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POINT-MAP-PROBABILITIES OF A POINT PROCESS AND
MECKE’S INVARIANT MEASURE EQUATION1

BY FRANÇOIS BACCELLI∗ AND MIR-OMID HAJI-MIRSADEGHI∗,†

University of Texas at Austin∗ and Sharif University of Technology†

A compatible point-shift F maps, in a translation invariant way, each
point of a stationary point process � to some point of �. It is fully determined
by its associated point-map, f , which gives the image of the origin by F . It
was proved by J. Mecke that if F is bijective, then the Palm probability of �

is left invariant by the translation of −f . The initial question motivating this
paper is the following generalization of this invariance result: in the nonbi-
jective case, what probability measures on the set of counting measures are
left invariant by the translation of −f ? The point-map-probabilities of � are
defined from the action of the semigroup of point-map translations on the
space of Palm probabilities, and more precisely from the compactification
of the orbits of this semigroup action. If the point-map-probability exists, is
uniquely defined and if it satisfies certain continuity properties, it then pro-
vides a solution to this invariant measure problem. Point-map-probabilities
are objects of independent interest. They are shown to be a strict generaliza-
tion of Palm probabilities: when F is bijective, the point-map-probability of
� boils down to the Palm probability of �. When it is not bijective, there
exist cases where the point-map-probability of � is singular with respect to
its Palm probability. A tightness based criterion for the existence of the point-
map-probabilities of a stationary point process is given. An interpretation of
the point-map-probability as the conditional law of the point process given
that the origin has F -pre-images of all orders is also provided. The results are
illustrated by a few examples.

Introduction. A point-shift is a mapping which is defined on all discrete sub-
sets φ of Rd and maps each point x ∈ φ to some point y ∈ φ, that is, if F is a
point-shift, for all discrete φ ⊂ Rd and all x ∈ φ, F(φ,x) ∈ φ. Bijective point-
shifts were studied in a seminal paper by J. Mecke in [14]. The concept of the
point-map was introduced by H. Thorisson (see [17] and the references therein).
Points-maps were further studied by M. Heveling and G. Last [9]. The latter ref-
erence also contains a short proof of Mecke’s invariance theorem. Point-shifts are
also known as allocation rules (see, e.g., [13]). A point-shift is compatible with the
translations of Rd or simply compatible if

∀t ∈ Rd, F (φ + t, x + t) = F(φ,x) + t.
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As will be seen, a translation invariant point-shift F is fully determined by its
point-map f which associates to all φ containing the origin the image of the latter
by F , that is, f (φ) = F(φ,0). The point-shift F is called bijective on the point
process � if, for almost all realizations φ of the point process, F(φ, ·) is bijective
on the set φ.

The Palm probability of a translation invariant point process � is often intu-
itively described as the distribution of � conditionally on the presence of a point
at the origin. This definition was formalized by C. Ryll-Nardzewski [16] based on
the Matthes definition of Palm probabilities (see, e.g., [3]). This is the so-called
local interpretation of the latter. The presence of a point at the origin makes the
Palm distribution of � singular with respect to (w.r.t.) the translation invariant dis-
tribution of �.

The present paper is focused on the point-map-probabilities (or the f -
probabilities) of �. Under conditions described in the paper, the f -probabilities
can be described as the law of � conditionally on the event that the origin has F -
pre-images of all orders (Theorem 2.12). This event is not of positive probability
in general, and hence it is not possible to define this conditional probability in the
usual way.

The first aim of this paper is to make this definition rigorous. The proposed
construction is based on dynamical system theory. The action of the semigroup
of translations by −f on probability distributions on counting measures having
a point at the origin is considered; the f -probabilities of � are then defined as
the ω-limits of the orbit of this semigroup action on the Palm distribution of �

(Definition 2.6). As the space of probability distributions on counting measures is
not compact, the existence of f -probabilities of � is not granted. A necessary and
sufficient condition for their existence is given in Lemma 2.9. Uniqueness is not
granted either. An instance of construction of the f -probabilities of Poisson point
processes where one has existence and uniqueness is given in Theorem 2.25.

It is shown in Section 2 that, when they exist, point-map-probabilities generalize
Palm probabilities. A key notion to see this is that of evaporation. One says that
there is evaporation when the image of � by the nth iterate of F tends to the empty
counting measure for n tending to infinity.

When there is no evaporation, the f -probabilities of � are just the Palm distri-
butions of � w.r.t. certain translation invariant thinnings of � and they are then
absolutely continuous w.r.t. the Palm distribution P0 of �; in particular, if F is
bijective, then the f -probability of � exists, is uniquely defined, and coincides
with P0. However, in the evaporation case, the f -probabilities of � do not admit a
representation of this type and they are actually singular w.r.t. P0 (Theorem 2.16).

It is also shown in Theorem 2.19 that, under appropriate continuity properties
on f , a certain mixture of the f -probabilities of � is left invariant by the shift
of −f . This generalizes Mecke’s point stationarity theorem which states that if
F(�, ·) is bijective and if � is distributed according to P0, then so is � − f .
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Section 1 contains the basic definitions and notation used in the paper, together
with a small set of key examples. Section 2 gathers the main results and proofs.
Several more examples are discussed in Section 3. The basic tools of point pro-
cess theory and dynamical system theory used in the paper are summarized in the
Appendix.

1. Preliminaries and notation.

1.1. General notation. Each measurable mapping h : (X,X ) → (X′,X ′) be-
tween two measurable spaces induces a measurable mapping h∗ : M(X) →
M(X′), where M(X) is the set of all measures on X: if μ is a measure on (X,X ),
h∗μ is the measure on (X′,X ′) defined by

(1.1) h∗μ(A) := (h∗μ)(A) = μ
(
h−1A

)
.

Note that if μ is a probability measure, h∗μ is also a probability measure.

1.2. Point processes. Let N = N(Rd) be the space of all locally finite counting
measures (not necessarily simple) on Rd . One can identify each element of N with
the associated multi-subset of Rd . The notation φ will be used to denote either
the measure or the related multi-set. Let N be the Borel σ -field with respect to
the vague topology on the space of counting measures (see Appendix A for more
on this subject). The measurable space (N,N ) is the canonical space of point
processes.

The support of a counting measure φ is the same set as the multi-set related
to φ, but without the multiplicities, and it is denoted by φ. The set of all count-
ing measure supports is denoted by N, that is, N is the set of all simple counting
measures. N naturally induces a σ -field N on N.

Let N0 (resp., N
0
) denote the set of all elements of N (resp., N) which contain

the origin, that is, for all φ ∈ N0 (resp., φ ∈ N
0
), one has 0 ∈ φ.

A point process is a couple (�,P) where P is a probability measure on a mea-
surable space (�,F) and � is a measurable mapping from (�,F) to (N,N ).
If (�,F) = (N,N ) and � is the identity on N, the point process is defined on
the canonical space. Calligraphic letters P,Q, . . . (resp., blackboard bold letters
P,Q, . . .) will be used for probability measures defined on the canonical space
[resp., on (�,F)]. The canonical version of a point process (�,P) is the point
process (id,�∗P) which is defined on the canonical space. Here, id denotes the
identity on N.

1.3. Stationary point processes. Whenever (Rd,+) acts (in a measurable
way) on a space, the action of t ∈ Rd on that space will be denoted by θt . It is as-
sumed that (Rd,+) acts on the reference probability space (�,F), or equivalently
that this space is equipped with a measurable flow θt : � → �, with t ranging
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over Rd . This is a family of mappings such that (ω, t) �→ θtω is measurable, θ0 is
the identity on � and

θs ◦ θt = θs+t .

A point process � is then said to be compatible if

(1.2) �(θtω,B − t) = �(ω,B) ∀ω ∈ �, t ∈ Rd,B ∈ B,

where by convention, �(ω,B) := (�(ω))(B). Here, B denotes the Borel σ -
algebra on Rd .

The action θt of t ∈ Rd can also be used on the space of counting measures to
denote the translation by −t . For a counting measure φ ∈ N(Rd), θtφ is then the
counting measure defined by θtφ(B) = φ(B + t). Using this notation, the compat-
ibility criterion (1.2) can be rewritten as

� ◦ θt = θt ◦ �.

Note that for consistency reasons, the action θt of t ∈ Rd on Rd itself is then
θtx = x − t,∀x ∈ Rd .

