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INVARIANCE PRINCIPLES UNDER THE
MAXWELL–WOODROOFE CONDITION IN BANACH SPACES

BY CHRISTOPHE CUNY

Centralesupelec

We prove that, for (adapted) stationary processes, the so-called Maxwell–
Woodroofe condition is sufficient for the law of the iterated logarithm and
that it is optimal in some sense. That result actually holds in the context of
Banach valued stationary processes, including the case of Lp-valued random
variables, with 1 ≤ p < ∞. In this setting, we also prove the weak invariance
principle, hence generalizing a result of Peligrad and Utev [Ann. Probab. 33
(2005) 798–815]. The proofs make use of a new maximal inequality and of
approximation by martingales, for which some of our results are also new.

1. Introduction. Let (�,F,P) be a probability space, θ be an invertible bi-
measurable measure preserving transformation on � and F0 ⊂F a σ -algebra such
that F0 ⊂ θ−1(F0). Define a non-decreasing filtration by Fn = θ−n(F0), for every
n ∈ Z and denote En := E(·|Fn). For every X ∈ L1(�,F,P), write Sn(X) = X +
· · · + X ◦ θn−1.

In 2000, Maxwell and Woodroofe [34] proved the CLT for (X ◦ θn)n≥0 under
the condition

(1)
∑
n≥1

‖E0(Sn)‖2

n3/2 < ∞.

Actually, Maxwell and Woodroofe worked in a Markov chain setting, but in our
context their condition reads as above.

This was a considerable improvement of the martingale-coboundary condition
of Gordin and Lifšic [25] which in our setting is equivalent to the boundedness of
(‖E0(Sn(X))‖2)n≥1.

Moreover, the condition (1) proved to be useful in applications. It is directly
checkable for linear processes with innovations that are martingale differences;
see, for example, Zhao and Woodroofe [53] (Proposition 5 and its proof). It leads
to the optimal sufficient condition for the CLT in the case of ρ-mixing processes;
see Merlevède, Peligrad and Utev [36], pages 14–15. It is implied by the condition∑

n(logn)1+ε ‖E0(Sn)‖2
2

n2 < ∞, which can be checked in the case of Markov chains
with normal Markov operator; see Cuny [6]. Finally, it is implied by the follow-
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ing condition which is easier to check in applications (see, e.g., [7], Sections 3.1
and 3.3)

(2)
∑
n≥1

‖E0(X ◦ θn−1)‖2

n1/2 < ∞.

For more situations where the conditions (1) and (2) can be checked, we refer to
[36] and the references therein.

Because of those potential applications several authors tried to have a better
understanding of the condition (1) and its connection with probabilistic results
such as maximal inequalities, the weak invariance principle, the law of the iterated
logarithm (LIL) and others.

A key step toward that better understanding was the paper [39] by Peligrad and
Utev who proved a new maximal inequality and applied it to deduce the weak
invariance principle (WIP) under (1). Moreover, they proved that (1) is, in some
sense, optimal for the CLT.

Later, Peligrad, Utev and Wu [40] and Wu and Zhao [52] proved Lp-versions
of that maximal inequality, in the cases p ≥ 2 and 1 < p ≤ 2, respectively, and
obtained new results under Lp-versions of (1).

Further extensions of those maximal inequalities have been obtained recently
by Merlevède and Peligrad [35].

On another hand, the quenched CLT (a strengthening of the CLT), the quenched
invariance principle and the law of the iterated logarithm (LIL) have been obtained,
under various strengthening of (1), by Derriennic and Lin [21], Rassoul-Agha and
Seppäläinen [44], Zhao and Woodroofe [53], Wu and Woodroofe [51], Cuny and
Lin [9] and Cuny [6].

Very recently, Cuny and Merlevède [10] investigated the martingale approxima-
tion method under Lp-versions of (1) and, using a new maximal inequality inspired
by [35], they proved the quenched invariance principle under (1).

In view of all those results, one may expect that (1) be a (sharp) sufficient con-
dition for the LIL, as well as for its invariance principle.

In this paper, we provide a positive answer to that question (the example of
Peligrad and Utev [39] ensures the sharpness). Actually our results hold in a Ba-
nach space setting, including any (separable) Lp spaces of a σ -finite measure
space. More precisely, we prove the almost sure invariance principle (ASIP) in
2-smooth Banach spaces or in Lp spaces with 1 ≤ p < 2. We also obtain the WIP
for dependent variables taking values in a 2-smooth Banach space or in a Banach
space of cotype 2.

The main motivation for considering Banach-valued variables (especially the
Lp cases, with 1 ≤ p < ∞) is the fact that there are applications in statistics, in
the study of the empirical process; see Section 6.2. Let us mention some papers in
this vein: del Barrio, Giné and Matrán [20], Berkes, Horváth, Shao and Steinebach
[4], Dedecker and Merlevède [15] and [14] or Dédé [12]. Let us mention also the
very recent preprint of Dedecker and Merlevède [16].
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To give a flavour of our results, we shall state here a theorem in Lp , p ≥ 1.
Let (S,S,μ) be a σ -finite measure space such that L1(S,S,μ) is separable (for

instance, assume that S be countably generated). Let X(s) be a random variable
on (�,F0,P) with values in Lp(S,S,μ), for some 1 ≤ p < ∞. We shall often
consider X as a (class of a) measurable function on (� × S,F0 ⊗ S,P ⊗ μ),
without mentioning it.

For every integer n ≥ 0, write Xn = X◦θn. For every t ∈ [0,1] and every integer
n ≥ 1, write Sn,t (X) := ∑[nt]−1

k=0 Xk + (nt − [nt])X[nt] and Tn,t := Sn,t /
√

n.
For the sake of clarity, we state the next theorem under a condition in the spirit

of (2) rather than (1). With this formulation, the ASIP has already been obtained
by the author [7], when p = 2; the WIP follows from Theorem 3.1 of Dedecker–
Merlevède–Pène [18] (see also Theorem 2.1 of Dedecker–Merlevède–Pène [17],
when p = 2; and the CLT has been obtained by Dédé [12] when p = 1.

We denote by ‖ · ‖2 the L2-norm on (�,P).

THEOREM 1.1. Assume that θ is ergodic. Let X ∈ L2(�,F0,P,Lp(S))

(1 ≤ p < ∞) be such that Np(X) < ∞, where

Np(X) = ∑
n≥1

(
∫
S ‖E0(Xn−1(s))‖p

2 μ(ds))1/p

n1/2 if 1 ≤ p < 2,(3)

Np(X) = ∑
n≥1

‖(∫S |E0(Xn−1(s))|pμ(ds))1/p‖2

n1/2 if p ≥ 2.(4)

Then the process ((Tn,t )0≤t≤1)n≥1 converges in law in C([0,1],Lp(S,μ)) [to an
Lp(S,μ)-valued Brownian motion]; (Sn(X)/

√
nL(L(n)))n ≥ 1 is P-a.s. relatively

compact in Lp(S,μ). Moreover, there exists a universal constant C > 0, such that

lim sup
n→+∞

(
∫
S |∑n−1

k=0 Xk(s)|pμ(ds))1/p

√
2nL(L(n))

≤ CNp P-a.s.

The exact value of the (P-a.s. constant) limsup above may be derived from the
proof.

Under the assumptions of the theorem, an ASIP holds as well, see Theorem 5.2
and Theorem 5.3.

Notice that if (Xn)n≥0 is a sequence of martingale differences [i.e., En−1(Xn) =
0 for every n ≥ 1] in L2(�,Lp(S)) if p ≥ 2 or in Lp(S,L2(�)) if 1 ≤ p ≤ 2 then
the condition Np(X) < ∞ automatically holds. In this case, the WIP and the ASIP
are new when 1 ≤ p < 2; see Section 3 for references when p ≥ 2.

When p > 2, neither the ASIP nor the WIP, can be obtained under condition (4),
by the method of [7] or [18]. Indeed, when p > 2, the only sufficient condition (for
the WIP or the ASIP) relying on (E0(Xn))n≥1 that may be derived from the results
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of [18] or [7] is the following (see the proof of Theorem 2.1 of [17], page 758):∑
n≥1

‖(∫S |E0(Xn−1(s))|pμ(ds))1/p‖p

n1/p < ∞.
Our method of proof follows a classical line. To prove the weak invariance prin-

ciple, we first prove tightness of the underlying process and then prove conver-
gence in law of the finite-dimensional distributions. To prove the almost sure in-
variance principle (in particular the functional law of the iterated logarithm), we
first prove a compact law of the iterated logarithm (CLIL) and then invoke an im-
portant result of Berger; see Theorem B.3. The tightness and the CLIL are obtained
thanks to suitable maximal inequalities. Our proofs make also use of martingale
approximation arguments, in particular we first prove all results for martingale
differences.

The paper is organised as follows. In Section 2, we recall some definitions and
lemmas, about probability in Banach spaces, that are necessary for the understand-
ing of the statement and/or the proofs of the results. In Section 3, we state all the
results (some of them are new) for martingale with stationary (and ergodic) in-
crements that are needed in the sequel. In Section 4, we state maximal inequalities
under projective conditions. In Section 5, we state our limit theorems under projec-
tive conditions. In Section 6, we provide several examples including the case of the
empirical process. All the results of Sections 2–5 are proved in the Appendix. The
fact that our examples satisfy the required conditions is checked in the Section 6
itself.

Let us mention that versions of our results may be obtained (with slight mod-
ifications) for nonadapted stationary processes or stationary processes arising in
noninvertible dynamical systems.

2. Generalities on probability on Banach spaces. Let (�,F,P) be a prob-
ability space. We will consider Banach-valued random variables. We refer to the
book by Diestel and Uhl [22] for the basic facts on the topic (definition, condi-
tional expectation, etc.). We shall also use results or notation from Ledoux and
Talagrand [31]. In all the paper, we shall be concerned only with separable Banach
spaces, in which case the definitions of a random variable of [22] and [31] coïn-
cide. Other relevant references on the topic are the books by Vakhania, Tarieladze
and Chobanyan [49] and by Araujo and Giné [1].

In all the paper, (X , | · |X ) will be a real separable Banach space. Denote by
L0(X ) the space of (classes modulo P of) functions from � to X that are limits
P-a.s. of simple (or step) functions. We define, for every p ≥ 1, the usual Bochner
spaces Lp and their weak versions, as follows:

Lp(�,F,P,X ) = {
Z ∈ L0(X ) : E(|Z|pX

)
< ∞};

Lp,∞(�,F,P,X ) =
{
Z ∈ L0(X ) : sup

t>0
t
(
P

(|Z|X > t
))1/p

< ∞
}
.

For every Z ∈ Lp(�,F,P,X ), write ‖Z‖p,X := (E(|Z|pX ))1/p and for every
Z ∈ Lp,∞(�,F,P,X ), write ‖Z‖p,∞,X := supt>0 t (P(|Z|X > t))1/p .



