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INVARIANCE PRINCIPLE FOR VARIABLE SPEED
RANDOM WALKS ON TREES

BY SIVA ATHREYA∗,1, WOLFGANG LÖHR† AND ANITA WINTER†

Indian Statistical Institute∗ and University of Duisburg-Essen†

We consider stochastic processes on complete, locally compact tree-like
metric spaces (T , r) on their “natural scale” with boundedly finite speed mea-
sure ν. Given a triple (T , r, ν) such a speed-ν motion on (T , r) can be char-
acterized as the unique strong Markov process which if restricted to compact
subtrees satisfies for all x, y ∈ T and all positive, bounded measurable f ,

Ex
[∫ τy

0
dsf (Xs)

]
= 2

∫
T

ν(dz)r
(
y, c(x, y, z)

)
f (z) <∞,(0.1)

where c(x, y, z) denotes the branch point generated by x, y, z. If (T , r) is a
discrete tree, X is a continuous time nearest neighbor random walk which
jumps from v to v′ ∼ v at rate 1

2 · (ν({v}) · r(v, v′))−1. If (T , r) is path-
connected, X has continuous paths and equals the ν-Brownian motion which
was recently constructed in [Trans. Amer. Math. Soc. 365 (2013) 3115–3150].
In this paper, we show that speed-νn motions on (Tn, rn) converge weakly
in path space to the speed-ν motion on (T , r) provided that the underlying
triples of metric measure spaces converge in the Gromov–Hausdorff-vague
topology introduced in [Stochastic Process. Appl. 126 (2016) 2527–2553].

1. Introduction and main result (Theorem 1). Fifty years ago in [31],
Markov processes were considered which have in common that their state spaces
are closed subsets of the real line and that their random trajectories “do not jump
over points.” When put in their “natural scale” these processes are determined
by their “speed measure.” Stone argues that in some sense the processes depend
continuously on the speed measures. The most classical example is the symmetric
simple random walk on Z which, after a suitable rescaling, converges to standard
Brownian motion. If you rescale edge lengths by a factor 1√

n
and speed up time

by a factor n, then you might think of the rescaled random walk as such a process
with speed measure 1√

n
q(
√

n·), where q denotes the counting measure on Z, and
of the standard Brownian motion as such a process whose speed measure equals
the Lebesgue measure on R.
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In the present paper, we want to extend this result from R-valued Markov pro-
cesses to Markov processes which take values in tree-like metric spaces. Before we
state our main result precisely, we do the preliminary work and define the space
of rooted metric boundedly finite measure trees equipped with pointed Gromov-
vague topology and give our notion of convergence in path space.

DEFINITION 1.1 (Rooted metric boundedly finite measure trees). (i) A point-
ed Heine–Borel space (X, r, ρ) consists of a Heine–Borel space2 (X, r) and a dis-
tinguished point ρ ∈X.

(ii) A rooted metric tree is a pointed Heine–Borel space (T , r, ρ), which is both
0-hyperbolic, or equivalently, satisfies the four point condition, that is,

r(x1, x2)+ r(x3, x4)
(1.1)

≤max
{
r(x1, x3)+ r(x2, x4), r(x1, x4)+ r(x2, x3)

}
,

holds for all x1, x2, x3, x4 ∈ T , and fine, that is, for all x1, x2, x3 ∈ T there is a
(necessarily unique) point c(x1, x2, x3) ∈ T , such that for i, j ∈ {1,2,3}, i 	= j ,

r
(
xi, c(x1, x2, x3)

)+ r
(
xj , c(x1, x2, x3)

)= r(xi, xj ).(1.2)

The point c(x1, x2, x3) is referred to as branch point, and the distinguished point
ρ ∈ T as the root.

(iii) In a rooted metric tree (T , r, ρ), we define for a, b ∈ T the intervals

[a, b] := {
x ∈ T : r(a, x)+ r(x, b)= r(a, b)

}
,(1.3)

(a, b) := [a, b] \ {a, b}, [a, b) := [a, b] \ {b} and (a, b] := [a, b] \ {a}. We say that
x, y ∈ T are connected by an edge, in symbols x ∼T y or simply x ∼ y, iff

x 	= y and [x, y] = {x, y}.(1.4)

If x ∼ y and x ∈ [ρ,y], we call the pair (x, y) an oriented edge of length r(x, y).
(iv) A rooted metric boundedly finite measure tree (T , r, ρ, ν) consists of a

rooted metric tree (T , r, ρ) and a measure ν on (T ,B(T )) which is finite on
bounded sets and has full support, supp(ν)= T .

REMARK 1.2 (R-trees versus trees with edges). A metric tree is connected
(i.e., is an R-tree) if and only if it has no edges. Due to separability, there can be
only countably many edges.

We will establish a one-to-one correspondence between rooted metric bound-
edly finite measure trees (T , r, ρ, ν) and strong Markov processes X = (Xt)t≥0
with values in (T , r) starting at ρ. When (T , r) is compact such a process can

2Recall that a Heine–Borel space is a metric space in which every bounded closed subset is com-
pact. Note that every Heine–Borel space is complete, separable and locally compact.
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be characterized by the occupation time formula given in (0.1) (see Proposi-
tion 5.1). For general rooted metric boundedly finite measure trees, the correspond-
ing Markov process is associated with a regular Dirichlet form (see Definition 2.7).
We will refer to this Markov process as speed-ν motion on (T , r) or variable speed
motion associated to ν on (T , r). If (T , r) is path-connected, then X has contin-
uous paths and equals the so-called ν-Brownian motion on (T , r), which was re-
cently constructed in [5]. On the other hand, if (T , r) is discrete, X is a continuous
time nearest neighbor Markov chain which jumps from v to v′ ∼ v at rate

γvv′ := 1
2 ·
(
ν
({v}) · r(v, v′

))−1(1.5)

(see Lemma 2.11).
The invariance principle which we are going to state says that a sequence of

variable speed motions converges in path space to a limiting variable speed motion
whenever the underlying metric measure trees converge in the pointed Gromov–
Hausdorff-vague topology which was recently introduced in [6]. In particular,
it was shown that convergence in pointed Gromov–Hausdorff-vague topology is
equivalent to convergence in pointed Gromov-vague topology together with the
uniform local lower mass-bound property, that is, for each δ,R > 0,

lim inf
n→∞ inf

x∈Bn(ρn,R)
νn

(
Bn(x, δ)

)
> 0(1.6)

(see Proposition 3.8). Here, Bn(x,R)= {y ∈ Tn : rn(x, y) < R} is the ball around
x with radius R in the metric space (Tn, rn). In the Introduction, we recall only
the definition of Gromov-vague topology. For a more elaborate discussion of the
topology, we refer the reader to Section 3.

We call two rooted metric measure trees (T , r, ρ, ν) and (T ′, r ′, ρ′, ν′) equiva-
lent iff there is an isometry ϕ between (T , r) and (T ′, r ′) such that ϕ(ρ)= ρ′ and
ν ◦ ϕ−1 = ν′. Denote

T := {equivalence classes of rooted metric boundedly finite measure trees}.(1.7)

Let X := (T , r, ρ, ν), X 1 := (T1, r1, ρ1, ν),X2 := (T2, r2, ρ2, ν), . . . be in T. We
say that (Xn)n∈N converges to X in pointed Gromov-vague topology iff there are
a pointed metric space (E,dE,ρE) and isometries ϕn:Tn →E with ϕn(ρn)= ρE ,
for all n ∈ N, as well as an isometry ϕ:T → E with ϕ(ρ) = ρE such that the
sequence of image measures (ϕn∗νn)�B(ρE,R) restricted to the ball of radius R

around the root converges weakly for all but countably many R > 0.
Before we are in a position to state our main scaling result, notice that the ap-

proximating Markov processes may live on different spaces. We therefore agree
on the following.

DEFINITION 1.3 (A notion of convergence in path space). For every n ∈N ∪
{∞}, let Xn be a càdlàg process with values in a metric space (Tn, rn).
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(i) We say that (Xn)n∈N converges to X∞ weakly in path space (resp., f.d.d.)
if there exists a metric space (E,dE) and isometric embeddings φn:Tn → E, n ∈
N∪ {∞}, such that (φn ◦Xn)n∈N converges to φ∞ ◦X∞ weakly in Skorohod path
space (resp., f.d.d.).

(ii) We say that (Xn)n∈N converges to X∞ in the one-point compactification
weakly in path-space (resp., f.d.d.) if there exists a locally compact space (E,dE)

and embeddings as in (i) such that we have weak path-space (resp., f.d.d.) conver-
gence in the one-point compactification E ∪ {∞}, where the processes are defined
to take the value ∞ after their lifetimes.

To be in a position to state our invariance principle, we recall the notion of
the one-point compactification Ê :=E ∪ {∞} of a separable, locally compact (but
non-compact) metric space E, and the life time ζ of a E-valued strong Markov
process, that is,

ζ := inf{t ≥ 0 :Xt =∞}.(1.8)

Our main result is the following.

THEOREM 1 (Invariance principle). Assume that X = (T , r, ρ, ν), X 1 =
(T1, r1, ρ1, ν1), X 2 = (T2, r2, ρ2, ν2), . . . are in T. Let X be the speed-ν motion on
(T , r) starting in ρ, and for all n ∈ N, let Xn be the speed-νn motion on (Tn, rn)

started in ρn. Assume that the following conditions hold:

(A0) For all R > 0,

lim sup
n→∞

sup
{
rn(x, z) : x ∈ Bn(ρn,R), z ∈ Tn, x ∼ z

}
<∞.(1.9)

(A1) The sequence (Xn)n∈N converges to X pointed Gromov-vaguely.
(A2) The uniform local lower mass-bound property (1.6) holds.

Then the following hold:

(i) Xn converges in the one-point compactification weakly in path-space to a
process Y , such that Y stopped at infinity has the same distribution as the speed-ν
motion X. In particular, if X is conservative (i.e., does not hit infinity), then Xn

converges weakly in path-space to X.
(ii) If supn∈N diam(Tn, rn) < ∞, where diam is the diameter, and we as-

sume (A1) but not (A2), then Xn converges f.d.d. to X.

REMARK 1.4 (Entrance law). Let X := (T , r, ρ, ν), X 1 := (T1, r1, ρ1, ν1),
X 2 := (T2, r2, ρ2, ν2), . . . in T be such that Xn −→

n→∞X Gromov–Hausdorff-vaguely.

The statement of Theorem 1(i) reflects the fact that it is possible that the approx-
imating speed-νn motions on (Tn, rn), as well as their limit processes on the one-
point compactification, are recurrent but the speed-ν motion on (T , r) is not. Note
that in such a situation we obtain an entrance law and that the limit processes
cannot be a strong Markov processes. We explain this in detail in Example 5.5.



INVARIANCE PRINCIPLE ON TREES 629

We want to briefly illustrate this invariance principle with a first non-trivial ex-
ample which was established in [11]. Further examples and the relation of Theo-
rem 1 to the existing literature are discussed in Section 7.

EXAMPLE 1.5 (RWs on GW-trees converge to BM on the CRT). Consider
a Galton–Watson process in discrete time whose offspring distribution is critical
and has finite (positive) variance σ 2. For each n ∈ N, let Tn be the correspond-
ing GW-tree conditioned on having n vertices. Given Tn, whenever v′ ∼Tn v, put
rn(v, v′) := σ√

n
, and let νn({v}) := deg(v)

2n
for all v ∈ Tn, where deg denotes the

degree of node. Notice that given Tn, the speed-νn random walk on (Tn, rn) is the
symmetric nearest neighbor random walk on Tn with edge lengths rescaled by a
factor σ√

n
and with exponential jump rates

γn(v)= 1

2νn({v})
∑
v′∼v

r−1
n

(
v, v′

)= 1

2
· 2n

deg(v)
· deg(v)

√
n

σ
= σ−1 · n3/2.(1.10)

Denote by μske
n the normalized length-measure (see Section 2.1) on the path-

connected tree T̄n spanned by Tn. Then it is known that (T̄n, rn,μ
ske
n ) converges

Gromov-vaguely in distribution to some random, compact, path-connected metric
measure tree (T , r,μ), where (T , r) is the so-called Brownian continuum random
tree (or shortly, the CRT), and μ the “leaf-measure” (see, e.g., [4], Theorem 23).
As the Prohorov distance between νn and μske

n is not greater than σ
2
√

n
, (Tn, rn, νn)

also converges Gromov-vaguely to (T , r,μ) by [6], Lemma 2.10. Furthermore, it
is known that the family {νn;n ∈N} satisfies the uniform local lower mass-bound
property (compare [4], Corollary 19, together with Proposition 3.8).

We can therefore conclude from Theorem 1 that given a realization of a se-
quence (Tn)n∈N converging Gromov-weakly to some T , the symmetric random
walk with jumps rescaled by 1√

n
and time speeded up by a factor of n3/2 converges

to μ-Brownian motion on the CRT. This was first conjectured in [3], Section 5.1
and proved in [11]. A more general result on homogeneous scaling limits of ran-
dom walks on graph trees towards diffusions on continuum trees was established
in [12]. We will discuss in Section 7.3 how this result is covered by our invariance
principle.

For the proof of the invariance principle, we use the following approach. We first
use techniques from Dirichlet forms to construct the speed-ν motion on (T , r). We
continue showing tightness based on a version of Aldous’ stopping time criterion
(Proposition 4.2), and then identify the limit. As we are working with Dirichlet
forms, one might be tempted to show f.d.d.-convergence of the motions by veri-
fying the Mosco-convergence introduced in [28] (compare also [29] for its appli-
cation to Dirichlet forms). It turns out, however, that this is tedious, and we rather
identify the limit via the occupation time formula (0.1). For that, we first restrict
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ourselves to limit metric (finite) measure trees which are compact, and show that
any limit point must be a strong Markov process satisfying (0.1). We then reduce
the general case to the case of compact limit trees by showing that there are suit-
ably many hitting times which converge.