The probability measure P on (�,F) is θt -invariant if (θt )∗P = P. If, for all
t ∈ Rd , P is θt -invariant, it is called stationary. Below, a stationary point process
is a point process (�,P) such that � is compatible and P is stationary.

When the point process is simple and stationary with a nondegenerate (positive
and finite) intensity, its Palm probability is a classical object in the literature.

The Palm probability of a general (i.e., not necessarily simple) point process �

is defined by

(1.3) P�[A] := 1

λ|B|
∫
�

∫
B

1{θtω ∈ A}�(ω,dt)P[dω],

for all A ∈ F , and for all Borel sets B ⊂ Rd with a nondegenerate (positive and
finite) Lebesgue measure. Note that the multiplicity of the atoms of � is taken
into account in the last definition. If a point process (�,P) is stationary and has
a nondegenerate intensity, the pair (�,P�) is called the Palm version of (�,P).
Expectation w.r.t. P� will be denoted by E�.

Whenever the context specifies a reference point process (�,P), the short nota-
tion P will be used to denote its distribution, that is, P = �∗P. If in addition, �

is stationary and with a nondegenerate intensity, the distribution of its Palm ver-
sion will be denoted by P0, that is, P0 = �∗P�, and expectation w.r.t. P0 will
be denoted by E0. In the canonical setup, the Palm version of (�,P) = (id,P) is
(�,P�) = (id,P0).
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1.4. Compatible point-shifts.

1.4.1. Point-maps. A point-shift on N is a measurable function F : N×Rd →
Rd , which is defined for all pairs (φ, x), where φ ∈ N and x ∈ φ, and satisfies the
relation F(φ, x) ∈ φ for all x ∈ φ.

In order to define compatible point-shifts, it is convenient to use the notion of
point-map. A measurable function f : N0 → Rd is called a point-map if for all φ

in N0, one has f (φ) = f (φ), that is, it depends only on φ, and if f (φ) ∈ φ.
If f is a point-map, the associated compatible point-shift, F , is

F(φ, x) = f (θxφ) + x = θ−xf (θxφ).

The point-shift F is compatible in the sense that

F(θtφ, θtx) = F(θtφ, x − t)

= f
(
θx−t (θtφ)

) + x − t(1.4)

= f (θxφ) + x − t = F(φ, x) − t = θt

(
F(φ, x)

)
.

In the rest of this article, point-shift always means compatible point-shift. Small
letters will be used for point-maps and capital letters for the associated point-shifts.

For the point-map f , the action of the point-map on N0(Rd) will be denoted by
θf and defined by

∀φ ∈ N0(
Rd); θf (φ) = θf (φ)(φ).

1.4.2. Iterates of a point-shift. For all n ≥ 0, all φ ∈ N and x ∈ φ, the nth order
iterate of the point-shift F is defined inductively by F 0(φ, x) = x and

Fk+1(φ, x) = F
(
φ,F k(φ, x)

)
, k ≥ 0.

For all n, Fn is a compatible point-shift and the associated point-map, which will
be denoted by f n, satisfies

(1.5) f n(φ) = f n−1(φ) + f
(
θf n−1(φ)

)
, n ≥ 1,

with f 0(φ) = 0 and φ ∈ N0. It is easy to verify that for all n ∈N, on N0,

θf n = θn
f ,

and hence

(1.6) θf m+n = θf m ◦ θf n.

In accordance with the definition of Fn, for all n ≥ 1, let

F−n(φ, x) = {
y ∈ φ;Fn(φ, y) = x

}
.
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1.4.3. Image point processes. Let f be a point-map. For all φ ∈ N and all
nonnegative integers n, let

(1.7) mn
f (φ, y) = φ

(
F−n(φ, y)

) = ∑
x∈F−n(φ,y)

φ
({x}) ∀y ∈ φ,

where by convention, the summation over the empty set is zero. Note that if φ is
simple, then mn

f (φ, y) = card(F−n(φ, y)).

DEFINITION 1.1. Assume that mn
f (φ, y) < ∞ for all y ∈ φ. The nth image

counting measure (of φ by F ) is then defined as the counting measure φn
f with

support {y ∈ φ;F−n(φ, y) �=∅}, and such that the multiplicity of y in the support
of φn

f is mn
f (φ, y).

It will be shown below that, for all stationary point processes (�,P), for all
n ≥ 0, (�n

f ,P) is a stationary point process (item 1 in Remark 2.4) with the same
intensity as � (item 2 in Remark 2.4). The point process �n

f will be referred to as
the nth image point process (of � by the point-map).

1.5. First point-shift examples. This subsection presents a few basic exam-
ples of point-shifts. These examples will allow one to illustrate the main results in
Section 2. More details on these examples and further examples can be found in
Section 3.

1.5.1. Strip point-shift. The strip point-shift was introduced by Ferrari,
Landim and Thorisson [8]. For all points x = (x1, x2) in the plane, let T (x) denote
the half-strip (x1,∞) × [x2 − 1, x2 + 1]. Then S(φ, x) is the left most point of φ

in T (x) (see Figure 1). It is easy to verify that S is compatible. It is not bijective.
Its point-map will be denoted by s.

REMARK 1.2. The strip point-shift is not well-defined when there are more
than one left most point in T (x), or when there is no point of φ in T (x). However,
there is no problem if we consider the strip point-shift (and all other point-shifts)
on point processes for which the point-shift is almost surely well-defined. Note
that these two difficulties can always be taken care of by fixing, in some transla-
tion invariant manner, the choice of the image in the case of ambiguity, and by
defining F(φ,x) = x in the case of non-existence. By doing so, one gets a point-
shift defined for all (φ, x).

1.5.2. Strip point-shift on the random geometric graph. The strip point-map
on the random geometric graph with the neighborhood radius r is

g(φ) =
{
s(φ),

∥∥s(φ)
∥∥ < r,

0, otherwise,

where s is the strip point-map. The associated point-shift is depicted in Figure 1.
It will be denoted by G. It is not bijective. Its point-map will be denoted by g.



POINT-MAP-PROBABILITIES OF A POINT PROCESS 1729

FIG. 1. Left: Iterates of the strip point-shift S. Right: Iterates of G, the strip point-shift on the
random geometric graph. In both cases, the point G4(φ,0) is that at the end of the directed path.

1.5.3. Closest point-shift. The closest point-shift, C, maps each point of x ∈ φ

to the point y �= x of φ which is the closest. This point-shift is not bijective either.
The associated point-map will be denoted by c. It is depicted in Figure 2.

1.5.4. Mutual-neighbor point-shift. The mutual-neighbor point-shift, N , maps
each point x ∈ φ to the point y of φ which is the closest to x, if x is also the point
of φ which is the closest to y. Otherwise, it maps x to itself. It is easy to see that
N is bijective and involutive: N2 ≡ id. The associated point-map will be denoted
by n. It is depicted in Figure 2.

FIG. 2. Left: the closest point-shift C. Right: the mutual-neighbor point-shift N . The directed edge
emanating from a point indicates the image of the point.
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1.6. Mecke’s point stationarity theorem. One of the motivations of this work
is to extend the following proposition proved by J. Mecke in [14].

THEOREM 1.3 (Point stationarity). Let (�,P) be a simple stationary point
process and let F be a point-shift such that F(�, ·) is P-a.s. bijective. Then the
Palm probability of the point-process is invariant under the action of θf , that is,

(1.8) P� = (θf (�))∗P�,

with θf (�) seen as a map from � to itself defined by

(θf (�))(ω) := θf (�(ω))ω.

Since P�[�({0}) > 0] = 1, θf (�) is P�-almost surely well-defined.

REMARK 1.4. The fact that θf is bijective �∗P�-a.s. is equivalent to the fact
that F is bijective on �∗P-almost all realizations of the point process.

2. Results.

2.1. Semigroup actions of a point-map. Below, N0 = N0(Rd) and M1(N0) de-
notes the set of probability measures on N0. For all point-maps f on N0, consider
the following actions π = {πn} of (N,+):

1. X = N0, equipped with the vague topology, and for all φ ∈ N0 and n ∈ N,

πn(φ) = θn
f (φ) ∈ N0,

where θn
f is defined in Section 1.4.2.