1582 C. CUNY

For the sake of clarity, when they are understood, some of the references to �,
F or P may be omitted. Also, in the case when X = R, we shall simply write
‖ · ‖p or ‖ · ‖p,∞. Recall that for every p > 1 there exists a norm on Lp,∞(P,X )

(see the proof of Lemma E.2), equivalent to the quasi-norm ‖ · ‖p,∞,X , that makes
Lp,∞(P,X ) a Banach space.

We will state our results in the context of Banach spaces that are 2-smooth or of
cotype 2. Let us recall the definitions of those spaces.

DEFINITION 2.1. We say that X is 2-smooth, if there exists L ≥ 1, such that

(5) |x + y|2X + |x − y|2X ≤ 2
(|x|2X + L2|y|2X

) ∀x, y ∈ X .

We shall speak about (2,L)-smooth spaces to emphasize the constant L such that
(5) is satisfied.

REMARK. A Banach space is said to be 2-convex whenever (5) holds in the
reverse direction.

DEFINITION 2.2. We say that (dn)1≤n≤N ⊂ L1(�,F,P,X ) is a sequence of
martingale differences, if there exist nondecreasing σ -algebras (Gn)0≤n≤N such
that for every 1 ≤ n ≤ N , dn is Gn-measurable and E(dn|Gn−1) = 0 P-a.s.

The notion of 2-smooth Banach spaces is very useful due to the inequality (6)
below; see, for instance, Proposition 1 of Assouad [2] (and its corollary).

Assume that X is (2,L)-smooth. Then, for every martingale differences
(dn)1≤n≤N , we have

(6) E
(|d1 + · · · + dN |2X

) ≤ 2L2
N∑

n=1

E
(|dn|2X

)
.

Any Hilbert space is (2,1)-smooth.
Any Lp space, p ≥ 2, (of R-valued functions) associated with a σ -finite mea-

sure is (2,
√

p − 1)-smooth (see [41], Proposition 2.1).
We shall also need the concept of Banach spaces of type 2 and of cotype 2.

These concepts are relevant in the study of the central limit theorem in Banach
spaces, in particular in their relationship with the notion of pre-Gaussian variables
that we shall introduce later.

DEFINITION 2.3. We say that a separable Banach space X is of type 2 (re-
spectively of cotype 2) if there exists L > 0 such that for every independent ran-
dom variables d1, . . . , dN ∈ L2(�,X ), with E(d1) = · · · = E(dN) = 0, (6) holds
(resp., such that (6) holds in the reverse direction).
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Of course, any 2-smooth Banach space is of type 2.
Now, we explain what we mean by an invariance principle in a Banach space.
Let us denote by X ∗ the topological dual of X . Let X ∈ L0(�,X ) be such

that for every x∗ ∈ X∗, E(x∗(X)2) < ∞ and E(x∗(X)) = 0. We define a bounded
symmetric bilinear operator K = KX from X ∗ ×X ∗ to R, by

K
(
x∗, y∗) = E

(
x∗(X)y∗(X)

) ∀x∗, y∗ ∈ X ∗.

The operator KX is called the covariance operator associated with X.

DEFINITION 2.4. We say that a random variable W ∈ L0(�,X ) is Gaus-
sian if, for every x∗ ∈ X ∗, x∗(W) has a normal distribution. We say that a ran-
dom variable X ∈ L0(�,X ), such that for every x∗ ∈ X∗, E(x∗(X)2) < ∞ and
E(x∗(X)) = 0, is pre-Gaussian, if there exists a Gaussian variable W ∈ L0(�,X )

with the same covariance operator, that is, such that KX = KW . As in [31], when X

is pre-Gaussian, we shall denote (abusively) by G(X) a Gaussian variable having
the same covariance operator as X.

DEFINITION 2.5. We say that a process (Wt)0≤t≤1 ∈ L0(�,C([0,1],X ))

is a Brownian motion with covariance operator K if it is a Gaussian process
such that for every x∗, y∗ ∈ X ∗ and every 0 ≤ s, t ≤ 1, cov(x∗(Ws), y

∗(Wt)) =
min(s, t)K(x∗, y∗).

DEFINITION 2.6. We say that (Xn)n≥0 satisfies the almost sure invariance
principle (ASIP) if, without changing its distribution, one can redefine the se-
quence (Xn)n≥0 on a new probability space on which there exists a sequence
(Wn)n≥0 of centered i.i.d. Gaussian variables, such that

∣∣X0 + · · · + Xn−1 − (W0 + · · · + Wn−1)
∣∣
X = o

(√
nL

(
L(n)

))
P-a.s.

We say that (Xn)n≥0 satisfies the weak invariance principle (WIP) of covariance
operator K if ((Tn,t )0≤t≤1)n≥1 converges weakly in C([0,1],X ) to a Brownian
motion of covariance operator K, where for every t ∈ [0,1] and every n ≥ 1, Tn,t =
Sn,t /

√
n and Sn,t = X0 + · · · + X[nt]−1 + (nt − [nt])X[nt].

DEFINITION 2.7. We say that (Xn)n≥0 satisfies the compact law of the it-
erated logarithm (CLIL) if the sequence ((X0 + · · · + Xn−1)/

√
nL(L(n)))n≥1

is P-almost surely relatively compact in X . We say that (Xn)n≥0 satisfies the
bounded law of the iterated logarithm (BLIL) if the sequence ((X0 + · · · +
Xn−1)/

√
nL(L(n)))n≥1 is P-almost surely bounded in X .

It has been well known that if (Xn)n≥0 satisfies the ASIP, it satisfies the CLIL,
also. However, we have not found a proper reference where this is explicitly men-
tioned, hence we shall provide some arguments. Let (Wn)n∈N be i.i.d. Gaussian
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variables taking values in X . Then, combining the theorem on page 107 of [32]
and Lemma 3 of [30] (alternatively, combining Theorem 8.6 and Lemma 3.1 of
[31]), it follows that (Wn)n∈N satisfies the CLIL. Then the fact that if (Xn)n≥0
satisfies the ASIP, it satisfies the CLIL also, and readily follows from a standard
approximation argument.

It is known (see the discussion on page 274 of [31]) that in order to have a central
limit theorem (or a WIP) for a sequence of i.i.d. X -valued random variables it is
necessary that the variables be pre-Gaussian. Hence, to prove invariance principles
for stationary sequences, we shall consider only pre-Gaussian variables.

DEFINITION 2.8. Let G(�,F,P,X ) = G(X ) be the set of pre-Gaussian ran-
dom variables that are in L2(�,X ). For every X ∈ G(X ), denote ‖X‖G(X ) :=
‖X‖2,X + ‖G(X)‖2,X .

LEMMA 2.1. Let X be a real separable Banach space. Then, for ev-
ery pre-Gaussian variables X,Y , the variable X + Y is pre-Gaussian and
‖G(X + Y)‖2,X ≤ ‖G(X)‖2,X + ‖G(Y)‖2,X . In particular, (G(X ),‖ · ‖G(X )),
is a normed vector space. Actually, it is a Banach space.

The proof is given in the Appendix. The following result is an obvious conse-
quence of Lemma 8.23 of [31], hence its proof is omitted.

LEMMA 2.2. Let X be a real separable Banach space. Let (�,F,P) be
a probability space, θ be an invertible bi-measurable transformation on �. Let
F ′ be a sub-σ -algebra of F . Let X ∈ L1(�,F,P,X ) be pre-Gaussian. Then
E(X|F ′) is pre-Gaussian and for every n ≥ 0, X ◦ θn is pre-Gaussian. Moreover,
‖E(X|F ′)‖G(X ) ≤ √

2‖X‖G(X ) and ‖X ◦ θn‖G(X ) ≤ √
2‖X‖G(X ).

LEMMA 2.3. Let X be real separable Banach space. Let (Hn)n≥1 be a non-
decreasing filtration and let H∞ := ∨

n≥1 Hn. For every X ∈ G(X ), ‖E(X|Hn) −
E(X|H∞)‖G(X ) −→

n→∞ 0.

The proof is given in the Appendix.
From the above lemmas, we see that it will be very convenient to work in G(X )

in order to obtain invariance principles for a sequence (X◦θn)n≥0 under conditions
involving terms of the type (E0(X ◦ θn))n≥0.

Of course, in order to have tractable conditions it is necessary to be able to
compute ‖X‖G(X ).

Let X = Lp(S,μ) (1 ≤ p ≤ 2), for some σ -finite measure (recall that, then,
X is of cotype 2). In this case, the following characterization of pre-Gaussian
variables is part of the folklore. It is due to Vakhania [48] when μ is discrete (see
[31], page 262, for a proof). It seems to be essentially due to Rajput [43] for a
general σ -finite measure μ. We provide more details in the Appendix.
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LEMMA 2.4. Let X = Lp(S,μ) (1 ≤ p ≤ 2), for some σ -finite measure.
Then X(s) ∈ L2(�,P,X ) is pre-Gaussian if and only if (X is centered and)∫
S(E|X(s)|2)p/2μ(ds) < ∞. Moreover, there exists Cp > 0, depending only on

p, such that

∥∥G(X)
∥∥

2/Cp ≤
(∫

S

(
E

∣∣X(s)
∣∣2)p/2

μ(ds)

)1/p

≤ Cp

∥∥G(X)
∥∥

2 ∀X ∈ G
(
Lp(μ)

)
.

(7)

Hence, G(Lp(μ)) may be identified with {X ∈ Lp(S,L2(�,R)) : E(X) = 0}.

REMARK. The above identification makes use of the natural embedding of
Lp(S,L2(�,R)) into L2(�,P,Lp(S,μ)) (when 1 < p ≤ 2); see Lemma E.2.

On another hand, when X is of type 2, in particular when X is 2-smooth, by
Proposition 9.24 of [31], ‖ · ‖G(X ) is equivalent to ‖ · ‖2,X .

Hence, we infer that when X = Lp(S,μ), for some 1 ≤ p < ∞, there exists
Cp > 0 such that for every X ∈ G(X ),

‖X‖G(X )/Cp ≤
(∫

S

(
E

∣∣X(s)
∣∣2)p/2

μ(ds)

)1/p

(8)
≤ Cp‖X‖G(X ) if 1 ≤ p ≤ 2,

‖X‖G(X )/Cp ≤
[
E

(∫
S

∣∣X(s)
∣∣pμ(ds)

)2/p]1/2

(9)
≤ Cp‖X‖G(X ) if p ≥ 2.

Let us conclude that section with some results concerning the necessity of geo-
metric conditions for the WIP, the ASIP or the BLIL, in the case of i.i.d. sequences.
Those results motivate some of our restrictions in the next sections.

