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So, ∣∣P(SX
n ∈ A

)− P
(
SY

n ∈ A
)∣∣≤ ∣∣P(SX

n ∈ Ǎ
)− P

(
SY

n ∈ Ǎ
)∣∣+ C/n1/2.

Therefore, it suffices to consider the case where the sets A ∈Asp(s) are such that

(34) sup
w∈A

max
1≤j≤p

|wj | ≤ R.

Further, let ε = n−1, and define Asp
1 (s) as the class of all sets A ∈ Asp(s) satis-

fying (34) and containing a ball with radius ε and center at, say, wA. Also define
Asp

2 (s) as the class of all sets A ⊂ Asp(s) satisfying (34) and containing no ball
of radius ε. We bound ρn(Asp

1 (s)) and ρn(Asp
2 (s)) separately in two steps. In both

cases, we rely on the following lemma, whose proof is given after the proof of this
proposition.

LEMMA D.1. Let A be an s-sparsely convex set with a sparse representa-
tion A = ⋂Q

q=1 Aq for some Q ≤ ps . Assume that A contains the origin, that
supw∈A ‖w‖ ≤ R, and that all sets Aq satisfy −Aq ⊂ μAq for some μ ≥ 1. Then
for any γ > e/8, there exists ε0 = ε0(γ ) > 0 such that for any 0 < ε < ε0, the set
A admits an approximation with precision Rε by an m-generated convex set Am

where

m ≤ Q

(
γ

√
μ + 1

ε
log

1

ε

)s2

.

Moreover, the set Am can be chosen to satisfy

(35) ‖v‖0 ≤ s for all v ∈ V
(
Am).

Therefore, since Q ≤ ps , if R ≤ (pn)d0 and μ ≤ (pn)d0 for some constant d0 ≥ 1,
then the set A satisfies condition (C) with a = 1 and d depending only on s and
d0, and the approximating m-generated convex set Am satisfying (35).

Step 1. Here, we bound ρn(Asp
1 (s)). Pick any s-sparsely convex set A ∈ Asp

1 (s)

with a sparse representation A = ⋂Q
q=1 Aq for some Q ≤ ps . Below we verify

conditions (C), (M.1′), (M.2′) and (E.1′) [or (E.2′)] for this set A. Consider the set
B := A − wA := {w ∈ R

p : w + wA ∈ A}. The set B contains a ball with radius
ε and center at the origin, satisfies the inequality ‖w‖ ≤ 2p1/2R for all w ∈ B ,
and has a sparse representation B =⋂Q

q=1 Bq where Bq = Aq −wA. Clearly, each

Bq satisfies −Bq ⊂ μBq with μ = 2p1/2R/ε = 2p3/2n7/2. Therefore, applying
Lemma D.1 to the set B and noting that A = B + wA and Q ≤ ps , we see that
the set A satisfies condition (C) with a = 1 and d depending only on s, and an
approximating m-generated convex set Am such that ‖v‖0 ≤ s for all v ∈ V(Am).

Further, since we have ‖v‖0 ≤ s for all v ∈ V(Am), the fact that the set A satis-
fies condition (M.1′) follows immediately from (M.1′′).
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Next, we verify that the set A satisfies condition (M.2′). For v ∈ V(Am),
let J (v) be the set consisting of positions of nonzero elements of v, so that
Card(J (v)) ≤ s. Using the inequality (

∑
j∈J (v) |aj |)2+k ≤ s1+k∑

j∈J (v) |aj |2+k

for a = (a1, . . . , ap)′ ∈ R
p (which follows from Hölder’s inequality), we have

n−1
n∑

i=1

E
[∣∣v′Xi

∣∣2+k]≤ n−1
n∑

i=1

E
[( ∑

j∈J (v)

|Xij |
)2+k]

≤ s1+kn−1
n∑

i=1

E
[ ∑
j∈J (v)

|Xij |2+k

]
≤ s2+kBk

n ≤ (
B ′

n

)k
for k = 1 or 2, where B ′

n = s3Bn, so that the set A satisfies condition (M.2′) with
Bn replaced by s3Bn.

Finally, we verify that the set A satisfies condition (E.1′) when (E.1) is satisfied,
or (E.2′) when (E.2) is satisfied. When (E.1) is satisfied, we have ‖Xij‖ψ1 ≤ Bn,
so that ‖v′Xi‖ψ1 ≤∑

j∈J (v) ‖Xij‖ψ1 ≤ sBn showing that the set A satisfies (E.1′)
with Bn replaced by sBn.

When (E.2) is satisfied, as E[maxv∈V(Am) |v′Xi |q] ≤ sqE[max1≤j≤p |Xij |q], the
set A satisfies (E.2′) with Bn replaced by sBn.

Thus, all sets A ∈ Asp
1 (s) satisfy conditions (C), (M.1′), (M.2′) and (E.1′) [or

(E.2′)], and so applying Proposition 3.1 shows that the assertions (12) and (13)
hold with ρn(Asp(s)) replaced by ρn(Asp

1 (s)).
Step 2. Here, we bound ρn(Asp

2 (s)). Fix any s-sparsely convex set A ∈ Asp
2 (s)

with a sparse representation A = ⋂Q
q=1 Aq for some Q ≤ ps . We consider two

cases separately. First, suppose that at least one Aq does not contain a ball with ra-
dius ε. Then under condition (M.1′′), Lemma A.2 implies that P(SY

n ∈ Aq) ≤ Cε =
C/n (since the Hilbert–Schmidt norm is equal to the square-root of the sum of
squares of the eigenvalues of the matrix, under our condition (M.1′′), the constant
C in the bound Cε above depends only on b and s). In addition, under conditions
(M.1′′) and (M.2), the Berry–Esseen theorem (see [24], Theorem 1.3) implies that∣∣P(SX

n ∈ Aq

)− P
(
SY

n ∈ Aq

)∣∣≤ CBn/n1/2.