2. X = M1(N0), equipped with the weak convergence of probability mea-
sures on N0, and for all Q ∈ M1(N0) and n ∈N,

πn(Q) = (θf )n∗Q = (
θn
f

)
∗Q ∈ M1(

N0)
.

2.2. Periodicity and evaporation. The point-map f will be said to be periodic
on the stationary point process (�,P) if for �∗P�-almost all φ, the action of θn

f

is periodic on φ, namely if there exists integers p = p(φ) and K = K(φ) such
that for all n ≥ K , θn

f (φ) = θ
n+p
f (φ). The case where p is independent of φ is

known as p-periodicity. The special case of 1-periodicity is that where, θn
f (φ) is

stationary (in the dynamical system sense) after some steps, that is, such that for
all n > K(φ), θn

f (φ) = θK
f (φ). Note that if for all x ∈ φ, the trajectory Fn(φ, x) is

stationary, that is, such that for all n > K(φ,x), Fn(φ, x) = FK(φ, x), then f is
1-periodic.

The mutual-neighbor point-map n on a homogeneous Poisson point process is
2-periodic.
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Similarly, for the closest point-map c, the iterates of this point-shift form a de-
scending chain, namely a sequence of point of the support of the point process
such that the distance between the k + 1-st and the kth is non-increasing in k ≥ 0.
The well-known fact that there are no infinite descending chains in the homoge-
neous Poisson point process (see [6]) implies that c is 2-periodic on such a point
process, with the points of the period being mutual-neighbors.

If g is the strip point-map on the random geometric graph defined in Sec-
tion 1.5.2, the strong Markov property of the stationary Poisson point process on
Rd (see [18] for details on the strong Markov property of Poisson point process)
gives that the point process on the right half-plane of G(0) is distributed as the
original Poisson point process. Hence, G is a.s. 1-periodic, even when the under-
lying random geometric graph is supercritical.

REMARK 2.1. Note that there are other ways of defining periodicity, possibly
leading to other periods. For instance, for the mutual-neighbor point-map on a
Poisson point process, the sequence of image point processes {�f

n }n≥0 (defined
in Section 1.4.3) is 1-periodic whereas f is 2-periodic according to the definition
proposed above.

The point process (�,P) will be said to evaporate under the action of the point-
map f if �n

f converges a.s. to the null measure as n tends to infinity, that is, for
P-almost surely, the set

(2.1) �∞
f :=

∞⋂
n=1

�n
f

is equal to the empty set (note that �n
f is a nonincreasing sequence of sets). Con-

sider the following set:

I := {
φ ∈ N0; ∀n ∈ N,F−n(φ,0) �= ∅

}
(2.2)

= {
φ ∈ N0; ∀n ∈ N,mn

f (φ,0) > 0
}

[see Section 1.4.2 for the definition of F−n(φ, y) and Section 1.4.3 for that of mn
f ].

LEMMA 2.2. For all point-maps f , the stationary point process (�,P) evap-
orates under the action of f if and only if P�[� ∈ I ] = 0.

PROOF. Let P = �∗P and P0 = �∗P�. If χ(φ, x) is the indicator of the fact
that x has F -pre-images of all orders, then χ is a compatible marking of the point
process [i.e., χ(φ, x) = χ(θxφ,0) for all x ∈ φ]. Therefore, if � denotes the sub-
point process of the points with mark χ equal to 1, then (�,P) is a stationary point
process and by Campbell’s theorem,

(2.3) λ� = λ�E�

[
χ(�,0)

] = λ�P�[� ∈ I ].
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The evaporation of (�,P) by f means that � has zero intensity. According to
(2.3) this is equivalent to P�[� ∈ I ] = 0. �

The homogeneous Poisson point process on R2 evaporates under the action of
the strip point-map s (see Section 3).

2.3. Action of (θf )∗.

2.3.1. Image palm probabilities. Let � be a stationary point process on Rd

and f be a point-map. Consider the action of (θf )∗ [see equation (1.1)] when
Q = P0, the Palm distribution of �. It follows from the definition and from (1.3)
that, for all n ≥ 1, for all G ∈ N and for all Borel sets B with nondegenerate
Lebesgue measure(

θn
f

)
∗P0[G] = 1

λ|B|
∫

N

∫
B

1
{
θn
f ◦ θt (φ) ∈ G

}
φ(dt)P[dφ].(2.4)

In what follows, Pf,n
0 is a short notation for the probability on N0 defined in the

last equation. This probability will be referred to as the nth image Palm probability
(w.r.t. f ) of the point process.

It follows from the semigroup property (1.6) that

(2.5) (θf )∗Pf,n
0 = Pf,n+1

0 ∀n ∈ N,

when letting Pf,0
0 := P0. From the mass transport relation [13], and using the

image counting measure φn
f defined in Section 1.4.3, one gets the following.

LEMMA 2.3. For all n ≥ 0, and all G ∈ N ,

Pf,n
0 [G] = 1

λ|B|
∫

N

∫
B

1{θtφ ∈ G}φn
f (dt)P[dφ].(2.6)

Note that, in general, the nth image Palm probability Pf,n
0 is not the Palm prob-

ability of the nth image point process �n
f (which is the distribution of �n

f given
that the origin belongs to �n

f when using the local interpretation of the Palm prob-
ability). It is rather is the distribution of � given that the origin is in the nth image
process. In both cases, point multiplicities should be taken into account.

REMARK 2.4. Equation (2.6) has several important implications:

1. If P is the distribution of a simple stationary point process, equation (2.6)
gives

Pf,n
0 [G] = E0

[
mn

f 1G

] ∀G,(2.7)
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with mn
f the random variable mn

f (φ,0) [see equation (1.7)] and 1G the indicator
function 1G(φ). So taking G = N0 gives

(2.8) E0
[
mn

f

] = 1,

which shows that, P0 a.s., mn
f (φ) < ∞. This in turn implies that, P a.s., for all

y ∈ φ, mn
f (φ, y) < ∞.

2. Equation (2.8) together with the Campbell–Mecke formula imply that the
intensity of �n

f is equal to that of �, as already mentioned.

3. Equation (2.7) shows that Pf,n
0 is absolutely continuous w.r.t. P0, with the

Radon–Nikodym derivative

mn
f := mn

f (φ,0).

PROPOSITION 2.5. For all simple point processes P , for all n and G,

Pf,n
0 [G] = E0

[ mn
f

E0[mn
f | mn

f > 0]1G

∣∣∣ mn
f > 0

]
.(2.9)

PROOF. Equation (2.6) implies that

Pf,n
0 [G] = E0

[
mn

f 1G

] = E0
[
mn

f 1G1mn
f >0

]
.

Taking G = N0 gives

P0
[
mn

f > 0
] = 1

E0[mn
f | mn

f > 0] .

Equation (2.9) then follows immediately. �

2.3.2. Definition and existence of point-map-probabilities.

DEFINITION 2.6. Let f be a point-map and let P be a stationary point pro-
cess with Palm distribution P0. Every element of the ω-limit set [see (B.1)] of
P0 (where limits are w.r.t. the topology of the convergence in distribution of
probability measures on N0—cf. Appendix A) under the action of {(θn

f )∗}n∈N
will be called a f -probability of P0. In particular, if the limit of the sequence
((θn

f )∗P0)
∞
n=1 = (Pf,n

0 )∞n=1 exists, it will be called the f -probability of P0 and

denoted by Pf
0 .

Let AP0 denote the orbit of P0. The set of f -probabilities of P0 is hence the
set of all accumulation points of the closure cl(AP0) of AP0 , or equivalently the
elements of M1(N0) the neighborhoods of which contain infinitely many elements
of AP0 ; see the definitions in Section 1.
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REMARK 2.7. In view of (2.7), for all P simple, the existence of a unique
f -probability Pf

0 is equivalent to

lim
n→∞

∫
N0

h(φ)mn
f (φ)P0(dφ) =

∫
N0

h(φ)Pf
0 (dφ),(2.10)

for all bounded and continuous functions h : N0 →R.

COROLLARY 2.8. Let Q be a f -probability. Let I be the set defined in (2.1).
If for all positive integers n, φ → 1mn

f (φ)>0 is Q-a.s. continuous, then Q[I ] = 1.

PROOF. The statement is an immediate consequence of Lemma A.4. �

The relative compactness of AP0 (and the existence of f -probabilities) is not
granted in general. The next lemmas give conditions for this relatively compact-
ness to hold. From Lemma 4.5. in [10], one gets the following.

