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CONVERGENCE AND REGULARITY OF PROBABILITY LAWS
BY USING AN INTERPOLATION METHOD

BY VLAD BALLY AND LUCIA CARAMELLINO

Université Paris-Est and Università di Roma Tor Vergata

Fournier and Printems [Bernoulli 16 (2010) 343–360] have recently es-
tablished a methodology which allows to prove the absolute continuity of the
law of the solution of some stochastic equations with Hölder continuous coef-
ficients. This is of course out of reach by using already classical probabilistic
methods based on Malliavin calculus. By employing some Besov space tech-
niques, Debussche and Romito [Probab. Theory Related Fields 158 (2014)
575–596] have substantially improved the result of Fournier and Printems. In
our paper, we show that this kind of problem naturally fits in the framework
of interpolation spaces: we prove an interpolation inequality (see Proposi-
tion 2.5) which allows to state (and even to slightly improve) the above ab-
solute continuity result. Moreover, it turns out that the above interpolation
inequality has applications in a completely different framework: we use it
in order to estimate the error in total variance distance in some convergence
theorems.
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1. Introduction. In this paper, we prove an interpolation type inequality
which leads to three main applications. First, we give a criteria for the regular-
ity of the law μ of a random variable. This was the first aim of the integration
by parts formulas constructed in the Malliavin calculus (in the Gaussian frame-
work, and of many other variants of this calculus, in a more general case). But
our starting point was the paper of N. Fournier and J. Printems [16] who noticed
that some regularity of the law may be obtained even if no integration by parts
formula holds for μ itself: they just use a sequence μn → μ and assume that an
integration by parts formula of type

∫
f ′ dμn = ∫

f hn dμn holds for each μn. If
supn

∫ |hn|dμn < ∞, we are close to Malliavin calculus. But the interesting point
is that one may obtain some regularity for μ even if supn

∫ |hn|dμn = ∞—so
we are out of the domain of application of Malliavin calculus. The key point is
that one establishes an equilibrium between the speed of convergence of μn → μ

and the blow up
∫ |hn|dμn ↑ ∞. The approach of Fournier and Printems is based

on Fourier transforms, and more recently, Debussche and Romito [10] obtained a
much more powerful version of this type of criteria based on Besov space tech-
niques. This methodology has been used in several recent papers (see [4–6, 9, 11]
and [15]) in order to obtain the absolute continuity of the law of the solution of
some stochastic equations with weak regularity assumptions on the coefficients: as
a typical example, one proves that, under uniform ellipticity conditions, diffusion
processes with Hölder continuous coefficients have absolute continuous law at any
time t > 0. In the present paper, we use a different approach, based on an interpo-
lation argument and on Orlicz spaces, which allows one to go further and to treat,
for example, diffusion processes with log-Hölder coefficients.

The second application concerns the regularity of the density with respect to a
parameter. We illustrate this direction by giving sufficient conditions in order that
(x, y) �→ pt(x, y) is smooth with respect to (x, y) where pt(x, y) is the density
of the law of Xt(x) which is a piecewise deterministic Markov process starting
from x.

The third application concerns estimates of the speed of convergence μn → μ

in total variation distance, and under some stronger assumptions, the speed of con-
vergence of the derivatives of the densities of μn to the corresponding derivative
of the density of μ. Such results appear in a natural way as soon as the suited
interpolation framework is settled.

Let us give our main results. We work with the following weighted Sobolev
norms on C∞(Rd;R):

‖f ‖k,m,p = ∑
0≤|α|≤k

(∫ (
1 + |x|)m∣∣∂αf (x)

∣∣p dx

)1/p

, p > 1,

where α is a multi-index, |α| denotes its length and ∂α is the corresponding deriva-
tive. In the case m = 0, we have the standard Sobolev norm that we denote by
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‖f ‖k,p . We will also consider the weaker norm

‖f ‖k,m,1+ = ∑
0≤|α|≤k

∫ (
1 + |x|)m∣∣∂αf (x)

∣∣(1 + ln+ |x| + ln+∣∣f (x)
∣∣)dx,

with ln+(x) = max{0, ln |x|}. Moreover, for two measures μ and ν we consider
the distances

dk(μ, ν) = sup
{∣∣∣∣∫ φ dμ −

∫
φ dν

∣∣∣∣ : ∑
0≤|α|≤k

‖∂αφ‖∞ ≤ 1
}
.

For k = 0, this is the total variation distance and for k = 1 this is the Fortet–
Mourier distance.

Our key estimate is the following. Let m,q, k ∈ N and p > 1 be given and let p∗
be the conjugate of p. We consider a function φ ∈ Cq+2m(Rd) and a sequence of
functions φn ∈ Cq+2m(Rd), n ∈ N and we denote μ(dx) = φ(x) dx and μn(dx) =
φn(x) dx. We prove that there exists a universal constant C such that

‖φ‖q,p ≤ C

( ∞∑
n=0

2n(q+k+d/p∗)dk(μ,μn) +
∞∑

n=0

1

22mn
‖φn‖q+2m,2m,p

)
(1.1)

and

‖φ‖q,1+ ≤ C

( ∞∑
n=0

n2n(q+k)dk(μ,μn) +
∞∑

n=0

1

22mn
‖φn‖q+2m,2m,1+

)
.(1.2)

This is Proposition 2.5 and the proof is based on a development in Hermite
series and on a powerful estimate for mixtures of Hermite kernels inspired from
[26]. This inequality fits in the general theory of interpolation spaces (we thank to
D. Elworthy for a useful remark in this sense). Many interpolation results between
Sobolev spaces of positive and negative indexes are known but they are not relevant
from a probabilistic point of view: convergence in distribution is characterized by
the Fortet–Mourier distance and this amounts to convergence in the dual of W 1,∞.
So we are not concerned with Sobolev spaces associated to Lp norms but to L∞
norms. This is a limit case which is more delicate and we have not found in the
literature classical interpolation results which may be used in our framework.

Once we have (1.1) and (1.2), we obtain the following regularity criteria. Let μ

be a finite nonnegative measure. Suppose that there exists a sequence of functions
φn ∈ Cq+2m(Rd), n ∈N such that

dk(μ,μn) × ‖φn‖α
q+2m,2m,p ≤ C, α >

q + k + d/p∗
2m

,(1.3)

with μn(dx) = φn(x) dx. Then μ(dx) = φ(x) dx and φ ∈ Wq,p (the standard
Sobolev space).



CONVERGENCE AND REGULARITY OF PROBABILITY LAWS 1113

In terms of ‖φ‖q,m,1+, the statement is the following: suppose that there exists
m ∈ N such that

d1(μ,μn) × ‖φn‖1/2m
2m,2m,1+ ≤ C

(lnn)2+1/2m
.(1.4)

Then μ is absolutely continuous with respect to the Lebesgue measure.
The statement of the corresponding results are Theorem 2.10(A) and Theo-

rem 2.9 respectively. These are two significant particular cases of a more general
result stated in terms of Orlicz norms in Theorem 2.6. The proof is, roughly speak-
ing, as follows: let γε be the Gaussian density of variance ε > 0 and let με = μ∗γε

and με
n = μn ∗ γε . Then με(dx) = φε(x) dx and με

n(x) = φε
n(x) dx. Using (1.1)

for φε and φε
n, n ∈ N, one proves that supε ‖φε‖q,p < ∞. And then one employs

an argument of relative compactness in Wq,p in order to produce the density φ

of μ.
We give now the convergence result (see Theorem 2.11). Suppose that (1.3)

holds for some α >
q+k+d/p∗

m
. Then μ(dx) = φ(x) dx and, for every n ∈ N,

‖φ − φn‖Wq,p ≤ Cdθ
k (μ,μn) with θ = 1

α
∧

(
1 − q + k + d/p∗

αm

)
.(1.5)

Roughly speaking, this inequality is obtained by using (1.1) with μ replaced by
μ − μn.

In the statements of (1.3), we do not use dk(μ,μn) and ‖φn‖q+2m,2m,p di-
rectly, but some function λ having some nice properties such that λ(1/n) ≥
‖φn‖1+q+2m,2m,p . But this is a technical point which we leave out in this Intro-
duction.

The paper is organized as follows. In Section 2, we introduce the Orlicz spaces,
we give the general result and the criteria concerning the absolute continuity and
the regularity of the density. We also give in Section 2.5 the convergence criteria
mentioned above. In Section 2.6, we translate the results in terms of integration by
parts formulae. In Section 3.1 (resp., Section 3.2), we prove absolute continuity for
the law of the solution to a SDE (resp., to a SPDE) with log-Hölder continuous co-
efficients. Moreover, in Section 3.3 we discuss an example concerning piecewise
deterministic Markov processes: we assume that the coefficients are smooth and
we prove existence of the density of the law of the solution together with regular-
ity with respect to the initial condition. We also consider an approximation scheme
and we use (1.5) in order to estimate the error. Finally, we add some appendices
containing technical results: Appendix A is devoted to the proof of the main esti-
mate (1.1) based on a development in Hermite series; in Appendix B we discuss
the relation with interpolation spaces; in Appendix C we give some auxiliary esti-
mates concerning super kernels.
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2. Criterion for the regularity of a probability law.

2.1. Notation. We work on R
d and we denote by M the set of the finite signed

measures on R
d with the Borel σ algebra. Moreover, Ma⊂ M is the set of the

measures which are absolutely continuous with respect to the Lebesgue measure.
For μ ∈ Ma , we denote by pμ the density of μ with respect to the Lebesgue
measure. And for a measure μ ∈ M we denote by L

p
μ the space of the measurable

functions f : Rd → R such that
∫ |f |p d|μ| < ∞. For f ∈ L1

μ, we denote f μ the
measure (f μ)(A) = ∫

A f dμ. For a bounded function φ : Rd →R, we denote μ ∗
φ the measure defined by

∫
f dμ ∗ φ = ∫

f ∗ φ dμ = ∫∫
φ(x − y)f (y) dy dμ(x).

Then μ ∗ φ ∈ Ma and pμ∗φ(x) = ∫
φ(x − y)dμ(y).

We denote by α = (α1, . . . , αd) ∈ N
d a multi-index and we put |α| = ∑d

i=1 αi .
Here, N= {0,1,2, . . .} is the set of nonnegative integers and we put N∗ =N \ {0}.
For a multi-index α with |α| = k, we denote ∂α the corresponding derivative that
is ∂

α1
x1 · · · ∂αd

xd with the convention that ∂
αi
xi f = f if αi = 0. In particular, if α is the

null multi-index then ∂αf = f .
We denote by ‖f ‖p = (

∫ |f (x)|p dx)1/p,p ≥ 1 and ‖f ‖∞ = supx∈Rd |f (x)|.
Then Lp = {f : ‖f ‖p < ∞} are the standard Lp spaces with respect to the
Lebesgue measure.

2.2. Orlicz spaces. In the following, we will work in Orlicz spaces, so we
briefly recall the notation and the results we will use, for which we refer to [19].

A function e : R→R+ is said to be a Young function if it is symmetric, strictly
convex, nonnegative and e(0) = 0. In the following, we will consider Young func-
tions having the two supplementary properties:

(i) there exists λ > 0 such that e(2s) ≤ λe(s),
(2.1)

(ii) s �→ e(s)
s

is nondecreasing.

The property (i) is known as the �2 condition or doubling condition (see [19]).
Throughout the whole paper, we work with Young functions which satisfy (2.1).
We set E the space of these functions:

E = {
e : e is a Young function satisfying (2.1)

}
.(2.2)

For e ∈ E and f : Rd →R, we define the norm

‖f ‖e = inf
{
c > 0 :

∫
e
(

1

c
f (x)

)
dx ≤ 1

}
.(2.3)

This is the so-called Luxembourg norm which is equivalent to the Orlicz norm
(see [19], page 227, Theorem 7.5.4). It is convenient for us to work with this norm
(instead of the Orlicz norm). The space Le = {f : ‖f ‖e < ∞} is the Orlicz space.
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REMARK 2.1. Let ul(x) = (1 + |x|)−l . As a consequence of (2.1)(ii), for ev-
ery e ∈ E and l > d one has ul ∈ Le, and moreover,

‖ul‖e ≤ (
e(1)‖ul‖1

) ∨ 1 < ∞.(2.4)

Indeed, (2.1)(ii) implies that for t ≤ 1 one has e(t) ≤ e(1)t . For c ≥ (e(1)‖ul‖1) ∨
1, one has 1

c
ul(x) ≤ ul(x) ≤ 1 so that∫

e
(

1

c
ul(x)

)
dx ≤ e(1)

c

∫
ul(x) dx = e(1)

c
‖ul‖1 ≤ 1.

For a > 0, we define e−1(a) = sup{c : e(c) ≤ a} and

φe(r) = 1

e−1(1/r)
and βe(R) = R

e−1(R)
= Rφe

(
1

R

)
, r,R > 0.(2.5)

REMARK 2.2. The function φe is the “fundamental function” of Le equipped
with the Luxembourg norm (see [8], Lemma 8.17, page 276). In particular, 1

r
φe(r)

is decreasing (see [8], Corollary 5.2, page 67). It follows that βe is increasing. For
the sake of completeness, we give here the argument. By (2.1)(ii), if a > 1 then
e(ax) ≥ ae(x) so that ax ≥ e−1(ae(x)). Taking y = e(x), we obtain ae−1(y) ≥
e−1(ay) which gives

βe(ay) = ay

e−1(ay)
≥ ay

ae−1(y)
= βe(y).

One defines the conjugate of e by

e∗(s) = sup
{
st − e(t) : t ∈ R

}
.

e∗ is a Young function as well, so the corresponding Luxembourg norm ‖f ‖e∗ is
given by (2.3) with e replaced by e∗. And one has the following Hölder inequality:∣∣∣∣∫ fg(x) dx

∣∣∣∣ ≤ 2‖f ‖e‖g‖e∗(2.6)

(see Theorem 7.2.1, page 215 in [19]; we stress that the factor 2 does not appear
in that reference but in the right-hand side of the inequality in the statement of
Theorem 7.2.1 in [19] one has the Orlicz norm of g and by using the equivalence
between the Orlicz and the Luxembourg norm we can replace the Orlicz norm by
2‖g‖e∗ ).

We will now define Sobolev norms and Sobolev spaces associated to an Young
function e. Let us denote by L1

loc the space of measurable functions which are in-

tegrable on compact sets and by W
k,1
loc the space of measurable functions which

are k times weakly differentiable and have locally integrable derivatives. More
precisely, this means that f ∈ W

k,1
loc if for every multi- index α with |α| ≤ k

one may find a function fα ∈ L1
loc (determined dx almost surely) such that
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g(x)fα(x) dx = (−1)|α| ∫ ∂αg(x)f (x) dx for every g ∈ C∞

c (Rd,R). In this case,
we denote ∂αf = fα . Notice that

Le ⊂ L1
loc.(2.7)

In order to prove this, we take R > 0 and we notice that for |x| ≤ R one has
(1 + R)d+1ud+1(x) ≥ 1. Then using (2.6) and (2.4), for every f ∈ Le∫

BR

∣∣f (x)
∣∣dx ≤ (1 + R)d+1

∫
Rd

ud+1(x)
∣∣f (x)

∣∣dx

≤ (1 + R)d+1‖ud+1‖e∗‖f ‖e < ∞.

