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ON THE SUBMARTINGALE PROBLEM FOR REFLECTED
DIFFUSIONS IN DOMAINS WITH PIECEWISE

SMOOTH BOUNDARIES

BY WEINING KANG AND KAVITA RAMANAN1

University of Maryland and Brown University

Two frameworks that have been used to characterize reflected diffu-
sions include stochastic differential equations with reflection (SDER) and the
so-called submartingale problem. We consider a general formulation of the
submartingale problem for (obliquely) reflected diffusions in domains with
piecewise C2 boundaries and piecewise continuous reflection vector fields.
Under suitable assumptions, we show that well-posedness of the submartin-
gale problem is equivalent to existence and uniqueness in law of weak solu-
tions to the corresponding SDER. The main step involves showing existence
of a weak solution to the SDER given a solution to the submartingale prob-
lem. This generalizes the classical construction, due to Stroock and Varad-
han, of a weak solution to an (unconstrained) stochastic differential equation,
but requires a completely different approach to deal with the geometry of
the domain and directions of reflection and properly identify the local time
on the boundary, in the presence of multi-valued directions of reflection at
nonsmooth parts of the boundary. In particular, our proof entails the con-
struction of classes of test functions that satisfy certain oblique derivative
boundary conditions, which may be of independent interest. Other ingre-
dients of the proof that are used to identify the constraining or local time
process include certain random linear functionals, suitably constructed ex-
ponential martingales and a dual representation of the cone of directions of
reflection. As a corollary of our result, under suitable assumptions, we also
establish an equivalence between well-posedness of both the SDER and sub-
martingale formulations and well-posedness of the constrained martingale
problem, which is another framework for defining (semimartingale) reflected
diffusions. Many of our intermediate results are also valid for reflected diffu-
sions that are not necessarily semimartingales, and are used in a companion
paper [Equivalence of stochastic equations and the submartingale problem
for nonsemimartingale reflected diffusions. Preprint] to extend the equiva-
lence result to a class of nonsemimartingale reflected diffusions.
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1. Introduction.

1.1. Background and motivation. A reflected diffusion in a nonempty, con-
nected domain G with a vector field d(·) on the boundary ∂G and measurable
drift and dispersion coefficients b : Ḡ �→ RJ and σ : Ḡ �→ RJ×J defined on the
closure Ḡ of the domain is a continuous Markov process that, roughly speaking,
behaves like a diffusion with (state-dependent) drift b(·) and dispersion σ(·) in-
side the domain and that is restricted to stay in Ḡ by a constraining force that is
only allowed to act along the directions specified by the vector field on the bound-
ary. For historical reasons, this constrained process is referred to as a reflected
diffusion. Two approaches to providing a precise mathematical characterization
of this intuitive description are the framework of stochastic differential equations
with reflection (SDER), which is used, for example, in [4, 9, 14, 31, 37] and [32],
and the submartingale problem formulation introduced by Stroock and Varadhan
in [39]. These two approaches are respective generalizations of the stochastic dif-
ferential equation (SDE) and martingale problem formulations commonly used to
analyze diffusions in RJ . In the case of (unconstrained) diffusions, under fairly



406 W. KANG AND K. RAMANAN

general conditions, there is a well-established equivalence between existence and
uniqueness in law of weak solutions to SDEs and well-posedness of the martingale
problem (see, e.g., [40] and [27]). Somewhat surprisingly, there appears to be no
such general correspondence available in the case of obliquely reflected diffusions
in nonsmooth domains. Such reflected diffusions arise in a broad range of appli-
cations, including queueing theory, biochemical reaction networks, mathematical
finance and the study of interacting particle systems and random matrices.

The goal of the current work and the companion paper [22] is to establish
the equivalence between well-posedness of the submartingale problem and well-
posedness of the associated SDER formulation for a large class of obliquely re-
flected diffusions in piecewise smooth domains (see Section 2 for precise defi-
nitions). In Theorem 1, we prove this equivalence for semimartingale reflected
diffusions with a measurable, locally bounded drift and a continuous and uniformly
elliptic diffusion coefficient in piecewise C2 domains with piecewise continuous
reflection that satisfy a certain geometric condition. This condition, which ensures
the semimartingale property, is a generalization of the so-called completely-S con-
dition that is used for RBMs in the orthant [6]. Several intermediate results in the
proof hold in greater generality, and are used in [22] to extend the equivalence to a
larger class of reflected diffusions that are not necessarily semimartingales, which
arise in many situations [7, 12, 15, 20, 33, 34]. In [22], we also provide a counterex-
ample to show that this equivalence can fail to hold for certain nonsemimartingale
reflected diffusions outside the class therein, thus underscoring the subtleties in-
volved in the proof of this equivalence. Another approach that can be used to con-
struct reflected diffusions is the so-called constrained martingale problem (CMP)
of Kurtz [26], although as formulated in [26], it only applies to semimartingale
reflected diffusions. As a corollary of our main result (see Remark 3.2), we also
establish equivalence of the well-posedness of the CMP formulation and the SDER
formulation for a class of semimartingale reflected diffusions.

Our work unifies and clarifies the connections between these different ap-
proaches to constructing reflected diffusions. The submartingale problem was orig-
inally formulated only for smooth domains and continuous reflection [39]. Exten-
sions to domains with nonsmooth boundaries had previously been considered only
in special cases [12, 29, 30, 42, 44]. With the exception of [44], in each of these
cases, the boundaries of the domains considered have only a single point of nons-
moothness. The work [44] considered the class of skew-symmetric reflected Brow-
nian motions (RBMs) in polyhedral domains, which have the special property that
they almost surely do not hit the nonsmooth parts of the boundary. For general do-
mains with nonsmooth boundaries and oblique reflection, even the formulation of
the submartingale problem is somewhat subtle and a correct formulation in multi-
dimensional nonsmooth domains had been a longstanding open problem [45] [see
comment (iii) of Section 4 therein]. In Definition 2.9, we first introduce a gen-
eral formulation of the submartingale problem in domains with piecewise smooth
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boundaries. The equivalence result established here provides additional validation
that this is a useful formulation.

Another motivation for this work arises from the fact that whereas some prop-
erties of reflected diffusions such as existence and uniqueness in law and large
deviation results have been established using the SDER framework in [1, 14, 31,
32], other properties such as boundary properties and characterizations of station-
ary distributions have been established for reflected diffusions associated with a
submartingale problem [21, 43] or (for semimartingale reflected diffusions) the
constrained martingale problem [28]. The equivalence result that we establish al-
lows one to transfer results proved in one setting to the other setting. For example,
the work [21] provides a characterization of stationary distributions for reflected
diffusions in piecewise smooth domains that are defined via a well-posed sub-
martingale problem. When combined with the main result of this paper (Theo-
rem 1), this yields a characterization of stationary distributions of a large class
of well-posed SDER that arise in applications. Furthermore, our results show that
to establish well-posedness of the submartingale problem one can without loss of
generality assume that the drift is zero (see Remark 3.1). In addition, it is some-
times easier to establish existence of reflected diffusions using the submartingale
problem formulation, but easier to establish uniqueness in law using the SDER
formulation. Our subsidiary result (Theorem 3) shows that uniqueness in law of
a solution to the SDER implies uniqueness of the submartingale problem. Thus,
our results are potentially also useful for establishing well-posedness of the sub-
martingale problem.

1.2. Discussion of the proof and outline of the paper. Even in cases where
the submartingale problem is well formulated, establishing a correspondence be-
tween the submartingale problem and weak solutions to SDERs has been consid-
ered challenging ([11], page 149). In the case of nonsmooth domains, only very
special cases seem to have been previously considered, such as, for example, nor-
mal reflection in the d-dimensional nonnegative orthant, which essentially reduces
to a one-dimensional problem (see [3], Theorem V.1.1, and [5], Proposition 2.1, for
a brief discussion of this case). The proof of Theorem 1 follows from two results,
established in Theorem 2 and Theorem 3, respectively. With a view to extending
these results to include a class of nonsemimartingale reflected diffusions in [22],
these two theorems are established in slightly greater generality, where the geomet-
ric (generalized completely-S) condition is allowed to fail in a certain subset of the
boundary of the domain. Theorem 2 shows that any weak solution of the SDER
satisfies the submartingale problem. This is an immediate consequence of Itô’s
formula when the weak solution is a semimartingale, but requires an additional ar-
gument when the semimartingale property fails to hold. The crux of this work lies
in the proof of the converse, stated in Theorem 3, which entails the construction of
a weak solution to an SDER with a specific initial condition from a solution to the
corresponding submartingale problem with that same initial condition.
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As elaborated below, this construction is considerably complicated by the pres-
ence of nonsmooth boundaries and the geometry of the directions of reflection.
To describe the main ideas behind our proof, we first briefly recall the classical
construction (due to Stroock and Varadhan) of a weak solution to a stochastic dif-
ferential equation (SDE) from a solution to the martingale problem. Given smooth
drift and diffusion coefficients b :RJ �→RJ and σ :RJ �→RJ×N , let a = σσT be
the diffusion coefficient and let L be the usual associated second-order differential
operator:

(1.1) Lf (x) .=
J∑

i=1

bi(x)
∂f

∂xi
(x)+ 1

2

J∑
i,j=1

aij (x)
∂2f

∂xi ∂xj
(x),

for sufficiently smooth test functions f : RJ �→ R. Let (C,M, {Mt }) denote the
usual canonical filtered probability space (see Section 2.2 for a precise definition),
and recall that a solution to the martingale problem associated with b and σ with
initial condition z ∈RJ is a probability measure Pz on (C,M) such that for every
z ∈RJ , Pz(ω(0)= z)= 1 and for every sufficiently smooth f , the process

Sf (t)
.= f

(
ω(t)

)− f
(
ω(0)

)− ∫ t

0
Lf

(
ω(s)

)
ds, t ≥ 0,

is a local martingale with respect to the filtration {Mt } under Pz. To construct a
weak solution from the solution Pz, one first chooses linear test functions of the
form f (x)= xi to conclude that

(1.2) S(t)
.= ω(t)−ω(0)−

∫ t

0
b
(
ω(s)

)
ds, t ≥ 0,

is a local martingale. Next, using quadratic test functions of the form f (x)= xixj ,
it is easy to show that [S(i), S(j)](t) = ∫ t

0 aij (ω(s)) ds, where S(i) is the ith co-
ordinate process of S and [S(i), S(j)] represents the covariation of S(i) and S(j).
Finally, under a uniform ellipticity condition on a, one can invoke the martingale
representation theorem to show that there exists an N -dimensional Brownian mo-
tion B (on a possibly extended probability space) such that if S is the process
whose ith coordinate is Si , then S(t) = ∫ t

0 σ(ω(s)) dB(s). When combined, this
proves that under Pz, the coordinate process Z(t,ω) = ω(t) and the Brownian
motion B form a weak solution to the SDE with drift b and dispersion σ .

In contrast, in the case of the submartingale problem (see Definition 2.9), one
only knows that the process Sf is a submartingale and only for test functions
f that satisfy certain oblique derivative boundary conditions. In particular, this
typically does not include linear or quadratic test functions. Furthermore, one has
to construct not only a Brownian motion, but also a constraining process or local
time that pushes in the right directions, as specified by the (possibly multi-valued)
reflection vector field. In the case of a smooth domain and smooth reflection vector
field, it is possible to first construct the pushing process and then show that the
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original process minus the pushing process satisfies a martingale problem [39].
However, this approach appears not to be feasible in the presence of a multi-valued
reflection field. Thus, our construction in the case of reflected diffusions requires
a completely different approach, which we briefly outline.

For a fixed initial condition z and an associated solution to the submartingale
problem Qz on (C,M), we consider the canonical process Z(t,ω)= ω(t). In con-
trast to the unconstrained case, in this case the process S in (1.2) is not a mar-
tingale, and may not even be a semimartingale in general. Instead, we construct
a nested sequence of domains Gm that increase to G and show that S is a mar-
tingale on random time intervals when Z lies within the domain Gm. We then
use arguments similar to those used in the unconstrained case and take a suitable
limit to construct a candidate driving Brownian motion W in Section 4.2. Then,
in Section 4.3 we show that Z is a semimartingale upto a certain stopping time
(see Proposition 4.8). This entails an application of the Doob–Meyer decompo-
sition theorem and requires establishing the existence of certain test functions f

that satisfy certain oblique derivative boundary conditions (see Lemma 4.3 and
Lemma 4.4), and a certain covering argument (Lemma 4.5) to patch together local
arguments. The construction of test functions is somewhat involved for piecewise
smooth domains, due to both the curvature of the domain and the presence of mul-
tiple derivative conditions at the intersections of domains (see Appendix C). Next,
in Section 4.4, we show that over intervals during which Z lies in the interior of
the domain, the stopped semimartingale S is in fact a martingale, that is equal to
the appropriate stochastic integral with respect to the constructed Brownian mo-
tion. The most challenging step is the characterization of the behavior of Z on the
boundary of the domain, including, in particular identification of the local time
or pushing process. This step, which is carried out in Section 4.5, is once again
significantly complicated by the fact that multiple directions of reflection are al-
lowed at nonsmooth parts on the boundary and requires several new ingredients
in the proof. Specifically, we introduce certain random linear functionals and use
functional analytic tools, combined with the Doob–Meyer decomposition theorem
and certain exponential martingales, to show that the bounded variation term in the
semimartingale decomposition admits an integral representation with respect to a
certain random measure (see Sections 4.5.1 and 5). We then use properties of this
integral representation along with a certain boundary property of solutions to the
submartingale problem established in [21], and a dual representation for the cone
of directions of constraint at a point to show that the trace of the local martingale
term in the decomposition vanishes on the boundary and that the bounded varia-
tion term behaves like a local time, acting only on the boundary (see Section 4.5.2)
and “pushing” in the right directions specified by the reflection vector field (see
Section 4.5.3).

The outline of the rest of the paper is as follows. In Section 2, we recall some
basic definitions related to reflected diffusions. The SDER and submartingale for-
mulations and their properties are introduced in Sections 2.1 and 2.2, respectively,
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and a measurability property related to the definition of a weak solution is relegated
to Appendix A. Section 2.3 defines the class of domains and reflection directions
that we consider. Section 3 contains the main result, Theorem 1, its two auxiliary
results Theorem 2 and Theorem 3, and some discussion of the ramifications. The
proof of Theorem 2 is relegated to Section 6. The proof of Theorem 3, outlined
above, is presented in Section 4. It relies on a certain integral representation, a
covering lemma the existence of test functions whose proofs are deferred to Sec-
tion 5, and Appendices B and C, respectively. First, in the next section we collect
some common notation used throughout the paper.

1.3. Common notation. Let R denote the set of real numbers and R+ is the set
of nonnegative real numbers. Given a, b ∈ R, a ∧ b (a ∨ b) denote the minimum
(maximum) of a and b. For each J ∈N, RJ is the J -dimensional Euclidean space
and | · | and 〈·, ·〉, respectively, denote the Euclidean norm and the inner prod-
uct on RJ . For each set A ⊂ RJ , A◦, ∂A, Ā and Ac denote the interior, bound-
ary, closure and complement of A, respectively. For each x ∈ RJ and A ⊂ RJ ,
dist(x,A) is the distance from x to A, that is, dist(x,A)= inf{y ∈A : |y−x|}. For
each A ⊂ RJ and r > 0, Br(A) = {y ∈ RJ : dist(y,A) < r}, and given ε > 0 let
Aε .= {y ∈RJ : dist(y,A) < ε} denote the (open) ε-fattening of A. If A= {x}, we
simply denote Br(A) by Br(x). With some abuse of notation, we will use 0 to rep-
resent both zero and the origin in RJ , and let S1(0) denote the unit sphere in RJ .
We also let IA denote the indicator function of the set A [i.e., IA(x)= 1 if x ∈ A

and IA(x)= 0 otherwise]. Given integers i, j we let δij denote the Kronecker delta
function, δij = 1 if i = j and δij = 0, otherwise. Given a set A ⊂ RJ , let co[A]
denote the closure of the convex hull of A, which is defined to be the intersection
of all closed convex sets that contain A.

Given a domain E in Rn, for some n ∈ N, let C(E) = C0(E) be the space of
continuous real-valued functions on E and, for any m ∈ Z+ ∪ {∞}, let Cm(E) be
the subspace of functions in C(E) that are m times continuously differentiable on
E with continuous partial derivatives of order up to and including m. When E is
the closure of a domain, Cm(E) is to be interpreted as the collection of functions in⋂

ε>0 Cm(Eε), where Eε is an open ε-neighborhood of E, restricted to E. Also, let
Cm
b (E) be the subspace of Cm(E) consisting of bounded functions whose partial

derivatives of order up to and including m are also bounded, let Cm
c (E) be the

subspace of Cm(E) consisting of functions that vanish outside compact sets. In
addition, let Cm

c (E) ⊕ R be the direct sum of Cm
c (E) and the space of constant

functions, that is, the space of functions that are sums of functions in Cm
c (E) and

constants in R. The support of a function f is denoted by supp(f ), its gradient of
f is denoted by ∇f . For m ≥ 1 and a sequence of random variables {Xn,n ≥ 1}
defined on some common probability space (�,F,Q), we say Xn converges to
X in Lm(Q) as n→∞ if EQ[|Xn −X|m] → 0 as n→∞. For f ∈ C∞(I ), with
I ⊂R or f ∈ C2(G), we let ‖f ‖∞ denote the supremum of f on its domain.
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2. Characterizations of reflected diffusions. Throughout, let G be a non-
empty connected domain in RJ and let d(·) be a set-valued mapping defined on
the closure Ḡ of G such that d(x)= {0} for x ∈G, d(x) is a nonempty, closed and
convex cone in RJ with vertex at the origin for every x in ∂G, and the graph of
d(·) is closed, that is, the set {(x, v) : x ∈ Ḡ, v ∈ d(x)} is a closed subset of R2J .
Let b : RJ �→ RJ and σ : RJ �→ RJ×N be measurable and locally bounded. Also,
let n(x) denote the set of inward normals to G at a point x ∈ ∂G, and let

(2.1) V .= ∂G \ U,

where U is the subset of the boundary ∂G defined by

(2.2) U .= {
x ∈ ∂G : ∃n ∈ n(x) such that 〈n,d〉> 0,∀d ∈ d(x) \ {0}}.

The set V will play an important role in the analysis. Also, let L be the usual
associated second-order differential operator, as defined in (1.1) for functions f ∈
C2
b(Ḡ), where C2

b(Ḡ) is the space of twice continuously differentiable functions on
Ḡ that, along with their first and second partial derivatives, are bounded.

We recall the definition of weak solutions to stochastic differential equations
with reflection associated with (G,d(·)), b and σ and some of their properties in
Section 2.1. We then introduce the formulation of the associated submartingale
problem in Section 2.2. Lastly, in Section 2.3 we describe the specific class of
piecewise continuous domains (G,d(·)) of interest and then state a useful bound-
ary property of reflected diffusions in this class of domains that was established
in [21].

2.1. Stochastic differential equations with reflection. The Skorokhod Problem
(SP), which was introduced in one dimension by [37] and subsequently extended
to higher dimensions by numerous authors [6, 9, 13, 31], and the extended Sko-
rokhod problem (ESP) introduced in [32], are convenient tools for the pathwise
construction of reflected diffusions. Roughly speaking, given a continuous path ψ ,
the ESP associated with (G,d(·)) produces a constrained version φ of ψ that is
restricted to live within Ḡ by adding to it a “constraining term” η whose incre-
ments over any interval lie in the closure of the convex hull of the union of the
allowable directions d(x) at the points x visited by φ during this interval. Let
C = C([0,∞) : RJ ) denote the space of continuous functions from [0,∞) to RJ ,
equipped with the topology of uniform convergence on compact sets. We now rig-
orously define the ESP.

DEFINITION 2.1 (Extended Skorokhod problem). Suppose (G,d(·)) and ψ ∈
C with ψ(0) ∈ Ḡ are given. Then the pair (φ, η) ∈ C × C is said to solve the ex-
tended Skorokhod Problem (ESP) for ψ if φ(0)= ψ(0), and if for all t ∈ [0,∞),
the following properties hold:

1. φ(t)=ψ(t)+ η(t);
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2. φ(t) ∈ Ḡ;
3. For every s ∈ [0, t),

(2.3) η(t)− η(s) ∈ co
[ ⋃
u∈[s,t]

d
(
φ(u)

)]
.

If (φ, η) is the unique solution to the ESP for ψ , then we write φ = �(ψ), and
refer to � as the extended Skorokhod map (ESM).

The formulation of the ESP in Definition 2.1 appears slightly different from the
original one given in [32] since the ESP in [32] was formulated more generally
for càdlàg paths. However, as we show below, they coincide for the case of con-
tinuous paths, which is all that is required for this work. Indeed, for continuous
paths, property 4 of Definition 1.2 of [32] holds automatically, and the following
lemma shows that property 3 of Definition 1.2 of [32] is equivalent to property 3
in Definition 2.1.

LEMMA 2.2. The pair (φ, η) ∈ C× C satisfies property (2.3) in Definition 2.1
for every t ≥ 0 if and only if for every s ∈ [0, t),
(2.4) η(t)− η(s) ∈ co

[ ⋃
u∈(s,t]

d
(
φ(u)

)]
.

PROOF. Fix t ∈ [0,∞). For s ∈ [0, t), property (2.4) trivially implies property
(2.3). To prove the converse, suppose that (2.3) holds for all s ∈ [0, t). Let {sn, n ∈
N} be a sequence of real numbers such that s < sn < t for each n ∈ N and sn→ s

as n→∞. For each n ∈N, by (2.3) we have

η(t)− η(sn) ∈ co
[ ⋃
u∈[sn,t]

d
(
φ(u)

)]⊆ co
[ ⋃
u∈(s,t]

d
(
φ(u)

)]
.

