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KPZ EQUATION LIMIT OF HIGHER-SPIN
EXCLUSION PROCESSES
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Columbia University∗, Clay Mathematics Institute†, Institut Henri Poincaré‡

and Stanford University§

We prove that under a particular weak scaling, the 4-parameter interact-
ing particle system introduced by Corwin and Petrov [Comm. Math. Phys.
343 (2016) 651–700] converges to the Kardar–Parisi–Zhang (KPZ) equation.
This expands the relatively small number of systems for which weak univer-
sality of the KPZ equation has been demonstrated.

1. Introduction. This paper demonstrates how the KPZ equation [18] arises
as a scaling limit of a 4-parameter interacting particle system introduced in [10]
[called here the Higher Spin Exclusion Process (HSEP)] under fairly general
choices of three parameters (ν ∈ [0,1), α > 0, J ∈ Z>0) and special tuning of
the remaining paremeter (q → 1). This system, through various specializations,
and limit procedures includes all known integrable models in the KPZ universality
class. It is closely connected to the study of higher-spin vertex models within quan-
tum integrable systems, and hence enjoys a number of nice algebraic properties,
some of which play important roles in our convergence proof.

The KPZ equation is a paradigmatic continuum model for a randomly growing
interface with local dynamics subject to smoothing, lateral growth and space–time
noise (for more background, see the review [8]). Its spatial derivative solves the
stochastic Burgers equation with conservative noise, and its exponential (Hopf–
Cole transform) satisfies the Stochastic Heat Equation (SHE) with multiplicative
white-noise. The connection to stochastic Burgers equation suggests a relation to
interacting particle systems while the connection to the SHE suggests a relation to
directed polymer models (whose partition functions satisfy discrete versions of the
SHE).

The KPZ equation is written as

∂τH(τ, r) = 1

2
δ∂2

r H(τ, r) + 1

2
κ
(
∂rH(τ, r)

)2 + √
Dη(τ, r),(1.1)
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where η is space–time white noise, δ, κ ∈ R, and D > 0. Care is needed in mak-
ing sense of the above equation, and the proper notion of solution is that of the
Hopf–Cole solution to the KPZ equation which is defined by setting H(τ, r) =
δ
κ

logZ(τ, r) where Z solves the well-posed SHE

∂τZ(τ, r) = 1

2
δ∂2

r Z(τ, r) + κ

δ

√
DZ(τ, r)η(τ, r).(1.2)

To understand how a microscopic system might scale to the KPZ equation,
it helps to understand how the KPZ equation itself scales. For real b, z define
Hε(τ, r) := εbH(ε−zτ, ε−1r). Then Hε satisfies the scaled equation

∂τHε(τ, r) = ε2−z 1

2
δ∂2

r Hε(τ, r) + ε2−z−b 1

2
κ
(
∂rHε(τ, r)

)2

+ εb− z
2 + 1

2
√

Dη(τ, r).

There exists no choice of b, z for which the coefficients of the scaled equation
remain unchanged. However, if one simultaneously changes the values of some
of the δ, κ,D parameters as ε changes, the KPZ equation may scale to itself. If
the KPZ equation remains invariant under such a scaling, it stands to reason that
a microscopic model with similar properties may converge to the equation under
a similar type of scaling and tuning of parameters. Such scalings are generally
called weak scalings since they involve taking some of the δ, κ,D parameters to
zero with ε. It is thus a goal to show the weak universality of the KPZ equation by
demonstrating how under these scalings, the equation arises from a variety of dif-
ferent microscopic models. Weak universality should be distinguished from KPZ
universality which holds that without any tuning of parameters, a variety of differ-
ent systems will converge under the choice of b = 1/2 and z = 3/2 to a universal
limit called the KPZ fixed-point [11].

There are very few proved instances of weak universality of the KPZ equa-
tion. The first result was in the context of the Asymmetric Simple Exclusion
Process (ASEP) [3] for near equilibrium initial condition (see also [2] for step
initial condition). The ASEP result came under weak asymmetry scaling through
which b = 1/2, z = 2 and κ �→ ε1/2κ (δ and D remain unscaled). This result was
extended in [12] to certain nonnearest neighbor (and nonexactly solvable) exclu-
sion processes. The only other weak universality result [1] was in the context of
discrete directed polymers with arbitrary disordered distributions. This result came
under weak noise scaling through which b = 0, z = 2 and D �→ εD (δ and κ re-
main unscaled).

Owing to the round-about Hopf–Cole definition of the KPZ equation, in order
to prove that a system converges to the KPZ equation, one must transform it mi-
croscopically into an approximate SHE. The work of [16] provides direct meaning
to the KPZ equation (though for r on the torus, not the full real line). As of yet, this
approach has not yielded weak universality results for the KPZ equation. The work
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of [14] defines an energy solution for the KPZ equation and shows tightness of a
certain class of interacting particle systems at equilibrium and that all limit points
are energy solutions. The recent work of [15] establishes the uniqueness of equilib-
rium energy solution on the torus (under the time-reversal symmetry assumption
enjoyed by Markov processes at equilibrium).

The partition function for a directed polymer model naturally solves a micro-
scopic SHE with a simple noise. On the other hand, the ASEP result relies heavily
on the existence of a microscopic Hopf–Cole transform (known as the Gärtner
transform [13]), and the resulting SHE has a much more complicated noise. This
renders the associated analysis quite challenging. The work of [12] also relies on
an approximate form of the Gärtner transform. Microscopic Hopf–Cole transforms
are hard to come by. For the model considered herein, this transform is achieved in
Proposition 2.6. The first indication that such a transform should exist came from
the Markov duality enjoyed by the model; see Remark 2.7 for more discussions.

The particular choice of weak scalings present in our result is new. It corre-
sponds to the KPZ equation scaling given by b = 1, z = 3, δ �→ εδ, κ �→ ε2κ and
D remaining unchanged. In terms of the scaling of the microscopic model, we have
b = 1, z = 3 and q = e−ε , while ν ∈ [0,1), α > 0 and J ∈ Z>0 remain fixed. One
sees that microscopically, these choices of parameters corresponds to the above
weak scaling. As there are many parameters at play, it is likely that there exist
other weak scalings of the system which realized the same KPZ equation limit.

There are a number of degenerations of the HSEP, including the discrete time
Bernoulli q-TASEP [4] and (through a limit transition) the continuous time q-
TASEP [5, 7]. Strictly speaking, our results do not immediately apply to the contin-
uous time q-TASEP. The restriction on parameters ν ∈ [0,1), α > 0 and J ∈ Z>0
does not allow us to probe all of the degenerations of the system introduced in [10].
For instance, the stochastic six-vertex model [6] (a discrete time version of ASEP)
arises through a different choice of specialization, as does the q-Hahn TASEP [9].
These systems likewise enjoy dualities and one may hope to prove their weak uni-
versality. We leave this for future work.

Outline. In Section 2, we introduce the 4-parameter particle system and then
proceed to state our main results. These are stated in terms of the SHE as The-
orems 2.9 and 2.10 (though Corollary 2.15 provides the equivalent statements in
terms of the KPZ equation). Section 3 provides the discrete Hopf–Cole transform
satisfied by the system. Section 4 provides moment estimates necessary to show
tightness as ε → 0. Section 5 demonstrates how the limit points satisfy the martin-
gale problem for the SHE.

2. Definition of the model and results. We begin by recalling the definition
of the HSEP. Let N := Z≥0, N∗ := N∪ {∞} and Z

∗ := Z∪ {∞}. Define the space
of right-finite particle configurations

Xm := {
x = (∞ = · · · = xm−2 = xm−1 > xm > xm+1 > · · · ) ∈ Z
∗}

,
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where imaginary particles are placed at ∞ for the convenience of notation, and
define the space of infinite particle configurations X∞ := {
x = (· · · > x−1 > x0 >

x1 > · · · ) ∈ Z
Z}, with the corresponding spaces of gap configurations

Gm := {
g = (gn) : gn = ∞,∀n < m;gn ∈ N,∀n ≥ m
}
, G∞ := N

Z.

Fixing J ∈ Z>0, we let modJ (s) := s − �s/J 
J , or more explicitly, (modJ (0),

modJ (1), . . .) = (0,1, . . . , J − 1,0, . . . , J − 1, . . .). Fixing q, ν ∈ [0,1) and α >

0, we let αj := αqj and α(s) := αmodJ (s), and equip our probability space with
independent Bernoulli random variables

Bn(s, g) ∼ Ber
(

α(s)(1 − qg)

1 + α(s)

)
, B ′

n(s, g) ∼ Ber
(

α(s) + νqg

1 + α(s)

)
,

indexed by (s, g, n) ∈ (N,N∗,Z), with the corresponding filtration F (t) :=
σ(Bn(s, g),B ′

n(s, g) : (n, g) ∈N×N
∗, s = 0, . . . , t − 1). Recall from [10] the fol-

lowing definition of the HSEP.

DEFINITION 2.1. Given 
x(0) ∈ Xm, a right-finite particle configuration, we
define an Xm-valued Markov chain {
y(s)}s∈N by setting 
y(0) := 
x(0), and update

y(s) as follows. We update 
y(s) sequentially, starting from m, by letting

ym(s + 1) = ym(s) + Bm(s,∞),(2.1)

and letting, for n > m,

yn(s + 1) =
{
yn(s) + B ′

n

(
s, gn(s)

)
if yn−1(s + 1) > yn−1(s),

yn(s) + Bn

(
s, gn(s)

)
if yn−1(s + 1) = yn−1(s),

(2.2)

where gn(s) := yn−1(s) − yn(s) − 1 the nth gap of 
y(s). Namely, we move yn(s)

one step to the right with probability α(s)
1+α(s)

, and subsequently, we move yn(s)

depending on how yn−1(s) was updated: if yn−1(s) did not move, we then move

yn(s) one step to the right with probability α(s)(1−qgn(s))
1+α(s)

, otherwise we move xn(s)

one step to the right with probability α(s)+νqgn(s)

1+α(s)
.

The HSEP {
x(t)}t∈N is then defined as the Xm-valued Markov chain 
x(t) :=

y(J t).

