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We consider fractional stochastic heat equations of the form ∂ut (x)
∂t

=
−(−�)α/2ut (x) + λσ(ut (x))Ḟ (t, x). Here, Ḟ denotes the noise term. Un-
der suitable assumptions, we show that the second moment of the solution
grows exponentially with time. Since we do not assume that the initial condi-
tion is bounded below, this solves an open problem stated in [Probab. Theory
Related Fields 152 (2012) 681–701]. Along the way, we prove a number of
other interesting results about continuity properties and noise excitation in-
dices. These extend and complement results in [Stochastic Process. Appl. 124
(2014) 3429–3440], [Khoshnevisan and Kim (2013)] and [Khoshnevisan and
Kim (2014)].

1. Introduction and main results. Let us look at the following equation:

∂ut (x)

∂t
= −(−�)α/2ut (x) + λσ

(
ut (x)

)
ẇ(t, x)

for x ∈ R and t > 0,

with initial condition u0(x). The operator −(−�)α/2 is the fractional Laplacian
of order 1 < α ≤ 2. λ is a positive parameter called level of noise and ẇ denotes
space-time white noise. The function σ : R �→ R is a Lipschitz function satisfying
some growth condition which will be described later. Since [7], it is known that
as time t goes to infinity, the second moment of the solution E|ut (x)|2 grows like
exp (constant × t) whenever the initial condition u0(x) is bounded below. How-
ever, proving this exponential growth when u0(x) is not bounded below has been
a hard open problem even though in [4], this question has been settled for a dif-
ferent class of equations. As explained in Chapter 7 of [13], exponential growth
of second moment is important in the context of “intermittency” properties of the
solution.

One of the main aims of this paper is to show that the second moment grows
exponentially even if the initial function is not bounded below. This answers the
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open question in [4]. In fact, we will do much more. Instead of looking at the
equation described above, we will look at the following:

(1.1)
∂ut (x)

∂t
= −(−�)α/2ut(x) + λσ

(
ut (x)

)
Ḟ (t, x) for x ∈ Rd and t > 0.

The function σ satisfies the following condition.

ASSUMPTION 1.1. There exist positive constants lσ and Lσ , such that for
x ∈ R, we have

(1.2) lσ |x| ≤ σ(x) ≤ Lσ |x|.
As for the initial function u0, we have the following assumption.

ASSUMPTION 1.2. u0 is a nonrandom, bounded nonnegative function such
that there exists a set A ⊂ Rd , with |A| > 0, for which∫

A
u0(x)dx > 0.

The random term Ḟ denotes the Gaussian coloured noise satisfying the follow-
ing property:

E
[
Ḟ (t, x)Ḟ (s, y)

] = δ0(t − s)f (x, y),

where f is the Riesz kernel with parameter β < d ,

f (x, y) := 1

|x − y|β .

Following Walsh [16], we define the mild solution of (1.1) as the predictable solu-
tion to the following integral equation:

(1.3) ut (x) = (Gu)t (x) + λ

∫
Rd

∫ t

0
pt−s(x, y)σ

(
us(y)

)
F(ds dy),

where

(Gu)t (x) :=
∫

Rd
pt (x, y)u0(y)dy,

and pt(x, y) denotes the fractional heat kernel. We will be interested in random
field solutions which require that the mild solution satisfies the following integra-
bility condition:

sup
x∈Rd

sup
t∈[0,T ]

E
∣∣ut(x)

∣∣2 < ∞ for any fixed T > 0.

This will further impose that β < α; see, for instance, [5]. Existence and unique-
ness are well known for the equations being studied here. See [7] and the references
therein. Here is our first main result for (1.1).
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THEOREM 1.3. There exist constants c and c′ such that

sup
x∈Rd

E
∣∣ut(x)

∣∣2 ≤ c exp
(
c′λ2α/(α−β)t

)
for all t > 0.

And there exists T > 0 such that for any t > T ,

inf
x∈B(0,t1/α)

E
∣∣ut(x)

∣∣2 ≥ c̃ exp
(
c̃′λ2α/(α−β)t

)
,

where c̃ and c̃′ are some positive constants. This immediately implies that for any
fixed x ∈ Rd ,

c̃′λ2α/(α−β) ≤ lim inf
t→∞

log E|ut (x)|2
t

≤ lim sup
t→∞

log E|ut(x)|2
t

≤ c′λ2α/(α−β).

The first part of this theorem says that second moment grows at most exponen-
tially. While this has been known, the novelty here is that we give a precise rate
with respect to the parameter λ. The lower bound is completely new and it holds
only after some some fixed time T . The reason behind this is that for initial func-
tion with compact support, the second moment might decrease for a short amount
of time.

Most of the results of these kinds have been derived from the renewal theoretic
ideas developed in [7] and [8]. The methods used in this article are completely
different. In particular, we make use of a localisation argument together with heat
kernel estimates for the fractional Laplacian. This is also the reason why we require
that x ∈ B(0, t1/α) for the lower bound. It should be pointed out that since we are
dealing with coloured noise here, existing proofs of exponential growth of the
second moment can be quite involved, even if the initial condition is bounded
below. In [8], Fourier analytic methods were used. Here, we develop a much more
direct approach which involves a renewal-type inequality for a certain quantity.
This can simply the arguments used in [8].

We can also obtain corresponding bounds for higher moments. We do not pursue
this here, because right now we do not know how to get any sharp results for higher
moments. It is also important to point out that our results imply that the Lyapounov
exponents is strictly positive. See [13] for details regarding higher moments and
Lyapounov exponents.

We also note that the quantity 2α
α−β

is important. It gives information on how the
rate of growth depends on the operator and the noise term as well. It will become
clear that capturing this dependence has motivated our analysis.

The next theorem gives the rate of growth of the second moment with respect
to the parameter λ, which extends results in [6] and [14]. For time t large enough,
this follows from the theorem above. But for small t , we need to work a bit harder.

