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PERCOLATION ON THE STATIONARY DISTRIBUTIONS OF THE
VOTER MODEL

BY BALÁZS RÁTH1 AND DANIEL VALESIN

MTA-BME Stochastics Research Group and University of Groningen

The voter model on Z
d is a particle system that serves as a rough model

for changes of opinions among social agents or, alternatively, competition be-
tween biological species occupying space. When d ≥ 3, the set of (extremal)
stationary distributions is a family of measures μα , for α between 0 and 1.
A configuration sampled from μα is a strongly correlated field of 0’s and 1’s
on Z

d in which the density of 1’s is α. We consider such a configuration as
a site percolation model on Z

d . We prove that if d ≥ 5, the probability of
existence of an infinite percolation cluster of 1’s exhibits a phase transition in
α. If the voter model is allowed to have sufficiently spread-out interactions,
we prove the same result for d ≥ 3.
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1. Introduction.

1.1. Model and results. Given integers d ≥ 1 and R ≥ 1, the voter model
with range R on the d-dimensional lattice Z

d is a Markov process, denoted here
by (ξt )t≥0, with configuration space {0,1}Zd

and stochastic dynamics described
informally as follows. Each vertex (or site) x of Z

d updates its current state
ξt (x) ∈ {0,1} at rate one by copying the state ξt (y) of a vertex y that is chosen
uniformly among all vertices at (�1-norm) distance at most R from x.

In Section 3, we give the formal definition of the model and recall some of
its relevant properties. In this Introduction, we will only very briefly present the
concepts that are needed to state our main results.

The voter model was introduced independently by Clifford and Sudbury in [5]
and Holley and Liggett in [14]. In the interpretation of the latter pair of authors,
each site of Zd represents a voter which can have one of two possible opinions
(corresponding to the states 0 and 1). The model thus represents the evolution of
the opinions among the population. Clifford and Sudbury gave a biological inter-
pretation for the model: there are two competing species, denoted 0 and 1, and
each site is a region of space that can be occupied by an individual of one of the
two species.

The set of stationary distributions of the voter model on Z
d has been thoroughly

studied; the following is a summary of known results. For fixed d ≥ 3, R ≥ 1 and
α ∈ [0,1], one defines a probability measure μα on {0,1}Zd

as the distributional
limit (which is shown to exist), as time is taken to infinity, of the voter model with
the random initial configuration in which the states of all sites are independent and
Bernoulli(α). μα is then stationary for the voter model dynamics. Moreover, it is
shown that the set of stationary distributions for the voter model dynamics that are
extremal—that is, that cannot be expressed as nontrivial convex combinations of
other stationary distributions—is precisely the family{

μα : α ∈ [0,1]}.
We note that this property of the voter model is rather delicate and small perturba-
tions of the dynamics can result in an interacting particle system which has only
one nontrivial stationary distribution; see [7].

The measures μα can be obtained in a more constructive way with the aid of
coalescing random walks. A realization of a system of coalescing random walks
with range R on Z

d induces a partition of Z
d into coalescence classes: we say

that x and y are in the same class if the walkers started at x and y are eventually
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joined. We then assign 0’s or 1’s to the coalescence classes independently with
probabilities 1−α and α, respectively, and the resulting configuration ξ ∈ {0,1}Zd

has law μα . (Again, the sentences in this paragraph will be given a precise meaning
in Section 3.)

With the aid of this construction, it is not difficult to show that each μα is in-
variant and ergodic with respect to translations of Zd (see [21], Theorem 2.5 of
Chapter V, Corollary 4.14 of Chapter I) and satisfies μα[ξ(0) = 1] = α, so that α

is equal to the density of 1’s. Moreover, the family {μα} is stochastically increas-
ing: in the partial order on {0,1}Zd

induced by the order 0 < 1 on the coordinates,
we have that μα is stochastically dominated by μα′ when α < α′.

The objective of this paper is to show that the measures μα exhibit a nontriv-
ial percolation phase transition. Loosely speaking, we want to show that if α is
close to zero then the set of 1’s only contains finite connected components and if
α is close to one then the set of 1’s contains an infinite component. Let us explain
this concept more precisely. We define the event Perc ⊆ {0,1}Zd

which consists
of those voter configurations ξ for which the subgraph of the nearest-neighbour
lattice Z

d spanned by the set of occupied sites {x : ξ(x) = 1} has an infinite con-
nected component. By ergodicity, μα(Perc) is either 0 or 1. If Perc occurs, we say
that the set {x : ξ(x) = 1} percolates. We can then define αc as the supremum of
all the values of α for which μα(Perc) = 0. By the stochastic ordering mentioned
in the previous paragraph, μα(Perc) is nondecreasing in α. Thus, for any α < αc

we have μα(Perc) = 0 and for any α > αc we have μα(Perc) = 1. Our aim is to
show that the family of measures {μα : 0 ≤ α ≤ 1} exhibits a nontrivial percolation
phase transition, that is, that 0 < αc < 1. Our main results are the following.

THEOREM 1.1. If d ≥ 5 and R ≥ 1, then the family of stationary distributions
of the voter model exhibits a nontrivial percolation phase transition.

THEOREM 1.2. If d = 3 or 4, then there exists R0 = R0(d) ∈ N such that if
R ≥ R0 then the family of stationary distributions of the voter model exhibits a
nontrivial percolation phase transition.

1.2. Context. Although it may at first seem intuitively clear that, similarly to
the case of Bernoulli percolation, ξ should be nonpercolative if α is close to zero;
this statement is not obvious. As the dynamics of the voter model favours that vot-
ers synchronize their opinions, the measures μα present long-range dependences.
In fact, it follows from (3.7) below that for any α ∈ (0,1), the configuration ξ

under the law μα has covariances given by

c(α, d,R) · |x − y|2−d ≤ Covμα

(
ξ(x), ξ(y)

)
(1.1)

≤ C(α,d,R) · |x − y|2−d, x �= y ∈ Z
d .
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It is a priori possible that percolation models with strong correlations present no
phase transition. It is easy to build artificial examples, but let us recall an example
that arises “naturally”. The random interlacement set Iu at level u > 0, introduced
in [32] is a random subset of Zd : (a) the law of Iu is stochastically dominated by
the law of Iu′

when u < u′, (b) the correlations of Iu decay like (1.1) (see [32],
(1.68)) and (c) the density of Iu can be taken arbitrarily small by making u small
(see [32], (1.58)), yet the set Iu is connected for any u > 0, (see [32], (2.21)).

On the other hand, in case one attempts to prove that phase transition does
occur, then the slowly decaying correlations (1.1) pose a challenge, as many of
the well-known tools that are used for Bernoulli percolation are not applicable.
Additionally, since general criteria are lacking and (as mentioned above) phase
transition may in principle fail to occur, one needs to envisage strategies of proof
that are model-specific. The proof of nondegeneracy of the percolation threshold
has been carried out for the vacant set Vu = Z

d \ Iu of random interlacements in
[31, 32] and the excursion sets of the Gaussian-free field in [4] (for d = 3) and [29]
(d ≥ 3). Both of these percolation models exhibit a decay of correlations described
by (1.1).

In the case of the voter model, the question of percolation has been considered
before in [4, 20, 24] and [23]. The main focus of these works is on the case where
d = 3 and R = 1. Through simulations and numerical studies, the first, third and
fourth of these references argue that there should be a nontrivial phase transition
and that the predictions of [11, 36] regarding the critical behaviour of percola-
tion models with correlations described by (1.1) should be correct. However, the
problem of finding a rigorous proof of the nontriviality of the percolation phase
transition of the stationary state of the voter model remained open. This problem
is (partially) settled by our Theorems 1.1 and 1.2.

Another investigation of geometric properties of the stationary distribution of
the voter model has recently been carried out in [15]. The object of interest there
is the voter model on a finite rhombus of the triangular lattice; the boundary of the
rhombus, composed of four segments, is frozen so that two adjacent segments are
always in state 0 and the other two in state 1. In this finite setting, there is only
one stationary distribution, which can be constructed with the aid of coalescing
random walks and the resulting coalescence classes, similarly to the μα’s on Z

d .
The authors study the volume of the coalescing classes and the interface curve that
appears as a consequence of the opposing boundaries.

Questions regarding percolation of the stationary distributions of interacting
particle systems other than the voter model have also been investigated. It is proved
in [22] that the upper invariant measure νλ of the contact process with infection
rate λ on Z

d, d ≥ 2 percolates if λ ≥ 6.25. To the best of our knowledge, Ques-
tion 2 of Section 8 of [22] is still open, that is, it is not known whether there
exists λ > λc for which νλ is nonpercolative. However, it is proved in [34] that
for d = 2 the percolation phase transition of νλ is sharp. This result is extended
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to more complex versions of the contact process in [35]. Let us note here that the
stationary distribution μα of the voter model is rather different from the upper in-
variant measure νλ of the contact process, for example, Covνλ(ξ(x), ξ(y)) decays
exponentially as |x − y| → ∞ for any value of λ (see, e.g., [34], Lemma 2.2), as
opposed to the polynomial decay exhibited by μα in (1.1).

Let us also point out that the scaling limit of the voter model is super-Brownian
motion (see [2, 6]), and, despite the fact that continuum scaling limits do not ex-
plicitly appear in the calculations that we are about to present, our intuition was
guided by the question of the disconnectedness of the support of super-Brownian
motion, as we discuss in Remark 7.1.

1.3. Ideas and structure of proof. Let us now explain how the paper is orga-
nized and also the contents of each section.

In Section 2, we give a notation summary and also collect some facts regarding
martingales and random walks that are needed in the rest of the exposition.

Section 3 contains an introduction to the voter model on Z
d , including its graph-

ical construction, duality properties and the construction of the extremal stationary
distributions using a family of coalescing random walks.

We begin to prove our main results in Section 4. Our goal is to show [see (4.2)]
that for sufficiently small values of α, the probability that a large annulus is crossed
by a ∗-connected path of 1’s in ξ is smaller than a stretched exponential function of
the radius of the annulus. The condition (4.2) is then shown to imply 0 < αc < 1. It
is self-evident that if (4.2) holds, then there is no percolation for small enough α.
We also show, through a classical argument using planar duality, that (4.2) implies
that if α is close enough to 1, then there is percolation.

We were able to establish (4.2) for the two sets of assumptions that appear
in our main theorems (namely: first for d ≥ 5,R ≥ 1 and second for d ≥ 3 and
R large enough). We prove both cases using a renormalization scheme inspired
by Sections 2 and 3 of [33], which involves embeddings of binary trees into Z

d

that are “spread-out on all scales”. In Section 4.2, we present this renormalization
scheme and some of its properties.

In Section 5, we establish (4.2) for d ≥ 3 and R large, and in Section 6 we es-
tablish it for d ≥ 5 and R ≥ 1. For simplicity of notation, Section 6 only treats
explicitly d ≥ 5 and R = 1 (i.e., the case of nearest neighbour interactions), but it
will be easy to see that the proof given there applies for any value of R. In fact,
the proof of Section 6 could also be adapted to cover the case of d ≥ 3 and R large
enough, so that Section 5 is (strictly speaking) redundant. We have nevertheless
chosen to include it for three reasons: first, because it is quite short; second, be-
cause the method might find other applications; and third, the contents of Section 5
may be helpful for the reader to grasp the more involved arguments of Section 6.

A common point in the proofs of Sections 5 and 6 is the need to provide an
upper bound for probabilities of the form

(1.2) μα

[
ξ(x) = 1 for all x ∈ X

]
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for certain finite sets X ⊆ Z
d that appear at the “bottom” scale of the renormaliza-

tion construction. An immediate consequence [as we will explain in Section 3, up
to equation (3.6)] of the construction of μα through “coalescence classes” is that
(1.2) is equal to E[αN∞(X )], where N∞(X ) is the (random) terminal number of
random walkers in a system of coalescing random walks started from the configu-
ration in which there is one walker in each vertex of X . Hence, in order to give a
good upper bound for (1.2), one needs to argue that N∞(X ) is comparable to |X |
(the cardinality of X ). It is worth noting that α|X | is the probability of the event in
(1.2) for independent, Bernoulli(α) percolation.

Our renormalization construction ensures that the set X under consideration
here is “sparse on all scales”. Hence, one expects that walkers started from the
vertices of X tend to avoid other walkers, and the amount of loss due to coales-
cence, |X | − N∞(X ), is far from |X | with overwhelming probability. In order to
make this precise, we use different strategies in Sections 5 and 6. Both of these
techniques are novel.

• (d ≥ 3, R � 1) In Section 5, we replace the system of coalescing random walks
with a system of annihilating random walks and observe that annihilation events
are “negatively correlated”. This allows us to derive a useful explicit bound on
(1.2) which is particularly effective if the range R of the walkers is big enough
to guarantee that the expected number of annihilations is sufficiently small.

• (d ≥ 5, R = 1) The proof of Section 6 involves two important ideas. First, it
turns out that under some carefully constructed circumstances one can run the
walkers for some period of time independently from each other (i.e., without
coalescence), which allows them to “wander away” from each other before they
start to coalesce. Second, we reveal the paths of random walkers one by one and
pre-emptively throw away those future walks that are too likely to coalesce with
the ones already revealed. We can then control:

(a) the number of walkers that we throw away and
(b) the number of coalescences occurring between the remaining walkers

in such a way that the sum of these two numbers [which is greater than or equal
to |X | −N∞(X )] is not too big compared to |X |.
To state the obvious, Theorems 1.1 and 1.2 leave open the cases of dimension 3

and 4 and range R small, even though, as mentioned above, simulations and numer-
ical work suggest that non-trivial phase transition should also occur in these cases.
In our final Section 7, we give an heuristic explanation to the ineffectiveness of the
method of Section 6 in treating d = 3,4 and R = 1 (see Remark 7.3). In Remarks
7.2 and 7.4, we explain why the tricks of Section 5 are insufficient to prove Theo-
rem 1.1, so that we could not do without the more involved method of Section 6.
In Remark 7.1, we heuristically explain how voter model percolation is related to
the question of disconnectedness of the closed support of super-Brownian motion.
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2. Notation and preliminary facts.

2.1. Summary of notation. Given a set or event A, we denote by 1A its indi-
cator function and by |A| its cardinality.

Given a vertex x ∈ Z
d , we denote by |x| its �∞ norm and by |x|1 its �1 norm.

We then write

B(L) = {x ∈ Z
d : |x| ≤ L

}
, B(x,L) = x + B(L);

B1(L) = {x ∈ Z
d : |x|1 ≤ L

}
, B1(x,L) = x + B1(L);(2.1)

S(L) = {x ∈ Z
d : |x| = L

}
, S(x,L) = x + S(L).