PROPOSITION 2.5. Let X be a separable Banach space. Assume that every
i.i.d. X -valued (Xn)n≥0 in L2(X ), satisfies the WIP (resp., the ASIP, resp., the
BLIL). Then X is of type 2 (resp., of type 2, resp., of type p for every 1 ≤ p < 2).

In the case of the WIP, the proposition follows from Theorem 10.5 of [31] (there
is even a converse result there). In the case of the BLIL, the result follows from
Pisier [42] (see his Remark 2 and the proposition, page 208). We have no reference
for the case of the ASIP, so we provide a proof in the Appendix.

PROPOSITION 2.6. Let X be a separable Banach space. Assume that every
i.i.d. X -valued and pre-Gaussian (Xn)n≥0 satisfies the WIP (resp., the BLIL). Then
X is of cotype 2.
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In the case of the WIP, the proposition follows from Theorem 10.7 of [31] (there
is even a converse result there). We have no reference for the case of the BLIL, so
we will provide a proof in the Appendix.

3. The martingale case. In this section, we give maximal inequalities and
invariance principles for martingales with stationary differences (dn)n≥0. As men-
tioned in [7], there is no loss of generality in assuming that dn = d ◦ θn, where θ

is an invertible bi-measurable measure preserving transformation. Hence, we shall
use the notation in the Introduction.

Let us mention that all the results of this section, except the ASIP in
Proposition 3.3, hold for stationary differences of reverse martingales. Recall
that (dn)n≥1 ⊂ L1(�,X ) is a sequence of differences of reverse martingale if
E(dn|σ {dk : k ≥ n + 1}) = 0.

Nevertheless, for stationary sequences of reverse martingales we know that the
ASIP (as stated in Proposition 3.3) holds in the particular case where X = R; see
Cuny and Merlevède [11], Corollary 2.5.

Part of the results stated here are new. We shall discuss their novelty in the
sequel.

As mentioned, we use the notation from the Introduction.
We first state a maximal inequality that is related to the ASIP.
For every X ∈ L2(�,F,P,X ), we consider the following maximal function:

M2(X, θ,X ) := sup
n≥1

|∑n−1
k=0 X ◦ θk|X√
nL(L(n))

,(10)

where L := max(log,1).
We shall omit the dependence in the parameters θ and/or X when they are

understood.

PROPOSITION 3.1. Let X be a Banach space. Assume either that X is a
(2,L)-smooth Banach space or X = Lp(S,S,μ) with μ σ -finite and 1 ≤ p ≤ 2).
Then, for every 1 < r < 2 there exists Cr > 0 such that

(11)
∥∥M2(d)

∥∥
r,∞ ≤ LCr‖d‖G(X ).

REMARKS. Only the case X = Lp(S,S,μ), 1 ≤ p < 2 is new here. The
proposition is proved in [7] when X is (2,L)-smooth. We do not require θ to be
ergodic. One may wonder whether the proposition holds when X is of cotype 2, or
at least 2-convex, which is an open question.

For martingales with stationary and ergodic increments in 2-smooth Banach
spaces (admitting a Schauder basis), the CLT has been obtained by Woyczyński
[50], and the WIP by Dedecker–Merlevède–Pène [17] (see the proof of their
Proposition 6). Rosiński [45] considered the case of general arrays of martingale
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increments a la Brown (in the p-smooth case). As far as we know, the only CLT
for martingales taking values in a Banach space of cotype 2 has been obtained by
Dédé [12] in the special case where X = L1(S,S,μ), with μ σ -finite.

Hence, the CLT in the next proposition is only partly new, while the WIP seems
to be new. Recall that G(F0,X ) has been defined in Definition 2.8.

PROPOSITION 3.2. Assume that θ is ergodic. Let X be a real separable Ba-
nach space that is either 2-smooth or of cotype 2. Let d ∈ G(F0,X ) such that
E−1(d) = 0. Then (d ◦ θn)n≥0 satisfies the WIP of covariance Kd , and there exists
C > 0, such that

(12)
∥∥∥ max

1≤k≤n

∣∣Sk(d)
∣∣
X

∥∥∥
2
≤ Cn1/2‖d‖G(X ).

REMARK. The constant C depends only on X .

PROPOSITION 3.3. Assume that θ is ergodic. Let X be either a 2-smooth
Banach space or X = Lp(S,S,μ), for some 1 ≤ p ≤ 2 and σ -finite μ. Let d ∈
G(F0,X ) such that E−1(d) = 0. Then (d ◦ θn)n≥0 satisfies the ASIP. Moreover,

(13) lim sup
n

|Sn(d)|X√
nL(L(n))

= sup
x∗∈X ∗,|x∗|X∗≤1

∥∥x∗(d)
∥∥

2 P-a.s.

REMARKS. 1. Since (d ◦ θn)n≥0 satisfies the ASIP, it satisfies the CLIL, also.
However, it follows from the proof that the ergodicity of θ is not necessary for
the CLIL. As already mentioned, the CLIL also holds for stationary differences of
reverse martingales.

2. Only the case X = Lp(S,S,μ), 1 ≤ p < 2 is new here. The case where X is
2-smooth has been obtained in [7]. As in Proposition 3.1, one may wonder whether
Proposition 3.3 holds if X is of cotype 2 or at least 2-convex.

4. Maximal inequalities under projective conditions. In all of this section,
we do not require θ to be ergodic.

Before going further, let us introduce the generalized version of the Maxwell–
Woodroofe condition that we shall need in the sequel. Its relevance will be clear
from the next results.

Let X ∈ L2(�,X ). Define

‖X‖MW2 := ∑
n≥0

‖E0(S2n(X))‖G(X )

2n/2 .(14)

To have a better understanding of ‖ · ‖MW2, recall that if X is of type 2 (in
particular if X is 2-smooth), then ‖ ·‖G(X ) ≤ C‖ ·‖2,X and that if X = Lr(S,S,μ)

with 1 ≤ r ≤ 2 and μ σ -finite, we have (8).
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In view of applications, let us mention the following easy fact based on the
observation that ‖E0(Sn)‖ ≤ ‖E0(X)‖+· · ·+‖E0(X ◦θn−1)‖. There exists C > 0
such that

‖X‖MW2 ≤ C
∑
n≥1

‖E0(X ◦ θn)‖G(X )

n1/2 .

In particular, when X = Lp(S,μ), for some 1 ≤ p < ∞, using (8) and (9),
we see that ‖X‖MW2 < ∞ when Np(X) < ∞, where Np(X) is defined by (3) if
1 ≤ p ≤ 2 and by (4) if p ≥ 2.

We first give an almost sure maximal inequality, whose proof is based on the
dyadic chaining in its simplest form, taking into account our filtration. Then we
derive several other maximal inequalities that will be needed later, and that have
interest in their own.

There are two important points concerning the following proposition. First, it
involves the terms (E−2k (S2k ))k≥0 which appear in the Maxwell–Woodroofe con-
dition [notice that, by Lemma 2.2, ‖E−2k (S2k )‖G(X ) ≤ √

2‖E0(S2k )‖G(X )]. Sec-

ond, for every k ≥ 0, the sequence (dk ◦ θ2k+1�)�≥0 defined below is a stationary
sequence of martingale differences. The proposition makes use of the following
maximal function. For every X ∈ L1(�,F,P,X ), define

M1(X, θ,X ) := sup
n≥1

|∑n−1
k=0 X ◦ θk|X

n
.(15)

Recall that, by Hopf’s dominated ergodic theorem (see Corollary 2.2, page 6 of
[28]), applied to the real variable |X|X , we have∥∥M1(X, θ,X )

∥∥
1,∞ ≤ ‖X‖1,X .

PROPOSITION 4.1. Let X ∈ L1(�,F0,P,X ). For every k ≥ 0, write uk :=
|E−2k (S2k )|X and dk := E−2k (S2k ) + E−2k (S2k ) ◦ θ2k − E−2k+1(S2k+1). Then, for
every integer d ≥ 0, we have P-almost surely (with the convention

∑−1
k=0 = 0)

max
1≤i≤2d

|Si |X ≤ max
1≤i≤2d

∣∣∣∣∣
i−1∑
�=0

(
X −E−1(X)

) ◦ θ�

∣∣∣∣∣
X

+
d−1∑
k=0

max
1≤i≤2d−k−1

∣∣∣∣∣
i−1∑
�=0

dk ◦ θ2k+1�

∣∣∣∣∣
X

+ ud +
d−1∑
k=0

max
0≤�≤2d−1−k−1

uk ◦ θ2k+1�.
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In particular, there exists C > 0, such that

M2(X, θ) ≤ C

(∑
k≥0

uk

2k/2 + ∑
k≥0

(M1(u
2
k, θ

2k+1
))1/2

2k/2

+M2
(
X −E−1(X), θ

) + ∑
k≥0

M2(dk, θ
2k+1

)

2k/2

)
.

(16)

REMARK. That proposition is inspired by the works of Peligrad, Utev and Wu
[40] and of Wu and Zhao [52].

COROLLARY 4.2. Let X be Banach space that is either 2-smooth or of co-
type 2. There exists C > 0 such that for every X ∈ G(X ) and every integer d ≥ 0,
we have

∥∥∥ max
1≤i≤2d

|Si |X
∥∥∥

2
≤ C2d/2

(
‖X‖G(X ) +

d∑
k=0

2−k/2∥∥E−2k (S2k )
∥∥
G(X )

)
.

In particular, if ‖X‖MW2 < ∞, then

sup
n≥1

‖max1≤k≤n |Sk(X)|X ‖2√
n

≤ C‖X‖MW2 .(17)

PROPOSITION 4.3. Let X be either a (2,L)-smooth Banach space or X =
Lp(S,S,μ), with 1 ≤ p ≤ 2. Let X ∈ L2(�,F0,P,X ) be such that ‖X‖MW2 <

∞. For every 1 < r < 2, there exists a constant Cr > 0, such that∥∥M2(X)
∥∥
r,∞,X ≤ Cr‖X‖MW2 .(18)

REMARKS. The constant Cr depends on r and L if X is (2,L)-smooth
and on r and p if X = Lp(S,S,μ). Define ‖X‖H2 := ∑

n≥0 ‖E0(X ◦ θn) −
E−1(X ◦ θn)‖2,X < ∞. Then, if ‖X‖H2 < ∞, (18) holds with ‖X‖H2 in place of
‖X‖MW2 . This follows from Theorem 2.10 of [7] when X is 2-smooth and, when
X = Lr(S,S,μ); the proof may be done exactly as the proof of Theorem 2.10 of
[7], using (11).

5. WIP and ASIP under projective conditions. In all of this section we DO
require θ to be ergodic.

We first obtain martingale approximation results in Banach spaces of cotype 2.