THEOREM 1.4. For any fixed t > 0 and x ∈ Rd , we have

lim
λ→∞

log log E|ut (x)|2
logλ

= 2α

α − β
.
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A consequence of the proof of the above theorem is that we can complement
some results in [14] and [15], where the authors studied the growth rate of the
energy of the solution with respect to λ. We follow their notation and define the
energy Et (λ) of the solution ut as follows:

(1.4) Et (λ) :=
√∫

Rd
E

∣∣ut(x)
∣∣2 dx.

The above quantity does not always exist. But under suitable assumptions on the
initial condition, it does. For the purpose of the next theorem, we therefore assume
that the initial condition is a bounded nonnegative function which is compactly
supported.

The excitation index of the solution ut is defined as follows:

e(t) := lim
λ→∞

log logEt (λ)

logλ
.

We then have the following result.

THEOREM 1.5. The excitation index e(t) of the solution to (1.1) is 2α/

(α − β).

We now give a relationship between the excitation index of (1.1) and the con-
tinuity property of the solution. We further assume that the initial condition is
smooth.

THEOREM 1.6. Let η < (α − β)/2α then for every x ∈ Rd , {ut(x), t > 0} has
Hölder continuous trajectories with exponent η.

As such this result can be read off from [1] but for the sake of completeness we
will give a quick proof. We include this theorem to make the point that η < 1

e(t)
,

hence showcasing a link between noise excitability and continuity of the solution.
The choice of Riesz kernel as correlation function for our noise has been motivated
by our desire to calculate the noise excitability. It will be clear to the reader that
exponential growth of the second moment can be proved for a much larger class
of correlation functions.

All of our results hold for white noise driven equations as well. We offer the
following theorem which emphasises the fact that we have indeed answered the
question posed in [4]. We do not keep track of the constants appearing in the proofs
of the above results, so we will give a self contained proof of the theorem below.

THEOREM 1.7. Suppose that conditions (1.1) and (1.2) are in force. Let ut

denote the unique solution to the following stochastic heat equation:

∂ut (x)

∂t
= −(−�)α/2ut (x) + λσ

(
ut(x)

)
ẇ(t, x) for x ∈ R and t > 0.
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Then there exists a T > 0 such that for t > T , we have

inf
x∈B(0,t1/α)

E
∣∣ut(x)

∣∣2 ≥ c exp
(
c′λ2α/(α−1)t

)
,

where c and c′ are some positive constants. This immediately yields

lim inf
t→∞

1

t
log E

∣∣ut (x)
∣∣2 ≥ c′λ2α/(α−1),

for any fixed x ∈ R.

While this paper was in the final stage of preparation, we were informed by
Le Chen of [2], where the authors have also answered the open problem of [4]
mentioned above. In fact, they consider a class of equations which is a bit wider
than the one mentioned in the above theorem in that the operator involved is more
general. The methods which they employed is also very different and involve some
kind of formula for the moments of the solution. See [2] for more details. Here,
our method is softer and can be applied to equations involving coloured noise as
well.

We now describe a fundamental strategy upon which our methods rely. We re-
strict to the situation described in the above theorem. Since we are dealing with
white noise driven equation, we know from Walsh isometry that the second mo-
ment of the solution satisfies

E
∣∣ut (x)

∣∣2 = (Gu)t (x)2 + λ2
∫ t

0

∫
R

p2
t−s(x − y)E

∣∣σ (
us(y)

)∣∣2 dy ds.

The idea is to show that the second term essentially contributes to the exponen-
tial growth of the second moment, provided that the first term does not decay too
fast with time. When the initial condition u0 is bounded below, we immediately
have the desired exponential growth since the first term is always bounded below.
But when u0 have only positive support, the first term decays but only polynomi-
ally fast; this is Proposition 2.1. And as time gets large, the “exponential growth”
induced by the second term makes the second moment of the solution to start
growing exponentially fast. In some sense, this is an interplay between the “dis-
sipative” effect of the fractional Laplacian and the noise term which is pumping
energy to the system. Proposition 3.2 captures this interplay for the white noise
driven equation and Proposition 4.3 for the coloured noise driven equation. Fi-
nally, we mention that the situation is entirely different if one deals with equations
on bounded domains with say the Dirichlet boundary conditions. In this case, there
is no analogue of Proposition 2.1 and whether there is exponential growth of the
second moment is highly dependent on the value of λ. A forthcoming paper [11]
will address this question.

We end this Introduction with a plan of the article. In the Section 2, we give
some estimates which will be needed for the proofs of the main results. In Sec-
tion 3, we prove the main result concerning the white noise drive equation. In
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Section 4, we provide proofs of the main results for the coloured noise driven
equation. Finally, in Section 5, we indicate some possible extensions. The letter c

with or without superscripts or subscripts will denote constants whose exact values
are not important and might vary from place to place.

2. Preliminaries. We begin this section with some information about the heat
kernel of stable processes. Let pt(x, y) be the transition density for the α-stable
process on Rd . We have the following bounds:

(2.1) c1

(
t−d/α ∧ t

|x − y|d+α

)
≤ pt(x, y) ≤ c2

(
t−d/α ∧ t

|x − y|d+α

)
,

where c1 and c2 are positive constants. Recall that

(Gu)t (x) :=
∫

Rd
pt (x, y)u0(y)dy,

we then have the following proposition. This result may not be original, but to our
best knowledge, no such an estimate can be found in the existing literature. There
are many proofs of this result. We give a straightforward one.

PROPOSITION 2.1. There exists a t0 > 0 large enough such that for all t > t0,

(Gu)t+t0(x) ≥ c1t
−d/α whenever x ∈ B

(
0, (t + t0)

1/α)
,

where c1 is a positive constant.

PROOF. We begin with the following observation about the heat kernel.
Choose t0 large enough so that p(t0,0) ≤ 1. We therefore have

p(t0, x − y) = p
(
t0,2(x − y)/2

)
≥ p(t0,2x)p(t0,2y)

= 1

2d
p

(
t0/2α, x

)
p(t0,2y).