If for x, y ∈ Z
d we have |x − y|1 = 1, then these points are said to be neighbours,

and we abbreviate this by x ∼ y. They are ∗-neighbours if |x − y| = 1. For sets
A,B ⊂ Z

d , dist(A,B) = min{|x − y| : x ∈ A,y ∈ B}. The expression A ⊂⊂ Z
d

indicates that A is a finite subset of Zd .
A nearest-neighbour path in Z

d is a (finite or infinite) sequence γ (0), γ (1), . . .

so that γ (i +1) ∼ γ (i) for each i. A ∗-connected path is a sequence γ (0), γ (1), . . .

so that γ (i + 1) and γ (i) are ∗-neighbours for each i. We denote by {γ } the set
{γ (0), γ (1), . . .}.

DEFINITION 2.1. Let ξ ∈ {0,1}Zd
and let A and B denote two disjoint subsets

of Zd .

(a) We say A and B are connected by an open path in ξ (and write A
ξ↔ B) if

there exists a nearest-neighbour path γ (0), . . . , γ (n) such that γ (0) is the neigh-
bour of a point of A, γ (n) is a neighbour of a point of B and ξ(γ (i)) = 1 for
each i.

(b) Similarly, we write A
∗ξ←→ B if there exists a ∗-connected path γ (0), . . . ,

γ (n) so that γ (0) is the ∗-neighbour of a point of A, γ (n) is the ∗-neighbour of a
point of B and ξ(γ (i)) = 1 for each i.

2.2. Martingale facts. We will need a concentration inequality involving
continuous-time martingales. We start recalling two definitions. Consider a proba-
bility space with a filtration (Ft )t≥0.

DEFINITION 2.2. A process (Xt)t≥0 is predictable with respect to (Ft ) if

Xt ∈ Ft− = σ

(⋃
s<t

Fs

)
for all t .

Note that if (Xt) is continuous and adapted to (Ft ), then it is predictable with
respect to (Ft ).
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DEFINITION 2.3. Let (Nt )t≥0 be a square-integrable càdlàg martingale with
respect to (Ft )t≥0. The predictable quadratic variation of (Nt) is the predictable
process (〈N〉t )t≥0 such that (N2

t − 〈N〉t )t≥0 is a martingale with respect to (Ft ).

The almost sure uniqueness of the predictable quadratic variation follows from
Doob–Meyer–Doléans decomposition ([16], Theorem 25.5) applied to the sub-
martingale (N2

t ). Note that 〈N〉t is a nondecreasing function of t . We refer the
reader to [16], Proposition 26.1, for elementary properties of 〈N〉. The result we
will need, which follows from [16], Theorem 26.17, is the following.

THEOREM 2.4. Let S ∈ [0,+∞]. Let (Nt) be a square-integrable càdlàg
martingale with 〈N〉S ≤ σ 2 almost surely for some σ 2 ∈ (0,+∞). Assume that
the jumps of N are almost surely bounded by 	 ∈ (0, σ ]. Then we have

(2.2) P

(
max

t∈[0,S]Nt − N0 ≥ r
)

≤ exp
(
−1

2

r

	
ln
(

1 + r	

σ 2

))
, r ≥ 0.

Note that [16], Theorem 26.17, is only stated for the σ = 1 case; however, our
version (2.2) follows from an application of that theorem to the martingale Nt/σ .

2.3. Random walk facts.

DEFINITION 2.5. Given R ∈ N+, we say that (Xz
t )t≥0 is an R-spread-out ran-

dom walk on Z
d starting at z ∈ Z

d if Xz
0 = z and (Xz

t )t≥0 is a continuous-time
càdlàg Markov process on Z

d with infinitesimal generator

(Lf )(x) = ∑
y∈Zd :

0<|x−y|1≤R

f (y) − f (x)

|B1(R)| − 1
,

where f : Zd → R. When R = 1, then we call (Xz
t ) a (continuous-time) nearest-

neighbour simple random walk on Z
d .

In words: the holding times between jumps are i.i.d. with Exp(1) distribution
and if a jump occurs at time t and Xz

t− = x then Xz
t is uniformly distributed on

B1(x,R) \ {x}. If R = 1, then Xz
t is uniformly distributed on the set of nearest

neighbours of x.
Let us formulate a useful corollary of Theorem 2.4 about random walks.

COROLLARY 2.6. Let Xt denote a d-dimensional continuous-time nearest-
neighbour simple random walk with jump rate 1 starting at the origin. Then for
any S, r ≥ 0 we have

(2.3) P

[
max

0≤t≤S
|Xt | > r

]
≤ 2d exp

(
−1

2
r ln
(

1 + d · r
S

))
.
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PROOF. The d coordinates of Xt are 1-dimensional simple random walks with
jump rate 1/d , hence after a union bound we only need to apply (2.2) with σ 2 =
S/d and 	 = 1 to achieve (2.3). �

Let us define the transition kernel and the Green function of R-spread-out ran-
dom walk on Z

d by

(2.4) pR,t (x, y) = P
[
Xz

s+t = y|Xz
s = x

]
, gR(x, y) =

∫ ∞
0

pR,t (x, y)dt.

If R = 1, then we drop the R from the subscript and simply denote pt(x, y) and
g(x, y). We have

pR,t (x, y) = pR,t (y, x), pR,t (x, y) = pR,t (y − x,0),
(2.5)

gR(x, y) = gR(y, x), gR(x, y) = gR(y − x,0), gR(x, x) ≥ 1.

It follows from the Chapman–Kolmogorov equations for pR,t (·, ·) that we have

(2.6)
∑

y∈Zd

pR,T (x, y) · gR(y, z) =
∫ ∞
T

pR,t (x, z)dt.

It follows from the local central limit theorem (see [19], Section 1.2) that for
any d ≥ 3 there exist constants c = c(d,R) > 0 and C = C(d,R) < +∞ such that

(2.7)

∫∞
T pR,t (x, y)dt

(|x − y| ∨ √
T + 1)2−d

∈ [c,C], x, y ∈ Z
d, T ≥ 0.

It follows from the strong Markov property of random walks that we have

(2.8) P
[∃t ≥ 0 : Xx

t = y
]= gR(x, y)

gR(y, y)

(2.5)≤ gR(x, y).

The distributions of the increments of our random walks are symmetric, therefore,
if the random walks (Xx

t ) and (X
y
t ) are independent, then

(2.9)
(
X

y
t − Xx

t

)
t≥0 has the same law as

(
X

y−x
2t

)
t≥0.

Let us define

(2.10) hR(x, y) = P
[∃t ≥ 0 : Xx

t = X
y
t

]
, x, y ∈ Z

d

the probability that two independent R-spread-out random walks started from x

and y ever meet. We have

(2.11) hR(x, y)
(2.9),(2.8),(2.5)= gR(x, y)

gR(0,0)
≤ gR(x, y).

In Section 5, we will make use of the following claim about spread-out random
walks.



1908 B. RÁTH AND D. VALESIN

CLAIM 2.7. Given d ≥ 3, there exists f :N →R+ such that

hR(x, y) ≤ f (R) · |x − y|2−d, lim
R→∞f (R) = 0,

(2.12)
∀R ∈ N, x �= y ∈ Z

d .

REMARK 2.8. Before proving Claim 2.7, we first observe that, for fixed R,
the bound

sup
x �=y∈Zd

hR(x, y) · |x − y|d−2 < ∞

already follows from (2.4), (2.7) and (2.11). The bound (2.12) is more informative,
as it gives us asymptotic information as R → ∞.

PROOF OF CLAIM 2.7. The bound (2.12) follows from (2.11), [12], Propo-
sition 1.6, and the observation that the Green function of a continuous-time ran-
dom walk with jump rate 1 is identical to the Green function of the corresponding
discrete-time random walk. To see how the mentioned result in [12] is applied,
first note that their parameter L translates to our parameter R and their expression
S1(x) is equal to our gR(0, x). Then, by letting their parameters α and μ both be
equal to 1, their equation (1.36) yields that there exists C < ∞ such that (in our
notation):

gR(0, x) ≤ CR−1|x|2−d for R large enough and all x ∈ Z
d, x �= 0.

Claim 2.7 readily follows by (2.11). �

We will also make use of the following bound on the difference of Green func-
tion values of nearest neighbour sites: there exists a C = C(d) such that

(2.13)
∣∣g(x, y) − g(x, y + e)

∣∣≤ C · (|x − y| + 1
)1−d

, x, y ∈ Z
d, e ∼ 0.

This bound follows from the much stronger [19], Theorem 1.5.5.
The following heat kernel bound follows from the local central limit theorem:

there exist C = C(d) < +∞ and c = c(d) > 0 such that

(2.14) pt(x, y) ≤ Ct−
d
2 exp

(
−c

|x − y|2
t

)
, x, y ∈ Z

d, t ≥ 1.

In Section 6.7, we will make use of the following bound.

CLAIM 2.9. There exists C = C(d) such that∑
w∈Zd

pt (y,w)
∣∣g(w,v) − g(w,v + e)

∣∣≤ Ct
1
2 − d

2 ,

(2.15)
y, v ∈ Z

d, e ∼ 0, t ≥ 1.
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PROOF. By (2.5), we may assume y = 0 without loss of generality.∑
w∈Zd

pt (0,w)
∣∣g(w,v) − g(w,v + e)

∣∣
(2.13),(2.14)≤ C′t−

d
2
∑

w∈Zd

exp
(
−c

|w|2
t

)(|v − w| + 1
)1−d

(∗)≤ C′t−
d
2
∑

w∈Zd

exp
(
−c

|w|2
t

)(|w| + 1
)1−d

≤ C′′t−
d
2

∞∑
n=0

exp
(
−c

n2

t

)
(n + 1)1−d · nd−1 ≤ Ct

1
2 − d

2 ,

where (∗) follows from the rearrangement inequality [13], Section 10.2, Theo-
rem 368. �

3. Voter model: Graphical construction, duality, stationary distributions.
In this section, we define the voter model on Z

d and present some well-known
facts about it. We refer the reader to [21] for an introduction to the voter model
and proofs of all the statements that we make in this section.

Fix d,R ∈ N. The voter model on Z
d with range R, denoted by (ξt )t≥0, is the

Markov process with state space {0,1}Zd
and infinitesimal generator given by

(3.1) (Lf )(ξ) = ∑
x,y∈Zd :

0<|x−y|1≤R

f (ξy→x) − f (ξ)

|B1(R)| − 1
,

where f : {0,1}Zd →R is any function that only depends on finitely many coordi-
nates, ξ ∈ {0,1}Zd

and

ξy→x(z) =
{
ξ(z), if z �= x,

ξ(y), if z = x.

In words, each site x ∈ Z
d updates its state ξ(x) with rate 1 by uniformly choosing

a site y ∈ B1(x,R) \ {x} and adopting the state ξ(y) of y. In case R = 1, we say
that the model is nearest-neighbour.

Given ξ ∈ {0,1}Zd
, we denote by Pξ a probability measure under which (ξt )t≥0

is defined and satisfies Pξ [ξ0 = ξ ] = 1. Likewise, given a probability distribution

ν on {0,1}Zd
, we write Pν = ∫ Pξ dν(ξ).

The process (ξt ) satisfies a duality relation with respect to a system of coa-
lescing random walks. We will now explain what is meant by this—or rather, we
will give a particularly simple formulation of duality that will be sufficient for our
purposes.
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For each x, y ∈ Z
d with 0 < |x − y|1 ≤ R, let (D

(x,y)
t )t≥0 be a Poisson process

with rate (|B1(R)| − 1)−1 on [0,∞), so that D
(x,y)
0 = 0 and D

(x,y)
t − D

(x,y)
t− is

equal to 0 or 1 for all t . One pictures D
(x,y)
t − D

(x,y)
t− = 1 as an arrow pointing

from x to y at time t . We denote by P a probability measure under which all these
processes are defined and are independent. For each x ∈ Z

d , we then define (on
this same probability space) (Y x

t )t≥0 as the unique Z
d -valued process which is

right-continuous with left limits and satisfies

(3.2) Yx
0 = x, Y x

t = Yx
t− + ∑

z∈B1(R)

z · (D(Yx
t−,Y x

t−+z)
t − D

(Yx
t−,Y x

t−+z)

t−
)
.

One pictures Yx
t as it moves along the time axis and follows the arrows that it

encounters. The collection of processes {(Y x
t )t≥0 : x ∈ Z

d} is what we refer to as a
system of coalescing random walks. This terminology makes sense because, as is
clear from the above definition, each (Y x

t )t≥0 is a continuous-time random walk on
Z

d with rate 1 which jumps to a uniformly distributed location in Yx
t− + (B1(R) \

{0}), and moreover, these walks move independently until they meet, after which
they coalesce and remain together.

Now, for any fixed ξ ∈ {0,1}Zd
, A ⊂⊂ Z

d and t ≥ 0, we have

(3.3) law of
(
ξ
(
Yx

t

) : x ∈ A
)

under P = law of
(
ξt (x) : x ∈ A

)
under Pξ .

See Figure 1 for an illustration.

FIG. 1. Illustration of the system of coalescing random walks to which the voter model is dual.
The horizontal axis represents space (which is one-dimensional in this picture) and the vertical axis

represents time; arrows are plotted as described in the text. On top, a configuration ξ ∈ {0,1}Zd
is

represented. The thick vertical paths represent the trajectories of (Y x
s ), (Y

y
s ), (Y z

s ) for 0 ≤ s ≤ t . In
the situation illustrated, we have ξ(Y x

t ) = 0 and ξ(Y
y
t ) = ξ(Y z

t ) = 1.
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As a consequence of (3.3), we obtain the following duality equation for the
voter model: for any A ⊂⊂ Z

d , t ≥ 0 and probability measure ν on {0,1}Zd
,

(3.4) Pν

[
ξt (x) = 1 for all x ∈ A

]= ∫ P
[{

Yx
t : x ∈ A

}⊂ {y : ξ(y) = 1
}]

dν(ξ).

Note that by inclusion–exclusion the equation (3.4) characterizes the distribution
of ξt for the process started with distribution ν. Of particular interest is the case
when ν is equal to

πα := (αδ{1} + (1 − α)δ{0}
)⊗Z

d

,

the product measure of Bernoulli(α) on Z
d , for α ∈ [0,1]. In order to discuss this

case, let us introduce some notation. For A ⊂ Z
d , we let

(3.5) Nt (A) = ∣∣{Yx
t : x ∈ A

}∣∣, t ≥ 0 and N∞(A) = lim
t→∞Nt (A);

the limit exists because Nt (A) decreases with t . Denoting by E the expectation
operator associated with P, we can then rewrite (3.4) as

Pπα

[
ξt (x) = 1 for all x ∈ A

]= E
[
αNt (A)].

By taking the limit on the right-hand side as t → ∞, we can conclude that, under
Pπα , as t → ∞, ξt converges in distribution to a measure μα on {0,1}Zd

charac-
terized by

(3.6) μα

[
ξ(x) = 1 for all x ∈ A

]= E
[
αN∞(A)]

for every finite A ⊂ Z
d . The measures μα are invariant and ergodic with respect to

translations on Z
d and satisfy

(3.7) μα

[
ξ(x) = 1

]= α, Corrμα

(
ξ(x), ξ(y)

) (2.10)= hR(x, y), x, y ∈ Z
d,

thus (1.1) indeed holds by (2.7) and (2.11). We also note that

(3.8) μα

[
ξ(x) = 1 for all x ∈ A

] (3.5),(3.6)≥ E
[
αN0(A)]= α|A|.