PROPOSITION 5.1. Let X be a Banach space of cotype 2. Let X ∈ G(X ,F0)

be such that ‖X‖MW2 < ∞. Then there exists d ∈ G(X ,F0) with E−1(d) = 0 such
that

(19)
∥∥∥ max

1≤k≤n

∣∣Sk(X) − Sk(d)
∣∣
X

∥∥∥
2
= o(

√
n).
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In particular, (X ◦ θn)n≥0 satisfies the WIP of covariance operator Kd and
Kd(x∗, y∗) = limn cov(Sn(x

∗(X)), Sn(y
∗(X)))/n for every x∗, y∗ ∈ X ∗.

REMARK. The martingale approximation (19) has been proved in [11] (see
Remark 2.4), in the case where X is a Hilbert space (with an explicit expression
for d). When X = R, the martingale approximation (19) is due to Gordin and
Peligrad [24] and the WIP to Peligrad and Utev [39].

THEOREM 5.2. Let X be either a Hilbert space or X = Lp(S,S,μ), with
1 ≤ p ≤ 2 and μ σ -finite. Let X ∈ G(X ,F0) be such that ‖X‖MW2 < ∞. Then
there exists d ∈ G(X ,F0) with E−1(d) = 0 such that

(20)
∣∣Sn(X) − Sn(d)

∣∣
X = o

(√
nL

(
L(n)

))
P-a.s.

In particular, (X ◦ θn)n≥0 satisfies the ASIP of covariance operator Kd and
Kd(x∗, y∗) = limn cov(Sn(x

∗(X)), Sn(y
∗(X)))/n for every x∗, y∗ ∈ X ∗. More-

over,

lim sup
n

|Sn|X√
2nL(L(n))

= sup
x∗∈X ∗,|x∗|X∗≤1

∥∥x∗(d)
∥∥

2

≤ 10
√

2‖X‖MW2 P-a.s.

(21)

REMARK. This result is new even when X = R. In view of the previous
proposition, one may wonder whether the theorem holds true for Banach spaces of
cotype 2 or, at least, for 2-convex Banach spaces.

THEOREM 5.3. Let X be 2-smooth Banach space. Let X ∈ G(X ,F0) be such
that ‖X‖MW2 < ∞. Then, (X◦θn)n≥0 satisfies the WIP and the ASIP of covariance
operator K given by K(x∗, y∗) = limn cov(Sn(x

∗(X)), Sn(y
∗(X)))/n, for every

x∗, y∗ ∈ X ∗. Moreover,

lim sup
n

|Sn|X√
2nL(L(n))

= sup
x∗∈X ∗,|x∗|X∗≤1

(
K

(
x∗, x∗))1/2

≤ 10
√

2‖X‖MW2 P-a.s.

(22)

REMARK. Let X be either as in Theorem 5.2 or as in Theorem 5.3. Assume
that ‖X‖H2 := ∑

n≥0 ‖E0(X ◦ θn) − E−1(X ◦ θn)‖G(X ) < ∞. Then (X ◦ θn)n≥0
satisfies the WIP and the ASIP of covariance operator K given by K(x∗, y∗) =
limn cov(Sn(x

∗(X)), Sn(y
∗(X)))/n, for every x∗, y∗ ∈ X ∗. Moreover, (21) holds

with ‖X‖H2 in the right-hand side instead of 10
√

2‖X‖MW2 . This is proved in
Theorem 2.10 (see also Corollary 2.12) of [7] when X is 2-smooth and may be
proved similarly when X = Lr(S,S,μ) using the remark after Proposition 4.3.



INVARIANCE PRINCIPLES UNDER THE MAXWELL–WOODROOFE 1591

Peligrad and Utev [39] proved that the condition ‖X‖MW2 < ∞ is optimal (in
the sense below) for the CLT. Actually, their example gives also the optimality of
the condition ‖X‖MW2 < ∞ for the LIL; see [8] for a proof.

PROPOSITION 5.4. Let (an)n≥0 be a sequence of positive numbers with
an → 0 as n → ∞. There exist a probability space (�,F,P), with a transfor-
mation θ and a filtration (Fn)n∈Z, as in the Introduction, such that there exists
X ∈ L2(�,F0,P) for which

(23)
∑
n≥1

an

‖E0(Sn(X))‖2

n3/2 < ∞,

but (Sn/
√

n) is not stochastically bounded and

lim sup
n

|Sn(X)|√
nL(L(n))

= +∞ P-a.s.

REMARK. It would be interesting to know whether the condition∑
n≥1

‖E0(X◦θn)‖2
n1/2 < ∞ is also optimal. The optimality of the latter condition for

the CLT has been recently investigated by Dedecker [13]. His arguments do not
seem to apply for the LIL.

6. Examples.

6.1. A direct example. We now consider the case of ρ-mixing processes for
which it is known that the Maxwell–Woodroofe condition is well-adapted; see, for
instance, pages 14–15 in [36] or the proof of Lemma 1 (page 548) in [40].

Let (Xn)n∈Z be a stationary H-valued sequence. Define

ρ(n) = ρ
(
F0−∞,F∞

n

)
and ψ(n) = ψ

(
F0−∞,F∞

n

)
,(24)

where F j
i = σ(Xi, . . . ,Xj ) and

ρ(A,B) = sup
{

Cov(X,Y )

‖X‖2‖Y‖2
: X ∈ L2(A), Y ∈ L2(B)

}
;

ψ(A,B) = sup
{ |P(A ∩ B) − P(A)P(B)|

P(A)P(B)
: A ∈ A,B ∈ (B)

}
.

It is well known that ρ(n) ≤ ψ(n); see, for instance, Proposition 3.11, page 76
of [5].

We have the following.

COROLLARY 6.1. Assume that∑
n≥1

ρ
(
2n)

< ∞.(25)

Then ‖X‖MW2 < ∞.
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REMARKS. The condition ρ(2n) = O(1/n1+ε) has been proven to be suf-
ficient in [46] (for any ε > 0), when H = R. The sufficiency of (25) has been
obtained very recently by Lin and Zhao [33], when H = R.

Sharipov [47] obtained the conclusion of the corollary under the condition∑
n ψ(n) < ∞. However, he assumes weaker moment conditions and the variables

are allowed to take values in a 2-smooth Banach space.

PROOF OF COROLLARY 6.1. It suffices to prove that

(26)
∑
n

‖E0(S2n(X0))‖2,H
2n/2 < ∞.

Let (ei)i≥0 be an orthonormal basis of H, and write Y
(i)
0 := 〈X0, ei〉H. We have∥∥E0

(
S2n(X0)

)∥∥2
2,H = ∑

i≥0

E
[(
E0

(
S2n

(
Y

(i)
0

)))2]
.

Now, it follows from the computations, page 15 of [36] combined with Lemma 3.4
of [38] that

E
[(
E0

(
S2n

(
Y

(i)
0

)))2] ≤ CE
((

Y
(i)
0

)2)( n∑
k=0

2k/2ρ
(
2k))2

.

Using that
∑

i≥0(Y
(i)
0 )2 = |X0|2H, we see that (26) is satisfied as soon as

∑
n

1

2n/2

n∑
k=0

2k/2ρ
(
2k) < ∞,

which holds, by (25). �

6.2. Applications to the empirical process. Let (�,F,P) be a probability
space, θ be an invertible bi-measurable measure preserving transformation on �

and F0 ⊂ F a σ -algebra such that F0 ⊂ θ−1(F0). Define a nondecreasing filtration
by Fn = θ−n(F0), for every n ∈ Z and denote En := E(·|Fn).

Let Y ∈ L0(�,F0,P). For every n ∈ Z, let Yn := Y ◦θn and Xn := t �→ 1Yn≤t −
F(t), where F(t) = P(Y ≤ t).

Let p ≥ 1. For every σ -finite Borel measure μ on R, we may see (Xn)n∈Z as
a process with values in the Banach space Lp(R,μ) (which is 2-smooth when
r ≥ 2), as soon as

(27)
∫ ∞

0

(
1 − F(t)

)p
μ(dt) +

∫ 0

−∞
F(t)pμ(dt) < ∞,

which is satisfied whenever μ is finite.
Define Fμ by Fμ(x) = −μ([x,0[) if x ≤ 0 and Fμ(x) = μ([0, x[) if x ≥ 0.

Then, under (27), X0 ∈ L2(�,Lp(μ)) if and only if

(28) E
(∣∣Fμ(Y0)

∣∣2/p)
< ∞.
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We want to understand the asymptotic behaviour of the process Fn = Sn(X)/n

[with values in L2(�,F0,P,Lp(R,μ))], and more particularly of Dn,p(μ) :=
‖Fn‖p,μ.

Notice that when μ is the Lebesgue measure λ and p = 1, Dn,1(λ) represents
the Wasserstein distance between the empirical distribution and the true distribu-
tion.

Let us introduce some dependence coefficients. For every Y ∈ L1(�,F,P) and
every 1 ≤ p ≤ ∞, define

τ̌μ,p(F0, Yn) :=
∥∥∥∥
(∫

R

∣∣P(Yn ≤ t |F0) − F(t)
∣∣pμ(dt)

)1/p∥∥∥∥
2

if p ≥ 2,

τ̌μ,r (F0, Yn) :=
(∫

R

∥∥P(Yn ≤ t |F0) − F(t)
∥∥p

2 μ(dt)

)1/p

if 1 ≤ p < 2.

When p ≥ 2, τ̌μ,p(F0, Yn) = τμ,p(F0, Yn), where τμ,p(F0, Yn) appears for in-
stance in [14] (notice that our notation are slightly different).

Let us notice that both (27) and (28) are satisfied as soon as τμ,p(F0, Y0) < ∞.

THEOREM 6.2. Let Y ∈ L0(�,F0,P) and (S,S,μ) be a σ -finite measure
space. Let 1 ≤ p < ∞. Assume that

∑
n≥0

τ̌μ,p(F0, Yn)

n1/2 < ∞.

Then (Xn)n≥1 satisfies the WIP and the ASIP. In particular, (n1/2Dn,p) converges
in law to an Lp-valued Gaussian variable, with covariance operator given by
Kμ(f, g) and

lim sup
n

n1/2
√

2L(L(n))
Dn,p(μ) = �μ P-a.s.,

for some �μ ≥ 0.
Let p′ be the conjugate of p. We have

Kμ(f, g)

= lim
n→+∞E

(∫
S
f (s)Sn(s)μ(ds)

∫
S
g(t)Sn(t)μ(dt)

)/
n ∀f,g ∈ Lp′

(S),

and �μ,p = sup‖f ‖p′,μ≤1 �μ,p(f ) where �μ,p(f ) = limn ‖ ∫
S f (s)Sn(s)μ(ds)‖2/√

n.