Together with the continuity of η and the closedness of the set co[⋃u∈(s,t] d(φ(u))],
this implies that (φ, η) satisfies property (2.4) holds. �

REMARK 2.3. Given (G,d(·)) and ψ as in Definition 2.1, a pair (φ, η) ∈
C × C is said to solve the Skorokhod Problem (SP) for ψ if it satisfies properties 1
and 2 of Definition 2.1 and, in addition, η has finite variation on bounded intervals
and, in addition, there exists a Borel measurable function γ : [0,∞) �→ S1(0) such
that for every t ∈ [0,∞),

η(t)=
∫
[0,t]

γ (s)I{φ(s)∈∂G} d|η|(s),

where γ (s) ∈ d(φ(s)) for d|η| almost every s ∈ [0,∞), and |η|(t) represents the
total variation of η on the interval [0, t] (see [13]). The ESP is a generalization of
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the SP that does not a priori require the constraining term η to have finite variation,
and hence allows for the construction of reflected diffusions that are not necessarily
semimartingales (see Lemma 2.7 for an elaboration of this point). However, it was
shown in Theorem 1.3 of [32] that if the solution (φ, η) to the ESP for some ψ

is such that η has finite variation on every interval [0, t], then (φ, η) is a solution
to the SP associated with ψ . Sufficient conditions for the existence of a unique
solution to the SP or ESP can be found, for example, in [6, 7, 13, 16, 17, 24, 32].

The ESM can be used to define solutions to stochastic differential equations
with reflection (SDERs) associated with a given pair (G,d(·)), and drift and dis-
persion coefficients b : Ḡ �→RJ and σ : Ḡ �→RJ×N .

DEFINITION 2.4 (Weak solution). Given z ∈ Ḡ, a weak solution to the
SDER with initial condition z associated with (G,d(·)), b(·) and σ(·) is a triplet
(�,F, {Ft}), Pz, (Z,W), where (�,F, {Ft}) is a filtered space that supports a
probability measure Pz, Z is a continuous, {Ft }-adapted J -dimensional process
and W is a continuous, N -dimensional {Ft }-martingale with the following prop-
erties:

1. Under Pz, {Wt,Ft , t ≥ 0} is an N -dimensional standard Brownian motion;
2. Pz(

∫ t
0 |b(Z(s))|ds + ∫ t

0 |σ(Z(s))|2 ds <∞)= 1, t ∈ [0,∞);
3. there exists a continuous {Ft }-adapted J -dimensional process Y such that

Pz-almost surely, (Z,Y ) solves the ESP associated with (G,d(·)) for X, where

(2.5) X(t)
.= z+

∫ t

0
b
(
Z(s)

)
ds +

∫ t

0
σ
(
Z(s)

)
dW(s), t ∈ [0,∞);

4. Pz-almost surely, the set {t :Z(t) ∈ ∂G} has zero Lebesgue measure. In other
words, Pz-almost surely,

(2.6)
∫ ∞

0
I∂G

(
Z(s)

)
ds = 0.

In addition, we say that (�,F, {Ft}), Pz, (Z(· ∧ τ),W(· ∧ τ)) is a weak solu-
tion to the τ -stopped SDER associated with (G,d(·)), b(·) and σ(·) and initial
condition z if τ is an {Ft }-stopping time, {W(t ∧ τ),Ft , t ≥ 0} is an adapted N -
dimensional standard Brownian motion stopped at τ , properties 2–4 hold with
(Z,W,X) replaced by (Z(· ∧ τ),W(· ∧ τ),X(· ∧ τ)) and (2.6) replaced by∫ τ

0 I∂G(Z(s ∧ τ)) ds = 0.

Note that property 3 of Definition 2.4 and the definition of the ESP imply that
under Pz, Z satisfies

Z(t)=X(t)+ Y(t)
(2.7)

= z+
∫ t

0
b
(
Z(s)

)
ds +

∫ t

0
σ
(
Z(s)

)
dW(s)+ Y(t), t ∈ [0,∞).
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Also, property 4 can be shown to follow from properties 1–3 in many cases. In
particular, it follows from the proof of Theorem 2 and Proposition 2.12 below that
property 4 automatically holds when (G,d(·)) is piecewise C2 with continuous
reflection in the sense of Definition 2.11, and V =∅.

The definition of uniqueness in law for the SDER is analogous to the case of an
SDE.

DEFINITION 2.5. Uniqueness in law is said to hold for the SDER associated
with (G,d(·)), b(·) and σ(·) and initial condition z if given any two weak solutions
(�,F, {Ft}), Pz, (Z,W) and (�̃, F̃, {F̃t }), P̃z, (Z̃, W̃ ), of the SDER with initial
condition z, the law of Z under Pz is the same as the law of Z̃ under P̃z. Moreover,
uniqueness in law is said to hold for the SDER associated with (G,d(·)), b(·) and
σ(·) if uniqueness in law holds for each initial condition z.

We now define well-posedness of the SDER.

DEFINITION 2.6 (Well-posedness of the SDER). The SDER associated with
(G,d(·)), drift b(·) and dispersion σ(·) is said to be well posed if for every z ∈ Ḡ,
there exists a weak solution to the SDER with initial condition z and uniqueness
in law holds for the SDER.

Well-posedness has been established for SDER associated with many classes of
polyhedral and piecewise smooth domains. In general, solutions to the SDER de-
fined via the ESP need not be semimartingales when V �=∅ (see [7, 18, 20, 32–34]
for examples where V �=∅ and such nonsemimartingales arise). However, we now
make some observations on the link between weak solutions and the semimartin-
gale property, which we will use in our subsequent analysis.

LEMMA 2.7. Given z ∈ Ḡ, let (�,F, {Ft}), Pz, (Z,W), be a weak solution
of the SDER with initial condition z, and let X, Y be as in Definition 2.4. Let θ1,
θ2 be two {Ft }-stopping times such that θ1 is Pz-almost finite and θ2 ≥ θ1, and
consider the shifted and stopped processes

Ỹ (ω,u)
.= Y

(
ω,

(
θ1(ω)+ u

)∧ θ2(ω)
)− Y

(
ω,θ1(ω)

)
,

(2.8)
ω ∈�,u ∈ [0,∞)

and

(2.9) Z̃(ω,u)
.=Z

(
ω,

(
θ1(ω)+ u

)∧ θ2(ω)
)
, ω ∈�,u ∈ [0,∞).

If Z̃(ω, t) /∈ V for all t ∈ [0, θ2(ω) − θ1(ω)] (which should be interpreted as
t ∈ [0,∞) when θ2(ω) =∞), then the total variation of Ỹ is Pz-almost finite on
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every bounded interval, and there exists a measurable function γ̃ : (�×R+,F ×
B(R+)) �→ (RJ ,B(RJ )) such that for each ω ∈�, and 0≤ s ≤ t <∞,

(2.10) Ỹ (ω, t)− Ỹ (ω, s)=
∫
[s,t]

γ̃ (ω,u) d|Ỹ |(ω,u),

and for Pz-almost every ω, γ̃ (ω,u) ∈ d(Z̃(ω,u)) for d|Ỹ |(ω)-almost every u ∈
[0,∞).

As observed in Remark 2.3, a deterministic analog of this property was estab-
lished in [32]. The main new content of this lemma is the claim that the process
γ can be chosen to be jointly measurable in ω and t . The proof of the lemma is
relegated to Appendix A.

We close this section with an observation that will allow us to assume with-
out loss of generality that the Brownian motion driving the weak solution is
J -dimensional. Recall that the diffusion coefficient a(·)= σ(·)σ T (·) is uniformly
elliptic if there exists ā > 0 such that

(2.11) vT a(x)v ≥ ā|v|2 for all v ∈RJ , x ∈ Ḡ.

REMARK 2.8. Under the uniform ellipticity condition (2.11), standard argu-
ments can be used to show that existence of a weak solution with an RJ×N -valued
dispersion coefficient σ(·) is equivalent to existence of a weak solution with the
RJ×J dispersion coefficient a1/2(·) (for one direction, see Proposition 4.6 in Chap-
ter 5 of [23]).

2.2. The submartingale problem. Let (G,d(·)), b(·), σ(·), V and L be as de-
fined at the beginning of Section 2. We first introduce a class of test functions that
arises in the formulation of the submartingale problem. Recall that C2

c (Ḡ)⊕R is
the space of functions that are sums of functions in C2

c (Ḡ) and constants in R.
Define

H .=
{
f ∈ C2

c (Ḡ)⊕R : f is constant in a neighborhood of V,〈
d,∇f (y)〉≥ 0 for d ∈ d(y) and y ∈ ∂G

}
,

where for each function f defined on RJ , we say f is constant in a neighborhood
of V if for each x ∈ V , f is constant in some open neighborhood of x. When
V =∅, the condition that f be constant in a neighborhood of V is understood to
be void.

We now define the submartingale problem associated with the data (G,d(·)),
V , b(·) and σ(·). Recall that C = C([0,∞) : RJ ) denote the space of continuous
functions from [0,∞) to RJ , equipped with the topology of uniform convergence
on compact sets. Let M be the associated Borel σ -algebra, which is generated
by sets of the form {ω ∈ C : ω(t) ∈ A} for t ∈ [0,∞) and A ∈ B(RJ ). We equip
the measurable space (C,M) with the filtration {Mt }, where for t ∈ [0,∞), Mt

is the smallest σ -algebra with respect to which the map ω ∈ C �→ ω(s) ∈ RJ is
measurable for every s ∈ [0, t].
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DEFINITION 2.9 (Submartingale problem). Given z ∈ Ḡ, a probability mea-
sure Qz on the measurable space (C,M) is a solution to the submartingale problem
starting from z associated with (G,d(·)), V , drift b(·) and dispersion σ(·) if the
following four properties hold:

1. Qz(ω(0)= z)= 1;
2. Qz(ω(t) ∈ Ḡ for every t ∈ [0,∞))= 1;
3. For every f ∈H, the process

f
(
ω(t)

)− f
(
ω(0)

)− ∫ t

0
Lf

(
ω(u)

)
du, t ≥ 0,

is a Qz-submartingale on (C,M, {Mt });
4. Qz-almost surely,

∫∞
0 IV(ω(u)) du= 0.

A family {Qz, z ∈ Ḡ} of probability measures on (C,M) is a solution to the sub-
martingale problem if for each z ∈ Ḡ, Qz is a solution to the submartingale prob-
lem starting from z.

DEFINITION 2.10 (Well-posedness of the submartingale problem). The sub-
martingale problem associated with (G,d(·)), V , drift b(·) and dispersion σ(·) is
said to be well posed if there exists exactly one solution {Qz, z ∈ Ḡ} to the sub-
martingale problem.

Definition 2.9 differs slightly from past formulations of the submartingale prob-
lem in domains with nonsmooth boundaries. As mentioned in the Introduction,
essentially all these works [12, 29, 30, 42, 44] consider domains that have only
a single point of nonsmoothness on the boundary and the formulation they use is
Definition 2.9, but with V replaced by the set of nonsmooth points on the bound-
ary. In either formulation, since the test functions in property 3 are required to be
constant in a neighborhood of some subset of the boundary, property 3 provides
no information on the behavior of the processes in a neighborhood of V . Thus, an
additional property (property 4) needs to be imposed to ensure that the reflected
diffusion spends zero Lebesgue time on the boundary. For the class of domains,
we consider in Section 2.3, it is shown in Proposition 2.12 that any solution to the
submartingale problem formulated as in Definition 2.9 spends zero Lebesgue time
on the boundary. On the other hand, since V is typically a subset of the nonsmooth
part of the domain, property 3 in our formulation has to be satisfied by a larger
class of test functions, and hence, it is a priori easier to establish uniqueness and
harder to establish existence of solutions. However, in the cases studied previously,
it seems not much harder to establish existence of solutions for our formulation of
the submartingale problem. For example, for the two-dimensional wedge consid-
ered in [42], the two formulations coincide when V = {0}, which is precisely the
case when the parameter α in [42] satisfies α ≥ 1. When α < 1, V =∅, the formu-
lations are different. Hence, existence of a solution to the submartingale problem in
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Definition 2.9 does not follow directly from the results in [42], but it can neverthe-
less be deduced using similar arguments or, alternatively, by applying Theorem 2
in conjunction with the results of [41]. We believe our formulation is more con-
venient for obtaining results in domains with piecewise smooth boundaries (that
potentially have more than one nonsmooth point). In particular, this formulation
was used to obtain a characterization of stationary distributions of a large class of
reflected diffusions in domains with piecewise smooth boundaries in [21]. As dis-
cussed in [22], the correct formulation of the submartingale problem is even more
subtle for multidimensional domains whose V sets have more complex geometries.

2.3. A class of domains with piecewise smooth boundary. We now introduce
the general class of domains and reflection directions (G,d(·)) covered by our
results.

DEFINITION 2.11 (Piecewise C2 with continuous reflection). The pair
(G,d(·)) is said to be piecewise C2 with continuous reflection if it satisfies the
following properties:

1. G is a nonempty domain in RJ with representation

G=⋂
i∈I

Gi,

where I is a finite index set and for each i ∈ I , Gi is a nonempty domain with C2

boundary in the sense that for each x ∈ ∂G, there exist a neighborhood Nx of x,
and functions ϕi

x ∈ C2(RJ ), i ∈ I(x) .= {i ∈ I : x ∈ ∂Gi}, such that

Nx ∩Gi = {
z ∈Nx : ϕi

x(z) > 0
}
, Nx ∩ ∂Gi = {

z ∈Nx : ϕi
x(z)= 0

}
,

and ∇ϕi
x �= 0 on Nx . For each x ∈ ∂Gi and i ∈ I(x), let

ni(x)
.= ∇ϕ

i
x(x)

|∇ϕi
x(x)|

denote the unit inward normal vector to ∂Gi at x.
2. The (set-valued) direction “vector field” d(·) : Ḡ �→ RJ is given by d(x)=

{0} if x ∈G and

d(x)=
{ ∑
i∈I(x)

sid
i(x) : si ≥ 0, i ∈ I(x)

}
, x ∈ ∂G,

where, for each i ∈ I , di(·) is a continuous unit vector field defined on ∂Gi that
satisfies ‖di(x)‖ = 1 and〈

ni(x), di(x)
〉
> 0 for each x ∈ ∂Gi .
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If di(·) is constant for every i ∈ I , then the pair (G,d(·)) is said to be piecewise
C2 with constant reflection. If, in addition, ni(·) is constant for every i ∈ I , then
the pair (G,d(·)) is said to be polyhedral with piecewise constant reflection.

Note that, with the definition given above, the set of inward normal vectors to
G takes the form

n(x)=
{ ∑
i∈I(x)

sin
i(x) : si ≥ 0, i ∈ I(x)

}
, x ∈ ∂G.

Since (G,d(·)) is piecewise C2 with continuous reflection, it can readily be ver-
ified that U is relatively open to ∂G, and hence V is a closed set. We now state
a boundary property, which extends results established in [35] for RBMs in poly-
hedral domains. A version of this boundary property was established in Proposi-
tion 6.1 of [21]. (Note that in [21] the set V in the submartingale problem was al-
lowed to be any arbitrary subset of ∂G and Proposition 6.1 of [21] was established
under the condition that ∂G \ U ⊆ V , which is in particular satisfied when we set
V = ∂G \ U , as specified here in (2.1).) The statement of Proposition 6.1 of [21]
assumes well-posedness of the submartingale problem associated with (G,d(·)),
V , b(·) and σ(·) for every initial condition, whereas in the version below we only
require existence of a solution to the submartingale problem for a fixed z. The
version we need can be obtained by slightly modifying the proof given in [21] to
use stopping times and a covering argument (in a manner analogous to the proof
of Theorem 3 in Section 4) instead of regular conditional probability distributions.
The complete proof is relegated to Appendix D.

PROPOSITION 2.12 (Boundary property). Suppose that (G,d(·)) is a piece-
wise C2 domain with continuous reflection, b(·), σ(·) are measurable and locally
bounded, a = σσT is uniformly elliptic. If, for some z ∈ Ḡ, Qz is a solution to
the submartingale problem associated with (G,d(·)), V , b(·) and σ(·) with initial
condition z, then we have

(2.12)
∫ ∞

0
I∂G

(
w(u)

)
du= 0, Qz-almost surely.

3. Main results. We now state our main results. We will assume throughout,
without always stating this explicitly, that the drift and dispersion coefficients are
measurable and locally bounded, and that the diffusion coefficient is continuous
and uniformly elliptic, that is, (2.11) holds for some ā > 0.

THEOREM 1. Suppose (G,d(·)) is piecewise C2 with continuous reflection
and V =∅. Then the SDER associated with (G,d(·)), b(·) and σ(·) is well posed
if and only if the corresponding submartingale problem is well posed.
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Suppose G = RJ+ and d(x) is equal to the vector dj when x is in the rela-
tive interior of the face Ḡ ∩ {x : xj = 0}. Then the condition V = ∅, with V de-
fined by (2.1), is equivalent to the condition that the so-called reflection matrix
[di

j ]i,j∈{1,...,J } is completely-S (see [6]). Given constant drift and dispersion coef-
ficients b and σ , for different classes of polyhedral domains with piecewise con-
stant reflection (G,d(·)), it was shown in [10, 35, 41] that the condition U = ∂G

is sufficient for well-posedness of the associated SDER, and is also necessary for
existence of a weak solution that is a semimartingale. For more general G and
d(·), the condition V =∅ imposed in Theorem 1 can be viewed as a generalized
completely-S condition, and it follows from Lemma 2.7 that in this case the re-
flected diffusion is a semimartingale.

Theorem 1 is a direct consequence of Theorems 2 and 3, which prove slightly
more general results that do not assume that V =∅.

THEOREM 2. Given (G,d(·)), V , b(·), σ(·), suppose that for some z ∈ Ḡ,
(�,F, {Ft}), Pz, (Z,W) is a weak solution to the associated SDER with initial
condition z and let Qz = Pz ◦Z−1 denote the law of Z on (C,M) under Pz. If V is
the union of finitely many closed connected sets, then Qz is a solution to the corre-
sponding submartingale problem starting from z. Consequently, if the submartin-
gale problem has at most one solution with initial condition z, then uniqueness in
law holds for the associated SDER with initial condition z.

The proof of Theorem 2 is relegated to Section 6. It is essentially a consequence
of Itô’s formula; however, since we also allow weak solutions that are not necessar-
ily semimartingales, the proof requires some additional approximation arguments,
which use the results on the ESP from [32] summarized in Lemma 2.7. The more
substantial result is its (partial) converse, Theorem 3 below.

THEOREM 3. Suppose (G,d(·)) is piecewise C2 with continuous reflection,
V is the union of finitely many closed connected sets, and, for some z ∈ Ḡ, the
submartingale problem associated with (G,d(·)), V , b(·) and σ(·) has a solution
Qz starting from z. Let

(3.1) Z(ω, t)= ω(t), t ≥ 0,ω ∈ C,
and consider the {Mt }-stopping time given by

(3.2) τV = inf
{
t ≥ 0 : ω(t) ∈ V}

.

Then there exists a process W defined on (C,M, {Mt}) such that (C,M, {Mt}),
Qz, (Z(· ∧ τV),W(· ∧ τV)) is a weak solution to the associated τV -stopped SDER
with initial condition z. Consequently, if V = ∅ and there is uniqueness in law
for the SDER with initial condition z, then there is a unique solution Qz to the
submartingale problem with initial condition z.



420 W. KANG AND K. RAMANAN

Section 4 is devoted to the proof of Theorem 3. A broad outline of the proof,
broken down into several steps, is first provided in Section 4.1, and details of the
various steps are presented in Sections 4.2–4.5.

Theorem 1 allows us to transfer results that have been established for solutions
to well-posed submartingale problems to reflected diffusions characterized as so-
lutions to well-posed SDER. We end this section by discussing some additional
consequences of Theorem 1.

REMARK 3.1. If b(·) and σ(·) satisfy suitable conditions, then Girsanov’s
theorem can be used to show that well-posedness of the SDER associated with
(G,d(·)), b(·) and σ(·) is equivalent to well-posedness of the SDER associated
with (G,d(·)), b ≡ 0 and σ(·). In other words, under suitable conditions, to show
well-posedness of an SDER one can assume without loss of generality that b≡ 0.
Due to Theorem 1, under the same conditions on b(·) and σ(·), when establishing
well-posedness of a submartingale problem, one can also without loss of generality
assume b ≡ 0. This can be a very convenient simplification. While it is natural to
expect such an equivalence, in the generality we are considering, it does not seem
to be straightforward to establish this result directly for the submartingale problem
without invoking Theorem 1 and the corresponding result for weak solutions to
SDER. For example, for the case of skew-symmetric diffusions considered in [44],
this was established by invoking the corresponding result for smooth domains and
then using an approximation argument and the fact that the RBMs almost surely
do not hit the nonsmooth parts of the boundary.

REMARK 3.2. As mentioned in the Introduction, a third approach to the con-
struction of reflected diffusions is the controlled or constrained martingale prob-
lem (CMP) of Kurtz [25, 26, 28]. In constrast to the submartingale formulation,
the formulation of the CMP given in [26] can only be used when V = ∅ and the
reflected diffusions are semimartingales. When V =∅, it is trivial to see (by a sim-
ple application of Itô’s formula), that any weak solution to the SDER solves the
CMP (see, e.g., [28], Example 1.4), and that any solution of the CMP is also a so-
lution to the submartingale problem (see [26], Section 3). However, the converse,
namely existence of a weak solution to the SDER given a solution to the CMP, was
not known. Under a certain assumption on the existence of a test function, it was
shown in [26], Theorem 3.1, that a solution to the submartingale problem solves
the CMP. Our results in particular verify the existence of this test function for the
class of data (G,d(·)) considered here when V = ∅ and, therefore establish, in
this setting, the equivalence of well-posedness of the submartingale problem and
well-posedness of the CMP. Together with our main result, Theorem 1, this also
shows, in the case V =∅, the equivalence of all three formulations for the class of
data considered here.
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4. Proof of Theorem 3. The broad outline of the proof of Theorem 3 is given
in Section 4.1, and the details are provided in Sections 4.2–4.5. For the rest of the
paper, we consider (G,d(·)) that is piecewise C2 with continuous reflection and V
is the union of finitely many closed connected sets. Also, in light of Remark 2.8,
we can (and will) assume that σ = a1/2, where a = σσT .