Since A ⊂ Aq , both P(SX
n ∈ A) and P(SY

n ∈ A) are bounded from above by
CBn/n1/2, and so is absolute value of their difference. This completes the proof
in this case.

Second, suppose that each Aq contains a ball with radius ε (possibly depending
on q). Then applying Lemma D.1 to each Aq separately shows that for m ≤ (pn)d

with d depending only on s, we can construct an m-generated convex sets Am
q such

that

Am
q ⊂ Aq ⊂ Am,1/n

q

and ‖v‖0 ≤ s for all v ∈ V(Am
q ). The set A0 =⋂Q

q=1 A
m,1/n
q trivially satisfies con-

dition (C) with a = 0 and d depending only on s. In addition, it follows from the
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same arguments as those used in Step 1 that the set A0 satisfies conditions (M.1′),
(M.2′), (E.1′) (if (E.1) is satisfied) and (E.2′) (if (E.2) is satisfied). Therefore, by
applying Proposition 3.1, we conclude that |P(SX

n ∈ A0)−P(SY
n ∈ A0)| is bounded

from above by the quantities on the right-hand sides of (10) and (11) depending on
whether (E.1) or (E.2) is satisfied. Also, observe that A ⊂ A0 and that

⋂Q
q=1 Am,−ε

q

is empty because
⋂Q

q=1 Am
q ⊂ A and A contains no ball with radius ε. This implies

that P(SY
n ∈ A0) ≤ C(log1/2(pn))/n by Lemma A.1 and condition (M.1′′). Since

A ⊂ A0, both P(SX
n ∈ A) and P(SY

n ∈ A) are bounded from above by the quantities
on the right-hand sides of (12) and (13) depending on whether (E.1) or (E.2) is
satisfied, and so is their difference. This completes the proof in this case.

Here, we prove Lemma D.1 used in the proof of Proposition 3.2.

PROOF OF LEMMA D.1. For convex sets P1 and P2 containing the origin and
such that P1 ⊂ P2, define

dBM(P1,P2) := inf
{
ε > 0 : P2 ⊂ (1 + ε)P1

}
.

It is immediate to verify that the function dBM has the following useful property:
for any convex sets P1, P2, P3 and P4 containing the origin and such that P1 ⊂ P2
and P3 ⊂ P4,

(36) dBM(P1 ∩ P3,P2 ∩ P4) ≤ dBM(P1,P2) ∨ dBM(P3,P4).

Let A =⋂Q
q=1 Aq be a sparse representation of A as appeared in the statement

of the lemma. Fix any Aq . By assumption, the indicator function w �→ I (w ∈ Aq)

depends only on sq ≤ s elements of its argument w = (w1, . . . ,wp). Since A con-
tains the origin, Aq contains the origin as well. Therefore, applying Corollary 1.5
in [4] as if Aq were a set in R

sq shows that one can construct a polytope Pq ⊂ R
p

with at most (γ ((μ + 1)/ε)1/2 log(1/ε))sq vertices such that

Pq ⊂ Aq ⊂ (1 + ε)Pq

and such that for all v ∈ V(Pq), nonzero elements of v correspond to some of the
main components of Aq . Since we need at most sq vertices to form a facet of the
polytope Pq , the polytope Pq has

(37) mq ≤
(
γ

√
μ + 1

ε
log

1

ε

)s2
q ≤

(
γ

√
μ + 1

ε
log

1

ε

)s2

facets. Now observe that Pq is an mq -generated convex set. Thus, we have con-
structed an mq -generated convex set Pq such that Pq ⊂ Aq ⊂ (1 + ε)Pq and all
vectors in V(Pq) having at most s nonzero elements. Hence, dBM(Pq,Aq) ≤ ε,
which, together with (36), implies that

dBM

(
Q⋂

q=1

Pq,

Q⋂
q=1

Aq

)
≤ ε.
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Therefore, defining Am =⋂Q
q=1 Pq , we obtain from A =⋂Q

q=1 Aq that

Am ⊂ A ⊂ (1 + ε)Am ⊂ Am,Rε,

where the last assertion follows from the assumption that supw∈A ‖w‖ ≤ R. Since
Am is an m-generated convex set with m ≤∑Q

q=1 mq , the first claim of the lemma
now follows from (37). The second claim (35) holds by construction of Am, and
the final claim is trivial. �

APPENDIX E: PROOFS FOR SECTION 4

E.1. Maximal inequalities. Here, we collect some useful maximal inequali-
ties that will be used in the proofs for Section 4.

LEMMA E.1. Let X1, . . . ,Xn be independent centered random vectors in R
p

with p ≥ 2. Define Z := max1≤j≤p |∑n
i=1 Xij |,M := max1≤i≤n max1≤j≤p |Xij |

and σ 2 := max1≤j≤p

∑n
i=1 E[X2

ij ]. Then

E[Z] ≤ K
(
σ
√

logp +
√

E
[
M2

]
logp

)
,

where K is a universal constant.

PROOF. See Lemma 8 in [20]. �

LEMMA E.2. Assume the setting of Lemma E.1. (i) For every η > 0, β ∈ (0,1]
and t > 0,

P
{
Z ≥ (1 + η)E[Z] + t

}≤ exp
{−t2/

(
3σ 2)}+ 3 exp

{−(t/(K‖M‖ψβ

))β}
,

where K = K(η,β) is a constant depending only on η,β .
(ii) For every η > 0, s ≥ 1 and t > 0,

P
{
Z ≥ (1 + η)E[Z] + t

}≤ exp
{−t2/

(
3σ 2)}+ K ′E

[
Ms]/ts,

where K ′ = K ′(η, s) is a constant depending only on η, s.