LEMMA 2.9. A necessary and sufficient condition for the set AP0 to be rela-
tively compact in M1(N0(Rd)) is that for all bounded Borel subsets B of Rd ,

(2.11) lim
r→∞ lim sup

n→∞
Pf,n

0

[
φ ∈ N0 s.t. φ(B) > r

] = 0.

Examples of point-map and point process pairs where the last relative compact-
ness property does not hold are provided in Section 3.4. On stationary point pro-
cesses, all the point-maps discussed in Section 1.5.1 satisfy this relative compact-
ness property. For the periodic cases (e.g., c, n and g on Poisson point processes),
the result follows from Proposition 2.10 below, whereas for the strip point-map s,
the proof is given in Section 3.3.

The point-map f will be said to have finite orbits on the stationary point process
(�,P) if for �∗P�-almost all φ, {θn

f (φ)}n∈N is finite.

PROPOSITION 2.10. If f has finite orbits on the stationary point process
(�,P), then the set AP0 is relatively compact.

PROOF. For all bounded Borel subsets B of Rd and φ ∈ N0, let

RB(φ) := ∞
max
n=0

{(
θn
f φ

)
(B)

}
.

Since f has finite orbits, the RHS is the maximum over finite number of terms, and
hence RB is well-defined and finite. Clearly, RB(φ) ≥ RB(θf φ) and, therefore,

the distribution of the random variable RB under Pf,n
0 is stochastically decreasing
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w.r.t. n. Hence,

lim
r→∞ lim sup

n→∞
Pf,n

0

[
φ ∈ N0 s.t. φ(B) > r

]
≤ lim

r→∞ lim sup
n→∞

Pf,n
0

[
φ ∈ N0 s.t. RB(φ) > r

]
≤ lim

r→∞P0
[
φ ∈ N0 s.t. RB(φ) > r

] = 0. �

REMARK 2.11. It is easy to check that the following statements are equiva-
lent. (1) f has finite orbits, (2) f is periodic and (3) for �∗P-almost all φ, for all
x ∈ φ, {Fn(φ, x)}n∈N has finitely many different points.

So, for instance, for the directional point-map on the random geometric graph g,
AP0 is relatively compact as this point-map is 1-periodic.

2.4. On palm and point-map-probabilities. This subsection is focused on the
relation between Palm probabilities and point-map-probabilities. Throughout the
subsection, f is a point-map, and (�,P) is a simple and stationary point process
with nondegenerate intensity. The distribution of � is denoted by P and its Palm
probability by P0.

2.4.1. Conditional interpretation of the point-map-probability. The next theo-
rem, which immediately follows from equation (2.9), gives a conditional definition
of the f -probability from P0.

THEOREM 2.12. Let P be a simple stationary point process on Rd . For all
n ∈N and φ ∈ N, let mn

f (φ) := mn
f (φ,0). For all n, mn

f (φ) is P0 a.s. finite. If there

exists a unique f -probability Pf
0 for P , then for all G such that Pf,n

0 [G] tends to

Pf
0 [G] as n tends to infinity, one has

Pf
0 [G] = lim

n→∞E0

[ mn
f

E0[mn
f | mn

f > 0]1G

∣∣∣ mn
f > 0

]
.(2.12)

Notice that, in addition to the conditioning, there is a Radon–Nikodym deriva-
tive (w.r.t. P0[· | mn

f > 0]) equal to mn
f (φ)/E0[mn

f | mn
f > 0].

2.4.2. The periodic case. Below, for all stationary point processes (�,P) de-
fined on (�,F) with a positive intensity, P� denotes the Palm probability w.r.t. �

on (�,F).

LEMMA 2.13. If f is 1-periodic on the (simple) stationary point process
(�,P), then a.s., for all x ∈ �, limn �n

f ({x}) exists and is finite.
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PROOF. If x is a trap of �, that is, F(�,x) = x, then (�
f
n (x))∞n=1 is non-

decreasing in n. Let � be the thinning of � to traps of � for which the above
limit is not finite. The compatibility of F implies that (�,P) is a stationary point
process. If B is the unit box in Rd and K is a positive integer, for n large enough,
one has

λ� =
∫
�

�n
f (B)P(dω) ≥

∫
�

�n
f (� ∩ B)P(dω) ≥

∫
�

K�(B)P(dω) = Kλ�,

where λ� and λ� denote the intensities of the point processes. Therefore, λ� ≤
λ�/K , which proves that λ� = 0. Hence, a.s., at the traps of �, the limit exists
and is finite. Given this, it is easy to verify that if y ∈ � is not a trap, for n large
enough, �n

f (y) = 0 and hence the limit exists for all points of �. �

When limn φn
f exists and is a counting measure, it is denoted it by �∞

f . Hence,
in the 1-periodic case, (�∞

f ,P) is well-defined and a nondegenerate stationary
point process.

THEOREM 2.14. If f is 1-periodic on (�,P), then the f -probability Pf
0 of

P0 = �∗P� exists and is given by

(2.13) Pf
0 = �∗P�∞

f
.

Let m∞
f (�) denote the multiplicity of the origin under P�∞

f
. Then Pf

0 is absolutely
continuous with respect to P0, with

(2.14)
dPf

0

dP0
(φ) = m∞

f (φ).

In addition, Pf
0 = (θf )∗Pf

0 .

PROOF. In the 1-periodic case, for all bounded Borel sets B , �n
f (B) a.s. coin-

cides with �∞
f (B) for n large enough, so that by letting n to infinity in (2.6), one

gets that for all G ∈ N , the limit

(2.15) lim
n

Pf,n
0 [G] = 1

λ|B|
∫

N

∫
B

1{θtφ ∈ G}φ∞
f (dt)P[dφ]

exists. Since φ∞
f is a stationary point process with the same intensity as the original

point process (because of the conservation of intensity), Pf
� is the distribution of

� with respect to the Palm distribution of �∞
f indeed. In addition, for all H ∈F

P�∞
f

[H ] = 1

λ|B|
∫
�

∫
B

1{θtω ∈ H }�∞
f (ω,dt)P[dω]

= 1

λ|B|
∫
�

∫
B

�∞
f

(
ω, {t})1{θtω ∈ H }�(ω,dt)P[dω]
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= 1

λ|B|
∫
�

∫
B

�∞
f

(
θtω, {0})1{θtω ∈ H }�(ω,dt)P[dω]

= E�

[
�∞

f

({0})1H (�)
] = E�

[
m∞

f (�)1H (�)
]
,

where the second equality stems from the facts that �∞
f ⊂ � and that � is simple.

This proves (2.14) when H = �−1G. Finally, since f is 1-periodic, Pf
0 -almost

surely, f ≡ 0 which proves that Pf
0 is invariant under the action of (θf )∗. �

The point-map g provides an examples where Theorem 2.14 holds. See Sec-
tion 3.5. Note that similar statements hold in the p-periodic case. In this case, f p

is 1-periodic on the point processes {(�,Pf,n
0 )}p−1

n=0 , and hence there exists at most
p point-map-probabilities. Details on this fact are omitted.

2.4.3. The evaporation case. The next theorem shows that in contrast to The-
orem 2.14 where the f -probability is absolutely continuous with respect to the
Palm probability, there are cases where the f -probability and the Palm probability
are singular. This theorem is based on the following lemma.

LEMMA 2.15. Let I be the set defined in (2.2). If Q is a probability dis-
tribution on N0 which satisfies (θf )∗Q = Q, then Q[I ] = 1. In this case, Q-
almost surely, there exists a bi-infinite path (which can be a periodic orbit)
which passes through the origin, that is, {yi = yi(φ)}i∈Z is such that y0 = 0 and
F(φ,yi) = yi+1.

PROOF. Let Mn := {φ ∈ N0;F−n(φ,0) = ∅}, where Fn(φ, ·) is defined in
Section 1.4.2. It is sufficient to show that, for all n > 0, Q[Mn] = 0. But the invari-
ance of Q under the action of (θf )∗ gives

Q[Mn] = (θf )n∗Q[Mn]
= Q

[
(θf )−nMn

]
= Q

[{
φ ∈ N0;F−n(

φ,Fn(φ,0)
) =∅

}] = 0.