REMARK 2.2. The Markov chain 
y(t) was defined through a local sequen-
tial update of particles. Taking J > 1 and considering 
x(t), a priori one might
think this property is lost. It was shown in [10], Section 3, that, in fact, 
x(t) can
be updated through a local sequential update (just like for J = 1). In this case,
each particle may move a distance between 0 to J sites to the right, and the jump
probabilities depend on the length of the previous particle’s jump as well as the
length of the gap. The explicit form of this probability is somewhat more involved
and given in [10], Theorem 3.15. In particular, given a gap g and a jump of the
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previous particle by h, a particle jumps by h′ according to the probability given
by R

(J)
α (g,h;g + h − h′, h′) where a concise formulas for R

(J)
α is given in [10],

Theorem 3.15, and there is also a dependence on q, ν which is suppressed in the
notation. For the purposes of this paper, it suffices to study the 
y(t) process and
prove convergence of it to the KPZ equation. It follows then immediately that the

x(t) process likewise converges.

The process introduced in Definition 2.1 is defined by the sequential update
of (2.1)–(2.2), which is inconvenient for our purpose. We now recast the definition
as a parallel update, and, as a byproduct, extend Definition 2.1 to the space X :=⋃

n∈Z∗ Xn of possibly infinite particle configurations. To this end, we require the
following lemma, which we prove in Section 3.

LEMMA 2.3. For any fixed 
g ∈ (N∗)Z, s ∈ N, m ≤ n ∈ Z, letting

In,m(s, 
g) :=
( ∏

n≥i>m

(
B ′

i (s, gi) − Bi(s, gi)
))

Bm(s, gm),(2.3)

we have

Kn(s, 
g) := ∑
m:n≥m

In,m ∈ {0,1},(2.4)

where the series converges in Lk for all k ≥ 1, and hence almost surely. Further,

Kn(s, 
g) = Kn−1(s, 
g)B ′
n(s, gn) + (

1 − Kn−1(s, 
g)
)
Bn(s, gn).(2.5)

DEFINITION 2.4. Fix m ∈ N
∗ and 
x(0) ∈ Xm. Letting 
g(
y) := (yn−1 −

yn − 1)n∈Z and 
K(s, 
g) := (Kn(s, 
g))n∈Z ∈ {0,1}Z (by Lemma 2.3), we define
a stochastic map

T (s) : Xm −→ Xm, 
y �−→ 
y + 
K(
s, 
g(
y)

)
,(2.6)

and define the Xm-valued Markov chain {
x(t)} and {
y(t)} by letting 
y(s) := T (s −
1) ◦ T (s − 2) ◦ · · · ◦ T (0)(
x(0)) and 
x(t) := 
y(tJ ).

REMARK 2.5. Under the map T (s), we have that Kn(s, 
g(
y(s))) =
1{yn(s+1)>yn(s)}, whereby (2.5) becomes

1{yn(s+1)>yn(s)} = 1{yn−1(s+1)>yn−1(s)}B ′
n

(
s, gn(s)

)
+ 1{yn−1(s+1)=yn−1(s)}Bn

(
s, gn(s)

)
.

This is equivalent to (2.2), which reduces to (2.1) when gm−1 = ∞. It is thus
easy to see that Definition 2.4 is equivalent to Definition 2.1 when restricting to

x(0) ∈ Xm, m ∈ N.
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Our main result is the convergence to the SHE of a certain exponential transform
of the process 
y(t). Recall that we say a process Z on R+ × R is a mild solution
of the SHE starting from the initial condition Z ic if

Z(τ, r) =
∫
R

Pτ

(
r − r ′)Z ic(r ′)dr ′

(2.7)
+

∫ τ

0

∫
R

Pτ−τ ′
(
r − r ′)Z(

τ ′, r ′)η(
dr ′, dτ ′),

where Pτ (r) := exp[−r2/(2τ)](2πτ)−1/2 denotes the standard heat kernel, and η

denotes the space–time white noise. For the existence, uniqueness, continuity, and
positivity of solutions of (2.7), see [8], Proposition 2.5.

The key step of showing the convergence to the SHE is finding a discrete SHE.
To state it, we fix a parameter ρ ∈ (0,1), measuring the limiting density (see Re-
mark 2.11), and set

γ := 1 − ρ

1 − νρ
, aj := αjγ

1 + αjγ
, b := γ

1 − γ
, b′ := νγ

1 − νγ
,(2.8)

μ(t) := (amodJ (t) − amodJ (t)+1)
(
b − b′)−1

,(2.9)

λ(t) := 1 + α(t)γ

1 + qα(t)γ
,

(2.10)

μ̂(t) :=
t−1∑
s=0

μ(s), λ̂(t) :=
t−1∏
s=0

λ(s),

with the conventions μ̂(0) := 0 and λ̂(0) := 1. Letting Qn(t) := qyn(t)+n denote
the one-particle duality function (see [10] for the definition of duality functions),
we define the exponential transform

Z(t, ξ) := λ̂(t)ρξ+μ̂(t)Qξ+μ̂(t)(t),(2.11)

for t ∈ N and ξ ∈ �(t) := (Z − μ̂(t)). The discrete SHE is expressed in terms
of a certain random walk R(0) + · · · + R(t − 1) on R. Here, R(s) ∈ (N − μ(s)),
s ∈ N, are independent random variables introduced in (3.10), with zero mean
and variance as in (3.11). Let �(t2, t1) := N + (μ̂(t1) − μ̂(t2)). For t1 ≤ t2, ζ ∈
�(t2, t1), let

p(t2, t1, ζ ) := P
(
R(t1) + R(t1 + 1) + · · · + R(t2 − 1) = ζ

)
(2.12)

denotes the corresponding semigroup. We use the shorthand notation [p(t2, t1) ∗
f (t1)](ξ) := ∑

ζ∈�(t1)
p(t2, t1, ξ − ζ )f (t1, ζ ) to denote convolution. Let Kn(s) :=

Kn(s) − E(Kn(s)|F (s)) and let

W(t, ξ) := λ(t)(q − 1)Kξ+μ̂(t)(t),(2.13)

representing the discrete analog of the space–time white noise.
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PROPOSITION 2.6. For all t1 ≤ t2 ∈ N and ξ ∈ �(t2), we have the following
discrete SHE

Z(t2, ξ) = Zdr(t2, t1, ξ) + Zmg(t2, t1, ξ),(2.14)

where

Zdr(t2, t1, ξ) := [
p(t2, t1) ∗ Z(t1)

]
(ξ),(2.15)

Zmg(t2, t1, ξ) :=
t2−1∑
s=t1

[
p(t2, s + 1) ∗ (

Z(s)W(s)
)](

ξ + μ(s)
)
.(2.16)

Further, for all ξ1, ξ2 ∈ �(t),

Z(t, ξ1)Z(t, ξ2)E
[
W(t, ξ1)W(t, ξ2)|F (t)

]
(2.17)

=
(

(ν + α(t))ρ

1 + α(t)

)|ξ1−ξ2|
�1(t, ξ1 ∧ ξ2)�2(t, ξ1 ∧ ξ2),

where

�1(t, ξ) := qλ(t)Z(t, ξ) − [
p(t + 1, t) ∗ Z(t)

](
ξ − μ(t)

)
,(2.18)

�2(t, ξ) := −λ(t)Z(t, ξ) + [
p(t + 1, t) ∗ Z(t)

](
ξ − μ(t)

)
.(2.19)

REMARK 2.7. The first indication that a microscopic Hopf–Cole transform
as in Proposition 2.6 should exist came from the k = 1 version of the Markov
duality enjoyed by the model, given in [10], Theorem 2.19. This result shows that
E(qyn(t)+n) satisfies the Kolmogorov backward equation in the t and n variables,
more explicitly

E
(
qyn(t+1)+n) = ∑

m∈Z
p′(t + 1, t, n − m)E

(
qym(t)+m)

.

Here, p′(t +1, t,m) is the transition probability of a certain (time inhomogeneous)
random walk {X′(t)}t∈N, defined as in (3.2), which corresponds to the one-particle
version of the Higher Spin Zero Range Process, defined in [10], Definition 2.6.
The existence of a nice martingale as in (2.17) and finding the correct centering
and tiling as in (2.11) require further work given here in Proposition 2.6.

Proceeding to our main result, we consider the weak noise scaling q = qε :=
e−ε , ε → 0. Hereafter, throughout the paper, we fix α > 0, ν ∈ [0,1), and ρ ∈
(0,1), and scale only the parameter qε → 1. To indicate this scaling, we denote
parameters such as αj and α(s) by αε

j and αε(s), but for processes such as 
x(t),
Bn(s, g), we often omit the dependence on ε to simplify notation. Under this scal-
ing, to the first order (2.9)–(2.10) read

με(t) = εαγ (1 + αγ )−2(
b − b′)−1 + O

(
ε2)

,(2.20)

λε(t) = 1 + εαγ (1 + αγ )−1 + O
(
ε2)

.(2.21)
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Let r∗ := (b − b′)−1,

τ ε∗ := [
(a0)

2 − (
aε
J

)2 + (
a0 − aε

J

)(
b + b′)]−1

(2.22)

= (1 + αγ )2(Jαγ )−1(
2a0 + b + b′)−1 + O(ε).(2.23)

Note that here a0 = αγ (1 + αγ )−1 is independent of ε. We extend the process
Z(t, ξ), defined for t ∈ N and ξ ∈ �(t), to a continuous process on R+ ×R by first
linearly interpolate in ξ and then linearly interpolate in t , and then we introduce
the scaled process

Zε(τ, r) := Z
(
ε−3τ ε∗Jτ, ε−1r∗r

)
,(2.24)

or, equivalently Zε(τ, r) = exp(Hε(τ, r)), where

Hε(τ, r) := −εynε(τ,r)

(
tε(τ )

) + (logρ − ε)nε(τ, r) + log λ̂ε

(
tε(τ )

)
,(2.25)

tε(τ ) := ε−3τ ε∗Jτ and nε(τ, r) := ε−1r∗r + μ̂ε(tε(τ )). Following [3], we consider
near equilibrium initial conditions.