The above inequality is a consequence of monotonicity properties of the heat ker-
nel and the fact that p(t0,0) ≤ 1. For more details, see [10]. This immediately
gives

(Gu)t0(x) =
∫

Rd
p(t0, x − y)u0(y)dy

≥ c1p
(
t0/2α, x

) ∫
Rd

p(t0,2y)u0(y)dy.

We now use the semigroup property to obtain

(Gu)t+t0(x) =
∫

Rd
p(t + t0, x − y)u0(y)dy

=
∫

Rd
p(t, x − y)(Gu)t0(y)dy(2.2)

≥ c2p(t + t0/2, x).
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This inequality shows that for any fixed x, (Gu)t+t0(x) decays as t goes to infinity.
It also shows that

(Gu)t+t0(x) ≥ c3t
−d/α whenever |x| ≤ (t + t0)

1/α.

This follows from the fact that p(t + t0/2, x) ≥ c4t
−d/α if |x| ≤ (t + t0)

1/α and t

larger than t0. �

REMARK 2.2. The above says (Gu)t (x) decays like a negative power of t ,
whenever x is constrained in a ball with radius which grows like t1/α . In fact,
Lemma 2.8 of [10] contains more details about this.

We have the following estimate which will be useful for establishing temporal
continuity property of the solution. Recall the Fourier transform of the heat kernel
that

p̂t (ξ) := Eeiξ ·Xt = e−t |ξ |α , ξ ∈ Rd .

PROPOSITION 2.3. Let q ∈ (0,
α−β
2α

) and h ∈ (0,1), we then have∫ t

0

∫
Rd

∣∣p̂t−s+h(ξ) − p̂t−s(ξ)
∣∣2 1

|ξ |d−β
dξ ds ≤ c1h

2q,

for some constant c1.

PROOF. From the Fourier transform of the heat kernel,∣∣p̂t+h−s(ξ) − p̂t−s(ξ)
∣∣2 = e−2(t−s)|ξ |α [

e−h|ξ |α − 1
]2

.

We have ∫ t

0

∫
Rd

∣∣p̂t+h−s(ξ) − p̂t−s(ξ)
∣∣2 1

|ξ |d−β
dξ ds

=
∫ t

0

∫
Rd

e−2(t−s)|ξ |α [e−h|ξ |α − 1]2

|ξ |d−β
dξ ds.

We use the following observation |e−h|ξ |α − 1| ≤ hq |ξ |αq to bound the above term
by

h2q
∫ t

0

∫
Rd

e−2(t−s)|ξ |α |ξ |2αq

|ξ |d−β
dξ ds.

We now separate the integral into two parts:∫ t

0

∫
Rd

e−2(t−s)|ξ |α |ξ |2αq

|ξ |d−β
dξ ds

=
∫ t

0

∫
|ξ |<1

e−2(t−s)|ξ |α |ξ |2αq

|ξ |d−β
dξ ds

+
∫ t

0

∫
|ξ |≥1

e−2(t−s)|ξ |α |ξ |2αq

|ξ |d−β
dξ ds.
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The first integral appearing on the right-hand side of the above display is clearly
bounded. We need a bit more work for the second integral∫ t

0

∫
|ξ |≥1

e−2(t−s)|ξ |α |ξ |2αq

|ξ |d−β
dξ ds ≤

∫
|ξ |≥1

1

|ξ |d+α−β−2αq
dξ.

Since we are assuming that q <
α−β
2α

, the above integral is finite. We now combine
all the above estimates to obtain the result. �

In what follows, we will need the Gamma function which will be denoted �(·).
As usual Z+ and N denote the set of all positive integers and the set of all non-
negative integers, respectively. The next lemma is proved in [15], but we give a
slightly different proof here.

LEMMA 2.4. Let 0 < ρ ≤ 1, then there exists a positive constant c1 such that
for all b ≥ (e/ρ)ρ ,

∞∑
j=0

(
b

jρ

)j

≥ exp
(
c1b

1/ρ)
.

PROOF. We begin by writing

(2.3)

∞∑
j=0

(
b

jρ

)j

= 1 + ∑
j∈Z+,jρ<1

(
b

jρ

)j

+ ∑
j∈Z+,jρ≥1

(
b

jρ

)j

≥ 1 + ∑
j∈Z+,jρ≥1

(
b

jρ

)j

.

We now use the well-known fact that for jρ ≥ 1, (jρ/e)jρ ≤ �(jρ + 1) to bound
the last term of (2.3) as follows:

(2.4)
∑

j∈Z+,jρ≥1

(
b

jρ

)j

≥ ∑
j∈Z+,jρ≥1

(b1/ρ(
ρ
e
))jρ

�(jρ + 1)
.

Recalling that 0 < ρ ≤ 1 and j ∈ Z+, for each positive integer k ≥ 2, we can
always find a distinct product jρ such that �(jρ+1) ≤ �(jρ+1) = (jρ)! = k! and
jρ ≥ 1. Here, jρ denotes the smallest integer greater than jρ. We will substitute
this into the right-hand side of (2.4). Since b ≥ (e/ρ)ρ , we have b1/ρ(ρ/e) ≥ 1.
Denote jρ to be the greatest integer less than jρ, we thus have

∑
j∈Z+,jρ≥1

(b1/ρ(
ρ
e
))jρ

�(jρ + 1)
≥ ∑

j∈Z+,jρ≥1

(b1/ρ(
ρ
e
))jρ

(jρ)!

≥
∞∑

k=2

(b1/ρ(
ρ
e
))k−1

k!
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=
∞∑

k=1

(b1/ρ(
ρ
e
))k

(k + 1)!

≥
∞∑

k=1

2−k(b1/ρ(
ρ
e
))k

k! = exp
(
b1/ρ

(
ρ

2e

))
− 1.

Substituting this into (2.3) completes the proof. �

The next result essentially reverses the inequality proved in the above result. The
proof will use some of the notation introduced in the proof of the above lemma.

LEMMA 2.5. Let ρ ∈ (0,1], then there exist constants c1 and c2 such that

∞∑
j=0

bj

�(jρ + 1)
≤ c1 exp

(
c2b

1/ρ)
for all b > 0.