For f ∈ W
k,1
loc , we introduce the norms

‖f ‖k,e = ∑
0≤|α|≤k

‖∂αf ‖e and ‖f ‖k,∞ = ∑
0≤|α|≤k

‖∂αf ‖∞(2.8)

and we denote

Wk,e = {
f ∈ W

k,1
loc : ‖f ‖k,e < ∞}

and Wk,∞ = {
f ∈ W

k,1
loc : ‖f ‖k,∞ < ∞}

.

For a multi-index γ , we denote xγ = ∏d
i=1 x

γi

i and for two multi-indexes α,γ we
denote fα,γ the function

fα,γ (x) = xγ ∂αf (x).

Then we consider the norms

‖f ‖k,l,e = ∑
0≤|α|≤k

∑
0≤|γ |≤l

‖fα,γ ‖e and Wk,l,e = {
f : ‖f ‖k,l,e < ∞}

.(2.9)

We stress that in ‖ · ‖k,l,e the first index k is related to the order of the deriva-
tives which are involved while the second index l is connected to the power of the
polynomial multiplying the function and its derivatives up to order k.

Finally, we recall that if e satisfies the �2 condition [that is (2.1)(i)] then Le

is reflexive (see [19], Theorem 7.7.1, page 234). In particular, in this case, any
bounded subset of Le is weakly relatively compact.

Let us propose two examples of Young functions that represent the leading ones
in our approach.

EXAMPLE 1. If we take ep(x) = |x|p,p > 1, then ‖f ‖ep is the usual Lp

norm and the corresponding Orlicz space is the standard Lp space on R
d . Clearly,

βep(t) = t1/p∗ with p∗ the conjugate of p.

EXAMPLE 2. Set elog(t) = (1 + |t |) ln(1 + |t |). Since the norm from elog is
not explicit, we replace it by the following quantities:

‖f ‖p,1+ =
∫ (

1 + |x|)p∣∣f (x)
∣∣(1 + ln+ |x| + ln+∣∣f (x)

∣∣)dx,

(2.10)
‖f ‖k,p,1+ = ∑

0≤|α|≤k

‖∂αf ‖p,1+
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with ln+(x) = max{0, ln |x|}. We stress that ‖f ‖p,1+ is not a norm.

We will need the following.

LEMMA 2.3. For each k ∈ N and p ≥ 0, there exists a constant C depending
on k,p only such that

‖f ‖k,p,elog ≤ C
(
1 ∨ ‖f ‖k,p,1+

)
.(2.11)

Moreover,

lim sup
t→∞

βelog(t)

ln t
≤ 2.(2.12)

PROOF. The inequality (2.11) is an immediate consequence of the following
simpler one:

‖f ‖elog ≤ 2
(

1 ∨
∫ ∣∣f (x)

∣∣(1 + ln+∣∣f (x)
∣∣)dx

)
.(2.13)

Let us prove it. We assume that f ≥ 0 and we take c ≥ 2 and we write∫
elog

(
1

c
f (x)

)
dx ≤

∫
{f ≤c}

elog

(
1

c
f (x)

)
dx +

∫
{f >c}

elog

(
1

c
f (x)

)
dx =: I + J.

Using the inequality ln(1 + y) ≤ y, we obtain I ≤ 2
∫

ln(1 + 1
c
f ) ≤ 2

c

∫
f . And if

f ≥ c ≥ 2, then f
c

+1 ≤ 2
c
f ≤ f . Then elog(

1
c
f (x)) ≤ 2

c
f lnf . It follows that J ≤

2
c

∫
{f >c} f ln+ f , and finally

∫
elog(

1
c
f )) ≤ 2

c

∫
{f >c}(1 + f ) ln+ f . We conclude

that for c ≥ 2
∫

f (1 + ln+ f ) we have
∫

elog(
1
c
f ) ≤ 1 which by the very definition

means that ‖f ‖elog ≤ 2
∫

f (1 + ln+ f ).
Let us prove (2.12). We denote e(t) = 2t ln(2t) and we notice that for large t

one has elog(t) ≤ e(t). It follows that

βelog(t) ≤ t

e−1(t)
.

Using the change of variable R = e(t), we obtain

lim
R→∞

R

e−1(R) lnR
= lim

t→∞
e(t)

t ln e(t)
= 2.

So for large R we have βelog(R) ≤ R/e−1(R) ≤ 2 lnR. �

REMARK 2.4. We recall that the L logL space of Zygmund is the space of
the functions f such that

∫ |f (x)| ln+ |f (x)|dx < ∞ (see [8]). Then Lelog = L1 ∩
L logL. The inequality (2.13) already gives one inclusion. The converse inclusion
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is a consequence of the following inequalities. Let ε∗ > 0 be such that t ≤ 2 ln(1 +
t) for 0 < t ≤ ε∗ and let C∗ = 2 + 1/ ln(1 + ε∗). Then

(i)
∫ ∣∣f (x)

∣∣dx ≤ C∗‖f ‖elog and
(2.14)

(ii)
∫ ∣∣f (x)

∣∣ ln+∣∣f (x)
∣∣dx ≤ ‖f ‖elog

(
1 + 2C∗ ln+ ‖f ‖elog

)
.

In order to prove (i), we denote g = ‖f ‖−1
elog

|f | and we write∫
g =

∫
{g≤ε∗}

g +
∫
{g>ε∗}

g

≤ 2
∫
{g≤ε∗}

ln(1 + g) + 1

ln(1 + ε∗)

∫
{g>ε∗}

g ln(1 + g)

≤ C∗
∫

(1 + g) ln(1 + g) = C∗
∫

elog(g) = C∗.

In order to prove (ii), we notice that
∫

g ln+ g ≤ ∫
elog(g) = 1 so that∫

|f | ln+ |f |
‖f ‖elog

≤ ‖f ‖elog .

Then we write∫
|f | ln+ |f | =

∫
{|f |≥1∨‖f ‖elog }

|f | ln+ |f | +
∫
{|f |<1∨‖f ‖elog }

|f | ln+ |f |

=: I + J.

If |f | ≥ 1 ∨‖f ‖elog , then ln+ |f | = ln |f | = ln+(
|f |

‖f ‖elog
)+ ln‖f ‖elog . So, by using

the previous inequality,

I ≤ ‖f ‖elog + ln‖f ‖elog

∫
|f | ≤ ‖f ‖elog

(
1 + C∗ ln‖f ‖elog

)
the last inequality being a consequence of (i). And

J ≤ ln+ ‖f ‖elog

∫
|f | ≤ C∗‖f ‖elog ln+ ‖f ‖elog .

2.3. Main results. We consider the following distances between two measures
μ,ν ∈ M: for k ∈ N, we set

dk(μ, ν) = sup
{∣∣∣∣∫ φ dμ −

∫
φ dν

∣∣∣∣ : φ ∈ C∞(
R

d)
,‖φ‖k,∞ ≤ 1

}
.(2.15)

Notice that d0 is the total variation distance and d1 is the bounded variation dis-
tance (also called Fortet–Mourier distance) which is related to the convergence in
law of probability measures. The distances dk with k ≥ 2 are less often used. We
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mention however that people working in approximation theory (for diffusion pro-
cess, e.g., [28] or [22]) use such distances in an implicit way: indeed, they study
the speed of convergence of certain schemes but they are able to obtain their es-
timates for test functions f ∈ Ck with k sufficiently large—so dk comes on. We
also recall that for k = 1,2,3, dk plays an important role in the so-called Stein’s
method for normal approximation (see, e.g., [23]).

We fix now a Young function e ∈ E [see (2.2)], and we recall the function βe
[see (2.5) and Remark 2.2, resp.].

Let q, k ∈ N and m ∈ N∗. For μ ∈ M and for a sequence μn ∈ Ma, n ∈ N we
define

πq,k,m,e
(
μ, (μn)n

)
(2.16)

=
∞∑

n=0

2n(q+k)βe
(
2nd)

dk(μ,μn) +
∞∑

n=0

1

22nm
‖pμn‖2m+q,2m,e.

Here and in the sequel, we make the convention that ‖pμn‖2m+q,2m,e = ∞ if pμn /∈
W

2m+q,1
loc . Moreover, we define

ρq,k,m,e(μ) = infπq,k,m,e
(
μ, (μn)n

)
(2.17)

the infimum being over all the sequences of measures μn,n ∈ N which are abso-
lutely continuous. It is easy to check that ρq,k,m,e is a norm on the space Sq,k,m,e
defined by

Sq,k,m,e = {
μ ∈M : ρq,k,m,e(μ) < ∞}

.(2.18)

The following result gives the key estimate in our paper. We prove it in Ap-
pendix A.

PROPOSITION 2.5. Let q, k ∈ N,m ∈ N∗ and e ∈ E . There exists a universal
constant C (depending on q, k,m,d and e) such that for every f ∈ C2m+q(Rd)

one has

‖f ‖q,e ≤ Cρq,k,m,e(μ),(2.19)

where μ(dx) = f (x) dx.

We state now our main theorem.

THEOREM 2.6. Let q, k ∈ N,m ∈ N∗ and let e ∈ E .

(i) Take q = 0. Then

S0,k,m,e ⊂ Le

in the sense that if μ ∈ S0,k,m,e then μ is absolutely continuous and the density pμ

belongs to Le. Moreover, there exists a universal constant C such that

‖pμ‖Le ≤ Cρ0,k,m,e(μ).
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(ii) Take q ≥ 1. Then

Sq,k,m,e ⊂ Wq,e and ‖pμ‖q,e ≤ Cρq,k,m,e(μ), μ ∈ Sq,k,m,e.

PROOF. We consider a function φ ∈ C∞
b (Rd) such that 0 ≤ φ ≤ 1B1 and∫

R
φ(x) dx = 1. For δ ∈ (0,1), we define φδ(x) = δ−dφ(δ−1x). For a measure

μ, we define μ ∗ φδ by
∫

f dμ ∗ φδ = ∫
f ∗ φδ dμ. Since ‖f ∗ φδ‖k,∞ ≤ ‖f ‖k,∞,

it follows that dk(μ ∗ φδ, ν ∗ φδ) ≤ dk(μ, ν). We will also prove that

‖f ∗ φδ‖2m+q,2m,e ≤ 22m‖f ‖2m+q,2m,e.(2.20)

Suppose for a moment that (2.20) holds. Then

πq,k,m,e
(
μ ∗ φδ, (μn ∗ φδ)n

) ≤ 22mπq,k,m,e
(
μ, (μn)n

) ≤ 22mρq,k,m,e(μ).

Let pδ ∈ C∞(Rd,R) be the density of the measure μ ∗ φδ . The above inequality
and (2.19) prove that

sup
0<δ≤1

‖pδ‖q,e ≤ Cρq,k,m,e(μ) < ∞.

For each multi-index α with |α| ≤ q , the family ∂αpδ, δ ∈ (0,1) is bounded in
Le which is a reflexive space, so it is weakly relatively compact. Then we may
find pα ∈ Le ⊂ L1

loc [see (2.7) for the above inclusion] and a sequence δn → 0
such that ∂αpδn → pα weakly, for every multi-index α with 0 ≤ |α| ≤ q (in the
same time). Since

∫
g∂αpδn = (−1)|α| ∫ p∂αg, by passing to the limit, we ob-

tain
∫

gpα = (−1)|α| ∫ p∂αg so ∂αp = pα ∈ Le and this means that p ∈ Wq,e.
Since μ ∗ φδn → μ weakly, one has μ(dx) = p(x)dx. And since ‖∂αp‖e ≤
supn∈N ‖∂αpδn‖e ≤ Cρq,k,m,e(μ) it follows that ‖p‖q,e ≤ Cρq,k,m,e(μ). So the
proof is completed.

Let us check (2.20). For λ > 0, we denote gλ(x) = (1 + |x|)λg(x). Notice that
for δ ≤ 1∣∣(g ∗ φδ)λ(x)

∣∣ ≤ (
1 + |x|)λ ∫ ∣∣g(x − y)

∣∣φδ(y) dy

≤
∫ (

1 + |x − y| + δ
)λ∣∣g(x − y)

∣∣φδ(y) dy

≤ 2λ
∫ (

1 + |x − y|)λ∣∣g(x − y)
∣∣φδ(y) dy = 2λ|gλ| ∗ φδ(x).

Then, by (A.6) ‖(g ∗φδ)λ‖e ≤ 2λ‖|gλ| ∗φδ‖e ≤ 2λ‖φδ‖1‖|gλ|‖e = 2λ‖gλ‖e. Using
this inequality (with λ = 2m) for g = ∂αf , we obtain (2.20). �

We consider now a special class of Orlicz norms which verify a supplementary
condition: given α,γ ≥ 0 we define

Eα,γ =
{

e : lim sup
R→∞

βe(R)

Rα(lnR)γ
< ∞

}
.(2.21)

In this case, we have the following.
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THEOREM 2.7. Let q, k ∈ N,m ∈ N∗ and let e ∈ Eα,γ . If 2m > d , γ ≥ 0 and

0 ≤ α <
2m+q+k
d(2m−1)

then

Wq+1,2m,e ⊂ Sq,k,m,e ⊂ Wq,e

and there exists some constant C such that

1

C
‖pμ‖q,e ≤ ρq,k,m,e(μ) ≤ C‖pμ‖q+1,2m,e.(2.22)

In particular, this is true for elog and for ep with p−1
p

<
2m+q+k
d(2m−1)

.

PROOF. The first inequality in (2.22) is proved in Theorem 2.6. As for the
second, we use Lemma C.3 in Appendix C. Let f ∈ Wq+1,2m,e and μf (dx) =
f (x) dx. We have to prove that ρq,k,m,e(μf ) < ∞. We consider a super kernel
φ [see (C.1)] and we define fδ = f ∗ φδ . We take δn = 2−θn with θ to be cho-
sen in a moment and we choose n∗ such that for n ≥ n∗ one has βe(2nd) ≤
C2ndαnγ because e ∈ Eα,γ . Using (C.3) with l = 2m, we obtain dk(μf ,μfδn

) ≤
Ck,q‖f ‖q+1,2m,eδ

q+k+1
n and using (C.4) we obtain ‖fδn‖2m+q,2m,e ≤ C2m+q,2m ×

‖f ‖q+1,2m,eδ
−(2m−1)
n (the constant C depends on k and q , which are fixed). Then

we can write

πq,k,m,e(μf ,μfδn
)

=
∞∑

n=0

2n(q+k)βe
(
2nd)

dk(μf ,μfδn
) +

∞∑
n=0

1

22nm
‖fδn‖2m+q,2m,e

≤ Cq,k,m‖f ‖q+1,2m,e

×
(

1 +
∞∑

n≥n∗
2n(q+k+dα−θ(q+k+1))nγ +

∞∑
n=0

1

2n(2m−θ(2m−1))

)
,

Cq,k,m > 0 denoting a constant depending on q, k,m. In order to obtain the con-
vergence of the above series, we need to choose θ such that

q + k + dα

q + k + 1
< θ <

2m

2m − 1

and this is possible under our restriction on α. �

We give now a criterion in order to check that μ ∈ Sq,k,m,e.