As the measures μα are obtained as distributional limits of (ξt ), they are also
stationary with respect to the dynamics of the voter model. In fact, in Section V.1
of [21] it is shown that:

• if d ≥ 3, then the set of extremal stationary distributions of the voter model is
equal to {μα : α ∈ [0,1]}. Here, a measure is said to be extremal if it cannot be
written as a nontrivial convex combination of other stationary distributions.

• if d = 1 or 2, then there are only two extremal stationary distributions, namely
the point masses on the constant configurations ξ ≡ 1 and ξ ≡ 0. [If d = 1
or 2, by recurrence of the random walk we have N∞(A) = 1 almost surely for
any finite and nonempty A. We can then see from (3.6) that μα is a convex
combination with weight α of the point masses on the constant configurations.]
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Finally, we give a useful construction, jointly on the same probability space, of
the system of coalescing random walks and for each α ∈ [0,1], a random ξ (α) ∈
{0,1}Zd

distributed as μα . To this end, we take the probability space in which
the aforementioned measure P and the processes ((Y x

t )t≥0 : x ∈ Z
d) are defined,

and enlarge it so that a sequence of random variables Un, n ∈ N, all independent
and uniformly distributed on [0,1], are also defined (and are independent of the
Yx

t ’s). Next, fix an arbitrary enumeration x1, x2, . . . of Zd . For any n ≥ 1, define
the random variables

(3.9) η(n) = min
{
m : m ≤ n and Y

xm
t = Y

xn
t for some t ≥ 0

}
and then set

(3.10) ξ (α)(xn) = 1{Uη(n)≤α}, n ∈N, α ∈ [0,1].
It is then straightforward to check that ξ (α) has law μα , as defined in (3.6), and
moreover, it satisfies

ξ (α)(x) = ξ (α)(y) if Yx
t = Y

y
t for some t.

Moreover, it follows from this construction that if α ≤ α′, then ξ (α)(x) ≤ ξ (α′)(x)

for each x ∈ Z
d , therefore, μα is stochastically dominated by μα′ , that is, if f :

{0,1}Zd → R is increasing (with respect to the partial order on {0,1}Zd
that is

induced by the order 0 < 1 on the coordinates), then

(3.11)
∫

f dμα ≤
∫

f dμα′ .

We will also need the following consequence of the joint construction:

(3.12) the law of 1 − ξ under μα is the same as law of ξ under μ1−α .

4. First facts about voter model percolation, d ≥ 3. In this section, we
collect the definitions and facts that are common to the proofs of Theorems 1.1
and 1.2. Throughout this section, we fix d ≥ 3, R ≥ 1 [see (3.1)] and α ∈ [0,1]. ξ

denotes an element of {0,1}Zd
and μα denotes the extremal stationary distribution

of the voter model with density α, as described in Section 3.
In Section 4.1, we state the key inequality (4.2) and deduce Theorems 1.1 and

1.2 from it. In Section 4.2, we set up the multi-scale renormalization scheme that
we will employ to prove (4.2).

4.1. A sufficient condition for percolation phase transition. We will show that
there exist α0 > 0 and a sequence (LN)N≥0 of form

(4.1) LN = L · �N,

where � ≥ 6, L ≥ 1 such that

(4.2) μα0

[
B(LN − 2)

∗ξ←→ B(2LN)c
]≤ 2−2N

, N ≥ 1.
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In words: the probability under μα0 that an annulus with inner radius LN − 2
and outer radius 2LN is crossed by a ∗-connected path of 1’s in ξ is less than or
equal to 2−2N

. Note that (4.2) implies that the crossing probability of the annulus
B(2M) \ B(M) decays as a stretched exponential function of M as M → ∞:

μα0

[
B(M)

∗ξ←→ B(2M)c
]≤ Ce−Mκ

for some C < +∞ and κ > 0.

We will prove (4.2) for d ≥ 3 and R � 1 in Section 5 and for d ≥ 5 and R = 1 in
Section 6. Let us now deduce the main results of this paper from (4.2).

PROOF OF THEOREMS 1.1 AND 1.2. As we have already discussed in Sec-
tion 3, the measure μα is invariant and ergodic under spatial shifts of Zd . There-
fore, the probability under μα of the event

(4.3) Perc = {{x : ξ(x) = 1
}

has an infinite connected component
}

can only be zero or one for any α. Also, since the event in (4.3) is increasing, by
(3.11) there indeed exists 0 ≤ αc ≤ 1 such that μα(Perc) = 0 for any α < αc and
μα(Perc) = 1 for any α > αc. Our aim is to prove that 0 < αc < 1.

Let us now explain how (4.2) implies

α0 ≤ αc ≤ 1 − α0.

As soon as we prove these inequalities, the statements of Theorems 1.1 and 1.2
will follow.

First, we will prove α0 ≤ αc by showing that μα0(Perc) = 0. Denote by {x ξ←→
∞} the event that there exists a nearest-neighbour path γ (0), γ (1), . . . , such that
γ (0) = x, limn→∞ |γ (n)| = ∞ and ξ(γ (n)) = 1 for each n. Since

Perc = ⋃
x∈Zd

{x ξ←→ ∞}

and μα0 is invariant under translations of Zd , it is enough to prove that μα0[0
ξ←→

∞] = 0. This follows from (4.2) and the inclusions

{0 ξ←→ ∞} ⊆ {B(LN − 2)
ξ←→ B(2LN)c

}
(∗)⊆ {B(LN − 2)

∗ξ←→ B(2LN)c
}
, N ≥ 1,

where (∗) holds since a nearest-neighbour path is also a ∗-path; see Definition 2.1.
Now we will prove αc ≤ 1−α0 using a variant of the classical Peierls argument;

see [25] and [10], Section 1.4. Let us define the plane P ⊂ Z
d by

P = {x = (x1, . . . , xd) ∈ Z
d : xi = 0 for all i ≥ 3

}
.
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For ξ ∈ {0,1}Zd
, we denote by ξ̄ the restriction of ξ to P . For any N ≥ 1, we

define the events:

EN = {B(LN) ∩P is not connected to ∞
by a nearest neighbour path of 1’s in ξ̄

}
,

FN = {B(LN) ∩P is surrounded by a ∗-connected cycle γ̃ of 0’s in ξ̄
}
.

By planar duality (see Definition 4, Definition 7 and Corollary 2.2 of [17]), we
have

EN = FN.

If FN occurs, denote by M̃ the smallest integer such that B(LM̃+1) ∩ {γ̃ } �=∅. By
the definition of FN , we have M̃ ≥ N .

If FN occurs, we can pick an x̃ ∈ (LM̃ ·Zd)∩P satisfying |x̃| ≤ LM̃+1 such that
B(x̃,LM̃ − 1) ∩ {γ̃ } �=∅. By the definition of M̃, the cycle γ̃ surrounds B(LM̃) ∩
P , therefore, by Definition 2.1(b) the annulus B(x̃,2LM̃)\B(x̃,LM̃ −2) is crossed
by γ̃ . Thus, for any N ∈ N we can bound

μ1−α0

[
Percc]≤ μ1−α0[EN ] = μ1−α0[FN ]

≤
∞∑

M=N

∑
x∈LM ·Zd

|x|≤LM+1

μ1−α0

[
B(x,LM − 2)

∗(1−ξ)←→ B(x,2LM)c
]

(3.12),(4.1),(4.2)≤
∞∑

M=N

(2� + 1)d · 2−2M

,

from which μ1−α0[Perc] = 1 follows by letting N → ∞. This implies αc ≤ 1−α0.
The proof of Theorems 1.1 and 1.2 is complete, given (4.2). �

4.2. Renormalization scheme for percolation, d ≥ 3. We are going to use
multi-scale renormalization. Similar methods have been successfully employed to
prove the percolation phase transition of the vacant set of random interlacements
(see [31, 32]) and the excursion set of the Gaussian-free field (see [29]). We will
borrow the renormalization scheme of [28], which is in turn a variant of the method
developed in Sections 2 and 3 of [33].

Let us fix d ≥ 3. We let � and L be two integers describing the scales of renor-
malization:

(4.4) LN = L · �N, N ≥ 0.

Using these scales we define the renormalized lattices

(4.5) LN = LN ·Zd, N ≥ 0.
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REMARK 4.1. The basic idea behind the proof of (4.2) is as follows. Denote
by p(N) the probability of the crossing event that appears on the left-hand side
of (4.2). The crossing of an annulus of scale LN implies that two annuli of scale
LN−1 that are far enough from each other are also crossed (see Figure 2 below), so
one naively hopes to upper bound p(N) in terms of p(N −1)2 and thus prove (4.2)
by induction on N . To make this idea rigorous, one needs to take into account the
combinatorial term that counts the number of choices of the smaller annuli, and,
more importantly, the strong positive correlation between the two crossing events
on the smaller scale.

We start our proof of (4.2) by repeating the above sketched renormalization
step until we reach the bottom scale L0. We encode the choices of the centers of
these annuli as embeddings of the binary tree TN of depth N into Z

d (see Defi-
nition 4.2)—this way the proof of (4.2) boils down to bounding the probability of
the joint occurrence of 2N instances of a simple bottom-level event, indexed by the
leaves of TN (see Lemma 4.4).

FIG. 2. Illustration of the relation between the proper embedding T (see Definition 4.2) and the
path γ that appears in Lemma 4.4. The light grey circles and dark grey circles represent points of
the lattices LN−1 and LN , respectively.



1916 B. RÁTH AND D. VALESIN

Let T(k) = {1,2}k for k ≥ 0 (in particular, T(0) = {∅}) and then let

TN =
N⋃

k=0

T(k)

be the binary tree of height N . If 0 ≤ k < N and m = (η1, . . . , ηk) ∈ T(k), we let

(4.6) m1 = (η1, . . . , ηk,1), m2 = (η1, . . . , ηk,2)

be the two children of m in T(k+1).

DEFINITION 4.2. T : TN → Z
d is a proper embedding of TN if:

1. T ({∅}) = 0;
2. for all 0 ≤ k ≤ N and m ∈ T(k) we have T (m) ∈ LN−k ;
3. for all 0 ≤ k < N and m ∈ T(k) we have

(4.7)
∣∣T (m1) − T (m)

∣∣= LN−k,
∣∣T (m2) − T (m)

∣∣= 2LN−k.

We denote by �N the set of proper embeddings of TN into Z
d .

We now collect a few facts from [28] about these embeddings. Although the
lemmas in [28] that correspond to our Lemmas 4.3, 4.4 and 4.5 below are stated
for � = 6, their statements hold true (and have the same proof) for any integer
� ≥ 6.

LEMMA 4.3.

(4.8) |�N | = [((4� + 1)d − (4� − 1)d
) · ((2� + 1)d − (2� − 1)d

)]2N−1
.

This follows from [28], Lemma 3.2. Informally, given T (m), there are (2� +
1)d − (2� − 1)d ways to choose T (m1) and (4� + 1)d − (4� − 1)d ways to choose
T (m2).

Next is the statement that, given a crossing of the LN -scale annulus B(2LN) \
B(LN), we can find a proper embedding T ∈ �N so that all L0-scale annuli
B(T (m),2L0) \B(T (m),L0) : m ∈ T(N) are crossed. Recall the notion of S(x,L)

from (2.1).

LEMMA 4.4. If γ is a ∗-connected path in Z
d with

{γ } ∩ S(LN − 1) �= ∅, {γ } ∩ S(2LN) �= ∅,

then there exists T ∈ �N such that

{γ } ∩ S
(
T (m),L0 − 1

) �=∅ and {γ } ∩ S
(
T (m),2L0

) �=∅

(4.9)
for all m ∈ T(N).
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This is [28], Lemma 3.3 [in fact, the statement given here corresponds to equa-
tion (3.7) in the proof of that lemma]. Informally, one recursively constructs a
proper embedding T : if γ crosses an annulus of scale LN−k centered at some
T (m) ∈ LN−k for m ∈ T(k), 0 ≤ k < N , then two “children” annuli of scale
LN−k−1 centered at some T (m1),T (m2) ∈ LN−k−1 satisfying (4.7) will also be
crossed by γ ; see Figure 2.

Finally, given a proper embedding T ∈ �N , the set of images of the leaves
{T (m) : m ∈ T(N)} is “spread-out on all scales”.

LEMMA 4.5. For any T ∈ �N and any m0 ∈ T(N), we have∣∣{m ∈ T(N) : dist
(
B
(
T (m0),2L

)
,B
(
T (m),2L

))≤ �kL/2
}∣∣≤ 2k−1,

(4.10)
k ≥ 1.

This is a consequence of our assumption � ≥ 6 and [28], Lemma 3.4. In particu-
lar, by choosing k = 1 in (4.10) we obtain that the sets B(T (m),2L) for m ∈ T(N)

are disjoint.

5. Spread-out model, d ≥ 3. In this section, we work with the voter model
with range R, thus we will denote the stationary distribution [see (3.6)] with den-
sity α by μR,α . The goal of this section is to prove Theorem 1.2. More specifically,
we will show that (4.2) holds for any d ≥ 3 if R ≥ R0(d) for some large R0 and
some α0 = α0(d) > 0.

Recall the notion of hR(x, y) from (2.10). The key result in our proof of Theo-
rem 1.2 is the following decorrelation inequality which serves as a partial converse
to (3.8).

LEMMA 5.1. For any X = {x1, . . . , x|X |} ⊂ Z
d , we have

(5.1) μR,α

[
ξ(x) = 1 for all x ∈ X

]≤ α|X | ∏
1≤i<j≤|X |

(
1 + hR(xi, xj )

(
α−2 − 1

))
.

Before we prove Lemma 5.1, let us see how it allows us to conclude.

PROOF OF (4.2) FOR d ≥ 3 AND R � 1. We use the renormalization scheme
described in Section 4.2. In this proof we choose � = 6 and L = 1 in (4.4). Given
T ∈ �N , we denote

(5.2) XT = ⋃
m∈T(N)

{
T (m)

} (2.1)= ⋃
m∈T(N)

S
(
T (m),L0 − 1

)
.

By Lemma 4.3, we have

|�N | ≤ Ĉ2N

, where Ĉ = ((4 ·6+1)d −(4 ·6−1)d
) ·((2 ·6+1)d −(2 ·6−1)d

)
.
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Combining Definition 2.1 and Lemma 4.4 in a union bound, we get, for any N ,

μR,α

[
B(LN − 2)

∗ξ←→ B(2LN)c
]

(5.3)
≤ Ĉ2N

max
T ∈�N

μR,α

[
ξ(x) = 1 for all x ∈XT

]
.

Now we fix some N and T ∈ �N with the aim of bounding the probability on
the right-hand side of (5.3). Note that by Lemma 4.5 we have |XT | = 2N . Let us
denote XT = {x1, . . . , x2N }. We have

μR,α

[
ξ(x) = 1 for all x ∈ XT

]
(5.1)≤ α2N ∏

1≤i<j≤2N

(
1 + hR(xi, xj )α

−2)(5.4)

≤ α2N
2N−1∏
i=1

exp
(
α−2
∑
j>i

hR(xi, xj )

)
.