The rest of the paper is organized as follows: In Section 2, we construct the
speed-ν motion on (T , r) and present occupation time formula (0.1). In Section 3
we introduce all the topological concepts needed to deal with convergence of
the underlying metric measure spaces. In Section 4, we prove the tightness of
a sequence of speed-νn motions on (Tn, rn) provided that the underlying spaces
(Tn, rn, νn)n∈N converges. In Section 5, we show that any limit point satisfies the
strong Markov property and that its occupation time formula agrees with that of the
limit variable speed motion. In Section 6, we collect all the ingredients to present
the proof of Theorem 1. Finally, in Section 7 we present examples and relate our
result to the existing literature.

2. The speed-ν motion on (T , r) and its Dirichlet form. In this section, we
will use Dirichlet form techniques to construct the variable speed motions. We will
follow the lines of [5] where the variable speed motion was constructed on path-
connected rooted metric measure trees, or rooted measure R-trees for short. The
main idea behind the generalization to arbitrary rooted metric measure trees is the
presentation of a universal notion of the length measure and the gradient. This will
be given in Section 2.1. In Section 2.2, we associate the variable speed motion with
a Dirichlet form and establish in Section 2.3 the occupation time formula. We will
revise (where necessary) the proofs given in [5] to the larger class of underlying
rooted metric measure trees.

2.1. The set-up. In this subsection, we discuss preliminaries that are required
to construct the variable speed motions.

Recall rooted metric trees and rooted R-trees from Definition 1.1, and notice
that a rooted metric tree (T , r, ρ) can be embedded isometrically into an R-tree,
that is, a path-connected rooted metric tree (see, e.g., Theorem 3.38 in [14]). Fur-
thermore, there is a unique (up to isometry) smallest rooted R-tree, (T̄ , r̄, ρ),
which contains (T , r, ρ) (compare, e.g., [27], Remark 2.7). (T̄ , r̄) is the small-
est R-tree in the following sense: if (T̂ , r̂) is another R-tree with T ⊆ T̂ , and r̂

extends r , then there is a unique isometric embedding φ: T̄ → T̂ such that φ�T is
the identity on T . Heuristically, (T̄ , r̄) is obtained from (T , r) by replacing edges
with line segments of the appropriate length.

Given a rooted metric tree (T , r, ρ), we can define a partial order (with respect
to ρ), ≤ρ , on T by saying that x ≤ρ y for all x, y ∈ T with x ∈ [ρ,y].

To be in a position to capture that our variable speed motions are processes
on “natural scale,” we need the notion of a length measure. For R-trees, it was
first introduced in [15]. It turns out that this measure can be constructed on any
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separable 0-hyperbolic metric space provided that we have fixed a reference point,
say the root ρ. Let therefore (T , r, ρ) be a rooted metric tree, and B(T ) the Borel-
σ -algebra of (T , r). We denote the set of isolated points (other than the root) by
Iso(T , r, ρ), and define the skeleton of (T , r, ρ) as

T o := Iso(T , r, ρ)∪ ⋃
a∈T

(ρ, a).(2.1)

Recall that rooted metric trees are Heine–Borel spaces, and thus separable,
and observe that if T ′ ⊂ T is a dense countable set, then (2.1) holds with T

replaced by T ′. In particular, T o ∈ B(T ) and B(T )�T o = σ({(a, b);a, b ∈ T ′}),
where B(T )�T o := {A∩ T o;A ∈ B(T )}. Hence, there exist a unique σ -finite mea-
sure λ(T ,r,ρ) on T , such that λ(T ,r,ρ)(T \ T o)= 0 and for all a ∈ T ,

λ(T ,r,ρ)((ρ, a])= r(ρ, a).(2.2)

DEFINITION 2.1 (Length measure). Let (T , r, ρ) be a rooted metric tree. The
unique σ -finite measure λ(T ,r,ρ) satisfying (2.2) and λ(T ,r,ρ)(T \ T o)= 0 is called
the length measure of (T , r, ρ).

REMARK 2.2 (Length measure; particular instances). (i) If (T , r) is an R-
tree, then λ(T ,r,ρ) does not depend on the root ρ, and is the trace onto T o of the
1-dimensional Hausdorff-measure on T .

(ii) If (T , r) is discrete as a topological space, that is, all points in T are isolated,
the length measure shifts all the “length” sitting on an edge to the end point which
is further away from the root. In this case, it does explicitly depend on the root.

(iii) In general, let (T̄ , r̄) be the R-tree spanned by (T , r) and π : T̄ → T defined
by

π(x) := inf{y ∈ T : x ≤ρ y},(2.3)

for all x ∈ T̄ . Note that π is well defined because T is closed and satisfies (1.2). It
is therefore easy to check that

λ(T ,r,ρ) = π∗λ(T̄ ,r̄).(2.4)

In order to characterize the variable speed motion analytically (via Dirichlet
forms), we use a concept of weak differentiability. Denote the space of continu-
ous functions f :T → R by C(T ). We call a function f ∈ C(T ) locally absolutely
continuous if and only if for all ε > 0 and all subsets S ⊆ T with λ(T ,r,ρ)(S) <∞
there exists a δ = δ(ε, S) such that if [x1, y1], . . . , [xn, yn] ⊆ S are disjoint arcs
with

∑n
i=1 r(xi, yi) < δ then

∑n
i=1 |f (xi)− f (yi)|< ε. Put

A=A(T ,r) := {
f ∈ C(T ) : f is locally absolutely continuous

}
.(2.5)

Of course, if (T , r) is discrete, then A equals the space C(T ) of continuous func-
tions.

The definition of the gradient is then based on the following observation which
was proved for R-trees in [5], Proposition 1.1.
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PROPOSITION 2.3 (Gradient). Let f ∈ A. There exists a unique (up to λ =
λ(T ,r,ρ)-zero sets) function g ∈ L1

loc(λ
(T ,r,ρ)) such that

f (y)− f (x)=
∫
[ρ,y]

λ(dz)g(z)−
∫
[ρ,x]

λ(dz)g(z),(2.6)

for all x, y ∈ T . Moreover, g is already uniquely determined (up to λ(T ,r,ρ)-zero
sets) if we only require (2.6) to hold for all x ≤ρ y.

PROOF. For f ∈ A, we define the linear extension f̄ : T̄ → R by f̄ �T := f

and

f̄ (v) := r(v, y)

r(x, y)
f (x)+ r(v, x)

r(x, y)
f (y),(2.7)

whenever (x, y) is an edge of T and v ∈ [x, y] ⊆ T̄ . By [5], Proposition 1.1, there
is ḡ: T̄ → R such that (2.6) holds for x, y ∈ T̄ and λ̄ := λ(T̄ ,r̄) instead of λ. It is
easy to see from the definition of f̄ that ḡ is constant on edges of T , and hence
g:T → R is well defined by g ◦ π := ḡ, with π defined in Remark 2.2(iii). By
(2.4),

f (x)− f (y)=
∫
[ρ,y]

dλ̄ḡ −
∫
[ρ,x]

dλ̄ḡ

(2.8)
=
∫
[ρ,y]

dλg−
∫
[ρ,x]

dλg.

Uniqueness and integrability of g follow from the corresponding properties of ḡ.
�

The statement of Proposition 2.3 yields a general notion of a gradient.

DEFINITION 2.4 (Gradient). The gradient, ∇f = ∇(T ,r,ρ)f , of f ∈ A is the
unique up to λ(T ,r,ρ)-zero sets function g which satisfies (2.6) for all x, y ∈ T .

2.2. The regular Dirichlet form. In this subsection, we recall the construction
of the so-called ν-Brownian motion on an R-tree given in [5], and extend it to
arbitrary rooted metric measure trees.

As usual, we denote by C(T ) the space of continuous functions f :T →R, and
the subspace of functions vanishing at infinity by

C∞(T ) := {
f ∈ C(T ) : ∀ε > 0 ∃K compact ∀x ∈ T \K : ∣∣f (x)

∣∣≤ ε
}
.(2.9)

Consider the bilinear form (E,D(E)) where

E(f, g) := 1

2

∫
dλ∇f∇g,(2.10)
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and

D(E) := {
f ∈ L2(ν)∩A∩ C∞(T ) : ∇f ∈ L2(λ)

}
.(2.11)

For technical purposes, we also introduce for all closed subsets A⊆ T the do-
main

DA(E) := {
f ∈D(E) : f |A ≡ 0

}
.(2.12)

We first note that the bilinear form (E,DA(E)) is closable for all closed sets
A ⊆ T . Indeed, let (fn)n∈N be an E-Cauchy sequence in DA(E) ⊆ L2(ν) with
‖fn‖L2(ν) → 0. Then, by passing to a subsequence if necessary, we may assume
∇fn → 0, λ(T ,r,ρ)-almost surely and E(fn, fn) is uniformly bounded in n ∈N (see,
e.g., [5], (2.15), (2.16)).

Let (E, D̄A(E)) be the closure of (E,DA(E)), that is, D̄A(E) is the closure of
DA(E) with respect to E1 = E + 〈·, ·〉ν .

REMARK 2.5 (Closing the form might not be necessary). The procedure of
closing the form is unnecessary if the global lower mass-bound property holds on
T \A, that is, for all δ > 0,

inf
x∈T \Aν

(
B(x, δ)

)
> 0.(2.13)

In this case, D̄A(E)=DA(E).

The following lemma is an immediate consequence of Proposition 2.4, Lem-
mas 2.8, 3.4 and Proposition 4.1 in [5].

LEMMA 2.6 (Regular Dirichlet form). Let (T , r, ν) be a metric boundedly fi-
nite measure tree, and A⊆ T a closed subset. Then the following hold:

(i) The bilinear form (E, D̄A(E)) is a regular Dirichlet form.
(ii) Dirac measures are of finite energy integral, there exists a constant Cx > 0

such that for all f ∈D(E)∩ C0(T ),

f (x)2 ≤ CxE1(f, f )(2.14)

(see (2.2.1) in [18]).
(iii) If A is non-empty the Dirichlet form is transient.

It follows immediately from [18], Theorem 7.2.1, that there is a unique (up to
ν-equivalence) ν-symmetric strong Markov process

X = (
(Xt)t≥0,

(
Px)

x∈T

)
(2.15)

on (T , r) associated with the regular Dirichlet form (E, D̄(E)).
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DEFINITION 2.7 (Speed-ν motion on (T , r)). Let (T , r, ν) be a metric bound-
edly finite measure tree. In the following, we refer to the unique ν-symmetric
strong Markov process associated with (E, D̄(E)) as the speed-ν motion on (T , r).

• If (T , r) is discrete, then the speed-ν motion on (T , r) is referred to as speed-ν
random walk on (T , r).

• If (T , r) is an R-tree, then the speed-ν motion on (T , r) agrees with the ν-
Brownian motion on (T , r) constructed in [5].

REMARK 2.8 (Variable speed motion does not depend on root). Notice that
although the definition of the length measure and the gradient depend on the root,
the Dirichlet form does not. Therefore, the variable speed motion is independent
on the choice of the root.

REMARK 2.9 (Connectedness and continuous paths). Notice that the Dirichlet
form satisfies the local property if and only if the underlying space is connected.
Thus, the variable speed motion on (T , r) has continuous paths if and only if (T , r)

is an R-tree.

Recall the explosion time ζ from (1.8). Notice that the Dirichlet form need
not be conservative, which means that the speed-ν motion might exist only for
a (random) finite life time. This happens when it explodes in finite time, that is,
ζ <∞.

REMARK 2.10 (Finite versus infinite life time). Let (T , r, ν) be a rooted
boundedly finite measure tree, and X the speed-ν motion on (T , r). Whether or
not ζ =∞, almost surely, depends on the tree topology and the measure ν.

(i) The speed-ν motion on (T , r) cannot explode if it is recurrent. Recurrence
depends on (T , r, ν) only through (T , r). See [5], Theorem 4, for recurrence crite-
ria.

(ii) An example of a transient variable speed motion with finite life time will
be discussed in Example 5.5.

LEMMA 2.11 (Variable speed motion on discrete trees is a Markov chain). Let
(T , r, ν) be a metric boundedly finite measure tree such that (T , r) is discrete. Then
the speed-ν random walk on (T , r) is a continuous time nearest neighbor Markov
chain with jumps from v to v′ ∼ v at rate γvv′ := 1

2·ν({v})·r(v,v′) .

PROOF. Recall from Definition 1.1 that (T , r) is a Heine–Borel space. Thus,
each ball around ρ contains only a finite number of branch points, and in con-
sequence the nearest neighbor random walk with the jump rates (γvv′)v∼v′ is a
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well-defined strong Markov process. Its generator � acts on the space Cc(T ) of
continuous functions which depend only on finitely many v ∈ T as follows:

�f (v) := 1

2 · ν({v})
∑
v′∼v

1

r(v, v′)
(
f
(
v′
)− f (v)

)
.(2.16)

Notice that for all f,g ∈ Cc(T ),

E(f, g)= 1

2

∫
dλ∇f∇g

= 1

2

∑
v∈T

1

2

∑
v′∼v

1

r(v, v′)
(
f
(
v′
)− f (v)

)(
g
(
v′
)− g(v)

)
(2.17)

=−∑
v∈T

ν
({v}) 1

2ν({v})
∑
v′∼v

1

r(v, v′)
(
f
(
v′
)− f (v)

)
g(v)

=−(�f,g)ν.

The statement therefore follows from Example 1.2.5 together with Exer-
cise 4.4.1 in [18]. �

2.3. The occupation time formula. We conclude this section by recalling here
the occupation time formula as known from speed-ν motions on R or the ν-
Brownian motion on compact metric trees (see, e.g., [5], Proposition 1.9).