THEOREM 2.8. Let q, k ∈ N,m ∈ N∗ and let e ∈ Eα,γ . We consider a non-
negative finite measure μ and we suppose that there exists a family of measures
μδ(dx) = fδ(x) dx, δ > 0 which verifies the following assumptions. There exist
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C, r > 0 and a function λq,m(δ), δ ∈ (0,1), which is right-continuous and nonin-
creasing such that

‖fδ‖2m+q,2m,e ≤ λq,m(δ) ≤ Cδ−r .

We consider some η > 0 and κ ≥ 0 and we assume that

λη
q,m(δ)dk(μ,μδ) ≤ C

(ln(1/δ))κ
.(2.23)

If (2.23) holds with

η >
q + k + αd

2m
, κ = 0(2.24)

then

μ ∈ Sq,k,m,e ⊂ Wq,e.

The same conclusion holds if

η = q + k + αd

2m
and κ > 1 + γ + η.(2.25)

PROOF. Let ε0 > 0. We define

δn = inf
{
δ > 0 : λq,m(δ) ≤ 22mn

n1+ε0

}
.

Let 0 < θ < 2m/r where r is the one in the growth condition on λq,m. Since
δrλq,m(δ) ≤ C, we have

λq,m

(
2−θn) ≤ C2nθr ≤ 22mn

n1+ε0

which means that δn ≤ 2−θn. Since e ∈ Eα,γ , we have

πq,k,m,e
(
μ, (μδn)n

)
≤ C

∞∑
n=1

2n(q+k+αd)nγ dk(μ,μδn) + C

∞∑
n=1

2−2mn‖fδn‖2m+q,2m,e.

Since λq,m is right continuous, λq,m(δn) = 22mnn−(1+ε0) so

∞∑
n=1

1

22mn
λq,m(δn) < ∞.

By recalling that ln(1/δn) ≥ Cθn and by using (2.23), we obtain

2n(q+k+αd)nγ dk(μ,μδn) ≤ 2n(q+k+αd) Cnγ

λ
η
q,m(δn)(ln(1/δn))κ

(2.26)
≤ C × 2n(q+k+αd−2mη)nγ+η(1+ε0)−κ .
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If q +k+αd < 2ηm, the series with the general term given in (2.26) is convergent.
If q + k + αd = 2ηmn, we need that κ > 1 + γ + η(1 + ε0) in order to obtain the
convergence of the series. If κ > 1 + γ + η, then we may choose ε0 sufficiently
small in order to have γ + η(1 + ε0) − κ > 1 and we are done. �

There are two important examples: e = ep that we discuss in a special subsec-
tion below and e = elog which we discuss now. We recall that elog ∈ Eα,γ with
α = 0 and γ = 1 and ‖fδ‖2m,2m,elog ≤ C1 ∨ ‖fδ‖2m,2m,1+ where ‖fδ‖2m,2m,1+ is
defined in (2.10). Then as a particular case of the previous theorem we obtain the
following.

THEOREM 2.9. We consider a nonnegative finite measure μ and we suppose
that there exists a family of measures μδ(dx) = fδ(x) dx, δ > 0 which verifies
the following assumptions. There exist m ∈ N∗, C, r, ε > 0 and a function λm(δ),
δ ∈ (0,1), which is right-continuous and nonincreasing such that

‖fδ‖2m,2m,1+ ≤ λm(δ) ≤ Cδ−r and
(2.27)

λ1/(2m)
m (δ)d1(μ,μδ) ≤ C

(ln(1/δ))2+1/(2m)+ε
.

Then μ(dx) = f (x) dx with f ∈ Lelog .

2.4. The Lp criterion. In the case of the Lp norms, that is, e = ep , our result
fits in the general theory of the interpolation spaces and we may give a more precise
characterization of the space Sq,k,m,ep =: Sq,k,m,p . We come back to the standard
notation and we denote ‖ · ‖p instead of ‖ · ‖ep , Wq,p instead of Wq,ep and so
on. In Appendix B, we prove that in this case the space Sq,k,m,p is related to the
following interpolation space. Let X = Wk,∞∗ where Wk,∞∗ is the dual of Wk,∞
[notice that one may look to μ ∈ M as to an element of Wk,∞∗ and then dk(μ, ν) =
‖μ − ν‖

W
k,∞∗ ]. We also take Y = Wq+2m,2m,p and for γ ∈ (0,1) we denote by

(X,Y )γ the real interpolation space of order γ between X and Y (see Appendix B
for notation). Then we have

Sq,k,m,p = (X,Y )γ with γ = q + k + d/p∗
2m

.

So Theorem 2.7 reads

Wq+1,2m,p ⊂ (
Wk,∞∗ ,Wq+2m,2m,p)

γ ⊂ Wq,p.

We go now further and we notice that if (2.24) holds then the convergence of
the series in (2.26) is very fast. This allows us to obtain some more regularity.

THEOREM 2.10. Let q, k ∈ N,m ∈ N∗, p > 1 and set

η >
q + k + d/p∗

2m
.(2.28)
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We consider a nonnegative finite measure μ and a family of finite nonnegative
measures μδ(dx) = fδ(x) dx, δ > 0.

(A) We assume that there exist C, r > 0 and a right-continuous and nonincreas-
ing function λq,m(δ), δ ∈ (0,1), such that

‖fδ‖2m+q,2m,p ≤ λq,m(δ) ≤ Cδ−r

and moreover, with η given in (2.28),

λq,m(δ)ηdk(μ,μδ) ≤ C.(2.29)

Then μ(dx) = f (x) dx with f ∈ Wq,p .
(B) We assume that (2.29) holds with q + 1 instead of q ,that is,

λq+1,m(δ)ηdk(μ,μδ) ≤ C.

We denote

sη(q, k,m,p) = 2mη − (q + k + d/p∗)
2mη

∧ η

1 + η
.(2.30)

Then for every multi-index α with |α| = q and every s < sη(q, k,m,p) we have
∂αf ∈ Bs,p where Bs,p is the Besov space of index s.

PROOF. (A) The fact that (2.29) implies μ(dx) = f (x) dx with f ∈ Wq,p is
an immediate consequence of Theorem 2.8.

(B) We prove the regularity property: g := ∂αf ∈ Bs,p for |α| = q and s <

sη(q, k,m). In order to do it, we will use Lemma B.1 so we have to check (B.4).

Step 1. We begin with the point (i) in (B.4) so we have to estimate ‖g ∗∂iφε‖∞.
The reasoning is analogous with the one in the proof of Theorem 2.8 but we will
use the first inequality in (2.22) with q replaced by q + 1 and k replaced by k − 1.
So we define δn = inf{δ > 0 : λq+1,m(δ) ≤ n−222mn} and we have δn ≤ 2−θn for
θ < 2m/r . We obtain

‖g ∗ ∂iφε‖p = ∥∥∂i ∂α(f ∗ φε)
∥∥
p ≤ ‖f ∗ φε‖q+1,p ≤ ρq+1,k−1,m,p(μ ∗ φε)

≤
∞∑

n=1

2n(q+k+d/p∗)dk−1(μ ∗ φε,μδn ∗ φε)

+
∞∑

n=1

2−2mn‖fδn ∗ φε‖2m+q+1,2m,p.

By the choice of δn,

‖fδn ∗ φε‖2m+q+1,2m,p ≤ ‖fδn‖2m+q+1,2m,p ≤ λq+1,m(δn) ≤ 1

n2 22nm
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so the second series is convergent. We estimate now the first sum. Since ‖f ∗
φε‖k,∞ ≤ ε−1‖f ‖k−1,∞, one has dk−1(μ ∗ φε,μδn ∗ φε) ≤ ε−1dk(μ,μδn). Then,
using (2.29) (with q = 1 instead of q) and the choice of δn we obtain

2n(q+k+d/p∗)dk−1(μ ∗ φε,μδn ∗ φε) ≤ C

ε
2n(q+1+d/p∗)dk(μ,μδn)

≤ C

ε
2n(q+1+d/p∗)λ−η

q+1,m(δn)

≤ Cn2η

ε
2n(q+1+d/p∗−2mη).

We fix now ε > 0, we take some nε ∈ N (to be chosen in the sequel) and we write

∞∑
n=1

2n(q+k+d/p∗)dk−1(μ ∗ φε,μδn ∗ φε)

≤ C

nε∑
n=1

2n(q+k+d/p∗) + C

ε

∞∑
n=nε+1

n2η2n(q+k+d/p∗−2ηm).

We take a > 0 and we upper bound the above series by

2nε(q+k+d/p∗) + C

ε
2nε(q+k+d/p∗+a−2ηm).

In order to optimize, we take nε such that 22mnε = 1
ε
. With this choice, we obtain

2nε(q+k+d/p∗+a) ≤ Cε−(q+k+d/p∗+a)/(2mη).

We conclude that

‖g ∗ ∂iφε‖p ≤ Cε−(q+k+d/p∗+a)/(2mη)

which means (B.4)(i) holds for s < 1 − q+k+d/p∗
2mη

.

Step 2. We check now (B.4)(ii) so we have to estimate ‖g ∗ φi
ε‖p with φi

ε(x) =
xiφε(x). We take u ∈ (0,1) (to be chosen in a moment) and we define

δn,ε = inf
{
δ > 0 : λq+1,m(δ) ≤ n−222mn × ε−(1−u)}.

Then we proceed as in the previous step:∥∥∂i

(
g ∗ φi

ε

)∥∥
p ≤ ρq+1,k−1,m,p

(
μ ∗ φi

ε

)
≤

∞∑
n=1

2n(q+k+d/p∗)dk−1
(
μ ∗ φi

ε,μδn,ε ∗ φi
ε

)

+
∞∑

n=1

2−2mn
∥∥fδn,ε ∗ φi

ε

∥∥
2m+q+1,2m,p.
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It is easy to check that for every h ∈ Lp one has ‖h ∗φi
ε‖p ≤ ε‖h‖p so that, by our

choice of δn,ε we obtain

∥∥fδn,ε ∗ φi
ε

∥∥
2m+q+1,2m,p ≤ ε‖fδn,ε‖2m+q+1,2m,p ≤ ε × 22mn

n2 × ε−(1−u).

It follows that the second sum is upper bounded by Cεu.
Since ‖∂jh ∗ φi

ε‖∞ ≤ C‖h‖∞, it follows that

dk−1
(
μ ∗ φi

ε,μδn,ε ∗ φi
ε

) ≤ Cdk(μ,μδn,ε ) ≤ C

λ
η
q+1,m(δn,ε)

= Cn2

22mnη
εη(1−u).

Since 2mη > q + k + d/p∗ the first sum is convergent also and is upper bounded
by Cεη(1−u). We conclude that∥∥∂i

(
g ∗ φi

ε

)∥∥
p ≤ Cεη(1−u) + Cεu.

In order to optimize, we take u = η
1+η

. �

2.5. Convergence criteria in Wq,p and Wq,elog . For a function f , we denote
μf (dx) = f (x) dx.

THEOREM 2.11. Let η :R+ → R+ be a nondecreasing function and a ≥ 1 be
such that

lim
n→∞η(n) = +∞ and η(n + 1) ≤ aη(n), for every n ∈ N.(2.31)

Let m,k, q ∈ N be fixed. Let fn, n ∈ N, be a sequence of functions and μ ∈M.

(i) Let p ≥ 1. If there exists α >
q+k+d/p∗

m
such that

‖fn‖q+2m,2m,p ≤ η1/α(n) and dk(μ,μfn) ≤ 1

η(n)
,(2.32)

then μ(dx) = f (x) dx for some f ∈ Wq,p . Moreover, there exists a constant C

depending on a,α such that for every n ∈ N

‖f − fn‖q,p ≤ Cη−θ (n) with θ = 1

α
∧

(
1 − q + k + d/p∗

αm

)
.(2.33)

(ii) If there exists α >
q+k
m

such that

‖fn‖q+2m,2m,1+ ≤ η1/α(n) and dk(μ,μfn) ≤ 1

η(n)
,(2.34)

then μ(dx) = f (x) dx for some f ∈ Wq,elog . Moreover, there exists a constant C

depending on a,α such that for every n ∈ N

‖f − fn‖q,elog ≤ C
(
η−1/α(n) + (

log2 η(n)
)
η−(1−(q+k)/(αm))(n)

)
(2.35)

=: εn(α).
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And if εn(α) ≤ 1 then∑
0≤|α|≤q

∫ ∣∣(∂αf − ∂αfn)(x)
∣∣(1 + ln+∣∣(∂αf − ∂αfn)(x)

∣∣)dx ≤ 2C∗εn(α).(2.36)

PROOF. (i) Step 1. For r ∈ N, we define

nr = min
{
n : η(n) ≥ 2αrm}

and rn = min{r ∈ N : nr ≥ n}.
Then we have

1

a
η(n) ≤ 2αrnm ≤ Cη(n).(2.37)

Since {r ∈ N : nr ≥ n} is a discrete set, its minimum rn belongs to this set,
so nrn ≥ n. Then η(n) ≤ η(nrn) ≤ aη(nrn − 1) ≤ a2αrnm. On the other hand,
since rn − 1 /∈ {r ∈ N : nr ≥ n} one has n > nrn−1 and then η(n) ≥ η(nrn−1) ≥
2α(rn−1)m = C−12αrnm with C = 2αm. So, (2.37) holds.

Step 2. We fix n ∈ N and for r ∈ N we define

gr = 0 if r < rn and gr = fnr − fn if r ≥ rn

and ν(dx) = μ(dx)−fn(x) dx, νr(dx) = gr(x) dx. Using (2.19) (recall that βep =
t1/p∗ ) we get

ρq,k,m,p(ν) ≤
∞∑

r=1

2r(q+k+d/p∗)dk(ν, νr) +
∞∑

r=1

2−2mr‖gr‖q+2m,2m,p =: S1 + S2.

We estimate S1. For r < rn, we have νr = 0 so that dk(ν, νr) = dk(ν,0) =
dk(μ,μfn) ≤ η−1(n). And for r ≥ rn we have

dk(ν, νr) = dk(μ,μfnr
) ≤ 1

η(nr)
≤ 1

2rmα
.

So, we obtain

S1 ≤ 2rn(q+k+d/p∗)η−1(n) + C

2rnmα(1−(q+k+d/p∗)/(αm))

and using (2.37),

S1 ≤ Cη−(1−(q+k+d/p∗)/(αm))(n).

We estimate now S2. We have gr = 0 for r < rn and for r ≥ rn

‖gr‖q+2m,2m,p ≤ ‖fnr ‖q+2m,2m,p + ‖fn‖q+2m,2m,p ≤ η(nr)
1/α + η(n)1/α.

But η(nr) ≤ aη(nr − 1) ≤ a2αrm, so that

‖gr‖q+2m,2m,p ≤ a1/α2rm + η(n)1/α.



1128 V. BALLY AND L. CARAMELLINO

It follows that

S2 ≤ a1/α
∑
r≥rn

2−rm + η(n)1/α
∑
r≥rn

2−2rm ≤ C
(
2−rnm + η(n)1/α2−2rnm)

and using (2.37) we get

S2 ≤ Cη(n)−1/α.

Then we obtain

ρq,k,m,p(ν) ≤ C
(
η−1/α(n) + η−(1−(q+k+d/p∗)/(αm))(n)

)
and Theorem 2.6 allows one to conclude.

(ii) We take nr and rn as in Step 1 above, giving (2.37), and we take gr , ν, νr as
in Step 2 above. Then, by using (2.19) we get

ρq,k,m,elog(ν) ≤
∞∑

r=1

2r(q+k)βelog

(
2rd)

dk(ν, νr) +
∞∑

r=1

2−2mr‖gr‖q+2m,2m,elog .