DEFINITION 2.8. Let Zε(0, ξ) be the exponential transform [given as in
(2.24)] associated with {
xε(0)}ε ⊂ X. We say {
xε(0)}ε ⊂ X is near equilibrium
if, given any k ∈ Z>0 and v ∈ (0,1/2), there exists u = u(k, v),C = C(k, v) < ∞
such that ∥∥Zε(0, ξ)

∥∥
k := (

E
(
Zε(0, ξ)k

))1/k ≤ Ceu|ξ |,(2.26) ∥∥Zε(0, ξ) − Zε

(
0, ξ ′)∥∥

k ≤ C
∣∣ξ − ξ ′∣∣veu(|ξ |+|ξ ′|),(2.27)

for all ξ, ξ ′ ∈ ε(r∗)−1
Z and ε > 0 small enough.

Hereafter, we endow the spaces C(R), C(R+×R) and C((0,∞)×R) the topol-
ogy of uniform convergences on compact subsets, and use ⇒ to denote weak con-
vergence of probability laws. The following is our main result.

THEOREM 2.9. Let Z be the unique C(R+ ×R)-valued solution of SHE start-
ing from a C(R)-valued process Z ic, and let Zε(τ, r) ∈ C(R+ ×R) be as in (2.24),
with some near equilibrium initial condition {
xε(0)}ε . If Zε(0, ·) ⇒ Z ic(·), then

Zε(·, ·) ⇒ Z(·, ·) on C(R+ ×R), as ε → 0.

Definition 2.8 (and, therefore, Theorem 2.9) leaves out an important initial con-
dition, that is, the step initial condition: xn(0) := −n for n ∈ N and xn = ∞ for
n ∈ Z<0. Following [2], we generalize Theorem 2.9 to the following.

THEOREM 2.10. Let Z̃(·, ·) be the unique solution of SHE starting from the
delta measure δ(·), let {
y(t)}t ∈ X0 be the process starting from the step initial
condition, and let Z̃ε(τ, r) := ε−1(1 − ρ)r∗Zε(τ, r). Then

Z̃ε(·, ·) ⇒ Z̃(·, ·) on C
(
(0,∞) ×R

)
, as ε → 0.
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REMARK 2.11. By Theorem 2.9, we have that Hε(τ, r) − Hε(τ, r + ε/

r∗) → 0 in probability. Plugging this in (2.25), a posteriori we find that,
ynε(τ,r)(tε(τ ))−ynε(τ,r)+1(tε(τ )) ≈ ε−1 log(1/ρ), or equivalently the limiting den-
sity is ε/ log(1/ρ).

Hereafter, we adapt the convention that m,n, i, j, k ∈ Z; s, t ∈ N; τ, τ ′ ∈ R+;
and r ∈ R. To simplify notation, we let 
g(t) := 
g(
y(t)), Bn(t) := Bn(t, 
g(t)),
B ′

n(t) := B ′
n(t, 
g(t)), Kn(t) := Kn(t, 
g(t)) and In,m(t) := In,m(t, 
g(t)), with the

consensus that an underlying process 
y(t) has been fixed. We will specify explic-
itly when a result applies only for near equilibrium initial conditions or the step
initial condition, and without specification the result holds for any initial condition

x(0) ∈ X.

PROOF OF THEOREM 2.9. This is an immediate consequence of the following
propositions, which we establish in Sections 4 and 5, respectively.

PROPOSITION 2.12. For near equilibrium initial conditions, the collection of
processes {Zε}ε is tight in C(R+ ×R).

PROPOSITION 2.13. For near equilibrium initial conditions, any limiting
point Z of {Zε}ε solves the SHE. �

PROOF OF THEOREM 2.10. We let Z̃(τ, r) := r∗ε−1(1 − ρ)Z(τ, r) so that
Z̃ε(τ, r) = Z̃(ε−3τ ε∗ τ, ε−1r∗r). The pre-factor of Z̃(τ, r) is choose so that

εr−1∗
∑

ξ∈�(0)

Z̃(0, ξ) = 1.(2.28)

Further, using the exponential decay (in |ξ |) of Z̃(0, ξ), one easily obtains
Z̃ε(0, ·) ⇒ δ(·). With this and Theorem 2.9, following the argument of [2], Sec-
tion 3, Theorem 2.10 is an immediate consequence of the following moment esti-
mates of Z̃(τ, r), which we establish in Section 4.

PROPOSITION 2.14. For the step initial condition, for any T > 0, k ≥ 1 and
v ∈ (0,1/2), there exists C = C(T , k, v) < ∞ such that∥∥Z̃(τ, r)

∥∥
2k ≤ C

(
ε3τ

)−1/2
,(2.29) ∥∥Z̃(τ, r) − Z̃

(
τ, r ′)∥∥

2k ≤ C
(
ε
∣∣r − r ′∣∣)v(

ε3τ
)−(1+v)/2

,(2.30)

for all τ ∈ (0, ε−3T ] and r, r ′ ∈ R. �

With 
x(t) = 
y(tJ ), from Theorems 2.9–2.10 we immediately obtain the fol-
lowing corollary on the convergence of 
x(t). More precisely, letting με :=
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s=0 με(s) and λε := ∑J−1

s=0 λε(s), we define

HJ
ε (τ, r) := −εxε−1r∗r+ε−3μετε∗ τ

(
ε−3τ ε∗ τ

) + (logρ − ε)
(
ε−1r∗r + ε−3μετ

ε∗ τ
)

+ log
(
ε−3λετ

ε∗ τ
)

(which is defined on R+ × R by the aforementioned linear interpolation). With
Hε(τ, r) as in (2.25), we have that HJ

ε (τ, r) = Hε(τ, r), for all τ ∈ ε3τ ε∗ −1
N and

r ∈ R. From this, Theorems 2.9–2.10 immediately imply

COROLLARY 2.15. (a) Let Z(τ, r) and Z ic(r) be as in Theorem 2.9 so that
H(τ, r) := logZ(τ, r) is the unique solution of the KPZ equation starting from
logZ ic, and let {
xε(0)}ε be a collection of near equilibrium initial conditions. If
Zε(0, ·) ⇒ Z ic(·), we have

HJ
ε ⇒ H on C

(
(0,∞) ×R

)
, as ε → 0.(2.31)

(b) Let Z̃(τ, r) be as in Theorem 2.10, let {
xε(t)}ε be started from the step initial
condition, and let H̃ J

ε (τ, x) := HJ
ε (τ, x) + log(ε−1(1 − ρ)r∗). We have

H̃ J
ε ⇒ H̃ on C

(
(0,∞) ×R

)
, as ε → 0.

REMARK 2.16. (a) In (2.31), the convergence does not include τ = 0 as we
do not assume Z ic(r) > 0.

(b) From Theorems 2.9 and 2.10, one also easily obtains corresponding conver-
gence results for Zε(τJ, r), the centered scaled exponential transform of 
x(t), but
we do not state the results explicitly here.

3. Discrete SHE, proof of Proposition 2.6.

PROOF OF LEMMA 2.3. Fixing s ∈ N and 
g ∈ (N∗)∞, we let Kn and In,i

denote Kn(s, 
g) and In,i(s, 
g), respectively, and let Kn,i := ∑
n≥i′≥i In,i′ denote

the ith partial sum of (2.4). With Bk(s, g) and B ′
k(s, g) defined as in the preceding,

we have

E
∣∣B ′

k(s, g) − Bk(s, g)
∣∣ ≤ 1 − 1

1 + α

1 − ν

1 + α
< 1, EBk(s, g) ≤ α

1 + α
< 1.

Consequently, Kn,i → Kn (as i → −∞) in Lk for all k ≥ 1.
To show Kn ∈ {0,1}, first we use the identity In,i = (B ′

n − Bn)In−1,i [which
follows from (2.3)] to obtain

Kn,i−1(s, 
g) = Kn−1,i−1(s, 
g)B ′
n(s, gn) + (

1 − Kn−1,i−1(s, 
g)
)
Bn(s, gn).(3.1)

We now show that, in fact, Kn,i ∈ {0,1} for all n ≥ i. Indeed, Kn,n = Bn ∈ {0,1}.
The general case then follows by induction on n− i ∈ N using (3.1). Consequently,
Kn,i → Kn ∈ {0,1}.

The identity (2.5) follows directly by letting i → −∞ in (3.1). �
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Turning to proving Proposition 2.6, as this does not involve the scaling ε → 0,
throughout this section we suppress the dependence of parameters on ε. We be-
gin by deriving an equation for Qn(t). Consider the time-inhomogeneous random
walk X′(t + 1) := R′(0) + R′(1) + · · · + R′(t), where R′(s), s ∈ N, are N-valued,
independent, with distribution

P
(
R′(t) = n

)
:= p′(t + 1, t, n)(3.2)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α(t)(1 − q)

1 + α(t)

(
ν + α(t)

1 + α(t)

)n−1(
1 − ν + α(t)

1 + α(t)

)
, for n > 0,

1 − α(t)(1 − q)

1 + α(t)
, for n = 0,

0, otherwise.

Let [p′(t + 1, t) ∗ Q(t)]n := ∑
m∈Z p′(t + 1, t, n − m)Qm(t) denote convolution.

PROPOSITION 3.1. For any t ∈N and n ∈ Z, we have

Qn(t + 1) = [
p′(t + 1, t) ∗ Q(t)

]
n + Qn(t)W

′
n(t),(3.3)

where W ′
n(t) := (q − 1)Kn(t). Further, for any n1, n2 ∈ Z,

Qn1(t)Qn2(t)E
(
W ′

n1
(t)W ′

n2
(t)|F (t)

)
(3.4)

=
(

ν + α(t)

1 + α(t)

)|n1−n2|
�′

1(t, n1 ∧ n2)�
′
2(t, n1 ∧ n2),

where �′
1(t, n) := qQn(t) − [p′(t + 1, t) ∗ Q(t)]n and �′

2(t, n) := [p′(t + 1, t) ∗
Q(t)]n − Qn(t).

PROOF. Fixing t ∈ N, to simplify notation we let E′(·) denote E(·|F (t)). We
begin by proving (3.3). With Qn(t) := qyn(t)+n, a generic jump yn(t) �→ yn(t) + 1
of particles decreases Qn(t) by (1 − q)Qn(t). Consequently,

Qn(t + 1) − Qn(t) = (q − 1)Qn(t)Kn(t)

= (q − 1)Qn(t)E′(Kn(t)
) + Qn(t)W

′
n(t).