4.1. Common notation and broad outline of the proof. It is clear that the sec-
ond assertion of Theorem 3 follows immediately from the first. Therefore, we fo-
cus on the proof of the first assertion. When z ∈ V , the conclusion of the first
assertion of Theorem 3 holds trivially. Thus, we fix z ∈ Ḡ \ V , and let Qz be a so-
lution to the associated submartingale problem associated with the data (G,d(·)),
V , b and σ , and let Z be the canonical process on (C,M, {Mt }), defined by (3.1).
Throughout this proof, unless mentioned otherwise, all martingales, submartin-
gales, semimartingales and stopping times will be with respect to the probability
measure Qz and the filtration {Mt }, and this will typically not be stated explic-
itly, except on occasion for emphasis. For conciseness, we also use the following
notation. Let {Sf (t), t ≥ 0} be the process given by

(4.1) Sf (t)
.= f

(
Z(t)

)− f
(
Z(0)

)− ∫ t

0
Lf

(
Z(u)

)
du, t ≥ 0,

for functions f for which the process is well defined. In particular, this is well
defined for all f ∈ C2

c (Ḡ). Also, let χ denote the identity function on RJ : χ(x)=
x, and let χi(x)= xi . Let S denote the process whose ith component is Sχi , so that

(4.2) S(t)
.=Z(t)−Z(0)−

∫ t

0
b
(
Z(u)

)
du, t ≥ 0.

Note that the measurability and local boundedness of b ensures that the right-hand
side of (4.2) is well defined.

The proof of the first assertion of Theorem 3 consists of three main steps. First,
in Section 4.2, for each z ∈ Ḡ, we construct a continuous adapted stochastic pro-
cess W on the canonical filtered probability space (C,M, {Mt}), and show that
under Qz, {W(t),Mt , t ≥ 0} is a J -dimensional standard Brownian motion. Next,
given the {Mt }-adapted process Z as in (3.1), for any K <∞, we let

(4.3) GK .= {
x ∈ Ḡ : dist(x,V) > 1/K and |x|<K

}
,

and define the stopping time

(4.4) θK
.= inf

{
t ≥ 0 : Z(t) /∈GK}

.

Since θK → τV as K →∞, to prove the first assertion of Theorem 3, it clearly
suffices to show that for every 0 <K <∞, (C,M, {Mt}), Qz, (Z(· ∧ θK),W(· ∧
θK)) is a weak solution to the θK -stopped SDER with initial condition z.

For this, we define X in terms of Z and W via (2.5), and let

(4.5) Y(t)
.= Z(t)−X(t), t ≥ 0.
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Then X represents the candidate unconstrained process and Y the corresponding
candidate “pushing” or local time process in the definition of a weak solution.
Now, note that from the definitions of S and X in (4.2) and (2.5), respectively, we
have

(4.6) S(t)= Y(t)+
∫ t

0
a1/2(Z(u)

)
dW(u), t ≥ 0.

In the second step of the proof (see Proposition 4.8 of Section 4.3), we show that
S(· ∧ θK) is a continuous semimartingale, and represent the local martingale com-
ponent by M(· ∧ θK) and bounded variation component by A(· ∧ θK).

Now, observe that W(· ∧ θK) satisfies property 1 of the weak solution to the
θK -stopped SDER in Definition 2.4, property 2 follows from the continuity of
Z(· ∧ θK) and the local boundedness of b and σ , and property 4 is a conse-
quence of the boundary property established in Proposition 2.12. Thus, to show
that (C,M, {Mt }), Qz, (Z(· ∧ θK),W(· ∧ θK)) is a weak solution to the θK -
stopped SDER with initial condition z, it only remains to verify the third property,
namely, to show that almost surely, (Z(· ∧ θK),Y (· ∧ θK)) solves the ESP for
X(· ∧ θK). However, property 1 of the ESP holds trivially by the definition of Y
in (4.5), and property 2 of the ESP is a direct consequence of property 2 of the
submartingale problem and the definition of Z in (2.7). Thus, the proof of Theo-
rem 3 is reduced to verifying that Y(· ∧ θK) and Z(· ∧ θK) satisfy the following
“reflection property” embodied in property 3 of the ESP: almost surely,

Y
(
t ∧ θK

)− Y
(
s ∧ θK

)
(4.7)

∈ co
[ ⋃
u∈[s∧θK,t∧θK ]

d
(
Z(u)

)]
for every 0≤ s < t <∞.

In turn, in view of the semimartingale decomposition for S obtained in Section 4.3,
this is equivalent to showing that M(· ∧ θK) coincides with the stochastic integral
term on the right-hand side of (4.6) and that the bounded variation term A(· ∧
θK)= Y(·∧θK) satisfies the reflection property specified in (4.7). The third step of
the proof establishes this latter property. On the intervals when Z is in the interior
of the domain, this property is established in Section 4.4. The proof of (4.7) for
intervals in which Z also hits the boundary is given in Section 4.5. This proof is
rather involved, and requires a careful analysis of the behavior of Z at the boundary
of the domain, which relies on a certain integral representation that is proved in
Section 5.

4.2. Construction of a Brownian motion. In Lemma 4.1, we show that S is a
martingale on certain random time intervals during which the process lies strictly
inside the domain G. This allows us to construct, a sequence {Wm}m∈N of mar-
tingales, which is shown in Lemma 4.2 to converge (along a subsequence) to a
standard Brownian motion.
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LEMMA 4.1. Let Oi , i = 1,2, be connected bounded open subsets of G such
that Ō1 ⊂O2 and Ō2 ⊂G. Given any {Mt }-stopping time �, define the two stop-
ping times

ς
.= inf

{
t > � :Z(t) ∈ Ō1

}
,(4.8)

τ
.= inf

{
t > ς : Z(t) /∈O2

}
.(4.9)

Then {S(t ∧ τ) − S(t ∧ ς),Mt , t ≥ 0} is a continuous martingale and for t ≥
0, i, j = 1, . . . , J ,

(4.10) [Si, Sj ](t ∧ τ)− [Si, Sj ](t ∧ ς)=
∫ t∧τ
t∧ς

aij
(
Z(u)

)
du.

PROOF. Since Ō2 ∩ ∂G=∅, for each i = 1, . . . , J , there exists f (i) ∈ C2
c (G)

such that f (i)(x) = xi for x ∈ Ō2 and f (i)(x) = 0 for each x in a neighbor-
hood of ∂G. Then, for every i, j = 1, . . . , J , the functions f (i), −f (i), f (i)f (j)

and −f (i)f (j) clearly lie in H. Let S(i) and S(i,j) be equal to Sf , as de-
fined in (4.1), when f = f (i) and f = f (i)f (j), respectively. Then by prop-
erty 3 of the submartingale problem and the optional sampling theorem, S(i),
S(i,j), S(i)(· ∧ τ) − S(i)(· ∧ ς) and S(i,j)(· ∧ τ) − S(i,j)(· ∧ ς) are all continu-
ous martingales. Since Z(s) ∈ Ō2 for s ∈ [t ∧ ς, t ∧ τ ], and f (i)(x) = xi and
Lf (i)(x) = bi(x) for x ∈ Ō2, it follows that Si(· ∧ τ) − Si(· ∧ ς) is equal to
S(i)(· ∧ τ) − S(i)(· ∧ ς), and hence, is a continuous martingale. In addition, ob-
serving that L(f (i)f (j))(x)= xjbi(x)+ xibj (x)+ 1

2aij (x), a standard argument
[e.g., see (4.10)–(4.12) on page 315 of [23], where M(i) there plays the role of Si
here] can be used to show that SiSj (t ∧ τ)− SiSj (t ∧ ς)− ∫ t∧τ

t∧ς aij (Z(u)) du is a
continuous martingale. This establishes (4.10). �

Let {Gm,m ∈N} be a sequence of bounded domains in G such that Ḡm ⊂Gm+1
for each m ∈ N and

⋃
m∈NGm = G. Also, for each m ∈ N, let τm0

.= 0 and let
{ςm

k : k ∈N} and {τmk : k ∈N} be nested sequences of stopping times defined by

ςm
k

.= inf
{
t > τmk−1 :Z(t) ∈ Ḡm

}
,(4.11)

τmk
.= inf

{
t > ςm

k :Z(t) /∈G2m
}
.(4.12)

For each m ∈ N, since Ḡm is compact and Ḡm ⊂G2m, then the distance between
Ḡm and ∂G2m is strictly positive. By the continuity of Z, ςm

k →∞ as k→∞.
For each k ∈ N, applying Lemma 4.1 with O1 = Gm, O2 = G2m, τ0 = τmk−1,

ς = ςm
k and τ = τmk , it follows that {S(t ∧ τmk )− S(t ∧ ςm

k ), t ≥ 0} is a continuous
martingale with covariation processes

(4.13) [Si, Sj ](t ∧ τmk
)− [Si, Sj ](t ∧ ςm

k

)= ∫ t∧τmk
t∧ςm

k

aij
(
Z(u)

)
du, t ≥ 0,
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for i, j = 1, . . . , J . Now, for m ∈N, define

Wm(t)
.=
∞∑
k=1

∫ t∧τmk
t∧ςm

k

IGm

(
Z(u)

)
a−1/2(Z(u)

)
dS(u), t ≥ 0.(4.14)

LEMMA 4.2. For each m ∈ N, the process {Wm(t), t ≥ 0} is a continuous
martingale with covariation processes given by

(4.15) [Wm
i ,Wm

j ](t)= δij

∫ t

0
IGm

(
Z(u)

)
du, t ≥ 0,1≤ i, j ≤ J,

where δij represents the Kronecker delta: δij = 1 if i = j , and δij = 0 other-
wise. Moreover, there exist a process {W(t),Mt } that is a J -dimensional stan-
dard Brownian motion (under Qz), and a subsequence {Wmn,n ∈N} such that, as
n→∞, Wmn almost surely converges uniformly on bounded intervals to W .

PROOF. The uniform ellipticity condition (2.11) implies that a−1/2(·) is uni-
formly bounded on Ḡ. Therefore, {IGm(Z(t))a−1/2(Z(t)), t ≥ 0} is a bounded
{Mt }-adapted process. Moreover, for each m,k ∈ N, by (4.13) the covariation
of the continuous martingale S(· ∧ τmk )− S(· ∧ ςm

k ) is absolutely continuous with
respect to Lebesgue measure. Hence, the stochastic integral

Hk,m(t)
.=
∫ t∧τmk
t∧ςm

k

IGm

(
Z(u)

)
a−1/2(Z(u)

)
dS(u), t ≥ 0,

is a continuous martingale, with covariation, for i, j, k, k′ ∈N, given by

[
H

k,m
i ,H

k′,m
j

]

= δkk′
J∑

�,�′=1

∫ t∧τmk
t∧ςm

k

IGm

(
Z(u)

)(
a−1/2)

i�

(
Z(u)

)(
a−1/2)

j�′
(
Z(u)

)
d[S�, S�′ ](u)

= δkk′
J∑

�,�′=1

∫ t∧τmk
t∧ςm

k

IGm

(
Z(u)

)(
a−1/2)

i�

(
Z(u)

)(
a−1/2)

j�′

(4.16)
× (

Z(u)
)
a��′

(
Z(u)

)
du

= δij δkk′
∫ t∧τmk
t∧ςm

k

IGm

(
Z(u)

)
du

= δij δkk′
∫ t∧ςm

k+1

t∧ςm
k

IGm

(
Z(u)

)
du,

where the last equality uses the fact that Z(u) /∈Gm for u ∈ [τmk , ςm
k+1].
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We next show that for a fixed t > 0 and 1 ≤ i ≤ J ,
∑n

k=1 H
k,m
i (t) converges

in L2(Qz) to Wm
i (t) as n→∞. Applying Fatou’s lemma, (4.16), the monotone

convergence theorem and the fact that ςm
k →∞ as k→∞, we obtain for n ∈N,

EQz

[∣∣∣∣∣Wm
i (t)−

n∑
k=1

H
k,m
i (t)

∣∣∣∣∣
2]
≤

∞∑
k=n+1

EQz
[(
H

k,m
i (t)

)2]

= EQz

[∫ t

t∧ςm
n+1

IGm

(
Z(u)

)
du

]
.

Also, sending n→∞, since ςm
n+1→∞, the right-hand side above converges to

zero by the dominated convergence theorem, which proves that
∑n

k=1 H
k,m
i (t) con-

verges in L2(Qz) to Wm
i (t). Moreover, since for each i,

∑n
k=1 H

k,m
i is a continuous

martingale, by [8], Proposition 1.3, Wm(t) =∑∞
k=1 H

k,m(t) is also a continuous
martingale. Moreover, using (4.16), the fact that ςm

n+1→∞ as n→∞, and the
dominated convergence theorem, it follows that

[
Wm

i ,Wm
j

]
(t)= δij

∞∑
k=1

∫ t∧ςm
k+1

t∧ςm
k

IGm

(
Z(u)

)
du= δij

∫ t

0
IGm

(
Z(u)

)
du,

which proves (4.15).
We now extract a convergent subsequence of {Wm,m ∈N}. Let m̃ > m, m̃,m ∈

N. Since Ḡm ⊂ Gm̃, for any k ∈ N, there exists k̃ ∈ N such that [ςm
k , τmk ] ⊂

[ςm̃

k̃
, τ m̃

k̃
]. Moreover, for any k̃ ∈ N, if Z(u) ∈ Gm for some u ∈ [ςm̃

k̃
, τ m̃

k̃
] then

it is easy to see that u ∈ [ςm
k , τmk ] for some k. Together, this implies that

Wm̃(t)−Wm(t)=
∞∑
k̃=1

∫ t∧τ m̃
k̃

t∧ςm̃

k̃

IGm̃\Gm

(
Z(u)

)
a−1/2(Z(u)

)
dS(u).

The argument used to establish (4.15) can then be used to show that

[
Wm̃

i −Wm
i

]
(t)=

∫ t

0
IGm̃\Gm

(
Z(u)

)
du, i = 1, . . . , J.

For any k ∈N, T <∞, and i = 1, . . . , J , by Doob’s maximal inequality we have

Qz

(
sup

t∈[0,T ]
∣∣Wm̃

i (t)−Wm
i (t)

∣∣≥ 1

2k

)
≤ 22kEQz

[∣∣Wm̃
i (T )−Wm

i (T )
∣∣2]

= 22kEQz

[∫ T

0
IGm̃\Gm

(
Z(u)

)
du

]
.

Since
⋃

m∈NGm =G, taking first m̃→∞ and then m→∞, the expectation on
the right-hand side converges to zero by the bounded convergence theorem. Hence,
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there exists a subsequence {Wmk, k ∈N} such that for i = 1, . . . , J ,

Qz

(
sup

t∈[0,T ]
∣∣Wmk+1

i (t)−W
mk

i (t)
∣∣≥ 1

2k

)
≤ 22kEQz

[∫ T

0
IGmk+1\Gmk

(
Z(s)

)
ds

]

≤ 1

2k
.

By the Borel–Cantelli lemma there exist C0 ⊂ C with Qz(C0) = 1 and a continu-
ous process W = {W(ω, t), t ≥ 0} such that for ω ∈ C0, as k→∞, the sequence
of continuous functions {Wmk(ω, t), t ≥ 0} converges uniformly on bounded in-
tervals to {W(ω, t), t ≥ 0}. Furthermore, for ω ∈ C0, by (4.15) and the fact that⋃

m∈NGm =G, we have for i, j = 1, . . . , J ,

lim
k→∞ sup

t∈[0,T ]

∣∣∣∣[Wmk

i ,W
mk

j

]
(t,ω)− δij

∫ t

0
IG

(
Z(u,ω)

)
du

∣∣∣∣= 0.

The boundary property (2.12) shows that almost surely,
∫ t

0 IG(Z(u)) du = t and
thus, that (Wm, [Wm,Wm]) converge jointly to (W, IJ t), where IJ is the J × J

identity matrix. Thus, by [19], Theorem 2.4; page 528, W is a continuous Qz-
martingale with [Wi,Wj ](t)= δij t , thus proving that W is a J -dimensional stan-
dard Brownian motion under Qz. �

4.3. The semimartingale property.

4.3.1. Preliminary results. We first establish certain geometric properties of
the directions of reflection and the existence of suitable test functions.

LEMMA 4.3. Suppose (G,d(·)) is a piecewise C2 domain with continuous
reflection. Then, for each y ∈ U , there exist αy > 0 and 0 < Ry < dist(y,V) such
that:

1. I(x)⊆ I(y) for all x ∈ BRy (y)∩ ∂G;
2. supn∈n(y):|n|=1 infx∈BRy (y)∩∂G infd∈d(x):|d|=1〈n,d〉 ≥ αy ;
3. There exist ry < Ry , an increasing, continuous function κy : (0,∞) �→ (0,∞)

that satisfies κy(r) < r if r ≤ ry and κy(r)= κy(ry) if r > ry and a collection
of functions {f y,r , r ∈ (0, ry]} on RJ such that:
(a) −f y,r ∈H ∩ C2

c (Ḡ);
(b) supp[f y,r ] ∩ Ḡ⊂ Br(y)∩ Ḡ;
(c) 0≤ f y,r (x)≤ 1 for all x ∈ Ḡ;
(d) f y,r (x)= 1 for all x ∈ Bκy(r)(y)∩ Ḡ.

PROOF. The proof is deferred to Appendix C. �

For 0 < r < s <∞, let

Ur,s
.= {

x ∈ ∂G : |x| ≤ r, d(x,V)≥ s
}
.
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LEMMA 4.4. For every 0 <K <∞, s ≥ 1/K and r ≤K , there exists a func-
tion fr,s ∈H ∩ C2

c (Ḡ) such that 〈v,∇fr,s(x)〉 ≥ 1 for each x ∈ Ur,s , v ∈ d(x) and
|v| = 1.

PROOF. The existence of fr,s follows from [21], Theorem 2. Note that the
proof of the existence of fr,s in [21], Theorem 2 (which is the verification of part 2
of Assumption 1 of [21]) does not require Assumption 2 therein to hold. �

We now prove a covering lemma that is used in certain localization arguments
in the proof of Theorem 3 and is also used to verify that certain random times
constructed in the sequel are stopping times. The proof of the lemma is deferred to
Appendix B.

LEMMA 4.5 (Covering lemma). Suppose we are given a compact subset Ĝ of
Ḡ\V , and a collection of open sets {Oy , y ∈ Ĝ} such that y ∈Oy for every y ∈ Ĝ,
Oy ∩ V =∅ if y ∈ Ĝ ∩ U and Oy ⊂G if y ∈ Ĝ ∩G. Then there exists a finite set
of points F̂ ⊂ Ĝ such that

Ĝ⊆ ⋃
y∈F̂

Oy,

and there exists a measurable mapping λ̂ from Ĝ onto F̂ such that y ∈O
λ̂(y)

and

λ̂(y) ∈ ∂G if y ∈ Ĝ∩ ∂G.

4.3.2. Proof of the semimartingale property. We start with two preliminary
results. The first result considers the behavior of S in the interior of the domain G.

LEMMA 4.6. Given two stopping times ς and τ such that almost surely ς ≤ τ

and Z(t) ∈G for each t ∈ [ς, τ), the process S(· ∧ τ)− S(· ∧ ς) is a martingale
that satisfies

S(t ∧ τ)− S(t ∧ ς)=
∫ t∧τ
t∧ς

a1/2(Z(u)
)
dW(u), t ≥ 0.(4.17)

PROOF. Let Gm,m ∈N, be the sequence of nested domains introduced in Sec-
tion 4.2, let τ0

.= ς , and let ςm
1 and τm1 , m ∈N, be defined as in (4.11) and (4.12),

respectively, with k = 1. Since Z(ς) ∈ G by assumption and
⋃

mGm = G, for
each ω there exists m0(ω) <∞ such that for all m ≥ m0(ω), Z(ς(ω),ω) ∈ Gm

and ςm
1 (ω) = ς(ω). Let τ̃m1

.= inf{t ≥ ς : Z(t) /∈Gm}. It follows that for each ω,
τ̃m1 (ω)≤ τm1 (ω) for m≥m0(ω) and

(4.18) τ1(ω)= lim
m→∞ τm1 (ω)= lim

m→∞ τ̃m1 (ω)≥ τ(ω),

where

(4.19) τ1(ω)
.= inf

{
t ≥ ς(ω) :Z(t,ω) ∈ ∂G

}
.
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From the discussion preceding (4.13), it follows that S(·∧τm1 )−S(·∧ςm
1 ), m ∈N,

is a sequence of continuous martingales with covariation processes

(4.20) [Si, Sj ](t ∧ τm1
)− [Si, Sj ](t ∧ ςm

1
)= ∫ t∧τm1

t∧ςm
1

aij
(
Z(u)

)
du, t ≥ 0,

for i, j = 1, . . . , J . By (4.18), this sequence converges uniformly on compact in-
tervals to S(· ∧ τ1)−S(· ∧ς). Since the dispersion matrix σ(·) is locally bounded,
then aij (·) is also locally bounded, and hence, aij (Z(·)) is locally integrable. To-
gether with (4.20) and (4.18), this shows that almost surely, for every T <∞,

lim
m→∞ sup

t∈[0,T ]

∣∣∣∣[Si, Sj ](t ∧ τm1
)− [Si, Sj ](t ∧ ςm

1
)− ∫ t∧τ1

t∧ς
aij

(
Z(u)

)
du

∣∣∣∣= 0.

Thus, by [19], Theorem 2.4, page 528, the optional stopping theorem and the fact
that ς ≤ τ ≤ τ1, S(· ∧ τ)− S(· ∧ ς) is a continuous martingale with

(4.21) [Si, Sj ](t ∧ τ)− [Si, Sj ](t ∧ ς)=
∫ t∧τ
t∧ς

aij
(
Z(u)

)
du, t ≥ 0.

Next, note that by (4.14),

Wm(
t ∧ τm1

)−Wm(
t ∧ ςm

1
)= ∫ t∧τm1

t∧ςm
1

IGm

(
Z(u)

)
a−1/2(Z(u)

)
dS(u).

Since Z(u) ∈Gm for u ∈ [ςm
1 , τ̃m1 ), we have

Wm(
t ∧ τ̃m1

)−Wm(
t ∧ ςm

1
)= ∫ t∧τ̃m1

t∧ςm
1

IGm

(
Z(u)

)
a−1/2(Z(u)

)
dS(u)

=
∫ t∧τ̃m1
t∧ςm

1

a−1/2(Z(u)
)
dS(u).