PROOF. See Theorem 4 in [1] for case (i) and Theorem 2 in [2] for case (ii).
See also [22]. �

LEMMA E.3. Let X1, . . . ,Xn be independent random vectors in R
p with

p ≥ 2 such that Xij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , p. Define Z :=
max1≤j≤p

∑n
i=1 Xij and M := max1≤i≤n max1≤j≤p Xij . Then

E[Z] ≤ K

(
max

1≤j≤p
E

[
n∑

i=1

Xij

]
+ E[M] logp

)
,

where K is a universal constant.
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PROOF. See Lemma 9 in [20]. �

LEMMA E.4. Assume the setting of Lemma E.3. (i) For every η > 0, β ∈ (0,1]
and t > 0,

P
{
Z ≥ (1 + η)E[Z] + t

}≤ 3 exp
{−(t/(K‖M‖ψβ

))β}
,

where K = K(η,β) is a constant depending only on η,β . (ii) For every η > 0,
s ≥ 1 and t > 0,

P
{
Z ≥ (1 + η)E[Z] + t

}≤ K ′E
[
Ms]/ts,

where K ′ = K ′(η, s) is a constant depending only on η, s.

The proof of Lemma E.4 relies on the following lemma, which follows from
Theorem 10 in [27].

LEMMA E.5. Assume the setting of Lemma E.3. Suppose that there exists a
constant B such that M ≤ B . Then for every η, t > 0,

P
{
Z ≥ (1 + η)E[Z] + B

(
2

3
+ 1

η

)
t

}
≤ e−t .

PROOF. By homogeneity, we may assume that B = 1. Then by Theorem 10
in [27], for every λ > 0,

log E
[
exp

(
λ
(
Z − E[Z]))]≤ ϕ(λ)E[Z],

where ϕ(λ) = eλ − λ − 1. Hence by Markov’s inequality, with a = E[Z],
P
{
Z − E[Z] ≥ t

}≤ e−λt+aϕ(λ).

The right-hand side is minimized at λ = log(1 + t/a), at which −λt + aϕ(λ) =
−aq(t/a) where q(t) = (1 + t) log(1 + t) − t . It is routine to verify that q(t) ≥
t2/(2(1 + t/3)), so that

P
{
Z − E[Z] ≥ t

}≤ e
− t2

2(a+t/3) .

Solving t2/(2(a + t/3)) = s gives t = s/3 +
√

s2/9 + 2as ≤ 2s/3 +√
2as. There-

fore, we have

P
{
Z ≥ E[Z] + √

2as + 2s/3
}≤ e−s .

The conclusion follows from the inequality
√

2as ≤ ηa + η−1s. �

PROOF OF LEMMA E.4. The proof is a modification of that of Theorem 4
in [1] (or Theorem 2 in [2]). We begin with noting that we may assume that (1 +
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η)8E[M] ≤ t/4, since otherwise we can make the lemma trivial by setting K or
K ′ large enough. Take

ρ = 8E[M], Yij =
⎧⎨⎩Xij , if max

1≤j≤p
Xij ≤ ρ,

0, otherwise.

Define

W1 = max
1≤j≤p

n∑
i=1

Yij , W2 = max
1≤j≤p

n∑
i=1

(Xij − Yij ).

Then

P
{
Z ≥ (1 + η)E[Z] + t

}
≤ P

{
W1 ≥ (1 + η)E[Z] + 3t/4

}+ P(W2 ≥ t/4)

≤ P
{
W1 ≥ (1 + η)E[W1] − (1 + η)E[W2] + 3t/4

}+ P(W2 ≥ t/4).

Observe that

P

{
max

1≤m≤n
max

1≤j≤p

m∑
i=1

(Xij − Yij ) > 0

}
≤ P(M > ρ) ≤ 1/8,

so that by the Hoffmann–Jørgensen inequality (see [26], Proposition 6.8), we have

E[W2] ≤ 8E[M] ≤ t/
(
4(1 + η)

)
.

Hence,

P
{
Z ≥ (1 + η)E[Z] + t

}≤ P
{
W1 ≥ (1 + η)E[W1] + t/2

}+ P(W2 ≥ t/4).

By Lemma E.5, the first term on the right-hand side is bounded by e−ct/ρ where
c depends only on η. We bound the second term separately in cases (i) and (ii).
Below C1,C2, . . . are constants that depend only on η,β, s.

Case (i). By Theorem 6.21 in [26] (note that a version of their theorem applies
to nonnegative random vectors) and the fact that E[W2] ≤ 8E[M],

‖W2‖ψβ ≤ C1
(
E[W2] + ‖M‖ψβ

)≤ C2‖M‖ψβ ,

which implies that P(W2 ≥ t/4) ≤ 2 exp{−(t/(C3‖M‖ψβ ))β}. Since ρ ≤
C4‖M‖ψβ , we conclude that

e−ct/ρ + P(W2 ≥ t/4) ≤ 3 exp
{−(t/(C5‖M‖ψβ

))β}
.

Case (ii). By Theorem 6.20 in [26] (note that a version of their theorem applies
to nonnegative random vectors) and the fact that E[W2] ≤ 8E[M],(

E
[
Ws

2
])1/s ≤ C6

(
E[W2] + (

E
[
Ms])1/s)≤ C7

(
E
[
Ms])1/s

.

The conclusion follows from Markov’s inequality together with the simple fact
that e−t /t−s → 0 as t → ∞. �
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E.2. Proofs for Section 4.