By (2.11) and (2.12), we can write

ρq,k,m,elog(ν) ≤ C

∞∑
r=1

2r(q+k)rdk(ν, νr) +
∞∑

r=1

2−2mr1 ∨ ‖gr‖q+2m,2m,1+

=: S1 + S2.

Concerning S1, for r < rn we have dk(ν, νr) = dk(ν,0) = dk(μ,μfn) ≤ η−1(n)

and for r ≥ rn we have dk(ν, νr) ≤ 1
η(nr )

≤ 1
2rmα . So, we obtain

S1 ≤ C

(
rn2rn(q+k)η−1(n) + rn

2rnmα(1−(q+k)/(αm))

)
.

Using (2.37),

S1 ≤ Crnη
−(1−(q+k)/(αm))(n) ≤ C

(
log2 η(n)

)
η−(1−(q+k)/(αm))(n).

As for S2, we proceed as in Step 2 above and we obtain S2 ≤ Cη(n)−1/α . Then

ρq,k,m,elog(ν) ≤ C
(
η−1/α(n) + η−(1−(q+k+d/p∗)/(αm))(n)

)
and the statement again follows from Theorem 2.6. So (2.35) is proved. In order
to check (2.36), we use (2.14) [notice that, since ‖f − fn‖q,elog ≤ εn(α) ≤ 1, we
have ln+ ‖f − fn‖q,elog = 0]. �
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2.6. Random variables and integration by parts. In this section, we work in
the framework of random variables. For a random variable F , we denote by μF

the law of F and if μF is absolutely continuous we denote by pF its density. We
will use Theorem 2.10 for μF so we will look for a family of random variables
Fδ, δ > 0 such that μFδ satisfy the hypothesis of this theorem. Sometimes it is
easy to construct such a family with explicit densities pFδ and then one may check
(2.29) directly (this is the case in the examples in Sections 3.1 and 3.2). But some-
times one does not know pFδ and then it is useful to use the integration by parts
machinery in order to prove (2.29)—this is the case in the example given is Sec-
tion 3.3 or the application to a kind of generalization of the Hörmander condition
to general Wiener functionals developed in [2].

We briefly recall the abstract definition of integration by parts formulae and we
give some useful properties (coming essentially from [1]). We consider two ran-
dom variables F = (F1, . . . ,Fd) and G. Given a multi-index α = (α1, . . . , αk) ∈
{1, . . . , d}k and for p ≥ 1, we say that IPα,p(F,G) holds if we may find a random
variable Hα(F ;G) ∈ Lp such that for every f ∈ C∞

b (Rd) one has

E
(
∂αf (F )G

) = E
(
f (F )Hα(F ;G)

)
.(2.38)

The weight Hα(F ;G) is not uniquely determined: the one with the lowest variance
is E(Hα(F ;G) | σ(F )). This quantity is uniquely determined. So we denote

θα(F,G) = E
(
Hα(F ;G) | σ(F )

)
.(2.39)

For m ∈ N and p ≥ 1, we denote by Rm,p the class of random variables F in
R

d such that IPα,p(F,1) holds for every multi-index α with |α| ≤ m. We define

Tm,p(F ) = ‖F‖p + ∑
|α|≤m

∥∥θα(F,1)
∥∥
p.(2.40)

Notice that by Hölder’s inequality ‖E(Hα(F ;1) | σ(F ))‖p ≤ ‖Hα(F ;1)‖p . It fol-
lows that for every choice of the weights Hα(F ;1) one has

Tm,p(F ) ≤ ‖F‖p + ∑
|α|≤m

∥∥Hα(F ;1)
∥∥
p.(2.41)

THEOREM 2.12. Let m, l ∈ N and p > d . If F ∈Rm+1,p then the law of F is
absolutely continuous and the density pF belongs to Cm(Rd). Moreover, suppose
that F ∈ Rm+1,2(d+1). There exists a universal constant C (depending on d, l and
m only) such that for every multi-index α with |α| ≤ m∣∣∂αpF (x)

∣∣ ≤ CT d2−1
1,2(d+1)(F )Tm+1,2(d+1)(F )

(
1 + ‖F‖l

)(
1 + |x|)−l

.(2.42)

In particular, for every q ≥ 1, k ∈ N there exists a universal constant C (depending
on d,m, k,p and q) such that

‖pF ‖m,k,q ≤ CT d2−1
1,2(d+1)(F )Tm+1,2(d+1)(F )

(
1 + ‖F‖d+k+1

)
.(2.43)
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PROOF. The proof is an immediate consequence of the results in [1] and [3].
In order to see this, we have to give the relation between the notation used in that
paper and the notation used here: we work with the probability measure μF (dx) =
P(F ∈ dx) and in [1] we use the notation ∂

μF
α g(x) = E(Hα(F ;g(F )) | F = x).

The fact that F ∈ Rm+1,p implies that F ∼ pF (x) dx with pF ∈ Cm(Rd) is
proved in [1], Proposition 9. We consider now a function ψ ∈ C∞

b (Rd) such that
1B1 ≤ ψ ≤ 1B2 . In [1], Theorem 8, we have given the following representation
formula:

∂αpF (x) =
d∑

i=1

E
(
∂iQd(F − x)θ(α,i)

(
F ;ψ(F − x)

)
1B2(F − x)

)
,

where Br denotes the ball centered at 0 with radius r , Qd is the Poisson kernel on
R

d and, if α = (α1, . . . , αk), then (α, i) = (α1, . . . , αk, i). Using Hölder’s inequal-
ity, we obtain (with p∗ the conjugate of p)

∣∣∂αpF (x)
∣∣ ≤

d∑
i=1

∥∥∂iQd(F − x)
∥∥
p

∥∥θ(α,i)

(
F ;ψ(F − x)

)
1B2(F − x)

∥∥
p∗ .

We take p = d + 1 so that p∗ = (d + 1)/d ≤ 2. In [1] Theorem 5, we proved that∥∥∂iQd(F − x)
∥∥
p ≤ CT d2−1

1,2(d+1)(F ).

Moreover, we have the following computational rule (Lemma 9 in [1])

θi

(
F,fg(F )

) = f (F )θi

(
F,g(F )

) + (g∂if )(F ).

Since ψ ∈ C∞
b (Rd), we may use the above formula in order to get∥∥θ(α,i)

(
F ;ψ(F − x)

)
1B2(F − x)

∥∥
p∗

≤ ∥∥θ(α,i)

(
F ;ψ(F − x)

)∥∥
2p∗

√
P

(|F − x| ≤ 2
)

≤ CψT|α|+1,2p∗(F )

√
P

(|F − x| ≤ 2
)
.

For |x| ≥ 4,

P
(|F − x| ≤ 2

) ≤ P

(
|F | ≥ 1

2
|x|

)
≤ 2k

|x|kE
(|F |k)

so the proof of (2.42) is completed. �

We are now ready to rewrite Theorem 2.10.

THEOREM 2.13. Let k, q ∈N, m ∈ N∗, p > 1 and let

η >
q + k + d/p∗

2m
,

p∗ denoting the conjugate of p. Let F , Fδ ,δ > 0, be random variables and let μF ,
μFδ , δ > 0, denote the associated laws.
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(A) Suppose that Fδ ∈ R2m+q+1,2(d+1), δ > 0 are uniformly bounded in
L2m+d+1 and that there exist C > 0 and θ > 0 such that

T2m+q+1,2(d+1)(Fδ) ≤ Cδ−θ(2m+q+1),(2.44)

dk(μF ,μFδ) ≤ Cδθηd2(2m+q+1).(2.45)

Then μF (dx) = pF (x) dx with pF ∈ Wq,p .
(B) Suppose that Fδ ∈ R2m+q+2,2(d+1), δ > 0, and (2.44) holds with q + 1 in-

stead of q . Then for every multi-index α with |α| = q and every s < sη(q, k,m,p)

we have ∂αpF ∈ Bs,p where Bs,p is the Besov space of index s and sη(q, k,m,p)

is given in (2.30).

PROOF. (A) Let n, l ∈ N and p > 1 be fixed. By using (2.44) and (2.43), we
obtain ‖pFδ‖2m+q,2m,p ≤ Cδ−θd2(2m+q+1). So, as a consequence of (2.45) we ob-
tain ‖pFδ‖η

2m+q,2m,pdk(μF ,μFδ) ≤ C. And we apply Theorem 2.10(A). Similarly,
(B) follows by applying Theorem 2.10(B). �

3. Examples.

3.1. Path dependent SDEs. In this section, we look to the SDE

dXt =
n∑

j=1

σj (t,X)dW
j
t + b(t,X)dt,(3.1)

where W = (W 1, . . . ,Wn) is a standard Brownian motion and

σj , b : C(
R+;Rd) → C

(
R+;Rd)

, j = 1, . . . , n.

For a function ϕ ∈ C(R+;Rd), we use the notation σj (t, ϕ) = σj (ϕ)(t) and
b(t, ϕ) = b(ϕ)(t). If σj and b satisfy some Lipschitz continuity property with re-
spect to the sup-norm on C(R+;Rd), then this equation has a unique solution. But
we do not want to make such an hypothesis here so we just consider an adapted
process Xt, t ≥ 0 which verifies the above equation.

We set �s,t (w) := sups≤u≤t |wu − ws |.
THEOREM 3.1. Let b and σj , j = 1, . . . , n, be bounded. Suppose that there

exists ε,C > 0 such that∣∣σj (t,w) − σj (s,w)
∣∣ ≤ C

(
ln

(
1

�s,t (w)

))−(2+ε)

, ∀j = 1, . . . , n(3.2)

and that there exists λ∗ > 0 such that

σσ ∗(t,w) ≥ λ∗ ∀t ≥ 0,w ∈ C
(
R+;Rd)

.(3.3)

Then for every T > 0 the law of XT is absolutely continuous with respect to the
Lebesgue measure and the density belongs to Lelog .
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REMARK 3.2. We note that in the particular case of standard SDEs we have
σj (t,w) = σj (wt) and a sufficient condition in order that (3.2) holds is |σj (x) −
σj (y)| ≤ C(ln( 1

|x−y|))
−(2+ε). This is weaker than Hölder continuity.

PROOF OF THEOREM 3.1. During the proof, we set λ∗ > 0 a constant such
that λ∗ ≥ σσ ∗(t,w).

For δ > 0, we construct

Xδ
T = XT −δ +

n∑
j=1

σj (T − δ,X)
(
W

j
T − W

j
T −δ

)
.

We will use Theorem 2.9 so we check the hypotheses there.

Step 1. We write XT − Xδ
T = ∑n

j=1 I
j
δ + Jδ with

I
j
δ =

∫ T

T −δ

(
σj (t,X) − σj (T − δ,X)

)
dW

j
t and Jδ =

∫ T

T −δ
b(t,W)dt.

Since b is bounded, we have

E
(|Jδ|) ≤ Cδ.(3.4)

Let āδ = √
δ ln 1

δ
and Aδ = {�T −δ,T (X) ≤ āδ}. We write E(|I j

δ |2) = Kδ +Lδ with

Kδ =
∫ T

T −δ
E

(
1Ac

δ

∣∣σj (t,X) − σj (T − δ,X)
∣∣2)

dt,

Lδ =
∫ T

T −δ
E

(
1Aδ

∣∣σj (t,X) − σj (T − δ,X)
∣∣2)

dt.

By using the Bernstein’s inequality, we obtain P(Ac
δ) ≤ C exp(− ā2

δ
C′δ ). And since

σj is bounded, for any small δ we get

Kδ ≤ CδP
(
Ac

δ

) ≤ Cδ exp
(
− ā2

δ

2C′δ

)
≤ Cδ3/2.

Moreover, using (3.2) and again for δ small enough,

Lδ ≤ Cδ

(ln 1/aδ)2(2+ε)
≤ C′δ

(ln 1/δ)2(2+ε)

[notice that ln(1
δ
)/ ln 1

āδ
→ 1

2 > 0 for δ → 0]. We conclude that

E
(∣∣I j

δ

∣∣2) ≤ Cδ

(ln 1/δ)2(2+ε)

so that, if μ is the law of XT and μδ is the law of Xδ
T then for every δ small,

d1(μ,μδ) ≤ E
(∣∣XT − Xδ

T

∣∣) ≤ Cδ1/2

(ln 1/δ)2+ε
.(3.5)
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Step 2. Given a positive definite matrix a, we denote

γδ,a(y) = 1

(2πδ)d/2(deta)1/2 exp
(
− 1

2δ

〈
a−1y, y

〉)
.

With μδ denoting the law of Xδ
T , we have μδ(dy) = pδ(y) dy where

pδ(y) = E
(
γδ,aT −δ(X)(y − XT −δ)

)
with at (X) = σσ ∗(t,X).

Let α denote a multi-index |α| = q , k ∈ N and δ ≤ 1. By using (3.3), we have∣∣∂αpδ(y)
∣∣ ≤ Cδ−q/2

E

((
1 + |y − XT −δ|

δ1/2

)q

γδ,aT −δ(X)(y − XT −δ)

)
(3.6)

≤ Cδ−q/2
E

((
1 + |y − XT −δ|

δ1/2

)q

γδ,λ∗I (y − XT −δ)

)
.

We use the fact that 0 < x �→ (1 + x)qe−x2
is bounded. This gives∣∣∂αpδ(y)

∣∣ ≤ Cδ−(d+q)/2,

so that, for small values of δ,

ln+∣∣∂αpδ(y)
∣∣ ≤ C

(
1 + ln

1

δ

)
≤ C ln

1

δ
.(3.7)

Let m ∈N. Using (3.6) and (3.7), we obtain

‖∂αpδ‖2m,1+ =
∫ (

1 + |y|)2m∣∣∂αpδ(y)
∣∣(1 + ln+ |y| + ln+∣∣∂αpδ(y)

∣∣)dy

≤ Cδ−q/2 ln
1

δ
E

(∫ (
1 + |y|)2m+1

(
1 + |y − XT −δ|

δ1/2

)q

× γδ,λ∗I (y − XT −δ) dy

)
= Cδ−q/2 ln

1

δ
E

(∫ (
1 + ∣∣XT −δ + δ1/2z

∣∣)2m+q+1
γ1,λ∗I (z) dz

)
≤ Cδ−q/2 ln

1

δ
.