As usual, we denote for each x ∈ T by

τx = τx(X) := inf{t ≥ 0 :Xt = x}(2.18)

the first hitting time of x. A standard calculation shows the following.

PROPOSITION 2.12 (Occupation time formula). Let X be a speed-ν motion
on (T , r). If X is recurrent, then for all x, z ∈ T ,

Ex

[∫ τz

0
f (Xt)dt

]
= 2

∫
T

f (y) · r(z, c(x, z, y)
)
ν(dy),(2.19)

for all bounded, measurable f :T → R. Moreover, the process X·∧τz is transient
for all z ∈ T .

PROOF. Let (T , r, ν) be a metric boundedly finite measure tree, and z ∈ T

fixed. By Lemma 2.6(iii), the Dirichlet form (E,D{z}(E)) is transient. Therefore
by Theorem 4.4.1(ii) in [18], R{z}f (x) := Ex[∫ τz

0 dsf (Xs)] is the resolvent of the
speed-ν motion killed on hitting z, that is,

E(R{z}f,h)=
∫

dνh · f,(2.20)
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for all h ∈ D̄{z}(E) and f ∈ D(E) with (R{z}f,f )ν < ∞. The resolvent of a
Markov process has the form

R{z}f (x)=
∫
T

ν(dy)
h∗{z},y(x)

cap{z}(y)
f (y),(2.21)

where cap{z}(y) := inf{E(f, f ) : f ∈ D̄(E), f (z) = 0, f (y) = 1} and h∗{z},y is the
unique minimizer for cap{z}(y). This can be shown by essentially rewriting the
argument laid out in [5], Section 3. Moreover, for our particular Dirichlet form we
find that h∗{z},y(x) := r(c(x,y,z),z)

r(y,z)
and cap{z}(y)= 1

2r(y,z)
, and thus that

Ex

[∫ τz

0
dsf (Xs)

]
= 2

∫
ν(dy)r

(
z, c(x, y, z)

)
f (y).(2.22) �

3. Preliminaries on the Gromov-vague topology. Recall the notion of a
rooted metric (boundedly finite) measure space (T , r, ρ, ν) from Definition 1.1.
Once more, we call two rooted metric measure trees (T , r, ρ, ν) and (T ′, r ′, ρ′, ν′)
equivalent iff there is an isometry ϕ between supp(ν) ∪ {ρ} and supp(ν′) ∪ {ρ′}
such that ϕ(ρ)= ρ′ and ν ◦ ϕ−1 = ν′, and denote by

T := the space of equivalence classes of rooted metric measure trees.(3.1)

In this section, we want to equip T with the so-called Gromov–Hausdorff-vague
topology on which the convergence of the underlying spaces in our invariance
principle is based on. We refer the reader to [6] for many detailed discussions.
We recall the definition of the pointed Gromov-weak topology on finite metric
measure spaces in Section 3.1 and then extend it to a Gromov-vague topology on
T in Section 3.2. Finally, we compare the notions of Gromov-weak and Gromov-
vague convergence in Section 3.3.

3.1. Gromov-weak and Gromov–Hausdorff-weak topology. In this subsection,
we restrict to compact metric spaces and recall the Gromov-weak topology. This
topology originates from the work of Gromov [20] who considers topologies al-
lowing to compare metric spaces who might not be subspaces of a common met-
ric space. The Gromov-weak topology on complete and separable metric measure
spaces was introduced in [19]. In the same paper, the Gromov-weak topology was
metrized by the so-called Gromov–Prohorov-metric which is equivalent to Gro-
mov’s box metric introduced in [20], as was shown in [26]. The topology is closely
related to the so-called measured Gromov–Hausdorff topology which was first in-
troduced by [17], and further discussed in [16, 25].

REMARK 3.1 (Full-support assumption). Note that, by our definition, the
measure ν of a metric boundedly finite measure tree (T , r, ρ, ν) is required to have
full support. This is usually not assumed for metric measure spaces, but it is only
a minor restriction, because whenever ρ ∈ supp(ν) we can choose representatives
with full support.
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Consider also the subspace

Tc := {
(T , r, ρ, ν) ∈ T : (T , r) is compact

}
.(3.2)

We shortly recall the basic definitions of the Gromov-weak and Gromov–
Hausdorff-weak topologies on Tc.

DEFINITION 3.2 (Gromov-weak and Gromov–Hausdorff-weak topology).
Let for each n ∈ N ∪ {∞}, Xn := (Tn, rn, ρn, νn) be in Tc. We say that (Xn)n∈N
converges to X∞ in:

(i) Pointed Gromov-weak topology if and only if there exists a complete, sep-
arable rooted metric space (E,dE,ρE) and for each n ∈ N ∪ {∞} isometries
ϕn : Tn →E with ϕn(ρn)= ρE , and such that

(ϕn)∗νn �⇒
n→∞(ϕ∞)∗ν∞.(3.3)

(ii) Pointed Gromov–Hausdorff-weak topology if and only if there exists a com-
pact metric space (E,dE,ρE) and for each n ∈ N ∪ {∞} isometries ϕn:Tn → E

with ϕn(ρn)= ρE , such that (3.3) holds and

supp
(
(ϕn)∗νn

)Hausdorff−−−−→
n→∞ supp

(
(ϕ∞)∗ν∞

)
.(3.4)

REMARK 3.3 (Supports do not converge under Gromov-weak convergence).
Consider, for example, Tn :≡ {ρ,ρ ′} and rn(ρ,ρ′)≡ 1, and put νn := n−1

n
δρ+ 1

n
δρ′

for all n ∈ N. Clearly, ((Tn, rn, ρ, νn))n∈N converges pointed Gromov-weakly
to the unit mass pointed singleton ({ρ}, ρ, δρ). The supports, however, do not
converge. This shows that Gromov-weak is in general weaker than Gromov–
Hausdorff-weak convergence.

In order to close the gap between Gromov-weak and Gromov–Hausdorff-weak
convergence, we define for each δ > 0 the lower mass-bound function mδ:T→R+
as

mδ

(
(T , r, ρ, ν)

) := inf
{
ν
(
B̄r (x, δ)

) : x ∈ T
}
.(3.5)

It follows from our full-support assumption, supp(ν)= T , that mδ(X ) > 0 for all
δ > 0 if X ∈ Tc.

DEFINITION 3.4 (Global lower mass-bound property). We say that a family
� ⊆ Tc satisfies the global lower mass-bound property if and only if the lower
mass-bound functions are all bounded away from zero uniformly in �, that is, for
each δ > 0,

mδ(�) := inf
X∈�

mδ(X ) > 0.(3.6)

The following is Theorem 6.1 in [6].
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PROPOSITION 3.5 (Gromov-weak versus Gromov–Hausdorff-weak topology).
Let for each n ∈ N ∪ {∞}, Xn := (Tn, rn, ρn, νn) be in Tc such that (Xn)n∈N con-
verges to X∞ pointed Gromov-weakly. Then the following are equivalent:

(i) The sequence (Xn)n∈N converges to X∞ pointed Gromov–Hausdorff-
weakly.

(ii) The sequence (Xn)n∈N satisfies the global lower mass-bound property.

3.2. Gromov-vague and Gromov–Hausdorff-vague topology. Recently, in [1],
the Gromov–Hausdorff-weak topology on rooted compact length spaces was ex-
tended to complete locally compact length spaces equipped with locally finite
measures. In this subsection, we want, in similar spirit, extend the Gromov(–
Hausdorff)-weak topology on Tc to the Gromov(–Hausdorff)-vague topology
on T.

The restriction of X = (X, r, ρ, ν) ∈ T to the closed ball B̄(ρ,R) of radius
R > 0 around the root is denoted by

X�R :=
(
B̄(ρ,R), r, ρ, ν�B̄r (ρ,R)

)
.(3.7)

DEFINITION 3.6 (Gromov-vague topology). Let for each n ∈N∪{∞}, Xn :=
(Tn, rn, ρn, νn) be in T. We say that (Xn)n∈N converges to X∞ in:

(i) Pointed Gromov-vague topology if and only if there exists a complete,
separable rooted metric space (E,dE,ρE) and for each n ∈ N ∪ {∞} isometries
ϕn : Tn →E with ϕn(ρn)= ρE , and such that(

(ϕn)∗νn

)
�R �⇒

n→∞
(
(ϕ∞)∗ν∞

)
�R(3.8)

for all but countably many R > 0.
(ii) Pointed Gromov–Hausdorff-vague topology if and only if there exists a

rooted Heine–Borel space (E,dE,ρE) and for each n ∈ N ∪ {∞} isometries
ϕn : Tn →E with ϕn(ρn)= ρE , and such that (3.8) and

ϕn(Tn)∩ B̄dE
(ρE,R)

Hausdorff−−−−→
n→∞ ϕ(T )∩ B̄dE

(ρE,R)(3.9)

hold for all but countably many R > 0.

Once more, we want to close the gap between Gromov-vague and Gromov–
Hausdorff-vague convergence. Define, therefore, for all δ > 0 and R > 0 the local
lower mass-bound function mR

δ :T→R+ ∪ {∞} as

mR
δ

(
(T , r, ρ, ν)

) := inf
{
ν
(
B̄r (x, δ)

) : x ∈ B(ρ,R)
}
.(3.10)

Notice that mR
δ (X ) > 0 for all X ∈ T, and δ,R > 0.
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DEFINITION 3.7 (Local lower mass-bound property). We say that a family
� ⊆ T satisfies the local lower mass-bound property if and only if the lower mass-
bound functions are all bounded away from zero uniformly in �, that is, for each
δ > 0 and R > 0,

mR
δ (�) := inf

X∈�
mR

δ (X ) > 0.(3.11)

The following is Corollary 5.2 in [6].

PROPOSITION 3.8 (Gromov-vague versus Gromov–Hausdorff-vague). Let for
each n ∈ N ∪ {∞}, Xn := (Tn, rn, ρn, νn) be in T such that (Xn)n∈N converges to
X∞ pointed Gromov-vaguely. Then the following are equivalent:

(i) The sequence (Xn)n∈N converges to X∞ pointed Gromov–Hausdorff-
vaguely.

(ii) The sequence (Xn)n∈N satisfies the local lower mass-bound property.

3.3. Gromov-weak versus Gromov-vague convergence. Note that the concept
of Gromov-vague convergence on T is not strictly an extension of the concept
of Gromov-weak convergence on Tc because in the limit parts might “vanish at
infinity,” and hence a non-converging sequence of compact spaces with respect to
the Gromov-weak or the Gromov–Hausdorff-weak topology may converge in the
“locally compact version” of the corresponding topology.

REMARK 3.9 (Gromov-vague versus Gromov-weak). Consider the subspaces
Tfinite and Tprobability of T consisting of spaces X = (T , r, ρ, ν) ∈ T where ν is
a finite or a probability measure, respectively. Then on Tprobability the induced
Gromov-vague topology coincides with the Gromov-weak topology. However, on
Tfinite and even on Tc this is not the case, as the total mass might not be preserved
under Gromov-vague convergence. In fact, for X ,Xn = (Tn, rn, ρn, νn) ∈ Tfinite the
following are equivalent:

(i) Xn → X Gromov-weakly.
(ii) Xn → X Gromov-vaguely and νn(Tn)→ ν(T ).

Moreover, Xn → X ∈ Tc Gromov–Hausdorff-weakly if and only if Xn → X
Gromov–Hausdorff-vaguely and the diameters of (Tn, rn) are bounded uniformly
in n (except for finitely many n).

4. Tightness. Recall the speed-ν motion on (T , r), X(T,r,ν), from Defini-
tion 2.7. In this section, we prove that the sequence {X(Tn,rn,νn);n ∈ N} is tight
provided that assumptions (A0), (A1) and (A2) from Theorem 1 are satisfied. The
main result is the following.
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PROPOSITION 4.1 (Tightness). Consider rooted metric boundedly finite mea-
sure trees X := (T , r, ρ, ν) and Xn := (Tn, rn, ρn, νn), n ∈ N. Assume that for all
n ∈N, Xn is discrete, and that the following conditions hold:

(A0) For all R > 0,

lim sup
n→∞

sup
{
rn(x, z) : x ∈ Bn(ρn,R), z ∈ Tn, x ∼ z

}
<∞.(4.1)

(A1) The sequence (Xn)n∈N converges to X in the pointed Gromov-vague topol-
ogy as n→∞.

(A2) The local lower mass-bound property holds uniformly in n ∈N.

Then there is a Heine Borel space (E,d), such that T and all Tn, n ∈ N, are
embedded in (E,d) and the sequence Xn, n ∈ N, of speed-νn random walks on
(Tn, rn) is tight in the one-point compactification of E.

For the proof, we rely on the following version of the Aldous tightness criterion
(see, [21], Theorems 16.11 and 16.10).

PROPOSITION 4.2 (Aldous tightness criterion). Let Xn = (Xn
t )t≥0, n ∈N, be

a sequence of càdlàg processes on a complete, separable metric space (E,d).
Assume that the one-dimensional marginal distributions are tight, and for any
bounded sequence of Xn-stopping times τn and any δn > 0 with δn → 0 we have

d
(
Xn

τn
,Xn

τn+δn

) n→∞−→ 0 in probability.(4.2)

Then the sequence (Xn)n∈N is tight.

To verify Proposition 4.2, we have to show that it is unlikely that the walk
has moved more than a certain distance in a sufficiently small amount of time,
uniformly in n and the starting point.

COROLLARY 4.3. Let (E,d) be a locally compact, separable metric space.
For each n ∈ N, let Tn ⊆ E and (Xn, (Px)x∈Tn) a strong Markov process on Tn.
Assume that for every ε > 0

lim
t→0

lim
n→∞ sup

x∈Tn

Px{d(x,Xn
t

)
> ε

}= 0.(4.3)

Then for every sequence of initial distributions μn ∈ M1(Tn) the sequence
(Xn)n∈N is tight as processes on the one-point compactification of E.