Now, recall that ςm
1 (ω)= ς(ω) for all large enough m≥m0(ω) and, from (4.18),

that τ̃m1 → τ1. Therefore, for any t > 0, using (4.21), the right-hand side of the last
display converges in L2(Qz) to

∫ t∧τ1
t∧ς a−1/2(Z(u)) dS(u), and by Lemma 4.2 the

left-hand side converges almost surely to W(t ∧ τ1) −W(t ∧ ς) along a subse-
quence. Since τ ≤ τ1, this proves

W(t ∧ τ)−W(t ∧ ς)=
∫ t∧τ
t∧ς

a−1/2(Z(u)
)
dS(u).

Taking the stochastic integral of the martingales on both sides of the last equation
with respect to a1/2(Z(·)), we obtain (4.17). �

Recall the definition of Sf given in (4.1). We now show that, for a suitable class
of functions g, certain localized versions of the process Sg are submartingales.
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LEMMA 4.7. Let � be an {Mt }-stopping time, let rx, κx, x ∈ Ḡ, be the con-
stants in Lemma 4.3, and on the set {� <∞}, define

(4.22) θx
.= inf

{
t > � : Z(t) /∈ Bκx(rx)(x)

}
.

Then, for any x ∈ U and g ∈ C2(RJ ) such that 〈∇g(y), d〉 ≥ 0 for all d ∈ d(y) and
y ∈ Brx (x) ∩ ∂G, there exists a function h ∈H such that h(y)− h(x) = g(y)−
g(x) for y ∈ Bκx(rx)(x), and the process I{�<t}[Sg(t ∧ θx) − Sg(�)], t ≥ 0, is a
continuous submartingale.

PROOF. Fix x ∈ U , an {Mt }-stopping time �, and let f = f x,rx be a function
that satisfies property 3 of Lemma 4.3. Given g as in the statement of the lemma,
define

h(y)
.=
(
g(y)− sup

l∈Brx (x)

g(l)
)
f (y), y ∈RJ .

For y ∈ Bκx(rx)(x), by property 3(d) of Lemma 4.3, f (y)= 1, and hence, h(y)−
h(x)= g(y)−g(x) and Lh(y)= Lg(y). Note that on the set {� <∞}, Z(t∧θx) ∈
Bκx(rx)(x) for each t ∈ (�, θx). Therefore, on the set {� <∞}, it is clear from (4.1)
that

(4.23) Sg(· ∧ θx
)− Sg(�)= Sh(· ∧ θx

)− Sh(�).

In addition, clearly h ∈ C2
c (Ḡ), with supp[h] ⊆ supp[f ] ⊂ Brx (x), and

∇h(y)= f (y)∇g(y)+
(
g(y)− sup

l∈Brx (x)

g(l)
)
∇f (y).

The assumed properties of g, together with the fact that f ≥ 0, supp[∇f ] ⊂ Brx (x)

and −f ∈ H, imply that h ∈ H. By property 3 of the submartingale prob-
lem, the fact that � ≤ θx , and the optional stopping theorem, it follows that
Sh(t∧θx)−Sh(t∧�)= I{�<t}[Sh(t∧θx)−Sh(�)] is a continuous submartingale.
By (4.23), this implies that I{�<t}[Sg(t ∧ θx)− Sg(�)], t ≥ 0, is also a continuous
submartingale. �

We now show that S(· ∧ θK) and Z(· ∧ θK) are semimartingales. We will es-
tablish this locally and then extend using the covering lemma and suitable stop-
ping times, which we introduce below. This notation, and a similar extension ar-
gument, is also used in the proof of Lemma 4.11. For each 0 < K <∞, let GK

be the set in (4.3) and let ḠK be the closure of GK . Also, recall that θK is the
stopping time defined in (4.4). For y ∈ ḠK ∩ U , let the constant ry and function
κy : (0,∞) �→ (0,∞) be as in property 3 of Lemma 4.3, and for y ∈ ḠK \ U , let

ry
.= 1

2
sup

{
r > 0 : Br(y)⊂G

}
,
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and let κy be the linear function κy(r)= r , r ≥ 0. Applying Lemma 4.5 with Ĝ=
ḠK and Oy = Bκy(ry)/2(y), y ∈ ḠK (this collection of sets is easily seen to satisfy

the assumptions of the lemma), there exist a finite set F̂ K ⊂ ḠK and a measurable
map λ̂K : ḠK �→ F̂ K such that ḠK ⊆⋃

y∈F̂K Oy and λ̂K(y) ∈ ∂G if y ∈ ḠK∩∂G.
Now, let {�k, k ∈N∪ {0}} be an increasing sequence of stopping times defined by
�0 = 0 and let

�k+1
.= inf

{
t ≥ �k :Z(t) /∈ B�k(ȳk)

}∧ θK, k ∈N∪ {0},(4.24)

where ȳk
.= λ̂K(Z(�k)) and �k

.= κȳk (rȳk ). We claim that almost surely, �k→ θK

as k→∞. To see why the claim is true, for ω ∈ C, let �∗(ω) denote the limit of
the nondecreasing sequence {�k(ω)}. Now, let C̃ ⊂ C be the set of measure one
on which Z is continuous, and suppose that there exists ω ∈ C̃ such that �∗(ω) <
θK(ω). Then Z(�k(ω))→Z(�∗(ω)) ∈ ḠK as k→∞. Note that for each k ≥ 1,∣∣Z(

�k+1(ω)
)−Z

(
�k(ω)

)∣∣ ≥ ∣∣Z(
�k+1(ω)

)− ȳk(ω)
∣∣− ∣∣ȳk(ω)−Z

(
�k(ω)

)∣∣
= �k(ω)−

∣∣ȳk(ω)−Z
(
�k(ω)

)∣∣.
Now, for each k ≥ 1, since ȳk

.= λ̂K(Z(�k)) the property of λ̂ stated in Lemma 4.5
shows that Z(�k(ω)) ∈ Oȳk(ω) = B�k(ω)/2(ȳk(ω)), which implies |ȳk(ω) −
Z(�k(ω))| ≤ �k(ω)/2. Hence, for each k ≥ 1,

∣∣Z(
�k+1(ω)

)−Z
(
�k(ω)

)∣∣≥ �k(ω)

2
≥ 1

2
min
y∈F̂K

κy(ry) > 0,

which contradicts the convergence of {Z(�k(ω)), k ∈ N}. Thus, �∗(ω) = θK(ω),
and the claim holds.

PROPOSITION 4.8. For each 0 < K <∞, let θK be the stopping time de-
fined in (4.4). Then S(· ∧ θK) is a continuous semimartingale, that is, there exist
a continuous local martingale M with M(0)= 0 and a continuous process A with
A(0)= 0 that is of locally bounded variation such that

(4.25) S
(
t ∧ θK

)=M
(
t ∧ θK

)+A
(
t ∧ θK

)
, t ≥ 0.

Furthermore, Z(·∧θK) is also a continuous semimartingale with local martingale
component z +M(· ∧ θK) and locally finite variation component A(· ∧ θK) +∫ ·∧θK

0 b(Z(u)) du.

PROOF. For each 0 < K <∞, let ḠK be the closure of the set GK defined
in (4.3). Clearly, ḠK is compact. Fix K large enough such that z ∈ ḠK , and let {�k}
be the sequence of stopping times introduced above. We now prove by induction
that for each k ∈ N ∪ {0}, S(· ∧ �k) is a continuous semimartingale. When k = 0,
S(· ∧ �0)= S(0) is clearly a continuous semimartingale. Now, suppose that S(· ∧
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�k) is a continuous semimartingale for some k ∈N∪{0}. We show that S(·∧�k+1)

is also a continuous semimartingale. Observe that for t ≥ 0,

S(t ∧ �k+1)− S(t ∧ �k)

= I{t∧θK>�k}
[
S(t ∧ �k+1)− S(�k)

]
= I{t∧θK>�k}

∑
x∈F̂K

I{Z(�k)∈(λ̂K)−1(x)}
[
S
(
t ∧ θxk ∧ θK

)− S(�k)
]
,

where, for each x ∈ F̂ K and k ∈ N ∪ {0}, we define θxk as in (4.22), but with �

replaced by �k . Then, since S(· ∧ �k) is a semimartingale by the induction as-
sumption, to show that S(· ∧ �k+1) is a semimartingale, it suffices to establish the
claim that for each x ∈ F̂ K , the process

Dx
k (t)

.= I{�k<t∧θK }I{Z(�k)∈(λ̂K)−1(x)}
[
S
(
t ∧ θxk ∧ θK

)− S(�k)
]
, t ≥ 0,

is a semimartingale.
To prove the claim, we consider the cases x ∈ F̂ K ∩G and x ∈ F̂ K ∩ U sepa-

rately. For x ∈ F̂ K ∩G, note that Bκx(rx)(x) = Brx (x) and the closure of Brx (x)

lies in G by the definition of rx . Thus, when �k < θK and Z(�k) ∈ (λ̂K)−1(x),
Z(s) ∈ G for every s ∈ [�k, θxk ∧ θK ]. Applying Lemma 4.6, with ς = �k and
τ = θxk ∧ θK , S(· ∧ θxk ∧ θK) − S(· ∧ �k) and, therefore, Dx

k , is a continuous
semimartingale. Next, for x ∈ F̂ K ∩ U , by properties 1 and 2 of Lemma 4.3,
there exist αx > 0 and nx ∈ n(x) such that 〈nx, d〉 ≥ αx for all d ∈ d(y) with
|d| = 1 and y ∈ Brx (x) ∩ ∂G. Let {�e�, � = 1, . . . , J } be an orthonormal basis for
RJ and for ε̃x > 0, let v�x

.= nx + ε̃x �e�. Choose ε̃x > 0 small enough such that
for each �= 1, . . . , J , 〈v�x, d〉> 0 for all nonzero d ∈ d(y) and y ∈ Brx (x) ∩ ∂G.
For each � = 1, . . . , J , define g�x via g�x(y) = 〈y, v�x〉 for y ∈ RJ . Then, clearly
g�x ∈ C2(RJ ) and 〈∇g�x(y), d〉 ≥ 0 for d ∈ d(y), y ∈ Brx (x) ∩ ∂G. Now, apply-
ing Lemma 4.7 with � = �k and g = g�x , together with the optional stopping

theorem, it follows that {I{�k<t∧θK }[Sg�x (t ∧ θxk ∧ θK) − Sg�x (�k)], t ≥ 0} is a

submartingale. Since, on the set �k <∞, Sg�x (t ∧ θxk ∧ θK) − Sg�x (�k) is equal
to 〈S(t ∧ θxk ∧ θK) − S(�k), v

�
x〉 and the drift b is locally bounded, this shows

that I{�k<t∧θK } 〈S(t ∧ θxk ∧ θK)− S(�k), v
�
x〉 is a bounded submartingale. By the

Doob–Meyer decomposition theorem, and the linear independence of the vectors
v�, �= 1, . . . , J , it follows that Dx

k is a semimartingale. This completes the proof
of the claim, and thus shows that S(· ∧ �k+1) is a semimartingale.

By induction, S(· ∧ �k) is a semimartingale for every k. Sending k→∞ and
using the fact that �k→ θK almost surely, it follows that S(·∧θK) is a semimartin-
gale. Let M and A denote the continuous local martingale and continuous, locally
bounded variation components in the semimartingale decomposition of S(· ∧ θK).
Then (4.25) holds. Finally, since (4.2) shows that Z = Z(0)+ S + ∫ ·

0 b(Z(u)) du,
the second assertion of the lemma follows directly from the first. �
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4.4. Behavior of the semimartingale in the interior of the domain. We now
characterize the behavior of the components A(· ∧ θK) and M(· ∧ θK) of the
semimartingale decomposition (4.25) of S(· ∧ θK) in G. As in Section 4.2, let
{Gm,m ∈ N} be a sequence of bounded domains with Ḡm ⊂Gm̃ for m < m̃ and⋃

m∈NGm = G. For each ω ∈ C[0,∞) and fixed m ∈ N, set τm0 (ω)
.= 0 and for

k ∈N, recursively define

ςm
k = ςm

k (ω)
.= inf

{
t ≥ τmk−1 :Z(t) ∈ Ḡm

}
,(4.26)

τmk = τmk (ω)
.= inf

{
t ≥ ςm

k :Z(t) ∈ ∂G
}
.(4.27)

Note that for each m, almost surely, since Z is continuous and the distance between
Ḡm ∩ ḠK and ∂G∩ ḠK is strictly positive, τmk ∧ θK and ςm

k ∧ θK converge to θK

as k→∞.

LEMMA 4.9. Let M(· ∧ θK) and A(· ∧ θK), respectively, be the continuous
local martingale and continuous bounded variation processes that arise in the
local semimartingale decomposition of S(· ∧ θK) given in (4.25). Then almost
surely, for every k,m ∈N,

(4.28) M
(
t ∧ τmk ∧ θK

)−M
(
t ∧ ςm

k ∧ θK
)= ∫ t∧τmk ∧θK

t∧ςm
k ∧θK

a1/2(Z(u)
)
dW(u),

for t ≥ 0. Moreover, almost surely, for every t ≥ 0,

(4.29)
∫ t∧θK

0
IG

(
Z(u)

)
d|A|(u)= 0,

and

(4.30)
∫ t∧θK

0
IG

(
Z(u)

)
d[Mi,Mj ](u)=

∫ t∧θK

0
IG

(
Z(u)

)
aij

(
Z(u)

)
du.

PROOF. For k,m ∈ N, since Z(t) ∈ G for t ∈ [ςm
k ∧ θK, τmk ∧ θK), by

Lemma 4.6,

S
(
t ∧ τmk ∧ θK

)− S
(
t ∧ ςm

k ∧ θK
)= ∫ t∧τmk ∧θK

t∧ςm
k ∧θK

a1/2(Z(u)
)
dW(u)

for each t ≥ 0. Thus, the process Y defined in (4.5)–(4.6) satisfies Y(· ∧ τmk ∧
θK)− Y(· ∧ ςm

k ∧ θK)= 0. Comparing this with (4.25), we have (4.28) and A(t ∧
θK)−A(ςm

k ∧ θK)= 0 for t ∈ [ςm
k , τmk ]. Because the latter equality holds for all

k ∈ N, τmk ∧ θK → θK , ςm
k ∧ θKθK as k→∞ and for u ∈ [0, θK ], Z(u) ∈ Gm

implies u ∈⋃
k[ςm

k ∧ θK, τmk ∧ θK ], it follows that almost surely

∫ θK

0
IGm

(
Z(u)

)
d|A|(u)= 0
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and ∫ θK

0
IGm

(
Z(u)

)
d[Mi,Mj ](u)=

∫ θK

0
IGm

(
Z(u)

)
aij

(
Z(u)

)
du.

Taking limits as m→∞, recalling that
⋃

mGm =G and applying the dominated
convergence theorem, we obtain (4.29) and (4.30). �

4.5. Boundary behavior of the semimartingale. To complete the proof of The-
orem 3, it only remains to show the following generalization of Lemma 4.9:

M
(· ∧ θK

)= ∫ ·∧θK
0

a1/2(Z(u)
)
dW(u),(4.31)

A
(· ∧ θK

)= Y
(· ∧ θK

)
,(4.32)

and Y satisfies the reflection property specified in (4.7). We establish relations
(4.31) and (4.32) in Section 4.5.2 (see Corollary 4.15 therein) by showing that the
trace of the quadratic variation of the martingale M vanishes on the boundary. We
then establish the local reflection property in Section 4.5.3. Both results use certain
properties of the semimartingale decomposition of Sf that are first established in
Section 4.5.1.

4.5.1. A random measure and an integral representation. Given the semi-
martingale decomposition for Z(· ∧ θK) established in Proposition 4.8, a sim-
ple application of Itô’s formula shows that for f ∈ C2(RJ ), the semimartingale
Sf (· ∧ θK) admits the decomposition

(4.33) Sf (· ∧ θK
)=Mf (· ∧ θK

)+Af (· ∧ θK
)
,

where

(4.34) Mf (
t ∧ θK

) .=
∫ t∧θK

0

〈∇f (
Z(u)

)
, dM(u)

〉
,

and

Af (
t ∧ θK

) .=
∫ t∧θK

0

〈∇f (
Z(u)

)
, dA(u)

〉

+ 1

2

J∑
i,j=1

∫ t∧θK

0

∂2f

∂xi ∂xj

(
Z(u)

)
d[Mi,Mj ](u)(4.35)

− 1

2

J∑
i,j=1

∫ t∧θK

0
aij

(
Z(u)

) ∂2f

∂xi ∂xj

(
Z(u)

)
du,

for t ≥ 0. Since ∇f is continuous and M(· ∧ θK) is a local martingale, the
stochastic integral Mf (· ∧ θK) is a local martingale, and Af (· ∧ θK) is the locally
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bounded variation component. In Lemma 4.11, we show that in fact Mf (· ∧ θK)

is a martingale. Note that we want to show (4.31) and (4.32), which implies that

Af (· ∧ θK) = ∫ ·∧θK
0 〈∇f (Z(u)), dY (u)〉. With that in mind, in Proposition 4.12

below, we establish an integral representation for Af (· ∧ θK).
We first introduce some localizing stopping times. For each 0 < c <∞, let

(4.36) ζc
.=
{
t ≥ 0 : |A|(t)≥ c or

J∑
i,j=1

∣∣[Mi,Mj ]
∣∣(t)≥ c

}
,

where recall that |A| and |[Mi,Mj ]| denote the total variation processes associated
with A and [Mi,Mj ], respectively. It is clear that

EQz
[|A|(t ∧ ζc)

]≤ c and
J∑

i,j=1

EQz
[∣∣[Mi,Mj ]

∣∣(t ∧ ζc)
]≤ c.

REMARK 4.10. The following separability property of H, which is used in
Lemma 4.11, can be proved in a manner similar to the proof of [21], Lemma 5.2,
under the assumption that V is the union of finitely many closed connected sets: H
has a countable subset H0 with the property that for each f ∈H and each N ∈N,
there exists a sequence {gk : k ∈N} ⊂H0 such that

lim
k→∞ sup

y∈Ḡ∩BN(0)

J
max
i,j=1

∣∣f (y)− gk(y)
∣∣∨ ∣∣∣∣∂f (y)∂xi

− ∂gk(y)

∂xi

∣∣∣∣
(4.37)

∨
∣∣∣∣∂

2f (y)

∂xi ∂xj
− ∂2gk(y)

∂xi ∂xj

∣∣∣∣= 0.

LEMMA 4.11. Fix f ∈ C2(Ḡ) and 0 < c <∞. Then almost surely,

(4.38)
∫ t∧θK

0
IG

(
Z(u)

)
dAf (u)= 0, ∀t ≥ 0,

and Mf (· ∧ θK ∧ ζc) is bounded on every finite interval of [0,∞). Moreover,
Mf (· ∧ θK) is a continuous martingale. Furthermore, almost surely, for all f ∈
C2(Ḡ) such that 〈∇f (x), d〉 ≥ 0 for all d ∈ d(x) and x ∈ Ḡ2K ∩ ∂G, the process
Af (· ∧ θK) is adapted, continuous and increasing.

PROOF. Fix f ∈ C2(Ḡ). Then, from (4.4) and (4.33)–(4.36), it is clear that for
each 0 < c,T <∞, supt∈[0,T ] |Mf (t ∧ θK ∧ ζc)| is bounded by

2 sup
x∈ḠK

∣∣f (x)∣∣+ T sup
x∈ḠK

∣∣Lf (x)∣∣+ c sup
x∈ḠK

∣∣∇f (x)∣∣
(4.39)

+ c

2
sup
x∈ḠK

∣∣∣∣∣
J∑

i,j=1

∂2f

∂xi ∂xj
(x)

∣∣∣∣∣+ T

2
sup
x∈ḠK

∣∣∣∣∣
J∑

i,j=1

aij (x)
∂2f

∂xi ∂xj
(x)

∣∣∣∣∣.
Also, the relation (4.38) follows from (4.29), (4.30) and (4.35).
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For the proof of the martingale property for Mf (· ∧ θK), first consider the case
when f additionally satisfies 〈∇f (x), d〉 ≥ 0 for all d ∈ d(x) and x ∈ Ḡ2K ∩ ∂G.
Then (4.1) and the boundedness of f and Lf on ḠK implies that Sf (· ∧ θK) is
bounded on every finite interval. Together with property 3 of the submartingale
problem and the optional stopping theorem, this shows that Sf (· ∧ θK) is a con-
tinuous submartingale of class DL. Thus, by the Doob–Meyer decomposition the-
orem, and the semimartingale decomposition in (4.33), it follows that Af (· ∧ θK)

is a continuous increasing process and Mf (· ∧ θK) is a continuous martingale.
Now, consider f ∈ C2

c (Ḡ) that is constant in a neighborhood of V . For each such
f , there exist constants 0 < s < u <∞ satisfying supp(∇f )∪ ḠK ⊆ Uu,s = {x ∈
∂G : |x| ≤ u,d(x,V) ≥ s} and a constant C > 0 such that f + Cfu,s ∈H, where
fu,s is the function in Lemma 4.4. Since Mg(· ∧ θK ∧ ζc) is a continuous mar-
tingale for both g = fu,s and g = f + Cfu,s , it also a continuous martingale for
g = f ∈ C2

c (Ḡ). Finally, for f ∈ C2(Ḡ), since the process Z(· ∧ θK) lives in ḠK ,
there exists a function g ∈ C2

c (Ḡ) such that g is constant in a neighborhood of V
and f = g on ḠK . Thus, Mf (· ∧ θK) =Mg(· ∧ θK) is a continuous martingale
for each f ∈ C2(Ḡ).