For any 1 ≤ i < 2N , let us bound∑
j>i

hR(xi, xj )
(2.12)≤ ∑

j>i

f (R) · |xi − xj |2−d

(5.5)
(4.10)≤

∞∑
k=1

(
2k−1 − 1

) · (f (R) · (6k/2
)2−d)

.

By limR→∞ f (R) = 0 [see (2.12)] and (5.5), for any α > 0 we can choose R =
R(α) big enough so that for any 1 ≤ i < 2N we have

(5.6) α−2
∑
j>i

hR(xi, xj ) ≤ ln(2).

Letting α0 = 1
4 Ĉ−1 and R = R(α0), we obtain the desired (4.2):

μR,α0

[
B(LN − 2)

∗ξ←→ B(2LN)c
]

(5.3),(5.4)≤ Ĉ2N

α2N

0

2N−1∏
i=1

exp
(
α−2

0

∑
j>i

hR(xi, xj )

)

(5.6)≤ Ĉ2N
(

1

4
Ĉ−1
)2N

22N = 2−2N

. �

The rest of this section is devoted to the proof of Lemma 5.1.
Recall the graphical construction of coalescing random walks Yx

t , x ∈ Z
d , t ∈

R+ defined on the probability space of the Poisson point processes (D
(x,y)
t )t≥0
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from Section 3. Given X ⊂⊂ Z
d , define Xt = {Yx

t : x ∈ X }, so that Nt (X ) = |Xt |.
If D

(x,y)
t − D

(x,y)
t− = 1 for some x ∈ Xt−, y ∈ Z

d and t ∈ R+, then the graphical
construction (3.2) of coalescing random walks implies

(5.7) Xt = (Xt− \ {x})∪ {y}.
Let us introduce another set-valued stochastic process X ′

t , annihilating ran-
dom walks, also defined on the probability space of the Poisson point processes
(D

(x,y)
t )t≥0. Starting also from X ′

0 := X , these particles also perform independent
R-spread-out continuous-time random walks until one of the walkers tries to jump
on a site occupied by another walker, in which case both of them disappear im-
mediately. The formal definition is as follows. If D

(x,y)
t − D

(x,y)
t− = 1 for some

x ∈ X ′
t−, y ∈ Z

d and t ∈ R+, then

(5.8) X ′
t = (X ′

t− \ {x})	{y},
where A	B denotes the symmetric difference of the sets A and B .

Similarly to (3.5), let us denote N ′
t (X ) = |X ′

t | and N ′∞(X ) = limt→∞N ′
t (X ).

REMARK 5.2. Annihilating random walks were introduced in [8] (in a
discrete-time version) and studied in the 1970s and 1980s; see, for instance, [3,
9, 30] and [1]. We also mention that, as explained in Example 4.16 in Chapter III
of [21], there is a duality relation between the voter model and annihilating random
walks, which is of a different nature from the duality between the voter model and
coalescing random walks. However, our use of annihilating walks is unrelated to
this duality.

Our intuitive reason for switching from coalescing to annihilating walks is the
following: E[αN ′∞(X )] is easier to bound than E[αN∞(X )], because in the case of
coalescing walks, one “ill-behaved” walker can “run around” and cause many co-
alescence events, but in the case of annihilating random walks, an “ill-behaved”
walker will self-destruct at the moment of the first collision.

LEMMA 5.3. For any X ⊂⊂ Z
d , α ∈ [0,1], R ∈ N and t ≥ 0 we have

(5.9) E
[
αNt (X )]≤ E

[
αN ′

t (X )].
PROOF. As soon as we show X ′

t ⊆ Xt , the inequality (5.9) will immediately
follow.

Let us assume that D
(x,y)
t − D

(x,y)
t− = 1 for some x ∈ Xt− and that X ′

t− ⊆ Xt−
holds. One can readily check using (5.7) and (5.8) that we also have X ′

t ⊆ Xt by
considering the cases

(a) x ∈Xt− \X ′
t−, (b) x ∈ X ′

t−, y /∈ X ′
t−, (c) x ∈ X ′

t−, y ∈ X ′
t−

separately. Since X0 = X ′
0 = X , the inclusion X ′

t ⊆ Xt for all t ∈ R+ follows by
induction. �
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Let us now give an alternative construction of X ′
t on a different probability

space. Recall the notation X = {x1, . . . , x|X |}. Let Xi
t , 1 ≤ i ≤ |X | denote indepen-

dent R-spread-out random walks with Xi
0 = xi . For 1 ≤ i < j ≤ |X |, we denote

(5.10) τ(i, j) = inf
{
t : Xi

t = X
j
t

}
.

We also define the set-valued stochastic process It ⊆ [1, . . . , |X |] and the stopping
times T0, T1, T2, . . . by letting T0 = 0 and IT0 = [1, . . . , |X |], and then inductively
for k ≥ 1 by

Tk := inf
{
τ(i, j) : i < j, i, j ∈ ITk−1

}
, Tk = τ

(
i∗, j∗),

ITk
= ITk−1 \ {i∗, j∗}.

In words, Tk is the time of the k’th annihilation and ITk
is the set of indices of

those walkers that are still alive after the k’th annihilation. Of course, if Tk = +∞
for some k ≥ 1, then we stop our inductive definition. We define It = ITk−1 for any
Tk−1 ≤ t < Tk .

CLAIM 5.4. The set-valued process X ′
t = {Xi

t : i ∈ It } has the same law as
the annihilating walks described in (5.8).

The proof of this claim is straightforward and we omit it. From now on, we will
use this new definition of annihilating walks. For 1 ≤ i < j ≤ |X |, we also define
the indicators

(5.11) ηi,j = 1
[
τ(i, j) < +∞, τ (i, j) = Tk for some k

]
,

thus ηi,j is the indicator that the walkers indexed by i and j annihilate each other
before any other walker annihilates either of them. Let us define

(5.12) A∞(X ) =
|X |∑
i=1

|X |∑
j=i+1

ηi,j

the total number of annihilations that ever occurred. Now we have

(5.13) N ′∞(X ) = |X | − 2A∞(X ),

since each annihilation event kills two walkers. By (3.6), Lemma 5.3 and (5.13)
we only need to prove

(5.14) E
(
α−2A∞(X ))≤ ∏

1≤i<j≤|X |

(
1 + hR(xi, xj )

(
α−2 − 1

))
, 0 < α ≤ 1

in order to complete the proof of Lemma 5.1. Let us introduce auxiliary Bernoulli
random variables η∗

i,j , 1 ≤ i < j ≤ |X | such that they are independent and [recall-
ing the definition of hR from (2.10)]

(5.15) P
[
η∗

i,j = 1
]= 1 − P

[
η∗

i,j = 0
]= hR(xi, xj )

(5.10)= P
[
τ(i, j) < +∞].
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Similarly to (5.12), let us define

(5.16) A∗∞(X ) =
|X |∑
i=1

|X |∑
j=i+1

η∗
i,j .

Now the right-hand side of (5.14) is equal to E(α−2A∗∞(X )), thus in order to prove
(5.14) we only need to show that for any λ ≥ 0 we have

(5.17) E
[
eλA∞(X )]≤ E

[
eλA∗∞(X )].

By taking the Taylor expansion of the above exponential functions about λ = 0,
we see that we only need to prove

E
[(
A∞(X )

)k]≤ E
[(
A∗∞(X )

)k]
, k ≥ 0,

in order to achieve (5.17). By expanding the k’th power of the sums in the defini-
tions of A∞(X ) [see (5.12)] and A∗∞(X ) [see (5.16)], we see that we only need to
prove that the annihilation events are negatively correlated, that is,

(5.18) P[ηi1,j1 = · · · = ηik,jk
= 1] ≤ P

[
η∗

i1,j1
= · · · = η∗

ik,jk
= 1
]

holds for any k ≥ 1 and any 1 ≤ il < jl ≤ |X |, 1 ≤ l ≤ k. First, we may assume
that the list of pairs {i1, j1}, . . . , {ik, jk} does not contain the same pair more than
once, because we can throw out such duplicates and reduce the value of k without
changing the probabilities on either side of (5.18). Second, we may also assume
that the sets {i1, j1}, . . . , {ik, jk} are disjoint, because if some of these sets have
nonempty intersection, then the left-hand side of (5.18) is equal to zero by the
definition of the indicators ηi,j [see (5.11)]: a walker can only be annihilated once.
Now if the sets {i1, j1}, . . . , {ik, jk} are disjoint, then

P[ηi1,j1 = · · · = ηik,jk
= 1] (5.11)≤ P

[
τ(i1, j1) < +∞, . . . , τ (ik, jk) < +∞]

(∗)=
k∏

l=1

P
[
τ(il, jl) < +∞] (5.15)=

k∏
l=1

P
[
η∗

il ,jl
= 1
]

(∗∗)= P
[
η∗

i1,j1
= · · · = η∗

ik,jk
= 1
]
,

where (∗) holds because the walkers Xi
t , 1 ≤ i ≤ |X | are independent and the sets

{i1, j1}, . . . , {ik, jk} are disjoint, and (∗∗) holds because η∗
i,j , 1 ≤ i < j ≤ |X | are

independent. The proof of (5.18) and Lemma 5.1 is complete.

6. Nearest-neighbour model, d ≥ 5. The goal of this section is to prove The-
orem 1.1. More specifically, we will show that (4.2) holds for any d ≥ 5 and R = 1
and some α0 = α0(d) > 0. Note that the same proof would work for any R ≥ 1; the
only reason we stick to the classical nearest-neighbour case is to ease notation. We
also note that a slight generalization of the method presented in this section would
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yield a proof of both Theorem 1.1 and Theorem 1.2; however, we chose to also
present in Section 5 a relatively short argument which only proves Theorem 1.2.

We use the graphical construction of ξ (α) distributed as μα [see (3.10)]. How-
ever, we will often drop the dependence on α from our notation, especially if a
particular calculation works for any α ∈ (0,1).

We will use the renormalization scheme of Section 4.2. In order to specify the
value of � in (4.4), we fix the exponents

(6.1) ε = 1

4d
, δ = ε

d
.

The reasons for the choice of ε and δ are discussed in Remark 6.1 and Remark 6.10.
The following choice of � in (4.4) will be suitable for our purposes:

(6.2) � = 31/δ.

This choice of � will be used in Section 6.4 to guarantee the convergence of certain
geometric series which are similar in flavour to (5.5).

The choice of a large enough L in (4.4) will be specified later in Section 6.4. In
Remark 7.2, we explain why L = 1 is an insufficient choice in the R = 1 case.

Choosing � as in (6.2), we have

(6.3) |�N | (4.8)≤ C2N

for some C = C(d).

Combining Definition 2.1, (6.3) and Lemma 4.4 in a union bound, we get, for
any N ,

P
[
B(LN − 2)

∗ξ←→ B(2LN)c
]

≤ C2N

max
T ∈�N

P

[ ⋂
m∈T(N)

{
B
(
T (m),L

) ∗ξ←→ B
(
T (m),2L

)c}]
.

(6.4)

We will take a closer look at the crossing events that occur on the right-hand side
of (6.4) in Claim 6.2 below. We discuss an open question related to crossing events
in the low-dimensional setting in Remark 7.1.

We now fix N and a proper embedding T ∈ �N with the aim of bounding the
probability on the right-hand side in (6.4) [see (6.14) below]. We recall the graph-
ical construction (3.2) of the coalescing random walks (Y x

t )t≥0,x∈Zd , the construc-
tion (3.10) of the configuration (ξ(x))x∈Zd as well as the definition of ε from (6.1)
and let

(6.5) T = L2−ε

and, for x, y ∈ Z
d , we define the events

Ex =
{

max
0≤t≤T

∣∣Yx
t − x

∣∣> 1

4
L

}
,(6.6)

Ex,y = Ec
x ∩ Ec

y ∩ {Yx
t �= Y

y
t ,0 ≤ t ≤ T

}
,(6.7)

Fx,y = Ex,y ∩ {ξ(x) = ξ(y) = 1
}
.(6.8)
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REMARK 6.1. We defined T � L2 in (6.5) because we want P[Ex] � 1, see
(6.16) and (6.40). We note that instead of defining ε as in (6.1), we could in fact
take ε as any positive constant which is small enough so that

(2 − ε)

(
1 − d

2
+ ε

)
< 2 − d + 1

4

holds, see (6.47) below.

CLAIM 6.2. For any z ∈ LZd (4.5)= L0, the following inclusion holds:

(6.9)
{
B(z,L)

∗ξ←→ B(z,2L)c
}⊆ ( ⋃

x∈B(z,2L)

Ex

)
∪
( ⋃

x,y∈B(z,2L)
|x−y|=1

Fx,y

)
.

PROOF. Assume that the event on the left-hand side occurs. Then there exists a
∗-connected path γ (1), . . . , γ (k) with |γ (1)| = L + 1, |γ (k)| = 2L and ξ(γ (i)) =
1 for each i. For one such path, define

i∗ = max
{
i ≤ k : Yγ (i)

t = Y
γ (1)
t for some t ≤ T

}
.

If i∗ = k, then Eγ(1) ∪ Eγ(k) occurs, since |γ (1) − γ (k)| > L/2. If i∗ < k, then

the walks (Y
γ (i∗)
t ) and (Y

γ (i∗+1)
t ) do not meet before time T , so either Eγ(i∗) ∪

Eγ(i∗+1) or Fγ (i∗),γ (i∗+1) occurs. �

With (6.9) in mind, given T ∈ �N we choose two sets X ,Y ⊂ Z
d .

DEFINITION 6.3. The pair (X ,Y), X ,Y ⊂ ⋃m∈T(N)
B(T (m),2L) is called

admissible if:

(i) for any m ∈ T(N), (|B(T (m),2L)∩X |, |B(T (m),2L)∩Y|) is either (2,0)

or (0,1);
(ii) if B(T (m),2L) ∩X = {x, y}, then |x − y| = 1.

The set of all admissible pairs (X ,Y) associated to T is denoted PT .

LEMMA 6.4. Given T ∈ �N :

1. For any (X ,Y) ∈ PT , we have

(6.10)
1

2
|X | + |Y| = 2N.

2. There exists C = C(d) such that the number of admissible pairs can be bounded
by

(6.11) |PT | ≤ (CLd)2N

.
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3. We have ⋂
m∈T(m)

{
B
(
T (m),L

) ∗ξ←→ B
(
T (m),2L

)c}
(6.12)

⊂ ⋃
(X ,Y)∈PT

( ⋂
x,z∈X

|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)
.

4. For every x ∈X , we have

(6.13)
∣∣X ∩ B

(
x, �kL/2

)∣∣≤ 2k, k ≥ 1.