With Kn(t) as in (2.4), we have

E′(Kn(t)
) = ∑

m:n≥m

ν + α(t)

1 + α(t)
qgn(t) · · · ν + α(t)

1 + α(t)
qgm+1(t)

(3.5)

× α(t)

1 + α(t)

(
1 − qgm(t)).
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Multiplying both sides by (q − 1)Qn(t), and then using the readily verify identity

Qn(t)q
gn(t)+gn−1(t)+···+gm′+1(t) = Qm′(t),(3.6)

we obtain

(q − 1)Qn(t)E′(Kn(t)
) = [

p′(t + 1, t) ∗ Q(t)
]
n − Qn(t),(3.7)

whereby (3.3) follows.
Turning to (3.4), without lost of generality we assume n1 ≥ n2. With W ′

n(t) de-
fined as in the proceeding, we have E′(W ′

n1
(t)W ′

n2
(t)) = (q − 1)2 Cov′(Kn1(t),

Kn2(t)), where Cov′(Kn1(t),Kn2(t)) := E′(Kn1(t)Kn2(t)) − E′(Kn1(t))E
′ ×

(Kn2(t)). Letting Ĩn1,n2(t) := ∏
n1≥k>n2

(B ′
k(t) − Bk(t)), with Kn1(t) as in (2.4),

we have

Kn1(t) = ∑
n1≥m>n2

In1,m(t) + Ĩn1,n2(t)Kn2(t),

for all n1 ≥ n2. Multiply both sides by Kn2(t), using Kn2(t)
2 = Kn2(t), and then

take the expectation E′(·) on both sides. With {Bk(s),B
′
k(s)}k being independent,

we obtain that

E′(Kn1(t)Kn2(t)
) =

( ∑
n1≥m>n2

E′(In1,m(t)
) + E′(Ĩn1,n2(t)

))
E′(Kn2(t)

)
.

Subtracting E′(Kn1(t))E
′(Kn2(t)) = [∑m:n1≥m E′(In1,m(t))]E′(Kn2(t)) from the

last expression yields

Cov′(Kn1(t)Kn2(t)
) =

(
− ∑

m:n2≥m

E′(In1,m(t)
) + E′(Ĩn1,n2(t)

))
E′(Kn2(t)

)
.

Further using E′(In1,m(t)) = E′(In2,m(t))E′(Ĩn1,n2(t)), we arrive at

Cov′(Kn1(t)Kn2(t)
) = E′(Ĩn1,n2(t)

)(−E′(Kn2(t)
) + 1

)
E′(Kn2(t)

)
.(3.8)

With E′(Ĩn1,n2(s)) = (ν+α(t)
1+α(t)

)
n2−n1

qgn1 (t)+···+gn2+1(t), multiplying both sides of

(3.8) by (q − 1)2Qn1(t)Qn2(t), and then applying (3.6)–(3.7), we conclude (3.4).
�

We next introduce a centering to R′(t). Let

σ(t) := (amodJ (t))
2 − (amodJ (t)+1)

2 + (amodJ (t) − amodJ (t)+1)
(
b + b′).(3.9)

LEMMA 3.2. For any t ∈ N, we have E(λ(t)ρR′(t)) = 1, so that

P
(
R(t) + μ(t) = n

) := λ(t)ρnP
(
R′(t) = n

)
, n ∈ N(3.10)

defines an (N− μ(t))-valued random variable. Further, E(R(t)) = 0 and

E
(
R(t)2) = r2∗σ(t).(3.11)
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PROOF. Fixing t ∈ N, we consider the function

f (x) := E
(
λ(t)xR′(t))

= λ(t)

[(
1 − (1 − q)α(t)

1 + α(t)

)
(3.12)

+
∞∑
i=1

xi (1 − q)α(t)

1 + α(t)

(
ν + α(t)

1 + α(t)

)i−1 1 − ν

1 + α(t)

]

= λ(t)
1 − νx + qα(t) − qα(t)x

1 − νx + α(t) − α(t)x
.

With λ(t) defined as in (2.10), specializing (3.12) at x = ρ we obtain f (ρ) = 1,
thereby concluding E(λ(t)ρR′(t)) = 1. Next, differentiating f (x) yields(

x
d

dx
f

)
(ρ) = E

(
λ(t)ρR′(t)R′(t)

) = E
(
R(t) + μ(t)

)
,(3.13) (

x
d

dx

(
x

d

dx
f

))
(ρ) = E

(
λ(t)ρR′(t)R′(t)2) = E

((
R(t) + μ(t)

)2)
.(3.14)

Plugging (3.12) into the LHS of (3.13)–(3.14) and specializing at x = ρ, after
some tedious but straightforward calculations, one obtains (x

df
dx

)(ρ) = μ(t) and
(x d

dx
(x d

dx
f ))(ρ) = μ(t)2 + r2∗σ(t), thereby concluding E(R(t)) = 0 and (3.11).

�

PROOF OF PROPOSITION 2.6. With [p′(t + 1, t) ∗ Q(t)]n = E(Qn−R′(t)(t))
and [p(t + 1, t) ∗Z(t)](ξ) = E(Z(t, ξ −R(t))), we have the readily verified iden-
tity

λ̂(t + 1)ρξ+μ̂(t+1)[p′(t + 1, t) ∗ Q(t)
]
ξ+μ̂(t+1)

(3.15)
= [

p(t + 1, t) ∗ Z(t)
]
(ξ),

for all ξ ∈ �(t). In (3.3), we set n = ξ + μ̂(t + 1), and multiply both sides by
λ̂(t + 1)ρξ+μ̂(t+1). Using (2.11) and (3.15), we obtain

Z(t + 1, ξ) = [
p(t + 1, t) ∗ Z(t)

]
(ξ) + Z

(
t, ξ + μ(t)

)
W

(
t, ξ + μ(t)

)
.(3.16)

Iterating this equation from t = t2 − 1 until t = t1, we thus conclude (2.14).
To derive (2.17), in (3.4), we set n1 = ξ1 +μ̂(t) and n2 = ξ2 +μ̂(t), and multiply

both sides by λ̂(t + 1)2ρξ1+μ̂(t)ρξ2+μ̂(t). Using (2.11) and (3.15) to express the
resulting equation in terms of Z(t, ·) and p(t + 1, t, ·), we thus conclude (2.17).

�
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4. Moment estimates: Proof of Propositions 2.12 and 2.14. Hereafter, we
let C(u1, u2, . . .) denote a generic finite positive constant that depends only on the
designated variables u1, u2, . . . and possibly on α > 0, ν ∈ [0,1) and ρ ∈ (0,1),
which are fixed throughout the paper.

LEMMA 4.1. The function φ(x, ε; t) := E(xRε(t)) extends analytically in
(x, ε) to a neighborhood of (1,0) ∈ C

2, with the Taylor expansion

φ(x, ε; t) = 1 + 2−1(
∂xxεφ(1,0; t))ε(x − 1)2 + O

(
ε|x − 1|3)

,(4.1)

and ∂xxεφ(1,0; t) ∈ (0,∞).

PROOF. Since Rε(t) is defined by R′
ε(t) as in (3.10), we clearly have

φ(x, ε; t) = E
(
λε(t)ρ

R′
ε(t)xR′

ε(t)−με(t)
)
.(4.2)

By (3.12), the function E(λε(t)x
R′

ε(t)) is analytic in (x, ε) within a neighborhood
of (ρ,0), whereby φ(x, ε; t) is analytic within a neighborhood of (1,0). To ob-
tain the Taylor expansion (4.1), we differentiate (4.2) in x, and then specialized at
x = 1, thereby obtaining

∂xφ(1, ε; t) = E
(
λε(t)ρ

R′
ε(t)

(
R′

ε(t) − με(t)
)) = E

(
Rε(t)

) = 0,(4.3)

∂xxφ(1, ε; t) = E
(
λε(t)ρ

R′
ε(t)

(
R′

ε(t) − με(t)
)2) = E

(
Rε(t)

2) = r2∗σε(t).(4.4)

With σε(t) defined as in (3.9), we have

σε(t) = εαγ (1 + αγ )−3(
2αγ + (

b + b′)(1 + αγ )
) + O

(
ε2)

.(4.5)

From (4.3)–(4.5), we conclude that ∂n
x ∂m

ε φ(1,0; t) = 0, unless n ≥ 2 and m ≥ 1,
and that ∂xxεφ(1,0; t) > 0, thereby obtaining (4.1). �

Based on Lemma 4.1, we proceed to estimating of the heat kernel.

PROPOSITION 4.2. Given any u,T > 0 and v ∈ (0,1], there exists C =
C(T ,u) such that∑

ζ∈�(t2,t1)

pε(t2, t1, ζ )euε|ζ | ≤ C,(4.6)

∑
ζ∈�(t2,t1)

|ζ |vpε(t2, t1, ζ )euε|ζ | ≤ C
(
ε|t2 − t1|)v/2

,(4.7)

pε(t2, t1, ξ) ≤ Cε−1/2(t2 − t1 + 1)−1/2,(4.8) ∣∣pε(t2, t1, ξ) − pε

(
t2, t1, ξ

′)∣∣ ≤ Cε−(1+v)/2∣∣ξ − ξ ′∣∣v(t2 − t1 + 1)−(1+v)/2,(4.9)

for all t1 ≤ t2 ∈ [0, ε−3T ] ∩N and ξ, ξ ′ ∈ �(t2).
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PROOF. To prove (4.6), we consider F1(u
′) := eu′(Rε(t1)+···+Rε(t2−1)). With

E(F1(u
′)) = ∑

ζ∈�(t2,t1)
pε(t2, t1, ζ )eu′ζ and eεu|ζ | ≤ eεuζ + e−εuζ , to show (4.6),

it suffices to bound the expression E(F1(u
′)) = ∏t2−1

s=t1
φ(eu′

, ε; s), for u′ = ±uε.

This, by (4.1), is bounded by [1 +Cε(eu′ − 1)2]t2−t1 . With t2 − t1 ≤ ε−3T , the last
expression is bounded by C = C(T ,u), from which we conclude (4.6).