PROOF. We start by writing

(2.5)
∞∑

j=0

(b1/ρ)jρ

�(jρ + 1)
= ∑

j∈N,jρ<1

(b1/ρ)jρ

�(jρ + 1)
+ ∑

j∈N,jρ≥1

(b1/ρ)jρ

�(jρ + 1)
.

We consider the case b ∈ (0,1) first:

∑
j∈N,jρ≥1

(b1/ρ)jρ

�(jρ + 1)
≤ ∑

j∈N,jρ≥1

(b1/ρ)jρ

(jρ)!

≤ c1

∞∑
k=1

(b1/ρ)k

k!
≤ c2

(
exp

(
b1/ρ) − 1

)
and

∑
j∈N,jρ<1

(b1/ρ)jρ

�(jρ + 1)
≤ c3,

where we have �(jρ + 1) is bounded below by a constant for all jρ < 1. Substi-
tuting them back into (2.5) yields

∞∑
j=0

(b1/ρ)jρ

�(jρ + 1)
≤ c4

(
exp

(
b1/ρ) + 1

) ≤ c5 exp
(
b1/ρ)

.



2140 M. FOONDUN, W. LIU AND M. OMABA

We now turn our attention to the case b ≥ 1 for which we have

∑
j∈N,jρ≥1

(b1/ρ)jρ

�(jρ + 1)
≤ ∑

j∈N,jρ≥1

(b1/ρ)jρ

(jρ)!

= ∑
j∈N,jρ≥1

(b1/ρ)jρ+1

(jρ)! .

By relabelling the indices, we see that the above sum is bounded by

c6

∞∑
k=1

(b1/ρ)k+1

k! ≤ c7

∞∑
k=2

(2b1/ρ)k

k!
≤ c8

(
exp

(
2b1/ρ) − 2b1/ρ − 1

)
.

We also have

∑
j∈N,jρ<1

(b1/ρ)jρ

�(jρ + 1)
≤ 2c9b

1/ρ.

Substituting them back into (2.5) yields

∞∑
j=0

(b1/ρ)jρ

�(jρ + 1)
≤ c10 exp

(
c11b

1/ρ)
,

which is exactly what we wanted to prove. �

We now present some results concerning renewal inequalities. The proof is very
similar to those proved in [9]. The difference is that here we want bounds on the
functions involved rather than finding their asymptotic properties as was the case
in [9]. We will only sketch the proof. More results about renewal inequalities can
be found in references such as [12].

PROPOSITION 2.6. Let ρ > 0 and suppose that f (t) is a locally integrable
function satisfying

f (t) ≤ c1 + κ

∫ t

0
(t − s)ρ−1f (s)ds for all t > 0,

where c1 is some positive number. Then we have

f (t) ≤ c2 exp
(
c3

(
�(ρ)

)1/ρ
κ1/ρt

)
for all t > 0,

for some positive constants c2 and c3.
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PROOF. The iterative procedure of Proposition 2.5 in [9] yields

f (t) ≤ c1

∞∑
k=0

(�(ρ)κtρ)k

�(kρ + 1)
.

Applying Lemma 2.5 with b = �(ρ)κtρ proves the result. �

We now present the converse of the above result.

PROPOSITION 2.7. Let ρ > 0 and suppose that f (t) is a nonnegative, locally
integrable function satisfying

f (t) ≥ c1 + κ

∫ t

0
(t − s)ρ−1f (s)ds for all t > 0,

where c1 is some positive number. Then we have

f (t) ≥ c2 exp
(
c3

(
�(ρ)

)1/ρ
κ1/ρt

)
for all t >

e

ρ

(
�(ρ)κ

)−1/ρ
,

for some positive constants c2 and c3.

PROOF. As in the proof of Proposition 2.6 of [9], we have

f (t) ≥ c1

∞∑
k=0

(�(ρ)κtρ)k

�(kρ + 1)
.

From the arguments used in the proof of Lemma 2.4, we have the desired result
once we choose b = �(ρ)κtρ . �

3. Proof of Theorem 1.7. We begin with a calculus lemma, which will not be
needed for the proof of Theorem 1.7, but required for later on.

LEMMA 3.1. For any t > 0 and α > 1, we have∫ t

0

∫ s1

0
· · ·

∫ sk−1

0

1

[(t − s1)(s1 − s2) · · · (sk−1 − sk)]1/α
dsk dsk−1 · · · ds1

≥ ck
1

(
t

k

)k(α−1)/α

,

where c1 is a constant independent of k.

PROOF. We begin by reducing the region of integration as follows:∫ t

0

∫ s1

0
· · ·

∫ sk−1

0

1

[(t − s1)(s1 − s2) · · · (sk−1 − sk)]1/α
dsk dsk−1 · · · ds1

≥
∫ t

t−t/k

∫ s1

s1−t/k
· · ·

∫ sk−1

sk−1−t/k
1
/([

(t − s1)(s1 − s2) · · ·

× (sk−1 − sk)
]1/α)

dsk dsk−1 · · · ds1.
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We set s0 := t and make the substitution s̃i = si−1 − si for i = 1, . . . , k. This to-
gether with some calculus completes the proof. �

We now present a key result. As mentioned in the Introduction, this quantifies
the relationship between the “dissipative” effect of the fractional Laplacian and the
“growth” induced by the noise term. It will be clear that the proof relies heavily
on the heat kernel estimates for the fractional Laplacian. We will also need the
assumption that σ(x) ≥ lσ |x|.

Fix t0 > 0 and set

inf
x∈B(0,(t+t0)

1/α)
(Gu)s+t0(x) ≥ gt ,

for 0 ≤ s ≤ t , where gt is some strictly positive quantity whose existence for large
times, is guaranteed by (2.2) in the proof of Proposition 2.1. See Remark 2.10 of
[10] where the details for “all times” are hashed out. We then have the following.