PROOF. Given an admissible pair (X ,Y) associated to T , define

A(X ,Y) = {m ∈ T(N) : (∣∣B(T (m),2L
)∩X

∣∣, ∣∣B(T (m),2L
)∩Y

∣∣)= (2,0)
}
,

so that, by Definition 6.3(i), we have

T(N) \A(X ,Y) = {m ∈ T(N) : (∣∣B(T (m),2L
)∩X

∣∣, ∣∣B(T (m),2L
)∩Y

∣∣)= (0,1)
}

and thus (6.10) holds:

2N = |T(N)| = |A(X ,Y)| + |T(N) \A(X ,Y)| = 1

2
|X | + |Y|.

Additionally, by Definition 6.3, the pair (X ,Y) is determined when we choose
A(X ,Y) and then, for each m ∈ A(X ,Y), we choose two ∗-connected vertices
in B(T (m),2L) and for each m ∈ T(N) \ A(X ,Y), we choose one vertex in
B(T (m),2L). Thus, (6.11) indeed holds:

|PT | ≤ ∑
A⊆T(N)

(∣∣B(2L)
∣∣ · 3d)|A| · ∣∣B(2L)

∣∣2N−|A| ≤ (CLd)2N

.

The inclusion (6.12) is a consequence of (6.9) and Definition 6.3.
The bound (6.13) follows from Lemma 4.5 and the fact that for each m ∈ T(N)

we have |X ∩ B(T (m),2L)| ≤ 2 by Definition 6.3(i). �

Putting together (6.4), (6.11) and (6.12), we obtain

P
[
B(LN − 2)

∗ξ←→ B(2LN)c
]

(6.14)

≤ (CLd)2N

max
T ∈�N

(X ,Y)∈PT

P

[( ⋂
x,z∈X

|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)]

for some constant C = C(d).
The main ingredient in the proof of (4.2) is the following proposition.
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PROPOSITION 6.5. For every d ≥ 5, there exist L(0) ≥ 2 and C = C(d) < +∞
such that for any L ≥ L(0), any α ≤ L2−d+1/4 and any N ≥ 1 we have

(6.15) max
T ∈�N

(X ,Y)∈PT

P

[( ⋂
x,z∈X

|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)]
≤ (CL4−2d+1/2)2N

.

Together with (6.14) and the assumption d ≥ 5, this proposition immediately
yields the desired result (4.2) if we choose L large enough. We will explain why
our method fails to prove (4.2) if d = 3,4 and R = 1 in Remark 7.3.

The rest of this section is devoted to the proof of Proposition 6.5.

6.1. Reduction to coalescing walks with initial period of no coalescence.
From now on, we fix not only T ∈ �N (see Definition 4.2), but also (X ,Y) ∈ PT
(see Definition 6.3). Recalling the definition of Ex in (6.16), let us define

(6.16) β = β(L,d) = P[Ex] = P[E0].

LEMMA 6.6. We have

(6.17) P

[( ⋂
x,z∈X

|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)]
≤ β |Y| ·E[αN∞(X ) · 1{NT (X )=|X |}

]
.

REMARK 6.7. Recall the definition of N∞(·) in (3.5). The event {NT (X ) =
|X |} on the right-hand side of (6.17) is simply the event that the walks started from
the vertices of X do not coalesce with each other before time T .

PROOF. We will use the joint graphical construction of the system of coalesc-
ing walks and the configuration ξ = ξ (α) described by equation (3.10). Since our
set X is fixed, we can and will assume that, in the enumeration of Z

d that was
needed for (3.9), the vertices in X come before all other vertices of Zd . We can
thus write

(6.18) X = {x1, x2, . . . , x|X |}.
The occurrence of each event Ey , for y ∈ Y , can be decided from the Poisson

processes in the graphical construction in the space–time box{
z ∈ Z

d : |z − y| ≤ 1 + L/4
}× [0, T ], y ∈ Y.

The occurrence of
⋂

x,z∈X ,|x−z|=1 Fx,z can be decided from the random variables
Un : 1 ≤ n ≤ |X | and the Poisson processes in the graphical construction in the
space–time set({

w ∈ Z
d : dist

({w},X )≤ 1 + L/4
}× [0, T ])∪ (Zd × (T ,∞)

)
.
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Using (4.10), we see that these space–time sets are all disjoint, and thus

P

[( ⋂
x,z∈X

|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)]
= P

[ ⋂
x,z∈X

|x−z|=1

Fx,z

]
· ∏
y∈Y

P[Ey]

(6.16)= β |Y| · P
[ ⋂

x,z∈X
|x−z|=1

Fx,z

]
.

We now define MX = {η(xk) : 1 ≤ k ≤ |X |}, where η is defined in (3.9). For
every nonempty A ⊆ {1, . . . , |X |}, we have

P

[
{MX = A} ∩ ⋂

x,z∈X
|x−z|=1

Fx,z

]
(6.19)

(3.10),(6.8)= α|A| · P
[
{MX = A} ∩ ⋂

x,z∈X :
|x−z|=1

Ex,z

]
.

Note that, by (3.5), (3.9) and (6.18), we have |MX | = N∞(X ). Therefore,

P

[ ⋂
{x,z}∈X
|x−z|=1

Fx,z

]
(6.19)=

|X |∑
k=1

αk · P
[{|MX | = k

}∩ ⋂
x,z∈X :
|x−z|=1

Ex,z

]

= E

[
αN∞(X ) · 1

{ ⋂
x,z∈X :
|x−z|=1

Ex,z

}]

(4.10),(6.6),(6.7)≤ E
[
αN∞(X ) · 1{NT (X )=|X |}

]
.

The proof of Lemma 6.6 is complete. �

6.2. Reduction to independent random walks. Our next goal is to bound the
expectation on the right-hand side of (6.17). We will need to take a close look at
the coalescing walks {(Y x

t )t≥0 : x ∈ X }. For this, it will no longer be convenient
to work with the graphical construction of the coalescing walks using the Poisson
processes (D

(x,y)
t ) that we described in Section 3. Rather, we will switch to a new

probability space, in which we will give a different representation of the system of
coalescing walks.

The following construction will depend on the set X which has been fixed at
the beginning of Section 6.1 and also on the enumeration of X that was fixed in
(6.18). Let P denote a probability measure under which one defines a collection
of processes {(Xx

t )t≥0 : x ∈ X } satisfying:
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• for each x ∈ X , (Xx
t )t≥0 is a continuous-time, nearest neighbour random walk

on Z
d with jump rate 1 and Xx

0 = x;
• these walks are all independent.

(We emphasize that this is not a system of coalescing walks). The expectation
operator associated to P is denoted by E. We then define the processes:

• {(Wx
t )t≥0 : x ∈ X }. They are defined by induction. Put W

x1
t = X

x1
t for all t .

Assume Wx1, . . . ,Wxn are defined and let

σ = inf
{
t : Xxn+1

t = W
xk
t for some k ≤ n

}
.

On {σ = ∞}, let W
xn+1
t = X

xn+1
t for all t . On {σ < ∞}, let K be the smallest

index such that X
xn+1
σ = WxK

σ . Put

W
xn+1
t =

{
X

xn+1
t , if t ≤ σ ;

W
xK
t , if t > σ.

• {(Zx
t )t≥0 : x ∈ X }. These are defined exactly as above, with the only difference

that in the induction step, σ is defined by

σ = inf
{
t ≥ T : Xxn+1

t = Z
xk
t for some k ≤ n

}
.

CLAIM 6.8. (i) {(Wx
t )t≥0 : x ∈ X } is a system of coalescing walks started

from X ; in particular, its law under P is the same as that of {(Y x
t )t≥0 : x ∈ X }

under P.
(ii) {(Zx

t )t≥0 : x ∈ X } is a system of random walks that move independently
(with no coalescence) up to time T and after time T , behave as a system of coa-
lescing walks.

The proof of this claim is straightforward and we omit it.
Similarly to (3.5), we also define

NW
t = ∣∣{Wx

t : x ∈ X
}∣∣, NW∞ = lim

t→∞NW
t ,

NZ
t = ∣∣{Zx

t : x ∈ X
}∣∣, NZ∞ = lim

t→∞NZ
t .

We now have

E
[
αN∞(X ) · 1{NT (X )=|X |}

]
= E
[
αNW∞ · 1{Xx

t �=X
y
t for all x,y∈X ,x �=y and t≤T }

]
(6.20)

= E
[
αNZ∞ · 1{Xx

t �=X
y
t for all x,y∈X ,x �=y and t≤T }

]≤ E
[
αNZ∞].

At this point one might be tempted to apply Lemma 5.3, that is, to switch from
coalescing to annihilating walks. In Remark 7.4, we explain why this method can-
not be used to prove Theorem 1.1.
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6.3. A stochastic domination result. In this subsection, we give definitions and
state preliminary results (Lemma 6.11, Lemma 6.12, Proposition 6.9 and Propo-
sition 6.13) which will put us in position to prove Proposition 6.5 in Section 6.4.
The following details the interdependence of these results.

proved in Section needed for the proof of
•Lemma 6.11 6.5 Proposition 6.5, Proposition 6.13
•Lemma 6.12 6.5 Proposition 6.13
•Proposition 6.13 6.6 Proposition 6.5
•Proposition 6.9 6.7 Lemma 6.11

Recall the notion of the enumeration X = {x1, x2, . . . , x|X |} from (6.18). Let us
define

(6.21) Un := 1
{∃k < n, t ≥ T : Xxn

t = X
xk
t

}
, 1 ≤ n ≤ |X |,U =

|X |∑
n=1

Un.

In words: Un is the indicator of the event that the n’th walker hits any of the
previous walkers after T . Recalling the construction of Section 6.2, we have

NZ∞ = |X | −
|X |∑
n=1

1
{∃k < n, t ≥ T : Zxn

t = Z
xk
t

}≥ |X | − U

and we can thus bound

(6.22) E
[
αNZ∞]≤ α|X | · E[α−U ].

Let us now describe the main ideas of this subsection. The indicator variables
Un, 1 ≤ n ≤ |X | are not independent; however, in Proposition 6.13 we will ar-
gue that their sum can be dominated by a sum of independent variables. Let
us explain now the heuristics for this domination. Suppose we reveal the paths
(X

xn
t )t≥0,1 ≤ n ≤ |X | one by one, starting with (X

x1
t )t≥0. We think of each path n

as a trial: a success if it avoids all the previously revealed paths after time T (i.e.,
if Un = 0), and a failure otherwise. At the time of revealing path n, it should have
a high probability of being a success (since the set {Xx

T : x ∈ X } is very sparse),
unless some path of index k < n behaved in an atypical manner that makes it
exceptionally likely that (X

xn
t )t≥T meets (X

xk
t )t≥T . In (6.27) below, we will intro-

duce the variable Vk,n as the indicator of this event that path k endangers trial n.
We then rely on two fundamental observations.

• First (see Lemma 6.11): since the random set {Xx
T : x ∈ X } is very sparse [as

suggested by (6.13)], it is very unlikely that a path endangers a trial, so that the
random variables Vk =∑n>k Vk,n, which represent the number of trials endan-
gered by each path k, are equal to zero with high probability.
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• Second (see Lemma 6.12): if trial n is not endangered by any path of index
k < n, then it is very likely to be successful.

For any x, y ∈ Z
d , let us define the random variable

(6.23) Mx,y,T∞ = P
[∃s ≥ T : Xy

s = Xx
s |Xx

u : 0 ≤ u < ∞].
(the reason for the ∞ symbol in M

x,y,T∞ will become clear in Section 6.7).
Recall the definition of ε = ε(d) and δ = δ(d) from (6.1).

PROPOSITION 6.9. There exists T0 = T0(d) < +∞ and D0 = D0(d) < +∞
such that

P
[
Mx,y,T∞ > T 1− d

2 +ε]≤ e−T δ

, x, y ∈ Z
d, T ≥ T0,(6.24)

P
[
Mx,y,T∞ > |x − y|2−d+ε]

(6.25)
≤ e−|x−y|δ , x, y ∈ Z

d, |x − y| ≥ D0, T ≥ 0.

REMARK 6.10. By (2.7), we have E[Mx,y,T∞ ] � T 1−d/2 ∧ |x − y|2−d , thus
(6.24) and (6.25) are bounds on the probability that the random variable M

x,y,T∞
deviates too much from its expectation. The reason for the choice of δ in (6.1) as
ε/d will become apparent in the proof of Proposition 6.9. The bounds (6.24) are
(6.25) are sufficient for our purposes, but we do not claim that they are optimal.

The proof of Proposition 6.9 is postponed to Section 6.7.
We now fix T0 and D0 as in Proposition 6.9. Given these choices, we may then

assume that the renormalization constant L satisfies

(6.26) T
(6.5)= L2−ε ≥ T0, L ≥ D0.

We define for 1 ≤ k < n ≤ |X | the random variables

(6.27) Vk,n =
{
1
{
Mxk,xn,T∞ > T 1− d

2 +ε}, if |xk − xn| = 1,

1
{
Mxk,xn,T∞ > |xn − xk|2−d+ε}, otherwise.

In words: Vk,n is the indicator of the event that (X
xk
t )t≥0 endangers (X

xn
t )t≥0. We

also define

(6.28) V k = (Vk,k+1, . . . , Vk,|X |), Vk =
|X |∑

n=k+1

Vk,n.

Now by (6.23) and (6.27), for any 1 ≤ k < n ≤ |X |
(6.29) Vk,n is measurable with respect to σ

(
X

xk
t : t ≥ 0

)
,
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therefore,

V 1, . . . , V |X | are independent,(6.30)

V1, . . . , V|X | are independent.(6.31)

Now by (6.28) for any 1 ≤ n ≤ |X | the random variable Vn is the number of
trajectories that the trajectory (X

xn
t ) endangers. Our stochastic domination result,

Proposition 6.13, will involve the total number of paths that either endanger others
or are endangered by others; hence, as an intermediate step, in the next lemma we
stochastically dominate the random variable Vn + 1{Vn > 0}, which collects the
σ(X

xn
t : t ≥ 0)-measurable terms in the sum that counts the total number of paths

that either endanger others or are endangered by others.

LEMMA 6.11. If e−T δ +∑∞
k=1 2k ·e−( 1

2 �kL)δ ≤ 1 then for any n ∈ {1, . . . , |X |}
the random variable Vn + 1{Vn > 0} is stochastically dominated by a random
variable V ∗

0 with probability mass function pV ∗
0

supported on the set of integers

{0} ∪ {2k + 1 : k ≥ 0} and given by

pV ∗
0
(2) = e−T δ

, pV ∗
0

(
2k + 1

)= 2k · e−( 1
2 �kL)δ , k ≥ 1,

(6.32)
pV ∗

0
(0) = 1 −∑

k>0

pV ∗
0
(k).

In particular,

(6.33) P [Vn > 0] ≤ P
[
V ∗

0 > 0
]= e−T δ +

∞∑
k=1

2k · e−( 1
2 �kL)δ .

The proof of Lemma 6.11 is postponed until Section 6.5.
Recall the definition of Un from (6.21). In words, the next lemma states that if a

path is not endangered by any of the previous paths, then it is very likely to avoid
all of them.