The proof of the second statement is clear if the orbit of φ is periodic under the
action of θf and if not, it is an immediate consequence of König’s infinity lemma
[12]. �

THEOREM 2.16. If the stationary point process (�,P) evaporates under the
action of f , and if the f -probability Pf

0 of P0 = �∗P0
� exists and satisfies Pf

0 =
(θf )∗Pf

0 , then Pf
0 is singular with respect to P0.

PROOF. The result is obtained when combining Lemmas 2.15 and 2.2. �
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It is shown in Section 3.3 that the assumptions of Theorem 2.16 are satisfied by
the strip point-map s on Poisson point processes in R2.

REMARK 2.17. The case with evaporation is that where the conditioning rep-
resentation given in equation (2.12) is w.r.t. an event whose probability w.r.t. P0
tends to 0 as n tends to infinity.

REMARK 2.18. The singularity property established in Theorem 2.16 can be
completed by the following observation: under the assumptions of this theorem,
there is no finite and measurable U = U(φ) ∈ φ [resp., V = V (φ) ∈ φ] such that
Pf

0 = (θU )∗P [resp., Pf
0 = (θV )∗P0], that is, there is no shift-coupling giving Pf

0
as function of P (resp., P0). The proof is by contradiction: evaporation implies
that P (resp., P0) a.s., θxφ /∈ I for all x ∈ φ. But this together with Pf

0 = (θU )∗P
[resp., Pf

0 = (θV )∗P0] imply that Pf
0 [I ] = 0, which contradicts the fact that, under

the assumptions of Theorem 2.16, Pf
0 [I ] = 1.

2.5. Mecke’s point-stationarity revisited.

2.5.1. Mecke’s invariant measure equation. Consider the following point-map
invariant measure equation:

(2.16) (θf )∗Q =Q,

where the unknown is Q ∈ M1(N0). From Mecke’s point stationarity Theorem 1.3,
if θf (or equivalently F ) is bijective, then the Palm probability P0 of any simple
stationary point process solves (2.16). From Theorem 2.14, if f is 1-periodic on
(�,P), then the f -probability of � exists and from the last statement of this theo-
rem, it satisfies (2.16). More precisely, a solution to (2.16) was built from the Palm
probability P0 of � by equation (2.14).

Equation (2.16) will be referred to as Mecke’s invariant measure equation. The
bijective case shows that the solution of (2.16) is not unique in general (all Palm
probabilities are solution).

A natural question is whether one can construct a solution of (2.16) from the
Palm probability of a stationary point process beyond the bijective and the 1-
periodic cases, for instance when � evaporates under the action of f .

Consider the Cesàro sums

(2.17) P̃f,n
0 := 1

n

n−1∑
i=0

Pf,i
0 , n ∈ N.

When the limit of P̃f,n
0 as n tends to infinity exists [w.r.t. the topology of M1(N0)],

let

(2.18) P̃f
0 := lim

n→∞
1

n

n−1∑
i=0

Pf,i
0 .

In general, P̃f
0 is not a f -probability.
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THEOREM 2.19. Assume there exists a subsequence (P̃f,ni

0 )∞i=1 which con-

verges to a probability measure P̃f
0 . If (θf )∗ is continuous at P̃f

0 , then P̃f
0 solves

Mecke’s invariant measure equation (2.16).

PROOF. From (2.5),

(θf )∗P̃f,n
0 − P̃f,n

0 = 1

n

(
n−1∑
i=0

(θf )∗Pf,i
0 −

n−1∑
i=0

Pf,i
0

)
(2.19)

= 1

n

(
n∑

i=1

Pf,i
0 −

n−1∑
i=0

Pf,i
0

)
= 1

n

(
Pf,n

0 −P0
)
.

Therefore, if the subsequence (P̃f,ni

0 )∞i=1 converges in distribution w.r.t. the

vague topology to a probability measure P̃f
0 , then (2.19) implies that the

sequence ((θf )∗P̃f,ni

0 )∞i=1 converges to P̃f
0 as well. Now the continuity of

(θf )∗ at P̃f
0 implies that ((θf )∗P̃f,ni

0 )∞i=1 converges to (θf )∗P̃f
0 and, therefore,

(θf )∗P̃f
0 = P̃f

0 . �

REMARK 2.20. Here are some comments on the last theorem:

1. A sufficient condition for the existence of a converging subsequence in
Theorem 2.19 is the relative compactness condition of Lemma 2.9.

2. When the sequence (Pf,n
0 )∞n=1 converges to Pf

0 , then (P̃f,n
0 )∞n=1 converges

to Pf
0 , too, and hence Theorem 2.19 implies the invariance of the f -probability

Pf
0 under the action of (θf )∗, whenever (θf )∗ has the required continuity.

3. If instead of (P̃f,n
0 )∞n=1, (Pf,n

0 )∞n=1 has convergent subsequences with dif-
ferent limits, that is, if the set of f -probabilities is not a singleton, then none
of the f -probabilities satisfies (2.16). However, it follows from Lemma B.1 in
Appendix B that if (θf )∗ is continuous, and if (Pf,n

0 )∞n=1 is relatively com-
pact, then the set of f -probabilities of P0 is compact, nonempty and (θf )∗-
invariant.

4. The conditions listed in Theorem 2.19 are all required. There exist point-
maps f such that (P̃f,n

0 )∞n=1 has no convergent subsequence (see Section 3.4);

there also exist point-maps f such that (Pf,n
0 )∞n=1 is convergent, but (θf )∗ is not

continuous at the limit and Pf
0 is not invariant under the action of (θf )∗ (see Sec-

tion 3.1). The use of Cesàro limits is required too as there exist point-maps f such
that (Pf,n

0 )∞n=1 is not convergent, whereas (P̃f,n
0 )∞n=1 converges to a limit which

satisfies (2.16) (see Section 3.6).
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2.5.2. Continuity condition. In case of existence of P̃f
0 , Theorem 2.19 gives

a sufficient condition for P̃f
0 to solve (2.16); however since P̃f

0 lives in the space
of probability measures on counting measures, the verification of the continuity of
(θf )∗ at P̃f

0 can be difficult. The following propositions give more handy tools to
verify the continuity criterion.

PROPOSITION 2.21. If θf is P̃f
0 -a.s. continuous, then (θf )∗ is continuous

at P̃f
0 .

PROOF. The proof is an immediate consequence of Proposition A.6 in Ap-
pendix A, as the space N(Rd) is a Polish space. �

PROPOSITION 2.22. If f is P̃f
0 -almost surely continuous, then (θf )∗ is P̃f

0 -
continuous.

PROOF. One can verify that θ : Rd × N → N defined by θ(t, φ) = θtφ is con-
tinuous. Also h : N0 → Rd × N defined by h(φ) = (f (φ),φ) is continuous at
continuity points of f in N0. Hence, θf = θ ◦ h is continuous at continuity points
of f . �

The converse of the statement of Proposition 2.22 does not hold in general (see
Section 3.4). Combining the last propositions and Theorem 2.19 gives:

COROLLARY 2.23. If the limit P̃f
0 defined in (2.18) exists and if in addition

f is P̃f
0 -almost surely continuous, then (θf )∗ is continuous at P̃f

0 , and P̃f
0 then

solves Mecke’s invariant measure equation (2.16).

In Theorem 2.19 and the last propositions, the continuity of the mapping (θf )∗
is required at some specific point only. The continuity of f is a stronger require-
ment which does not hold for most interesting cases as shown by the following
proposition (see Appendix C for a proof).

PROPOSITION 2.24. For d ≥ 2, there is no continuous point-map on the
whole space N0 other than the point-map of the identity point-shift, that is, the
point-map which maps all φ ∈ N0 to the origin.

2.5.3. Regeneration. In certain cases, the existence of Pf
0 can be established

using the theory of regenerative processes [1]. This method can be used when the
point process satisfies the strong Markov property such as Poisson point processes
[15].
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Assume f is a fixed point-map and (�,P�) is the Palm version of a stationary
point process. For n ≥ 0, let

(2.20) Xn = Xn(f,�) = f n(�) ∈Rd,

where f n is defined in (1.5). Note that P�-almost surely, � ∈ N0, and hence Xn

is well-defined. Finally, denote θXn� by �n (this point process should not be con-
fused with �n

f defined in Section 1.4.3) and by �r
n the restriction of �n to the

sphere of radius r centered at the origin. Using this notation, Lemma 2.3 gives
(θXn)∗P0 = Pf,n

0 or equivalently (�n)∗P� = Pf,n
0 .