REMARK. Actually, if p′ denotes the conjugate of p, we have �μ,p =
sup‖f ‖p′,μ≤1 �μ,p(f ) where �μ,p(f ) = limn ‖ ∫

S f (s)Sn(s)μ(ds)‖2/
√

n. Since
Theorem 6.2 is a straightforward application of the results of Section 5, we omit
the proof.



1594 C. CUNY

In a series of paper, Dedecker and Merlevède obtained the WIP or the ASIP
under conditions on the coefficients τ̌μ,p , when p ≥ 2. In [14], they studied the
WIP and in [15] the ASIP. When p > 2, their results rely on a condition a la
Gordin, hence yield to stronger conditions than ours. When p = 2, they use a very
different approach and their results have different range of applicability.

When p = 1, Dédé [12] obtained the CLT under the same condition as above.
In order to apply Theorem 6.2, we shall further study the coefficients τ̌ , and

estimate them thanks to other coefficients that are known to be computable in
many situations (see, e.g., Dedecker and Prieur [19]).

Let us define the coefficients φ̃ and α̃, as defined in Dedecker and Prieur [19].
For every n ≥ 1, define

φ̃(n) := sup
t∈R

∥∥P(Yn ≤ t |F0) − F(t)
∥∥∞,

α̃(n) := sup
t∈R

∥∥P(Yn ≤ t |F0) − F(t)
∥∥

1.

LEMMA 6.3. Assume that μ is finite. Let p ≥ 1 and define q := max(2,p).
For every n ≥ 1, we have

τμ,p(F0, Yn) ≤ μ(R)1/pφ̃(n),

τμ,p(F0, Yn) ≤ μ(R)1/pα̃(n)1/q .

PROOF. The first inequality is obvious. The second one follows from the fact
that for every s ≥ 1, ‖P(Yn ≤ t |F0) − F(t)‖s ≤ ‖P(Yn ≤ t |F0) − F(t)‖1/s

1 . �

LEMMA 6.4. Let 1 ≤ p ≤ 2. For every n ≥ 1, we have

τ̌μ,p(F0, Yn) ≤ √
2
(∫ ∞

0

(
F(t)

(
1 − F(t)

)))p/2
μ(dt)1/pφ̃(n)1/2,(29)

τ̌μ,p(F0, Yn) ≤ √
2
(∫ +∞

0

(
min

[
α̃n,F (t)

(
1 − F(t)

)])p/2
μ(dt)

)1/p

.(30)

PROOF. Notice that, for every t ∈R,∥∥P(Yn ≤ t |F0) − F(t)
∥∥2

2 ≤ 2φ̃(n)
(
1 − F(t)

)
F(t).

Hence, (29) follows.
Using that for every t ∈R,∥∥P(Yn ≤ t |F0) − F(t)

∥∥2
2 ≤ ∥∥P(Yn ≤ t |F0) − F(t)

∥∥
1 ≤ α̃(n), and∥∥P(Yn ≤ t |F0) − F(t)

∥∥2
2 ≤ 2F(t)

(
1 − F(t)

)
,

we see that (30) holds. �
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THEOREM 6.5. Let 1 ≤ p ≤ 2. Assume either of the following items:

(i)
∫ ∞

0 (F (t)(1 − F(t)))p/2μ(dt) < ∞ and
∑

n≥1 n−1/2φ̃(n)1/2 < ∞.

(ii) μ = λ the Lebesgue measure and
∑

n≥1 n−1/2(
∫ α̃(n)

0 xp/2−1Q(x)dx)1/p <

∞, where Q(x) := inf{t ≥ 0 : P(|Y | > t) ≤ x}.
Then the conclusion of Theorem 6.2 holds.

REMARK. A better sufficient condition, in terms of (α̃(n)) for the WIP has
been obtained by Dedecker and Merlevède [16] when p = 1; see their Sections 4.4
and 5.

6.3. Proof of Theorem 6.5. The conclusion under (i) follows from Theo-
rem 6.2 and Lemma 6.4. To prove item (ii), in view of Theorem 6.2 and
Lemma 6.4, it suffices to prove that [notice that F(t)(1 − F(t)) ≤ P(|Y | ≥ |t |) =
P(|Y | > |t |) for λ-a.e. t ∈ R]

∑
n≥1

1

n1/2

(∫ +∞
0

(
min

[
α̃n,

(
P

(|Y | > t
))])p/2

λ(dt)

)1/p

< ∞.

Now, ∫ +∞
0

min
[
α̃n,

(
P

(|Y | > t
))]

dt

≤ α̃(n)p/2Q
(
α̃(n)

) +
∫ +∞
Q(α̃(n))

(
P

(|Y | > t
))p/2−1

dt.

(31)

Since Q is nonincreasing, we see that (ii) implies that

∑
n≥1

α̃(n)1/2(Q(α̃(n)))1/p

n1/2 < ∞,

hence, it remains to deal with the second term in the right-hand side of (31).
We have ∫ +∞

Q(α̃(n))

(
P

(|Y | > t
))p/2−1

dt

=
∫ +∞
Q(α̃(n))

(∫ 1

0

p

2
xp/2−11{x≤P(|Y |>t)} dx

)
dt

≤
∫ α̃(n)

0

p

2
xp/2−1

(∫ Q(x)

0
dt

)
dx

=
∫ α̃(n)

0

p

2
xp/2−1Q(x)dx,

and the proof is complete. �
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APPENDIX A: PROOF OF THE RESULTS OF SECTION 2

A.1. Proof of Lemma 2.1. Let X,Y ∈ G(X ). Consider the Banach space
C := X × X with norm |(x, y)|C := (|x|2X + |y|2X )1/2. Let us prove that (X,Y ) ∈
G(C). Let G(X) and G(Y) be independent Gaussian variables with same covari-
ance operator as X and Y , respectively. Then (G(X),G(Y )) is a Gaussian variable
taking values in C. Now, for every x∗, y∗ ∈ X ∗, we have

E
((

x∗(X) + y∗(Y )
)2) ≤ 2E

[(
x∗(

G(X)
))2 + (

y∗(
G(Y)

))2]
= 2E

((
x∗(

G(X)
) + y∗(

G(Y)
))2)

.

Hence, by Lemma 9.23 of [31], (X,Y ) ∈ G(C). Let (U,V ) be a Gaussian variable
with values in C with same covariance operator as (X,Y ). Clearly, U +V is Gaus-
sian and has same covariance operator as X + Y . Hence, X + Y is pre-Gaussian
and we may take G(X + Y) = U + V . Similarly, we may take G(X) = U and
G(Y) = V . Now,∥∥G(X + Y)

∥∥
2,X = ‖U + V ‖2,X

≤ ‖U‖2,X + ‖V ‖2,X = ‖X‖2,X + ‖Y‖2,X .

Hence, ‖ · ‖G(X ) is a norm on G(X ).
Let us prove that G(X ) is a Banach space.
Let (Xn)n≥1 be Cauchy in (G(X ),‖ · ‖G(X )). Hence, (Xn)n≥1 is Cauchy in

L2(�,X ), so it converges, say to X in L2(�,X ). We just have to prove that
X is pre-Gaussian and that (Xn)n≥1 admits a subsequence converging to X

for ‖ · ‖G(X ). By assumption, there exists a subsequence (Xnk
)k≥1 such that

‖Xnk
− Xnk+1‖G(X ) ≤ 2−k . Then X = −Xn1 + ∑

k≥1 Xnk
− Xnk+1 with conver-

gence in L2(�,X ).
Extending our probability space, if necessary, we may assume that there ex-

ists a sequence (Gk)k≥0 of independent Gaussian variables taking values in X ,
such that G0 = G(Xn1) and for every k ≥ 1, Gk = G(Xnk+1 − Xnk

). Then G :=∑
k≥0 2k/2Gk defines a Gaussian variable. Moreover, for every x∗ ∈ X ∗, we have,

using Cauchy–Schwarz,

E
(
x∗(X)2) = E

[(
x∗(−Xn1) + ∑

k≥1

x∗(Xnk+1 − Xnk
)

)2]

≤ 2E
((

x∗(−Xn1)
)2) + ∑

k≥1

2k
E

((
x∗(Xnk+1 − Xnk

)2))

= 2E
[(

x∗
(∑

k≥0

2k/2Gk

))2]
.

It follows from Lemma 9.23 of [31] that X is pre-Gaussian. By a similar argument,
using the second half of Lemma 9.23 of [31], we see that E(|G(X − Xnm)|2) → 0
as m → +∞, and the proof is complete. �
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A.2. Proof of Lemma 2.3. Let x∗ ∈ X ∗. Clearly, we may assume that X is
H∞-measurable. Denote Xn := E(X|Hn). Then (Xn)n≥1 is a martingale converg-
ing in L2(�,X ) to X (see for instance Proposition V.2.6. of Neveu [37]). It suffices
to prove that ‖G(X − Xn)‖2,X converges to 0. Using Lemma 2.2, we have

E
[(

x∗(Xn − X)
)2] ≤ 2

(
E

[(
x∗(X)

)2] +E
[(

x∗(Xn)
)2]) ≤ 6E

[(
x∗(

G(X)
))2]

.

Since Xn − X is (clearly) pre-Gaussian, we infer that

E
[(

x∗(
G(Xn − X)

))2] ≤ 6E
[(

x∗(
G(X)

))2]
.

Then it follows from the discussion pages 73–74 of [31] that (G(Xn − X))n≥1 is
tight, hence converges in probability to 0, since for every x∗ ∈ X ∗, (x∗(G(Xn −
X)))n≥1 converges in probability to 0 [recall that ‖x∗(G(Xn − X))‖2 =
‖x∗(Xn − X)‖2 −→

n→∞ 0].

Let ε > 0. There exists nε ≥ 1 such that P(|G(Xnε − X)|X > ε) < 1/2. In par-
ticular, the median of the Gaussian variable G(X̃nε − X) is smaller than ε, and it
follows from the last assertion of Lemma 3.2 of [31], that there exists a universal
C > 0 such that ‖G(X̃nε − X)‖2,X ≤ Cε2, and the proof is complete. �

A.3. Proof of Lemma 2.4. Let X(s) ∈ L2(�,P,Lp(S,μ)) be pre-Gaussian.
Hence, there exists a Gaussian variable W on (�,F,P) with values in Lp(S,μ)

with same covariance operator than X. By Theorem 3.1 of Rajput [43], we may
see W as a Gaussian process (W(s))s∈S whose paths are P-a.s. in Lp(S,μ). Then

∞ >
∥∥G(X)

∥∥
2,Lp(μ) = ‖W‖2,Lp(μ) ≥ Cp‖W‖p,Lp(μ)

= Cp

(∫
S
E

(∣∣W(s)
∣∣p)

μ(ds)

)1/p

= C̃p

(∫
S

(
E

(∣∣W(s)
∣∣2))p/2

μ(ds)

)1/p

= C̃p

(∫
S

(
E

(∣∣X(s)
∣∣2))p/2

μ(ds)

)1/p

,

the reverse inequality may be proved similarly.
The fact that a centered X such that

∫
S(E(|X(s)|2))p/2μ(ds) < ∞ is pre-

Gaussian follows from Lemma 5.1 of [43]. �

A.4. Proof of Proposition 2.5: The ASIP case. Let (Xn)n≥0 be i.i.d. vari-
ables in L2(X ). By assumption, they satisfy the ASIP. Hence, there exists i.i.d.
Gaussian variables (Wn)n≥0, such that∣∣X0 + · · · + Xn−1 − (W0 + · · · + Wn−1)

∣∣
X = o

(√
nL

(
L(n)

))
P-a.s.