Turning to showing (4.7), we let F2 := Rε(s1)+· · ·+Rε(s2 − 1). Similar to the
preceding, it suffices to bound the expression∑

ζ∈�(s1,s2)

|ζ |vpε(s1, s2, ζ )eu′ζ = E
(
F1

(
u′)|F2|v) ≤ ∥∥F1

(
u′)∥∥

2/(2−v)

∥∥|F2|v
∥∥

2/v,

for u′ = ±uε, where we used Hölder’s inequality in the last inequality. With
(F1(u

′))2/(2−v) = F1(2u′/(2 − v)), applying (4.6) for u = 2u/(2 − v) we obtain
‖F1(±uε)‖2/(2−v) ≤ C. As for F2, with E(Rε(s)) = 0 and (3.11), we have∥∥|F2|v

∥∥
2/v = [

E(F2)
2]v/2 = [

E
(
Rε(t1)

2) + · · · + E
(
Rε(t2 − 1)2)]v/2

≤ C
[
σε(t1) + · · · + σε(t2 − 1)

]v/2
.

Further using (4.5), we thus obtain ‖|f2|v‖2/v ≤ C(ε|t2 − t1|)v/2, thereby conclud-
ing (4.7).

Proceeding to showing (4.8)–(4.9), first we apply the inversion formula of the
characteristic function, pε(t2, t1, ζ ) = 1

2π i

∫ π
−π e−iζ r ∏t2−1

s=t1
φ(eir , ε; s) dr and the

uniform v-Hölder continuity of x �→ eix , x ∈ R, to obtain

pε(t2, t1, ξ) ≤ C

∫ π

−π

t2−1∏
s=t1

∣∣φ(
eir , ε; s)∣∣dr,(4.10)

∣∣pε(t2, t1, ξ) − pε

(
s1, s2, ξ

′)∣∣ ≤ C

∫ π

−π

(∣∣ξ − ξ ′∣∣r)v t2−1∏
s=t1

∣∣φ(
eir , ε; s)∣∣dr.(4.11)

To further bond these expressions, we apply (4.1) for x = eir to obtain∣∣φ(
eir , ε; s)∣∣ ≤ 1 − εr2/C, ∀s ∈N,∀r ∈ R with |r| ≤ r0,(4.12)

where r0 > 0 is a constant. As for |r| > r0, we let f (n, ε; s) := P(Rε(s) = n −
με(s)), whereby φ(eir , ε; s) = ∑

n∈N eir(n−με(s))f (n, ε; s). Expressing the n = 0
term as the sum of e−irμε(s)f (1, ε; s) and e−irμε(s)(f (0, ε; s) − f (1, ε; s)), and
then combining the former with the n = 1 term, we obtain

φ
(
eir , ε; s) = e−irμε(s)

(
1 + eir)f (1, ε; s) + e−irμε(s)

(
f (0, ε; s) − f (1, ε; s))

+ ∑
n>1

eir(n−με(s))f (n, ε; s).
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Taking the absolute value of this yields∣∣φ(
eir , ε; s)∣∣ ≤ ∣∣1 + eir ∣∣f (1, ε; s)

(4.13)
+ ∣∣f (0, ε; s) − f (1, ε; s)∣∣ + ∑

n>1

f (n, ε; s).

By (3.2) and (3.10), we find that f (0, ε; s) > f (1, ε; s) > ε/C. Using this and∑∞
n=0 f (n, ε; s) = 1 in (4.13), we then obtain the bound∣∣φ(

eir , ε; s)∣∣ ≤ f (1, ε; s)∣∣1 + eir ∣∣ + (
1 − 2f (1, ε; s)) ≤ 1 − ε/C,

(4.14)
∀s ∈ N, |r| > r0.

Now, combining (4.12) and (4.14), we thus obtain |φ(eir , ε; s)| ≤ 1 − εr2/C, for
all r ∈ R and s ∈ N. Plugging this in (4.10)–(4.11), we conclude

∏t2−1
s=t1

|φ(eir , ε;
s)| ≤ e−εr2(t2−t1)/C , for all ε ∈ (0,1] and r ∈ (−π,π). Using this, further integrat-
ing over r ∈ (−π,π), we conclude (4.8)–(4.9). �

Next, we derive bounds on moments of Zmg(t2, t1, ξ) [as in (2.16)] and
Z∇,mg(t2, t1, ξ, ξ ′) := Zmg(t2, t1, ξ) − Zmg(t2, t1, ξ

′). Hereafter, we adapt the
shorthand notation ξ±t := ξ ± μ(t).

LEMMA 4.3. For any T > 0, k ≥ 1 and v ∈ [0,1], there exists C = C(k,T )

such that for all t1 ≤ t2 ∈ N∩ [0, ε−3T ] and ξ ∈ �(t1),

∥∥Zmg(t2, t1, ξ)
∥∥2

2k
≤ Cε3/2

t2−1∑
s=t1

[
pε(s) ∗ ∥∥Z(s)

∥∥2
2k

]
(ξ),(4.15)

∥∥Z∇,mg
(
t2, t1, ξ, ξ ′)∥∥2

2k
≤ Cε(3−v)/2∣∣ξ − ξ ′∣∣v t2−1∑

s=t1

([
pε∇(s) ∗ ∥∥Z(s)

∥∥2
2k

]
(ξ)

(4.16)
+ [

pε∇(s) ∗ ∥∥Z(s)
∥∥2

2k

](
ξ ′)),

where pε(s, ζ ) := (|t2 − s| + 1)−1/2pε(t2, s, ζ ) and pε∇(s, ζ ) := (|t2 − s| +
1)−(1+v)/2pε(t2, s, ζ ).

PROOF. Fix t1 ≤ t2 ∈ N and ξ, ξ ′ ∈ �(t1). To prove (4.15), we estimate the
corresponding quadratic variation. To this end, letting F(s, ζ ) := [pε(t2, s + 1) ∗
(Z(s)W(s))](ζ ), we consider the discrete time martingales

M(t) :=
t−1∑
s=t1

F(s, ξ+s), M∇(t) :=
t−1∑
s=t1

(
F(s, ξ+s) − F

(
s, ξ ′+s

))
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with the respectively predictable compensator VM(s) := E[F(s, ξ+s)
2|F (s)] and

V ∇
M(s) := E[(F (s, ξ+s) − F(s, ξ ′+s))

2|F (s)]. With M(t2) = Zmg(t2, t1, ξ) and
M∇(t2) = Z∇,mg(t2, t1, ξ, ξ ′), applying Burkholder’s inequality we obtain

∥∥Zmg(t2, t1, ξ)
∥∥2

2k ≤ C

t2−1∑
s=t1

∥∥VM(s)
∥∥

2k,

(4.17) ∥∥Z∇,mg
(
t2, t1, ξ, ξ ′)∥∥2

2k ≤ C

t2−1∑
s=t1

∥∥V ∇
M(s)

∥∥
2k.

Having derived the inequality (4.17), we now proceed to estimating |VM(s)| and
|V ∇

M(s)|. By (2.17), we have

VM(s) = ∑
ζ1,ζ2∈�(s)

p̂ε(s, ζ1, ζ2)

(
(ν + α(s))ρ

1 + α(s)

)|ζ1−ζ2|

(4.18)
× �1(s, ζ1 ∧ ζ2)�2(s, ζ1 ∧ ζ2),

V ∇
M(s) = ∑

ζ1,ζ2∈�(s)

p̂ε∇(s, ζ1, ζ2)

(
(ν + α(s))ρ

1 + α(s)

)|ζ1−ζ2|

(4.19)
× �1(s, ζ1 ∧ ζ2)�2(s, ζ1 ∧ ζ2),

where p̂ε(s, ζ1, ζ2) := pε(t2, s, ξ+s − ζ1)pε(t2, s, ξ+s − ζ2), and

p̂ε∇(s, ζ1, ζ2) := ∏
k=1,2

[
pε(t2, s, ξ+s − ζk) − pε

(
t2, s, ξ

′+s − ζk

)]
.

To bound VM(s) and V ∇
M(s), set (ζ, ζ ′) := (ζ1 ∧ ζ2, ζ1 − ζ2) in (4.18)–(4.19),

whereby
∑

ζ1,ζ2∈�(s) = ∑
ζ ′∈Z

∑
ζ∈�(s); take absolute value on both sides of

(4.18)–(4.19); then, use (4.8) in (4.18) to bound |p̂ε(s, ζ1, ζ2)| by Cε−1/2pε(s +
1, ξ+s − ζ ); and similarly use (4.9) in (4.19) to bound |p̂ε∇(s, ζ1, ζ2)| by
Cε−(1+v)/2|ξ − ξ ′|v[pε∇(s + 1, ξ−s − ζ ) + pε∇(s + 1, ξ ′+s − ζ )]. Upon summing
over ζ ′, we obtain∣∣VM(s)

∣∣ ≤ Cε−1/2[
pε(s + 1) ∗ (

�1(s)�2(s)
)]

(ξ+s),(4.20) ∣∣V ∇
M(s)

∣∣ ≤ Cε−(1+v)/2∣∣ξ − ξ ′∣∣v([
pε∇(s + 1) ∗ (

�1(s)�2(s)
)]

(ξ+s)
(4.21)

+ [
pε∇(s + 1) ∗ (

�1(s)�2(s)
)](

ξ ′+s

))
.

With (4.20)–(4.21), we now turn to estimating |�1(s, ζ )| and |�2(s, ζ )|. To this
end, we let

L̂ε(s, ζ ) := pε(s + 1, s, ζ ) − 1{ζ=−με(s)}, ζ ∈ (
N− με(s)

)
(4.22)



1788 I. CORWIN AND L.-C. TSAI

denote a pseudo generator [as the true generator is Lε(s, ζ ) := pε(s + 1, s, ζ ) −
1{ζ=0}], and then rewrite �1(s, ζ ) and �2(s, ζ ) [as in (2.18)–(2.19)] as

�1(s, ζ ) = (
qελε(t) − 1

)
Z(s, ζ ) − [

L̂ε(s) ∗ Z(s)
](

ζ − μ(s)
)
,(4.23)

�2(s, ζ ) = (
1 − λε(t)

)
Z(s, ζ ) + [

L̂ε(s) ∗ Z(s)
](

ζ − μ(s)
)
.(4.24)

By using (3.2) and (3.10), with (1 − qε) ≤ Cε, it is not hard to show that

∣∣L̂ε(s, ζ )
∣∣ ≤ Cε

(
(ν + αε(s))ρ

1 + αε(s)

)|ζ |
,(4.25)

for some C < ∞. Further, with Z(s, ζ ′) defined as in (2.11), using (3.6) we have

Z
(
s, ζ ′) = ρζ ′−ζ q

∑
gaps

ε Z(s, ζ ) ≤ ρ−|ζ−ζ ′|Z(s, ζ ), ∀ζ ≥ ζ ′.