The following theorem leverages classical results in the theory of regenerative
processes.

THEOREM 2.25. If, for all r > 0, there exists a strictly increasing sequence of
nonlattice integer-valued random variables (ηi)

∞
i=1, which may depend on r , such

that

1. (ηi+1 − ηi)
∞
i=1 is a sequence of i.i.d. random variables with finite mean,

2. the sequence Yi := (�r
ηi

,�r
ηi+1, . . . ,�

r
ηi+1−1) is an i.i.d. sequence and

Yi+1 is independent of η1, . . . , ηi ,

then the f -probability Pf
0 exists and, for all bounded and measurable functions h

and for P0-almost all φ,

(2.21) lim
k→∞

1

k

k−1∑
n=0

h
(
θn
f φ

) =
∫

N0
h(ψ)Pf

0 (dψ).

If in addition, for all n, f is Pf,n
0 -almost surely continuous, then Pf

0 is invariant

under the action of (θf )∗ and θf is ergodic on (N0,N 0,Pf
0 ).

PROOF. In order to prove the weak convergence of Pf,n
0 to Pf

0 , it is sufficient
to show the convergence in all balls of integer radius r around the origin. Note
that Pf,n

0 is the distribution of �n and hence, to prove the existence of Pf
0 , it is

sufficient to prove the convergence of the distribution of �r
n for all r ∈ N.

Note that the sequence (ηi)
∞
i=1 forms a sequence of regenerative times for the

configurations in Br(0). Since N0 is metrizable (cf. [1], Theorem B.1.2), the distri-
bution of �r

n converges to a distribution Pf
0,r on configurations of points in Br(0)

satisfying

(2.22)
1

E0[η2 − η1]E0

[η2−1∑
n=η1

h
(
�r

n

)] =
∫

N0
h
(
ψ ∩ Br(0)

)
Pf

0,r d
(
ψ ∩ Br(0)

)
,

for all h : N0 → R+. Since the distributions (Pf
0,r )

∞
r=1 are the limits of (�r

n)
∞
r=1,

they satisfy the consistency condition of Kolmogorov’s extension theorem and
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therefore there exists a probability distribution Pf
0 on N0 having Pf

0,r as the distri-
bution of its restriction to Br(0). This proves the existence of the f -probability.

The left-hand side of (2.22) can be replaced by an ergodic average (cf. [1] The-
orem B.3.1), that is, for all r ∈ N, for P0-almost all φ ∈ N0,

lim
k→∞

1

k

k−1∑
n=0

h
(
θn
f φ ∩ Br(0)

) =
∫

N0
h
(
ψ ∩ Br(0)

)
Pf,r

0 d
(
ψ ∩ Br(0)

)
=

∫
N0

h
(
ψ ∩ Br(0)

)
Pf

0 (dψ).

Finally, r varies in the integers, and hence the last equation gives (2.21), for P0-
almost all φ.

By defining h as the continuity indicator of f , the Pf,n
0 -almost sure continuity

of f and (2.21) give its Pf
0 -almost sure continuity, and hence that of (θf )∗ at Pf

0 .

Therefore, Pf
0 is invariant under the action of (θf )∗. Also ergodicity is clear from

regeneration. �

The main technical difficulty for using Theorem 2.25 consists in finding an ap-
propriate sequence (ηi)

∞
i=1. Proposition 3.1 below leverages the strong Markov

property of Poisson point processes to find appropriate sequences and prove the
existence of the point-map probability for the point-map s for homogeneous Pois-
son point processes. Proposition 3.2 uses the same approach to show that the same
holds true for the directional point-map dα . Other examples can be found in Sec-
tion 3.

3. More on examples.

3.1. Strip point-shift. Let P0 denote the Palm distribution of the homogeneous
Poisson point process on R2. It follows from results in [8] (in Theorem 3.1. of this
reference, the authors proved that the graph of this point-shift has finite branches,
which is equivalent to evaporation) that P0 evaporates under the action of the strip
point-map s. It is also shown in Proposition 3.1 below that P0, admits a unique
s-probability which satisfies the continuity requirements of Theorem 2.19.

This point-shift also allows one to illustrate the need of the continuity property
in Theorem 2.19. Consider the setup of Proposition 3.1. For all φ ∈ N0 such that
the origin has infinitely many pre-images, change the definition of the point-map
s as follows: it is now the closest point on the right half-plane which has no other
point of φ in the ball of radius 1 around it. Due to evaporation, this changes the
definition of s on a set of measure zero under Ps,n

0 , for all n ∈ N, and hence, the
sequence (Ps,n

0 )∞n=1 is again converging to the same limit as that defined in the
proof of Proposition 3.1. But under the action of the new s, (θs)∗Ps

0 is not equal to
Ps

0 due to the facts that (i) 0 has infinitely many pre-images Ps
0-a.s. and (ii) there
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is no point of the point process in the ball of radius 1. This does not agree with the
fact that, in the right half-plane, the distribution of Ps

0 is a Poisson point process
(see the proof of Proposition 3.1). Hence, Ps

0 is not invariant under the action of
(θs)∗.

3.2. Directional point-shift. The directional point-shift was introduced in [2].
Let e1 be the first coordinate unit vector The directional point-map d maps the
origin to the nearest point in the right half-space, defined by e1, that is, for all
φ ∈ N0,

(3.1) d(φ) := argmin
{‖y‖;y ∈ φ,y · e1 > 0

}
.

The associated point-shift will be denoted by D.
The directional point-map on R2 with deviation limit α, dα , is similar to d ,

except that the point y is chosen in the cone with angle 2α and central direction e1
rather than in a half-plane, that is,

(3.2) dα(φ, x) := argmin
{
‖y‖;y ∈ φ,

y

‖y‖ · u > cosα

}
.

When α = π
2 one has dα = d . Its point-shift is denoted by Dα .

When α < π/2, it can be shown that the homogeneous Poisson point process
on R2 evaporates under the action of dα , and from Proposition 3.2 below, it ad-
mits a unique dα-probability which satisfies the continuity requirements of Theo-
rem 2.19.

3.3. Regeneration. This subsection is focused on the existence of point-map-
probabilities for point-maps defined on Poisson point processes. It is based on
Theorem 2.25 and is illustrated by two examples.

PROPOSITION 3.1. If s is the strip point-map, and (�,P) is a homogeneous
Poisson point process in the plane with distribution P , then the s-probability exists
and is given by (2.21). In addition, for all n, s is Ps,n

0 -almost surely continuous.
Therefore, the action of (θs)∗ preserves Ps

0 and is ergodic.

PROOF. The random vector, X1 = X1(�) defined in equation (2.20), depends
only on the points of � which belong to the rectangle R0(�) = [0, x1] × [−1,1],
where x1 is the first coordinate of the left most point of � ∩ T (0). It is easy to
verify that R0(�) is a stopping set (cf. [15] and [18]). Let Rn(�) be the rectangle
which is needed to determine the image of the origin in θXn� under the action
of S. Let Rn + Xn be the translation of the set Rn by the vector Xn Then it is clear
that

(3.3) Uk =
k⋃

n=0

(Rn + Xn)
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is also a stopping set. As a consequence, the strong Markov property of Poisson
point process (cf. [18]) implies, given X0, . . . ,Xn, the point process on the right
half-plane of Xn is distributed as the original Poisson point process. Let

pn = π1(Xn+1 − Xn),

where π1 is the projection on the first coordinate. Since Ps,n
0 , restricted to the

right half-plane, is the distribution of a Poisson point process and since the se-
quence (pn)

∞
n=1 depends only on the configuration of points in the right half-plane,

(pn)
∞
n=1 is a sequence of i.i.d. exponential random variables with parameter 2λ,

where λ is the intensity of the point process. Also if ηi is the integer n such that,
for the ith time, pn is larger than 2r , then the sequence (ηi)

∞
i=1 forms a sequence

of regenerative times for configuration of points in Br(0). Combining this with
the distribution of pn gives that (ηi)

∞
i=1 satisfies the required conditions in Theo-

rem 2.25.
Finally, consider the discontinuity points of s. Let φ ∈ N1 with s(φ) = x =

(x1, x2). It is shown below that if φ is a discontinuity point of s, then either x lies
on the boundary of T (0) or there is a point of φ other than the origin and x which
lies on the perimeter of the rectangle [0, x1] × [−1,1]. This proves that, for all
n, the discontinuity points of s are of Pf,n

0 -zero measure. To prove the continuity
claim, assume that φ satisfies none of the above condition. Hence, there exists
ε > 0 such that, x1 > ε, x2 ∈ [−(1 − ε),1 − ε] and there is no other point of φ

in [−ε, x1 + 2ε], [−1 − ε,1 + ε]. Therefore, for ψ ∈ N0 close enough to φ in the
vague topology, there is a point y = (y1, y2) ∈ ψ in an ε-neighborhood of x, which
gives y ∈ (0, x1 + ε) × (−1,1) and since there is no point of ψ other than 0 and y

in [0, x1 + ε] × [−1,1], s(ψ) = y, which proves the claim.
Therefore, all conditions of Theorem 2.25 are satisfied, which proves the propo-

sition. �

Note that the proof shows that the distribution Ps
0 on the right half-plane is

homogeneous Poisson with the original intensity.