It only remains to establish the last assertion of the lemma. In the last paragraph,
we proved that Af is increasing almost surely for a fixed f with the stated proper-
ties. We now show that it is almost surely true simultaneously for all f ∈H. Let H0
be the countable dense subset of H mentioned in Remark 4.10. Since H0 is count-
able, the continuity and the monotonicity of Af (· ∧ θK) hold almost surely (si-
multaneously) for all f ∈H0. Now, note that for each T > 0, Afn −Af =Af−fn
and supt∈[0,T ] |Af−fn(t ∧ θK ∧ ζc)|, is bounded above by (the sum of the last three
terms on the) right-hand side of (4.39) with fn−f in place of f . Since any f ∈H
can be approximated by a sequence {fn} in H0 in the strong sense made precise in
(4.37), this implies that as n→∞, supt∈[0,T ] |Afn(t ∧θK ∧ζc)−Af (t ∧θK ∧ζc)|
converges to 0 both pointwise (i.e., for each ω ∈ C) and in L1(Qz). It follows that
Af (· ∧ θK ∧ ζc), and hence Af (· ∧ θK) is continuous and increasing on [0, T ].
Since T is arbitrary, the desired property holds almost surely for all f ∈H.

We now consider the larger class of functions f ∈ C2(RJ ) such that
〈∇f (x), d〉 ≥ 0 for all d ∈ d(x) and x ∈ Ḡ2K ∩ ∂G. Let the quantities F̂ K ⊂ ḠK ,
rx, κx(·), x ∈ F̂ K , be as introduced prior to Proposition 4.8, and let {�k, k ∈
N ∪ {0}} be the sequence of stopping times introduced in (4.24). We prove by in-
duction that for each k ∈ N ∪ {0}, Af (· ∧ �k) is continuous and increasing. When
k = 0, �0 = 0, and the conclusion holds trivially. Now, suppose that Af (· ∧ �k) is
continuous and increasing for some k ∈N∪{0}. We show below that Af (·∧�k+1)

is also continuous and increasing. Due to the induction assumption, it clearly suf-
fices to show that Dk

.= Af (· ∧ �k+1)−Af (· ∧ �k) is continuous and increasing.
Now, note that

Dk(t)= I{�k<t∧θK }
∑

x∈F̂K

I{Z(�k)∈(λ̂K)−1(x)}D
x
k (t),
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where, for x ∈ F̂ K , Dx
k (t)= Af (t ∧ θxk ∧ θK)−Af (�k), and θxk is defined as in

(4.22), but with �k in place of �. Now, fix x ∈ F̂ K . Then, by Lemma 4.7, there
exists a function hx ∈ H such that hx(y) − hx(x) = f (y) − f (x) for each y ∈
Bκx(rx)(x). Hence, on the set {�k < θK}, Dx

k (t) = Ahx (t ∧ θxk ∧ θK) − Ahx (�k).
But, this is an increasing process since hx lies in H. In turn, this implies Dx

k is
nondecreasing, thus proving that Af (· ∧ �k+1) is increasing. By induction, this
proves the last assertion of the lemma. �

The last result will allow us to define a random measure and establish a conve-
nient integral representation for the process Af .

PROPOSITION 4.12. For each ω ∈ C, there exists a σ -finite measure μ̃(ω, ·)
on (R+×S1(0),B(R+×S1(0))), and there exists a subset �0 ⊂ C with Qz(�0)=
1 such that for every ω ∈�0, for all f ∈H and t ≥ 0,

(4.40) Af (
ω, t ∧ θK(ω)

)= ∫
Rt (ω)

〈
v,∇f (

Z(ω,u)
)〉
μ̃(ω, du, dv),

where, for t ≥ 0, Rt (ω) is the random Borel subset of [0, t] × S1(0) given by

(4.41) Rt (ω)
.= {

(u, v) ∈ [0, t] × S1(0) :Z(ω,u) ∈ ∂G \ V, v ∈ d
(
Z(ω,u)

)}
.

Moreover, for any continuous function g :RJ →RJ ,
∫
Rt
〈v, g(Z(u))〉μ̃(·, du, dv),

t ≥ 0, is a continuous adapted stochastic process starting from 0.

The proof of Proposition 4.12 is long and functional analytic in nature, involving
an application of the Hahn–Banach and Riesz representation theorems for random
linear functionals. So as not to interrupt the flow of the main construction, we defer
the proof to Section 5.

4.5.2. A boundary property of the martingale component. We start in
Lemma 4.13 by identifying a family of exponential martingales associated with
the random measure μ̃ from Proposition 4.12, which is used to show that the trace
of the quadratic variation of the martingale M vanishes on the boundary in Propo-
sition 4.14, and establish the desired identities (4.31) and (4.32) in Lemma 4.15.

Define α(0)= 0 and set

(4.42) α(t)
.= S

(
t ∧ θK

)− ∫
Rt

vμ̃(·, du, dv), t > 0.

Applying the last assertion of Proposition 4.12 with g(x)= �e� for �= 1, . . . , J , it
follows that α is a well-defined continuous adapted stochastic process. Moreover,
since S(· ∧ θK) is a semimartingale, (4.42) shows that α(·) is also a continuous
semimartingale. We now identify some exponential martingales associated with
the process α. Recall the family of stopping times {ζc, c > 0} defined by (4.36).
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LEMMA 4.13. For each 0 < c <∞ and every bounded, {Mt }-adapted pro-
cess {ϑ(t), t ≥ 0},

exp
{∫ t∧θK∧ζc

0

〈
ϑ(u), dα(u)

〉− 1

2

∫ t∧θK∧ζc
0

〈
ϑ(u), a

(
Z(u)

)
ϑ(u)

〉
du

}
,

(4.43)
t ≥ 0,

is a continuous martingale.

PROOF. Fix 0 < c <∞. We first reduce the proof of the lemma to showing
the result for constant ϑ(·), namely, to showing that for all ϑ ∈RJ ,

(4.44) exp
{〈
ϑ,α

(
t ∧ θK ∧ ζc

)〉− 1

2

∫ t∧θK∧ζc
0

〈
ϑ,a

(
Z(u)

)
ϑ
〉
du

}

is a continuous martingale. Indeed, suppose the result holds for constant v ∈ RJ .
Given the local boundedness of a, the nondegeneracy condition (2.11), and the
continuity of α(·∧θK), it follows that the conditions of Theorem 3.1 (and therefore
Theorem 3.2) of [38] are fulfilled with P , ξ and s therein replaced by Qz, α(· ∧
θK ∧ ζc) and 0, respectively. Therefore, we can apply part (v) of Theorem 3.2
of [38], with ξ = α and θ = ϑ , to conclude that for every bounded adapted process
ϑ(·), the process in (4.13) is a continuous martingale.

To show that the process in (4.44) is a continuous martingale, we establish a
slightly more general result. Suppose f ∈ C2(Ḡ) is positive. Then for t ≥ 0 and
ω ∈ C, define V f (t)= V f (ω, t) to be

V f (t)
.= exp

{
−

∫ t

0

Lf (Z(ω,u))

f (Z(ω,u))
du−

∫
Rt (ω)

〈
v,
∇f (Z(ω,u))

f (Z(ω,u))

〉
μ̃(ω, du, dv)

}
,

and

Hf (t)
.= f

(
Z
(
t ∧ θK ∧ ζc

))
V f (

t ∧ θK ∧ ζc
)
.(4.45)

Applying the last assertion of Proposition 4.12 with g(x) = ∇f (x)/f (x), it fol-
lows that V f and therefore Hf are well-defined, continuous adapted stochastic
processes. We now claim that for any positive f ∈ C2(Ḡ), Hf is a positive contin-
uous martingale starting from f (z). Suppose the claim were true. Then for fixed
ϑ ∈ RJ , define f (x) = f ϑ(x) = exp{〈ϑ,x〉}, x ∈ RJ . Then f is clearly positive,
lies in C2(Ḡ) and satisfies

Lf (x)
f (x)

= 〈
ϑ,b(x)

〉+ 1

2

〈
ϑ,a(x)ϑ

〉
and

∇f (x)
f (x)

= ϑ.

Substituting this into the definitions of V f and Hf and recalling the definition of
α in (4.42) and of S in (4.2), it is easy to verify that the process in (4.44) is equal
to e−〈ϑ,Z(0)〉Hf (t), t ≥ 0, and hence, is a continuous martingale.
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Thus, it only remains to establish the claim. Fix f ∈ C2(Ḡ) that is positive. To
prove the claim, we will first establish the relation

(4.46) Hf (t)− f
(
Z(0)

)=Nf (
t ∧ θK ∧ ζc

)
, t ≥ 0,

where

(4.47) Nf (t)
.=Mf (t)V f (t)−

∫ t

0
Mf (u)dV f (u), t ≥ 0

and then show that Nf (· ∧ θK ∧ ζc) is a continuous martingale. Using the relation
(4.33) for Mf in the first and last lines below, the definition of V f , the represen-
tation for Af in (4.40), and integration-by-parts, we obtain∫ t

0
Mf (

u∧ θK ∧ ζc
)
dV f (

u∧ θK ∧ ζc
)

=
∫ t∧θK∧ζc

0

(
f
(
Z(u)

)− f
(
Z(0)

)− ∫ u

0
Lf

(
Z(s)

)
ds −Af (u)

)
dV f (u)

=−
∫ t∧θK∧ζc

0
V f (u)d

(∫ u

0
Lf

(
Z(s)

)
ds +Af (u)

)

−
∫ t∧θK∧ζc

0

(
f
(
Z(0)

)+ ∫ u

0
Lf

(
Z(s)

)
ds +Af (u)

)
dV f (u)

=−V f (
t ∧ θK ∧ ζc

)(∫ t∧θK∧ζc
0

Lf
(
Z(u)

)
du+Af (

t ∧ θK ∧ ζc
))

+
∫ t∧θK∧ζc

0

(∫ u

0
Lf

(
Z(s)

)
ds +Af (u)

)
dV f (u)

−
∫ t∧θK∧ζc

0

(
f
(
Z(0)

)+ ∫ u

0
Lf

(
Z(s)

)
ds +Af (u)

)
dV f (u)

= f
(
Z(0)

)
− V f (

t ∧ θK ∧ ζc
)(

f
(
Z(0)

)+ ∫ t∧θK∧ζc
0

Lf
(
Z(u)

)
du

+Af (
t ∧ θK ∧ ζc

))

= f
(
Z(0)

)− V f (
t ∧ θK ∧ ζc

)(−Mf (
t ∧ θK ∧ ζc

)+ f
(
Z
(
t ∧ θK ∧ ζc

)))
.

Together with the definitions of Nf and Hf in (4.47) and (4.45), respectively, this
proves (4.46).

We now show that Nf (· ∧ θK ∧ ζc) is a martingale. By Lemma 4.11, Mf (· ∧
θK ∧ ζc) is a continuous martingale that is bounded on every finite interval and
V f (· ∧ θK ∧ ζc) is a continuous finite variation process. If we can show that
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E[|V f |(t ∧ θK ∧ ζc)] <∞ for every t > 0, where recall that |V f |(t) denotes
the total variation of V f on [0, t], then the desired result will follow from a
standard application of Itô’s formula [e.g., applying Lemma 2.1 of [39] with
φ =Mf (· ∧ θK ∧ ζc) and ψ = V f (· ∧ θK ∧ ζc)]. Let Cf <∞ be the maximum
of the supremum of f and the suprema of its first and second partial derivatives
over ḠK and let cf > 0 with infx∈ḠK f (x) > cf . Choose fr,s from Lemma 4.4,
and note that then 〈v,fr,s〉 ≥ 1 for and v ∈ d(x) ∩ S1(0), x ∈ Ur,s . It follows from
(4.40) and (4.35) that

μ̃
(
ω,Rt∧θK(ω)∧ζc(ω)(ω)

)≤Afr,s
(
ω, t ∧ θK(ω)∧ ζc(ω)

)

≤
(
cJ + cJ 2

2
+ tJ 2

2

J∑
i,j=1

sup
x∈ḠK

|aij |(x)
)
Cfr,s .

In turn, this implies that for all t > 0,

E
[∣∣V f

∣∣(t ∧ θK ∧ ζc
)]

≤ exp

{
tJ supx∈ḠK |Lf (x)|

cf

+ JCf

cf

(
3cJ 2

2
+ tJ 2

2

J∑
i,j=1

sup
x∈ḠK

|aij |(x)
)
Cfr,s

}

<∞,

as desired. This completes the proof of the lemma. �

PROPOSITION 4.14. The continuous local martingale M(· ∧ θK) in the de-
composition (4.25) for S(· ∧ θK) satisfies almost surely,

(4.48)
∫ θK

0
I∂G

(
Z(u)

)
d[Mi,Mi](u)= 0, i = 1, . . . , J.

PROOF. For each ϑ ∈ RJ , choosing ϑ(·) = ϑI∂G(Z(·)) in Lemma 4.13, we
see that for each c > 0,

exp
{〈
ϑ,

∫ t∧θK∧ζc
0

I∂G
(
Z(u)

)
dα(u)

〉
− 1

2

∫ t∧θK∧ζc
0

I∂G
(
Z(u)

)〈
ϑ,a

(
Z(u)

)
ϑ
〉
du

}

is a continuous martingale. Since almost surely Z spends zero Lebesgue time on
the boundary by Proposition 2.12, this implies that for each ϑ ∈RJ and t ≥ 0,

EQz

[
exp

{〈
ϑ,

∫ t∧θK∧ζc
0

I∂G
(
Z(u)

)
dα(u)

〉}]
= 1.
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Hence, for each t ≥ 0, we have almost surely,
∫ t∧θK∧ζc

0 I∂G(Z(u)) dα(u) = 0,

which in turn implies that for each i = 1, . . . , J ,
∫ θK∧ζc

0 I∂G(Z(u)) d[αi,αi](u)=
0. By letting c→∞, we have

(4.49)
∫ θK

0
I∂G

(
Z(u)

)
d[αi,αi](u)= 0, i = 1, . . . , J.

From (4.25) and (4.42), we know that

α
(
t ∧ θK

)=M
(
t ∧ θK

)+A
(
t ∧ θK

)− ∫
Rt

vμ̃(du, dv).

Since A(t∧θK)−∫
Rt

vμ̃(du, dv) is an adapted process with locally bounded vari-
ation, it follows that [αi,αi] = [Mi,Mi], and (4.48) follows directly from (4.49).
This completes the proof of Proposition 4.14. �

LEMMA 4.15. We have almost surely, that (4.31) and (4.32) hold for all t ≥ 0.

PROOF. From (4.6) and (4.25), it is clear that (4.32) follows from (4.31). To
establish (4.31), let the sequences of stopping times ςm

k ↑∞, m ∈N, and τmk ↑∞,
m ∈N, be defined by (4.26) and (4.27). We use the fact that almost surely ςm

k ↑∞
and τmk ↑∞ as k→∞, to conclude that for any t ≥ 0,

M
(
t ∧ θK

)=M1,m(t)+M2,m(t), m ∈N,(4.50)

where for m ∈N,

M1,m(t)
.=∑

k∈N

[
M

(
t ∧ τmk ∧ θK

)−M
(
t ∧ ςm

k ∧ θK
)]
,

M2,m(t)
.=∑

k∈N

[
M

(
t ∧ ςm

k ∧ θK
)−M

(
t ∧ τmk−1 ∧ θK

)]
.

Now, by (4.28) we have for any m ∈N and t ≥ 0,

M1,m(t)−
∫ t∧θK

0
a1/2(Z(u)

)
dW(u)=−∑

k∈N

∫ t∧ςm
k ∧θK

t∧τmk−1∧θK
a1/2(Z(u)

)
dW(u).

The last term is a square integrable martingale, with covariation

(4.51)
∫ t∧θK

0
I⋃

k∈N[τmk−1,ς
m
k ](u)IG

(
Z(u)

)
aij

(
Z(u)

)
du, i, j = 1, . . . , J.

Each integral in (4.51) converges almost surely to zero as m→∞ because

(4.52) lim
m→∞ I⋃

k∈N[τmk−1,ς
m
k ](u)= I∂G

(
Z(u)

)
.

Thus, we have shown that for any t > 0, as m→∞, M1,m(t) converges in L2(Qz)

to
∫ t∧θK

0 a1/2(Z(u)) dW(u). In view of (4.50), to complete the proof of (4.31), it
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suffices to show that M2,m(t) converges to zero in L2(Qz), as m→∞. Now, for
each i = 1, . . . , J , by (4.52) and the bounded convergence theorem,

lim
m→∞EQz

[∣∣M2,m(t)
∣∣2]

=
J∑

i=1

lim
m→∞EQz

[∫ t∧θK

0
I⋃

k∈N[τmk−1,ς
m
k ](u) d[Mi,Mi](u)

]

=
J∑

i=1

EQz

[∫ t∧θK

0
I∂G

(
Z(u)

)
d[Mi,Mi](u)

]
,

which is identically zero due to Proposition 4.14. This proves the lemma. �

4.5.3. Proof of the reflection property. In this section, we establish the reflec-
tion property (4.7). Roughly speaking, this requires establishing that the constrain-
ing term pushes in the right directions, as dictated by the reflection vector field.
The proof relies on the following simple geometric property.

LEMMA 4.16. Let � be a convex cone with vertex at 0 and let

(4.53) �
.= {

v ∈RJ : 〈v, b〉 ≥ 0 for each b ∈�
}
.

If there exists ϒ ∈RJ such that 〈v,ϒ〉 ≥ 0 for all v ∈�, then ϒ ∈�.

PROOF. We use an argument by contradiction to establish the lemma. Suppose
that there exists ϒ ∈RJ \� such that 〈v,ϒ〉 ≥ 0 for all v ∈�. Let P� :RJ →�

be the metric projection onto the cone � (which assigns to each point x ∈ RJ the
point on � that is closest to x). Since P�(ϒ)− ϒ is the inward normal to � at
P�(ϒ), and � is convex and has vertex at the origin, we have〈

P�(ϒ)−ϒ,b
〉≥ 0 for each b ∈�.

This implies that P�(ϒ) − ϒ ∈ �, and hence, by the assumed property of ϒ ,
〈P�(ϒ)−ϒ,ϒ〉 ≥ 0. On the other hand, since P� is nonexpansive and P�(ϒ) �=
ϒ because ϒ /∈�, it follows that 〈P�(ϒ),ϒ〉< 〈ϒ,ϒ〉, which yields a contradic-
tion. �

We now use this to establish the reflection property.

LEMMA 4.17.

Qz

(
Y
(
t ∧ θK

)− Y
(
s ∧ θK

) ∈ co
[ ⋃
u∈[s∧θK,t∧θK ]

d
(
Z(u)

)])= 1.
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PROOF. For each ε > 0 and y ∈ U , by Lemma 4.3 there exists Ry < ε such
that properties 1 and 2 of the lemma hold and further, we can choose constants
r = ry,ε < Ry < ε and maps κ = κy such that property 3 is also satisfied. By
applying Lemma 4.5 with Ĝ = ḠK ∩ U and Oy = Bκy(ry,ε)/2(y), y ∈ ḠK ∩ U ,

there exist a finite set F̂ ε ⊂ ḠK ∩ U and a measurable map λ̂ε from ḠK ∩ U onto
F̂ ε such that Lemma 4.5 holds. Let ιε0 = s ∧ θK and for each k ∈ N, recursively
define the following two nested sequences of stopping times:

�ε
k
.= inf

{
t ≥ ιεk−1 :Z(t) ∈ ∂G

}∧ θK,

ιεk
.= inf

{
t ≥ �ε

k :Z(t) /∈ B�εk

(
ȳεk

)}∧ θK,

where ȳεk
.= λ̂ε(Z(�ε

k)) and �εk = κȳεk (rȳ
ε
k ,ε

). Using an argument exactly analogous
to that used prior to Proposition 4.8, it is possible to show that almost surely, �ε

k→
θK , ιεk→ θK as k→∞.

First, observe that the relations
∫ θK

0 IG(Z(u)) d|A|(u) = 0 and A(t ∧ θK) =
Y(t ∧ θK) established in (4.29) and (4.32), respectively, along with the fact that
Z(t) ∈G for t ∈⋃

k∈N[ιεk−1, �
ε
k) imply that for every t ≥ 0,

(4.54) Y
(
t ∧ �ε

k

)− Y
(
t ∧ ιεk−1

)= 0, k ∈N.

Next, for each k ∈N, if �ε
k <∞, let

�ε
k
.= co

[ ⋃
y∈B�ε

k
(ȳεk )

d(y)

]
,

with ȳεk and �εk as defined above, and otherwise, let �ε
k

.= {0}. We now show that
for every ε > 0, and k ∈N,

(4.55) Qz

(
Y
(
t ∧ ιεk

)− Y
(
t ∧ �ε

k

) ∈�ε
k

)= 1.

Observe that{
Y
(
t ∧ ιεk

)− Y
(
t ∧ �ε

k

) ∈�ε
k

}
= {

�ε
k ≥ t ∧ θK,0 ∈�ε

k

}
(4.56)

∪
[{
�ε
k < t ∧ θK

}∩ ⋃
x∈F̂ ε

[{
Z
(
�ε
k

) ∈ (
λ̂ε

)−1
(x)

}∩Dε,x
k

]]
,

where, on the set {�ε
k <∞}, we define

Dε,x
k

.=
{
Y
(
t ∧ ιεk

)− Y
(
�ε
k

) ∈ co
[ ⋃
y∈Bκx(rx,ε)(x)

d(y)

]}
.
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For x ∈ F̂ ε , let �ε
x be the set defined in (4.53) with co[⋃y∈Bκx(rx,ε)(x)

d(y)] in place

of �. For each v ∈�ε
x , define gv(y)

.= 〈v, y〉, y ∈RJ . Then by Lemma 4.16,

Dε,x
k =

⋂
v∈�ε

x

{
gv

(
Y
(
t ∧ ιεk

))− gv
(
Y
(
�ε
k

))≥ 0
}
.