Proof of Theorem 4.1. In this proof, C is a positive constant that depends
only on a, b, and d but its value may change at each appearance. Fix any A ∈
A ⊂ Asi(a, d). Let Am = Am(A) be an approximating m-generated convex set as
in (C). By assumption, Am ⊂ A ⊂ Am,ε . Let

ρ := max
{∣∣P(SeX

n ∈ Am | Xn
1
)− P

(
SY

n ∈ Am)∣∣,∣∣P(SeX
n ∈ Am,ε | Xn

1
)− P

(
SY

n ∈ Am,ε)∣∣}.
As in the proof of Proposition 3.1, we have∣∣P(SeX

n ∈ A | Xn
1
)− P

(
SY

n ∈ A
)∣∣

≤ Cε log1/2(pn) + ρ ≤ Cn−1 log1/2(pn) + ρ,

so that the problem reduces to proving that under (M.1), the inequality

(38) ρMB
n

(
Are)≤ C�

1/3
n log2/3 p

holds on the event �n,r ≤ �n, where �n,r := max1≤j,k≤p |
̂jk − 
jk| with 
̂jk

and 
jk denoting the (j, k)th elements 
̂ and 
, respectively.
To this end, we first show that

(39) �MB
n := sup

y∈Rp

∣∣P(SeX
n ≤ y | Xn

1
)− P

(
SY

n ≤ y
)∣∣≤ C�1/3

n,r log2/3 p.

To show (39), fix any y = (y1, . . . , yp)′ ∈ R
p . As in the proof of Lemma 5.1, for

β > 0, define

Fβ(w) := β−1 log

( p∑
j=1

exp
(
β(wj − yj )

))
, w ∈ R

p.

Note that conditional on Xn
1 , SeX

n is a centered Gaussian random vector with co-
variance matrix 
̂. Then a small modification of the proof of Theorem 1 in [20]
implies that for every g ∈ C2(R) with ‖g′‖∞ ∨ ‖g′′‖∞ < ∞, we have∣∣E[g(Fβ

(
SeX

n

)) | Xn
1
]− E

[
g
(
Fβ

(
SY

n

))]∣∣≤ (∥∥g′′∥∥∞/2 + β
∥∥g′∥∥∞

)
�n,r .

Hence, as in Step 2 of the proof of Lemma 5.1, we obtain with φ = β/ logp that∣∣P(SeX
n ≤ y − φ−1 | Xn

1
)− P

(
SY

n ≤ y − φ−1)∣∣
≤ C

{
φ−1 log1/2 p + (

φ2 + βφ
)
�n,r

}
.

Substituting β = φ logp, optimizing the resulting expression with respect to φ,
and noting that y ∈ R

p is arbitrary lead to (39). Finally, (38) follows from the

fact that the inequality �MB
n ≤ C�

1/3
n log2/3 p holds on the event �n,r ≤ �n, and

applying the same argument as that used in the proof of Corollary 5.1.
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Proof of Proposition 4.1. In this proof, c and C are positive constants that
depend only on a, b, d and s under (E.1), and on a, b, d, s and q under (E.2); their
values may vary from place to place. For brevity of notation, we implicitly assume
here that i is varying over {1, . . . , n}, and j and k are varying over {1, . . . , p}.
Finally, without loss of generality, we will assume that

(40) B2
n log5(pn) log2(1/α) ≤ n

since otherwise the assertions are trivial.
We shall apply Theorem 4.1 to prove the proposition. Observe that since

n−1 log1/2(pn) ≤ CD
(1)
n (α), it suffices to construct an appropriate �n such that

P(�n(A) > �n) ≤ α and to bound �
1/3
n log2/3(pn).

We begin with noting that since (S) holds for all A ∈ A, �n(A) ≤ C�n,r where
�n,r = max1≤j,k≤p |
̂jk −
jk|. As 
̂−
 = n−1∑n

i=1(XiX
′
i −E[XiX

′
i])−X̄X̄′,

we have �n,r ≤ �
(1)
n,r + {�(2)

n,r}2, where

�(1)
n,r := max

1≤j,k≤p

∣∣∣∣∣n−1
n∑

i=1

(
XijXik − E[XijXik])

∣∣∣∣∣, �(2)
n,r := max

1≤j≤p
|X̄j |.

The desired assertions then follow from the bounds on �
(1)
n,r and �

(2)
n,r derived

separately for (E.1) and (E.2) cases below.

Case (E.1). Observe that by Hölder’s inequality and (M.2),

σ 2
n := max

j,k

n∑
i=1

E
[(

XijXik − E[XijXik])2]≤ max
j,k

n∑
i=1

E
[|XijXik|2]≤ nB2

n.

In addition, by (E.1),∥∥∥max
i,j,k

|XijXik|
∥∥∥
ψ1/2

=
∥∥∥max

i,j
|Xij |2

∥∥∥
ψ1/2

=
∥∥∥max

i,j
|Xij |

∥∥∥2

ψ1
≤ CB2

n log2(pn),

so that for Mn := maxi,j,k |XijXik − E[XijXik]|, we have

‖Mn‖ψ1/2 ≤ C
{∥∥∥max

i,j,k
|XijXik|

∥∥∥
ψ1/2

+ max
i,j,k

E
[|XijXik|]}

≤ C
{
B2

n log2(pn) + B2
n

}≤ CB2
n log2(pn),

which also implies that (E[M2
n])1/2 ≤ CB2

n log2(pn). Hence by Lemma E.1, we
have

E
[
�(1)

n,r

]≤ Cn−1
{√

σ 2
n logp +

√
E
[
M2

n

]
logp

}
≤ C

{(
n−1B2

n logp
)1/2 + n−1B2

n log3(pn)
}

≤ C
{
n−1B2

n log(pn)
}1/2

,
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where the last inequality follows from (40). Applying Lemma E.2(i) with β = 1/2
and η = 1, we conclude that for every t > 0,

P
(
�(1)

n,r > C
{
n−1B2

n log(pn)
}1/2 + t

)
≤ exp

{−nt2/
(
3B2

n

)}+ 3 exp
{−c

√
nt/

(
Bn log(pn)

)}
.

Choosing t = C{n−1B2
n log(pn) log2(1/α)}1/2 for sufficiently large C > 0, the

right-hand side of this inequality is bounded by

α/4 + 3 exp
{−cC1/2n1/4 log1/2(1/α)/

(
B1/2

n log3/4(pn)
)}≤ α/2,

where the last inequality follows from (40). Therefore,

P
({

�(1)
n,r log2(pn)

}1/3
> CD(1)

n (α)
)≤ α/2.