Using this and (4.25) in (4.23)–(4.24), we thus obtain |�1(s, ζ )|, |�2(s, ζ )| ≤
CεZ(s, ζ ). Plugging this in (4.18)–(4.19), we now arrive at∣∣VM(s)

∣∣ ≤ Cε3/2[
pε(s + 1) ∗ Z(s)2]

(ξ+s),(4.26) ∣∣V ∇
M(s)

∣∣ ≤ Cε(3−v)/2∣∣ξ − ξ ′∣∣v([
pε∇(s + 1) ∗ Z(s)2]

(ξ+s)
(4.27)

+ [
pε∇(s + 1) ∗ Z(s)2](

ξ ′+s

))
.

Further, by (4.25), we have pε(s + 1, s,−με(s)) > 1 − Cε, whereby Z(s, ζ )2 ≤
C[p(s + 1, s) ∗ Z(s)2](ζ−s). Plugging this in (4.26)–(4.27), using the semigroup
property [pε(t, s + 1) ∗ pε(s + 1, s)](ζ ) = pε(t, s, ζ ), we further obtain∣∣VM(s)

∣∣ ≤ Cε3/2[
pε(s) ∗ Z(s)2]

(ξ),∣∣V ∇
M(s)

∣∣ ≤ Cε(3−v)/2∣∣ξ − ξ ′∣∣v([
pε∇(s) ∗ Z(s)2]

(ξ) + [
pε∇(s) ∗ Z(s)2](

ξ ′)).
Now, taking the Lk-norm of both sides, and then combining the result with (4.17),
we thus conclude (4.15)–(4.16). �

Based on (4.15), we establish a chaos-series-type bound on the moment of
Z(t, ξ).

LEMMA 4.4. For any k ≥ 1, t ∈ N and ξ ∈ �(t),∥∥Z(t, ξ)
∥∥2

2k ≤ ([
pε(t,0) ∗ ∥∥Z(0)

∥∥
2k

]
(ξ)

)
(4.28)

×
∞∑

n=0

∑

s∈�n+1(t)

hε(s1) · · ·hε(sn)
([

pε(sn+1,0) ∗ ∥∥Z(0)
∥∥

2k

]
(ξ)

)
,

where hε(s) := Cε3/2(s + 1)−1/2, C = C(k) < ∞, and �n(t) := {(s1, . . . , sn) ∈
(Z≥1)

n : s1 + · · · + sn = t}.
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REMARK 4.5. Note that �n(t) = ∅ for all n > t , so the sum over n in (4.28)
is in fact finite.

PROOF OF LEMMA 4.4. In (2.14), set (t1, t2) = (0, t), applying the elementary
inequality |x + y|2 ≤ 2|x|2 + 2|y|2 and then taking the Lk-norm of both sides, we
obtain ‖Z(t, ξ)‖2

2k ≤ 2‖Zdr(t,0, ξ)‖2
2k + 2‖Zmg(t,0, ξ)‖2

2k
. For the first term on

the RHS, by the triangle inequality we clearly have ‖Zdr(t,0, ξ)‖2k ≤ [pε(t,0) ∗
‖Z(0)‖2k](ξ), and for second term we apply (4.15). With this, we thus obtain∥∥Z(t, ξ)

∥∥2
2k ≤ 2

([
pε(t,0) ∗ ∥∥Z(0)

∥∥
2k

]
(ξ)

)2

(4.29)

+ C1

t−1∑
s=0

(t − s + 1)−1/2[
pε(t, s) ∗ ∥∥Z(s)

∥∥2
2k

]
(ξ),

for some C1 = C1(k) < ∞. Let hε(s) := 2C1(s + 1)−1/2. The bound (4.28)
now follows by iterating (4.29), using the semi-group property [pε(s3, s2) ∗
p(s2, s1)](ζ ) = [pε(s3, s1)](ζ ). �

PROOF OF PROPOSITION 2.12. Fix a collection of near equilibrium initial
condition, with the corresponding u = u(k, v) (as in Definition 2.8), and fix T <

∞, k ≥ 1 and v ∈ [0,1/2). We prove the following moment estimates:∥∥Z(t, r)
∥∥

2k ≤ Ceuε|r|,(4.30) ∥∥Z(τ, r) − Z
(
τ, r ′)∥∥

2k ≤ C
(
ε
∣∣r − r ′∣∣)veuε(|r|+|r ′|),(4.31) ∥∥Z(τ, r) − Z

(
τ ′, r

)∥∥
2k ≤ C

(
ε3∣∣τ ′ − τ

∣∣)v/2
e2uε|r|,(4.32)

for some C = C(T , k, v) < ∞ and for all τ, τ ′ ∈ [0, ε−3T ], r, r ′ ∈ R and ε > 0
small enough. These estimates, by the Kolmogorov–Chentsov criterion of tight-
ness [17], Corollary 14.9, immediately imply the tightness of {Zε(·, ·)} in C(R+ ×
R).

By definition, Z(τ, r) is defined on R+ ×R by linear interpolation, so without
lost of generality we assume τ = t, τ ′ = t ′ ∈ N ∩ [0, ε−3T ] and r = ξ, r ′ = ξ ′ ∈
�(t), and prove (4.30)–(4.32) as follows. �

PROOF OF (4.30). By (2.26), we have [pε(t,0) ∗ ‖Z(0)‖2k](ξ) ≤∑
ζ∈�(0) pε(t,0, ξ − ζ )(Ceuε|ζ |). In the last expression, using euε|ζ | ≤ euε|ζ−ξ | ×

euε|ξ | and then using (4.6) to sum over ζ , we obtain [pε(t,0) ∗ ‖Z(0)‖2k](ξ) ≤
Cεuε|ξ |. Now, plugging this in (4.28), we arrive at

∥∥Z(t, ξ)
∥∥2

2k ≤ Ce2uε|ξ |
∞∑

n=0

∑

s∈�n+1(t)

hε(s1) · · ·hε(sn).(4.33)
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For each n, further applying the readily verified inequality∑

s∈�n+1(t)

hε(s1) · · ·hε(sn) ≤
∫
τ1+···+τn≤t

n∏
i=1

(
Cε3/2τ

−1/2
i dτi

)

= [C�(1/2)(ε3t)1/2]n
n�(n/2)

,

and then summing over n in (4.33), we thus conclude (4.30). �

PROOF OF (4.31). Let Z∇(t, ξ, ξ ′) := Z(t, ξ)−Z(t, ξ ′) and Z∇,dr(t, ξ, ξ ′) :=
Zdr(t,0, ξ) − Zdr(t,0, ξ ′). By (2.14), we have Z∇(t, ξ, ξ ′) = Z∇,dr(t, ξ, ξ ′) +
Z∇,mg(t,0, ξ, ξ ′), whereby∥∥Z∇

(
t, ξ, ξ ′)∥∥2

2k ≤ 2
∥∥Z∇,dr

(
t, ξ, ξ ′)∥∥2

2k + 2
∥∥Z∇,mg

(
t,0, ξ, ξ ′)∥∥2

2k.(4.34)

Letting 2(Z∗∇,dr)
2 and 2(Z∗∇,mg)

2 denote the respective terms on the RHS, we esti-
mate these terms as follows.

For Z∗∇,dr, by the triangle inequality we clearly have Z∗∇,dr ≤ ∑
ζ∈�(t,0) pε(t,0,

ζ )‖Z(0, ξ − ζ ) − Z(0, ξ ′ − ζ )‖2k . Using (2.27) in the last expression to replace
‖Z(0, ξ − ζ ) − Z(0, ξ ′ − ζ )‖2k with C(ε|ξ − ξ ′|)veuε(|ξ−ζ |+|ξ ′−ζ |) ≤ C(ε|ξ −
ξ ′|)veuε(|ξ |+|ξ ′|)e2u|ζ |, and then using (4.6) to sum over ζ , we obtain the desired
bound Z∗∇,dr ≤ C(ε|ξ − ξ ′|)veuε(|ξ |+|ξ ′|).

Turning to Z∗∇,mg, first we use (4.30) to obtain [pε(t, s) ∗ ‖Z(s)‖2
2k](ξ ′′) ≤∑

ζ∈�(s) pε(t, s, ξ
′′−ζ )(Ce2uε|ζ |). Further replacing e2uε|ζ | with e2uε|ξ ′′−ζ |e2uε|ξ ′′|,

and then using (4.6) to sum over ζ , we obtain[
pε(t, s) ∗ ∥∥Z(s)

∥∥2
2k

](
ξ ′′) ≤ Ce2uε|ξ ′′|.(4.35)

Now, specializing (4.16) at (t1, t2) = (0, t), and combining the result with (4.35)
for ξ ′′ = ξ and ξ ′′ = ξ ′, we obtain

(
Z∗∇,mg

)2 ≤ C
(
ε
∣∣ξ − ξ ′∣∣)2v

ε3/2−3v
t−1∑
s=0

(t − s + 1)−(1+2v)/2

(4.36)
× ∑

ζ∈�(s)

(
pε(t, s, ξ − ζ ) + pε

(
t, s, ξ ′ − ζ

))
e2uε|ζ |.