PROPOSITION 3.2. Fix t0 > 0, then for t ≥ 0, the following holds:

E
∣∣ut+t0(x)

∣∣2 ≥ g2
t

∞∑
k=0

(c1λlσ )2k

(
t

k

)k(α−1)/α

for x ∈ B
(
0, (t + t0)

1/α)
,

for some positive constant c.

PROOF. We start off with the mild formulation of the solution, take the second
moment and then use the lower bound on σ after a change of variable to write

E
∣∣ut+t0(x)

∣∣2 ≥ ∣∣(Gu)t+t0(x)
∣∣2 + l2

σ λ2
∫ t

0

∫
R

p2
t−s(x, y)E

∣∣us+t0(y)
∣∣2 ds dy,

and iterating the above, we obtain

E
∣∣ut+t0(x)

∣∣2
≥ ∣∣(Gu)t+t0(x)

∣∣2
+

∞∑
k=1

(λlσ )2k
∫ t

0

∫
R

∫ s1

0

∫
R

. . .

∫ sk−1

0

∫
R

∣∣(Gu)sk+t0(zk)
∣∣2

×
k∏

i=1

p2
si−1−si

(zi−1, zi)dzk+1−i dsk+1−i ,

where we have used the convention that s0 := t and z0 := x. We now restrict all zk

such that zk ∈ B(0, (t + t0)
1/α) for all k ≥ 0 to obtain

E
∣∣ut+t0(x)

∣∣2
≥ g2

t + g2
t

∞∑
k=1

(λlσ )2k
∫ t

0

∫
R

∫ s1

0

∫
R

. . .

∫ sk−1

0

∫
B(0,(t+t0)

1/α)

k∏
i=1

p2
si−1−si

× (zi−1, zi)dzk+1−i dsk+1−i .
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We now shrink the temporal region of integration and make a proper change of
variable, as in the proof of Lemma 3.1, we end up with

E
∣∣ut+t0(x)

∣∣2
≥ g2

t + g2
t

∞∑
k=1

(λlσ )2k
∫ t/k

0

∫
R

∫ t/k

0

∫
R

. . .

∫ t/k

0

∫
B(0,(t+t0)

1/α)

k∏
i=1

p2
si

× (zi−1, zi)dzk+1−i dsk+1−i .

We will further restrict the spatial domain of integration by appropriately choosing
the points {zi}ki=1 such that

zi ∈ B
(
zi−1, s

1/α
i

) ∩ B
(
0, (t + t0)

1/α)
.

Now since |zi − zi−1| ≤ s
1/α
i , we have psi (zi−1, zi) ≥ c1s

−1/α
i . For notational

convenience, we set Ai := |B(zi−1, s
1/α
i ) ∩ B(0, (t + t0)

1/α)|. We clearly have

|Ai | ≥ c2s
1/α
i . We now use the heat kernel estimates and the above to write

∫
R×R×···×B(0,(t+t0)

1/α)

k∏
i=1

p2
si
(zi−1, zi)dzi

≥
∫
A1×A2×···×Ak

k∏
i=1

p2
si
(zi−1, zi)dzi

≥ ck
3

k∏
i=1

1

s
1/α
i

.

We therefore have∫ t/k

0

∫ t/k

0
. . .

∫ t/k

0
ck

3

k∏
i=1

1

s
1/α
i

dsk dsk . . . ds1 ≥ ck
3

(
t

k

)k(α−1)/α

.

Combining the above estimates, we obtain

E
∣∣ut+t0(x)

∣∣2 ≥ g2
t + g2

t

∞∑
k=1

(
c3l

2
σ λ2)k( t

k

)k(α−1)/α

.

We have thus proved the result. �

PROOF OF THEOREM 1.7. Using Lemma 2.4, we have the first statement of
the theorem. For the second part of theorem, we fix x ∈ R. Clearly, we have x ∈
B(0,2|x|) and by the first part of the theorem, we have for t1/α ≥ 2|x| ∨ T ,

E
∣∣ut(x)

∣∣2 ≥ c exp
(
c′λ2α/(α−1)t

)
.

By taking the appropriate limit, we obtain the second part of the theorem. �
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REMARK 3.3. We now use Lemma 3.1 to see how the proof of the above
result simplifies when the initial function is assumed to be bounded below. We
start with

E
∣∣ut(x)

∣∣2 ≥ ∣∣(Gu)t (x)
∣∣2 +

∞∑
k=1

(λlσ )2k
∫ t

0

∫
R

∫ s1

0

∫
R

. . .

∫ sk−1

0

∫
R

∣∣(Gu)sk (zk)
∣∣2

×
k∏

i=1

p2
si−1−si

(zi−1, zi)dzk+1−i dsk+1−i .

Since the initial function is bounded below we will have (Gu)sk (zk) ≥ c1 for some
constant c1. We now look that following iterated integral:

∫ t

0
· · ·

∫ sk−1

0

∫
R

· · ·
∫

R

k∏
i=1

p2
si−1−si

(zi−1, zi)dzk+1−i dsk+1−i .

We now use the semigroup and Lemma 3.1 property to reduce the above quantity
to reduce

∫ t

0
· · ·

∫ sk−1

0

k∏
i=1

psi−1−si (0,0)dsi

≥
∫ t

0
· · ·

∫ sk−1

0

k∏
i=1

1

(si−1 − si)1/α
dsi

≥ c1

(
t

k

)k(α−1)/α

.

Combining all the above estimates together, we obtain

E
∣∣ut (x)

∣∣2 ≥ c3

∞∑
k=0

(
c3l

2
σ λ2)k( t

k

)k(α−1)/α

.

We have included this to illustrate the fact that when the initial condition is
bounded below, one can use the semigroup properties of the heat kernel and ob-
tain a similar result. This also highlights the technical issues we run into when the
initial condition is not bounded below.