PROOF. Let Ê =E∪{∞} be the one-point compactification of E. Ê is metriz-
able, and we can choose a metric d̂ with d̂ ≤ d on E ×E. A possible choice is

d̂(x, y) := inf
n∈N inf

z1,...,zn∈E

n∑
k=0

e− inf{j :zk∈Uj or zk+1∈Uj }(1∧ d(zk, zk+1)
)
,(4.4)
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where z0 := x, zn+1 := y, and U1 ⊆ U2 ⊆ · · · are (fixed) open, relatively com-
pact subsets of E with E =⋃

n∈N Un. By the strong Markov property, (4.3) im-
plies (4.2) for d , and hence also for d̂ . By Proposition 4.2, (Xn)n∈N is tight on Ê.

�

From here, we proceed in several steps. We first give an estimate for the prob-
ability to reach a particular point in a small amount of time. We are then seeking
an estimate for the probability that the walk has moved more than a given distance
away from the starting point. For that, we will need a bound on the number of
possible directions the random walk might have taken until reaching that distance.

Recall from (2.18) the first hitting time τx of a point x ∈ T .

LEMMA 4.4 (Hitting time bound). Let (T , r, ρ, ν) be a discrete rooted metric
boundedly finite measure tree, x ∈ T , X the speed-ν random walk on (T , r) started
at x. Fix v ∈ T and δ ∈ (0, r(x, v)). Denote by S := B(x, δ) the subtree δ-close to
x and let R := r(S, v). Then, for all t ≥ 0,

Px{τv ≤ t} ≤ 2
(

1− R

R+ 2δ
e−t/(Rν(S))

)
.(4.5)

PROOF. Assume w.l.o.g. that X is recurrent and let w be the unique point
in S with r(v,w)= R. Obviously, if X starts in x then it must pass w before hit-
ting v. Neglect the time until w and assume X starts in w instead of x. For u ∈ S,
let tu be the (random) amount of time spent in u before hitting v, ru := r(w,u),
and mu := ν({u}). Using that a geometric sum of independent, exponentially dis-
tributed random variables is again exponentially distributed, it is easy to see that
the law of tu is

Lw(tu)= ru

R + ru
δ0 + R

R+ ru
Exp

(
1

2(R + ru)mu

)
,(4.6)

where Exp(λ) denotes an exponential distribution with expectation 1
λ

, and δ0 the
Dirac measure in 0.

As τv ≥∑
u∈S tu, we find that for every a > 0,

τv ≥
∑
u∈S

amu1{tu≥amu} = aν
({u ∈ S : tu ≥ amu}).(4.7)

Now we pick a := 2t
ν(S)

and obtain

Px{τv ≤ t} ≤ Pw

{
ν{u ∈ S : tu ≥ amu} ≤ 1

2
ν(S)

}

= Pw

{
ν{u ∈ S : tu < amu} ≥ 1

2
ν(S)

}
(4.8)
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≤ 2

ν(S)
Ew[ν{u ∈ S : tu < amu}]

= 2

ν(S)

∑
u∈S

muP
w

{
tu < 2t

mu

ν(S)

}
,

which together with (4.6) and the fact that ru ≤ 2δ gives the claim. �

To get bounds on the probability to move sufficiently far from bounds on the
probability to hit a pre-specified point, we need a bound on the number of direc-
tions the random walk can take in order to get far away. With ε-degree of a node
x we mean the number of edges that intersect the ε-sphere around x and are con-
nected to points at least 2ε away from x.

DEFINITION 4.5 (ε-degree). Let (T , r) be a discrete metric tree. For ε > 0,
x ∈ T , let B := B(x, ε) be the ε-ball around x. The ε-degree of x is

degε(x) := degT
ε (x)

(4.9)
:= #

{
v ∈ T \B : ∃u ∈ B,w ∈ T \B(x,2ε) : u∼ v, v ∈ [u,w]}.

We also define the maximal degree as

degε(T ) := sup
x∈T

degT
ε (x).(4.10)

LEMMA 4.6 (Topological bound). Let Xn := (Tn, rn), n ∈N, be discrete met-
ric trees, and X := (T , r) a compact metric tree. If (Xn)n∈N converges to X in
Gromov–Hausdorff topology, then for every ε > 0,

lim sup
n→∞

degε(Tn) <∞.(4.11)

PROOF. Fix ε > 0. As Xn → X in Gromov–Hausdorff topology, there exists a
finite ε-net S in T , and ε-nets Sn in Tn, such that for all sufficiently large n ∈ N,
Sn has the same cardinality as S (see, e.g., [10], Proposition 7.4.12). Obviously,
this common cardinality is an upper bound for {degε(Tn);n ∈N}. �

With the notion of an ε-degree of a tree, we can immediately conclude the fol-
lowing.

LEMMA 4.7 (Speed bound). Let (T , r, ρ, ν) be a discrete metric boundedly
finite measure tree, x ∈ T , and X the speed-ν random walk on (T , r). Then for
every ε > 0, δ ∈ (0, ε) and t < (ε− δ)m, where m := ν(B(x, δ)),

Px
{

sup
s∈[0,t]

r(Xs, x) > 2ε
}
≤ 2 degε(x)

(
1− ε− δ

ε+ δ
exp

(
− t

εm

))
.(4.12)
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PROOF. Let v1, . . . , vN be the points outside B(x, ε) that are neighbours of
a point inside B(x, ε) and on the way from x to a point outside B(x,2ε). Then
N ≤ degε(x). Under Px , if r(Xs, x) > 2ε for some s ≤ t , X must have hit at least
one point in {v1, . . . , vN } before time s. Hence, the claim follows from Lemma 4.4.

�

PROOF OF PROPOSITION 4.1. According to Proposition 3.8, Xn → X in
Gromov–Hausdorff-vague topology. Hence, we may assume that there is a rooted
Heine–Borel space (E,d,ρE), such that Tn,T ⊆ E, ρE = ρ = ρn for all n ∈ N,
and, for all but countably many R > 0, we have both

Tn ∩ B̄d(ρ,R)→ T ∩ B̄d(ρ,R)(4.13)

as subsets of E in Hausdorff topology, and

νn�R ⇒ ν�R.(4.14)

Let Ê = E ∪ {∞} be the one-point compactification of E, metrized by a metric d̂

with d̂ ≤ d on E2 [see, e.g., (4.4)]. For each x ∈ Ê and N ∈N, write B
d̂
(x, 1

N
) :=

{y ∈ Ê : d̂(x, y) < 1
N
} and put

KN := Ê \B
d̂

(
∞,

1

N

)
⊆E.(4.15)

Notice that KN is compact by definition.
To show tightness, we show that condition (4.3) of Corollary 4.3 is satisfied for

the metric d̂ , that is, for given ε, ε̂ > 0, we can construct t0 > 0 such that

sup
x∈Tn

Px{d̂(x,Xn
t

)
> ε

}≤ ε̂,(4.16)

for all t ∈ [0, t0] and all n ∈N.
Fix ε > 0, and choose N > 4

ε
. Then the diameter of Ê \KN with respect to d̂ is

at most 1
2ε. Let

eN := sup
n∈N

sup
x∈Tn∩KN

sup
y∼x

d(x, y)(4.17)

be the supremum of edge-lengths emanating from points in Tn ∩ KN , and note
that eN <∞ by assumption. Now choose M > N such that KM contains the eN -
neighbourhood of KN , that is, {x′ ∈ E : d(KN,x′) < eN } ⊆ KM . Then all points
of KM which are connected to a point in E \KM (within some Tn) are actually in
KM \KN .

Consider the hitting time of KM , τKM
:= inf{s ≥ 0 :Xn

s ∈KM}, and recall that
the d̂-diameter of Ê \ KN is at most ε

2 . Therefore, if Xn starts in x ∈ Tn, then

d̂(x,Xn
t ) > ε implies τKM

< t and d̂(x,Xn
τKM

) ≤ ε
2 . Using the strong Markov

property at τKM
, we obtain for all n ∈N, x ∈ Tn,

Px{d̂(x,Xn
t

)
> ε

}≤ sup
y∈Tn∩KM

sup
s∈[0,t]

Py

{
d̂
(
y,Xn

s

)
>

1

2
ε

}
.(4.18)
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Applying Lemma 4.7, we conclude for all δ ∈ (0, ε) and t < 1
4(ε− δ)mδ , where

mδ := infn∈N infy∈Tn∩KM
νn(B(y, δ

4)),

Px{d̂(x,Xn
t

)
> ε

}≤ 2 degε/4(Tn ∩KM)

(
1− ε− δ

ε+ δ
exp

(
− 4t

εmδ

))
.(4.19)

As D := supn∈N degε/4(Tn ∩KM) <∞ by Lemma 4.6, and mδ > 0 by the lo-
cal lower mass-bound property (A2), we can choose δ > 0 small enough such that
ε−δ
ε+δ

> 1− ε̂
4D

, and subsequently t0 < 1
4(ε− δ)mδ such that exp(− 4t0

εmδ
) > 1− ε̂

4D
.

Inserting this into (4.19), we obtain (4.16) and tightness follows from Corol-
lary 4.3. �

5. Identifying the limit. In this section, we identify the limit process. For this
purpose, we use a characterization from [3], Section 5, where the existence of a
diffusion process on a particular non-trivial continuum tree, the so-called Brown-
ian CRT (T , r, ν) from Example 1.5, was shown. Aldous defines this diffusion as
a strong Markov process on T with continuous path such that ν is the reversible
equilibrium and it satisfies the following two properties:

(i) For all a, b, x ∈ T with x ∈ [a, b], Px{τa < τb} = r(x,b)
r(a,b)

.
(ii) The occupation time formula (0.1) holds.

While (i) reflects the fact that this diffusion is on “natural scale,” (ii) recovers ν as
the “speed” measure. At several places in the literature, constructions of diffusions
on the CRT and more general continuum random trees rely on Aldous’ characteri-
sation (see, e.g., [11, 12, 24]). Albeit the diffusions can be indeed characterised by
(i) and (ii) uniquely, a formal proof for this fact has to the best of our knowledge
never been given anywhere. We want to close this gap, and even show that the
requirement (i) is redundant.

The following result will be proven in Section 6.1.

PROPOSITION 5.1 (Characterization via occupation time formula). Assume
that (T , r) is a compact metric (finite) measure tree, and that we are given two T -
valued strong Markov processes X and Y such that for all x, y ∈ T , and bounded
measurable f :T →R+,

Ex

[∫ τy

0
dtf (Xt)

]
= Ex

[∫ τy

0
dtf (Yt )

]
.(5.1)

Assume further that X·∧τy is transient for all y ∈ T . Then the laws of X and Y

agree.

We will rely on Proposition 5.1 and show for compact limiting trees that any
limit point satisfies the strong Markov property in Section 5.1 and the occupation
time formula (0.1) in Section 5.2. Note that, if Xn = (Tn, rn, ρn, νn) converges
to X = (T , r, ρ, ν) pointed Gromov–Hausdorff-vaguely [i.e., we assume (A1) and
(A2) of Theorem 1], then compactness of X together with assumption (A0) of
Theorem 1 is equivalent to the uniform diameter bound supn∈N diam(Tn, rn) <∞.
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5.1. The strong Markov property of the limit. In this subsection, we show that
any limit point has the strong Markov property. To be more precise, the main result
is the following.

PROPOSITION 5.2 (Strong Markov property). Let X := (T , r, ν) and Xn :=
(Tn, rn, νn), n ∈ N, be metric boundedly finite measure trees. Assume that all Xn,
n ∈N, are discrete with supn∈N diam(Tn, rn) <∞, and that the sequence (Xn)n∈N
converges to X Gromov–Hausdorff-vaguely as n→∞. If Xn is the speed-νn ran-
dom walk on (Tn, rn) and Xn �⇒

n→∞ X̃ in path space, then X̃ is a (strong Markov)

Feller process.

In order to prove Proposition 5.2, we will first show that under its assumptions
the family of functions {Pn : n ∈N}, where for each n ∈N

Pn:

{
Tn ×R+→M1(E),

(x, t) �→ Lx(Xn
t

)=: P x
n,t ,

(5.2)

is uniformly equicontinuous. Here, Lx(Xn
t ) denotes the law of Xn

t , where Xn is
started in x ∈ Tn, E is a metric space containing all Tn, and M1(E) is equipped
with the Prohorov metric.

LEMMA 5.3 (Equicontinuity). Let X := (T , r, ν) and Xn := (Tn, rn, νn), n ∈
N, be metric boundedly finite measure trees. Assume that all Xn, n ∈ N, are
discrete with supn∈N diam(Tn, rn) < ∞, and that Xn → X Gromov–Hausdorff-
vaguely. If for each n ∈ N, Xn is the speed-νn random walk on (Tn, rn), and
Pn:R+ × Tn →M1(E) is defined as in (5.2), then the family {Pn : n ∈ N} is uni-
formly equicontinuous.

PROOF. Fix ε > 0. We construct a δ > 0, independent of n, such that P x
n,s

and P
y
n,t are ε-close whenever x, y ∈ Tn, s, t ∈ R+ are such that rn(x, y) < δ and

s ≤ t ≤ s + δ.
Fix n ∈ N, and denote for any two x, y ∈ Tn by Xx and Xy speed-νn random

walks on (Tn, rn) starting in x and y, respectively, which are coupled as follows:
let the random walks Xx , Xy run independently until Xx hits y for the first time,
that is, until τ := inf{t ≥ 0 :Xx

t = y}, and put Xx
τ+·=Xy . In particular, whenever

s ≥ τ , we obtain Xx
s =X

y
t−u for u= τ + t − s.