In (4.36), use e2uε|ζ | ≤ (euε|ξ−ζ | + euε|ξ ′−ζ |)euε(|ξ |+|ξ ′|), and then use (4.6) to sum
over ζ . With t ≤ ε−3T , further summing over s we obtain the desired bound
(Z∗∇,mg)

2 ≤ C(ε|ξ −ξ ′|)2veuε(|ξ |+|ξ ′|). Combining the preceding estimates of Z∗∇,dr
and Z∗∇,mg with (4.34), we conclude (4.31). �

PROOF OF (4.32). Without lost of generality, we assume t ′ ≤ t . By (2.14), we
have

Z(t, ξ) − Z
(
t ′, ξ

) = (
Zdr

(
t, t ′, ξ

) − Z
(
t ′, ξ

)) + Zmg
(
t, t ′, ξ

)
.
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Similar to the preceding, we bound separately Z∗
dr := ‖Zdr(t, t

′, ξ) − Z(t, ξ)‖2k

and Z∗
mg := ‖Zmg(t, t

′, ξ)‖2k .
For Z∗

dr, with
∑

ζ∈�(t ′) pε(t, t
′, ξ − ζ ) = 1, we have(

Zdr
(
t, t ′, ξ

) − Z
(
t ′, ξ

)) = ∑
ζ∈�(t ′)

pε

(
t, t ′, ξ − ζ

)(
Z

(
t ′, ζ

) − Z
(
t ′, ξ

))
.

Take the L2k-norm on both sides, and then use (4.31) to replace ‖Z(t ′, ζ ) −
Z(t ′, ξ)‖2k with C(ε|ξ −ζ |)veuε(|ξ |+|ζ |) ≤ C(ε|ξ −ζ |)veuε|ξ−ζ |+2uε|ξ |. Using (4.7)
to sum over ζ , we then obtain the derided bound Z∗

dr ≤ C(ε3|t − t ′|)v/2e2uε|ξ |.
As for Z∗

mg, combining (4.15) and (4.35), one obtains (Z∗
mg)

2 ≤ Ce2uε|ξ | ×∑t−1
s=t ′ ε

3/2(t − s + 1)−1/2. With t ≤ ε−3T , summing over s we obtain the desired
bound (Z∗

mg)
2 ≤ Ce2uε|ξ |(ε3|t − t ′|)1/2 ≤ Ce2uε|ξ |(ε3|t − t ′|)v . �

This completes the proof of Proposition 2.12. We now turn to the proof of
Proposition 2.14.

PROOF OF PROPOSITION 2.14. As explained at the beginning of the proof
of Proposition 2.12, without lost of generality we let τ = t ∈ N ∩ (0, ε−3T ] and
r = ξ, r ′ = ξ ′ ∈ �(t).

To show (2.29), multiply both sides of (4.28) by [r∗ε−1(1 − ρ)]2 to obtain∥∥Z̃(t, ξ)
∥∥2

2k ≤ ([
pε(t,0) ∗ Z̃(0)

]
(ξ)

)
(4.37)

×
∞∑

n=0

∑

s∈�n+1(t)

hε(s1) · · ·hε(sn)
([

pε(sn+1,0) ∗ Z̃(0)
]
(ξ)

)
.

Note that here Z̃(0, ξ) is deterministic. By (4.8) and (2.28), we have[
pε(t,0) ∗ Z̃(0)

]
(ξ) ≤ C

[
ε3(t + 1)

]−1/2
.(4.38)

Applying this to the last term in (4.37), we arrive at∥∥Z̃(t, ξ)
∥∥2

2k ≤ C
([

pε(t,0) ∗ Z̃(0)
]
(ξ)

)
×

∞∑
n=0

∑

s∈�n+1(t)

hε(s1) · · ·hε(sn)
[
ε3(sn+1 + 1)

]−1/2
.

Further, for each n applying the readily verified inequality∑

s∈�n+1(t)

hε(s1) · · ·hε(sn)
[
ε3(sn+1 + 1)

]−1/2

≤
∫
τ1+···+τn+1=t

(
ε3τn+1

)−1/2
n∏

i=1

(
Cε3/2τ

−1/2
i dτi

) = (C�(1/2)ε3t)
n+1

�((n + 1)/2)
,
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and summing over n, with t ≤ ε−3T , we obtain∥∥Z̃(t, ξ)
∥∥2

2k ≤ C
([

pε(t,0) ∗ Z̃(0)
]
(ξ)

)(
ε3t

)−1/2
.(4.39)

Using again (4.38), we thus conclude (2.29).
Turning to showing (2.30), we let Z̃∇(t, ξ, ξ ′) denote Z̃(t, ξ) − Z̃(t, ξ ′) =

r∗ε−1(1 − ρ)(Z(t, ξ) − Z(t, ξ ′)), and similarly for Z̃∇,dr(t, ξ, ξ ′) and Z̃∇,mg(t,

ξ, ξ ′). Multiplying both sides of (4.34) by (r∗ε−1(1 − ρ))2, we obtain∥∥Z̃∇
(
t, ξ, ξ ′)∥∥2

2k ≤ 2Z̃∇,dr
(
t, ξ, ξ ′)2 + 2

∥∥Z̃∇,mg
(
t, ξ, ξ ′)∥∥2

2k.(4.40)

Let 2(Z̃∗∇,dr)
2 and 2(Z̃∗∇,mg)

2 denote the respective terms on the RHS. We estimate
them as follows.

For Z̃∗∇,dr, combining (4.9) for (s1, s2) = (0, t) and (2.28) we obtain the desired

bound Z̃∗∇,dr ≤ (ε|ξ − ξ ′|)v(ε3t)−(v+1)/2. As for Z̃∗∇,mg, multiplying both sides

of (4.16) by (r∗ε−1(1 − ρ))2, we obtain(
Z̃∗∇,mg

)2 ≤ Cε(3−6v)/2(
ε
∣∣ξ − ξ ′∣∣)2v

×
t−1∑
s=0

(t − s + 1)−(2v+1)/2([
pε(t, s) ∗ ∥∥Z̃(s)

∥∥2
2k

]
(ξ)(4.41)

+ [
pε(t, s) ∗ ∥∥Z̃(s)

∥∥2
2k

](
ξ ′)).

Plugging (4.39) in (4.41), and summing over s, with t ≤ ε−3T , we obtain(
Z̃∗∇,mg

)2 ≤ C
(
ε
∣∣ξ − ξ ′∣∣)2v([

pε(t,0) ∗ Z̃(0)
]
(ξ) + [

pε(t,0) ∗ Z̃(0)
](

ξ ′)).
In the last expression, further using (4.38), we obtain the desired bound (Z̃∗∇,mg)

2 ≤
C(ε|ξ − ξ ′|)2v(ε3t)−1/2 ≤ C(ε|ξ − ξ ′|)2v(ε3t)−(v+1). Combining the preceding
bounds on Z̃∗∇,dr and Z̃∗∇,dr we conclude (2.30). �

5. The martingale problem: Proof of Proposition 2.13. Hereafter, we use
Bε(s, 
ζ ) and Eε(s, 
ζ ), 
ζ = (ζ1, . . . , ζn), to denote respectively generic processes
that are uniformly bounded and uniformly vanishing, that is,

sup
{∥∥Bε(s, 
ζ )

∥∥
k : 
ζ ∈ (

ε−1U
)n

, s ≤ T ε−3, ε ∈ (0,1]} < ∞,

sup
{∥∥Eε(s, 
ζ )

∥∥
k : 
ζ ∈ (

ε−1U
)n

, s ≤ T ε−3} −→ 0, as ε → 0,

for any compact U ⊂R, k ≥ 1 and T > 0.
We begin by deriving an approximate expression for the cross variance as

in (2.17).
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LEMMA 5.1. For near equilibrium initial conditions, we have

Z(s, ζ1)Z(s, ζ2)E
(
W(s, ζ1)W(s, ζ2)|F (s)

)
(5.1)

= ε2 αγ

(1 + αγ )2

(
(ν + α(s))ρ

1 + α(s)

)|ζ1−ζ2|(
Z(s, ζ1 ∧ ζ2)

2 + Eε(s, ζ1, ζ2)
)
.

PROOF. We prove (5.1) by approximating the identities (4.23)–(4.24), using
the moment estimate (4.31). By (2.21) we have (qελε(t) − 1) = −ε(1 + αγ )−1 +
O(ε2), so that (qελε(t) + 1)Z(s, ζ ) = −ε(1 + αγ )−1Z(s, ζ ) + εEε(s, ζ ), and
by (4.31), fixing arbitrary v ∈ (0,1/2), we have Z(s, ζ ′) = Z(s, ζ ) + |ε(ζ ′ −
ζ )|vBε(s, ζ, ζ ′). In (4.23), using these approximations we obtain

�1(s, ζ ) = −ε(1 + αγ )−1Z(s, ζ ) + εEε(t, ζ )

−
( ∑

ζ ′∈�(s)

L̂ε

(
s, ζ−s − ζ ′))Z(s, ζ )(5.2)

+ ∑
ζ∈�(s)

L̂ε

(
s, ζ−s − ζ ′)∣∣ε(

ζ ′ − ζ
)∣∣vBε

(
s, ζ, ζ ′).

With L̂ε(s, ζ−s − ζ ′) as in (4.22), the second last term in (5.2) is zero since
Lε(s, ζ ), and the last term is of the form ε1+vBε(s, ζ ) ≤ εEε(s, ζ ) by (4.25). Con-
sequently,

�1(s, ζ ) = −ε(1 + αγ )−1Z(s, ζ ) + εEε(t, ζ ).(5.3)

Similarly, for �2(s, ξ2) we have

�2(s, ζ ) = −εαγ (1 + αγ )−1Z(s, ζ ) + εEε(s, ζ ).(5.4)

Combining (5.3)–(5.4) with (2.17) yields (5.1). �

We proceed to proving Proposition 2.13. Recall from [3] the following martin-
gale problem of the SHE.

DEFINITION 5.2. Let Z be a C([0,∞),C(R))-valued process such that given
any T > 0, there exists u < ∞ such that

(5.5) sup
τ∈[0,T ]

sup
r∈R

e−u|r|E
(
Z(τ, r)2)

< ∞.

For such Z and for ψ ∈ C∞
c (R), let 〈Z(τ ),ψ〉 := ∫

R
Z(τ, r)ψ(r) dr . We say Z

solves the martingale problem with initial condition Z ic ∈ C(R) if Z(0, ·) = Z ic(·)
in distribution, and

τ �−→ Nψ(τ) := 〈
Z(τ ),ψ

〉 − 〈
Z(0),ψ

〉 − ∫ τ

0
2−1

〈
Z

(
τ ′), d2

dx2 ψ

〉
dτ ′,

τ �−→ N̂ψ(τ ) := (
Nψ(τ)

)2 −
∫ τ

0

〈
Z

(
τ ′)2

,ψ2〉
dτ ′

are local martingales, for any ψ ∈ C∞
c (R).
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PROOF OF PROPOSITION 2.13. Recall from [3], Proposition 4.11, that for any
initial condition Z ic satisfying∥∥Z ic(r)

∥∥
2 ≤ Cea|r|, for some a > 0,(5.6)

the martingale problem of Definition 5.2 has a unique solution, which coincides
with the law of the solution of the SHE with initial condition Z ic. By passing to
the relative subsequence, we assume that Zε ⇒ Z , which, by (4.30), satisfies the
moment condition (5.5). It hence suffices to show that Z solves the martingale
problem in Definition 5.2.