The above gives exponential bounds for the the second moment for t > T . What
about for t ∈ (0, T ]? When the initial condition is a function which is bounded
below, we quite easily get the required bound. As before, we have

E
∣∣ut (x)

∣∣2 = (Gu)t (x)2 + λ2
∫ t

0

∫
R

p2
t−s(x − y)E

∣∣σ (
us(y)

)∣∣2 dy ds

= I1 + I2.
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Clearly, I1 ≥ c1. For I2, we have

I2 ≥ λ2l2
σ

∫ t

0
inf
y∈R

E
∣∣us(y)

∣∣2 ∫
R

p2
t−s(x, y)dy ds

≥ c2λ
2l2

σ

∫ t

0

infy∈R E|us(y)|2
(t − s)1/α

ds.

Putting these estimates together, we have

(3.1) inf
x∈R

E
∣∣ut (x)

∣∣2 ≥ c1 + c2λ
2l2

σ

∫ t

0

infy∈R E|us(y)|2
(t − s)1/α

ds.

If t < T , for some large T , the above inequality reduces to

inf
x∈R

E
∣∣ut (x)

∣∣2 ≥ c1 + c2λ
2l2

σ

T 1/α

∫ t

0
inf
y∈R

E
∣∣us(y)

∣∣2 ds,

which gives the required exponential bound. For t > T , (3.1) together with Propo-
sition 2.7 give the required bound with the correct rate with respect of λ. We have
thus given two different ways of proving exponential bounds when the initial con-
dition is bounded below. These work mainly because we have explicit heat kernel
estimates for the fractional Laplacian. This was not the case in [7]. We will make
a similar remark concerning the coloured noise equation later.

4. Proofs of Theorems 1.3–1.6. We start this section with the following es-
timate. Recall that f denotes the correlation function of the coloured noise and is
given by f (x, y) = 1

|x−y|β .

LEMMA 4.1. For any t > 0 and all x, y ∈ Rd , there exists some positive con-
stant c1 such that∫

Rd×Rd
pt (x,ω)pt (y, z)f (ω, z)dω dz ≤ c1

tβ/α
.

PROOF. Since∫
Rd

∫
Rd

pt (x,ω)pt (y, z)f (ω, z)dω dz ≤
∫

Rd
p2t (ω, x − y)f (ω,0)dω,

the scaling property of the heat kernel and a proper change of the variable prove
the result. �

Set

(4.1) F(t) := sup
x∈Rd

E
∣∣ut(x)

∣∣2,
where ut denotes the unique solution to (1.1). We then have the following.
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PROPOSITION 4.2. There exist constants c1 and c2 such that for all t > 0, we
have

F(t) ≤ c1 + c2(λLσ )2
∫ t

0

F(s)

(t − s)β/α
ds.

PROOF. We start with the mild formulation given by (1.3), then take the sec-
ond moment to obtain the following:

E
∣∣ut (x)

∣∣2 = ∣∣(Gu)t (x)
∣∣2

+ λ2
∫ t

0

∫
Rd×Rd

pt−s(x, y)pt−s(x, z)f (y, z)

× E
[
σ

(
us(y)

)
σ

(
us(z)

)]
dy dz ds

= I1 + I2.

We begin by looking at the first term I1. Since u0(x) is bounded, we have I1 ≤ c3.
We now use the assumption on σ together with Hölder’s inequality to see that

E
[
σ

(
us(y)

)
σ

(
us(z)

)] ≤ L2
σ E

[∣∣us(y)us(z)
∣∣]

≤ L2
σ

[
E

∣∣us(y)
∣∣2]1/2[

E
∣∣us(z)

∣∣2]1/2

≤ L2
σ sup

x∈Rd

E
∣∣us(x)

∣∣2.
Therefore, using the notation (4.1) as well as Lemma 4.1, the second term I2 can
be bounded as follows:

I2 ≤ c5(λLσ )2
∫ t

0

F(s)

(t − s)β/α
ds.

Combining the above estimates, we obtain the required result. �

Fix t0 > 0. Recall that

inf
x∈B(0,(t+t0)

1/α)

(Gu)s+t0(x) ≥ gt ,

whenever 0 ≤ s ≤ t . We then have the following.

PROPOSITION 4.3. Fix t0 > 0, then for t ≥ 0, the following holds:

E
∣∣ut+t0(x)

∣∣2 ≥ g2
t

∞∑
k=0

(c1λlσ )2k

(
t

k

)k(α−β)/α

for x ∈ B
(
0, (t + t0)

1/α)
,

for some positive constant c1.
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PROOF. We start off with the mild formulation of the solution, take the second
moment and use the lower bound on σ to end up with

E
∣∣ut+t0(x)

∣∣2
≥ ∣∣(Gu)t+t0(x)

∣∣2 + λ2l2
σ

∫ t

0

∫
Rd

∫
Rd

pt−s1(x, z1)pt−s1

(
x, z′

1
)
f

(
z1, z

′
1
)

× E
∣∣us1+t0(z1)us1+t0

(
z′

1
)∣∣ dz1 dz′

1 ds1.

We now have

E
∣∣us1+t0(z1)us1+t0

(
z′

1
)∣∣

≥ Eus1+t0(z1)us1+t0

(
z′

1
)

≥ (Gu)s1+t0(z1)(Gu)s1+t0

(
z′

1
)

+ λ2l2
σ

∫ s1

0

∫
Rd

∫
Rd

ps1−s2(z1, z2)ps1−s2

(
z′

1, z
′
2
)
f

(
z2, z

′
2
)

× E
∣∣us2+t0(z2)us2+t0

(
z′

2
)∣∣ dz2 dz′

2 ds2.

Applying the above recursively, we end up with the following:

E
∣∣ut+t0(x)

∣∣2
≥ ∣∣(Gu)t+t0(x)

∣∣2 +
∞∑

k=1

(λlσ )2k

×
∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

. . .

∫ sk−1

0

∫
Rd×Rd

(
(Gu)sk+t0(zk)(Gu)sk+t0

(
z′
k

)

×
k∏

i=1

psi−1−si (zi−1, zi)pt−s

(
z′
i−1, z

′
i

)
f

(
zi, z

′
i

))
dzk+1−i dz′

k+1−i dsk+1−i .