LEMMA 6.12. For any n ∈ {1, . . . , |X |},

P
[
Un = 1|Xxk

t : 1 ≤ k < n, t ≥ 0
] · 1{n−1∑

k=1

Vk,n = 0

}
(6.34)

≤ T 1− d
2 +ε +

∞∑
k=1

2k

(
1

2
�kL

)2−d+ε

.

The proof of Lemma 6.12 is postponed until Section 6.5.
In order to state the following proposition, and for the sake of clarity, we reca-

pitulate some relevant definitions:

• Un (for 1 ≤ n ≤ |X |) and U in (6.21);
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• Vk,n (for 1 ≤ k < n ≤ |X |), V n and Vn (for 1 ≤ n ≤ |X |) in (6.27) and (6.28);
• V ∗

0 in Lemma 6.11.

We add to this list one more definition; let

(6.35) p := p(L,d) = T 1− d
2 +ε +∑∞

k=1 2k(1
2�kL)2−d+ε

P [V ∗
0 = 0] .

PROPOSITION 6.13. Let U∗ ∼ Bin(|X |,p) and let V ∗ be independent from
U∗, where V ∗ is the sum of |X | i.i.d. copies of V ∗

0 . Then

(6.36) U is stochastically dominated by U∗ + V ∗.

REMARK 6.14. If the nth path is not endangered by previous paths then the
parameter of the Bernoulli variable Un is bounded by the right-hand side of (6.34).
The indicators Un, 1 ≤ n ≤ |X | are not independent, but we can “hide” their cor-
relations by slightly increasing the parameters of these indicators [c.f. (6.34) and
(6.35)] and by adding V ∗. Hence, it can happen that the term of index n contributes
to the dominating random variable in (6.36) even if it ends up being a success, that
is, if Un = 0. This justifies the terminology used in the Introduction: we “throw
away” some paths in order to guarantee independence. Similarly, since we add V ∗
to the dominating random variable in (6.36), we “throw away” paths endangered
by others and paths which endanger others.

This method resembles the “sprinkling technique” which has been success-
fully applied in the context of random interlacements (e.g., in [33], Section 2)
and Gaussian-free field (e.g., in [29], Proposition 2.2).

The proof of Proposition 6.13 will be carried out in Section 6.6 using a coupling
argument.

6.4. Proof of Proposition 6.5. By (3.10), the left-hand side of (6.15) is a non-
decreasing function of α, so it is enough to prove (6.15) for

(6.37) α = L2−d+ 1
4 .

REMARK 6.15. Let us comment about the choice of α. For the sake of this
heuristic argument let us assume that Y = ∅ in (6.39) below, so that |X | = 2 · 2N ,
see (6.10). Comparing the combinatorial term (CLd)2N

of (6.14) with the terms

α|X | · e|X |p/α = (α2e2p/α)2N

in (6.43) below, we see that if we want P[B(LN)
∗ξ←→ B(2LN)c] � 1 then it is a

good idea to choose α so that

(6.38) α2Ld � 1, p/α = O(1).

Now p is not much bigger than L2−d [see (6.47) below], so if d ≥ 5, then (6.37)
is a good choice if we want α to satisfy the bounds (6.38).
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Let us fix T ∈ �N (see Definition 4.2) and (X ,Y) ∈ PT (see Definition 6.3).
We have

P

[( ⋂
{x,z}∈X
|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)]

(6.17),(6.20)≤ β |Y|E
[
αNZ∞](6.39)

(6.22),(6.36)≤ β |Y| · α|X | · E
[(

1

α

)U∗]
· E
[(

1

α

)V ∗]
.

Now we bound the terms on the right-hand side of (6.39).

β
(6.6),(6.16)= P

[
max

0≤t≤T

∣∣Y 0
t

∣∣> 1

4
L

]
(6.40)

(2.3),(6.5)≤ 2d exp
(
−1

8
L ln
(

1 + d

4
L−1+ε

))
.

Recall from Proposition 6.13 that U∗ ∼ Bin(|X |,p), where p = p(L,d) was
defined in (6.35). For a random variable Z ∼ Bin(m, r) and θ ≥ 0, we have
E[θZ] ≤ emrθ , thus

(6.41) E

[(
1

α

)U∗]
≤ e|X |p/α.

Recall from Proposition 6.13 that V ∗ is the sum of |X | independent copies
of V ∗

0 .

E

[(
1

α

)V ∗
0
]

(6.32)= pV ∗
0
(0) + e−T δ

α2 +
∞∑

k=1

(
1

α

)2k+1
2ke−( 1

2 �kL)δ

(6.5),(6.37)= pV ∗
0
(0) + L2d− 9

2 · e−L(2−ε)δ

(6.42)

+
∞∑

k=1

exp
((

2k + 1
)(

d − 9

4

)
ln(L) + k ln(2) − 1

2δ

(
�δ)kLδ

)

=: q
(∗)= q(L,d),

where in (∗) the parameter q is indeed only a function of L and d , because of the
definition of ε and δ in (6.1) and � in (6.2). We can thus bound

P

[( ⋂
{x,z}∈X
|x−z|=1

Fx,z

)
∩
(⋂

y∈Y
Ey

)]

(6.39),(6.41),(6.42)≤ β |Y| · α|X | · e|X |p/α · q |X |(6.43)

= exp
{
|Y| lnβ + 1

2
|X |(2 lnq + 2 lnα + 2p/α)

}
.
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Recall our definition of � from (6.2). We will choose L big enough so that it
satisfies multiple criteria, as we now discuss. By (6.26), we need

L > L(1) := T
1

2−ε

0 ∨ D0.

Having already fixed ε, δ and �, we assume that L satisfies

(6.44) L ≥ L(2), so that exp
(−L(2−ε)δ)+ ∞∑

k=1

2k · exp
(
−
(

1

2
�kL

)δ)
≤ 1

2
,

so that the condition of Lemma 6.11 is satisfied for L. We will also assume

(6.45) L ≥ L(3), so that q(L,d)
(∗∗)≤ 2.

The inequality (∗∗) can be achieved because pV ∗
0
(0) ≤ 1 [see (6.32)] and by our

choice of � in (6.2) we have (�δ)k = 3k , thus the sum of the other terms in the
definition (6.42) of q can be made arbitrarily small by making L large. Next, we
will show that

(6.46) p(L,d) ≤ 4L2−d+ 1
4

(6.37)= 4α if L ≥ L(2).

To show that this inequality indeed holds, we estimate

p = p(L,d)
(6.5),(6.35),= L(2−ε)(1− d

2 +ε) +∑∞
k=1 2k(1

2�kL)2−d+ε

P [V ∗
0 = 0]

(6.1)≤ L2−d+ 1
4 + L2−d+ε∑∞

k=1 2k(1
2�k)2−d+ε

P [V ∗
0 = 0](6.47)

(6.2),(6.33),(6.44)≤ 2
(
L2−d+ 1

4 + L2−d+ε) (6.1)≤ 4L2−d+ 1
4 .

We can now bound the expression in the exponential in the right-hand side
of (6.43):

|Y| ln(β) + |X |
2

(
2 lnq + p

α
+ 2 lnα

)
(6.45),(6.46),≤ |Y| ln(β) + |X |

2
(2 ln 2 + 4 + 2 lnα)

(6.37),(6.40)≤ |Y|
(

ln(2d) − 1

8
L ln
(

1 + d

4
L−1+ε

))
(6.48)

+ |X |
2

(
Ĉ +
(

4 − 2d + 1

2

)
lnL

)
(∗)≤
(
|Y| + |X |

2

)(
Ĉ +
(

4 − 2d + 1

2

)
lnL

)
(6.10)= 2N ·

(
Ĉ +
(

4 − 2d + 1

2

)
lnL

)
,
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where (∗) holds for L ≥ L(4). Plugging (6.48) back in (6.43), we obtain that the
statement of Proposition 6.5 holds with � as in (6.2) and L(0) := L(1) ∨ L(2) ∨
L(3) ∨ L(4).

6.5. Proof of Lemmas 6.11 and 6.12. We now prove the two lemmas of Sec-
tion 6.3 bounding the probability that random walk paths endanger (Lemma 6.11)
and intersect (Lemma 6.12) each other. These proofs simply put together re-
sults that have already been established. For Lemma 6.11, we combine Propo-
sition 6.9—which bounds the probability that a path endangers another path that
starts at a given distance from it—with (6.13)—which bounds the number of points
of X that are within a given distance from a fixed point x ∈ X . Lemma 6.12 is even
simpler and follows from a combination of (6.13) with the definition of “endan-
gering” in (6.27).

PROOF OF LEMMA 6.11. Fix n ∈ {1, . . . , |X |}. We take a bijection

θ : {0,1, . . . , |X | − n
}→ {

n,n + 1, . . . , |X |}
with the property that

0 = |xθ(0) − xn| ≤ |xθ(1) − xn| ≤ · · · ≤ |xθ(|X |−n) − xn|.
We have∣∣{i ≥ n : |xi − xn| ≤ �kL/2

}∣∣≤ ∣∣X ∩ B
(
xn, �

kL/2
)∣∣ (6.13)≤ 2k, k ≥ 1,

so that

|xθ(i) − xn| > �kL/2 for all i ≥ 2k, k ≥ 1.

By our definition of � [see (6.1), (6.2)] and L [see (6.26)], we have �kL/2 ≥ D0, for
any k ≥ 1, moreover T ≥ T0 [see (6.26)], therefore, we can use Proposition 6.9 to
bound the probability of the event in the indicator Vn,θ(i) [see (6.27)] that trajectory
n endangers trajectory θ(i):

(6.49) P [Vn,θ(i) = 1] ≤
⎧⎨⎩e−T δ

, if i = 1;
e−(�kL/2)δ , if i ≥ 2k, k ≥ 1.

Now, if i ≥ 2, we have

P [Vn ≥ i] ≤ P
[
Vn ≥ 2�log2 i�]≤ ∑

j≥2�log2 i�
P [Vn,θ(j) = 1]

(6.49)≤
∞∑

k=�log2 i�
2k · e−(�kL/2)δ
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and similarly,

P [Vn ≥ 1] ≤ e−T δ +
∞∑

k=1

2k · e−(�kL/2)δ .

We then obtain

P
[
Vn + 1{Vn > 0} ≥ 1

]= P
[
Vn + 1{Vn > 0} ≥ 2

]≤ e−T δ +
∞∑

k=1

2k · e−(�kL/2)δ

and, for i > 2,

P
[
Vn + 1{Vn > 0} ≥ i

]≤ P [Vn ≥ i − 1] ≤
∞∑

k=�log2(i−1)�
2k · e−(�kL/2)δ .

The statement of the lemma now follows from comparing these inequalities with
the definition of the law of V ∗

0 in (6.32). �

PROOF OF LEMMA 6.12. We have

P
[
Un = 1|Xxk

t : 1 ≤ k < n, t ≥ 0
]

(6.21)≤
n−1∑
m=1

P
[∃s ≥ T : Xxn

s = Xxm
s |Xxk

t : 1 ≤ k < n, t ≥ 0
]

=
n−1∑
m=1

P
[∃s ≥ T : Xxn

s = Xxm
s |Xxm

t : t ≥ 0
] (6.23)=

n−1∑
m=1

Mxm,xn,T∞ ,

so that

P
[
Un = 1|Xxk

t : 1 ≤ k < n, t ≥ 0
] · 1{n−1∑

k=1

Vk,n = 0

}

≤
n−1∑
m=1

Mxm,xn,T∞ · 1{Vm,n = 0}.

Now, by (6.27),

Mxm,xn,T∞ · 1{Vm,n = 0} ≤
{
T 1− d

2 +ε, if |xm − xn| = 1;
|xm − xn|2−d+ε, otherwise.

The proof of (6.34) can now be completed by applying Definition 6.3 and (6.13)
as we did in the proof of Lemma 6.11; we omit the details. �

6.6. Proof of Proposition 6.13. In this section, we will prove our stochastic
domination result using a coupling argument. The key idea lies in the definition of
some auxiliary random variables U∗

n , 1 ≤ n ≤ |X |, so let us start by explaining this
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informally [the precise definition is given in (6.65)]. Define the events

(6.50) An =
{

n−1∑
k=1

Vk,n = 0,Vn = 0

}
, 1 ≤ n ≤ |X |.

In words: An is the event that the n’th random walk path is not endangered by
previous paths and does not endanger upcoming paths. We will specify the key
properties of U∗

n ,1 ≤ n ≤ |X | using the events An in (6.51) and (6.52) below.
Suppose we fix n and we reveal all the paths {Xxi

t : i < n, t ≥ 0}, and moreover,
we reveal the vector V n [defined in (6.28)]. Given all this information, we are able
to determine whether or not An has occurred. Now:

(a) Assume An has occurred. At this point, we have full knowledge of all
the paths with index smaller than n, and also some partial knowledge of the
n’th path: we know V n, in fact we know that An occurred, which implies Vn =∑|X |

k=n+1 Vn,k = 0. In Lemma 6.17, we argue that the conditional probability of
{Un = 1} given all this information is at most p [defined in (6.35)], a number that
is not much larger than the bound we had given in (6.34) (which did not include
the conditioning on {Vn = 0}). We are thus able to define U∗

n so that Un ≤ U∗
n and

U∗
n ∼ Bernoulli(p).
(b) If An has not occurred, we simply prescribe (using extra, auxiliary random-

ness) that U∗
n is Bernoulli(p).

The sum
∑|X |

n=1 Un · 1An is then dominated by
∑|X |

n=1 U∗
n · 1An ≤∑|X |

n=1 U∗
n , and

the sum
∑|X |

n=1 Un · 1Ac
n

is dominated by
∑|X |

n=1(Vn + 1{Vn > 0}) [see (6.53) be-

low], which in turn is dominated by
∑|X |

n=1 V ∗
n , a sum of i.i.d. random variables

distributed as V ∗
0 from Lemma 6.11. Finally, the desired independence properties

of our construction follow from the fact that the distribution of U∗
n is the same

regardless of the conditioning; this is formalized in Lemma 6.18.

PROOF OF PROPOSITION 6.13. In a series of lemmas, we will construct, by
extending the probability space of the random walks (X

xn
t ),1 ≤ n ≤ |X |, random

variables U∗
1 , . . . ,U∗|X | satisfying

Un · 1An ≤ U∗
n · 1An;(6.51)

U∗
n ∼ Ber(p) and is independent of

((
U∗

k

)
1≤k≤n−1, (V k)1≤k≤|X |

)
.(6.52)

Here, we show how this construction implies (6.36). We let U∗ =∑|X |
n=1 U∗

n . We
have

U
(6.21)=

|X |∑
n=1

Un

(6.51)≤
|X |∑
n=1

(
U∗

n + 1Ac
n

) (6.50)≤ U∗ +
|X |∑
n=1

(
1{Vn>0} +

n−1∑
k=1

Vk,n

)
(6.53)

= U∗ +
|X |∑
n=1

1{Vn>0} +
|X |∑
k=1

|X |∑
n=k+1

Vk,n
(6.28)= U∗ +

|X |∑
k=1

(Vk + 1{Vk>0}).
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Now (6.52) implies that U∗ ∼ Bin(|X |,p) and is independent of V1, . . . , V|X |,
which are also independent by (6.31). Putting this together with Lemma 6.11, we
obtain that

U∗ +
|X |∑
n=1

(1{Vn>0} + Vn) is stochastically dominated by U∗ + V ∗,

where V ∗ is a sum of |X | independent copies of V ∗
0 . This completes the proof of

Proposition 6.13 given (6.51) and (6.52). �

The rest of this subsection is devoted to the construction of random variables
U∗

1 , . . . ,U∗|X | satisfying (6.51) and (6.52). We start recalling a few standard facts
about conditional expectations.