It is routine to verify that the same inequality holds with �
(1)
n,r replaced by {�(2)

n,r}2.
This leads to the conclusion of the proposition under (E.1).

Case (E.2) Define σ 2
n and Mn by the same expressions as those in the previous

case; then σ 2
n ≤ nB2

n . For Mn, we have

E
[
Mq/2

n

]≤ C
{
E
[
max
i,j,k

|XijXik|q/2
]
+ max

i,j,k

(
E
[|XijXik|])q/2

}
≤ C

{
E
[
max
i,j,k

|XijXik|q/2
]}

= CE
[
max
i,j

|Xij |q
]
≤ CnBq

n ,

which also implies that (E[M2
n])1/2 ≤ Cn2/qB2

n . Hence, by Lemma E.1, we have

E
[
�(1)

n,r

]≤ Cn−1
{√

σ 2
n logp +

√
E
[
M2

n

]
logp

}
≤ C

{(
n−1B2

n logp
)1/2 + n−1+2/qB2

n logp
}
.

Applying Lemma E.2(ii) with s = q/2 and η = 1, we have for every t > 0,

P
{
�(1)

n,r > C
{(

n−1B2
n logp

)1/2 + n−1+2/qB2
n logp

}+ t
}

≤ exp
{−nt2/

(
3B2

n

)}+ ct−q/2n1−q/2Bq
n .

Choosing

t = C
{{

n−1B2
n

(
log(pn)

)
log2(1/α)

}1/2 + n−1+2/qα−2/qB2
n

}
for sufficiently large C > 0, we conclude that

P
({

�(1)
n,r log2(pn)

}1/3
> C

{
D(1)

n (α) + D(2)
n,q(α)

})≤ α/2.

It is routine to verify that the same inequality holds with �
(1)
n,r replaced by {�(2)

n,r}2.
This leads to the conclusion of the proposition under (E.2).
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Proof of Corollary 4.1. Here, C is understood to be a positive constant that
depends only on a, d, k1 and k2; the value of C may change from place to place.
To prove this corollary, we apply Theorem 4.1, to which end we have to verify
condition (M.1′) for all A ∈ A and derive a suitable bound on �n(A). Condition
(M.1′) for all A ∈ A follows from the fact that the minimum eigenvalue of E[XiX

′
i]

is bounded from below by k1. By log-concavity of the distributions of Xi , we have
‖v′Xi‖ψ1 ≤ C(E[(v′Xi)

2])1/2 ≤ C for all v ∈ R
p with ‖v‖ = 1 (see the proof of

Corollary 3.1). For all i = 1, . . . , n, let X̌i be a random vector whose elements
are given by v′Xi, v ∈ ⋃

A∈A V(Am(A)); the dimension of X̌i , denoted by p̌, is
at most (pn)d , and‖X̌ij‖ψ1 ≤ C for all j = 1, . . . , p̌. Then �n(A) coincides with
�n,r with Xi replaced by X̌i , that is,

�n(A) = max
1≤j,k≤p̌

∣∣∣∣∣n−1
n∑

i=1

(
X̌ij X̌ik − E[X̌ij X̌ik])−En[X̌ij ]En[X̌ik]

∣∣∣∣∣.
Noting that log p̌ ≤ d log(pn), by the same argument as that used in the proof of
Proposition 4.1 case (E.1), we can find a constant �n such that P(�n(A) > �n) ≤
α and {

�n log2(pn)
}1/3 ≤ C

{
n−1(log5(pn)

)
log2(1/α)

}1/6
.

Here, without loss of generality, we assume that (log5(pn)) log2(1/α) ≤ n. The
desired assertion then follows.

Proof of Corollary 4.2. Any hyperrectangle A ∈ Are satisfies conditions (C)
and (S) with a = 0, d = 1, and s = 1. In addition, it follows from (M.1) that any
hyperrectangle A ∈ Are satisfies (M.1′). Therefore, the asserted claims follow from
Proposition 4.1.

Proof of Proposition 4.2. In this proof, let C be a positive constant depending
only on b and s under (E.1), and on b, q and s under (E.2); the value of C may
change from place to place. Moreover, without loss of generality, we will assume
that

B2
n

(
log5(pn)

)
log2(1/α) ≤ n

since otherwise the assertions are trivial.
Let �n,r := max1≤j,k≤p |
̂jk − 
jk|, and

�n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

B2
n(log(pn)) log2(1/α)

n

)1/2
, if (E.1) is satisfied,(

B2
n(log(pn)) log2(1/α)

n

)1/2
+ B2

n logp

α2/qn1−q/2 , if (E.2) is satisfied.
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Then by the proof of Proposition 4.1, in either case where (E.1) or (E.2) is satisfied,
there exists a positive constant C1 depending only on b, s, q [C1 depends on q only
in the case where (E.2) is satisfied] such that

P(�n,r > C1�n) ≤ α/2.

We may further assume that C1�n ≤ b/2, since otherwise the assertions are trivial.
As in the proof of Proposition 3.2, let R = pn5/2 and V R = {w ∈ R

p :
max1≤j≤p |wj | > R}. Fix any A ∈ Asp(s). Then A = Ǎ ∪ (A ∩ V R) for some
s-sparsely convex set Ǎ with sup

w∈Ǎ
max1≤j≤p |wj | ≤ R. As in Proposition 3.2,

P(SY
n ∈ V R) ≤ C/n1/2. Moreover, conditional on Xn

1 , SeX
nj is Gaussian with mean

zero and variance En[(Xij − X̄j )
2] = 
̂jj , so that

P
(
SeX

n ∈ V R | Xn
1
)= P

(
max

1≤j≤p

∣∣SeX
nj

∣∣> R | Xn
1

)

≤ E[max1≤j≤p |SeX
nj | | Xn

1 ]
R

≤ C(logp)1/2 max1≤j≤p 
̂
1/2
jj

R
,

which is bounded by C/n1/2 on the event �n,r ≤ C1�n. Hence, on the event
�n,r ≤ C1�n, ∣∣P(SeX

n ∈ A | Xn
1
)− P

(
SY

n ∈ A
)∣∣

≤ ∣∣P(SeX
n ∈ Ǎ | Xn

1
)− P

(
SY

n ∈ Ǎ
)∣∣+ C/n1/2,

so that it suffices to consider the case where the sets A ∈ Asp(s) are such that
supw∈A max1≤j≤p |wj | ≤ R.