We now reduce the spatial domain of integration to end up with

E
∣∣ut+t0(x)

∣∣2
≥ g2

t + g2
t

∞∑
k=1

(λlσ )2k

×
∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

. . .

∫ sk−1

0

∫
B(0,(t+t0)

1/α)×B(0,(t+t0)
1/α)

k∏
i=1

psi−1−si

× (zi−1, zi)psi−1−si

(
z′
i−1, z

′
i

)
f

(
zi, z

′
i

)
dzk+1−i dz′

k+1−i dsk+1−i .
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As in the proof of Proposition 3.2, we reduce the temporal domain of integration
and make an appropriate change of variable to end up with

E
∣∣ut+t0(x)

∣∣2
≥ g2

t + g2
t

∞∑
k=1

(λlσ )2k

×
∫ t/k

0

∫
Rd×Rd

. . .

∫ t/k

0

∫
B(0,(t+t0)

1/α)×B(0,(t+t0)
1/α)

k∏
i=1

psi (zi−1, zi)

× psi

(
z′
i−1, z

′
i

)
f

(
zi, z

′
i

)
dzk+1−i dz′

k+1−i dsk+1−i .

Recall that x ∈ B(0, (t + t0)
1/α) and consider

zi ∈ B
(
x, s

1/α
1 /2

) ∩ B
(
zi−1, s

1/α
i

)
and

z′
i ∈ B

(
x, s

1/α
1 /2

) ∩ B
(
z′
i−1, s

1/α
i

)
.

These imply that |zi − z′
i | ≤ s

1/α
1 which gives f (zi, z

′
i) ≥ s

−β/α
1 . We also have

|zi − zi−1| ≤ s
1/α
i and |z′

i − z′
i−1| ≤ s

1/α
i which imply that p(si, zi−1, zi) ≥

c1s
−d/α
i and p(si, zi−1, zi) ≥ c1s

−d/α
i . In other words, we are looking at the points

{si, zi, z
′
i}ki=0 such that the following holds:

k∏
i=1

p(si, zi−1, zi)p
(
si, z

′
i−1, z

′
i

)
f

(
zi, z

′
i

) ≥ c2k
1

k∏
i=1

1

s
2d/α
i s

β/α
1

.

Now we have that |B(x, s
1/α
1 /2) ∩ B(zi−1, s

1/α
i )| ≥ c2s

d/α
i , for some con-

stant c2. For notational convenience, we set Ai := {zi ∈ B(x, s
1/α
1 /2) ∩

B(zi−1, s
1/α
i )} and A′

i := {z′
i ∈ B(x, s

1/α
1 /2) ∩ B(z′

i−1, s
1/α
i )}:

∫ t/k

0

∫
Rd×Rd

. . .

∫ t/k

0

∫
B(0,(t+t0)

1/α)×B(0,(t+t0)
1/α)

k∏
i=1

psi (zi−1, zi)

× psi

(
z′
i−1, z

′
i

)
f

(
zi, z

′
i

)
dzk+1−i dz′

k+1−i dsk+1−i

≥
∫ t/k

0

∫
A1

∫
A′

1

. . .

∫ t/k

0

∫
Ak

∫
A′

k

k∏
i=1

psi (zi−1, zi)

× psi

(
z′
i−1, z

′
i

)
f

(
zi, z

′
i

)
dzk+1−i dz′

k+1−i dsk+1−i

≥ ck
2

∫ t/k

0
. . .

∫ t/k

0

1

s
kβ/α
i

dsk dsk−1 . . . ds1

= ck
2

(
t

k

)k(α−β)/α

.
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We now combine the above estimates to obtain

E
∣∣ut+t0(x)

∣∣2 ≥ g2
t + g2

t

∞∑
k=1

(c3λlσ )2k

(
t

k

)k(α−β)/α

,

which proves the result. �

Now we are ready to prove Theorem 1.3.

PROOF OF THEOREM 1.3. We prove the upper bound first. But this is an
immediate consequence of Propositions 4.2 and 2.6 with ρ = (α − β)/α and
κ = (λLσ )2. We now turn our attention to the lower bound. After a change of
variables, Proposition 4.3 gives

E
∣∣ut (x)

∣∣2 ≥ g2
t−t0

∞∑
k=0

(c1λlσ )2k

(
t − t0

k

)k(α−β)/α

.

By taking T large enough and using Lemma 2.4, we obtain

E
∣∣ut (x)

∣∣2 ≥ c2 exp
(
c′

2λ
2α/(α−β)t

)
for all t > T ,

for some constants c2 and c′
2. The final part of the theorem follows easily. �

PROOF OF THEOREM 1.4. From the upper bound in Theorem 1.3, we have
that for any x ∈ Rd ,

E
∣∣ut(x)

∣∣2 ≤ c exp
(
c′λ2α/(α−β)t

)
for all t > 0,

from which we easily have

lim sup
λ→∞

log log E|ut (x)|2
logλ

≤ 2α

α − β
.

We will seek a converse to the above inequality. Fix x ∈ Rd , if t is already large
enough so that x ∈ B(0, t1/α), then by Proposition 4.3 we have

E
∣∣ut(x)

∣∣2 ≥ g2
t−t0

∞∑
k=0

(c3lσ λ)2k

(
t − t0

k

)k(α−β)/α

,

which together with Lemma 2.4 gives

lim inf
λ→∞

log logE|ut (x)|2
logλ

≥ 2α

α − β
.

Now if x /∈ B(0, t1/α), we can choose a constant κ > 0 so that x ∈ B(0, κt1/α), we
can use the ideas of Proposition 4.3 to end up with

E
∣∣ut (x)

∣∣2 ≥ c4

∞∑
k=0

(c5lσ λ)2k

(
t − t0

k

)k(α−β)/α

,
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where c4 depends on κ and t and c5 depends on κ . The result follows easily from
that. �

PROOF OF THEOREM 1.5. We will further assume that u0 is of compact sup-
port. We begin by estimating an upper bound on e(t). We start with the mild solu-
tion and take the second moment to obtain

Et (λ)2 ≤
∫

Rd

∣∣∣∣
∫

Rd
pt (x, y)u0(y)dy

∣∣∣∣2 dx

+ (λLσ )2
∫

Rd

∫ t

0

∫
Rd×Rd

pt−s(x, y1)pt−s(x, y2)f (y1, y2)

× E
[∣∣us(y1)us(y2)

∣∣] dy1 dy2 ds dx

= I1 + I2.