Since gv ∈ C2(RJ ) and 〈∇gv(y), d〉 = 〈v, d〉 ≥ 0 for d ∈ d(y), y ∈ Bκx(rx,ε)(x),
Lemma 4.7 and Lemma 4.15 together imply that almost surely, for every v ∈
�ε

x , Agv(· ∧ ιεk) −Agv(· ∧ �ε
k) is a continuous increasing process on the set

{Z(�ε
k) ∈ (λ̂ε)−1(x)}. However, Agv(· ∧ θK) = 〈A(· ∧ θK), v〉 by (4.35) and

A(· ∧ θK) = Y(· ∧ θK) on [0, θK ] by (4.32). Therefore, almost surely, for ev-
ery v ∈�ε

x , 〈v, Y(· ∧ ιεk)−Y(· ∧�ε
k)〉 is a continuous increasing process on the set

{Z(�ε
k) ∈ (λ̂ε)−1(x)}, which shows that Qz(Dε,x

k ∩ {Z(�ε
k) ∈ (λ̂ε)−1(x)}) = 1 for

x ∈ F̂ ε . Since F̂ ε is finite, together with (4.56), this implies (4.55).
Now, (4.54) and (4.55) together imply that for every ε > 0,

(4.57) Qz

(
Y
(
t ∧ θK

)− Y
(
s ∧ θK

) ∈ co
[ ⋃
k∈N:�εk<t∧θK

�ε
k

])
= 1.

For each k ∈N, ε > 0 and ω ∈ C, define

Eε
k (ω)

.= ⋃
u∈[�εk(ω),�εk+1(ω))

{
y ∈ Ḡ : ∣∣y −Z(ω,u)

∣∣≤ 4ε
}
,

and, recalling that ry,ε < ε, note that

�ε
k(ω)⊆ co

[ ⋃
y∈Eε

k (ω)

d(y)

]
.

Since the graph d(·) is closed, we have almost surely,

⋂
ε>0

⋃
k∈N:�εk<t∧θK

co
[ ⋃
y∈Eε

k

d(y)

]
= co

[ ⋃
u∈[0,t∧θK ]

d
(
Z(u)

)]
.

Thus, sending ε ↓ 0 on both sides of (4.57), we obtain (4.7). �

5. Proof of integral representations. This section is devoted to the proof
of Proposition 4.12. First, in Section 5.1, we introduce a random positive linear
functional, which we use in Section 5.2 to establish a preliminary integral repre-
sentation for Af (see Lemma 5.3). The proof of Proposition 4.12 is then given in
Section 5.3.
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5.1. A random positive linear functional. In what follows, let

K .= {
(x, v) ∈R2J : x ∈ ∂G \ V, v ∈ d(x), |v| = 1

}
.

For each f ∈H, let hf :K �→R be the function given by

hf (x, v)
.= 〈

v,∇f (x)〉, (x, v) ∈K.

Clearly, hf ∈ C1
c (K) for each f ∈ H. Note that Cc(R+ × K), equipped with the

uniform norm, is a separable linear space. Let T0 be the linear subspace of Cc(R+×
K) given by

T0
.=
⎧⎪⎨
⎪⎩g ∈ Cc(R+ ×K) : g(u, x, v)=

n∑
i=1

�i(u)hfi (x, v),

n ∈N, fi ∈H, �i ∈ Cc(R+), i = 1, . . . , n

⎫⎪⎬
⎪⎭ .

Now, let Af ,f ∈ H, be the family of processes defined in (4.35), and recall
from Lemma 4.11 that there exists a set �0 ∈M with Qz(�0)= 1 such that for all
ω ∈�0, f ∈H, t �→Af (ω, t ∧ θK(ω)) is increasing and the map f �→Af (ω, · ∧
θK(ω)) is linear. For each g ∈ T0 that has a representation of the form g(u, x, v)=∑n

i=1 �i(u)hfi (x, v), with �i ∈ Cc(R+) and fi ∈H, i = 1, . . . , n, define

(5.1) �(ω,g)
.=

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

∫ ∞
0

�i(u) dA
fi
(
ω,u∧ θK(ω)

)
, if ω ∈�0,

0, otherwise.

We will sometimes suppress the dependence of � and Af on ω and simply write
�(g) and Af (t ∧ θK), respectively.

We will show that � is a random positive linear functional on T0, in a sense
made precise below.

DEFINITION 5.1. Let X be a topological linear space. A map � :�×X→R

is a random linear functional on X if it satisfies the following two properties:

(i) �(·, x) is a random variable for each x ∈X;
(ii) �(ω, ·) is a linear functional on X for each ω ∈�.

The positivity of � will be shown with respect to a suitable positive cone. Define

P .= {
g ∈ Cc(R+ ×K) : 0≤ g(u, x, v)≤ hf (x, v), (x, v) ∈K for some f ∈H}

.

Consider the partial order � on Cc(R+ ×K) defined by h� g if g− h ∈ P .

LEMMA 5.1. The set P is a positive cone in Cc(R+ ×K). Moreover, for each
g ∈ Cc(R+×K), there exists ĝ ∈ T0 such that g � ĝ. Furthermore, if g ∈ Cc(R+×
K) is nonnegative, then g ∈ P and 0� g.
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PROOF. Note that if g, g̃ ∈ P , there exist f, f̃ ∈H such that for (x, v) ∈ K,
0 ≤ g(u, x, v) ≤ hf (x, v) and 0 ≤ g̃(u, x, v) ≤ h

f̃
(x, v). Hence, by the linear-

ity of the mapping f �→ hf , 0 ≤ g(u, x, v)+ g̃(u, x, v) ≤ hf (x, v)+ h
f̃
(x, v)=

h
f+f̃ (x, v), and for a > 0, 0 ≤ ag(u, x,u) ≤ ahf (x, v) = haf (x, v). Thus, g +

g̃ ∈ P and ag ∈ P , showing that P is a positive cone in Cc(R+ ×K).
We now turn to the proof of the second assertion of the lemma. Fix g ∈ Cc(R+×

K). Then there exists a compact set K ⊂K, an interval [t1, t2)⊂R+ and a constant
0 <C <∞ such that |g(u, x, v)| ≤ CI[t1,t2)(u)IK(x, v) for each (u, x, v) ∈R+ ×
K. Since K ∩ V ×RJ =∅ and V is closed, there exist r, s > 0 such that

(5.2)
{
x ∈RJ : (x, v) ∈K

}⊆ Ur,s = {
x ∈ ∂G : |x| ≤ r, d(x,V)≥ s

}
.

Now, choose fr,s from Lemma 4.4. Then f
.= Cfr,s satisfies |g(u, x, v)| ≤

CIK(x, v)≤ hf (x, v)= 〈v,∇f (x)〉 for each (u, x, v) ∈ R+ ×K. Let � ∈ Cc(R+)
be a function such that I[t1,t2)(u) ≤ �(u) ≤ 1 for each u ∈ R+, and choose
ĝ(u, x, v) = �(u)hf (x, v). Then ĝ ∈ T0 and 0 ≤ ĝ − g ≤ 2ĝ ≤ 2hf = h2f on K.
Since 2f ∈ H, this shows that ĝ − g ∈ P , and hence, that g � ĝ. Lastly, if
g ∈ Cc(R+ × K) and g ≥ 0, the last argument shows that 0 ≤ g(u, x, v) ≤
CI[t1,t2)(u)IK(x, v) ≤ �(u)hf (x, v) for each (x, v) ∈ K. This shows that g ∈ P
and 0� g. �

LEMMA 5.2. The map � :�×T0→R in (5.1) defines a random linear func-
tional on T0. Moreover, � is positive in the sense that �(g)≥ 0 whenever g ≥ 0.

PROOF. For ω /∈�0, �(ω, ·) is trivially well defined, and is positive and linear
on T0. So, fix ω ∈�0. To show that �(ω, ·) is well defined, we need to show that
if g ∈ T0 admits two representations

g(u, x, v)=
n∑

i=1

�i(u)hfi (x, v)

(5.3)

=
m∑

j=1

�̃j (u)hf̃j
(x, v), (u, x, v) ∈R+ ×K,

with �i, �̃j ∈ Cc(R+), fi, f̃j ∈H, i = 1, . . . , n, j = 1, . . . ,m, m,n ∈N, then

(5.4)
n∑

i=1

∫ ∞
0

�i(u) dA
fi
(
ω,u∧ θK(ω)

)= m∑
j=1

∫ ∞
0

�̃j (u) dA
f̃j

(
ω,u∧ θK(ω)

)
.

First, note that since Afi (ω, ·∧θK(ω)) and Af̃j (ω, ·∧θK(ω)) are increasing func-
tions, and �i and �̃j are continuous with compact support, each of the integrals
in (5.1) is well defined as a Riemann–Stieltjes integral. In fact, since the func-
tions �i lie in Cc(R+), i = 1, . . . , n, they are uniformly continuous and so for each
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ε > 0, there exists h > 0 such that |�i(u) − �i(v)| < ε whenever |u − v| ≤ h,
i = 1, . . . , n, j = 1, . . . ,m. Thus, for T large enough such that [0, T ] contains the
supports of every �i , �̃j , i = 1, . . . , n, j = 1, . . . ,m, we see that the quantity∣∣∣∣∣

n∑
i=1

∫ ∞
0

�i(u) dA
fi
(
u∧ θK

)
(5.5)

−
n∑

i=1

∞∑
k=0

�i(kh)
(
Afi

(
(kh+ h)∧ θK

)−Afi
(
kh∧ θK

))∣∣∣∣∣
is bounded by ε

∑n
i=1 A

fi (T ∧ θK), and, likewise, the quantity∣∣∣∣∣
m∑

j=1

∫ ∞
0

�̃j (u) dA
f̃i
(
u∧ θK

)

−
m∑

j=1

∞∑
k=0

�̃j (kh)
(
Af̃j

(
(kh+ h)∧ θK

)−Af̃j
(
kh∧ θK

))∣∣∣∣∣
is bounded above by ε

∑m
j=1 A

f̃j (T ∧ θK). We now claim that

(5.6)
n∑

i=1

�i(u)A
fi
(
ω, t ∧ θK(ω)

)= m∑
j=1

�̃j (u)A
f̃j

(
ω, t ∧ θK(ω)

)
, u, t ≥ 0.

If the claim (5.6) holds, then in particular,

n∑
i=1

∞∑
k=0

�i(kh)
(
Afi

(
ω, (kh+ h)∧ θK(ω)

)−Afi
(
ω,kh∧ θK(ω)

))

=
m∑

j=1

∞∑
k=0

�̃j (kh)
(
Af̃j

(
ω, (kh+ h)∧ θK(ω)

)−Af̃j
(
ω,kh∧ θK(ω)

))
,

which, when combined with the two previous bounds, implies∣∣∣∣∣
n∑

i=1

∫ ∞
0

�i(u) dA
fi
(
ω,u∧ θK(ω)

)− m∑
j=1

∫ ∞
0

�̃j (u) dA
f̃i
(
ω,u∧ θK(ω)

)∣∣∣∣∣
≤ ε

(
n∑

i=1

Afi
(
ω,T ∧ θK(ω)

)+ m∑
j=1

Af̃j
(
ω,T ∧ θK(ω)

))
.

Sending ε ↓ 0, we obtain (5.4).
Thus, to prove (5.4), it suffices to establish (5.6). Define

�u(x)
.=

n∑
i=1

�i(u)fi(x)−
m∑

j=1

�̃j (u)f̃j (x), (u, x) ∈R+ × Ḡ.
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Due to the linearity of the space H and of the map f �→ hf , (5.3) implies that for
each u ≥ 0, �u lies in H and h�u(x, v)= 〈∇�u(x), v〉 = 0 for every (x, v) ∈ K.
In turn, this implies that A�u

(t ∧ θK) and −A�u
(t ∧ θK) = A−�u

(t ∧ θK) are
both increasing, and hence A�u

(t ∧ θK) = 0 for every t ≥ 0. By linearity of the
mapping f �→ Af (· ∧ θK), this is equivalent to (5.6). Thus, we have shown that
�(ω, ·) is a well-defined functional on T0. The fact that g �→�(ω,g) is linear is
an immediate consequence of the definition of � in (5.1), and the fact that the sum
of representations of two functions g, g̃ in T0 is a representation for the sum g+ g̃.
Furthermore, for any g ∈ T0, given any representation for g of the form (5.3), each
stochastic Riemann–Stieltjes integral

∫∞
0 �i(u) dA

fi (u∧θK) is a random variable,
and so is its sum. Since �0 is a measurable set, it follows immediately from (5.1)
that �(·, g) is a random variable. Thus, � satisfies both properties of Definition 5.1
and is a random linear functional on T0.

We now establish the positivity of �. Let g ∈ T0 be such that g ≥ 0. Since
T0 ⊂ Cc(R+ ×K), g ∈ P by the last assertion of Lemma 5.1. Now, since g ∈ T0,
it also admits a representation of the form g(u, x, v) =∑n

i=1 �i(u)hfi (x, v) for
�i ∈ Cc(R+) and fi ∈H, i = 1, . . . , n. For ω /∈�0, �(ω, ·)≡ 0. On the other hand,
for ω ∈ �0 and each u ≥ 0, 〈v,∇(∑n

i=1 �i(u)fi)(x)〉 =
∑n

i=1 �i(u)hfi (x, v) ≥ 0
for each x ∈ ∂G \ V , v ∈ d(x) and |v| = 1. So

∑n
i=1 �i(u)fi ∈H, and hence

n∑
i=1

�i(u)
(
Afi

(
ω, (u+ h)∧ θK(ω)

)−Afi
(
ω,u∧ θK(ω)

))≥ 0.

Together with the approximation (5.5) to the Riemann–Stieltjes integral, this im-
plies that for any ε > 0,

∑n
i=1

∫∞
0 �i(u) dA

fi (u ∧ θK) ≥ −ε∑n
i=1 A

fi (T ∧ θK).
Sending ε down to 0, we conclude that for all ω ∈�0,

�(ω,g)=
n∑

i=1

∫ ∞
0

�i(u) dA
fi
(
ω,u∧ θK(ω)

)≥ 0.

This shows that � is positive, and completes the proof of the lemma. �

5.2. An integral representation. We now use the random positive linear func-
tional � to show that Af (· ∧ θK) admits a suitable integrable representation.

LEMMA 5.3. There exists a unique positive regular Borel measure μ(ω, ·) on
R+ ×K such that for each f ∈H and t ≥ 0,

(5.7) Af (
ω, t ∧ θK(ω)

)= ∫
[0,t]×K

〈
v,∇f (x)〉μ(ω,du, dx, dv).

PROOF. Fix ω ∈ C. By Lemma 5.2, �(ω, ·) is a positive linear functional
on T0. Thus, by the positive cone version of the Hahn–Banach theorem for positive
linear functionals (see Theorem 2.1 of [2]), �(ω, ·) can be extended to a positive
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linear functional on Cc(R+ ×K), which we denote by �̄(ω, ·). In turn, an appli-
cation of the Riesz–Markov–Kakutani representation theorem for positive linear
functionals (see Theorem 2.14 of [36]) shows that there exists a unique positive
regular Borel measure μ(ω, ·) on R+ ×K such that

�̄(ω,g)=
∫
R+×K

g(u, x, v)μ(ω,du, dx, dv)

(5.8)
for each g ∈ Cc(R+ ×K).

Now, for each t > 0, let {�n, n ∈ N} be a sequence of nonnegative functions in
Cc(R+) such that �n ↑ I[0,t] as n→∞. For each f ∈H, substituting gn(u, x, v)=
�n(u)hf (x, v) ∈ T0 into both the definition (5.1) and the representation (5.8) of �̄,
taking limits as n→∞ and invoking the monotone convergence theorem, we ob-
tain (5.7). �

We now establish some additional properties of the measure μ(ω, ·). For each
ω ∈ C, consider the set

K(ω)
.= {

(u, x, v) ∈R+ ×R2J : x = Z(ω,u) ∈ ∂G \ V, v ∈ d(x), |v| = 1
}
,

where we have written Z(ω,u) instead of Z(u) to make clear the dependence of
the right-hand side on ω.

LEMMA 5.4. There exists �0 ∈M with Qz(�0)= 1 such that

(5.9) μ
(
ω, [R+ ×K] \K(ω)

)= 0, for ω ∈�0.

PROOF. Let �0 ∈M be the set of full Qz-measure such that the relation (4.38)
holds. For each ω ∈�0 and ε > 0, let ςε

0 (ω)
.= 0 and for each k ∈N, let

τ εk (ω)
.= inf

{
t ≥ ςε

k−1(ω) :Z(ω, t) ∈ ∂G
}
,

ςε
k (ω)

.= inf
{
t ≥ τ εk (ω) : dist

(
Z(ω, t),Z

(
ω, τ εk (ω)

))≥ ε
}
.

Note that for some k and ω, we could have τ εk+1(ω)= ςε
k (ω). For ω ∈�0, ε > 0

and k ∈N, define the sets

Aε
k(ω)

.= {
(u, x, v) ∈ [

τ εk (ω), ς
ε
k (ω)

]×K : dist
(
x,Z

(
ω, τ εk (ω)

))≤ ε
}

and

Eε
k (ω)

.= {
(u, x, v) ∈ [

τ εk (ω), ς
ε
k (ω)

]×K : dist
(
x,Z

(
ω, τ εk (ω)

))
> ε

}
.

Note that K(ω) = ⋂
ε>0

⋃
k≥1 Aε

k(ω). In fact, it is easy to see that K(ω) ⊂⋂
ε>0

⋃
k≥1 Aε

k(ω). For the converse, let (u, x, v) ∈ ⋂
ε>0

⋃
k≥1 Aε

k(ω). Then for
each ε > 0, there exists k(ε) ≥ 1 such that (u, x, v) ∈ Aε

k(ε)(ω). Thus, u ∈
[τ εk(ε)(ω), ςε

k(ε)(ω)] and (x, v) ∈K such that dist(x,Z(ω, τ εk(ε)(ω)))≤ ε. It follows
that dist(Z(ω,u),Z(ω, τ εk(ε)(ω))) ≤ ε. and hence dist(x,Z(ω,u)) ≤ 2ε. Since
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Z(ω, τ εk(ε)(ω)) ∈ ∂G, we have dist(Z(ω,u), ∂G) ≤ ε. By letting ε ↓ 0, it follows
that x = Z(ω,u) ∈ ∂G. Since (x, v) ∈ K, we have x = Z(ω,u) ∈ ∂G \ V . Thus,
(u, x, v) ∈K(ω). This completes the proof of K(ω)=⋂

ε>0
⋃

k≥1 Aε
k(ω).

Observe that for every ε > 0,

[R+ ×K] \
[⋃
k≥1

Aε
k(ω)

]
=

[⋃
k≥1

Eε
k (ω)

]
∪

[⋃
k≥0

(
ςε
k (ω), τ

ε
k+1(ω)

)×K
]
.

Thus, to show (5.9), it suffices to show that for each ω ∈�0 and ε > 0,

(5.10) μ
(
ω,Eε

k (ω)
)= 0, k ∈N,

and

(5.11) μ
(
ω,

(
ςε
k (ω), τ

ε
k+1(ω)

)×K
)= 0, k ∈N.

To establish (5.10) and (5.11), choose r̄ , s > 0 such that ḠK ⊆ Ur̄ ,s = {x ∈
∂G : |x| ≤ r̄ , d(x,V) ≥ s} and recall the definition of θK in (4.4). Let fr̄,s be the
function in Lemma 4.4. Together with (5.7), (4.38) and the continuity of Afr̄,s (· ∧
θK), this shows that

0=Afr̄,s
(
ω, τ εk+1(ω)∧ θK(ω)

)−Afr̄,s
(
ω,ςε

k (ω)∧ θK(ω)
)

=
∫
(ςε

k (ω),τ
ε
k+1(ω)]×K

〈
v,∇fr̄,s(x)〉μ(ω,du, dx, dv)

≥ μ
(
ω,

(
ςε
k (ω), τ

ε
k+1(ω)

)×Kr̄ ,s

)
,

where Kr̄ ,s = {(x, v) ∈ R2J : x ∈ Ur̄ ,s , v ∈ d(x), |v| = 1}. Then we see that
μ(ω, (ςε

k (ω), τ
ε
k+1(ω)) × Kr̄ ,s) = 0 for each such r̄ , s > 0. Note that Kr̄ ,s ↑ K

as r̄→∞ and s→ 0. This proves (5.11). To show (5.10), by (5.7) again, for each
f ∈H we have

Af (
ω,ςε

k (ω)∧ θK(ω)
)−Af (

ω, τ εk (ω)∧ θK(ω)
)

(5.12)
=

∫
[τ εk (ω),ςε

k (ω)]×K
〈
v,∇f (x)〉μ(ω,du, dx, dv).

Note that for each f ∈H with support outside Bε(Z(ω, τ εk (ω))), by the definition
of Af in (4.35), we have

Af (
ω,ςε

k (ω)∧ θK(ω)
)−Af (

ω, τ εk (ω)∧ θK(ω)
)= 0.

Thus, by running over all f ∈H with support outside Bε(Z(ω, τ εk (ω))), we have
that (5.10) holds. This completes the proof of the lemma. �
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5.3. Proof of Proposition 4.12. We now present the proof of Proposition 4.12.
Note that as a consequence of (5.7) and Lemma 5.4, for every ω ∈�0, we have

Af (
ω, t ∧ θK(ω)

)= ∫
[0,t]×K∩K(ω)

〈
v,∇f (x)〉μ(ω,du, dx, dv), f ∈H.

Define a random measure μ̃ : C ×R+ ×K �→R as follows:

μ̃(ω, du, dv)
.=
{
I{x=Z(ω,u)∈∂G\V}μ(ω,du, dx, dv), if ω ∈�0,

0, otherwise.

Then for ω ∈ �0, clearly (4.40) holds. Since μ(ω, ·), and hence μ̃(ω, ·) is a
Borel measure by Lemma 5.3, it follows that for each compact set K ⊂ R+ ×K,
μ̃(ω,K) <∞ and, therefore, μ̃(ω, ·) is σ -finite. Since Qz(�0) = 1, this proves
the first part of Proposition 4.12.