Let x∗ ∈ X ∗. By the law of the iterated logarithm (in the real case),
E((x∗(X0))

2) = E((x∗(W0))
2). In particular, X0 is pre-Gaussian. Then we con-

clude thanks to Proposition 9.24 of [31]. �
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A.5. Proof of Proposition 2.6: The BLIL case. Let (Xn)n≥0 be i.i.d. pre-
Gaussian variables taking values in X . By assumption, they satisfy the BLIL. Let
1 ≤ p < 2. It follows that |Xn|X /n1/p −→

n→+∞ 0 P-a.s. Hence, by the Borel–Cantelli

lemma, X0 ∈ Lp(X ). Then the result follows from the proof of Proposition 9.25
of [31]. �

APPENDIX B: PROOF OF THE MARTINGALE RESULTS

B.1. Proof of Proposition 3.1. This is just Proposition 3.3 of [7] when X
is 2-smooth. Assume that X = Lp(S), p ≥ 1. It suffices to prove the result
when d ∈ Lp(S,L2(�,F0)), otherwise Kp(d) = +∞. There exists a sequence
of step functions (dn)n≥1 converging in Lp(S,L2(�,F0)) to d . We may write
dn(s,ω) = ∑mn

k=1 fk,n(ω)1Ak,n
(s), where Ak,n ∈ S and fk,n ∈ L2(�,P). Let d̃n :=∑mn

k=1(fk,n − E−1(fk,n))1Ak,n
. Then (d̃n)n≥1 converges to d in Lp(S,L2(�,F0))

as well [hence also in L2(�,Lr(S)), by Lemma E.2] and for every s ∈ S, d̃n(s, ·)
is a real-valued martingale difference in L2(�,F0,P). Hence, applying Proposi-
tion 3.1 to the (2,1)-smooth Banach space R, we obtain that there exists Cp > 0
such that for every s ∈ S,

(32)
∥∥M2

(
d̃n(s, ·))∥∥p,∞ ≤ Cp

∥∥d̃n(s, ·)
∥∥

2.

Notice that M2(d̃n,L
p(S)) ≤ (

∫
S(M2(d̃n(s, ·),R))pdμ(s))1/p . Writing ϕ(s, ·) =

M2(d̃n(s, ·),R), it follows from Lemma E.2 that

∥∥M2
(
d̃n,L

p(S)
)∥∥

2,∞ ≤ Cp

(∫
S

∥∥ϕ(s, ·)∥∥p
r,∞ dμ(s)

)1/p

.

Then we infer from (32) that

∥∥M2
(
d̃n,L

p(S)
)∥∥

r,∞ ≤ Cp

(∫
S

∥∥d̃n(s)
∥∥p

2 dμ(s)

)1/p

.

The desired result then follows by letting n → ∞ (approximate first M2 by a
supremum over a finite set of integers and use the monoton convergence theorem).
�

B.2. Proof of Proposition 3.2. We shall first prove (12) which will allow us
to derive the required tightness for the WIP. By Doob’s maximal inequality for
submartingales, we have∥∥∥ max

1≤k≤n

∣∣Sk(d)
∣∣
X

∥∥∥2

2
≤ 2

∥∥∣∣Sn(d)
∣∣
X

∥∥2
2.

When X is 2-smooth, (12) then follows from (6) and the fact that, on Type 2
Banach spaces, the norms ‖ · ‖G(X ) and ‖ · ‖2,X are equivalent, by Proposition 9.24
of [31].
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Assume now that X has cotype 2. Since d is pre-Gaussian, so is Sn(d).
Moreover, by orthogonality of real-valued martingale increments, we see that
G(Sn(d)/

√
n) = G(d). Since X has cotype 2, by Proposition 9.25 of [31],∥∥Sn(d)
∥∥

2,X ≤ C
∥∥G(

Sn(d)
)∥∥

2,X = C
√

n
∥∥G(d)

∥∥
2,X ≤ C

√
n‖d‖G(X ),

and (12) follows.
Let us prove the WIP. Let us recall the definition of tightness required here.
Let X ∈ L0(�,F0,P,X ). Recall that Sn,t = Sn,t (X) := S[nt] + (nt −[nt])X[nt]

and Tn,t := Sn,t√
n

. We consider ((Tn,t )0≤t≤1)n≥0 as a process taking values in
C([0,1],X ), the Banach space of continuous functions from [0,1] to X .

DEFINITION B.1. We say that ((Tn,t )0≤t≤1)n≥0 is tight if for every ε > 0,
there exists a compact set κ of C([0,1],X ) such that

P
(
(Tn,t )0≤t≤1 ∈ κ

) ≥ 1 − ε ∀n ≥ 0.

Let X be either 2-smooth or of cotype 2. Let d ∈ G(X ) with E−1(d) = 0. Let
us prove the tightness of ((Tn,t (d))0≤t≤1)n≥1 in C([0,1],X ).

We first recall the following tightness criteria that may be easily deduced from
Theorem 11.5.4 of Dudley [23].

LEMMA B.1. Let (�, δ) be a separable complete metric space endowed with
its Borel σ -algebra. Let (�,F,P) be a probability space and (Zn)n≥1 be a se-
quence of random variables on � taking values in �. Assume that, for every ε > 0,
there exist n0 ≥ 1 and random variables (Zε

n)n≥n0 such that:

(i) (Zε
n)n≥n0 is tight;

(ii) supn≥n0
E(δ(Zn,Z

ε
n)) < ε.

Then (Zn)n≥1 is tight.

Since X is separable, σ(d) (the σ -algebra generated by d) is countably gen-
erated and there exists an increasing filtration (Gm)m≥1 such that Gm is finite for
every m ≥ 1 and σ(d) = ∨

m≥1 Gm. For every m ≥ 1, let dm := E(d|Gm). Since
Gm is finite, there exists A1,m, . . . ,Akm,m ∈ Gm and x1,m, . . . , xkm,m ∈ X such that
dm = ∑

1≤k≤km
xk1Ak,m

. By Lemma 2.3, (dm)m≥1 converges in G(X ) to d . Hence,
writing d̃m := dm − E−1(dm) and using Lemma 2.2, (d̃m)m≥1 converges in G(X )

to d .
By the WIP for real-valued martingales with stationary and ergodic increments,

for every m ≥ 1, ((Tn,t (d̃m))0≤t≤1)n≥0 is tight in C([0,1],X ).
Now, by (12),∥∥∥ sup

0≤t≤1

∣∣Tn,t (d̃m) − Tn,t (d)
∣∣
X

∥∥∥
2
≤ 3√

n

∥∥∥ max
1≤k≤n

∣∣Sk(d̃m) − Sk(d)
∣∣
X

∥∥∥
2

≤ C‖d̃m − d‖G(X ) −→
m→∞ 0,
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and the tightness of ((Tn,t (d))0≤t≤1)n≥0 in C([0,1],X ) follows from
Lemma B.1.

Let us write Tn,t (d) = Tn,t . The second step consists in proving the convergence
of the finite-dimensional laws. That is, it remains to prove that, for any 0 = t0 <

· · · < tm = 1, ((Tn,ti − Tn,ti−1)1≤i≤m)n≥1 converges in law to (Wti − Wti−1)1≤i≤m,
where (Wt)0≤t≤1 is a Brownian motion with covariance operator Kd . Using
tightness again (and the Cramer–Wold device), it suffices to prove that for any
0 = t0 < · · · < tm = 1 and any x∗

1 , . . . , x∗
m ∈X ∗,

∑m
i=1 x∗

i (Tn,ti −Tn,ti−1) converges
in law to

∑m
i=1 x∗

i (Wti − Wti−1) as n → ∞.
Hence, we are back to prove a CLT for an array of martingale differences. Let

us recall the following CLT of McLeish, as stated in Theorem 3.2, page 58 of Hall
and Heyde [27].

PROPOSITION B.2. Let (Xn,j )1≤j≤kn be (real valued) martingale differences
for every n ≥ 1. Assume that there exists σ ≥ 0 such that:

(i) max1≤j≤kn |Xn,j | P−→ 0;

(ii)
∑

1≤j≤kn
X2

n,j

P−→ σ 2;

(iii) supn≥1 E(max1≤j≤kn X2
n,j ) < ∞.

Then (
∑

1≤j≤kn
Xn,j )n≥1 converges in law to a normal law N(0, σ 2).

Take kn := n and for every 1 ≤ i ≤ m and every [nti−1] ≤ j ≤ [nti] − 1, take
Xn,j := x∗

i (d) ◦ θj /
√

n.
Then, setting Z := max1≤i≤m |x∗

i (d)| [which belongs to L2(�)], we have
max1≤j≤kn |Xn,j | ≤ max1≤j≤n Z ◦θj /

√
n which implies (i), by the Borel–Cantelli

lemma, and (iii) by standard arguments. Now, by the ergodic theorem, we have

1

n

[nti ]∑
j=[nti−1]

(
x∗
i (d)

)2 ◦ θj −→
n→∞ (ti − ti−1)E

(
x∗
i (d)2)

P-a.s.,

hence in probability. Hence, the proof is complete. �

B.3. Proof of Proposition 3.3. Let us prove the CLIL. Notice that G0(X ) :=
{d ∈ G(X ,F0) : E−1(d) = 0} is a closed subspace of G(X ). By (11) and Proposi-
tion E.1, the set of d ∈ G0(X ), such that (d ◦ θn)n≥0 satisfies the CLIL is closed
in G0(X ). Then the CLIL follows by approximating any d ∈ G0(X ) by a martin-
gale difference with values in a finite dimensional Banach space as in the proof of
Proposition 3.2.

Then (13) follows from a result of Kuelbs [29] (see, e.g., Proposition D of [7])
combined with the LIL for real valued stationary (and ergodic) martingale differ-
ences.