Using the strong Markov property of Xy , we can estimate for any c ∈ [t − s, t]
P
{
rn
(
Xx

s ,X
y
t

)
> ε

}≤ P{τ > c− t + s} + sup
z∈Tn

P
{

sup
u∈[0,c]

rn
(
z,Xz

u

)
> ε

}
.(5.3)

For small t , we need another estimate, namely for rn(x, y)≤ 1
3ε we have

P
{
rn
(
Xx

s ,X
y
t

)
> ε

}≤ 2 sup
z∈Tn

P

{
sup

u∈[0,t]
rn
(
z,Xz

u

)
>

ε

3

}
=: 2qt .(5.4)
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Combining (5.3) and (5.4), we obtain, under the condition rn(x, y) ≤ 1
3ε, for any

c ≥ t − s

P
{
rn
(
Xx

s ,X
y
t

)
> ε

}≤ qc + qc ∨ P
{
τ > c− (t − s)

}
.(5.5)

Note that this estimate depends on x, y, s, t only through rn(x, y) and t − s.
The Gromov–Hausdorff-vague convergence together with the uniform diameter

bound on (Tn, rn) implies that (T , r) is compact and (Tn, rn) converges to (T , r)

in Gromov–Hausdorff topology. Hence, supn∈N degε/6(Tn) < ∞, by Lemma 4.6.
Furthermore, the global lower mass-bound property is satisfied, that is, for every
ε′ > 0, mε′ := infn∈N,x∈Tn

νn(Bn(x, ε′)) > 0. We can thus apply Lemma 4.7 to
obtain a sufficiently small c = c(ε) > 0, independent of n, such that qc ≤ ε

2 . To
estimate (for this c) P{τ > c − (t − s)}, we note that M := supn∈N νn(Tn) < ∞
because of the diameter bound, and obtain for t − s ≤ 1

2c

P
{
τ > c− (t − s)

}≤ 2

c
E[τ ] ≤ 4

c
M · rn(x, y).(5.6)

Choose therefore δ := ε
8M

c ∧ ε
3 ∧ 1

2c. Then for all x, y ∈ Tn with rn(x, y) <

δ, and 0 ≤ s ≤ t < s + δ, (5.5) implies P{rn(Xx
s ,X

y
t ) > ε} ≤ ε, and hence

dPr(P
x
n,s,P

y
n,t )≤ ε, which is the claimed equicontinuity. �

The proof of Proposition 5.2 relies on the following modification of the Arzelà–
Ascoli theorem, which is proven in the same way as the classical theorem.

LEMMA 5.4 (Arzelà–Ascoli). Let (E,d) be a compact metric space, and
(F, dF ) a metric space. Consider closed subsets T ,Tn ⊆E and functions fn:Tn →
F for n ∈N. Further assume that the family {fn;n ∈N} is uniformly equicontinu-
ous with modulus of continuity h, and that for all x ∈ T there exists xn ∈ Tn such
that xn → x and {fn(xn) : n ∈N} is relatively compact in F . Then there is a func-
tion f :T → F , a subsequence of (fn)n∈N, again denoted by (fn), and εn > 0 with
εn → 0 such that for all n ∈N, for all x ∈ T and y ∈ Tn,

dF

(
f (x), fn(y)

)≤ h
(
d(x, y)

)+ εn.(5.7)

Note that (5.7) in particular implies that f is continuous with the same modulus
of continuity h, and that fn(xn)→ f (x) whenever xn → x.

PROOF OF PROPOSITION 5.2. By assumption there is a compact metric
space (E,d) such that T ,T1, T2, . . . ⊆ E, d�T = r , d�Tn

= rn for all n ∈ N, and
(Tn, rn, νn)n∈N converges Hausdorff-weakly to (T , r, ν).

According to Proposition 4.1 and Lemma 5.3, the assumptions of Arzelà–Ascoli
are satisfied for the family of functions Pn, n ∈ N, defined in (5.2). Thus, we ob-
tain a continuous subsequential limit P :T × R+ → M1(E), (x, t) �→ P x

t . Let
S = (St )t≥0 and Sn = (Sn

t )t≥0 be the corresponding operators on C(T ) and C(Tn),
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respectively. That is Stf (x) := ∫
T f dP x

t and Sn
t f (x) := ∫

Tn
f dP x

n,t , n ∈ N. We
show that S is indeed a strongly continuous semi-group.

To this end, it is enough to show limt→0 ‖Stf −f ‖∞ = 0 and St+sf = St (Ssf ),
s, t > 0, for Lipschitz continuous f ∈ C(T ) with Lipschitz constant (at most) 1
and ‖f ‖∞ ≤ 1. We can extend every such f to a function on E with the same
properties. Let Lip1 = Lip1(E) be the space of such (extended) f and recall that
the Kantorovich–Rubinshtein metric between two measures μ, μ̂ ∈M1(E),

dKR(μ, μ̂) := sup
f∈Lip1

∫
f d(μ− μ̂),(5.8)

is uniformly equivalent to the Prohorov metric (see [9], Theorem 8.10.43). For
the rest of the proof, M1(E) is equipped with dKR. Let h be a common modulus
of continuity for all Pn, n ∈ N, which exists according to Lemma 5.3. Due to
Lemma 5.4, P has the same modulus of continuity and hence, for all f ∈ Lip1,

‖Stf − f ‖∞ ≤ sup
x∈T

dKR
(
P x

t ,P x
0
)≤ h(t)−→

t→0
0,(5.9)

that is, S is strongly continuous.
Because Tn converges to T in the Hausdorff metric, we find gn:Tn → T such

that

αn := sup
y∈Tn

d
(
y,gn(y)

) −→
n→∞0.(5.10)

W.l.o.g. we may also assume that T1, T2, . . . , are disjoint. As the spaces (Tn, rn),
n ∈N, are discrete, the map

g:T ∪ ⋃
n∈N

Tn → T , x �→
{

x, x ∈ T ,

gn(x), x ∈ Tn

(5.11)

is continuous. Now we apply (5.7) to Pn and P and obtain for all n ∈N, f ∈ Lip1
and s > 0

sup
y∈Tn

∣∣Sn
s f (y)− (Ssf )

(
g(y)

)∣∣≤ sup
y∈Tn

dKR
(
P y

n,s,P
g(y)
s

)
(5.12)

≤ h(αn)+ εn −→
n→∞0,

where εn is obtained in Lemma 5.4. For x ∈ T , there exists xn ∈ Tn with xn → x,
and thus, using (5.12) and the semi-group property of Sn,

St+sf (x)= lim
n→∞Sn

t+sf (xn)= lim
n→∞Sn

t

(
Sn

s f
)
(xn)

= lim
n→∞Sn

t (Ssf ◦ g)(xn)= St (Ssf ◦ g)(x)(5.13)

= St (Ssf )(x).

Now it is standard to see that S comes from a Feller process, and this process has
to be X̃. �
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We can conclude immediately from Proposition 5.2 that in the general locally
compact case any limit process has the strong Markov property, at least up to the
first time it hits the boundary at infinity.

The following example shows that in general we loose the strong Markov prop-
erty once we hit infinity.

EXAMPLE 5.5 (Entrance law). Let (T , r, ρ) be the discrete binary tree with
unit edge-lengths, that is,

T := ⋃
n∈N

{0,1}n ∪ {ρ},(5.14)

r(ρ, x) := n for all x ∈ {0,1}n, and there is an edge x ∼ y if and only if y = (x, i)

or x = (y, i) for i ∈ {0,1}.
Put h(x) := r(ρ, x), and consider the speed measure ν({x}) := e−h(x), x ∈ T .

Obviously, the speed-ν random walk on X is transient, as h(X) is a reflected ran-
dom walk on N with constant drift to the right.

Now consider (Tn, r, ρ, ν) with Tn := {x ∈ T : h(x)≤ n}, where the metric and
the measure are understood to be restricted to Tn. Because Tn is finite and the
speed-νn random walk Xn has no absorbing points, it is positive recurrent. We
may therefore conclude from Proposition 2.12 that for all x ∈ T , n ∈ N suitably
large,

Ex[τn
ρ

]= 2
∑
y∈Tn

h
(
c(ρ, x, y)

)
e−h(y) ≤

n∑
k=1

k2ke−k <∞.(5.15)

Therefore, in contrast to the transience of the speed-ν random walk on (T , r), any
“limiting” process Y of the speed-νn random walks on (Tn, rn) is also positive re-
current. This shows that in Theorem 1 we indeed have to stop limiting processes
at infinity in order for them to coincide with the speed-ν motion on (T , r). Con-
sequently, this also means that the speed-ν motion has an entrance law on (T , r)

from infinity, which we obtain by considering excursions of Y away from infinity.
Finally, the limit Y obviously loses its strong Markov property at hitting infinity,
because in the one-point compactification, we are identifying all ends at infinity.

5.2. The occupation time formula of the limit. In this section, we assume that
the limiting tree is compact and show that all limit points satisfy the occupation
time formula (0.1). The main result is the following.

PROPOSITION 5.6 (Occupation time formula). Let X := (T , r, ν) and Xn :=
(Tn, rn, νn), n ∈ N, be metric boundedly finite measure trees. Assume that all Xn,
n ∈ N, are discrete with supn∈N diam(Tn, rn) < ∞, and that Xn → X Gromov–
Hausdorff-vaguely as n→∞. If Xn is the speed-νn random walk on (Tn, rn) and
Xn �⇒

n→∞ X̃ in path space, then X̃ satisfies (0.1).
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To prove this formula, we need a lemma about semi-continuity of hitting times
in Skorohod space. This semi-continuity does not hold in general, but we rather
have to use that the limiting path satisfies a certain regularity property.

If supp(ν) is not connected, the paths of the limit process are obviously not
continuous. They satisfy, however, the following weaker closedness condition.

DEFINITION 5.7 (Closed-interval property). Let E be a topological space. We
say that a function w:R+ →E has the closed-interval property if w([s, t])⊆E is
closed for all 0≤ s < t .

LEMMA 5.8 (Speed-ν motions have the closed-interval property). The path of
the limit process X̃ has the closed-interval property, almost surely.

PROOF. Let A ⊆ T be the set of endpoints of edges of T . Recall from Re-
mark 1.2 that A is at most countable. Jumps of the limit process X̃ can only occur
over edges of T , hence X̃t− := lims↗t X̃s 	= X̃t implies X̃t− ∈A.

Fix a ∈ A. We first show that if τ−a := inf{t > 0 : X̃t− = a} denotes the first
time when the left limit of X̃ reaches a, we have X̃τ−a = a almost surely, that is,

X̃ does not jump at time τ−a almost surely. Indeed, for every ε > 0 we can use the
right-continuity of the paths of X̃ together with Feller-continuity to find s0 > 0 and
δ > 0 such that for all x ∈ B(a, δ),

Px
{

sup
s∈[0,s0]

r(a, X̃s) > ε
}

<
1

2
ε.(5.16)

Define the stopping times τn := inf{t ≥ 0 : r(X̃t , a)≤ 1
n
}, and note that τn ↑ τ−a . If

n > 1
δ

is such that Px{τ−a − τn > s0}< 1
2ε, then by Proposition 5.2,

Px{r(X̃τ−a , a) > ε
}≤ 1

2
ε+Ex

[
PX̃τn

{
sup

s∈[0,s0]
r(a, X̃s) > ε

}]
≤ ε.(5.17)

Since ε is arbitrary, this proves X̃τ−a = a almost surely.

Because A is countable, this implies that {X̃u : u ∈ [0, t]} is closed for all t ≥ 0,
almost surely. Again using the Markov property, we also obtain almost surely
closedness of {X̃u : u ∈ [s, t]} for all t ≥ 0, s ∈Q+, which implies closedness for
all s ≥ 0 by right-continuity. �

We omit the proof of the following lemma, because it is straight-forward.

LEMMA 5.9 (Semi-continuity of the hitting time functional). Let E be a Pol-
ish space and DE =DE(R+) the corresponding Skorohod space. For a set A⊆E,
define

σA:DE →R+ ∪ {∞}, w �→ inf
{
t ∈R+ :w(t) ∈A

}
.(5.18)
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Then if A is open, σA is upper semi-continuous, and if A is closed, the set of
lower semi-continuity points of σA contains the set of paths with the closed-interval
property.

REMARK 5.10. For A ⊆ E closed, σA is in general not lower semi-
continuous.

PROOF OF PROPOSITION 5.6. Fix x, y ∈ T and let τy be the first time when X̃

hits y. It is enough to show (0.1) for non-negative f ∈ Cb(T ). Because T is closed
in E, we can extend f to a bounded continuous function on E, again denoted by f .
For A⊆E, recall the definition of σA from (5.18) and consider the function

FA:DE →R+ ∪ {∞}, w �→
∫ σA(w)

0
f
(
w(t)

)
dt.(5.19)

Note that the left-hand side of (0.1) coincides with Ex[Fy(X̃)], where we abbrevi-
ate Fy := F{y}. The strategy is to approximate Fy by FA for small neighbourhoods
A of y and then use semi-continuity properties of FA and the occupation time
formula of the approximating Xn.

Denote for each ε > 0 the closed ε-ball in E around y by Aε . We claim that
almost surely

τ := sup
ε>0

σAε(X̃)= σ{y}(X̃)= τy.(5.20)

Indeed, τ ≤ τy is obvious. For the converse inequality, recall that the path of X̃

almost surely has the closed-interval property by Lemma 5.8, which means that
{X̃t : t ∈ [0, τ ]} is almost surely a closed set containing points in every Aε , ε > 0,
hence also y. Therefore, τy ≤ τ almost surely.

Because f is non-negative, (5.20) implies that

sup
ε>0

FAε(X̃)= Fy(X̃),(5.21)

almost surely. Furthermore, it follows from the definition of the Skorohod topology
that whenever w is a lower- or upper semi-continuity point of σA, the same is true
for FA. Hence, Lemma 5.9 together with Lemma 5.8 implies that the path of X̃ is
almost surely a lower semi-continuity point of FA for closed sets A, and an upper
semi-continuity point for open sets A.