PROPOSITION 3.2. Let dα be the directional point-map defined in Section 3.2
with α < π/2. Under the assumptions of Proposition 3.1, the dα-probability exists
and is given by (2.21). In addition, for all n, dα is Pdα,n

0 -almost surely continuous,

and hence the action of (θdα )∗ preserves Pdα

0 and is ergodic.

PROOF. The proof is similar to that of Proposition 3.1, but more subtle. It uses
the same notation as that of Theorem 2.25.

Let Cα denote the cone with angle 2α, central direction e1, and apex at the
origin. Let X1(φ) be the point of Cα ∩ φ which is the closest to the origin (other
than the origin itself). Let Cα

0 (φ) be the closed subset of Cα consisting of all points
of Cα which are not farther to the origin than X1(φ). This set will be referred to
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as a bounded cone below. One may verify that Cα
0 (φ) is a stopping set and that

X1 is determined by Cα
0 . Let Cα

n (φ) be the closed bounded cone which is needed
to determine the image of the origin in θXnφ under the action of dα . It is easy to
verify that

(3.4) Uk =
k⋃

n=0

(
Cα

n + Xn

)
,

is also a stopping set. It is a simple geometric fact that

(3.5) Un−1 ∩ Cπ/2−α(Xn) = {Xn},
and as a consequence, given Un−1, the point process in Cπ/2−α +Xn is distributed
as the original point process. This fact together with the facts that Un is a stop-
ping set and Cα

n has no point of the point process other than Xn and Xn+1, give
that, in the nth step, with probability at least min{1, (π/2 − α)/(α)}, Xn+1 is in
Cπ/2−α(Xn). Let ηi be the ith time for which Xn+1 ∈ Cπ/2−α(Xn) and has a dis-
tance more than 2r from the edges of Cπ/2−α(Xn). The Poisson distribution of
points in Cπ/2−α(Xn) gives that the random variables ηi+1 − ηi are stochastically
bounded by an exponential random variable, and hence they satisfy all require-
ments of Theorem 2.25.

As in the case of the strip point-shift, it can be shown that if dα is not continuous
at φ ∈ N0 then either there is no point in the interior of Cα or there is a point on
the perimeter of Cα

0 (φ).
Note that since Un−1 is a stopping set and (Cα + Xn) ∩ Un−1 has no point of

the point process other than Xn, Xn+1 is distributed as in a Poisson point process
in Cα

n + Xn given the fact that some parts contain no point. Therefore, since the
discontinuities of dα are of probability zero under the Poisson distribution, they are
of probability zero under all Pdα,n

0 , and hence Theorem 2.25 proves the statements
of the proposition. �

The statement of Proposition 3.2 is also true in the case α = π/2 and can be
proved using ideas similar to those in the proof for α < π/2. However, the techni-
cal details of the proof in this case may hide the main idea and this case is hence
ignored in the proposition.

3.4. Condenser and expander point-shift. Assume each point x ∈ φ is marked
with

νp(x) = #
(
φ ∩ B1(x)

) (
resp., νm(x) = sup

{
r > 0 : φ ∩ Br(x) = {x}}),

where Br(x) = {y ∈R2 : ‖x − y‖ < r}. Note that νp(x) and νm(x) are always pos-
itive. The condenser point-shift P (resp., expander point-shift M) acts on counting
measures as follows: it goes from each point x ∈ φ to the closest point y such that
νp(y) ≥ 2νp(x) [resp., νm(y) ≥ 2νm(x)]. It is easy to verify that both point-shifts
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are compatible and almost surely well-defined on the homogeneous Poisson point
process.

Poisson point processes evaporate under the action of both point-shifts P

and M .
The condenser point-map provides an example where no f -probability exists.

Let (id,P) be the Poisson point process with intensity one on R2 and let p be the
condenser point-map. Clearly,

Pp,n
0

[
φ

(
B1(0)

)
> 2n] = 1.

Therefore, the tightness criterion is not satisfied, and thus there is no convergent
subsequence of (Pp,n

0 )∞n=1.
Similarly, the expander point-map allows one to show that there is no converse

to Proposition 2.22. More precisely, θm is continuous Pm
0 -almost surely but the

point-map is Pm
0 -almost surely discontinuous. Hence, the converse of the state-

ment of Proposition 2.22 does not hold in general. Consider m on the homogeneous
Poisson point process. One can verify that (Pm,n

0 )∞n=1 converges to the probability
measure concentrated on the counting measure δ0 with a single point at the origin.
In this example, θm is Pm

0 -a.s. continuous. This follows from the fact that when
looking at the point process in any bounded subset of Rd , it will be included in
some ball of radius r around the origin and, therefore, the configuration of points
in it will be constant (only one point at the origin) after finitely many application
of θm. But the point-map m makes larger and larger steps, and hence the sequence
of laws of m under Pm,n

0 diverges. Hence, m is almost surely not continuous at the
realization δ0 on which Pm

0 is concentrated.

3.5. Closest hard core point-shift. By definition, the image of x ∈ φ by the
closest hard core point-shift H is the closest point y of φ (including x itself) such
that φ(B1(y)) = 1. Its point-map will be denoted by h.

The point-map h is 1-periodic. It provides an illustration of Theorem 2.14. Con-
sider h acting on a stationary Poisson point process of intensity one in the plane.
For the simple counting measure φ, let �(φ) denote sub-point process of φ made
of points y of φ such that φ(B1(y)) = 1. If φ is chosen w.r.t. P , then �(φ) is
also a stationary point process. Let Q0 denote the Palm probability of �(φ). Then
Pf

0 is absolutely continuous w.r.t. Q0 and its Radon–Nikodym derivative at each
�(φ) ∈ N0 is proportional to the number of points of φ in the Voronoi cell of the
origin in �(φ).

3.6. Quadri-void grid point-shift. Let ψ = Z\4Z, that is, those integers which
are not multiple of 4. If U is a uniform random variable in [0,4), then ψ + U is a
stationary point process on the real line which will be called the quadri-void grid
below. The Palm distribution of this point process has mass of 1

3 on θ1ψ,θ2ψ and
θ3ψ .
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Let q be the point-map defined by

q(θ1ψ) = 2, q(θ2ψ) = 1 and q(θ3ψ) = −2.

For odd values of n > 0, one has

Pq,n
0 [φ = θ3ψ] = 2

3
, Pq,n

0 [φ = θ1ψ] = 1

3
,

whereas for even values of n > 0,

Pq,n
0 [φ = θ3ψ] = 1

3
, Pq,n

0 [φ = θ1ψ] = 2

3
.

Therefore, (Pq,n
0 )∞n=1 has two convergent subsequences with different limits, one

for even and one for odd values of n, and none of these limits is invariant under the
action of (θq)∗. However, the sequence (P̃q,n

0 )∞n=1 converges to a limit P̃q
0 which

is the mean of the odd and even g-probabilities, that is,

P̃q
0 [φ = θ3ψ] = 1

2
, P̃q

0 [φ = θ1ψ] = 1

2
,

and it is invariant under the action of (θq)∗.

APPENDIX A: RANDOM MEASURES

This subsection summarizes the results about random measures which are used
in this paper in order to have a self-contained paper. The interested reader should
refer to [10, 11]. No proofs are given.