To prove the ASIP, we just apply the following version of Theorem 3.2 of Berger
[3] whose proof may be done similarly.
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THEOREM B.3. Let X be a real separable Banach space. Assume that θ is er-
godic. Let X ∈ L0(�,F0,P,X ) be such that E(x∗(X)2) < ∞, for every x∗ ∈ X ∗.
Assume that (X ◦ θn)n≥0 satisfies the CLIL and that for every x∗ ∈X ∗, there exists
Z = Zx∗ ∈ L2(�,F0,R) with E−1(Z) = 0 such that

Sn

(
x∗(X)

) − Sn(Z) = o
(√

nL
(
L(n)

))
P-a.s.,(33) ∥∥Sn

(
x∗(X)

) − Sn(Z)
∥∥

2 = o(
√

n).(34)

Then, for every x∗, y∗ ∈ X ∗, K(x∗, y∗) := limn→∞ cov(x∗(Sn(X)),y∗(Sn(X)))
n

exists.
Assume moreover that K is the covariance operator of a Gaussian variable.

Then (X ◦ θn)n≥0 satisfies the ASIP.

APPENDIX C: PROOF OF THE MAXIMAL INEQUALITIES

C.1. Proof of Proposition 4.1. We make the proof by induction. For d = 0,
we have

S1 = X −E−1(X) +E−1(X) = (
X −E−1(X)

) +E−1(S1)

and the result follows in that case.
Assume that we already proved the result for some d ≥ 0. For every 1 ≤ i ≤

2d+1, we have

Si =
i−1∑
�=0

(
X −E−1(X)

) ◦ θ� +
i−1∑
�=0

(
E−1(X)

) ◦ θ�,

and for every 1 ≤ j ≤ 2d (with
∑−1

�=0 = 0),

2j−1∑
�=0

(
E−1(X)

) ◦ θ� =
j−1∑
�=0

(
E−1(X) +E−1(X) ◦ θ

) ◦ θ2�;

2j−2∑
�=0

(
E−1(X)

) ◦ θ� = (
E−1(X)

) ◦ θ2j−2 +
j−2∑
�=0

(
E−1(X) +E−1(X) ◦ θ

) ◦ θ2�.

Hence,

max
1≤i≤2d+1

|Si |X ≤ max
1≤i≤2d+1

∣∣∣∣∣
i−1∑
�=0

(
X −E−1(X)

) ◦ θ�

∣∣∣∣∣
X

+ max
1≤j≤2d

∣∣E−1(X)
∣∣
X ◦ θ2j−2

+ max
1≤j≤2d

∣∣∣∣∣
j∑

�=1

(
E−1(X) +E−1(X) ◦ θ

) ◦ θ2�

∣∣∣∣∣
X

.

(35)
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We shall apply our induction hypothesis to the following situation: X̃ :=
E−1(X) + E−1(X) ◦ θ , the transformation θ̃ := θ2 and the filtration given by
F̃n := θ̃−n(F) = F2n for every n ∈ Z.

We shall also use the notation Ẽn(·) := E(·|F̃n) and S̃n = ∑n−1
�=0 X̃ ◦ θ̃ k .

Notice then that we have

S̃n =
n−1∑
�=0

(
E−1(X) +E−1(X) ◦ θ

) ◦ θ2�,

Ẽ−2k (S̃2k ) = E−2k+1(S2k+1) and

X̃ − Ẽ−1(X̃) = E−1(S1) +E−1(S1) ◦ θ −E−2(S2).

Hence, by our induction hypothesis and using the change of index k → k + 1,
we infer that

max
1≤i≤2d

|S̃i |X

≤ ∣∣E−2d+1(S2d+1)
∣∣
X +

(d+1)−1∑
k=1

max
0≤�≤2(d+1)−1−k−1

∣∣E−2k (S2k )
∣∣
X ◦ θ2k+1�

+
(d+1)−1∑

k=1

max
1≤i≤2(d+1)−k−1

∣∣∣∣∣
i−1∑
�=0

[
E−2k (S2k ) +E−2k (S2k ) ◦ θ2k

−E−2k+1(S2k+1)
] ◦ θ2k+1�

∣∣∣∣∣
X

.

(36)

Then the result follows by combining (35) and (36). �

C.2. Proof of Corollary 4.2. We shall use Proposition 4.1. We first notice
that

max
0≤�≤2d−1−k−1

∣∣E−2k (S2k )
∣∣
X ◦ θ2k+1� ≤

( ∑
0≤�≤2d−1−k−1

∣∣E−2k (S2k )
∣∣2
X ◦ θ2k+1�

)1/2
.

Hence, using that θ preserves P, we infer that∥∥∥ max
0≤�≤2d−1−k−1

∣∣E−2k (S2k )
∣∣
X ◦ θ2k+1�

∥∥∥
2
≤ 2(d−1−k)/2∥∥E−2k (S2k )

∥∥
2,X .

Applying (12) to (the martingale difference) d = X −E−1(X), we see that∥∥∥∥∥ max
1≤i≤2d

∣∣∣∣∣
i−1∑
�=0

(
X −E−1(X)

) ◦ θ�

∣∣∣∣∣
X

∥∥∥∥∥
G(X )

≤ C
(‖X‖G(X ) + ∥∥E−1(X)

∥∥
G(X )

)
.

Similarly, we may apply (12) with dk = E−2k (S2k ) + E−2k (S2k ) ◦ θ2k −
E−2k+1(S2k+1) (and θ2k+1

instead of θ ). To conclude, we just notice that, by



INVARIANCE PRINCIPLES UNDER THE MAXWELL–WOODROOFE 1603

Lemma 2.2, ‖X − E−1(X)‖G(X ) ≤ (1 + √
2)‖X‖G(X ) and that ‖[E−2k (S2k ) +

E−2k (S2k ) ◦ θ2k − E−2k+1(S2k+1)] ◦ θ2k+1�‖G(X ) ≤ (1 + √
2)2‖E−2k (S2k )‖G(X ).

�

C.3. Proof of Proposition 4.3. By Hopf’s maximal inequality, for every X ∈
L1(�,R), and every measure preserving θ∥∥M1(X, θ)

∥∥
1,∞ ≤ ‖X‖1.

Then the proposition follows from (16) combined (11). �

APPENDIX D: PROOF OF THE LIMIT THEOREMS UNDER
PROJECTIVE CONDITIONS

Before doing the proof, let us give general facts about ‖ ·‖MW2, that will be used
in the sequel.

Define MW2 := {X ∈ L2(�,F0,P,X ) : ‖X‖MW2 < ∞}. Then (MW2,

‖ · ‖MW2
) is a Banach space.

For every X ∈ L1(�,F0,P,X ), define QX = E0(X ◦ θ). Notice that Qn(X) =
E0(X ◦ θn). Then clearly Q is a contraction of L2(�,F0,X ) and, by Lemma 2.2,
Q is power bounded on G(X ), that is, for every X ∈G(X ), supn≥1 ‖QnX‖G(X ) ≤
C‖X‖G(X ), for some universal C > 0.

Now, we see that

‖X‖MW2 = ∑
n≥0

‖∑2n−1
k=0 QkX‖G(X )

2n/2 .

Hence, Q is power bounded on MW2.
Writing Vn := I + · · · + Qn−1 and using that ‖VnVkX‖G(X ) ≤

C min(k‖Vn‖2,X , n‖VkX‖G(X )), we see that, for every X ∈ MW2,

(37)
‖V2nX‖MW2

2n
≤ C

(‖V2n‖G(X )

2n/2 + ∑
k≥n+1

‖V2kX‖G(X )

2k/2

)
−→

n→+∞ 0.

In particular, for every m ≥ 1, taking n such that 2n ≤ m < 2n+1, we have
‖VmX‖MW2 ≤ C

∑n
k=0 ‖V2k‖MW2 = o(2n) = o(m).

In particular, we see that Q is mean ergodic on MW2 and has no nontrivial fixed
point (see, e.g., Theorem 1.3, page 73 of [28]), that is,

(38) MW2 = (I − Q)MW2
MW2

.

D.1. Proof of Proposition 5.1 and Theorem 5.2. In both results, X is a Ba-
nach space of cotype 2. Let X ∈ (I −Q)MW2. Let Y ∈ MW2 be the unique (notice
that Q has no fixed point on MW2) solution to X = (I − Q)Y . Then one may de-
fine

D(X) := Y −E−1(Y ) = Y − QY ◦ θ−1.
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Notice that X = D(X)+QY −QY ◦θ−1 and that D(X) is a martingale difference.
In particular,

(39)
∥∥G(

Sn

(
D(X)

))∥∥
2,X = √

n
∥∥G(

D(X)
)∥∥

2,X .

Recall that, since X has cotype 2, there exists C > 0, such that for every Z ∈
G(X ),

(40)
∥∥G(Z)

∥∥
2,X /C ≤ ‖Z‖G(X ) ≤ C

∥∥G(Z)
∥∥

2,X .

Now, it follows from the proof of Proposition 4.1 [combined with (39) applied
to the martingales with stationary increments that appear in the proof] that there
exists D > 0 such that for every d ≥ 0,

(41)
∥∥G(

S2d (X)
)∥∥

2,X ≤ D2d/2

(∥∥G(X)
∥∥

2,X +
d∑

k=0

2−k
∥∥G(

E0
(
S2k (X)

))∥∥
2,X

)
.

Notice that∥∥S2d

(
QY − QY ◦ θ−1)∥∥

G(X ) ≤ ∥∥QY ◦ θ−1∥∥
G(X ) + ∥∥QY ◦ θ2d−1∥∥

G(X ) = o
(
2d/2)

and that∥∥G(
S2d

(
D(X)

))∥∥
2,X ≤ ∥∥G(

S2d (X)
)∥∥

2,X + ∥∥G(
S2d

(
QY − QY ◦ θ−1))∥∥

2,X .

Combining this with (41), (40) and (39) and letting d → ∞, we infer that∥∥D(X)
∥∥
G(X ) ≤ C‖X‖MW2 .

Hence, we may extend our linear operator D continuously to (I − Q)MW2
MW2 =

MW2. Notice that D takes values in G0(X ) = {Z ∈G(X ,F0) : E−1(Z) = 0}.
Let us prove Proposition 5.1. By Corollary 4.2 and (12), there exists C > 0 such

that ∥∥∥ max
1≤k≤n

∣∣Sk(X) − Sk

(
D(X)

)∣∣
X

∥∥∥
2
≤ C

√
n‖X‖MW2 .