Further, let ε = n−1, and define the subclasses Asp
1 (s) and Asp

2 (s) of Asp(s) as
in the proof of Proposition 3.2. For all A ∈ Asp

1 (s), we can verify conditions (C),
(S), and (M.1′) as in the proof of Proposition 3.2 [where (S) is verified implicitly].
Therefore, by Proposition 4.1 applied with α/2 instead of α, the bounds (14) and
(15) with ρMB

n (Asp(s)) replaced by ρMB
n (Asp

1 (s)) hold with probability at least
1 − α/2. Hence, it remains to bound ρMB

n (Asp
2 (s)).

Fix any A ∈ Asp
2 (s) with a sparse representation A = ⋂Q

q=1 Aq for some
Q ≤ ps . As in the proof of Proposition 3.2, we separately consider two cases.
First, suppose that at least one of Aq does not contain a ball of radius ε; then
by condition (M.1′′) and Lemma A.2, P(SY

n ∈ Aq) ≤ Cε. Moreover, since SeX
n is

Gaussian conditional on Xn
1 , by condition (M.1′′) and Lemma A.2, we have, on the

event �n,r ≤ C1�n, P(SeX
n ∈ Aq | Xn

1) ≤ Cε since C1�n ≤ b/2. Since A ⊂ Aq ,
we conclude that on the event �n,r ≤ C1�n, |P(SeX

n ∈ A | Xn
1) − P(SY

n ∈ A)| ≤
Cε = C/n.
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Second, suppose that each Aq contains a ball with radius ε. Then by ap-
plying Lemma D.1 to each Aq , for m ≤ (pn)d with d depending only on s,

we can construct an m-generated convex set Am
q such that Am

q ⊂ Aq ⊂ A
m,1/n
q

with ‖v‖0 ≤ s for all v ∈ V(Am
q ). Let A0 = ⋂Q

q=1 A
m,1/n
q ; then A ⊂ A0 and⋂Q

q=1 Am,−ε
q is empty. By the latter fact, together with condition (M.1′′) and

Lemma A.1, we have P(SY
n ∈ A0) ≤ C(log1/2(pn))/n. Moreover, since SeX

n

is Gaussian conditional on Xn
1 , by condition (M.1′′) and Lemma A.1, the in-

equality P(SeX
n ∈ A0 | Xn

1) ≤ C(log1/2(pn))/n holds on the event �n,r ≤ C1�n

since C1�n ≤ b/2. Since A ⊂ A0, we conclude that on the event �n,r ≤ C1�n,
|P(SeX

n ∈ A | Xn
1) − P(SY

n ∈ A)| ≤ C(log1/2(pn))/n. This completes the proof
since P(�n,r > C1�n) ≤ α/2.

Proof of Theorem 4.2. By the triangle inequality, ρEB
n (Are) ≤ ρMB

n (Are) +
�EB

n (Are), where

�EB
n

(
Are) := sup

A∈Are

∣∣P(SX∗
n ∈ A | Xn

1
)− P

(
SeX

n ∈ A | Xn
1
)∣∣.

Also conditional on Xn
1 , X∗

1 − X̄, . . . ,X∗
n − X̄ are i.i.d. with mean zero and co-

variance matrix 
̂. In addition, conditional on Xn
1 , SeX

n
d= ∑n

i=1 Y ∗
i /

√
n, where

Y ∗
1 , . . . , Y ∗

n are i.i.d. centered Gaussian random vectors with the same covariance
matrix 
̂. Hence, the conclusion of the theorem follows from applying Theo-
rem 2.1 conditional on Xn

1 [with Ln and Mn(φn) in Theorem 2.1 substituted by
L̂n and M̂n(φn)] to bound �EB

n (Are) on the event {En[(Xij − X̄j )
2] ≥ b for all

1 ≤ j ≤ p} ∩ {L̂n ≤ Ln} ∩ {M̂n(φn) ≤ Mn}.

Proof of Proposition 4.3. Here, c,C are constants depending only on b and
K under (E.1), and on b, q and K under (E.2); their values may change from place
to place. We first note that, for sufficiently small c > 0, we may assume that

(41) B2
n log7(pn) ≤ cn,

since otherwise we can make the assertion of the lemma trivial by setting C suf-
ficiently large. To prove the proposition, we will apply Theorem 4.2 separately
under (E.1) and under (E.2).

Case (E.1). With (41) in mind, by the proof of Proposition 4.1, we see that
P(�n,r > b/2) ≤ α/6, so that with probability larger than 1 − α/6, b/2 ≤
En[(Xij − X̄j )

2] ≤ CBn for all j = 1, . . . , p. We turn to bounding L̂n. Using the
inequality |a − b|3 ≤ 4(|a|3 + |b|3) together with Jensen’s inequality, we have

L̂n ≤ 4
(

max
1≤j≤p

En

[|Xij |3]+ max
1≤j≤p

|X̄j |3
)

≤ 8 max
1≤j≤p

En

[|Xij |3].
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By Lemma E.3,

E
[

max
1≤j≤p

En

[|Xij |3]]≤ C
{
Ln + n−1E

[
max

1≤i≤n
max

1≤j≤p
|Xij |3

]
logp

}
≤ C

{
Bn + n−1B3

n log4(pn)
}
.