Choose xn, yn ∈ Tn with yn → y and xn → x, and note that yn ∈Aε for all suf-
ficiently large n. Since Xn �⇒

n→∞ X̃, and X̃ is almost surely a lower semi-continuity

point of FA,

Ex[Fy(X̃)
]= sup

ε>0
Ex[FAε(X̃)

]
≤ sup

ε>0
lim inf
n→∞ Exn

[
FAε

(
Xn)](5.22)

≤ lim inf
n→∞ Exn

[
Fyn

(
Xn)].
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Note that the functions (xn, yn, zn) �→ 2rn(yn, cn(xn, yn, zn)) on T 3
n and

(x, y, z) �→ 2r(y, c(x, y, z)) on T 3 have a common Lipschitz continuous exten-
sion to E given by

ξ(x, y, z) := d(y, x)+ d(y, z)− d(z, x).(5.23)

Therefore, we obtain from (5.22) and the occupation time formula for Xn (Propo-
sition 2.12) that

Ex[Fy(X̃)
] ≤ lim inf

n→∞

∫
νn(dz)ξ(xn, yn, z)f (z)

(5.24)
= 2

∫
ν(dz)r

(
y, c(x, y, z)

)
f (z).

On the other hand, for every sufficiently small ε > 0 and large n ∈N, there is a
unique point y′n ∈ B(yn,2ε) ∩ Tn closest to xn, and using that X̃ is almost surely
an upper semi-continuity point of FB(y,ε), we obtain

Ex[Fy(X̃)
] ≥ lim sup

n→∞
Exn

[
FB(y,ε)

(
Xn)]

≥ lim sup
n→∞

Exn
[
FB(yn,2ε)

(
Xn)]

(5.25)
= lim sup

n→∞
Exn

[
Fy′n

(
Xn)]

≥ 2
∫

ν(dz)
(
r
(
y, c(x, y, z)

)− 2ε
)
f (z).

The claim follows with ε → 0. �

6. Proof of Theorem 1. In this section, we collect all the pieces we have
proven so far and present the proof of our invariance principle.

As we have stated all the results which characterize the limiting process for
approximating rooted metric measure trees (Tn, rn, ρn, νn) where (Tn, rn) was as-
sumed to be discrete, we start with a lemma which states that each rooted metric
boundedly finite measure tree can be approximated by discrete trees.

LEMMA 6.1 (Approximation by discrete trees). Let (T , r, ρ, ν) be a rooted
metric boundedly finite measure tree X . Then we can find a sequence Xn :=
(Tn, rn, ρ, νn) of rooted discrete metric boundedly finite measure trees such that
Xn → X pointed Gromov–Hausdorff-vaguely.

PROOF. Let (T , r, ρ, ν) be a rooted metric boundedly finite measure tree, and
for each n ∈ N, Sn a finite 1

n
-net of B(ρ,n) containing {ρ}. Let Tn ⊆ T be the

smallest metric tree containing Sn, that is, the union of Sn and all branching points
x ∈ T with

r(x, s1)= 1
2

(
r(s1, s2)+ r(s1, s3)− r(s2, s3)

)
,(6.1)
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for some s1, s2, s3 ∈ Sn. As usual, let rn be the restriction of r to Tn, and note that
Tn is a finite set, hence (Tn, rn) is a discrete metric tree.

Consider for each n ∈ N the map ψn : T → Tn which sends a point in T to the
nearest point on the way from x to ρ which belongs to Tn, that is,

ψn(x) := sup
{
y ∈ Tn : y ∈ [ρ,x]}.(6.2)

Finally, put

νn := (ψn)∗ν�B(ρ,n).(6.3)

Then obviously the Prohorov distance between ν�B(ρ,n) and νn is not larger
than 1

n
. Thus, (Tn, rn, ρ, νn) converges pointed Gromov-vaguely and also pointed

Gromov–Hausdorff-vaguely to (T , r, ρ, ν). �

6.1. Compact limit trees. In this subsection, we restrict to the case where the
limiting tree is compact. We start with the proof of Proposition 5.1, on which we
shall rely the characterization of the limit process.

PROOF OF PROPOSITION 5.1. Consider X and Y satisfying the assumption on
Proposition 5.1. In particular, assume that X·∧τy is transient for all y ∈ T . Consider

for each y ∈ T the family of resolvent operators {GX,y
α ;α > 0} and {GY,y

α α > 0}
associated with {X·∧τy ;y ∈ T } and Y·∧τy , and put G

y
X := limN→∞G

X,y
1/N and

G
y
Y := limN→∞G

Y,y
1/N , respectively. By transience, G

y
X <∞ for all y ∈ T . More-

over, for all x ∈ T , and bounded, measurable f :T →R+,

G
y
Xf (x)= Ex

[∫ τy

0
dsf (Xs)

]
.(6.4)

By (5.1), G
y
Y f (x) <∞ as well.

As X is a strong Markov processes, the resolvent identity holds, that is,

GX,y
α =G

X,y
β + (α − β)GX,y

α G
X,y
β .(6.5)

Iterating the latter with α > β > 0 and |α − β| ≤ 1
2‖GX,y

β ‖ , we have

GX,y
α =G

X,y
β + (α − β)

(
G

X,y
β

)2 + (α − β)2(GX,y
β

)3 + · · · .(6.6)

We note that ‖GX,y
β ‖ ≤ ‖GX,y‖ for all β ≥ 0. So it is bounded above indepen-

dent of β . Hence, (6.6) holds for β = 0 by taking limits. Further, by the same
arguments, (6.6) also holds for Y instead of X, and by (5.1) G

Y,y
0 := G

y
Y = G

y
X .

Therefore, for all small enough α > 0, G
X,y
α = G

Y,y
α . Thus, for all small enough

α > 0,

Ex

[∫ τy

0
dte−αt · f (Xt)

]
= Ex

[∫ τy

0
dte−αt · f (Yt )

]
.(6.7)
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Therefore, by uniqueness of the Laplace transform,

Ex[f (Xt); {t < τy}]= Ex[f (Yt ); {t < τy}](6.8)

for all y ∈ T and for all t > 0. Therefore, the one-dimensional distributions of
X·∧τy and Y·∧τy are the same for all y ∈ T . By the strong Markov property, this
implies that the laws of X and Y agree. �

To show f.d.d. convergence, we need to control the probability that Xt is in an
“exceptional” set of small ν-measure. To this end, we use the following simple
heat-kernel bound. We will see in Corollary 6.4 below that the technical assump-
tion ν({x}) > 0 can be dropped.

LEMMA 6.2. Let X := (T , r, ν) be a compact metric finite measure tree, x ∈ T

with ν({x}) > 0, and X the speed-ν motion on (T , r) started in x. Then the law of
Xt has for every t > 0 a density qt (x, ·) ∈ L2(ν) w.r.t. ν, and∥∥qt (x, ·)∥∥2

2 ≤ ν(T )−1 + diam(T ) · t−1 ∀t > 0,(6.9)

where ‖ · ‖2 is the norm in L2(ν). In particular, for any A⊆ T , we have

Px{Xt ∈A} ≤ γt

√
ν(A) ∀t > 0,(6.10)

where the constant γt := 1 + ν(T )−1 + diam(T ) · t−1 is independent of x and
depends on (T , r, ν) only through ν(T ) and diam(T ).

PROOF. 1. Let f := ν({x})−11{x} be the density of δx w.r.t. ν, and

ft := Ptf, g(t) := ‖ft‖2
2,(6.11)

where (Pt )t≥0 is the semi-group of the speed-ν motion. Due to reversibility of ν it
is easy to see that ft = qt (x, ·) is the density of Xt w.r.t. ν. Furthermore,

g′(t)= 2〈Gft, ft 〉ν =−2E(ft , ft ),(6.12)

where G is the generator of (Pt )t≥0. Let a := diam(T )−1. Because ‖ft‖1 = 1, we
find a point y ∈ T with ft (y)≤ b := ν(T )−1. For every z ∈ T with ft (z)≥ b, we
have

E(ft , ft )≥ (
ft (z)− ft (y)

)2 · (2r(z, y)
)−1 ≥ 1

2a
(
ft (z)− b

)2
.(6.13)

Combining (6.13) and (6.12), and using g(t)= ‖ft‖2
2 ≤ ‖ft‖∞‖ft‖1 = ‖ft‖∞, we

obtain the differential inequality

g′(t)≤−a
(‖ft‖∞ − b

)2 ≤−a
(
g(t)− b

)2
.(6.14)

In the above, we have used that g(t)≥ b. Solving h′u(t)=−a(hu(t)−b)2, hu(0)=
u, and using monotonicity of the solution in u, we conclude

g(t)≤ lim
u→∞hu(t)= lim

u→∞
u(1+ abt)− ab2t

uat − bat + 1
= b+ (at)−1,(6.15)

which is the desired bound (6.9).
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2. For u := ν(A)−1/2, we obtain

Px{Xt ∈A} ≤ uν(A)+
∫
{ft>u}

f 2
t

u
dν ≤√

ν(A)
(
1+ ‖ft‖2

2
)
.(6.16)

Together with (6.9) this implies the desired bound (6.10). �

PROPOSITION 6.3 (Theorem 1 holds for compact limit trees). Let X :=
(T , r, ρ, ν), X 1 := (T1, r1, ρ1, ν1), X 2 := (T2, r2, ρ2, ν2), . . . be rooted metric
boundedly finite measure trees with supn∈N diam(Tn, rn) <∞. Let X be the speed-
ν motion on (T , r) starting in ρ, and for all n ∈ N, Xn the speed-νn motion on
(Tn, rn) started in ρn. Assume that the following conditions hold:

(A1) The sequence (Xn)n∈N converges to X pointed Gromov-vaguely.
(A2) The uniform local lower mass-bound property (1.6) holds.

Then the following hold:

(i) Xn converges weakly in path-space to X.
(ii) If we assume only (A1) but not (A2), then Xn converges in finite dimen-

sional distributions to X.

PROOF. Assume w.l.o.g. that (Xn)n∈N are discrete trees (the general result is
then obtained by Lemma 6.1 and a diagonal argument). Let Xn be a sequence of
νn-random walks on (Tn, rn) starting in ρn.

(i) By Proposition 4.1, we know that the sequence is tight. Let X̃ be a weak
subsequential limit on (T , r). Then in particular, X̃0 = ρ almost surely. From
Proposition 5.2 together with Proposition 5.6, we know that X̃ is a strong Markov
process and Ex[∫ τz

0 dsf (X̃s)] = 2
∫

ν(dy)r(z, c(x, y, z))f (y).
Let X be the speed-ν motion on (T , r) starting in ρ. Then X is the strong

Markov process associated with the Dirichlet form (E,D(E)). X is recurrent as
clearly 1 ∈ D(E) and E(1,1) = 0. Thus, X satisfies (0.1) by Proposition 2.12.
Moreover, it follows from Lemma 2.6 that X·∧τy is transient for all y ∈ T . There-

fore, the laws of X̃ and X agree by Proposition 5.1.
(ii) Using that Xn converges Gromov-weakly to X , and X is compact, we can

construct subsets An ⊆ Tn with νn(An) → 0, ρn /∈ An and the following prop-
erty. The measure trees X̃n := (T̃n, rn, ρn, νn), where T̃n := Tn \ An, satisfy the
lower mass-bound (1.6) and still converge Gromov-weakly to X . Let X̃n be the
νn-random walk on (T̃n, rn). Then X̃n converges in distribution to X by part (i).
We show that every finite-dimensional marginal of X̃n is weakly merging with
the corresponding marginal of Xn. For this it is enough to show for all t ≥ 0 the
uniform merging of one-dimensional marginals, that is,

lim
n→∞ sup

x∈T̃n

d
(Tn,rn)
Pr

(
Lx(Xn

t

)
,Lx(X̃n

t

))= 0,(6.17)
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where d
(Tn,rn)
Pr is the Prohorov metric associated to rn. The finite-dimensional state-

ment then follows from the Markov property of the speed-ν motions together with
the Feller continuity of the limiting process (proven in Proposition 5.2).

Recall that (Tn, rn) is discrete and thus νn({x}) > 0 for all x ∈ Tn. Using
Lemma 6.2, and the fact that diam(Tn) and νn(Tn)

−1 are bounded uniformly in n,
we obtain γt > 0, independent of n, such that

sup
x∈Tn

Px{Xn
t ∈An

}≤ γt

√
νn(An).(6.18)

We can couple Xn and X̃n by a time transformation such that X̃n
t =Xn

L−1
n (t)

, where

L−1
n (t)= inf{s ≥ 0 : ∫ s

0 1
T̃n

(Xn
u)du > t}. For (6.17), it is enough to show for every

fixed t, ε > 0 that

sup
x∈T̃n

Px{rn(Xn
t , X̃n

t

)
> ε

}≤ 4ε,(6.19)

for all sufficiently large n ∈N. The idea is that Xn
t and X̃n

t do not differ too much,
because X̃n

t cannot move far in a short amount of time and will be ahead of Xn
t

only a small amount of time, controlled via the occupation time formula by the
(small) νn-measure of An = Tn \ T̃n.