By linearity of D [and of X �→ Sk(X)] it then suffices to prove (19) for a set of X’s
that is dense in MW2, in particular for X ∈ (I − Q)MW2. But if X = (I − Q)Y

with Y ∈ MW2, we have, for every K > 0∥∥∥ max
1≤k≤n

∣∣Sk(X) − Sk

(
D(X)

)∣∣
X

∥∥∥
2

≤
∥∥∥ max

1≤k≤n

∣∣Sk

(
QY − QY ◦ θ−1)∣∣

X

∥∥∥
2

≤ ‖QY‖2,X +
∥∥∥ max

1≤k≤n

∣∣QY ◦ θk−1∣∣
X

∥∥∥
2

≤ ‖QY‖2,X + K + n
∥∥|QY |X 1{|QY |X≥K}

∥∥
2.
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Hence,

lim sup
n→∞

∥∥∥ max
1≤k≤n

∣∣Sk(X) − Sk

(
D(X)

)∣∣
X

∥∥∥
2
≤ ∥∥|QY |X 1{|QY |X≥K}

∥∥
2 −→

K→∞ 0,

and (19) holds. Then the proof of the WIP follows from Lemma B.1 and Proposi-
tion 3.2.

Let us prove Theorem 5.2. By Proposition 3.1 and (18), for every 1 < p < 2,
there exists Cp > 0 such that∥∥M2

(
X −D(X)

)∥∥
p,∞ ≤ Cp‖X‖MW2 .

Hence, by the Banach principle (see Lemma E.1), it suffices to prove (20) for X =
(I − Q)Y , with Y ∈ MW2. But in this case the result is obvious, since |QY |X ∈
L2(�) and, by the Borel–Cantelli lemma, |QY |X ◦ θn−1 = o(

√
n) P-a.s. By (20)

and Proposition 3.3, (X ◦ θn)n≥0 satisfies the CLIL. Then the ASIP follows from
Proposition B.3, using that D(X) is pre-Gaussian.

It remains to prove (21). The first equality follows from (20) and (13). Let us
prove that, with d = D(X), supx∗∈X ∗,|x∗|X∗≤1 ‖x∗(d)‖2 ≤ 10

√
2‖X‖MW2 . We first

notice that x∗(d) = D(x∗(X)) (with the obvious “new” meaning of the opera-
tor D). Proceeding as above, one can prove that for every m ≥ 0,∥∥x∗(d)

∥∥
2 = 2m/2∥∥S2m(d)

∥∥
2/2m/2

≤ ∥∥S2m(X)
∥∥

2/2m/2 + ∥∥S2m(d) − S2m(X)
∥∥

2/2m/2.

Applying Proposition 5.1 [noticing that ‖x∗(X)‖MW2 ≤ ‖X‖MW2 ] and Corol-
lary 4.2 to x∗(X), we derive that ‖x∗(d)‖MW2 ≤ 10

√
2‖X‖MW2 and the proof is

complete. �

D.2. Proof of Theorem 5.3. Let us prove the WIP. As above we shall first
prove tightness. Let X ∈ MW2. Let ε > 0. By (38), there exists Y ∈ MW2 such
that ‖X − (I − Q)Y‖MW2 ≤ ε.

Then, by Corollary 4.2,∥∥∥ max
1≤k≤n

∣∣Sk(X) − Sk

(
(I − Q)Y

)∣∣
X

∥∥∥
2
≤ Cε

√
n.

Now, as in the proof of Proposition 5.1, for every K > 0 we have∥∥∥ max
1≤k≤n

∣∣Sk

(
(I − Q)Y

) − Sk

(
Y −E−1(Y )

)∣∣
X

∥∥∥
2

≤ ‖QY‖2,X + K + n
∥∥|QY |X 1{|QY |X≥K}

∥∥
2.

Choose K such that ‖|QY |X 1{|QY |X≥K}‖2 ≤ ε and then choose n0 ≥ (‖QY‖2,X +
K)2/ε2.

Then sup0≤t≤1 |Tn,t (X) − Tn,t (Y − E−1(Y ))|X ≤ Cε. Now, Y − E−1(Y ) is a
martingale difference, hence, by Proposition 3.2, (Tn,t (Y − E−1(Y ))0≤t≤1)n≥0 is
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tight in C([0,1],X ). Then the tightness of (Tn,t (X)0≤t≤1)n≥0 follows from Propo-
sition B.1.

The proof of the finite-dimensional laws may be done exactly as the proof of the
martingale case, hence is omitted. The fact that the covariance operator is given as
stated follows from the fact that for any x∗ ∈ X ∗, x∗(X) satisfies the assumption
of Proposition 5.1.

Let us prove the ASIP. We shall use Theorem B.3. In particular, we have to
prove that (X ◦ θn)n≥0 satisfies the CLIL.

By (18) and Lemma E.1, the set {X ∈ MW2 : (X ◦ θn)n≥0 satisfies the CLIL}
is closed in MW2. Hence, it suffices to prove the CLIL for X = (I − Q)Y , with
Y ∈ MW2. But then X = Y −E−1(Y )+QY ◦ θ−1 −QY and ((Y −QY) ◦ θn)n≥0
satisfies the CLIL by Proposition 3.3, while |Sn(QY ◦ θ−1 − QY)|X = o(

√
n)

P-a.s., by the Borel–Cantelli lemma. Hence, the CLIL is proved.
Now, let x∗ ∈ X ∗. Clearly, x∗(X) satisfies the assumption of Theorem 5.2, tak-

ing for X the Hilbert space R. In particular, there exists Z ∈ L2(�,F0,R) with
E−1(Z) = 0 such that

Sn

(
x∗(X)

) − Sn(Z) = o
(√

nL
(
L(n)

))
P-a.s.,(42) ∥∥Sn

(
x∗(X)

) − Sn(Z)
∥∥

2 = o(
√

n).(43)

The fact that K(x∗, y∗) := limn→∞ cov(x∗(Sn(X)),y∗(Sn(X)))
n

is the covariance opera-
tor of a Gaussian variable, follows from the WIP.

To prove the equality in (22), by a result of Kuelbs (see, e.g., Proposition D.1 in
[7]), we have to prove that for every x∗ ∈ X ∗, we have

lim sup
n

Sn(x
∗(X))√

2nL(L(n))
= (

K
(
x∗, x∗))1/2

P-a.s.

But this follows from Theorem 5.2 applied to x∗(X). Then the inequality in (22)
may be proved as the inequality in (21). �

D.3. Proof of Proposition 5.4. We first recall the construction of Peligrad and
Utev [39].

We consider the Markov chain (Wn)n≥0 with state space N := {0,1, . . .} and
transition probability given by pi,i−1 = 1 and p0,i−1 = pi = P(τ = i) for ev-
ery i ≥ 1, and pi,j = 0 otherwise. The stationarity is guaranteed by the condi-
tion E(τ ) < ∞, and then the stationary distribution π := (πi)i≥0 is given by
π0 = 1/E(τ ) and πi = π0

∑
j≥i+1 pj .

Since our Markov chain is stationary, we may consider its two-sided version
(Wn)n∈Z, taking for (�,F,P) the canonical space, for θ the shift and for F0,
σ {Wn : n ≤ 0}. Then we are exactly in the situation considered in our paper.

Let (an)n∈N be a sequence of positive numbers with an → 0 as n → ∞. It is
proved in [39] that there exists a choice of (pn)n≥0, such that E(τ ) < ∞, E(τ 2) =
+∞ and such that (23) holds with X := 1{W0=0} − π0.
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Define bn := √
n log logn. Let us prove that lim supn |Sn|/bn = +∞ P-a.s.

Let T0 := 0 and, for k ≥ 1, Tk := min{t > Tk−1 : Wt = 0}. Define then, τk :=
Tk − Tk−1. Then (τk)k≥1 is i.i.d., distributed like τ and STk

= ∑k
i=1(1 − π0τi).

It is enough to prove that lim supk |STk
|/bTk

= +∞ P-a.s.
Since E(τ ) < ∞, by the strong law of large numbers, Tn/n −→

n→∞ E(τ ) P-a.s.,

hence it is enough to prove that lim supk |STk
|/bk = +∞ P-a.s. In particular, it is

enough to prove that

(44) lim sup
k

∣∣∣∣∣
k∑

i=0

(1 − π0τi)

∣∣∣∣∣
/

bk = +∞ P-a.s.

But (44) follows from Strassen’s converse to the law of the iterated logarithm
(see, for instance, [31], pages 203–204), since E(τ 2) = +∞. �

APPENDIX E: TECHNICAL RESULTS

We recall here the Banach principle that we need (see Proposition C.1 of [7]).

LEMMA E.1. Let (�,F,P) be a probability space and X ,B be Banach
spaces. Let C be a vector space of measurable functions from � to X . Let (Tn)n≥1
be a sequence of linear maps from B to C. Assume that there exists a positive
decreasing function L on ]0,+∞[, with limλ→∞ L(λ) = 0, such that

(45) P

(
sup
n≥1

|Tnx|X > λ|x|B
)

≤ L(λ) ∀λ > 0, x ∈ B.

Then the set {x ∈ B : (Tnx)n≥1 is P-a.s. relatively compact in X } and the set
{x ∈ B : |Tnx|X → 0 P-a.s.} are closed in B.

We give here a technical result concerning Lr spaces of Lp-valued variables.

LEMMA E.2. Let 1 ≤ p < r < ∞. Let (�,F,P) be a probability space
and (S,S, ν) be a σ -finite measure spaces. There is a continuous embed-
ding from Lp(S,Lr,∞(�)) [resp., Lp(S,Lr(�))] into Lr,∞(�,Lp(S)) [resp.,
Lr(�,Lp(S))].

PROOF. We first recall some useful fact about weak Lr -spaces (see Exer-
cise 1.1.11, page 13 of Grafakos [26]). For every r > 1 and every 0 < t < r , let

Nr,t

(|X|X ) := sup
P(A)>0

1

P(A)1/r−1/t

(
E

(|X|tX 1A

))1/t
.

Then there exists Cr,t such that

‖X‖r,∞,X /Cr,t ≤ Nr,t

(|X|X ) ≤ Cr,t‖X‖r,∞,X ,

and for t = 1, Ns,1 is a norm.
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Let f (s,ω) = ∑n
i=1 fi(ω)1Ai(s) be a step function of Lp(S,Lr,∞(�)), that is,

Ai ∈ S and fi ∈ Lr,∞(�). We may consider f as an element of L0(S ×�,S ⊗F)

or as an element of L0(�,F,L0(S,S)).
Take X = Lp(μ) and t = p. We have, using Fubini,

E
(‖f ‖p

Lp(μ)1A

) =
∫
S
E

(∣∣f (s, ·)∣∣p1A

)
dμ(s)

≤ P(A)1/r−1/p
∫
S
Nr,p

(|f |(s, ·))dμ(s).

Hence,

‖f ‖r,∞,Lp(S) ≤ C2
r,p

(∫
S

∥∥f (s, ·)∥∥p
r,∞ dμ(s)

)1/p

.

Hence, the identity map sends step functions of Lp(S,Lr,∞(�)) to elements of
Lr,∞(�,Lp(S)) in a continuous way. In particular, it can be extended continu-
ously in an injective map to the whole Lp(S,Lr,∞(�)). �
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