We conclude that

‖pδ‖2m,2m,1+ = ∑
0≤|α|≤2m

‖∂αpδ‖2m,1+ ≤ Cδ−m ln
1

δ
.(3.8)

Step 3. We are now ready to check (2.27): the exists δ0 ≤ 1 such that for δ < δ0
one has

‖pδ‖1/2m
2m,2m,1+d1(μ,μδ) ≤ Cδ−1/2

(
ln

1

δ

)1/2m

× δ1/2

(ln 1/δ)2+ε

= C

(ln 1/δ)2+ε−1/(2m)
≤ C

(ln 1/δ)2+1/(2m)+ε/2
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the last inequality holding true as soon as 1
m

≤ ε/2. So (2.27) holds and the con-
clusion follows from Theorem 2.9. �

3.2. Stochastic heat equation. In this section, we investigate the regularity of
the law of the solution to the stochastic heat equation introduced by Walsh in [33].
Formally, this equation is

∂tu(t, x) = ∂2
xu(t, x) + σ

(
u(t, x)

)
W(t, x) + b

(
u(t, x)

)
,(3.9)

where W denotes a white noise on R+ × [0,1]. We consider Neumann boundary
conditions that is ∂xu(t,0) = ∂xu(t,1) = 0 and the initial condition is u(0, x) =
u0(x). The rigorous formulation to this equation is given by the mild form con-
structed as follows. Let Gt(x, y) be the fundamental solution to the deterministic
heat equation ∂tv(t, x) = ∂2

xv(t, x) with Neumann boundary conditions. Then u

satisfies

u(t, x) =
∫ 1

0
Gt(x, y)u0(y) dy +

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u(s, y)

)
dW(s, y)

(3.10)

+
∫ t

0

∫ 1

0
Gt−s(x, y)b

(
u(s, y)

)
dy ds,

where dW(s, y) is the Itô integral introduced by Walsh. The function Gt(x, y) is
explicitly known (see [33] or [7]) but here we will use just few properties that we
list below (see the Appendix in [7] for the proof). More precisely, for 0 < ε < t we
have ∫ t

t−ε

∫ 1

0
G2

t−s(x, y) dy ds ≤ Cε1/2.(3.11)

Moreover, for 0 < x1 < · · · < xd < 1 there exists a constant C depending on
mini=1,d(xi − xi−1) such that

Cε1/2 ≥ inf|ξ |=1

∫ t

t−ε

∫ 1

0

(
d∑

i=1

ξiGt−s(xi, y)

)2

dy ds ≥ C−1ε1/2.(3.12)

This is an easy consequence of the inequalities (A2) and (A3) from [7].
In [25], one gives sufficient conditions in order to obtain the absolute continuity

of the law of u(t, x) for (t, x) ∈ (0,∞) × [0,1] and in [7], under appropriate hy-
potheses, one obtains a C∞ density for the law of the vector (u(t, x1), . . . , u(t, xd))

with (t, xi) ∈ (0,∞) × {σ �= 0}, i = 1, . . . , d . The aim of this section is to obtain
the same type of results but under much weaker regularity hypothesis on the co-
efficients. One may first discuss the absolute continuity of the law and further,
under more regularity hypothesis on the coefficients, one may discuss the regular-
ity of the density. Here, in order to avoid technicalities, we restrict ourselves to the
absolute continuity property. We assume global ellipticity, that is,

σ(x) ≥ cσ > 0 for every x ∈ [0,1].(3.13)
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A local ellipticity condition may also be used, but again this gives more techni-
cal complications that we want to avoid. This is somehow a benchmark for the
efficiency of the method developed in the previous sections.

We assume the following regularity hypothesis: σ, b are measurable and
bounded functions and there exists h > 0 such that∣∣σ(x) − σ(y)

∣∣ ≤ ∣∣ln |x − y|∣∣−(2+h)
, for every x, y ∈ [0,1].(3.14)

This hypothesis is not sufficient in order to ensure existence and uniqueness for
the solution to (3.10) (one needs σ and b to be globally Lipschitz continuous
in order to obtain it)—so in the following we will just consider a random field
u(t, x), (t, x) ∈ (0,∞) × [0,1] which is adapted to the filtration generated by W

(see Walsh [33] for precise definitions) and which solves (3.10).

PROPOSITION 3.3. Suppose that (3.13) and (3.14) hold. Then for ev-
ery 0 < x1 < · · · < xd < 1 and T > 0, the law of the random vector U =
(u(T , x1), . . . , u(T , xd)) is absolutely continuous with respect to the Lebesgue
measure.

PROOF. Given 0 < ε < T , we decompose

u(T , x) = uε(T , x) + Iε(T , x) + Jε(T , x)(3.15)

with

uε(T , x) =
∫ 1

0
Gt(x, y)u0(y) dy

+
∫ T

0

∫ 1

0
GT −s(x, y)σ

(
u
(
s ∧ (T − ε), y

))
dW(s, y)

+
∫ T −ε

0

∫ 1

0
GT −s(x, y)b

(
u(s, y)

)
dy ds,

Iε(T , x) =
∫ T

T −ε

∫ 1

0
GT −s(x, y)

(
σ

(
u(s, y)

) − σ
(
u
(
s ∧ (T − ε), y

)))
dW(s, y),

Jε(T , x) =
∫ T

T −ε

∫ 1

0
GT −s(x, y)b

(
u(s, y)

)
dy ds.

Step 1. We prove that

E
∣∣Iε(T , x)

∣∣2 +E
∣∣Jε(T , x)

∣∣2 ≤ C| ln ε|−2(2+h)ε1/2.(3.16)

Let μ be the law of U = (u(T , x1), . . . , u(T , xd)) and let and με be the law of
Uε = (uε(T , x1), . . . , uε(T , xd)). Using the above estimate, one easily obtains

d1(μ,με) ≤ C| ln ε|−(2+h)ε1/4.(3.17)
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Using the isometry property,

E
∣∣Iε(T , x)

∣∣2 =
∫ T

T −ε

∫ 1

0
G2

T −s(x, y)E
(
σ

(
u(s, y) − σ

(
u
(
s ∧ (T − ε), y

)))2)
dy ds.

We consider the set �ε,η(s, y) = {|u(s, y) − u(s ∧ (T − ε), y)| ≤ η} and we split
the above term as E|Iε(T , x)|2 = Aε,η + Bε,η with

Aε,η =
∫ T

T −ε

∫ 1

0
G2

T −s(x, y)E
(
σ

(
u(s, y)

− σ
(
u
(
s ∧ (T − ε), y

)))21�ε,η(s,y)

)
dy ds,

Bε,η =
∫ T

T −ε

∫ 1

0
G2

T −s(x, y)E
(
σ

(
u(s, y)

− σ
(
u
(
s ∧ (T − ε), y

)))21�c
ε,η(s,y)

)
dy ds.

Using (3.14)

Aε,η ≤ C| lnη|−2(2+h)
∫ T

T −ε

∫ 1

0
G2

T −s(x, y) dy ds ≤ C| lnη|−2(2+h)ε1/2

the last inequality being a consequence of (3.11). Moreover, coming back to (3.10),
we have

P
(
�c

ε,η(s, y)
) ≤ 1

η2E
∣∣u(s, y) − u

(
s ∧ (T − ε), y

)∣∣2
≤ C

η2

∫ s

T −ε

∫ 1

0
G2

s−r (y, z) dz dr ≤ Cε1/2

η2

so that

Bε,η ≤ Cε1/2

η2

∫ T

T −ε

∫ 1

0
G2

T −s(x, y) dy ds ≤ Cε

η2 .

Taking η = ε1/16, we obtain

E
∣∣Iε(T , x)

∣∣2 ≤ C
(| ln ε|−2(2+h) + ε1/4)

ε1/2 ≤ C| ln ε|−2(2+h)ε1/2.

We estimate now∣∣Jε(T , x)
∣∣ ≤ ‖b‖∞

∫ T

T −ε

∫ 1

0
GT −s(x, y) dy ds = ‖b‖∞ε

so (3.16) is proved.
Step 2. Conditionally to FT −ε , the random vector Uε = (uε(T , x1), . . . ,

uε(T , xd)) is Gaussian of covariance matrix

�i,j (Uε) =
∫ T

T −ε

∫ 1

0
GT −s(xi, y)GT −s(xj , y)σ 2(

u
(
s ∧ (T − ε), y

))
dy ds,
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for i, j = 1, . . . , d . By (3.12)

C
√

ε ≥ �(Uε) ≥ 1

C

√
ε,

where C is a constant which depends on the upper bounds of σ and on cσ .
We use now the criterion given in Theorem 2.9 . Let pUε be the density of the

law of Uε . Conditionally to FT −ε this is a Gaussian density and the same reasoning
as in the proof of (3.8) gives

‖pUε‖2m,2m,1+ ≤ C
(
ε−1/4)2m ln

1

ε
.

So (2.27) reads

‖pUε‖1/2m
2m,2m,1+d1(μ,με) ≤ Cε−1/4

(
ln

1

ε

)1/2m

× | ln ε|−(2+h)ε1/4

= C
1

(ln 1/ε)2+h−1/2m
≤ C

1

(ln 1/ε)2+1/2m

the last inequality being true as soon as h > 1
m

. �

3.3. Piecewise deterministic Markov processes. In this section, we deal with
a jump type stochastic differential equation which has already been considered in
[4]: it is an example of piecewise deterministic Markov processes. We consider
a Poisson point process p with state space (E,B(E)), where E = R

d × R+. We
refer to [17] for the notation. We denote by N the counting measure associated
to p, that is, N([0, t) × A) = #{0 ≤ s < t;ps ∈ A} for t ≥ 0 and A ∈ B(E). We
assume that the associated intensity measure is given by N̂(dt, dz, du) = dt ×
dz × 1[0,∞)(u) du where (z, u) ∈ E = R

d ×R+. We are interested in the solution
to the d dimensional stochastic equation

Xt = x +
∫ t

0

∫
E

c(z,Xs−)1{u<γ (z,Xs−)}N(ds, dz, du) +
∫ t

0
g(Xs) ds.(3.18)

The coefficients c, g, γ are smooth functions [see the hypothesis (Hi), i = 0,1,2
below]. We remark that the infinitesimal generator of the Markov process Xt is
given by

Lψ(x) = g(x)∇ψ(x) +
∫
Rd

(
ψ

(
x + c(z, x)

) − ψ(x)
)
γ (z, x) dz.

See [14] for the proof of existence and uniqueness of the solution to (3.18). We
will deal with two problems related to this equation.

First, we give sufficient conditions in order that P(Xt(x) ∈ dy) = pt(x, y) dy

where Xt(x) is the solution to (3.18) which starts from x, so X0(x) = x. And we
prove that, if the coefficients of the equation are smooth, then (x, y) �→ pt(x, y) is
smooth. Notice that the methodology from [9, 10, 14] and [15] seems difficult to
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implement in order to prove the regularity with respect to the initial condition x.
So this is the main point here.

The second result concerns convergence. In [4], it is constructed an approxi-
mation scheme which allows one to compute E(f (Xt(x)) using a Monte Carlo
method. And it is proved that the convergence takes place in total variation dis-
tance. We use here the method developed in our paper in order to prove that the
density functions and their derivatives converge as well and to estimate the error.

In [4], one gives a Malliavin-type approach to equation (3.18) which we recall
and which we will heavily use here. We describe first the approximation procedure.
We consider a nonnegative and smooth function ϕ : Rd → R+ such that ϕ(z) = 0
for |z| > 1 and

∫
Rd ϕ(z) dz = 1. And for M ∈ N we denote �M = ϕ ∗ 1BM

with
BM = {z ∈ R

d : |z| < M}. Then �M ∈ C∞
b and we have 1BM−1 ≤ �M ≤ 1BM+1 .

We denote by XM
t the solution of the equation

XM
t = x +

∫ t

0

∫
E

c
(
z,XM

s−
)
1{u<γ (z,XM

s−)}�M(z)N(ds, dz, du)

(3.19)

+
∫ t

0
g
(
XM

s

)
ds.

In the following, we will assume that |γ (z, x)| ≤ γ for some constant γ . Let
NM(ds, dz, du) := 1BM+1(z) × 1[0,2γ ](u)N(ds, dz, du). Since {u < γ (z,XM

s−)}
⊂ {u < 2γ } and �M(z) = 0 for |z| > M + 1, we may replace N by NM in the
above equation, and consequently XM

t is solution to the equation

XM
t = x +

∫ t

0

∫
E

cM

(
z,XM

s−
)
1{u<γ (z,XM

s−)}NM(ds, dz, du) +
∫ t

0
g
(
XM

s

)
ds,

with cM(z, x) = �M(z)c(z, x).

Since the intensity measure N̂M is finite we may represent the random measure NM

by a compound Poisson process. Let λM = 2γ × μ(BM+1) = t−1
E(NM(t,E))

(with μ the Lebesgue measure) and let JM
t a Poisson process of parameter λM .

We denote by T M
k , k ∈ N the jump times of JM

t . We also consider two sequences
of independent random variables (Zk)k∈N in R

d and (Uk)k∈N in R+ which are
independent of JM and such that

Zk ∼ 1

μ(BM+1)
1BM+1(z) dz and Uk ∼ 1

2γ
1[0,2γ ](u) du.

To simplify the notation, we omit the dependence on M for the variables (T M
k ).

Then equation (3.19) may be written as

XM
t = x +

JM
t∑

k=1

cM

(
Zk,X

M
T −

k

)
1(Uk,∞)

(
γ

(
Zk,X

M
T −

k

)) +
∫ t

0
g
(
XM

s

)
ds.(3.20)

Now XM
t is an explicit functional of the Zk, k ∈ N but, because of the indicator

function, this functional is not differentiable. In order to overcome this difficulty,
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following [4], we consider an alternative representation of the law of XM
t . Let

z∗
M ∈ R

d such that |z∗
M | = M + 3. We define

qM(x, z) := ϕ
(
z − z∗

M

)
θM,γ (x) + 1

2γμ(BM+1)
1BM+1(z)γ (z, x), with

(3.21)

θM,γ (x) := 1

μ(BM+1)

∫
{|z|≤M+1}

(
1 − 1

2γ
γ (z, x)

)
dz.

We recall that ϕ is a nonnegative and smooth function with
∫

ϕ = 1 and which is
null outside the unit ball. Moreover, since 0 ≤ γ (z, x) ≤ γ one has 1 ≥ θM,γ (x) ≥
1/2. By construction, the function qM satisfies

∫
qM(x, z) dz = 1. Hence, we can

easily check (see [4] for the proof) that

E
(
f

(
XM

Tk

) | XM
T −

k

= x
) =

∫
Rd

f
(
x + cM(z, x)

)
qM(x, z) dz.(3.22)

From the relation (3.22), we construct a process (X
M

t ), equal in law to (XM
t ), in the

following way. We denote by �t(x) the solution of �t(x) = x + ∫ t
0 g(�s(x)) ds.

We assume that the times Tk, k ∈ N are fixed and we consider a sequence (zk)k∈N
with zk ∈ R

d . Then we define xt , t ≥ 0 by x0 = x and, if xTk
is given, then

xt = �t−Tk
(xTk

) Tk ≤ t < Tk+1,

xTk+1 = xT −
k+1

+ cM(zk+1, xT −
k+1

).

We remark that for Tk ≤ t < Tk+1, xt is a function of z1, . . . , zk . Notice also that
xt solves the equation

xt = x +
JM
t∑

k=1

cM(zk, xT −
k

) +
∫ t

0
g(xs) ds.(3.23)

We consider now a sequence of random variables (Zk), k ∈ N
∗ and we denote

Gk = σ(Tp,p ∈ N) ∨ σ(Zp,p ≤ k) and X
M

t = xt (Z1, . . . ,ZJM
t

). We assume that

the law of Zk+1 conditionally on Gk is given by

P(Zk+1 ∈ dz | Gk) = qM

(
xT −

k+1
(Z1, . . . ,Zk), z

)
dz = qM

(
X

M

T −
k+1

, z
)
dz.