We have I1 ≤ c1. We need to find a lower bound on I2:

I2 ≤
∫ t

0

∫
Rd×Rd

p2(t−s)(y1, y2)f (y1, y2)E
[∣∣us(y1)us(y2)

∣∣] dy1 dy2 ds

≤
∫ t

0
sup
y∈Rd

E
∣∣us(y)

∣∣2 ∫
Rd×Rd

p2(t−s)(y1, y2)f (y1, y2)dy1 dy2 ds

≤ c2

∫ t

0

1

(t − s)β/α
ec3λ

2α/(α−β)s ds

≤ c4e
c5λ

2α/(α−β)t .

We therefore have

lim sup
λ→∞

log logEt (λ)

logλ
≤ 2α

α − β
.

We now seek a lower bound on e(t). As in the proof of Proposition 4.3, we have

Et+t0(λ)2 ≥ g2
t

∞∑
k=0

(c2λlσ )2k

(
t

k

)k(α−β)/α

,

whenever x ∈ B(0, (t + t0)
1/α). We now use the fact that

Et+t0(λ)2 ≥
∫
B(0,(t+t0)

1/α)
E

∣∣ut (x)
∣∣2 dx,

to obtain

Et+t0(λ)2 ≥ c3

∞∑
k=0

(c4λlσ )2k

(
t

k

)k(α−β)/α

.
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This, together with Lemma 2.4, yields

lim inf
λ→∞

log logEt (λ)

logλ
≥ 2α

α − β
,

where t is strictly positive. This proves the theorem. �

PROOF OF THEOREM 1.6. As usual, the proof makes use of Kolmogorov’s
continuity theorem. We will therefore only look at the increment E|ut+h(x) −
ut (x)|p for h ∈ (0,1) and p ≥ 2. We have

ut+h(x) − ut(x) =
∫

Rd

[
pt+h(x, y) − pt(x, y)

]
u0(y)dy

+ λ

∫ t

0

∫
Rd

[
pt+h−s(x, y) − pt−s(x, y)

]
σ

(
us(y)

)
F(dy ds)

+ λ

∫ t+h

t

∫
Rd

pt+h−s(x, y)σ
(
us(y)

)
F(dy ds).

Since (Gu)t (x) is in fact smooth for t > 0, we will look at higher moments of the
remaining terms. Recall that supx∈Rd E|ut (x)|p is finite for all t > 0. We therefore
use Burkholder’s inequality together with Proposition 2.3 to write

E
∣∣∣∣
∫ t

0

∫
Rd

[
pt+h−s(x, y) − pt−s(x, y)

]
σ

(
us(y)

)
F(dy ds)

∣∣∣∣p

≤ c1

∣∣∣∣
∫ t

0

∫
Rd

∣∣p̂t−s+h(x − ξ) − p̂t−s(x − ξ)
∣∣2 1

|ξ |d−β
dξ ds

∣∣∣∣p/2

≤ c1h
pq.

Similarly, we have

E
∣∣∣∣
∫ t+h

t

∫
Rd

pt+h−s(x, y)σ
(
us(y)

)
F(dy ds)

∣∣∣∣p

≤ c2

∣∣∣∣
∫ t+h

t

∫
Rd

pt+h−s(x, y)pt+h−s(x, z)f (y, z)dy ds

∣∣∣∣p/2

≤ c3h
(α−β)p/2α.

We recall that q <
(α−β)

2α
and combine the estimates above we see that

E
∣∣ut+h(x) − ut (x)

∣∣p ≤ c2h
pq.

Now an application of Kolmogorov’s continuity theorem as in [1] completes the
proof. �

5. An extension. The initial conditions we have dealt with so far are functions
that are nonnegative on a set of positive measure. In fact, we can also deal with
more general initial conditions. The only issue to achieve this extension is the
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existence and uniqueness of the random field solution. We will use a result of
[3], where this issue was settled whenever u0 is any finite initial measure and the
driving noise is white. We have the following theorem which gives lower bounds
only. The upper bound follows easily from the methods used in the previous parts
of the paper. We will only briefly sketch the proof of the theorem.

THEOREM 5.1. Let ut denote the unique solution to the following stochastic
heat equation:

∂ut (x)

∂t
= −(−�)α/2ut (x) + λσ

(
ut(x)

)
ẇ(t, x) for x ∈ R and t > 0,

where the initial condition u0 is a finite measure with
∫
K u0(x)dx > 0 with some

K ⊂ R. All other conditions are as described in the Introduction. Then there exists
a T > 0 such that for t > T , we have

inf
x∈B(0,t1/α)

E
∣∣ut (x)

∣∣2 ≥ c exp
(
c′λ2α/(α−1)t

)
,

where c and c′ are some positive constants. This immediately yields

lim inf
t→∞

1

t
log E

∣∣ut(x)
∣∣2 ≥ c′λ2α/(α−1),

for any fixed x ∈ R.

PROOF. Recall that by Walsh’s isometry we have

E
∣∣ut (x)

∣∣2 = ∣∣(Gu)t (x)
∣∣2 + λ2

∫ t

0

∫
R

p2
t−s(x − y)E

∣∣σ (
us(y)

)∣∣2 dy ds.

See [3] for a justification of the preceding equality. As before, we need to find
a suitable lower bound on the first term. But with the current assumption on
the initial condition u0, the proof of Proposition 2.1 goes through and we have
(Gu)t (x) ≥ c1

t1/α . We can now use the same argument as in the previous part of the
paper to prove our result. �

One can also easily adapt the proofs in [3] to show existence and uniqueness of
a solution to the coloured noise driven equation (1.1) when the initial condition is
a finite measure. Hence, all our results should hold in this case as well.
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