Next, note that Z(ω, · ∧ θK(ω)) lives in ḠK . For each f ∈ C2
c (Ḡ) that is con-

stant in a neighborhood of V , there exists a constant C > 0 and, by Lemma 4.4,
a function fr̄,s ∈H such that 〈v,∇fr̄,s(x)〉 ≥ 1 for each x ∈ ∂G ∩ ḠK , v ∈ d(x)

and |v| = 1 such that f +Cfr̄,s ∈H. Since (4.40) holds for both fr̄,s and f +Cfr̄,s ,
then (4.40) holds for f . For any function f ∈ C2(Ḡ), there exists a function
g ∈ C2

c (Ḡ) such that g is constant in a neighborhood of V and f = g on ḠK . Since
Z(ω, · ∧ θK(ω)) lives in ḠK , (4.40) also holds for each f ∈ C2(Ḡ). It follows that
for each t ≥ 0 and f ∈ C2(Ḡ) that is uniformly positive,

∫ t

0

∫
d(Z(ω,u))∩S1(0)

I{Z(ω,u)∈∂G\V}
〈
v,
∇f (Z(ω,u))

f (Z(ω,u))

〉
μ̃(ω, du, dv)

=
⎧⎪⎨
⎪⎩
∫ t

0

1

f (Z(ω,u))
dAf (

ω,u∧ θK(ω)
)
, if ω ∈�0,

0, if ω /∈�0

as a function of ω is a random variable. Moreover, since it follows from the defini-
tion given in (4.35) that Af is an adapted continuous process of bounded variation,
it follows that the integral on the left-hand side of the above equality is also an
adapted continuous process.

Let ϑ ∈ RJ . Choose f (x) = exp{〈ϑ,x〉}. Then f ∈ C2(Ḡ) is uniformly pos-
itive. Simple calculations yield that ∇f (x)

f (x)
= ϑ , then by substituting f (x) =

exp{〈ϑ,x〉} into the previous display and recalling the definition of Rt from
(4.41), we have 〈ϑ, ∫Rt

vμ̃(·, du, dv)〉, t ≥ 0, is a one-dimensional continuous
adapted stochastic process starting from 0. Since ϑ is arbitrary, then we have
Rv(t)

.= ∫
Rt

vμ̃(·, du, dv), t ≥ 0, is a J -dimensional continuous adapted stochas-
tic process starting from 0 and the ith component of Rv(t), denoted by Rv

i (t), is∫
Rt

viμ̃(·, du, dv). Let g :RJ →RJ be a continuous function and let gi denote its
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ith component. It follows that

∫
Rt

〈
v, g

(
Z(u)

)〉
μ̃(·, du, dv)=

J∑
i=1

∫
Rt

vigi
(
Z(u)

)
μ̃(·, du, dv)

=
J∑

i=1

∫ t

0
gi

(
Z(u)

)
dRv

i (u).

Hence,
∫
Rt
〈v, g(Z(u))〉μ̃(·, du, dv), t ≥ 0, is also a continuous adapted process

starting from 0. This completes the proof of Proposition 4.12.

6. Proof of Theorem 2. Given (G,d(·)), b(·) and σ(·), suppose the associ-
ated set V is the union of finitely many closed connected sets, and suppose that for
each z ∈ Ḡ, (�,F, {Ft}), Pz, (Z,W) satisfies properties 1–3 of Definition 2.4 for
the associated SDER with initial condition z, and let Qz be the law of Z induced
by Pz on the canonical filtered probability space (C,M, {Mt}). Fix z ∈ Ḡ. Then
the definition of the ESP implies that Qz satisfies properties 1 and 2 of the sub-
martingale problem associated with (G,d(·)), b and σ . We now show that Qz also
satisfies property 3 of the submartingale problem. Fix f ∈H, and for some L̄ ∈N,
let V =⋃L̄

i=1 Vi be the unique decomposition of V into a finite union of its con-
nected components, each of which is closed. Any f ∈H is the sum of a constant
and a function f̃ , where f̃ has compact support and is constant in a neighborhood
of every point in V . The set Vi ∩ supp[f̃ ] is compact for every i = 1, . . . , L̄, and
hence, a standard covering argument shows that there exists ε > 0 such that for
each i = 1, . . . , L̄, f is constant on Bε(Vi )∩ Ḡ. We assume without loss of gener-
ality that ε is smaller than the minimum distance between any two closed sets Vi

and Vj , i, j = 1, . . . , L̄, i �= j .
Now, define ι0

.= 0 and for k ∈N, let

�k
.= inf

{
t > ιk−1 :Z(t) ∈ B̄ε/2(V)

}
,

ιk
.= inf

{
t > �k : Z(t) /∈ Bε(V)

}
,

where, by convention, the infimum over any empty set is taken to be infinity. Since
B̄ε/2(V) and (Bε(V))c are closed sets, ιk and �k are {Ft }-stopping times. Since the
process Z is continuous, almost surely, ιk , �k→∞ as k→∞. For t ∈ [0,∞),

f
(
Z(t)

)− f
(
Z(0)

)= ∞∑
k=1

[
I{ιk−1≤t}

(
f
(
Z(t ∧ �k)

)− f
(
Z(ιk−1)

))

+ I{�k≤t}
(
f
(
Z(t ∧ ιk)

)− f
(
Z(�k)

))]
(6.1)

=
∞∑
k=1

[
I{ιk−1≤t}

(
f
(
Z(t ∧ �k)

)− f
(
Z(ιk−1)

))]
,
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where the last equality holds because f is constant on each Bε(Vi ) and the
continuity of Z implies that almost surely, Z lies in the ε-neighborhood of ex-
actly one connected component of V during each interval [�k, ιk). Fix k ∈ N.
Now, (Z,Y ) is a solution to the ESP for X, where X is defined by (2.5), and
Z(t) /∈ V for t ∈ [ιk−1, �k]. Therefore, on the set {�k < t}, applying Lemma 2.7
with θ1 = ιk−1, θ2 = �k , s = 0 and t replaced by t − ιk−1, and defining Ỹ k(u)

.=
Y ((ιk−1+ u)∧ �k)− Y(ιk−1) for u ∈ [0,∞), it follows that there exists a measur-
able function γ k :�×R+ �→RJ such that

Y(t ∧ �k)− Y(ιk−1)= Ỹ k(t − ιk−1)− Ỹ k(0)

=
∫ (t−ιk−1)∧(�k−ιk−1)

0
γ k(u) d

∣∣Ỹ k
∣∣(u),

where γ k(u) ∈ d(Z(ιk−1 + u)) for d|Ỹ k| almost every u [where we have replaced
d(Z((ιk−1+u)∧�k)) by d(Z(ιk−1+u)) because d|Ỹ k|(u)= 0 for u > �k− ιk−1].
In turn, this implies that the process Z(· ∧ �k) − Z(ιk−1) admits the following
semimartingale decomposition: for t ≥ ιk−1,

Z(t ∧ �k)−Z(ιk−1)=
∫ t∧�k
ιk−1

b
(
Z(u)

)
du+

∫ t∧�k
ιk−1

σ
(
Z(u)

)
dW(u)

+
∫ (t−ιk−1)∧(�k−ιk−1)

0
γ k(u) d

∣∣Ỹ k
∣∣(u),

and by Itô’s formula, on the set {ιk−1 ≤ t} we have

f
(
Z(t ∧ �k)

)− f
(
Z(ιk−1)

)
=

∫ t∧�k
ιk−1

Lf
(
Z(u)

)
du+

∫ t∧�k
ιk−1

〈∇f (
Z(u)

)
, σ

(
Z(u)

)
dW(u)

〉

+
∫ (t−ιk−1)∧(�k−ιk−1)

0

〈∇f (
Z(ιk−1 + u)

)
, γ k(u)

〉
d
∣∣Ỹ k

∣∣(u).
Multiplying both sides of the last display by I{ιk−1≤t}, summing over k ∈ N and
observing that ∇f and Lf are identically zero on Bε(V) because f is constant on
each connected component of V , we have the equalities

∞∑
k=1

I{ιk−1≤t}
∫ t∧�k
ιk−1

〈∇f (
Z(u)

)
, σ

(
Z(u)

)
dW(u)

〉

=
∫ t

0

〈∇f (
Z(u)

)
, σ

(
Z(u)

)
dW(u)

〉
and, likewise,

∞∑
k=1

I{ιk−1≤t}
∫ t∧�k
ιk−1

Lf
(
Z(u)

)
du=

∫ t

0
Lf

(
Z(u)

)
du.



THE SUBMARTINGALE PROBLEM FOR REFLECTED DIFFUSIONS 453

Combining the last three displays with (6.1), we conclude that Pz-almost surely,
for every t ≥ 0, Sf (t)

.= f (Z(t))− f (Z(0))− ∫ t
0 Lf (Z(u)) du is equal to∫ t

0

〈∇f (
Z(u)

)
, σ

(
Z(u)

)
dW(u)

〉

+
∞∑
k=1

I{ιk−1≤t}
∫ (t−ιk−1)∧(�k−ιk−1)

0

〈∇f (
Z(ιk−1 + u)

)
, γ k(u)

〉
d
∣∣Ỹ k

∣∣(u).
Since f ∈H, γ k(u) ∈ d(Z(ιk−1+u)) for d|Ỹ k| almost every u, the second term on
the right-hand side is almost surely nondecreasing, whereas the local boundedness
of σ and the fact that f has compact support shows that the first term on the right-
hand side is a martingale. This implies that the process described by the right-hand
side and, therefore, the left-hand side, is a submartingale, and hence, shows that Qz

satisfies property 3 of the submartingale problem. Next, if the triplet (�,F, {Ft}),
Pz, (Z,W) is a actually a weak solution (so that property 4 of Definition 2.4 also
holds) then Qz clearly also satisfies property 4 of Definition 2.9, and so Qz a solu-
tion to the submartingale problem. This completes the proof of the first assertion
of Theorem 2. The second assertion follows immediately from the first.

APPENDIX A: PROOF OF A MEASURABILITY PROPERTY FOR THE ESP

We now establish Lemma 2.7. Let the processes X, Y , Z, and the stopping times
θ1, θ2 be as in Lemma 2.7, let the stopped shifted processes Ỹ and Z̃ be defined as
in (2.8) and (2.9), respectively, and also define the corresponding process X̃(u)=
Z(θ1)+X((u+ θ1)∧ θ2)−X(θ1), u ∈ [0,∞). Also, given any RJ -valued process
H , recall that |H |(u) represents the total variation of H on [0, u]. It follows from
Lemma 2.3 of [32] that Pz-almost surely on the set A= {θ1 < θ2}, (Z̃, Ỹ ) satisfies
the ESP for X̃. On the other hand, Theorem 2.9 of [32] shows that for ω ∈ A

such that Z̃(ω, s) /∈ V for all s ∈ [0, θ2(ω)− θ1(ω)] (which should be interpreted
as s ∈ [0,∞) when θ2(ω) = ∞), the total variation |Ỹ | of Ỹ is finite on every
bounded interval [0, t], t <∞. It then follows from property 2 of Theorem 1.3
of [32] (which is restated in Remark 2.3 of this paper) that for each ω, one can
find a Borel measurable function γ (ω, ·) on [0,∞), with the desired properties
stated in (2.10). However, to prove the assertion in Lemma 2.7, we need to show
the existence of a version of γ that is jointly measurable in �× [0,∞).

To show this, for each N ∈N, we define the stopping time

τN
.= inf

{
t ≥ 0 : |Ỹ |(t)≥N

}
,

let θN .= τN ∧ θ2, and let Ỹ θ2(·) and Ỹ θN (·), respectively, be the stopped processes
Ỹ (· ∧ θ2) and Ỹ (· ∧ θN)= Ỹ (· ∧ θ2 ∧ τN).

Consider the measure μ̄N on (�×R+,F ×B(R+)) defined by

μ̄N (
A× (s, t]) .= EPz

[
IA

(|Ỹ |(t ∧ θN
)− |Ỹ |(s ∧ θN

))]
(A.1)

= EPz

[
IA

∫
(s,t]

d
∣∣Ỹ θN

∣∣(u)]
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for A ∈ F and 0≤ s < t <∞. Since |Ỹ | is almost surely nondecreasing, the def-
inition of τN implies μ̄N(�× R+) ≤ N , and thus, each μ̄N is a finite measure.
In an analogous fashion, for each i = 1, . . . , J , define μN

i to be the finite signed
measure on (�×R+,F ×B(R+)) that satisfies

μN
i

(
A× (s, t]) .= EPz

[
IA

(
Ỹi

(
t ∧ θN

)− Ỹi
(
s ∧ θN

))]
,

(A.2)
A ∈F,0≤ s < t <∞.

From (A.1) and (A.2), it is clear that μN
i  μ̄N for i = 1, . . . , J . Let μN denote

the J -dimensional vector of finite signed measures whose ith entry is μN
i . By the

Radon–Nikodỳm theorem, there exists a measurable function γN : (�×R+,F ×
B(R+)) �→ (RJ ,B(RJ )) such that

μN (
A× (s, t])= ∫

A×(s,t]
γN(ω,u)dμ̄N(ω,u),

(A.3)
A ∈F,0≤ s < t <∞.

Moreover, it is also clear that γN(ω,u)= γN(ω,u∧ τN(ω)) for each ω ∈�,0≤
u <∞.

Now, from (A.2), (A.3) and (A.1), it follows that for each random variable ξ

and measurable function h defined on R+:

EPz

[
ξ

∫
[0,∞)

h(u) dỸ θN (u)

]
=

∫
�×R+

ξ(ω)h(u)dμN(ω,u)

=
∫
�×R+

ξ(ω)h(u)γ N(ω,u)dμ̄N(ω,u)

= EPz

[
ξ(·)

∫
[0,∞)

h(u)γ N(·, u) d∣∣Ỹ θN
∣∣(u)].

Hence, for each 0 ≤ s < t <∞, since the above display holds for each ξ , by
choosing h(u)= I(s,t](u), we see that Pz-almost surely,

Ỹ
(
t ∧ θN

)− Ỹ
(
s ∧ θN

)= ∫
(s,t]

γN(·, u) d∣∣Ỹ θN
∣∣(u),

and the continuity of Ỹ implies that Pz-almost surely,

(A.4) Ỹ
(
t ∧ θN

)− Ỹ
(
s ∧ θN

)= ∫
[s,t]

γN(·, u) d∣∣Ỹ θN
∣∣(u), 0≤ s < t <∞.

In turn, this shows that for Pz-almost every ω, γN(ω, ·) is a version of the Radon–
Nikodỳm derivative of dỸ θN (ω, ·) with respect to d|Ỹ θN |(ω, ·).

We now show that the sequence γN,N ∈ N, is consistent in the sense that for
N ∈N,

(A.5) γN+1(·, u∧ τN
)= γN(·, u) for d

∣∣Ỹ θ2
∣∣-a.e. u ∈ [0,∞).
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Indeed, first note that for each N ∈ N and 0≤ s < t <∞, (A.4), with N replaced
by N + 1, t replaced by t ∧ τN and s replaced by s ∧ τN , yields

Ỹ
(
t ∧ τN ∧ θN+1)− Ỹ

(
s ∧ τN ∧ θN+1)= ∫

[s∧τN ,t∧τN ]
γN+1(·, u) d∣∣Ỹ θN+1 ∣∣(u),

which can be equivalently rewritten as

Ỹ
(
t ∧ θN

)− Ỹ
(
s ∧ θN

)= ∫
[s,t]

γN+1(·, u∧ τN
)
d
∣∣Ỹ θN

∣∣(u).
A comparison with (A.4) shows that

γN+1(·, u∧ τN
)= γN(·, u) for d

∣∣Ỹ θN
∣∣-a.e. u ∈ [

0, τN
]
,

which is equivalent to (A.5). Next, define

γ̃ (ω,u)= lim sup
N→∞

γN(ω,u), (ω,u) ∈�× [0,∞).

It follows that γ̃ is a measurable function from (� × R+,F × B(R+)) to
(RJ ,B(RJ )), and Pz-almost surely, γ̃ (·, u ∧ τN) = γN(·, u) for d|Ỹ θ2 |-a.e. u ∈
[0,∞) and for each 0≤ s < t <∞,

Ỹ
(
t ∧ θ2 ∧ τN

)− Ỹ
(
s ∧ θ2 ∧ τN

)= ∫
[s,t]

γ̃
(·, u∧ τN

)
d
∣∣Ỹ θ2∧τN ∣∣(u)

=
∫
[s∧τN ,t∧τN ]

γ̃ (·, u) d∣∣Ỹ θ2
∣∣(u).

Sending N→∞ and using the continuity of Ỹ and the fact that τN→∞ because
Ỹ has finite variation on every bounded interval, we have Pz-almost surely, for
each 0≤ s < t <∞,

Ỹ (t)− Ỹ (s)= Ỹ (t ∧ θ2)− Ỹ (s ∧ θ2)

=
∫
[s,t]

γ̃ (·, u) d∣∣Ỹ θ2
∣∣(u)= ∫

[s,t]
γ̃ (·, u) d|Ỹ |(u).

Finally, since the pair (Z,Y ) solves the ESP for X, it follows from Remark 2.3
that Pz-almost surely, γ̃ (u) ∈ d(Z̃(u)) for d|Ỹ |-a.e. u ∈ [0,∞). This completes
the proof.

APPENDIX B: PROOF OF THE COVERING LEMMA

In this section, we prove Lemma 4.5. Fix a compact subset Ĝ of Ḡ \ V and a
collection of open sets {Oy, y ∈ Ĝ} such that y ∈Oy for all y ∈ Ĝ, Oy ∩ V = ∅

if y ∈ Ĝ ∩ U and Oy ⊂G if y ∈ Ĝ ∩G. Since Ĝ ∩ U = Ĝ ∩ ∂G is compact, and
{Oy, y ∈ Ĝ∩U} is an open cover of Ĝ∩U , there exists a finite set F ⊂ Ĝ∩U such
that Ĝ∩U ⊂⋃

y∈F1
Oy . Enumerating the elements of F as F = {yi, i = 0, . . . ,N}
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for some N ∈ N, we let D0 = O0 and Dk = Oyk \ (
⋃k−1

i=0 Oyi ) for k = 1, . . . ,N .
Then {Dk ∩ Ĝ∩U,1≤ k ≤N} is a partition of Ĝ∩U , and for each x ∈⋃

y∈F Oy

there is a unique index i = i(x) such that x ∈Di ⊆Oyi . Define λ(x) .= yi(x) for x ∈⋃
y∈F Oy . Then, since each Di is Borel measurable, the mapping λ from

⋃
y∈F Oy

onto F is clearly measurable. Moreover, since Ĝ\⋃y∈F Oy is compact, contained

in G and {Oy, y ∈ Ĝ \⋃y∈F Oy} is an open cover of Ĝ \⋃y∈F Oy , there exists

a finite set F ′ ⊂ Ĝ \⋃y∈F Oy such that Ĝ \⋃y∈F Oy ⊂⋃
y∈F ′Oy . By a similar

construction as for λ, there exists a measurable mapping λ′ from Ĝ \⋃
y∈F Oy

onto F ′ such that y ∈Oλ′(y). The mapping λ̂ from Ĝ to F̂
.= F ∪ F ′ that is equal

to λ on Ĝ∩⋃
y∈F Oy and is equal to λ′ on Ĝ \⋃y∈F Oy is clearly measurable and

has the desired properties.

APPENDIX C: CONSTRUCTION OF TEST FUNCTIONS

This section is devoted to the proof of Lemma 4.3. The first property of the
lemma follows from the upper-semicontinuity of the set function I(y) = {i ∈ I :
y ∈ ∂Gi} introduced in Definition 2.11. Since y ∈ U , property 2 follows from
property 1, the definition of U in (2.2) and the continuity of ni(·) and γ i(·), which
holds by Definition 2.11.

We devote the rest of this section to the proof of property 3. For each y ∈ U , the
family of functions {f y,r} will be constructed as suitably smoothed and localized
versions of the distance function to a certain cone. The construction is similar in
spirit to (although more complicated than) that carried out in [32], Section 6.1, for
polyhedral domains. We start by establishing two preliminary results, the first of
which paraphrases a result from [32].

LEMMA C.1. Let � be a closed convex cone with vertex at the origin and
a boundary that is C∞, except possibly at the vertex. Given any closed, convex,
compact subset K of the interior of �, constants 0 < η < λ <∞ and ε > 0, there
exist ν > 0 and a C∞ function � on the set

�
.= {

x ∈RJ : η < dist(x,�) < λ
}

that satisfy the following two properties:

1. supx∈�(|�(x)− dist(x,�)| ∨ ||∇�(x)| − 1|)≤ ε;
2. for p ∈K and x ∈�, we have 〈∇�(x),p〉 ≤ −ν.

Moreover, if � is a half-space, given any subset K of �, the function �(x)
.=

dist(x,�), x ∈�, is a C2 function on � that satisfies property 1 above, and also
satisfies property 2 with ν = 0.

PROOF. The function � with the properties stated above can be constructed as
a suitable mollification of the distance function to the cone �. Indeed, Lemma C.1
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can be deduced from the proof of [32], Lemma 6.2, with gC , LC,δC , KδC/3
C , η̃C ,

λ̃C and ε̃C therein replaced by �(·), �, K, η, λ and ε, respectively. �

Fix y ∈ U . We now construct a certain cone associated with the directions of
reflection at y, which will serve as the analog to the cone � from Lemma C.1.
Define

(C.1) Ky
.=
{
− ∑

i∈I(y)
aid

i(y) : ai ≥ 0, i ∈ I(y), ∑
i∈I(y)

ai = 1
}
,

where recall the definitions of di(y) and I(y) given in Definition 2.11. Note that
Ky is a convex, compact subset of RJ . Therefore, there exist δy > 0 and a compact,
convex set Ky,δy such that Ky,δy has C∞ boundary and satisfies

(C.2) K
δy/2
y ⊂ (Ky,δy )

◦ ⊂Ky,δy ⊂K
δy
y ,

where Kε
y

.= {x ∈ RJ : dist(x,Ky)≤ ε} for every ε > 0. Since y ∈ U , by the defi-
nition of U in (2.2), it is easy to see that 0 /∈Ky and

min
i∈I(y)

〈
ni(y), d

〉
< 0 for every d ∈Ky.

Therefore, δy > 0 can be chosen such that 0 /∈Ky,δy and

(C.3) min
i∈I(y)

〈
ni(y), d

〉
< 0 for every d ∈K

δy
y .

For each i ∈ I(y), since ∂Gi is C1 near y ∈ ∂G, the hyperplane {x ∈ RJ :
〈ni(y), x − y〉 = 0} is the tangent plane to ∂Gi at y. Let

Sy
.= ⋂

i∈I(y)

{
x ∈RJ : 〈ni(y), x − y

〉≥ 0
}
.