Because X̃n converges Gromov–Hausdorff weakly, we can use the speed bound,
Lemma 4.7, to find c > 0 such that the probability that X̃n moves ε within time c

is bounded by ε, that is,

sup
x∈T̃n

Px
{

sup
s∈[0,c]

rn
(
X̃n

s , x
)
> ε

}
≤ ε.(6.20)

In order to use the occupation time formula, we fix two points yn, zn ∈ T̃n with
rn(yn, zn) > ε and define recursively the times where Xn hits yn and zn in alter-
nation, that is, τ 0

n := 0, τ k
n := inf{t > τk−1

n :Xn
t = yn} for k odd and τ k

n := inf{t >

τk−1
n :Xn

t = zn} for k even. Let τ̃ k
n , k ∈N, be the analogous stopping times for X̃n

instead of Xn. Because the lower bound for the distance of yn and zn is indepen-
dent of n, we can use Lemma 4.7 again to find k ∈ N, independent of n, such that
P{τ̃ k

n < t}< ε. Because τ k
n ≥ τ̃ k

n , we also obtain

sup
x∈T̃n

Px{τ k
n < t

}
< ε.(6.21)

Now consider the accumulated time difference between Xn and X̃n until τ k
n ,

that is,

δn :=
∫ τ k

n

0
1An

(
Xn

t

)
dt.(6.22)

Then, by the occupation time formula,

sup
x∈T̃n

Ex[δn] ≤ k · 2 diam(Tn)νn(An).(6.23)
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The right-hand side tends to zero as n tends to infinity, because diam(Tn) is uni-
formly bounded by assumption and k is independent of n. Therefore, for suffi-
ciently large n depending on c chosen in (6.20),

sup
x∈T̃n

Px{δn > c}< ε.(6.24)

On the event {Xn
t /∈An}, we have Xn

t = X̃n
Ln(t), and on the event {τ k

n ≥ t}, we have

t −Ln(t) < δn. Hence, using (6.18) and (6.21), we obtain for all x ∈ T̃n,

Px{rn(Xn
t , X̃n

t

)
> ε

}
≤ Px{Xn

t ∈An

}+ Px{τ k
n < t

}+ Px{t −Ln(t) < δn, rn
(
X̃n

Ln(t), X̃
n
t

)
> ε

}
(6.25)

≤ γt

√
νn(An)+ ε+ Px{δn > c} + Px

{
sup

s∈[t−c,t]
rn
(
X̃n

s , X̃n
t

)}
,

which is bounded by 4ε for large n due to νn(An)→ 0, (6.24) and (6.20) together
with the Markov property of X̃n. This proves (6.19), and hence the claimed f.d.d.
convergence. �

COROLLARY 6.4 (Pointwise L2-heat-kernel bound). Lemma 6.2 remains cor-
rect if we drop the assumption ν({x}) > 0. In particular, for every compact metric
finite measure tree X := (T , r, ν), the following bound on the L2(ν)-norm of the
heat-kernel qt (defined in Lemma 6.2) holds:∥∥qt (x, ·)∥∥2

2 ≤ ν(T )−1 + diam(T ) · t−1 ∀x ∈ T , t > 0.(6.26)

PROOF. Fix x ∈ T , t > 0 and let νn := ν+ 1
n
δx . Let Xn and X be the speed-νn

and speed-ν motion on (T , r), respectively, all started in x. According to Propo-
sition 6.3 for Xn := (Tn, rn, ρn, νn) := (T , r, x, ν + 1

n
δx), the law μn,t of Xn

t con-
verges weakly to the law μt of Xt . According to Lemma 6.2, there is fn,t ∈ L2(ν)

with μn,t = fn,t · ν, and ‖fn,t‖2 is bounded uniformly in n. Therefore, the weak
limit μt also admits a density with the same bound on its L2(ν)-norm. �

We conclude this subsection with examples showing how the violation of the
tightness condition (A2) destroys convergence in path space, while f.d.d. conver-
gence still holds.

EXAMPLE 6.5 (F.d.d. convergence but not path-wise). Let r, r1, r2, . . . be the
Euclidean metric on [0,1].

(i) Let Tn = {0,1}, and νn = δ0 + 1
n
δ1 for n ∈ N. Then Xn := (Tn, r,0, νn)

converges pointed Gromov-vaguely to X := ({0}, r,0, δ0). The speed-νn motion
Xn is a two-state Markov chain that jumps from 0 to 1 at rate 1

2 and from 1 to 0 at
rate n

2 . It obviously converges f.d.d. to the constant process, but not in path-space.
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(ii) Let Tn = [0,1], and νn = δ0 + δ1 + 1
n
λ[0,1], where λ[0,1] is Lebesgue

measure on [0,1]. Then (Tn, r,0, νn) converges pointed Gromov-vaguely to
({0,1}, r,0, ν) with ν = δ0 + δ1. The speed-ν motion X is the symmetric Markov
chain on {0,1} with jump-rate 1

2 , and the speed-νn motions Xn are sticky Brown-
ian motions on [0,1] with diverging speed on (0,1), as n tends to ∞. As Xn has
continuous paths for each n ∈ N but X has discontinuous paths, the convergence
cannot be in path space. The finite dimensional distributions of Xn, however, con-
verge to those of X, as the processes Xn spend less and less times in discontinuity
points.

6.2. From compact to locally compact limit trees. In this subsection, we ex-
tend the proof of Theorem 1 to locally compact trees equipped with boundedly
finite speed measures. In order to reduce this to the compact case, we stop the pro-
cesses upon reaching a height R. For that purpose, we need the following lemma
whose proof is straight-forward and will therefore be omitted.

Recall the closed interval property from Definition 5.7.

LEMMA 6.6 (Continuity points). Let (E,d) be a Polish space, ρ ∈ E, and
R > 0. Define the function

ψR:DE →DE, ψR(w)(t) :=w
(
t ∧ inf

{
s : d(ρ,w(s)

)≥R
})

.(6.27)

Assume that w ∈ DE has the closed-interval property, and that the map t �→
d(ρ,w(t)) does not have a local maximum at height R. Then w is a continuity
point of ψR .

PROOF OF THEOREM 1. (ii) has already been shown in Proposition 6.3.
(i) We call a point v ∈ T extremal leaf of T if the height function h:T → R+,

x �→ r(ρ, x) has a local maximum at v. Note that, although there can be uncount-
ably many extremal leaves, the set of heights of extremal leaves is at most count-
able due to separability of T . Now choose Rk > 0, k ∈N, with Rk →∞ such that
there is no extremal leaf of T at height Rk and ν{x′ ∈ T : r(ρ, x′)=Rk} = 0.

Let X be the speed-ν motion on (T , r) started in ρ, and recall that X = X·∧ζ ,
where ζ := inf{t ≥ 0 : r(ρ,Xt)=∞}. We show that the law of X coincides with
the law of X̃·∧ζ := ψ∞(X̃), where X̃ is any limit process. Using that there is no
extremal leaf of T at height Rk and that X̃ and X have the closed-interval property,
we obtain from Lemma 6.6 that (the paths of) X̃ and X are almost surely continuity
points of ψRk

.
Let Xn

k be the speed-νn motion on the compact metric measure tree Tn�B(ρn,Rk)

and Xk the speed-ν motion on the compact metric measure tree T �B(ρ,Rk)
. Then,

for every k ∈ N, Xn
k �⇒n→∞Xk , as n →∞, by Proposition 6.3. Furthermore, for

every k there is an �= �k , such that the laws of ψRk
(Xn) and ψRk

(Xn
� ) coincide;

and the same is true for ψRk
(X) and ψRk

(X�).
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By continuity of ψRk
in X̃ and X, we obtain

ψRk

(
Xn

�

) L=ψRk

(
Xn) L�⇒

n→∞ψRk
(X̃),(6.28)

and on the other hand

ψRk

(
Xn

�

) L�⇒
n→∞ψRk

(X�)
L=ψRk

(X).(6.29)

Hence, ψRk
(X̃)

L= ψRk
(X) for all k ∈ N and, therefore, ψ∞(X̃)

L= ψ∞(X)=X as
claimed. �

7. Examples and related work. We conclude the paper with a discussion on
how our invariance principle relates to results from the existing literature. These
results have often been proven via quite different techniques but they all follow in
a unified way from Theorem 1.

In Section 7.1, we revisit [31] which (including a killing part) proves the in-
variance principle in the particular situation when the underlying metric trees are
closed subsets of R, or equivalently, linear trees. In Section 7.2, we connect our
invariance principle with the construction of diffusions on so-called dendrites, or
equivalently, R-trees, which is given in [23]. We continue in Section 7.3 with [12],
where the classical convergence of rescaled simple random walks on Z to Brown-
ian motion on R is generalized in a different direction than in [31]. Namely, simple
random walks on discrete trees with uniform edge-lengths are proven to converge
to Brownian motion on a limiting rooted compact R-tree which additionally has to
satisfy some conditions. Finally, in Section 7.4 we consider the nearest neighbor
random walk on a size-biased branching tree for which the suitably rescaled height
process averaged over all realizations is tight according to [22], while for almost
every fixed realization it is not tight by [7].

7.1. Invariance principle on R. In this subsection, we consider the special
case of linear trees, that is, closed subsets of R.

Let ν, νn, n ∈ N, be locally finite measures on R, T := supp(ν) and Tn :=
supp(νn). Denote the Euclidean metric on R by r . Then (T , r,0, ν) and (Tn, r,

0, νn) are obviously rooted metric boundedly finite measure trees in the sense of
Definition 1.1. Also note that the speed-ν motion is conservative (i.e., does not hit
infinity), because the tree (T , r) is recurrent (see, e.g., [5], Theorem 4). Now if
νn converges vaguely to ν, and the uniform local lower mass-bound (1.6) holds,
Theorem 1 implies that the speed-νn motions converge in path-space to the speed-
ν motion. This (essentially) is Theorem 1(i) obtained in [31] in the special case,
where the killing measures are not present.

The methods used in [31] are quite different from ours. In that paper, all pro-
cesses are represented as time-changes of standard Brownian motion and a jointly
continuous version of local times is used.
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EXAMPLE 7.1 (Standard motion on disconnected sets). A particular instance
of Stone’s invariance principle was studied in detail in [8]. Put for each q > 1,
Tq := {±qk;k ∈ Z} ∪ {0} and ρq = 0. Then (Tq)q>1 converges, as q ↓ 1, to R

with respect to the localized Hausdorff distance. Recall the length measure from
(2.2). Obviously, as the length measure is always boundedly finite on linear trees,
the embedding which sends a rooted tree (T ,ρ) with T ⊆ R to the measure tree
(T ,ρ,λ(T ,ρ)) is a homeomorphism onto its image. Thus, (Tq,0, λ(Tq,0)) converges
Hausdorff-vaguely to (R,0, λ), as q ↓ 1, where λ is the Lebesgue measure. It
therefore follows that the speed-λ(Tq,0) motion on Tq converges in path space to
the standard Brownian motion on R by Theorem 1. The latter is Proposition 5.1
in [8].

7.2. Diffusions on dendrites. In [23], diffusions on dendrites (which are R-
trees) are constructed via approximating Dirichlet forms rather than processes. In
this subsection, we relate our invariance principle to this construction.

Let (T , r, ρ, ν) be a complete, locally compact, rooted boundedly finite measure
R-tree. Let furthermore (Tm)m∈N be an increasing family of finite subsets of T . Put
for all f,g : Tm →R

Em(f,g) := 1

2

∫
Tm

λ(Tm,rm,ρ)(dy)∇f (y)∇g(y).(7.1)

Assume for each m ∈ N that Tm contains all the branch points of the sub-
tree spanned by Tm [see our condition (1.2)]. Then for all m ≤ m′, and for all
f : Tm →R,

Em(f,f )=min
{
Em′(g, g) : g : Tm′ →R, g�Tm

= f
}
.(7.2)

That is, the sequence (Tm,Em)m∈N is compatible in the sense of Definition 0.2 (and
the following paragraph) in [23]. Assume further that T ∗ := ⋃

m∈N Tm is dense
in T , and consider the bilinear form:

EKigami(f, g) := lim
m→∞Em(f �Tm

, g�Tm
)(7.3)

with domain

FKigami := {
f : T ∗ →R : limit on RHS of (7.3) exists

}
.(7.4)

Let D(EKigami) be the completion of FKigami∩Cc(T ) with respect to the EKigami+
(·, ·)ν-norm. By Theorem 5.4 in [23], (EKigami, D̄(EKigami)) is a regular Dirichlet
form.

It was shown in Remark 3.1 in [5] that the unique ν-symmetric strong Markov
process associated with (EKigami, D̄(EKigami)) is the speed-ν motion on (T , r).

The bilinear form EKigami describes the discrete time embedded Markov chains
evaluated at Tn, n ∈ N. The fact that it is a resistance form means that the projec-
tive limit diffusion is on “natural scale,” which we additionally equip with speed
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measure ν. We can, of course, also approximate the speed-ν motion on (T , r) by
continuous time Markov chains evaluated at Tn, n ∈ N. Similarly, as in the proof
of Lemma 6.1, consider for each n ∈N the map ψn : T → Tn which sends a point
in T to the nearest point on the way from x to ρ which belongs to Tn, that is,

ψn(x) := sup
{
y ∈ Tn : y ∈ [ρ,x]},(7.5)

and equip Tn with

νn := (ψn)∗ν.(7.6)

As T ∗ is dense, (νn)n∈N converges vaguely to ν, and thus (Tn, r, νn)n∈N converges
Gromov–Hausdorff-vaguely to (T , r, ν). It therefore follows from our invariance
principle that the continuous time Markov chains which jump from v ∈ Tn to a
neighboring v ∼ v′ at rate (2νn({v})r(v, v′))−1 converges weakly in path space to
the speed-ν motion on (T , r).

7.3. Invariance principle with homogeneous rescaling. In this subsection, we
relate our invariance principle to the one obtain earlier in [12]. We first recall the
excursion representation of a rooted compact measure R-tree. We denote by

E := {
e: [0,1]→R+|e is continuous, e(0)= e(1)= 0

}
(7.7)

the set of continuous excursions on [0,1]. From each excursion e ∈ E , we can
define a measure R-tree in the following way:

• Define a pseudo-distance on [0,1] by re(x, y) := e(x)+ e(y)− 2 inf[x,y] e.
• Call x, y ∈ [0,1] equivalent, x ∼e y, if re(x, y)= 0.
• Endow the image of the canonical projection πe: [0,1] → [0,1]/∼e with the

push forward of re (again denoted re). Then Te := (Te, re, ρe) := (πe([0,1]),
re,πe(0)) is a rooted compact R-tree.