Clearly, X
M

t satisfies the equation

X
M

t = x +
JM
t∑

k=1

cM

(
Zk,X

M

T −
k

) +
∫ t

0
g
(
X

M

s

)
ds.(3.24)

And by (3.22) the law of X
M

t coincides with the law of XM
t . So now on we work

with X
M

t which is a smooth functional of Zk, k ∈ N. But one more difficulty re-

mains: if T1 > t then X
M

t is deterministic, so this functional is not nondegenerated.
In order to bypass this last difficulty, we add a small noise. We define

FM
t (x) = X

M

t (x) + √
T UM × �, 0 ≤ t ≤ T ,
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where X
M

t (x) is the solution to (3.24) which starts from x, � is a standard normal
random variable which is independent of Tk and Zk, k ∈ N and

UM = γ

∫
Bc

M−1

c2(z) dz(3.25)

with γ and c from (3.26) and (3.28) below. The approximation scheme for Xt(x)

is given by FM
t (x).

Let us give our hypotheses.

(H0) We assume that γ, g and c are infinitely differentiable functions in both
variables z and x. Moreover, we assume that g and its derivatives are bounded.

(H1) There exist γ ≥ γ , such that

γ ≥ γ (z, x) ≥ γ ≥ 0, ∀x ∈ R
d(3.26)

and, for every l ∈ N there exists γ l and γ ln,l such that for |α| + |β| ≤ l∣∣∂α
x ∂β

z γ (x, z)
∣∣ ≤ γ l,

∣∣∂α
x ∂β

z lnγ (x, z)
∣∣ ≤ γ ln,l .(3.27)

(H2) Setting, for 0 < a < b and r > 0,

c(z) = a

1 + |z|r , c(z) = b

1 + |z|r ,

we assume that, for every z, x, ξ ∈ R
d ,∥∥∇xc × (I + ∇xc)

−1(z, x)
∥∥ + ∣∣c(z, x)

∣∣ + ∣∣∂β
z ∂α

x c(z, x)
∣∣ ≤ c(z),(3.28)

d∑
j=1

〈
∂zj

c(z, x), ξ
〉2 ≥ c2(z)|ξ |2.(3.29)

REMARK 3.4. The above hypotheses represent a particular case of the hy-
potheses from [4], corresponding to Example 1(ii), page 634 in that paper. More
general hypotheses may be considered (see [4]) but our aim is just to give an ex-
ample in order to illustrate our method, so we restrict ourself to this case.

The basic estimate in our approach is the following.

THEOREM 3.5. Suppose that Hypotheses (Hi), i = 0,1,2 hold. Consider a
function ψ ∈ C∞

b (Rd) such that 1B1 ≤ ψ ≤ 1B2 . Then for every t,R > 0, q ∈ N

and every multi-indexes α,β with |α| + |β| ≤ q , one has

sup
|x|≤R,|y|≤R

∣∣∂α
x E

((
∂βφ

)(
FM

t (x)
)
ψ

(
FM

t (x) − y
)∣∣) ≤ C‖φ‖∞Mdq.(3.30)

Here, C is a constant which depends on t,R, q but not on M . In particular, the
density pM

t (x, y) of the law of FM
t (x) verifies

sup
|x|≤R,|y|≤R

∣∣∂α
x ∂β

y pM
t (x, y)

∣∣ ≤ CMd(q+d).(3.31)
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The above theorem is an extension of estimate (42) in Proposition 4, page 640,
in [4] and the proof is similar, except for one point: here, we consider derivatives
∂α
x also (while in [4] ∂

β
y only appears). So we just sketch the proof and focus on

this supplementary difficulty.
We use an integration by parts formula based on Zk, k ∈ N∗ and on Z0 = �

which is constructed as follows (we follow [4]). Here, J = JM
t and Tk are fixed,

so they appear as constants. A simple functional is a random variable of the form
F = f (Z0,Z1, . . . ,ZJ ) where f is a smooth function. We use the weights πk =
�M(Zk), k ∈N∗, π0 = 1 and the Malliavin derivative is defined as

Dk,j = πk∂Z
j
k

.

For a multi-index α = (α1, . . . , αq) with αi = (ki, ji), one defines the iterated
derivative

Dα = Dαq · · ·Dα1 .

Then one defines the Sobolev norms:

|F |2q = |F |2 + ∑
1≤|α|≤q

|DαF |2, ‖F‖q,p = (
E

(|F |pq
))1/p

.

For F = (F 1, . . . ,F d), the Malliavin covariance matrix is given by

σ
i,j
F = 〈

DFi,DFj 〉 = J∑
k=0

d∑
l=1

Dk,lF
i × Dk,lF

j .

We introduce now the operator L. Notice that the law of Z = (Z0,Z1, . . . ,ZJ )

is absolutely continuous and has the density

pJ,x(z0, z1, . . . , zJ ) = N(z0)

J∏
k=1

qM

(
xTk

(x, z1, . . . , zk−1), zk

)
,(3.32)

where N is the density of the standard normal law (so of �), qM is defined in (3.21)
and xTk

(x, z1, . . . , zk−1) is the solution of (3.23) which starts from x. Then we
define

LF =
J∑

k=0

d∑
j=1

Dk,jDk,jF + Dk,jF × Dk,j lnpJ,x(Zk).

The basic duality relation is the following: for two simple functionals F,G

E(FLG) = E(GLF) = E
(〈DF,DG〉).

Having these objects at hand, one proves the following integration by parts
formula. Let F = (F 1, . . . ,F d) and G be simple functionals and let β =
(β1, . . . , βq) ∈ {1, . . . , d}q be multi-index of length q . Then for every φ ∈ C∞(Rd)

E
(
∂βφ(F )G

) = E
(
φ(F )Hβ(F,G)

)
,(3.33)
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where Hβ(F,G) is a random variable which verifies∥∥Hβ(F,G
∥∥
p ≤ C

∥∥(detσF )−1∥∥3q−1
4p

(3.34)
× (

1 + ‖F‖(6d+1)q
q+1,4p

)(
1 + ‖LF‖q

q−1,4p

)‖G‖q,4p.

This result is proved in Theorem 2 and Theorem 3 in [4]. Before going on, we need
the following estimates.

LEMMA 3.6. For every multi-index β = (β1, . . . , βq) ∈ {1, . . . , d}q and every
p,R,T ≥ 1,

sup
|x|≤R

E

(
sup
t≤T

∣∣∂β
x FM

t (x)
∣∣p
l

)
≤ C(3.35)

and

sup
|x|≤R

∥∥∂β
x lnpJ,x(Z)

∥∥
l,q ≤ CMd.(3.36)

PROOF. The proof of (3.35) is analogous to the proof of Lemmas 7 and 9 in
[4] so we leave it out. Let us prove (3.36). Notice first that

∂β
x lnpJ,x(z0, z1, . . . , zJ ) =

J∑
k=1

∂β
x lnqM

(
xTk

(x, z1, . . . , zk−1), zk

)
.

On the set {qM > 0}, we have

∂β
x lnqM

(
xTk

(x, z1, . . . , zk−1), zk

) = 1BM+1(zk)∂
β
x lnγ

(
xTk

(x, z1, . . . , zk−1), zk

)
+ 1Bc

M+1
(zk)∂

β
x ln θM,γ (xTk

(x, z1, . . . , zk−1).

We will use the following easy inequality: for any function f ∈ Cl
b and every

simple functional F in R
d one has |f (F )|l ≤ C‖f ‖l,∞|F |l where ‖f ‖l,∞ =

supx max|α|≤l |∂αf (x)|. Notice that for every multi-index α one has

∂β
x θM,γ (x) = − 1

2γμ(BM+1)

∫
BM+1

∂β
x γ (x, z) dz

and moreover θM,γ (x) ≥ 1/2. It follows that ‖ ln θM,γ ‖l,∞ ≤ Cγ l/γ . One also has

‖∂β
x lnγ ‖l,∞ ≤ γ l+|β| so finally ‖ lnqM(·, z)‖l,∞ ≤ C with C a constant which

depends on γ , γ l, γ ln l . Then, using the above remark we obtain∣∣∂β
x lnqM

(
xTk

(x,Z1, . . . ,Zk−1),Zk

)∣∣
l ≤ C

∣∣FM
Tk

(x)
∣∣
l .

Consequently,

∣∣∂β
x lnpJ,x(Z1, . . . ,ZJM

t
)
∣∣
l ≤ C

JM
t∑

k=1

∣∣FM
Tk

(x)
∣∣
l ≤ JM

t × sup
s≤t

∣∣FM
s (x)

∣∣
l .
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Since (E(|JM
t |2))1/2 = CMd this, together with (3.35), gives∥∥∂β

x lnpJ,x(Z1, . . . ,ZJM
t

)
∥∥
l,p ≤ CMd. �

We are now ready to proceed to the following.

PROOF OF THEOREM 3.5. In order to avoid notational complications, we just
look to a particular case (the general case is obviously similar). We assume that we
are in the one-dimensional case d = 1 and |α| = |β| = 1. Then we look to

∂α
x E

((
∂βφ

)(
FM

t (x)
)
ψ

(
FM

t (x) − y
)) = ∂xE

(
φ′(FM

t (x)
)
ψ

(
FM

t (x) − y
))

.

Let ν(du) be the standard normal law and z = (z1, . . . , zJ ). Then, with δ = √
T UM

and J = JM
t , we have

∂xE
(
φ′(FM

t (x)
)
ψ

(
FM

t (x) − y
))

= ∂xE

∫
ν(du)

∫
φ′(δu + xt (x, z)

)
ψ

(
δu + xt (x, z) − y

)
pJ,x(z) dz

= I1 + I2 + I3

with

I1 = E

∫
ν(du)

∫
φ′′(δu + xt (x, z)

)
∂xxt (x, z)ψ

(
δu + xt (x, z) − y

)
pJ,x(z) dz,

I2 = E

∫
ν(du)

∫
φ′(δu + xt (x, z)

)
ψ ′(δu + xt (x, z) − y

)
∂xxt (x, z)pJ,x(z) dz,

I3 = E

∫
ν(du)

∫
φ′(δu + xt (x, z)

)
ψ

(
δu + xt (x, z) − y

)
∂xpJ,x(z) dz.

We stress that xt (x, z) is defined as the solution of equation (3.23) and so it depends
on Tk, k ≤ JM

t . This is why E appears in the previous expressions. Let us treat I1.
Using the integration by parts formula (3.33),

I1 = E
(
φ′′(FM

t (x)
)
∂xF

M
t (x)ψ

(
FM

t (x) − y
))

= E
(
φ

(
FM

t (x)
)
H2

(
FM

t (x), ∂xF
M
t (x)ψ

(
FM

t (x) − y
)))

.

We use now some results from [4]: according to Lemma 13 from we have∥∥LFM
t (x)

∥∥
l,p ≤ CM;(3.37)

according to Lemma 9 we have ∥∥FM
t (x)

∥∥
l,p ≤ C;(3.38)

Lemma 16 gives

E
(
(detσFM

t (x))
−p) ≤ C(3.39)
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(notice that in Lemma 16 one asks that 2dp/t < θ with θ defined in Hypothesis
3.2(iii), page 630 in [4]; but as said in Example 1(ii) from the above paper, under
our hypothesis we have θ = ∞ so our inequality holds for every t > 0). Moreover,
taking a look to the proofs of the above results, one can see that the estimates
(3.37), (3.38), (3.39) are uniform with respect to x ∈ BR . Then, using (3.34)

|I1| ≤ C‖φ‖∞M2

and the estimate is uniform with respect to x, y ∈ BR . A similar reasoning gives
the same inequality for I2.

We come now to I3. We write ∂xpJ,x(z) = ∂x lnpJ,x(z) × pJ,x(z) so that

I3 = E
(
φ′(FM

t (x)
)
ψ

(
FM

t (x) − y
)
∂x lnpJ,x(Z1, . . . ,ZJ )

)
= E

(
φ

(
FM

t (x)
)
H1

(
FM

t (x),ψ
(
FM

t (x) − y
)
∂x lnpJ,x(Z1, . . . ,ZJ )

))
.

Using (3.34) and (3.36), we obtain

|I3| ≤ C‖φ‖∞M2. �

We will use the following approximation result.

LEMMA 3.7. Let (H2) holds with r > d . For every Lipschitz continuous func-
tion f with Lipschitz constant less or equal to one, one has∣∣E(

f
(
FM

t (x)
)) −E

(
f

(
Xt(x)

))∣∣ ≤ CM−(r−d),(3.40)

where C is a constant which is independent of M .

PROOF. We have∣∣E(
f

(
FM

t (x)
)) −E

(
f

(
X

M

t (x)
))∣∣ ≤ √

T UME
(|�|) ≤ CM−(r−d/2),

in which we have used (H2) in order to estimate UM in (3.25).
Since the law of X

M

t (x) and XM
t (x) coincide, we use Lemma 4 from [4] and

(H2). So, we obtain∣∣E(f
(
FM

t (x)
) −E

(
f

(
Xt(x)

))∣∣ ≤ CM−(r−d/2) + ∣∣E(
f

(
XM

t (x)
)) −E

(
f

(
Xt(x)

))∣∣
≤ CM−(r−d/2) + Cγ

∫
{|z|>M}

c(z) dz

≤ CM−(r−d). �

We are now able to present our main result.

THEOREM 3.8. Assume Hypotheses (Hi), i = 0,1,2, hold. Let q ∈ N and
p > 1 be such that d + 2d(q + 1 + d/p∗) < r , where r is the constant in (H2).
Then, for every x ∈ R

d and t > 0 the law of Xt(x) is absolutely continuous with
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respect to the Lebesgue measure. We denote by pt(x, y) the density. Moreover,
for every R > 0, (x, y) �→ pt(x, y) belongs to Wq,p(BR × BR) and there exists a
constant C (depending on R) such that, for every M ∈ N and ε > 0∥∥pt − pM

t

∥∥
Wq,p(BR×BR) ≤ C

Mr−d−2d(q+1+d/p∗)−ε
.

REMARK 3.9. If r > 3d + 2d2 then Sobolev embedding theorem ensures that
(x, y) �→ pt(x, y) is a continuous function. Moreover, for every x0 ∈ Rd one may
find y0 ∈ Rd such that pt(x0, y0) > 0 [because pt(x0, y) is a probability density,
so may not be identically null], and consequently one may find δ > 0 such that

inf|y−y0|≤δ
inf|x−x0|≤δ

pt (x, y) > 0.

This property is crucial in order to use Nummelin’s splitting method in order to
prove convergence to equilibrium; see, for example, [20, 31] and [32].

PROOF OF THEOREM 3.8. We will use Theorem 2.11 for the following
measures. Given R > 0 we denote by �R(x) a smooth function which verifies
1BR

≤ �R ≤ 1BR+1 and we define

fR,M(x, y) = �R(x)�R(y)pM
t (x, y) and fR(x, y) = �R(x)�R(y)pt (x, y).

We note that ∥∥pt − pM
t

∥∥
Wq,p(BR×BR) ≤ ‖fR − fR,M‖Wq,p(Rd×Rd ).

We will use Theorem 2.11 to estimate the term in the above right-hand side. Let

μR,M(dx, dy) = fR,M(x, y) dx dy and μR(dx, dy) = fR(x, y) dx dy.