Let S be a locally compact (all points have a compact neighborhood) second
countable (has a countable base) Hausdorff space. In this case, S is known to be
Polish, that is, there exists some separable and complete metrization ρ of S.

Let B(S) be the Borel algebra of S and Bb(S) be all bounded elements of B(S),
that is, all B ∈ B(S) such that the closure of B is compact. Let M(S) be the class
of all Radon measures on (S,B(S)), that is, all measures μ such that for all B ∈
Bb(S), μB < ∞ and let N(S) be the subspace of all N-valued measures in M(S).
The elements of N(S) are counting measures. For all μ in M(S), define

Bb(S)μ := {
B ∈ Bb(S);μ(∂B) = 0

}
.

Let Cb(S) [resp., Cc(S)] be the class of all continuous and bounded (resp., contin-
uous and compact support) h : S →R+. Let

μh :=
∫
S
h(x)μ(dx),

where the latter is equal to
∑

x∈μ h(x) when μ is a counting measure. Note that
in the summation one takes the multiplicity of points into account. The class of all
finite intersections of M(S)-sets [or N(S)-sets] of the form {μ : s < μh < t} with
real r and s and arbitrary h ∈ Cc(S) forms a base of a topology on N(S) which is
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known as the vague topology. In the vague topology, N(S) is closed in M(S) ([10],
page 94, A 7.4.). A necessary and sufficient condition for the convergence in this
topology ([10], page 93) is

μn
v→ μ ⇔ ∀h ∈ Cc(S), μnh → μh.

If one considers the subspace of all bounded measures in N(S), one may replace
Cc(S) by Cb(s). This leads to the weak topology for which

μn
w→ μ ⇔ ∀h ∈ Cb(S), μnh → μh.

The convergence in distribution of the random variables ξ1, ξ2, . . . , defined on
(�,F,P) and taking their values in (S,B(S)), to the random element ξ is defined
as follows:

ξn
d→ ξ ⇔ (ξn)∗P

w→ (ξ)∗P.

The next lemma describes the relation between the convergences in the vague
topology and the weak one.

LEMMA A.1 ([10], page 95, A 7.6). For all bounded μ,μ1,μ2, . . . ∈ M(S),
one has

μn
w→ μ ⇔ μn

v→ μ and μnS → μS.

According to Lemma A.1, when discussing the convergence of probability mea-
sures, there is no difference between the vague and the weak convergence.

The following proposition is a key point in the development of the theory of
random measures and random point processes ([10], page 95, A 7.7.).

PROPOSITION A.2. Both M(S) and N(S) are Polish in the vague topology.
Also the subspaces of bounded measures in M(S) and N(S) are Polish in the weak
topology.

Proposition A.2 allows one to define measures on M(S) or N(S) which are
Polish spaces and use for them the theory available for S. If M (resp., N ) is the σ -
algebra generated by the vague topology on M(S) [resp., N(S)], a random measure
(resp., random point process) on S is simply a random element of (M(S),M)

[resp., (N(S),N )]. Note that a random point process is a special case of a random
measure.

The next theorem and lemmas give handy tools to deal with convergence in
distribution of random measures on S.

THEOREM A.3 ([10], page 22, Theorem 4.2). If μ,μ1,μ2, . . . are random
measures on S [i.e., random elements of (M(S),M)], then

μn
d→ μ ⇔ μnh

d→ μh ∀h ∈ Cc(S).
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LEMMA A.4 ([10], page 22, Lemma 4.4). If μ,μ1,μ2, . . . are random mea-

sures on S satisfying μn
d→ μ, then μnh

d→ μh for every bounded measurable
function h : S → R+ with bounded support satisfying μ(Dh) = 0 almost surely,
where Dh is the set of all discontinuity points of h. Furthermore,

(μnB1, . . . ,μnBk)
d→ (μB1, . . .μBk), k ∈ N,B1, . . .Bk ∈ Bb(S)μ.

LEMMA A.5 ([10], page 23, Lemma 4.5). A sequence (μn)
∞
n=1 of random

measures on S is relatively compact w.r.t. the convergence in distribution in the
vague topology if and only if

lim
t→∞ lim sup

n→∞
P[μnB > t] = 0 ∀B ∈ Bb(S).

Denote by P(S) the set of all probability measures on S. Clearly, P(S) ⊂ M(S)

and according to Lemma A.1, the weak and the vague topologies on P(S) coincide.

PROPOSITION A.6 ([4], page 30, Theorem 5.1). If S and T are Polish spaces
and h : (S,B(S)) → (T ,B(T )) is a measurable mapping, then h∗ is continuous
w.r.t. the weak topology at point P ∈ P(S) if h is P-almost surely continuous.

Note that the version of Proposition A.6 which is in [4], is expressed for metric
spaces. But, as noted in the beginning of the Appendix, Polish spaces are metriz-
able, and hence one can apply the same statement for such spaces.

APPENDIX B: SEMIGROUP ACTIONS

Let X be a Hausdorff space. An action of (N,+) on X is a collection π of
mappings πn : X → X, n ∈ N, such that for all x ∈ X, and m,n ∈ N, πm ◦πn(x) =
πm+n(x). When each of the mappings πn is continuous, π is also often referred to
as a discrete time dynamical system.

On a Hausdorff space X, one can endow the set XX with a topology, for ex-
ample, that of pointwise convergence. The closure of the action of N is then the
closure � of the set � = {πn,n ∈ N} ⊂ XX w.r.t. this topology. A classical in-
stance (see, e.g., [7]) is that where the space X is compact, the mappings πn are
all continuous, and the topology on XX is that of pointwise convergence. Then �

is compact.
Denote the orbit {x,π(x),π2(x), . . .} of x ∈ X by Ax . For all x ∈ X, the closure

clAx of Ax is a closed π -invariant subset of X. If, for all n, πn is continuous, then
the restriction of π to clAx defines a semigroup action of N. The compactness
of clAx is not granted when X is noncompact. When it holds, several important
structural properties follow as illustrated by the next lemmas where X is a metric
space with distance d . Let

(B.1) ωx = {
y ∈ X s.t. ∃n1 < n2 < · · · ∈ N with πni

(x) → y
}

denote the ω-limit set of x.
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LEMMA B.1 (Lemma 4.2, page 134, and page 166 in [5]). Assume that πn is
continuous for all n and that clAx is compact. Then, for all neighborhoods U of
ωx , there exists an N = N(U,x) such that πn(x) ∈ U for all n ≥ N . Moreover ωx

is nonempty, compact and π -invariant.

In words, under the compactness and continuity conditions, the orbit is attracted
to the ω-limit set.

LEMMA B.2 (Lemma 2.9, page 95 in [5]). If clAx is compact, then the fol-
lowing property holds: for all ε > 0, there exists N = N(ε, x) ∈ N such that for
all y ∈ clAx , the set {πn(x),0 ≤ n ≤ N} contains a point z such that d(y, z) ≤ ε.
If in addition πn is continuous for all n, then the last property is equivalent to the
compactness of clAx .

In words, under the compactness condition, in a long enough interval, the tra-
jectory πn(x) visits a neighborhood of every point of clAx .

APPENDIX C: PROOF OF PROPOSITION 2.24

Let g be a point-map the image of which at φ ∈ N0 is x ∈ φ, with x �= 0. Assume
there is a point y ∈ φ with y /∈ {0, x}. Since φ is a discrete subset of Rd and d ≥ 2
there exist curves γ1, γ2 : [0,1] → Rd such that:

1. γ1(0) = γ2(1) = x and γ2(0) = γ1(1) = y;
2. γ1 and γ2 only intersect at their end-points;
3. γ1 and γ2 contain no point of φ other than x and y.

Now let � be a closed curve in N0 defined as

� : [0,1] → N0; �(t) = (
φ \ {x, y}) ∪ {

γ1(t), γ2(t)
}
, t ∈ [0,1].

The continuity of g, items 2 and 3 imply that for all t ∈ [0,1], g(�(t)) = γ1(t).
Hence, g(�(0)) = x and g(�(1)) = y. But it follows from item 1 that �(0) =
�(1) = φ, which contradicts the fact that x and y are different points of φ. When
φ = {0, x}, one obtains the contradiction by letting x go to infinity whereas in this
situation, {0, x} converges to {0} in the vague topology.
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