Note that ‖|Xij |3‖ψ1/3 ≤ ‖Xij‖3
ψ1

≤ B3
n , so that applying Lemma E.4(i) with β =

1/3, we have for every t > 0,

P
(
L̂n ≥ C

{
Bn + n−1B3

n log4(pn) + n−1B3
nt3})≤ 3e−t .

Taking t = log(18/α) ≤ C log(pn), we conclude that, with Ln = CBn [recall
(41)], P(L̂n > Ln) ≤ α/6.

Next, consider M̂n,X(φn). Observe that

max
1≤j≤p

|Xij − X̄j | ≤ 2 max
1≤i≤n

max
1≤j≤p

|Xij |,
so that

P
(
M̂n,X(φn) > 0

)≤ P
(
max
i,j

|Xij | > √
n/(8φn logp)

)
.

Since ‖Xij‖ψ1 ≤ Bn, the right-hand side is bounded by

2(pn) exp
{−√

n/(8Bnφn logp)
}
.

Observe that

Bnφn logp ≤ Cn1/6B2/3
n log1/3(pn),

so that using (41) with c being sufficiently small, we conclude that

P
(
M̂n,X(φn) > 0

)≤ 2(pn) exp
(
− n1/3

8CB
2/3
n log1/3(pn)

)

≤ 2(pn) exp
(
− n1/3

8CB
2/3
n log7/3(pn)

· log2(pn)

)

≤ 2(pn) exp
(
− log(pn) log(1/α)

8c1/3CK

)
≤ α/6.

To bound M̂n,Y (φn), observe that conditional on X1, . . . ,Xn, ‖SeX
nj ‖ψ2 ≤ CB

1/2
n

for all j = 1, . . . , p on the event max1≤j≤p En[(Xij − X̄j )
2] ≤ CBn, which holds

with probability larger than 1 − α/6. Hence, employing the same argument as that
used to bound M̂n,X(φn), we conclude that

P
(
M̂n,Y (φn) > 0

)≤ α/6 + α/6 = α/3,

which implies that

P
(
M̂n(φn) = 0

)
> 1 − (α/6 + α/3) = 1 − α/2.
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Taking these together, by Theorem 4.2, with probability larger than 1 − (α/6 +
α/6 + α/2) = 1 − 5α/6, we have

ρEB
n

(
Are)≤ ρMB

n

(
Are)+ C

{
n−1B2

n log7(pn)
}1/6

.

The final conclusion follows from Proposition 4.1.
Case (E.2) In this case, in addition to (41), we may assume that

(42)
B2

n log3(pn)

α2/qn1−2/q
≤ c ≤ 1

for sufficiently small c > 0, since otherwise the assertion of the proposition is
trivial by setting C sufficiently large. Then as in the previous case, by the proof of
Proposition 4.1, with probability larger than 1 − α/6, b/2 ≤ En[(Xij − X̄j )

2] ≤
CBn for all j = 1, . . . , p.

To bound L̂n, recall that L̂n ≤ 8 max1≤j≤p En[|Xij |3], and by Lemma E.3,

E
[

max
1≤j≤p

En

[|Xij |3]]≤ C
(
Bn + B3

nn−1+3/q logp
)
.

Hence, by applying Lemma E.4(ii) with s = q/3, we have for every t > 0,

P
(
L̂n ≥ C

(
Bn + B3

nn−1+3/q logp
)+ n−1t

)≤ Ct−q/3E
[
max
i,j

|Xij |q
]

≤ Ct−q/3nBq
n .

Solving Ct−q/3nB
q
n = α/6, we conclude that P(L̂n ≥ Ln) ≤ α/6 where Ln =

C(Bn + B3
nn−1+3/qα−3/q logp).

Next, consider M̂n,X(φn). As in the previous case,

P
(
M̂n,X(φn) > 0

)≤ P
(
max
i,j

|Xij | > √
n/(8φn logp)

)
.

Since the right-hand side is nondecreasing in φn, and

φn ≤ cB−1
n n1/2−1/qα1/q(logp)−1,

we have (by choosing the constant C in Ln large enough)

P
(
max
i,j

|Xij | > √
n/(8φn logp)

)
≤ nmax

i
P
(
max

j
|Xij | > CBnn

1/qα−1/q
)

≤ α/6.

For M̂n,Y (φn), we make use of the argument in the previous case, and conclude
that

P
(
M̂n,Y (φn) > 0

)≤ α/2.
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The rest of the proof is the same as in the previous case. Note that(
L

2
n log7(pn)

n

)1/6
≤ C

[(
B2

n log7(pn)

n

)1/6
+
(

B2
n log3(pn)

α2/qn1−2/q

)1/2]
,

and because of (42), the second term inside the bracket on the right-hand side is at
most (

B2
n log3(pn)

α2/qn1−2/q

)1/3
.

This completes the proof in this case.

Acknowledgments. We are grateful to Evarist Giné, Friedrich Götze, Ra-
mon van Handel, Vladimir Koltchinskii, Richard Nickl, Larry Wasserman, Galyna
Livshyts and Karim Lounici for useful discussions.

REFERENCES

[1] ADAMCZAK, R. (2008). A tail inequality for suprema of unbounded empirical processes with
applications to Markov chains. Electron. J. Probab. 13 1000–1034. MR2424985

[2] ADAMCZAK, R. (2010). A few remarks on the operator norm of random Toeplitz matrices.
J. Theoret. Probab. 23 85–108. MR2591905

[3] BALL, K. (1993). The reverse isoperimetric problem for Gaussian measure. Discrete Comput.
Geom. 10 411–420. MR1243336

[4] BARVINOK, A. (2014). Thrifty approximations of convex bodies by polytopes. Int. Math. Res.
Not. IMRN 16 4341–4356. MR3250035

[5] BENTKUS, V. (2003). On the dependence of the Berry–Esseen bound on dimension. J. Statist.
Plann. Inference 113 385–402. MR1965117