For a Lipschitz continuous function with Lipschitz constant ≤ 1, one has∣∣∣∣∫ gdμR −
∫

gdμM
R

∣∣∣∣
=

∣∣∣∣∫ �R(x)
(
E

(
g
(
x,Xt(x)

)
�R

(
Xt(x)

)) −E
(
g
(
x,XM

t (x)
)
�R

(
XM

t (x)
))

dx
)∣∣∣∣

≤ CM−(r−d),

in which we have used (3.40). Then d1(μR,μM
R ) ≤ CM−(r−d). By (3.31), we also

have

‖fR,M‖2m+q,2m,p ≤ CMd(2m+q+d).

Now, we fix m and we apply Theorem 2.11(i) with

α = α(m) = r − d

d(q + 2m + d)
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and η(M) = Mr−d . So, we obtain that μR is absolutely continuous and if fR

denotes its density, we also get

‖fR − fR,M‖Wq,p(Rd×Rd ) ≤ C
1

M(r−d)θ
with θ = 1

α
∧

(
1 − q + 1 + d/p∗

αm

)
.

Since limm mα(m) = r−d
2d

, we obtain

(r − d)

(
1 − q + 1 + d/p∗

αm

)
→ r − d − 2d(q + 1 + d/p∗)

and

r − d

α
= d(q + 2m + d) → ∞.

So, taking m sufficiently large we obtain, for each ε > 0

‖fR − fR,M‖Wq,p(Rd×Rd ) ≤ C

Mr−d−2d(q+1+d/p∗)−ε
. �

COROLLARY 3.10. Suppose that r ≥ 3d + 2d2 and set k = �(r − 3d −
2d2)/2d�. Then for every R > 0 and every ε > 0 there exists a constant CR,ε ≥ 1
such that for every multi-indexes α,β with |α| + |β| ≤ k

sup
|x|≤R,|y|≤R

∣∣∂α
x ∂β

y pt (x, y) − ∂α
x ∂β

y pM
t (x, y)

∣∣ ≤ CR,ε

Mr−d−2d(q+1+d/p∗)−ε
.

PROOF. We take p > 1 very close to 1 (so that p∗ is very large) and

q = r − d

2d
− 1 − d

p∗
, k =

⌊
q − d

p

⌋
=

⌊
r − 3d − d2

2d

⌋
.

Then Sobolev embedding theorem says that for |α| + |β| ≤ k

sup
|x|≤R,|y|≤R

∣∣∂α
x ∂β

y f (x, y)
∣∣ ≤ CR‖f ‖Wq,p(BR×BR)

and we are done.
�

APPENDIX A: HERMITE EXPANSIONS AND DENSITY ESTIMATES

The aim of this section is to give the proof of Proposition 2.5. We recall that for
μ ∈ M and μn(x) = fn(x) dx,n ∈ N,

πq,k,m,e
(
μ, (μn)n

) =
∞∑

n=0

2n(q+k)βe
(
2nd)

dk(μ,μn) +
∞∑

n=0

1

22nm
‖fn‖2m+q,2m,e.

Our proposal for this section is to prove the following.
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PROPOSITION A.1. Let q, k ∈ N,m ∈ N∗ and e ∈ E . There exists a uni-
versal constant C (depending on q, k,m,d and e) such that for every f,fn ∈
C2m+q(Rd), n ∈ N, one has

‖f ‖q,e ≤ Cπq,k,m,e
(
μ, (μn)n

)
,(A.1)

where μ(x) = f (x) dx and μn(x) = fn(x) dx.

The proof of Proposition A.1 will follow from the next results and properties of
Hermite polynomials, so we postpone it until the end of this section.

We begin with a review of some basic properties of Hermite polynomials and
functions. The Hermite polynomials on R are defined by

Hn(t) = (−1)net2 dn

dt
e−t2

, n = 0,1, . . . .

They are orthogonal with respect to e−t2
dt . We denote the L2 normalized Hermite

functions by

hn(t) = (
2nn!√π

)−1/2
Hn(t)e

−t2/2

and we have∫
R

hn(t)hm(t) dt = (
2nn!√π

)−1
∫
R

Hn(t)Hm(t)e−t2
dt = δn,m.

The Hermite functions form an orthonormal basis in L2(R). For a multi-index
α = (α1, . . . , αd) ∈ N

d we define the d-dimensional Hermite function

Hα(x) :=
d∏

i=1

hαi
(xi), x = (x1, . . . , xd).

The d-dimensional Hermite functions form an orthonormal basis in L2(Rd). This
corresponds to the chaos decomposition in dimension d (but the notation we gave
above is slightly different from the one used in probability; see [24, 27] and [21],
where Hermite polynomials are used. One may come back by a renormalization).
The Hermite functions are the eigenvectors of the Hermite operator D = −� +
|x|2, � denoting the Laplace operator, and one has

DHα = (
2|α| + d

)
Hα with |α| = α1 + · · · + αd.(A.2)

We denote Wn = Span{Hα : |α| = n} and we have L2(Rd) = ⊕∞
n=0 Wn.

For a function � : Rd ×R
d → R and a function f : Rd → R, we use the nota-

tion

� � f (x) =
∫
Rd

�(x, y)f (y) dy.
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We denote by Jn the orthogonal projection on Wn and we have

Jnv(x) = H̄n � v(x) with H̄n(x, y) := ∑
|α|=n

Hα(x)Hα(y).(A.3)

Moreover, we consider a function a :R+ →R whose support is included in [1
4 ,4]

and we define

H̄a
n(x, y) =

∞∑
j=0

a

(
j

4n

)
H̄j (x, y) =

4n+1−1∑
j=4n−1+1

a

(
j

4n

)
H̄j (x, y), x, y ∈ R

d,

the last equality being a consequence of the support property of the function a.
The following estimate is a crucial point in our approach. It has been proved in

[12, 13] and then in [26]. We refer to Corollary 2.3, inequality (2.17), in [26] (we
thank to G. Kerkyacharian who signaled us this paper).

THEOREM A.2. Let a : R+ → R+ be a nonnegative C∞ function with the
support included in [1

4 ,4]. We denote ‖a‖l = ∑l
i=0 supt≥0 |a(i)(t)|. For every

multi-index α and every k ∈ N there exists a constant Ck (depending on k,α, d)

such that for every n ∈ N and every x, y ∈ R
d∣∣∣∣ ∂ |α|

∂xα
H̄a

n(x, y)

∣∣∣∣ ≤ Ck‖a‖k

2n(|α|+d)

(1 + 2n|x − y|)k .(A.4)

Following the ideas in [26], we consider a function a : R+ → R+ of class C∞
b

with the support included in [1
4 ,4] and such that a(t) + a(4t) = 1 for t ∈ [1

4 ,1].
We may construct a in the following way: we take a function a : [0,1] → R+
with a(t) = 0 for t ≤ 1

4 and a(1) = 1. We may choose a such that a(l)(1
4) =

a(l)(1−) = 0 for every l ∈ N. Then we define a(t) = 1 − a( t
4) for t ∈ [1,4] and

a(t) = 0 for t ≥ 4. This is the function we will use in the following. Notice that a

has the property:
∞∑

n=0

a

(
t

4n

)
= 1 ∀t ≥ 1.(A.5)

In order to check the above equality, we fix nt such that 4nt−1 ≤ t < 4nt and we
notice that a( t

4n ) = 0 if n /∈ {nt − 1, nt }. So
∑∞

n=0 a( t
4n ) = a(4s) + a(s) = 1 with

s = t/4nt ∈ [1
4 ,1]. In the following, we fix a function a and the constants in our

estimates will depend on ‖a‖l for some fixed l. Using this function, we obtain the
following representation formula:

PROPOSITION A.3. For every f ∈ L2(Rd),

f =
∞∑

n=0

H̄a
n � f

the series being convergent in L2(Rd).
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PROOF. We fix N and we denote

Sa
N =

N∑
n=1

H̄a
n �f, SN =

4N∑
j=1

H̄j �f and Ra
N =

4N+1∑
j=4N+1

(H̄j �f )a

(
j

4N+1

)
.

Let j ≤ 4N+1. For n ≥ N + 2, one has a(
j
4n ) = 0. So using (A.5), we obtain∑N

n=1 a(
j
4n ) = ∑∞

n=1 a(
j
4n ) − a(

j

4N+1 ) = 1 − a(
j

4N+1 ). And for j ≤ 4N one has

a(
j

4N+1 ) = 0. It follows that

Sa
N =

N∑
n=1

∞∑
j=0

a

(
j

4n

)
H̄j � f =

N∑
n=1

4N+1∑
j=0

a

(
j

4n

)
H̄j � f

=
4N+1∑
j=0

(H̄j � f )

N∑
n=1

a

(
j

4n

)

=
4N+1∑
j=0

H̄j � f −
4N+1∑

j=4N+1

(H̄j � f )a

(
j

4N+1

)
= SN+1 − Ra

N.

One has SN → f in L2 and ‖Ra
N‖2 ≤ ‖a‖∞

∑4N+1

j=4N+1 ‖H̄j �f ‖2 → 0 so the proof
is completed. �

We will need the following lemma concerning properties of the Luxembourg
norms.

LEMMA A.4. Let ρ ≥ 0 be a measurable function. Then for every measurable
function f one has

‖ρ ∗ f ‖e ≤ ‖ρ‖1‖f ‖e.(A.6)

PROOF. Let c = m‖f ‖e with m = ‖ρ‖1 = ∫
ρ(x − y)dy. Since e is convex,

we obtain∫
e
(

1

c
(ρ ∗ f )(x)

)
dx =

∫
e
(∫

ρ(x − y)

m
× m

c
f (y)dy

)
dx

≤
∫

dx

∫
ρ(x − y)

m
× e

(
m

c
f (y)

)
dy

=
∫

e
(

m

c
f (y)

)∫
ρ(x − y)

m
dx dy =

∫
e
(

m

c
f (y)

)
dy

=
∫

e
(

1

‖f ‖e
f (y)

)
dy ≤ 1

and this means that ‖ρ ∗ f ‖e ≤ c = ‖ρ‖1‖f ‖e. �
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LEMMA A.5. Let e ∈ E and ρn,p(z) = (1+2n|z|)−p , with p > d . There exists
a constant Cp depending on p and d such that

‖ρn,p‖e ≤ 1

e−1((1/Cp)2nd)
.(A.7)

In particular, for p = d + 1 there exists a constant C depending on d and on the
doubling constant of e such that [with φe defined in (2.5)]

‖ρn,d+1‖e ≤ C

e−1(2nd)
= C2−ndβe

(
2nd) = Cφe

(
1

2nd

)
.(A.8)

PROOF. Let c > 0. By passing in polar coordinates and by using the change
of variable s = 2nr , we obtain∫

Rd
e
(

1

c
ρn,p(z)

)
dz = Ad

∫ ∞
0

rd−1e
(

1

c
× 1

(1 + 2nr)p

)
dr

= 2−ndAd

∫ ∞
0

sd−1e
(

1

c
× 1

(1 + s)p

)
ds,

where Ad is the surface of the unit sphere in R
d . Using the property (2.1)(ii), we

upper bound the above term by

2−nde
(

1

c

)
Ad

∫ ∞
0

sd−1 × 1

(1 + s)p
ds = Cp2−nde

(
1

c

)
.

In order to prove that ‖ρn,p‖e ≤ c we have to check that
∫
Rd e(1

c
ρn,p(z)) dz ≤ 1.

In view of the above inequalities, it suffices that e(1
c
) ≤ 2nd/Cp , that is, c ≥

1/e−1(2nd/Cp). �

PROPOSITION A.6. Let e ∈ E and e∗ be the conjugate of e. Set α as a multi-
index.

(i) There exists a universal constant C (depending on α,d and e) such that

(a)
∥∥∂αH̄a

n � f
∥∥

e ≤ C‖a‖d+1 × 2n|α|‖f ‖e,
(A.9)

(b)
∥∥∂αH̄a

n � f
∥∥∞ ≤ C‖a‖d+1 × 2n|α|βe

(
2nd)‖f ‖e∗

(ii) Let m ∈ N∗. There exists a universal constant C (depending on α,m,d

and e) such that

∥∥H̄a
n � ∂αf

∥∥
e ≤ C‖a‖2

d+1

4nm
‖f ‖2m+|α|,2m,e.(A.10)

(iii) Let k ∈ N. There exists a universal constant C (depending on α, k, d and e)
such that ∥∥H̄a

n � ∂α(f − g)
∥∥

e ≤ C‖a‖d+1 × 2n(|α|+k)β
(
2nd)

dk(μf ,μg).(A.11)
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PROOF. (i) By using (A.4) with k = d + 1, we get∣∣∂αH̄a
n � f (x)

∣∣ ≤ C2n(|α|+d)‖a‖d+1

∫
ρn,d+1(x − y)

∣∣f (y)
∣∣dy.(A.12)

Since e is symmetric, that is, e(|x|) = e(x), one has ‖f ‖e = ‖|f |‖e. Moreover, if
0 ≤ f (x) ≤ g(x) then ‖f ‖e ≤ ‖g‖e. Using these properties in addition to (A.12)
and (A.6), we obtain∥∥∂αH̄a

n � f
∥∥

e = ∥∥∣∣∂αH̄a
n � f

∣∣∥∥
e ≤ C2n(|α|+d)‖a‖d+1

∥∥ρn,d+1 ∗ |f |∥∥e

≤ C2n(|α|+d)‖a‖d+1‖ρn,d+1‖1
∥∥|f |∥∥e.

Using (A.8) with e(x) = |x|, we obtain ‖ρn,d+1‖1 ≤ C/2nd . So we conclude that∥∥∂αH̄a
n � f

∥∥
e ≤ C‖a‖d+12n|α|∥∥|f |∥∥e

so (a) is proved. Again by (A.12)∣∣∂αH̄a
n � f (x)

∣∣ ≤ C‖a‖d+12n(|α|+d)
∫

ρn,d+1(x − y)
∣∣f (y)

∣∣dy

≤ C‖a‖d+12n(|α|+d)‖ρn,d+1‖e‖f ‖e∗,

the second inequality being a consequence of the Hölder inequality (2.6). Using
(A.8), (b) is proved as well.

(ii) We define the functions am(t) = a(t)t−m. Since a(t) = 0 for t ≤ 1
4 and for

t ≥ 4, we have ‖am‖d+1 ≤ Cm,d‖a‖d+1. Moreover, DH̄j � v = (2j + d)H̄j � v so
we obtain

H̄j � v = 1

2j
(D − d)H̄j � v.

We denote Lm,α = (D − d)m∂α and we notice that

Lm,α = ∑
|β|≤2m

∑
|γ |≤2m+|α|

cβ,γ xβ∂γ ,

where cβ,γ are universal constants. It follows that there exists some universal con-
stant C such that

‖Lm,αf ‖e ≤ C‖f ‖2m+|α|,2m,e.(A.13)

We take now v ∈ Le∗ and we write〈
v, H̄a

n � (∂αf )
〉 = 〈

H̄a
n � v, ∂αf

〉 = ∞∑
j=0

a

(
j

4n

)
〈H̄j � v, ∂αf 〉

=
∞∑

j=1

a

(
j

4n

)
1

(2j)m

〈
(D − d)mH̄j � v, ∂αf

〉



1152 V. BALLY AND L. CARAMELLINO

= 1

2m
× 1

4nm

∞∑
j=1

am

(
j

4n

)
〈H̄j � v,Lm,αf 〉

= 1

2m
× 1

4nm

〈
H̄am

n � v,Lm,αf
〉
.