LEMMA 6.16. Let (�,F,P) be a probability space.

1. [37], Section 9.7, Property (k). If X is an F -measurable and bounded random
variable (r.v.), G,G′ ⊂ F are sigma-algebras and G′ is independent of σ(G ∪
σ(X)), then

(6.54) E
[
X|G,G′]= E[X|G].

2. [18], Theorem 2.24. Let H ⊆ F be a sigma-algebra, Z be an F -measurable
r.v. independent of H, Y be an H-measurable r.v., and f : R2 → R be Borel-
measurable and bounded. If we define g(y) := E[f (y,Z)] for y ∈R, then

(6.55) E
[
f (Y,Z)|H]= g(Y ).

We now extend the probability space of the walks Xx
t , t ≥ 0, x ∈ X with an

independent collection of auxiliary random variables

(6.56) ζk,1 ≤ k ≤ |X |, i.i.d. and uniformly distributed on [0,1].
For 1 ≤ n ≤ |X |, we introduce the sigma-field

σn := σ
(
(ζk : 1 ≤ k ≤ n),

(
V k : 1 ≤ k ≤ |X |), (Xxk

t : t ≥ 0,1 ≤ k ≤ n
))

(6.28),(6.29)= σ
(
(ζk : 1 ≤ k ≤ n),

(
V k : n < k ≤ |X |),(6.57) (

X
xk
t : t ≥ 0,1 ≤ k ≤ n

))
.

Recalling (6.21) we also define the random variable

pn := P [Un = 1|σn−1]
(6.58)

= P
[
Un = 1|(ζk)1≤k≤n−1, (V k)n≤k≤|X |,Xxk

t , t ≥ 0,1 ≤ k ≤ n − 1
]
.
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LEMMA 6.17. The number p defined in (6.35), the event An, 1 ≤ n ≤ |X |
defined in (6.50) and the random variable pn defined in (6.58) satisfy

(6.59) pn · 1An ≤ p.

PROOF. By (6.21), (6.29), (6.54) and the fact that (X
xk
t ),1 ≤ k ≤ |X | are in-

dependent random walks, we have

pn = P
[
Un = 1|V n,X

xk
t , t ≥ 0, k ≤ n − 1

]
.

Recall from (6.28) that Vn is the indicator of the event that the path (X
xn
t ) does not

endanger any upcoming paths. We now claim that

(6.60) pn · 1{Vn = 0} = P [Un = 1,Vn = 0|Xxk
t , t ≥ 0, k ≤ n − 1]

P [Vn = 0|Xxk
t , t ≥ 0, k ≤ n − 1] · 1{Vn = 0}.

Before we prove this, let us see how it allows us to conclude. Noting that

(6.61) P
[
Vn = 0|Xxk

t , t ≥ 0, k ≤ n − 1
] (6.29),(6.54)= P [Vn = 0],

we have

pn · 1An

(6.50)= pn · 1{Vn = 0}1
{

n−1∑
k=1

Vk,n = 0

}

(6.60),(6.61)≤ P [Un = 1|Xxk
t , t ≥ 0, k ≤ n − 1] · 1{∑n−1

k=1 Vk,n = 0}
P [Vn = 0] · 1{Vn = 0}.

By applying Lemma 6.12 to the numerator and Lemma 6.11 to the denominator,
we conclude that the right-hand side is smaller than p [see (6.35)], thus (6.59)
holds.

It remains to prove (6.60). To this end, we abbreviate

V = σ(V n), G = σ
(
X

xk
t : t ≥ 0,1 ≤ k ≤ n − 1

)
,

thus pn = P [Un = 1|G,V], so we must then prove that

(6.62) 1{Vn=0} · P [Vn = 0|G] · P [Un = 1|G,V] = 1{Vn=0} · P [Un = 1,Vn = 0|G].
Since Vn is V-measurable and P [Vn = 0|G] is G-measurable, (6.62) is the same as

(6.63) E
[
1{Un=1,Vn=0} · P [Vn = 0|G]|G,V

]= 1{Vn=0} · P [Un = 1,Vn = 0|G].
We now check that the right-hand side of (6.63) satisfies the definition of the left-
hand side. First, note that 1{Vn=0} ·P [Un = 1,Vn = 0|G] is measurable with respect
to σ(G,V). Second, for any event C ∈ σ(G,V), we must check that

E
[
1C · 1{Un=1,Vn=0} · P [Vn = 0|G]]

(6.64)
= E
[
1C · 1{Vn=0} · P [Un = 1,Vn = 0|G]].
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Now V is an atomic sigma-algebra [since it is generated by finitely many events,
see (6.28)] and {Vn = 0} is an atom of V , therefore the event C ∩ {Vn = 0} is equal
to G ∩ {Vn = 0} for some G ∈ G. Using this, (6.64) is equivalent to

E
[
1G · 1{Un=1,Vn=0} · P [Vn = 0|G]]= E

[
1{Vn=0} · E[1G · 1{Un=1,Vn=0}|G]].

By taking E[·|G] inside the expectation, we see that both sides are equal to

E
[
E[1G · 1{Un=1,Vn=0}|G] · P [Vn = 0|G]].

The proof of Lemma 6.17 is complete. �

We are now ready to define

(6.65) U∗
n := 1An ·

(
Un + (1 − Un) · 1

{
ζn ≤ p − pn

1 − pn

})
+ 1Ac

n
· 1{ζn ≤ p}.

LEMMA 6.18. U∗
n satisfies (6.51) and (6.52).

PROOF. That (6.51) is satisfied is obvious, so we turn to (6.52).
Recalling the definitions of Un from (6.21), V k from (6.28), An from (6.50), ζk

from (6.56), σn from (6.57) and pn from (6.58) we note that

An,Un, ζn and pn are all σn-measurable, 1 ≤ n ≤ |X |.
Consequently, U∗

1 , . . . ,U∗
n−1 are all σn−1-measurable. Since (V k)n≤k≤|X | are

also σn−1-measurable, we see that (6.52) will follow once we show that

(6.66) E
[
U∗

n |σn−1
]= p.

We start with

E
[
U∗

n |σn−1
] (6.65)= E[Un · 1An |σn−1] + E

[
(1 − Un) · 1An · 1{ζn≤p−pn

1−pn
}|σn−1

]
+ P
[
Ac

n ∩ {ζn ≤ p}|σn−1
]

(∗)= 1An · E[Un|σn−1] + 1An · E[(1 − Un) · 1{ζn≤p−pn
1−pn

}|σn−1
]

+ 1Ac
n
· P [ζn ≤ p|σn−1]

(6.58)= 1An · pn + 1An · E[(1 − Un) · 1{ζn≤p−pn
1−pn

}|σn−1
]+ 1Ac

n
· p,

where in (∗) we used that An ∈ σn−1. The proof of (6.66) will be complete once
we show

(6.67) 1An · E[(1 − Un) · 1{ζn≤p−pn
1−pn

}|σn−1
]= 1An · (p − pn).
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To this end, we first calculate

1An · E[(1 − Un) · 1{ζn≤p−pn
1−pn

}|σn−1,
(
X

xn
t

)
t≥0

]
(6.68)

= 1An · (1 − Un) · E[1{ζn≤p−pn
1−pn

}|σn−1,
(
X

xn
t

)
t≥0

]
(∗∗)= 1An · (1 − Un) · p − pn

1 − pn

,(6.69)

where (∗∗) follows from (6.59) and (6.55), which can be applied because pn is
σn−1-measurable and ζn is independent of σ(σn−1, (X

xn
t )t≥0).

To conclude the proof of (6.67), note that taking E[·|σn−1] on (6.68) (and again
using the fact that An ∈ σn−1) gives the left-hand side of (6.67), whereas taking
E[·|σn−1] on (6.69) [and using (6.58)] gives the right-hand side of (6.67). The
proof of (6.66) and Lemma 6.18 is complete. �

6.7. Proof of Proposition 6.9. The goal of this section is to prove Proposi-
tion 6.9. Recall the definition of M

x,y,T∞ from (6.23). We generalize this definition
by setting, for any t ∈ [T ,∞),

(6.70) M
x,y,T
t = P

[∃u ≥ T : Xy
u = Xx

u|Fx
t

]
, Fx

t = σ
(
Xx

u : 0 ≤ u ≤ t
)
.

This defines a martingale indexed by t ∈ [T ,∞]. In order to simplify notation, we
will omit the superscripts that indicate dependence on x, y and T .

Let us now outline the strategy of proof of (6.24) [the proof of (6.25) will follow
as a corollary]. As suggested in Remark 6.10, we have E[M∞] ≤ CT 1−d/2. In fact
we have MT ≤ C0T

1−d/2 for some deterministic constant C0 [see (6.72)], because
Xy walks independently of Xx , so the conditional probability that they meet after
T given any possible outcome of Xx

T is bounded by C0T
1−d/2. Given this bound

on MT , the event {M∞ > T 1− d
2 +ε} can only occur if the terminal value M∞ of

the martingale deviates too much from MT . This is where Theorem 2.4 comes into
play. In order to apply this theorem, we will obtain estimates on the size of the
jumps of (Mt) for t ≥ T and on its predictable quadratic variation 〈M〉∞ − 〈M〉T ;
these estimates are given in (6.73) and (6.74). We derive these estimates by first
giving a useful equivalent definition of Mt in Claim 6.20 and then comparing Mt

with M
(e)
t , which arises from Mt by artificially forcing the walk (Xx

s )s≥0 to jump
at time t in the direction of the unit vector e ∼ 0; see Definition 6.21. Specifically,
in Lemma 6.24 we show that the jumps of M can be bounded in terms of |Mt −
M

(e)
t | and the predictable quadratic variation 〈M〉∞ − 〈M〉T can be expressed as

an integral of (Mt −M
(e)
t )2. The difference |Mt −M

(e)
t | is bounded in Lemma 6.25

using the random walk facts of Section 2.3.
Recall that (Mt) is càdlàg. Denote by

(6.71) 	MT = sup
t≥T

|Mt − Mt−|
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the maximal jump size of Mt after time T . Recall the notion of 〈M〉t from Defini-
tion 2.3.

LEMMA 6.19. There exist dimension-dependent constants C0,C1,C2 such
that the following bounds almost surely hold:

MT ≤ C0T
1− d

2 ,(6.72)

	MT ≤ C1T
1
2 − d

2 ,(6.73)

〈M〉∞ − 〈M〉T ≤ C2T
2−d .(6.74)

Before we prove Lemma 6.19, we use it to prove Proposition 6.9.

PROOF OF PROPOSITION 6.9. We first prove (6.24):

P
[
M∞ > T 1− d

2 +ε]
(6.72)≤ P

[
M∞ − MT > T 1− d

2 +ε − C0T
1− d

2
]

(∗)≤ P

[
M∞ − MT >

1

2
T 1− d

2 +ε

]
(6.75)

(2.2),(6.73),(6.74)≤ exp
(
−1

2

1
2T 1− d

2 +ε

C1T
1
2 − d

2

ln
(

1 +
1
2T 1− d

2 +εC1T
1
2 − d

2

C2T 2−d

))

= exp
(
− 1

4C1
T

1
2 +ε ln

(
1 + C1

2C2
T − 1

2 +ε

))
(∗)≤ exp

(−T ε),
where the inequalities marked by (∗) hold if T is large enough. We have proved
that (6.24) would hold even if we defined δ to be equal to ε, so it also holds if
δ = ε/d as in (6.1).

We now turn to (6.25). We fix a small constant σ ∈ (0,1) [to be chosen later in
(6.83) as σ = ε/4]. We keep the notation σ with the hope that it makes the proof
more transparent. Given this σ , we define

(6.76) T̂ = 2
1

d/2−1−σ · |x − y|2− 2(ε−2σ)
d−2−2σ ,

so that

(6.77) T̂ 1− d
2 +σ = 1

2
|x − y|2−d+ε.

Note that, since 2(ε−2σ)
d−2−2σ

< 2ε
d−4

(6.1)
< 1, we have 2 − 2(ε−2σ)

d−2−2σ
> 1, so (6.76) implies

that

(6.78) T̂ > |x − y| if x �= y ∈ Z
d .
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Having fixed some x �= y ∈ Z
d , we now start to bound the left-hand side

of (6.25)

P
[
M∞ > |x − y|2−d+ε]

(6.70)≤ P

[
P
[∃u ≥ T̂ : Xy

u = Xx
u|Fx∞

]
>

1

2
|x − y|2−d+ε

]
(6.79)

+ P

[
P
[∃u ≤ T̂ : Xy

u = Xx
u|Fx∞

]
>

1

2
|x − y|2−d+ε

]
.

Assuming that |x − y| is large enough (and hence T̂ is large enough), we bound
the first term on the right-hand side of (6.79) analogously to (6.75), with T̂ in place
of T and σ in place of ε:

P

[
P
[∃u ≥ T̂ : Xy

u = Xx
u|Fx∞

]
>

1

2
|x − y|2−d+ε

]
(6.77)≤ exp

(−T̂ σ )
(6.80)

(6.78)≤ e−|x−y|σ .

Now we bound the second term on the right-hand side of (6.79) using Markov’s
inequality:

P

[
P
[∃u ≤ T̂ : Xy

u = Xx
u|Fx∞

]
>

1

2
|x − y|2−d+ε

]
(6.81)

≤ P [∃u ≤ T̂ : Xy
u = Xx

u]
1
2 |x − y|2−d+ε

,

and

P
[∃u ≤ T̂ : Xy

u = Xx
u

] (2.9)= P
[∃u ≤ 2T̂ : Xx−y

u = 0
]

≤ P
[

max
u≤2T̂

∣∣X0
u

∣∣≥ |x − y|
]

(6.82)

(2.3)≤ 2d exp
(
−1

2
|x − y| ln

(
1 + d · |x − y|

2T̂

))
.

The expression on the right-hand side of (6.82) suggests that T̂ should be much
smaller than |x − y|2. With this in mind, and inspecting (6.76), we set

(6.83) σ = ε/4.