• Endow this space with the probability measure μe := πe∗λ[0,1] which is the push
forward of the Lebesgue measure on [0,1].

We denote by g : E → Tc the resulting “glue function,”

g(e) := (Te, re, ρe,μe),(7.8)

which sends an excursion to a rooted probability measure R-tree.
Recall Tc from (3.2). Given X := (T , r, ρ, ν) ∈ Tc, we say that X satisfies a

polynomial lower bound for the volume of balls, or short a polynomial lower bound
if there is a κ > 0 such that

lim inf
δ↓0

inf
x∈T

δ−κν
(
Br(x, δ)

)
> 0.(7.9)

In [12], the following subspace of Tc is considered:

T∗ := {
X = (T , r, ρ, ν) ∈ Tc :

(a) ν is non-atomic, (b) ν is supported on the leaves, and(7.10)

(c) ν satisfies a polynomial lower bound
}
.
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Let ((Tn, ρn))n∈N, be a sequence of rooted graph trees with #Tn = n, whose search-
depth functions en in E with uniform topology satisfy

1

an

en −→
n→∞ e(7.11)

for a sequence (an)n∈N and some e ∈ E with (Te, re,0,μe) ∈ T∗. In Theorem 1.1
of [12], it is shown that the discrete-time simple random walks on Tn starting in ρn

with jump sizes rescaled by 1/an and speeded up by a factor of n · an converge to
the μe-Brownian motion on Te starting in 0.

To connect the above construction with Theorem 1 notice that the map g

from (7.8) is continuous if Tc is endowed with the rooted Gromov–Hausdorff-
weak topology, and E with the uniform topology (see [2], Proposition 2.9; compare
also [26], Theorem 4.8, for a generalization to lower semi-continuous excursions).
Thus, it follows from (7.11) that if we put νn := μ

a−1
n en

, then (Tn, νn) converges
to (Te,μe) rooted Gromov–Hausdorff-weakly. Analogously to Example 1.5, we
obtain that d

(Tn,rn)
Pr (νn, ν̃n)≤ a−1

n , where

ν̃n

({v}) := deg(v)

2n
,(7.12)

and that thus also (Tn, ν̃n) converges to (Te,μe) rooted Gromov–Hausdorff-
weakly by [6], Lemma 2.10. Theorem 1 then implies that unit rate simple random
walks with edge lengths rescaled by a−1

n and speeded up by n · an converge to the
speed-μe motion on (Te, re). As μe always has full support, the requirement that
μe is supported on the leaves already implies that (Te, re) is an R-tree and thus the
speed-μe motion on (Te, re) has continuous paths.

Note that in contrast to [12] our Theorem 1 does not require any additional
assumptions on the limiting tree, which also does not have to be an R-tree. The
polynomial lower bound or that ν is non-atomic and supported on the leaves are
not required. Also note that Theorem 1.1 of [12] does only allow for homogeneous
(non-state-dependent) rescaling. This means, for example, that in the particular
case where the trees (Tn, rn) are subsets of R, only the case Tn = a−1

n Z∩[0, na−1
n ]

and νn({x})= n−1, x ∈ Tn, is covered.

7.4. Random walk on the size-biased branching tree. Theorem 1 applies to
trees that are complete and locally compact. The extension from compact to com-
plete, locally compact trees is relatively straight-forward. However, this extension
helps us to cover the random walk on the size-biased Galton–Watson tree studied
in [22] in the annealed regime and in [7] in the quenched regime. In this subsection,
we want to illuminate these results and put them in the context of our invariance
principle.

Consider a random graph theoretical tree TKesten which is distributed like the
rooted Galton–Watson process with finite variance mean 1 offspring distribution
conditioned to never die out. Let X be the (discrete-time) nearest neighbor random
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walk on TKesten and d the graph distance on TKesten. Consider the rescaled height
process

Z
(n)
t := n−1/3 · d(ρ,X"nt#), t ≥ 0.(7.13)

In [22], it is shown that if τBc(ρ,N) := inf{n ≥ 0 : d(ρ,Xn) = N}, then for all
ε > 0 there exists λ1, λ2 such that under the annealed law P∗,

P∗
{
λ1 ≤N−3τBc(ρ,N) ≤ λ2

}≥ 1− ε,

for all N ≥ 1. Moreover, under P∗, the process Z(n) converges weakly in path
space to a non-trivial process Z with continuous paths.

In contrast to this annealed regime, in [7] (in the continuous time setting) it is
shown that for almost all realizations of TKesten, the family {Z(n);n ∈ N} is not
tight.

These two statements relate to our invariance principle as follows. Recall
from (7.7) the space of continuous excursions on [0,1] and from (7.8) the glue
map g which sends an excursion e ∈ E to a rooted metric tree ([0,1]/∼e, re,0)

as well the map πe, which given e ∈ E , sends a point from the excursion interval
[0,1] to Te. We can easily extend the maps g and πe to the space

E∞ :=
{
e:R→R+

∣∣e is continuous, e(0)= 0, lim
x→±∞ e(x)=∞

}
(7.14)

of continuous, two-sided, transient excursions on R. To this end, we use the semi-
metric defined by

re(x, y) :=
⎧⎨
⎩

e(x)+ e(y)− 2 inf
z∈[x,y] e(z), xy ≥ 0,

e(x)+ e(y)− 2 inf
z∈R\[x,y] e(z), xy < 0,

(7.15)

for x ≤ y (see [13]). Then g(e) is a rooted locally compact metric measure tree
with a boundedly finite measure, for all e ∈ E∞. It is not hard to show that the map
g from (7.8) is continuous if T is endowed with the rooted Gromov–Hausdorff-
vague topology, and E∞ with the uniform topology on compact sets (see [6],
Proposition 7.5).

In the particular case of a geometric offspring distribution, TKesten can be asso-
ciated with the (two-sided) random excursion W̃ , where for all t ∈R,

W̃t :=
⎧⎨
⎩

Wt − 2 inf
s∈[0,t]Ws, t ≥ 0,

Wt − 2 inf
s∈[t,0]Ws, t < 0,

(7.16)

with a simple two-sided random walk path (Wn)n∈Z, W0 = 0, linearly interpolated.
As W converges, after Brownian rescaling, weakly in path space towards (two-
sided) standard Brownian motion (Bt )t∈R, we have(

n−1/3W̃n2/3t

)
t∈R �⇒

n→∞(B̃t )t∈R,(7.17)

where B̃t := Bt − 2 infs∈[0∧t,t∨0]Bs .
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Given a realization e of W̃ , define en := n−1/3e(n2/3·) ∈ E∞ and denote by νn

the rescaled degree measure on Ten , that is, for all A⊆ Ten ,

νn(A) := n−2/3
∑
v∈A

1

2
deg(v).(7.18)

By Proposition 2.8 in [7], for almost all realizations e of W̃ ,

lim inf
n→∞ νn

(
B(ρ,R)

)= 0 and lim sup
n→∞

νn

(
B(ρ,R)

)=∞,(7.19)

and thus the sequence {νn;n ∈ N} does not converge. Consider once more the
map which sends all points of a half edge to its end point, and notice that the
image measure of μen = (πen)∗λR+ under this map equals νn. Thus, the Prohorov
distance between μen and νn is at most n−1/3, and thus for almost all realizations
e of W̃ , also the sequence {μen;n ∈N} does not converge. Hence, the assumptions
on our invariance principle fail for almost all realizations of TKesten.

Notice that we can choose for each n ∈ N a realization en of n−1/3W̃n2/3·, and
a realization e of B̃ , such that en −→

n→∞ e, almost surely. To understand why the

quenched rescaling failed, notice that en −→
n→∞ e CANNOT be realized via a cou-

pling such that all the en come from the same realization of W̃ . As now g(en)

clearly converges to g(e) by continuity of g, Theorem 1 implies that the speed-
μen random walk Xn on (Ten, ren) starting in ρen converges weakly in path space
to the μe-Brownian motion X = (Xt)t≥0 on (Te, re) started in ρe for almost all
realizations. We can interpret this as annealed convergence in law of Xn to X,
which we define—in analogy to Definition 1.3 and in view of Skorohod’s repre-
sentation theorem—as follows. There exists a coupling of the underlying random
spaces X = (Te, re,μe), Xn = (Ten, ren,μen), n ∈ N, such that almost surely, con-
ditioned on these spaces, Xn converges weakly in path space to X in the sense of
Definition 1.3. In particular, the rescaled height processes Z(n), defined in (7.13),
converge under the annealed law to the height process Z = (Zt )t≥0 defined by
Zt := re(ρe,Xt). As X is recurrent by Theorem 4 in [5], its life time is infinite,
and Z is non-trivial.

7.5. Motions on �-coalescent measure trees. We conclude the example sec-
tion with the example of speed-ν motions on the �-coalescent measure trees for
appropriate measures ν. These have not been considered in the literature so far.

Let � be a finite measure on ([0,1],B([0,1])) which satisfies

∞∑
n=2

(∫ 1

0

n∑
k=2

(
n

k

)
(k − 1)xk−2(1− x)n−k�(dx)

)−1

<∞.(7.20)

Denote by S the set of all partitions of N, and for each n ∈ N by Sn the set of all
partitions of {1, . . . , n}. Write ρn for the restriction map from S to Sn.
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The �-coalescent is the unique S-valued strong Markov process ζ , such that for
each n ∈N the restricted process ρn(ζ ) is the following Sn-valued continuous time
Markov chain. Given the current partition P ∈ Sn, every k-tuple of its partition
elements merges independently at rate

λk,#P :=
∫

�(dx)xk−2(1− x)#P−k(7.21)

into one partition element, thereby forming a new partition. It is known that con-
dition (7.20) is equivalent to the �-coalescent coming down from infinity, that
is, under (7.20), #ζt <∞ for each t > 0, almost surely [30]. Furthermore, (7.20)
implies the so-called dust-free property, that is,

∫ 1
0 �(dx)x−1 =∞.

Equip for each realization of the �-coalescent started in P0 := {{i} : i ∈ N} the
set N with the genealogical distances, that is, r(i, j) is for all i, j ∈N the first time
when i and j belong to the same partition element. Denote the completion of (N, r)

by (T�, r). Obviously, coming down from infinity implies (and is in fact equivalent
to) the compactness of T�. Further, equip for each n ∈ N, T� with the sampling
measure μn := 1

n

∑n
i=1 δi . By Theorem 4 in [19] the sequence ((T�, r,μn))n∈N

converges weakly in Gromov-weak topology towards the so-called �-coalescent
measure tree, (T�, r,μ).

Consider next the R-tree (T̄�, r̄) spanned by (T�, r), and notice that T� is ultra-
metric. We therefore find a unique point ρ ∈ T̄� whose distance to T� equals
diam(T̄�)/2, which we choose as the root. For each point x ∈ T̄� denote by

Sx := {
z ∈ T� : x ∈ [ρ, z]}(7.22)

the (leaves of the) subtree above x, and recall from (2.2) the notion of the length
measure λ(T ,r,ρ) of a rooted compact metric tree (T , r, ρ).

Define the speed measures νn, n ∈N, and ν on T̄� as being absolutely continu-
ous with respect to the length measure with densities

dνn

dλT̄�
(x) := μn(Sx) and

dν

dλT̄�
(x) := μ

(
Sx),(7.23)

for all x ∈ T̄�. Obviously, νn, n ∈N, and ν are finite measures with total masses at
most (and in fact due to the dust-free property equal to) diam(T̄�)/2. Note that
for every ultra-metric space (T , r), the map ξ (T ,r) which sends a pair (t, x) ∈
[0,∞)×T to the unique “ancestor” of x a time t back, that is, the unique y ∈ T̄ (T̄
denoting the span of T ) with r̄(y, x)= t ∧ 1

2 diam(T̄ ) is continuous. Hence, using
the convergence alluded to earlier (Theorem 4 in [19]) the sequence ((T̄�,νn))n∈N
converges weakly in Gromov-weak topology toward (T̄�,ν). Our invariance prin-
ciple therefore implies that the νn-Brownian motion on (supp(νn), r̄) converges
weakly to the ν-Brownian motion on (T̄�, r̄) in the sense of finite dimensional
marginals (provided all Brownian motions start at the same point). Applying once
more the dust-free property implies that the global lower mass-bound holds, and
thus the convergence holds even in path space.
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We can modify the example such that we obtain path-wise convergence of a
continuous time Markov chain to a motion on a totally disconnected (limiting)
tree. For that purpose, denote by Br(T̄�) the set of branch points of T̄�, that is,
the set of those x ∈ T̄� such that either x = ρ or T̄� \ {x} consists of at least 3
connected components. Consider now the (atomic) length measure on Br(T̄�) and
the Dirac measure δρ , and define

λ̂ := λ(Br(T̄�),r̄,ρ) + δρ.(7.24)

We use the speed measures ν̃n, n ∈N, and ν̃ on T̄� which are absolutely continu-
ous with respect to λ̂ with densities

dν̃n

dλ̂
(x) := μn(Sx) and

dν̃

dλ̂
(x) := μ

(
Sx)(7.25)

for all x ∈ Br(T̄�). For each ε ∈ (0, 1
2 diam(T̄�)) and for all suitably large n ∈ N,

we have supp(ν̃n) ∩ {x ∈ Br(T̄�) : r̄(x,T�) ≥ ε} = {x ∈ Br(T̄�) : r̄(x,T�) ≥ ε}.
Therefore, the sequence ((T̄�, ν̃n))n∈N also converges weakly in Gromov-weak
topology toward (T̄�, ν̃). Thus our invariance principle applies to the speed-ν̃n

random walk on supp(ν̃n) and the speed-ν̃ motion on supp(ν̃)= Br(T̄�)∪ T�.
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