By using the decomposition in Proposition A.3, we write Lm,αf = ∑∞
j=0 H̄a

j �
Lm,αf . For |j − n| ≥ 2, by the support property of a, one has a( k

4n )a( k
4j ) = 0 for

every k ∈ N. One also has 〈Hα � v,Hβ � Lm,αf 〉 = 0 if |α| �= |β|. Then a straight-
forward decomposition gives 〈H̄am

n � v, H̄a
j � Lm,αf 〉 = 0. So using Hölder’s in-

equality

∣∣〈v, H̄a
n � (∂αf )

〉∣∣ ≤ 1

2m
× 1

4nm

n+1∑
j=n−1

∣∣〈H̄am
n � v, H̄a

j � Lm,αf
〉∣∣

≤ 1

2m
× 1

4nm

n+1∑
j=n−1

∥∥H̄am
n � v

∥∥
e∗

∥∥H̄a
j � Lm,αf

∥∥
e.

Using point (i) (a) with α equal to the void index, we obtain ‖H̄am
n � v‖e∗ ≤

C‖am‖d+1‖v‖e∗ ≤ C × Cm,d‖a‖d+1‖v‖e∗ . Moreover, we have∥∥H̄a
j � Lm,αf

∥∥
e ≤ C‖a‖d+1‖Lm,αf ‖e ≤ C‖a‖d+1‖f ‖2m+|α|,2m,e,

the last inequality being a consequence of (A.13). We obtain

∣∣〈v, H̄a
n � (∂αf )

〉∣∣ ≤ C‖a‖2
d+1

4nm
‖v‖e∗‖f ‖2m+|α|,2m,e

and, since Le is reflexive, (A.10) is proved.
(iii) We write∣∣〈v, H̄a

n � (
∂α(f − g)

)〉∣∣ = ∣∣〈H̄a
n � v, ∂α(f − g)

〉∣∣ = ∣∣〈∂αH̄a
n � v,f − g)

〉∣∣
=

∣∣∣∣∫ ∂αH̄a
n � vdμf −

∫
∂αH̄a

n � vdμg

∣∣∣∣.
We use the definition of dk and (A.9)(b) and we obtain∣∣∣∣∫ ∂αH̄a

n � vdμf −
∫

∂αH̄a
n � vdμg

∣∣∣∣
≤ ∥∥∂αH̄a

n � v
∥∥
k,∞dk(μf ,μg)

≤ ∥∥H̄a
n � v

∥∥
k+|α|,∞dk(μf ,μg)

≤ C‖a‖d+12n(k+|α|)βe
(
2nd)‖v‖e∗dk(μf ,μg)

which implies (A.11). �
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We are now ready for the following.

PROOF OF PROPOSITION A.1. Let α with |α| ≤ q . Using Proposition A.3,

∂αf =
∞∑

n=1

H̄a
n � ∂αf =

∞∑
n=1

H̄a
n � ∂α(f − fn) +

∞∑
n=1

H̄a
n � ∂αfn

and using (A.11) and (A.10)

‖∂αf ‖e ≤
∞∑

n=1

∥∥H̄a
n � ∂α(f − fn)

∥∥
e +

∞∑
n=1

∥∥H̄a
n � ∂αfn

∥∥
e

≤ C

∞∑
n=1

2n(|α|+k)βe
(
2nd)

dk(μf ,μfn) + C

∞∑
n=1

1

22nm
‖fn‖2m+|α|,2m,e

so (A.1) is proved. �

APPENDIX B: INTERPOLATION SPACES

In this section, we prove that, in the case of the Lp norms, (i.e., e = ep) the
space Sq,k,m,ep is an interpolation space between Wk,∞∗ (the dual of Wk,∞) and
Wq,2m,p . A similar interpretation holds for elog but this case is more exotic and we
do not enter into details here.

To begin, we recall the framework of interpolation spaces (for details, see e.g.
[29]). We are given two Banach spaces (X,‖ ·‖X) and (Y,‖ ·‖Y ) with X ⊂ Y (with
continuous embedding). We denote L(X,X) the space of the linear bounded op-
erators from X into itself and we denote by ‖L‖X,X the operator norm. A Banach
space (W,‖ · ‖W) such that X ⊂ W ⊂ Y is called an interpolation space for X and
Y if L(X,X) ∩ L(Y,Y ) ⊂ L(W,W). Let γ ∈ (0,1). If there exists a constant C

such that ‖L‖W,W ≤ C‖L‖γ
X,X‖L‖1−γ

Y,Y for every L ∈ L(X,X) ∩ L(Y,Y ) then W

is an interpolation space of order γ . And if one may take C = 1, then W is an exact
interpolation space of order γ . There are several methods for constructing interpo-
lation spaces. We focus here on the so called K-method. For y ∈ Y and t > 0, one
defines K(y, t) = infx∈X(‖y − x‖Y + t‖x‖X) and

‖y‖γ =
∫ ∞

0
t−γ K(y, t)

dt

t
, (X,Y )γ = {

y ∈ Y : ‖y‖γ < ∞}
.

Then one proves that (X,Y )γ is an exact interpolation space of order γ . One may
also use the following discrete variant of the above norm. Let γ ≥ 0. For y ∈ Y

and for a sequence xn ∈ X,n ∈ N, we define

πγ

(
y, (xn)n

) =
∞∑

n=1

2nγ ‖y − xn‖Y + 1

2n
‖xn‖X(B.1)
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and

ρX,Y
γ (y) = infπγ

(
y, (xn)n

)
with the infimum taken over all the sequences xn ∈ X,n ∈ N. Then a standard
result in interpolation theory (the proof is elementary) says that there exists a con-
stant C > 0 such that

1

C
‖y‖γ ≤ ρX,Y

γ (y) ≤ C‖y‖γ(B.2)

so that

Sγ (X,Y ) =: {
y : ρX,Y

γ (y) < ∞} = (X,Y )γ .

Take now q, k ∈N,m ∈ N∗ and p > 1 and set Y = Wk,∞∗ and X = Wq,2m,p . Then
with the notation from (2.17) and (2.18)

ρq,k,m,ep(μ) = ρX,Y
γ (μ) and

(B.3)

Sq,k,m,ep = Sγ (X,Y ), with γ = q + k + d/p∗
2m

.

Notice that in the definition of Sq,k,m,ep one does not use πγ (y, (xn)n) but

π
(m)
γ (y, (xn)n) defined by

π(m)
γ

(
y, (xn)n

) =
∞∑

n=1

2n(q+k+d/p∗)‖y − xn‖Y + 1

22mn
‖xn‖X

=
∞∑

n=1

22mnγ ‖y − xn‖Y + 1

22mn
‖xn‖X

with γ = q+k+d/p∗
2m

. The fact that one uses 22mn instead of 2n has no impact except
that it changes the constants in (B.2). So the spaces are the same.

We turn now to a different point. For p > 1 and 0 < s < 1, we denote by Bs,p

the Besov space and by ‖f ‖Bs,p the Besov norm (see Triebel [30] for definitions
and notation). Our aim is to give a criterion which guarantees that a function f

belongs to Bs,p . We will use the classical equality (W 1,p,Lp)s = Bs,p .

LEMMA B.1. Let p > 1 and 0 < s′ < s < 1. Consider a function φ ∈ C∞ such
that

∫
Rd φ(x) dx = 1 and let φδ(x) = 1

δd φ(x
δ
) and φi

δ(x) = xiφδ(x). We assume
that f ∈ Lp verifies the following hypothesis: for every i = 1, . . . , d

(i) lim sup
δ→0

δ1−s
∥∥∂i(f ∗ φδ)

∥∥
p < ∞,

(B.4)
(ii) lim sup

δ→0
δ−s

∥∥∂i

(
f ∗ φi

δ

)∥∥
p < ∞.

Then f ∈ Bs′,p for every s′ < s.
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PROOF. Let f ∈ C1. We use a Taylor expansion of order one and we obtain

f (x) − f ∗ φε(x) =
∫ (

f (x) − f (x − y)
)
φε(y) dy

=
∫ 1

0
dλ

∫ 〈∇f (x − λy), y
〉
φε(y) dy

=
∫ 1

0
dλ

∫ 〈∇f (x − z), z
〉1
λ
φε

(
z

λ

)
dz

λd

=
∫ 1

0
dλ

∫ 〈∇f (x − z), z
〉
φελ(z)

dz

λ

=
d∑

i=1

∫ 1

0
∂i

(
f ∗ φi

ελ

)
(x)

dλ

λ
.

It follows that

‖f − f ∗ φε‖p ≤
d∑

i=1

∫ 1

0

∥∥∂i

(
f ∗ φi

ελ

)∥∥
p

dλ

λ
≤ dεs

∫ 1

0

dλ

λ1−s
= Cεs.

We also have ‖f ∗ φε‖W 1,p ≤ C(1 + ‖f ‖∞)ε−(1−s) so that

K(f, ε) ≤ ‖f − f ∗ φε‖p + ε‖f ∗ φε‖W 1,p ≤ Cεs.

We conclude that for s′ < s we have∫ 1

0

1

εs′ K(f, ε)
dε

ε
≤ C

∫ 1

0

εs

εs′
dε

ε
< ∞

so f ∈ (W 1,p,Lp)s′ = Bs′,p . �

APPENDIX C: SUPER KERNELS

A super kernel φ :Rd →R is a function which belongs to the Schwartz space S
(infinitely differentiable functions which decrease in a polynomial way to infinity),∫

φ(x) dx = 1, and such that for every nonnull multi-index α = (α1, . . . , αd) ∈ N
d

one has ∫
yαφ(y) dy = 0, yα =

d∏
i=1

y
αi

i .(C.1)

See [18], Section 3, Remark 1 for the construction of a super kernel. The corre-
sponding φδ , δ ∈ (0,1), is defined by

φδ(y) = 1

δd
φ

(
y

δ

)
.
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For a function f , we denote fδ = f ∗ φδ . We will work with the norms
‖f ‖k,∞,‖f ‖k,1 and ‖f ‖q,l,e defined in (2.8) and in (2.9). And we have the fol-
lowing.

LEMMA C.1. Let k, q ∈N. There exists a universal constant Ck,q (depending
on k + q) such that for every f ∈ Wq,1 one has

‖f − fδ‖W
k,∞∗ ≤ Ck,q‖f ‖q,1δ

q+k.(C.2)

PROOF. Since C∞
b ⊂ Wq,1 is dense, we may suppose without loss of general-

ity that f ∈ C∞
b . Using Taylor expansion of order q + k,

f (x) − fδ(x) =
∫ (

f (x) − f (y)
)
φδ(x − y)dy

=
∫

I (x, y)φδ(x − y)dy +
∫

R(x, y)φδ(x − y)dy

with

I (x, y) =
q+k−1∑

i=1

1

i!
∑
|α|=i

∂αf (x)(x − y)α,

R(x, y) = 1

(q + k)!
∑

|α|=q+k

∫ 1

0
∂αf

(
x + λ(y − x)

)
(x − y)αλk+q dλ.

Using (C.1), we obtain
∫

I (x, y)φδ(x − y)dy = 0 and by a change of variable we
get ∫

R(x, y)φδ(x − y)dy

= 1

(q + k)!
∑

|α|=q+k

∫ 1

0

∫
dzφδ(z)∂

αf (x + λz)zαλk+q dλ.

We consider now g ∈ Wk,∞ and we write∫ (
f (x) − fδ(x)

)
g(x) dx

= 1

(q + k)!
∑

|α|=q+k

∫ 1

0
λk+q dλ

∫
dzφδ(z)z

α
∫

∂αf (x + λz)g(x) dx.

Let us denote fa(x) = f (x + a). We have (∂αf )(x + a) = (∂αfa)(x). Let α with
|α| = ∑d

i=1 αi = q + k. We split α into two multi-indexes β and γ such that |β| =
k, |γ | = q and ∂β ∂γ = ∂α (this may be done in several ways but any one of them
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is good for us). Then using integration by parts∣∣∣∣∫ ∂αf (x + λz)g(x) dx

∣∣∣∣ =
∣∣∣∣∫ ∂β ∂γ fλz(x)g(x) dx

∣∣∣∣
≤

∫ ∣∣∂γ fλz(x)
∣∣∣∣∂βg(x)

∣∣dx ≤ ‖g‖k,∞
∫ ∣∣∂γ fλz(x)

∣∣dx

= ‖g‖k,∞
∫ ∣∣∂γ f (x)

∣∣dx ≤ ‖g‖k,∞‖f ‖q,1.

For a multi-index with |α| = q + k, we have∫ ∣∣φδ(z)
∣∣∣∣zα

∣∣dz ≤ δq+k
∫ ∣∣φ(z)

∣∣|z|q+k dz

so the proof is completed. �

REMARK C.2. It is clear from the above proof that if q +k is fixed then we do
not need to work with a “super” kernel φ verifying (C.1) for every α but only with
a kernel φq+k of order q + k, that is verifying (C.1) for |α| ≤ q + k. The reason to
use super kernels (and not a kernel of a given fixed order) is just to avoid to precise
each time which is the order of the kernel we need. And this simplifies the already
heavy notation.

LEMMA C.3. (i) Let k, q ∈ N, l > d and e ∈ E . There exists a universal con-
stant Ck,q (depending on q + k) such that for every f ∈ Wq,l,e one has

‖f − fδ‖W
k,∞∗ ≤ Ck,q‖f ‖q,l,eδ

q+k.(C.3)

(ii) Let l > d,n, q ∈ N, with n ≥ q , and e ∈ E . There exists a universal constant
Cl,q (depending on l, q, d) such that

‖fδ‖n,l,e ≤ Cl,q‖f ‖q,l,eδ
−(n−q).(C.4)

PROOF. (i) Let γ with |γ | ≤ q .We write ∂γ f (x) = ul(x)vγ (x) with ul(x) =
(1 + |x|)−l and vγ (x) = (1 + |x|)l∂γ f (x). Using Hölder inequality,∫ ∣∣∂γ f (x)

∣∣dx ≤ C‖ul‖e∗‖vγ ‖e ≤ C‖ul‖e∗‖f ‖q,l,e.

By Remark 2.1, ‖ul‖e∗ < ∞. This gives ‖f ‖q,1 ≤ C‖f ‖q,l,e and (C.3) follows
from (C.2).

(ii) Let α be a multi-index with |α| = n and let β,γ be a splitting of α with
|β| = q and |γ | = n − q . Using the triangle inequality, for every y we have 1 +
|x| ≤ (1 + |y|)(1 + |x − y|). Then

u(x) := (
1 + |x|)l∣∣∂αfδ(x)

∣∣ = (
1 + |x|)l∣∣∂βf ∗ ∂γ φδ(x)

∣∣
≤

∫ (
1 + |x|)l∣∣∂βf (y)

∣∣∣∣∂γ φδ(x − y)
∣∣dy ≤ α ∗ β(x)
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with

α(y) = (
1 + |y|)l∣∣∂βf (y)

∣∣, β(z) = (
1 + |z|)l∣∣∂γ φδ(z)

∣∣.
Using (A.6), we obtain

‖u‖e ≤ ‖α ∗ β‖e ≤ ‖β‖1‖α‖e ≤ C

δn−q
‖α‖e = C

δn−q
‖fβ,l‖e. �
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