[6] BENTKUS, V. YU. (1985). Lower bounds for the rate of convergence in the central limit theo-
rem in Banach spaces. Lith. Math. J. 25 312–320. MR0823198

[7] BENTKUS, V. YU. (1986). Dependence of the Berry–Esseen estimate on the dimension [in
Russian]. Litovsk. Mat. Sb. 26 205–210. MR0862741

[8] BHATTACHARYA, R. and RAO, R. (1986). Normal Approximation and Asymptotic Expansions.
Wiley, New York. MR0855460

[9] BHATTACHARYA, R. N. (1975). On errors of normal approximation. Ann. Probab. 3 815–828.
MR0467879

[10] BOLTHAUSEN, E. (1984). An estimate of the remainder in a combinatorial central limit theo-
rem. Z. Wahrsch. Verw. Gebiete 66 379–386. MR0751577

[11] BORELL, C. (1974). Convex measures on locally convex spaces. Ark. Mat. 12 239–252.
MR0388475

[12] BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013). Concentration Inequalities:
A Nonasymptotic Theory of Independence, with a Foreword by Michel Ledoux. Oxford
Univ. Press, Oxford. MR3185193

[13] CHATTERJEE, S. (2005). A simple invariance theorem. Preprint. Available at
arXiv:math/0508213.

[14] CHATTERJEE, S. (2006). A generalization of the Lindeberg principle. Ann. Probab. 34 2061–
2076. MR2294976

[15] CHATTERJEE, S. and MECKES, E. (2008). Multivariate normal approximation using ex-
changeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 257–283. MR2453473

http://www.ams.org/mathscinet-getitem?mr=2424985
http://www.ams.org/mathscinet-getitem?mr=2591905
http://www.ams.org/mathscinet-getitem?mr=1243336
http://www.ams.org/mathscinet-getitem?mr=3250035
http://www.ams.org/mathscinet-getitem?mr=1965117
http://www.ams.org/mathscinet-getitem?mr=0823198
http://www.ams.org/mathscinet-getitem?mr=0862741
http://www.ams.org/mathscinet-getitem?mr=0855460
http://www.ams.org/mathscinet-getitem?mr=0467879
http://www.ams.org/mathscinet-getitem?mr=0751577
http://www.ams.org/mathscinet-getitem?mr=0388475
http://www.ams.org/mathscinet-getitem?mr=3185193
http://arxiv.org/abs/arXiv:math/0508213
http://www.ams.org/mathscinet-getitem?mr=2294976
http://www.ams.org/mathscinet-getitem?mr=2453473


CLT AND BOOTSTRAP IN HIGH DIMENSIONS 2351

[16] CHEN, L. and FANG, X. (2011). Multivariate normal approximation by Stein’s method: The
concentration inequality approach. Preprint. Available at arXiv:1111.4073.

[17] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2013). Gaussian approximations
and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann.
Statist. 41 2786–2819. MR3161448

[18] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2013). Supplemental Material
to “Gaussian approximations and multiplier bootstrap for maxima of sums of high-
dimensional random vectors”. Ann. Statist. 41 2786–2819.

[19] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2014). Gaussian approximation of
suprema of empirical processes. Ann. Statist. 42 1564–1597. MR3262461

[20] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2015). Comparison and anti-
concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related
Fields 162 47–70. MR3350040

[21] DUDLEY, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced
Mathematics 63. Cambridge Univ. Press, Cambridge. MR1720712

[22] EINMAHL, U. and LI, D. (2008). Characterization of LIL behavior in Banach space. Trans.
Amer. Math. Soc. 360 6677–6693. MR2434306

[23] GOLDSTEIN, L. and RINOTT, Y. (1996). Multivariate normal approximations by Stein’s
method and size bias couplings. J. Appl. Probab. 33 1–17. MR1371949

[24] GÖTZE, F. (1991). On the rate of convergence in the multivariate CLT. Ann. Probab. 19 724–
739. MR1106283

[25] KLIVANS, A., O’DONNELL, R. and SERVEDIO, R. (2008). Learning geometric concepts via
Gaussian surface area. In 49th Annual IEEE Symposium on Foundations of Computer
Science. Philadelphia, PA.

[26] LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces: Isoperimetry and
Processes. Springer, Berlin. MR1102015

[27] MASSART, P. (2000). About the constants in Talagrand’s concentration inequalities for empir-
ical processes. Ann. Probab. 28 863–884. MR1782276

[28] MILMAN, V. D. and SCHECHTMAN, G. (1986). Asymptotic Theory of Finite-Dimensional
Normed Spaces. Lecture Notes in Math. 1200. Springer, Berlin. MR0856576

[29] NAGAEV, S. V. (1976). An estimate of the remainder term in the multidimensional central limit
theorem. In Proceedings of the Third Japan–USSR Symposium on Probability Theory
(Tashkent, 1975). Lecture Notes in Math. 550 419–438. Springer, Berlin. MR0443043

[30] NAZAROV, F. (2003). On the maximal perimeter of a convex set in R
n with respect to a Gaus-

sian measure. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 1807
169–187. Springer, Berlin. MR2083397

[31] PANCHENKO, D. (2013). The Sherrington–Kirkpatrick Model. Springer, New York.
MR3052333

[32] PRÆSTGAARD, J. and WELLNER, J. A. (1993). Exchangeably weighted bootstraps of the
general empirical process. Ann. Probab. 21 2053–2086. MR1245301

[33] REINERT, G. and RÖLLIN, A. (2009). Multivariate normal approximation with Stein’s method
of exchangeable pairs under a general linearity condition. Ann. Probab. 37 2150–2173.
MR2573554

[34] RÖLLIN, A. (2013). Stein’s method in high dimensions with applications. Ann. Inst. Henri
Poincaré Probab. Stat. 49 529–549. MR3088380

[35] SAZONOV, V. V. (1968). On the multi-dimensional central limit theorem. Sankhyā Ser. A 30
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