If |x − y| is large enough, (6.76) then implies that

(6.84) 2d exp
(
−1

2
|x − y| ln

(
1 + d · |x − y|

2T̂

))
≤ exp

(−|x − y| ε
d−2
)
.
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Putting the above bounds together, we obtain

P
[
M∞ > |x − y|2−d+ε]

(6.79),(6.80),(6.81),(6.82),(6.84)≤ e−|x−y|ε/4 + exp(−|x − y| ε
d−2 )

1
2 |x − y|2−d+ε

(∗)≤ exp
(−|x − y|ε/d),

where (∗) holds if |x − y| is large enough. This completes the proof of (6.25)
with δ = ε/d , as required by (6.1). The proof of Proposition 6.9 is complete, given
Lemma 6.19. �

Now we prepare the ground for the proof of Lemma 6.19. We begin with stating
a useful equivalent formula for the martingale Mt, t ∈ [T ,∞).

CLAIM 6.20. For any t ≥ T ,

(6.85) Mt = P
[∃u ≥ T : Xy

u = Xx
u∧t |Fx

t

]
.

PROOF. Given t ≥ T , let us define the event

(6.86) A = {∃s ∈ [T , t) : Xy
s = Xx

s

}
.

The statement follows from

Mt
(6.70)= P

[
A|Fx

t

]
+ ∑

v,w∈Zd

P
[
Ac ∩ {Xy

t = w
}|Fx

t

] · 1[Xx
t = v

] · P [∃s ≥ 0 : Xw
s = Xv

s

]
(2.9)= P

[
A|Fx

t

]
+ ∑

v,w∈Zd

P
[
Ac ∩ {Xy

t = w
}|Fx

t

] · 1[Xx
t = v

] · P [∃s ≥ 0 : Xw
s = v

]
= P

[
A|Fx

t

]+ P
[
Ac ∩ {∃s ≥ t : Xy

s = Xx
t

}|Fx
t

]
= P

[∃s ≥ T : Xy
s = Xx

s∧t |Fx
t

]
. �

DEFINITION 6.21. For any t ∈ [T ,+∞) let us define for e ∈ Z
d , e ∼ 0, the

random variable

(6.87) M
(e)
t = P

[∃u ≥ T : Xy
u = Xx

u∧t + e · 1{u≥t}|Fx
t

]
.

The Fx
t -measurable random variable M

(e)
t is a perturbed version of Mt where

we artificially force the walk (Xx
s )s≥0 to jump at time t in the direction of the unit

vector e ∼ 0. Recall that we assume that our random walks and martingales are
càdlàg.
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DEFINITION 6.22. Denote by τ1 < τ2 < · · · the jump times of the random
walk (Xx

t ) and let τ0 = 0. For any n ≥ 1 let en = Xx
τn

− Xx
τn− denote the direction

of the jump of (Xx
t ) at time τn.

Note that

(6.88) (τn − τn−1)n≥1 are i.i.d. with Exp(1) distribution.

The next claim states that Mt only jumps when Xx
t jumps and in between jumps

Mt is constant.

CLAIM 6.23. For any n = 1,2, . . . we have

Mτn = M
(en)
τn− ,(6.89)

Mt = Mτn−1, τn−1 ≤ t < τn.(6.90)

PROOF. Let γ : [0,∞) → Z
d be a càdlàg function with γ (0) = x. This γ will

play the role of a possible realization of (Xx
u)u≥0. Assume that for some T ≤ s < t

and e ∈ Z
d , e ∼ 0 the trajectory γ satisfies

(6.91) γ (r) = γ (s) for all r ∈ [s, t) and γ (t) = γ (t−) + e.

The two statements of the claim are immediate consequences of (6.85), (6.87) and

P
[∃u ≥ T : Xy

u = γ (u ∧ t)
]

(6.92)
= lim

r↗t
P
[∃u ≥ T : Xy

u = γ (u ∧ r) + e · 1{u≥r}
];

P
[∃u ≥ T : Xy

u = γ (u ∧ r)
]

(6.93)
= P
[∃u ≥ T : Xy

u = γ (u ∧ s)
]

for all r ∈ [s, t).
(6.93) holds because, by (6.91), γ (u ∧ s) = γ (u ∧ r) for all u. To establish (6.92)
we note that, again by (6.91), for fixed r ∈ (s, t) the symmetric difference of the
events{∃u ≥ T : Xy

u = γ (u ∧ t)
}

and
{∃u ≥ T : Xy

u = γ (u ∧ r) + e · 1{u≥r}
}

is contained in the event that Xy has a jump between times r and t . �

LEMMA 6.24. We have

	MT ≤ sup
t≥T

max
e∼0

∣∣M(e)
t − Mt

∣∣,(6.94)

〈M〉t − 〈M〉T = 1

2d

∑
e∼0

∫ t

T

(
M(e)

s − Ms

)2 ds.(6.95)
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PROOF. The inequality (6.94) immediately follows from (6.71) and
Claim 6.23.

Now we prove (6.95). Recall Definition 2.3. The right-hand side of (6.95) is
adapted to (Fx

t ) and continuous in t , hence it is predictable (see Definition 2.2),
thus we only need to check that for any T ≤ s ≤ t we have

(6.96) E
[
M2

t − M2
s |Fx

s

]= E

[
1

2d

∑
e∼0

∫ t

s

(
M(e)

u − Mu

)2 du
∣∣∣Fx

s

]
.

Let us define for δ > 0 and u ≥ T the random variable

(6.97) ψδ
u := 1

δ
E
[
(Mu+δ − Mu)

2|Fx
u

] (∗)= 1

δ
E
[
M2

u+δ − M2
u|Fx

u

]
,

where (∗) follows from the fact that Mt is a bounded martingale. Using (6.89),
(6.90) and that (Xt) is a continuous-time simple random walk on Z

d we obtain

(6.98) lim
δ→0+

ψδ
u = 1

2d

∑
e∼0

(
M(e)

u − Mu

)2
, P-a.s.

It follows from the definition (6.97) that for any δ > 0 we have

E

[∫ t

s
ψδ

u du
∣∣∣Fx

s

]
= E

[
1

δ

∫ t+δ

t
M2

u du − 1

δ

∫ s+δ

s
M2

u du
∣∣∣Fx

s

]
.

From this, (6.88) and Claim 6.23 it follows that

(6.99) lim
δ→0+

E

[∫ t

s
ψδ

u du
∣∣∣Fx

s

]
= E
[
M2

t − M2
s |Fx

s

]
, P-a.s.

Now (6.96) will follow from (6.98) and (6.99) by dominated convergence as soon
as we prove that for any u ≥ T and 0 < δ ≤ 1 we have ψδ

u ≤ 1. This bound follows
from (6.88) and Claim 6.23. �

LEMMA 6.25. There exists C > 0 such that for any t ≥ T ≥ 1 and e ∼ 0,

(6.100)
∣∣M(e)

t − Mt

∣∣≤ Ct
1
2 − d

2 .

Before we prove Lemma 6.25, let us deduce Lemma 6.19 from it.

PROOF OF LEMMA 6.19. We begin with (6.72). We first observe that, for any
y, z ∈ Z

d ,∑
w∈Zd

pT (y,w) · P [∃t ≥ 0 : Xw
t = Xz

t

] (2.11),(2.6)≤
∫ ∞
T

pt (y, z)dt

(6.101)
(2.7)≤ C0T

1− d
2 .
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With this at hand, we derive (6.72):

MT
(6.70)= ∑

z,w

1
{
Xx

T = z
} · pT (y,w) · P [∃t ≥ T : Xy

t = Xx
t |Xx

T = z,X
y
T = w

]
= ∑

z

1
{
Xx

T = z
} ·∑

w

pT (y,w) · P [∃t ≥ 0 : Xw
t = Xz

t

]
(6.101)≤ C0T

1− d
2 .

The bound (6.73) follows from (6.94) and (6.100). Now we prove (6.74):

〈M〉∞ − 〈M〉T (6.95)= 1

2d

∑
e∼0

∫ ∞
T

(
M(e)

s − Ms

)2 ds

(6.100)≤
∫ ∞
T

Cs1−dds

= CT 2−d . �

PROOF OF LEMMA 6.25. Given t ≥ T , we define the event A by (6.86). We
have

Mt
(6.85),(2.8)= P

[
A|Fx

t

]+ ∑
v,w∈Zd

P
[
Ac ∩ {Xy

t = w
}|Fx

t

] · 1[Xx
t = v

] · g(v,w)

g(0,0)
,

M
(e)
t

(6.87),(2.8)= P
[
A|Fx

t

]
+ ∑

v,w∈Zd

P
[
Ac ∩ {Xy

t = w
}|Fx

t

] · 1[Xx
t = v

] · g(v + e,w)

g(0,0)
,

thus we obtain (6.100):∣∣M(e)
t − Mt

∣∣
≤ ∑

v,w∈Zd

P
[
Ac ∩ {Xy

t = w
}|Fx

t

] · 1[Xx
t = v

] · |g(v + e,w) − g(v,w)|
g(0,0)

(2.5)≤ ∑
v,w∈Zd

P
[
X

y
t = w

] · 1[Xx
t = v

] · ∣∣g(v + e,w) − g(v,w)
∣∣

(2.15)≤ Ct
1
2 − d

2 . �

7. Concluding remarks.

REMARK 7.1. In order to informally explain why d ≥ 5 is easier than d = 4
and especially d = 3 when it comes to proving αc > 0 for the nearest-neighbour
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voter model on Z
d , let us introduce a toy model. Recall the graphical construction

(3.2) of the coalescing random walks (Y x
t )t≥0,x∈Zd and assume that R = 1. Denote

by μ∗ the law of the random element (ξ(x))x∈Zd of {0,1}Zd
that we obtain by

defining

ξ(x) =
{

1, if Yx
t = Y 0

t for some t ≥ 0,

0, otherwise.

In words, the coalescence class of the origin is occupied, and every other vertex of
Z

d is vacant.
As a first step in the direction of (4.2), one might first want to show

(7.1) lim
L→∞μ∗[B(0,L)

∗ξ←→ B(0,2L)c
]= 0.

When d ≥ 5, this follows from (4.2) and the fact that

μα0

[
B(0,L)

∗ξ←→ B(0,2L)c
]≥ α0 · μ∗[B(0,L)

∗ξ←→ B(0,2L)c
]
.

We believe that (7.1) can be proved in the d = 4 case using a careful implementa-
tion of similar ideas. However, the question of (7.1) is to the best of our knowledge
open in the d = 3 case and we think new ideas are needed for the proof.

We also note that if d ≥ 3 and ξ has law μ∗, then by [2], Theorem 3, the se-
quence of rescaled random measures 1

N

∑
x∈Zd ξ(x)δx/

√
N converge in law with

respect to the topology of vague convergence on the space of Radon measures on
R

d , and the limit object is a variant of super-Brownian motion. It is also known
(see [27], Section 4, and [26], Theorem III.6.3) that for d ≥ 4 the closed support
of super-Brownian motion is totally disconnected, but the open problem stated on
[26], page 119, is still not solved, that is, the closed support of super-Brownian
motion in d = 3 may or may not contain nontrivial connected subsets. The combi-
nation of these facts also indicate that (7.1) may be easier to verify for d = 4 than
for d = 3.

REMARK 7.2. One reason why the proof of Theorem 1.2 in Section 5 is so
short is that we chose L = 1 so that crossing an annulus on the bottom level of
our renormalization scheme just means that a single site is of type 1. Let us ex-
plain why this choice is insufficient when it comes to proving Theorem 1.1. In this
heuristic argument, we will also keep track of the dependence on � of the combi-
natorial terms and probabilities in order to make sure that making � large will not
be helpful either.

If R = 1 and L = 1, then [similarly to (5.3)] we obtain

(7.2) μα

[
B(LN − 2)

∗ξ←→ B(2LN)c
] (3.6)≤ Ĉ(�)2N

max
T ∈�N

E
[
αN∞(XT )],

where Ĉ(�) � �2d−2. For any T ∈ �N , we have E[αN∞(XT )] ≥ αP[N∞(XT ) = 1].
Recalling (5.2) we can construct a scenario where N∞(X ) = 1 (i.e., all walkers
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coalesce) by first coalescing the walkers starting from T (m1) and T (m2) [see
(4.6)] for every m ∈ T(N−1), and then coalescing the resulting walkers with their
respective “sibling”, etc. Recursively repeating this procedure from the leaves to
the root of the binary tree we obtain that

P
[
N∞(XT ) = 1

]
�
(
C�2−d)2N−1 · (C�2(2−d))2N−2 · · · (C�N(2−d))20

� (C�(2−d)·2)2N

.

If we use this to (heuristically) lower bound the right-hand side of (7.2), we obtain

Ĉ(�)2N · α · (C�(2−d)·2)2N � (C̃�2)2N

,

which may go to infinity as N → ∞ if the constant C̃ = C̃(d) happens to be too
big.

REMARK 7.3. Let us explain why the method of Section 6 fails to prove (4.2)
if d = 3,4 and R = 1 by arguing that the right-hand side of (6.14) does not go to
zero. Rather than fixing the value of � as in (6.2), in this heuristic argument we will
keep track of the dependence on � as well as on L of the terms on the right-hand
side of (6.14). If we assume Y = ∅, then by (6.10) we have |X | = 2 ·2N . Similarly
to Remark 7.2, we will bound the probability of the event on the right-hand side of
(6.14) from below. For any fixed α > 0, we can bound

(7.3) P

[ ⋂
{x,z}∈X
|x−z|=1

Fx,z

]
(3.5),(6.8)≥ αP

[
N∞(X ) = 1,

⋂
{x,z}∈X
|x−z|=1

Ex,z

]
.

Now the probability that Ex,z occurs and yet Yx
t = Y z

t for some t > T is roughly√
T

2−d = L(1−ε/2)(2−d) by (2.7) and (6.5), moreover, we can use the binary tree
structure of X to construct a scenario where N∞(X ) = 1 and give a (heuristic)
lower bound on the probability on the right-hand side of (7.3) by

(
L(1−ε/2)(2−d))2N ·

N∏
k=1

(
L�k)(2−d)2N−k � (L(2−d)(2−ε/2) · �(2−d)·2)2N

.

If we multiply this with the combinatorial term (Ld�2d−2)2N
that appears on the

right-hand side of (6.14) then the resulting product goes to infinity as N → ∞.

REMARK 7.4. Let us explain why the “decorrelation via annihilation” method
developed in Section 5 cannot be used to prove Theorem 1.1. Let us assume Y =∅

[so that by (6.10) we have |X | = 2 · 2N ] and bound the probability of the event of
the right-hand side of (6.14):

P

[ ⋂
{x,z}∈X
|x−z|=1

Fx,z

]
(6.17),(6.20)≤ E

[
αNZ∞].
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Now we try to bound this using the idea of Lemma 5.3, that is, we let random
walks starting from the vertices of X run independently until time T and then we
let them annihilate each other. Let us denote by NZ′

∞ the number of walkers that

do not get annihilated. Similarly to Lemma 5.3, we have E[αNZ∞] ≤ E[αNZ′
∞ ], but

using an argument similar to the one used in Remark 7.3 we can (nonrigorously)
bound

E
[
αNZ′

∞ ]≥ P
[
NZ′

∞ = 0
]
�
(
L(1−ε/2)(2−d))2N

,

and this term is not small enough to beat the combinatorial term (CLd)2N
on the

right-hand side of (6.14).
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