We begin by deriving the discrete analog of Nψ(τ) and N̂ψ(τ ). To this end,
fixing ψ ∈ C∞

c (R), we consider the discrete approximation〈
Z(t),ψ

〉
ε := εr−1∗

∑
ξ∈�(t)

Z(t, ξ)ψ
(
εr−1∗ ξ

)
(5.7)

of 〈Zε(ε
3(τ ε∗J )−1t),ψ〉, and similarly define

Mψ(t) := εr−1∗
∑

ξ∈�(t+1)

Z
(
t, ξ + μ(t)

)
W

(
t, ξ + μ(t)

)
ψ

(
εr−1∗ ξ

)
.(5.8)

In (3.16), multiply both sides by εr−1∗ ψ(εr−1∗ ξ). Upon summing over ξ ∈ �(t +
1), we obtain 〈Z(t + 1),ψ〉ε = 〈Z(t),ψpε(t+1,t)〉ε + Mψ(t), where

ψpε(t+1,t)(ζ ) := ∑
ξ∈�(t+1)

pε(t + 1, t, ξ − ζ )ψ
(
ε−1r∗ξ

)
.

Subtracting 〈Z(t),ψ〉ε from both sides, we further obtain〈
Z(t + 1),ψ

〉
ε − 〈

Z(t),ψ
〉
ε = 〈

Z(t),ψLε(t)

〉
ε + Mψ(t, ξ),(5.9)

where

ψLε(t)(ζ ) := ∑
ξ∈�(t+1)

pε(t + 1, t, ξ − ζ )ψ
(
ε−1r∗ξ

) − ψ
(
ε−1r∗ζ

)
.(5.10)

Now, summing (5.9) over s = 0, . . . , t − 1, we arrive at

〈
Z(t),ψ

〉
ε − 〈

Z(0),ψ
〉
ε −

t−1∑
s=0

〈
Z(s),ψLε(t)

〉
ε =

t−1∑
s=0

Mψ(s) := Nε
ψ(t).(5.11)

The process t �→ Nε
ψ(t) is a discrete time martingale of quadratic variation∑t−1

s=0 E(Mψ(s)2|F (s)), so

N̂ε
ψ(t) := (

Nε
ψ(t)

)2 −
t−1∑
s=0

E
(
Mψ(s)2|F (s)

)
(5.12)

is also a discrete time martingale.
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With Nε
ψ(t) and N̂ε

ψ(t) as in the preceding, we proceed to showing that Nψ(τ)

and N̂ψ(τ ) are local martingales. Since, by (4.32), passing from discrete time to
continuous time introduces only a negligible error, it suffices to show that terms in
(5.11)–(5.12) converge in distribution to the corresponding terms. More precisely,
recalling tε(τ ) := ε−3τ ε∗Jτ , our goal is to show〈

Z
(
tε(τ )

)
,ψ

〉
ε =⇒ 〈

Z(τ ),ψ
〉
,

∑
s<tε(τ )

〈
Z(s),ψLε

〉
ε =⇒

∫ τ

0
2−1

〈
Z

(
τ ′), d2ψ

dx2

〉
dτ ′,

∑
s<tε(τ )

E
(
Mψ(s)2|F (s)

) =⇒
∫ τ

0

〈
Z2(

τ ′),ψ(
τ ′)2〉

dτ ′.

To this end, since Zε ⇒ Z , it clearly suffices to show

E
∣∣〈Z(

tε(τ )
)
,ψ

〉
ε − 〈

Zε(τ),ψ
〉∣∣ −→ 0,(5.13)

E
∣∣∣∣ ∑
s<tε(τ )

〈
Z(s),ψLε

〉
ε −

∫ τ

0

〈
Zε

(
τ ′), d2ψ

dx2

〉
dτ ′

∣∣∣∣ −→ 0,(5.14)

E
∣∣∣∣ ∑
s<tε(τ )

E
(
Mψ(s)2|F (s)

) −
∫ τ

0

〈
Z2

ε

(
τ ′),ψ2〉

dτ ′
∣∣∣∣ −→ 0.(5.15)

We prove (5.13)–(5.15) as follows. �

PROOF OF (5.13). This amounts to show that the terms〈
Zε(τ),ψ

〉 = εr−1∗
∫
R

Z
(
tε(τ ), r

)
ψ

(
εr−1∗ r

)
dr(5.16)

and 〈Z(tε(τ )),ψ〉ε are approximately equal. To this end, fixing arbitrary ζ ∈ �(t)

and |r − ζ | ≤ 1, we use the smoothness of ψ and the moment estimates (4.30)–
(4.31), for arbitrary v ∈ (0,1/2), to obtain Z(t, ζ )ψ(εr−1∗ ζ )−Z(t, r)ψ(εr−1∗ r) =
εvBε(ζ, r) = Eε(t, ζ, r). From this, with 〈Zε(τ),ψ〉 and 〈Z(tε(τ )),ψ〉ε as in
(5.16) and (5.7), we conclude 〈Zε(τ),ψ〉 = 〈Z(tε(τ )),ψ〉ε + Eε(t), whereby
(5.13) follows. �

PROOF OF (5.14). Taylor expanding ψ(ξεr−1∗ ) around ξ = ζ yields

ψ
(
εr−1∗ ξ

) = ψ
(
εr−1∗ ζ

) +
(

dψ

dx

(
εr−1∗ ζ

))
εr−1∗ (ζ − ξ)

+
(

2−1
(

d2ψ

dx2

(
εr−1∗ ζ

)) + Eε(ξ, ζ )

)
ε2r−2∗ (ζ − ξ)2.
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Plug this in (5.10). With
∑

ξ∈�(s+1) pε(s +1, s, ξ −ζ )(ξ −ζ )k = E(Rε(s)
k), using

E(R(s)) = 0, (3.11) and σε ≤ Cε, we obtain

ψLε(s)(ζ ) = 2−1
(

d2ψ

dx2

(
εr−1∗ ζ

))
ε2σε(s) + ε3Eε(s, ζ ).

Now, plugging this expression of ψLε(s)(ζ ) in the LHS of (5.14), with tε(τ ) ≤
ε−3C, we obtain∑

s<tε(τ )

〈
Z(s),ψLε(s)

〉
ε = ∑

s<tε(τ )

ε2σε(s)

〈
Z(s),2−1 d2ψ

dx2

〉
ε

+ Eε.

Next, divide the sum on the r.h.s. into sums over the disjoint intervals Tt := Z ∩
[tJ, tJ + J ). We neglect the boundary terms of Tτε−3/τε∗ ∩ [0, tε(τ )), since, by

(4.30), those terms contribute only ε2σε(s)Bε = Eε . Within each interval Tt , use

(4.32) to replace 〈Z(s),
d2ψ

dx2 〉ε with 〈Z(tJ ),
d2ψ

dx2 〉ε +Eε(s). Further, with σε(s) and

τ ε∗ as in (3.9) and (2.22), we have
∑

s∈Tt
σε(s) = ε(τ ε∗ )−1. Consequently,

∑
s<tε(τ )

〈
Z(s),Lεψ

〉
ε = ε3

τ ε∗

∑
t<ε−3τ ε∗ τ

〈
Z(tJ ),2−1 d2ψ

dx2

〉
ε

+ Eε.(5.17)

The RHS of (5.17) represents a discrete approximation of
∫ τ

0 〈Zε(τ
′),2−1 ×

d2ψ

dx2 〉dτ ′. In particular, by following the same procedure as in the proof of (5.13),

one obtains ε3

τ ε∗
∑

t<tε(τ )〈Z(tJ ),2−1 d2ψ

dx2 〉ε = ∫ τ
0 〈Z(τ ′),2−1 d2ψ

dx2 〉dτ ′ + Eε , thereby
concluding (5.14). �

PROOF OF (5.15). To calculate E(Mψ(s)2|F (s)), we use the expression (5.8)
and the approximation (5.1) to obtain

E
(
Mψ(s)2|F (s)

)
(5.18)

= ε4αγ

(1 + αγ )2r2∗

∑
ξ∈�(s+1)

Z(s, ξ+s)
2ψ

(
εr−1∗ ξ

)
F(s, ξ) + ε3Eε(s),

where

F(s, ξ) := ∑
n∈Z

ψ
(
εr−1∗

(
ξ + |n|))((ν + αε(s))ρ

1 + αε(s)

)|n|
.(5.19)

Let ηε := ∑
n∈Z(

(ν+αε(s))ρ
1+αε(s)

)|n|. In (5.19), using the continuity of ψ at εr−1∗ ξ ,

we further obtain F(s, ξ) = ηεψ(εr−1∗ ξ) + Eε(s, ξ). Plugging this expression in
(5.18), we arrive at

E
(
Mψ(s)2|F (s)

) = ε3αγ ηε

(
(1 + αγ )2r∗

)−1〈
Z2(s),ψ2〉

ε + ε3Eε(s).(5.20)
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Calculating ηε to the first order we have ηε = 1+α+νρ+αρ
1+α−νρ−αρ

+ O(ε). Using this
and (2.23), a tedious but straightforward calculation shows that αγ ηε((1 +
αγ )2r∗)−1 = (J τ ε∗ )−1 + O(ε). Consequently, summing (5.20) over s < tε(τ )

yields ∑
s<tε(τ )

E
(
Mψ(s)2|F (s)

) = ε3

τ ε∗J

∑
s<tε(τ )

〈
Z2(s),ψ2〉

ε + Eε(s).

The RHS represents a discrete approximation of
∫ τ

0 〈Zε(σ )2,ψ2〉dσ , so following
the same procedure as in the proof of (5.13), one concludes (5.15). �
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