Then Ḡ can be locally approximated near y by the polyhedral cone Sy in the sense
that for each N <∞,

(C.4)
{
y + (x − y)

r
∈RJ : x ∈ Ḡ, |x − y| ≤Nr

}
→ Sy ∩BN(y) as r→ 0,

where the convergence is with respect to the Hausdorff distance. In view of (C.10),
it follows that there exist

(C.5) 0 < ry < dist
(
y,V ∪ ⋃

i /∈I(y)
(∂G∩ ∂Gi)

)

and λy ∈ (0,1) small enough (not depending on ry ) such that for each r ∈ (0, ry),

(C.6)
{
x ∈RJ : dist

(
x, y + ⋃

t∈[0,R̄y ]
tKy,δy

)
≤ 3λyr

}
∩ ∂G⊂ Br(y)∩ ∂G
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and

(C.7)
{
x ∈RJ : dist

(
x, y + ⋃

t∈[0,R̄y ]
tKy,δy

)
≤ 3λyr

}
∩ Ḡ∩ ∂Br(y)=∅.

Choose ηy ∈ (0, λy), and define

(C.8) !y
.= {

x ∈RJ : ηy < dist(x,�)≤ 2λy
}
.

Then, it follows from Lemma C.1, with � =⋃
t≥0 tKy,δy , K = K

δy/3
y , λ = 2λy ,

η = ηy ∈ (0, λy), � = !y , and εy = λy/12 ∧ ηy/2, that there exists a constant
νy > 0 (that does not depend on ry ) and a function �y :!y → R that satisfy the
properties stated in Lemma C.1.

We will construct the family of functions {f y,r} as suitably scaled and truncated
versions of �y , whose supports have the desired properties. The construction uses
certain properties of Ky,δy summarized in Lemma C.2.

LEMMA C.2. For y ∈ U , there exist R̄y ∈ (0,1) and βy > 0 such that

(C.9) min
i∈I(y)

〈
ni(y), d

〉
<−2βy |d| for every d ∈ ⋃

t∈[0,R̄y ]
tKy,δy

and

(C.10)
(
y + ⋃

t∈[0,R̄y ]
tKy,δy

)
∩ Ḡ= {y}.

PROOF. Fix y ∈ U . We first use an argument by contradiction to prove that

(C.11) sup
d∈Ky,δy

min
i∈I(y)

〈
ni(y),

d

|d|
〉
< 0.

Since Ky,δy is compact and d �→mini∈I(y)〈ni(y), d/|d|〉 is continuous, the supre-
mum can be replaced by a maximum in (C.11). Thus, if (C.11) does not hold, then
there exists d ∈Ky,δy such that mini∈I(y)〈ni(y), d/|d|〉 ≥ 0. But this contradicts
(C.3). Thus, (C.11) holds, which, in particular, implies that there exists βy > 0
such that (C.9) holds for any R̄y > 0.

In addition, since for each i ∈ I(y), ∂Gi is C1 near y, it follows that

lim
δ→0

inf
x∈Ḡ:|x−y|≤δ

min
i∈I(y)

〈
ni(y),

(x − y)

|x − y|
〉
≥ 0.

Together with (C.11) this shows that there exists R̄y ∈ (0,1) such that

inf
x∈Ḡ:

|x−y|≤R̄y(
∑

i∈I(y) |di(y)|+δy)
min
i∈I(y)

〈
ni(y),

x − y

|x − y|
〉

(C.12)

> sup
d∈Ky,δy

min
i∈I(y)

〈
ni(y),

d

|d|
〉
.



THE SUBMARTINGALE PROBLEM FOR REFLECTED DIFFUSIONS 459

We use this to prove (C.10) by contradiction. Suppose that (C.10) does not hold.
Then there exists d ∈⋃

t∈[0,R̄y ] tKy,δy such that d �= 0 and y+d ∈ Ḡ. We can write

d = t∗d∗ for some t∗ ∈ [0, R̄y] and d∗ ∈Ky,δy . Also, by the definition of Ky,δy in
(C.1) and (C.2), |d| ≤ R̄y(

∑
i∈I(x) |di(y)| + δy). Hence, (C.12) implies that

min
i∈I(y)

〈
ni(y),

d∗

|d∗|
〉
= min

i∈I(y)

〈
ni(y),

d

|d|
〉
> sup

d∈Ky,δy

min
i∈I(y)

〈
ni(y),

d

|d|
〉
,

which contradicts the fact that d∗ ∈Ky,δy . Thus, (C.10) holds for the chosen R̄y ∈
(0,1). �

We now introduce some more geometric objects that will allow us to identify a
family of sets O(y, r), r > 0, where O(y, r) will contain the support of the func-
tion ∇f y,r that we want to construct. Let Ly,δy be a truncated (half) cone with
vertex at the origin defined by

Ly,δy
.= ⋃

t∈[0, R̄y2 ]
tKy,δy .

Then (C.10) and the fact that 0 ∈Ly,δy imply

(y +Ly,δy )∩ Ḡ= {y}.
Due to the fact that y ∈ U , there exists a vector in the set Ky defined in (C.1) such
that −qy points into G from y and |qy | ≤ 1 [here we have used the fact that di(y)

is a unit vector for every i and y]. For each r ∈ (0,1), define

(C.13) M(y, r)
.= y − λy

R̄y

2
rqy + rLy,δy ,

and observe that, since a δy neighborhood of the vector −R̄yqy/2 lies in Ly,δy , y
lies in the interior of M(y, r). For each ε ≥ 0, let

Mε(y, r)
.= {

x ∈RJ : dist
(
x,M(y, r)

)≤ ε
}
.

Since R̄y < 1 and |qy | ≤ 1, it is clear that for each x ∈M2λyr (y, r),

dist
(
x, y + ⋃

t∈[0,R̄y ]
tKy,δy

)
≤ 2λyr +

∣∣∣∣λy R̄y

2
rqy

∣∣∣∣< 3λyr.

Thus, we have

M2λyr (y, r)⊆
{
x ∈RJ : dist

(
x, y + ⋃

t∈[0,R̄y ]
tKy,δy

)
< 3λyr

}

and hence, by (C.6)–(C.7) we have

(C.14) M2λyr (y, r)∩ Ḡ∩ ∂Br(y)=∅ and M2λyr (y, r)∩ Ḡ⊂ Br(y)∩ Ḡ.
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Let

(C.15) O(y, r)
.= Ḡ∩ (

M2λyr (y, r) \Mηyr(y, r)
)⊂ Br(y)∩ Ḡ.

For each x ∈ O(y, r), it is clear that x ∈ Ḡ and from (C.13) and the fact that
ηy < λy , it follows that

(C.16) ηy < dist
(
x − y

r
+ λyR̄y

2
qy,Ly,δy

)
≤ 2λy.

Since Ḡ can be locally approximated at y by Sy as in (C.4), by choosing ry and
λy sufficiently small, we can ensure that for each r ∈ (0, ry) and x ∈O(y, r), the
projection of (x − y)/r + λy(Ry/2)qy to Ly,δy coincides with the projection of
(x − y)/r + λy(Ry/2)qy to

⋃
t≥0 tKy,δy since Ly,δy is the portion of

⋃
t≥0 tKy,δy

truncated near its vertex. Hence, for each x ∈O(y, r), we have

dist
(
x − y

r
+ λyR̄y

2
qy,Ly,δy

)
= dist

(
x − y

r
+ λyR̄y

2
qy,

⋃
t≥0

tKy,δy

)
.

Together with (C.16), this shows that for each x ∈O(y, r), x−y
r
+ λy

R̄y

2 qy lies in
the set !y specified in (C.8).

Now, let ky,r be the function on O(y, r) given by

ky,r (x)
.= �y

(
x − y

r
+ λyR̄y

2
qy

)
, x ∈O(y, r).

Then the properties of �y and νy stated in Lemma C.1 and the definition of O(y, r)

in (C.15) imply that ky,r ∈ C∞(O(y, r)),

sup
x∈O(y,r)

(∣∣∣∣ky,r (x)− dist
(
(x − y)

r
+ λyR̄y

2
qy,Ly,δy

)∣∣∣∣∨ (
r
∣∣∇ky,r (x)∣∣− 1

))
(C.17)

≤ λy

12
,

and 〈r∇ky,r (x),p〉 ≤ −νy for each p ∈K
δy/3
y and x ∈O(y, r). From the second

property in Lemma C.1, it also follows that〈
r∇ky,r (x), di(y)

〉≥ νy for i ∈ I(y) and x ∈O(y, r).

Since di(·) is continuous for each i ∈ I , ry satisfies (C.5) and I is upper semicon-
tinuous, by possibly making ry yet smaller and using the first property of ky,r from
Lemma C.1, we have for each r ∈ (0, ry),

(C.18)
〈
r∇ky,r (x), di(x)

〉≥ νy

2
for i ∈ I(x) and x ∈O(y, r).
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Now, choose h̄y ∈ C∞(R) to be a decreasing function such that

(C.19) h̄y(s)=

⎧⎪⎪⎨
⎪⎪⎩

1, if s ∈ (−∞,5λy/4],
strictly decreasing, if s ∈ (5λy/4,23λy/12],
0, if s ∈ (23λy/12,∞),

and define f y,r :RJ →R+ as follows:

(C.20) f y,r (x)
.=

⎧⎪⎪⎨
⎪⎪⎩
h̄y

(
ky,r (x)

)
, if x ∈O(y, r),

1, if x ∈ Ḡ∩Mηyr(y, r),

0, otherwise.

When combined with the definitions of M(y, r) and O(y, r) given in (C.13) and
(C.15), respectively, and properties (C.17) and (C.14), we infer that

supp
[
f y,r ]∩ Ḡ

⊂
{
x ∈ Ḡ : ky,r (x)≤ 23λy

12

}

⊂
{
x ∈ Ḡ : dist

(
x − y

r
+ λyR̄y

2
qy,Ly,δy

)
≤ 23λy

12
+ λy

12

}
(C.21)

=
{
x ∈ Ḡ : dist

(
x − y + λyR̄y

2
rqy, rLy,δy

)
≤ 2λyr

}

=M2λyr (y, r)∩ Ḡ

⊂ Br(y)∩ Ḡ,

which establishes property 3(b) of Lemma 4.3. In addition, we also have{
x ∈ Ḡ : ky,r (x)≥ 5λy/4

}
⊂

{
x ∈ Ḡ : dist

(
x − y

r
+ λyR̄y

2
qy,Ly,δy

)
≥ 5λy

4
− λy

12

}
(C.22)

⊂
{
x ∈ Ḡ : dist

(
x − y + λyR̄y

2
rqy, rLy,δy

)
≥ λyr

}

⊂ (
Mηyr(y, r)

)c ∩ Ḡ,

where the last inclusion uses the fact that ηy < λy . Relations (C.19)–(C.22), to-
gether with (C.15), show that the set on which f y,r is neither 0 nor 1 is a strict
subset of O(y, r). Combining this with (C.21) and the fact that h̄y ∈ C∞(R) and
ky,r ∈ C∞(O(y, r)), it follows that

(C.23) h̄′y
(
ky,r (x)

)
< 0, if x ∈O(y, r)

and f y,r ∈ C∞(Ḡ).
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By the definition of h̄y in (C.19), f y,r clearly satisfies property 3(c) of
Lemma 4.3. Moreover, since y is an interior point of M(y, r), there exists κy(r) ∈
(0, r) such that Bκy(r)(y) ⊂M(y, r). For each x ∈ Bκy(r)(y) ∩ Ḡ, the definition
of f y,r in (C.20) implies that f y,r (x) = 1. Thus, f y,r satisfies property 3(d) of
Lemma 4.3. Finally, for each x ∈O(y, r), since ∇f y,r (x)= h̄′y(ky,r (x))∇ky,r (x),
(C.18), (C.23) and the fact that I(x)⊂ I(y) for all x sufficiently close to y imply
that 〈∇f y,r (x), di(x)

〉≤ 0 for i ∈ I(x) and x ∈O(y, r),

which proves that −f y,r ∈ H. Since f y,r has compact support on Ḡ by prop-
erty 3(b), this implies property 3(a) of Lemma 4.3. This completes the proof of
Lemma 4.3.

APPENDIX D: PROOF OF PROPOSITION 2.12

Fix z ∈ Ḡ. Due to property 4 of the submartingale problem and the fact that
V = ∂G \ U by (2.1), to show (2.12) it suffices to show that

(D.1) EQz

[∫ ∞
0

IU
(
ω(s)

)
ds

]
= 0.

Recall the definition of I(·) given in Definition 2.11 and for each δ > 0, let

(D.2) Uδ
.=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
x ∈ U :

I(y)⊆ I(x) for all y ∈ Bδ(x)∩ ∂G and ∃n ∈ n(x)

such that n= ∑
i∈I(x)

θin
i(x), where θi ≥ 0, i ∈ I(x),

∑
i∈I(x)

θi = 1, and 〈n,d〉 ≥ δ|d| for all d ∈ d(x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

and for each J ⊆ I , J �=∅, let

(D.3) UJ
δ

.= {
x ∈ Uδ : I(x)= J

}
.

It is immediate from the definition that any two elements in {UJ
δ ,J ⊆ I,J �=∅}

are disjoint, and

(D.4) Uδ =
⋃

J⊆I,J �=∅
UJ
δ , U =⋃

δ>0

Uδ.

In light of (D.4), to prove (D.1), and hence Proposition 2.12, it is clearly sufficient
to show that for every δ > 0 and J ⊆ I , J �=∅, such that UJ

δ �=∅,

(D.5) EQz

[∫ ∞
0

IUJ
δ

(
ω(s)

)
ds

]
= 0.

Indeed, taking first the sum in (D.5) over J ⊆ I , J �=∅, next the limit as δ→ 0
in (D.5) and then applying Fatou’s lemma, we obtain (D.1).

We now state three results from [21] that will be used in the proof of Proposi-
tion 2.12.
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LEMMA D.1 (Lemma 6.2 of [21]). For each δ > 0 and J ⊆ I , J �=∅, UJ
δ is

closed.

The next lemma states the existence of a family of test functions that lie in the
set H. From Definition 2.11, for each y ∈ ∂G there exist a neighborhood Ny , and
functions ϕi

y ∈ C2(RJ ), i ∈ I(y), that characterize the domain G in the neighbor-
hood Ny of y. For each y ∈ U , let θi(y) > 0, i ∈ I(y), be constants such that for
each j ∈ I(y),

(D.6)
〈 ∑
i∈I(y)

θi(y)
∇ϕi

y(y)

|∇ϕi
y(y)|

, γ j (y)

〉
> 0.

Such constants exist by the definition of ni and U in property 1 of Definition 2.11
and (2.2), respectively. Then, for y ∈ U , define

(D.7) gy(x)
.= ∑

i∈I(y)

θi(y)

|∇ϕi
y(y)|

ϕi
y(x), x ∈RJ .

From property 1 of Definition 2.11 observe that

Ny ∩
( ⋂
j∈I(y)

∂Gj

)
= {

x ∈Ny : ϕj
y (x)= 0, j ∈ I(y)}

(D.8)
= {

x ∈Ny : gy(x)= 0
}
.

LEMMA D.2. There exists a function κ ′ : (0,1) �→ (0,1/2) with κ ′(ε) < ε/2
for every ε ∈ (0,1) such that for each y ∈ U , there exist constants 0 < r ′y < ry <

dist(y,V) such that Bry (y)⊂Ny , 0 < cy <∞, βy > 0, and a family of functions
{qε,y ∈H : ε ∈ (0,1)} that has the following properties:

1. supp[qε,y] ∩ Ḡ⊂ Ḡ∩Bry (y);
2. −ε2 − ε3/2 ≤ qε,y ≤ 0;
3. |∇qε,y | ≤ cyε;
4. for every x ∈ Ḡ∩Br ′y (y),

J∑
i,j=1

aij (x)
∂2qε,y

∂yi ∂yj
(x)≥

{
2αβy − cyε, if 0≤ gy(x)≤ ε/2,

−cxε, if ε/2 < gy(x) < ε− κ ′(ε),

and ∣∣∣∣∣
J∑

i,j=1

aij (x)
∂2qε,y

∂yi ∂yj
(x)

∣∣∣∣∣≤ cy
√
ε if gy(x)≥ ε− κ ′(ε).
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PROOF. This is a restatement of Lemma 6.3 of [21]. Its proof, which is given
in [21], Appendix B, relies on the existence of a certain family of test functions
for each x ∈ U , described in Proposition 7.1 of [21]. Although, the proof of Propo-
sition 7.1 in [21] for x ∈ U has a gap, the existence of the required family of test
functions follows alternatively from Lemma 4.3 of this paper. Specifically, prop-
erties (1)–(3) of Proposition 7.1 are satisfied with gx,r = f x,r , κx , rx αx(r) = r ,
where f x,r , κx , rx are the quantities in Lemma 4.3. �

For each δ > 0, J ⊆ I with J �= ∅ and x ∈ UJ
δ , let r ′x be the constant from

Lemma D.2. The neighborhoods {Br ′x/2(y) : y ∈ UJ
δ } form an open cover of the

closed set UJ
δ . The next lemma states that we can choose a countable open sub-

cover that has certain properties.

LEMMA D.3. For each δ > 0 and J ⊆ I , J �=∅, there exists a countable set
of points F̂J

δ ⊂ UJ
δ such that

(D.9) UJ
δ ⊆

⋃
x∈F̂J

δ

Br ′x/2(x),

and there exists a measurable mapping λJδ from UJ
δ onto F̂J

δ such that x ∈
Blx̄/2(x̄), where x̄ = λJδ (x) and lx̄ = r ′̄x and I(x)= I(x̄) for each x ∈ UJ

δ .

PROOF. This is essentially Lemma 6.4 of [21], with the slight difference that
rx in [21] is replaced with r ′x/2 in the inclusion (D.9); however, the proof of the
version above is exactly analogous to the proof of Lemma 6.4 given in [21]. �

We now use the preliminary results above to establish Proposition 2.12.

PROOF OF PROPOSITION 2.12. Fix δ > 0 and J ⊆ I,J �= ∅, such that
UJ
δ �=∅. We first introduce a sequence of stopping times. Let F̂J

δ , {Br ′x (x) : x ∈
F̂J
δ } and the measurable mapping λJδ be as in Lemma D.3. Now, set σ0

.= 0 and
for n ∈N, recursively define the stopping times

τn
.= inf

{
t ≥ σn−1 : ω(t) ∈ UJ

δ

}
,(D.10)

σn
.= inf

{
t ≥ τn : ω(t) /∈ Blx̄n

(x̄n)
}
,(D.11)

where x̄n = λJδ (ω(τn)) and lx̄n = r ′̄xn . Note that when σn <∞, |ω(σn)−ω(τn)| ≥
|ω(σn) − x̄n| − |x̄n − ω(τn)| ≥ lx̄n/2 > 0. Thus, by the continuity of ω(·) and a
simple contradiction argument, τn→∞ and σn→∞ as n→∞.

Now, we establish (D.5) using a proof by induction. Note that for n= 1, σn−1 =
0 and so we trivially have

(D.12) EQz

[∫ σn−1

0
IUJ

δ

(
ω(s)

)
ds

]
= 0.
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Now, suppose that (D.12) holds for some n ∈ N. We will show that then (D.12)
also holds with n replaced by n+1. Since under Qz, ω(t) /∈ UJ

δ for t ∈ [σn−1, τn),
it is clear that

(D.13) EQz

[∫ τn

σn−1

IUJ
δ

(
ω(s)

)
ds

]
= 0.

Due to (D.12) and (D.13), it follows that

(D.14) EQz

[∫ σn

0
IUJ

δ

(
ω(s)

)
ds

]
= EQz

[
I{τn<∞}

∫ σn

τn

IUJ
δ

(
ω(s)

)
ds

]
.

Next, for each y ∈ F̂J
δ , let the constant cy ∈ (0,∞) and the family of test

functions qε,y , ε ∈ (0,1), be as specified in Lemma D.2. For each y ∈ F̂J
δ

and ε ∈ (0,1), since qε,y ∈ H, by Lemma 4.7 with �, θx , g replaced by τn,
θy = inf{t ≥ τn : ω(t) /∈ Bly (y)}, qε,y , respectively,

(D.15) I{τn<t}
[
qε,y

(
ω
(
t ∧ θy

))− qε,y
(
ω(τn)

)− ∫ t∧θy

τn

Lqε,y
(
ω(u)

)
du

]

is a Qz-submartingale. Since, on the event {τn <∞, x̄n = y}, σn = θy and ω(s) ∈
Ḡ ∩Br ′̄xn

(x̄n) for every s ∈ [τn, θy), it follows from the submartingale property of
(D.15) and property (2) of qε,y in Lemma D.2 that

EQz

[
I{τn<t,x̄n=y}

∫ t∧σn
τn

Lqε,y
(
ω(u)

)
du

]

≤ EQz
[
I{τn<t,x̄n=y}

[
qε,y

(
ω(t ∧ σn)

)− qε,y
(
ω(τn)

)]]
≤ ε2 + ε3/2.

On the other hand, note that by the definition of L in (1.1),

EQz

[
I{τn<t,x̄n=y}

∫ t∧σn
τn

Lqε,y
(
ω(u)

)
du

]

= EQz

[
I{τn<t,x̄n=y}

∫ t∧σn
τn

1

2

J∑
i,j=1

aij
(
ω(u)

)∂2qε,y(ω(u))

∂xi ∂xj
du

]

+EQz

[
I{τn<t,x̄n=y}

∫ t∧σn
τn

J∑
j=1

bj
(
ω(u)

)∂qε,y(ω(u))

∂xj
du

]
.

Combining the last two displays with property (3) of qε,y in Lemma D.2, we have

EQz

[
I{τn<t,x̄n=y}

∫ t∧σn
τn

J∑
i,j=1

aij
(
ω(u)

)∂2qε,y(ω(u))

∂xi ∂xj
du

]

≤ 2ε2 + 2ε3/2 + 2cyt sup
z∈Ḡ∩Br′y (y)

∣∣b(z)∣∣ε.
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Together with property (4) of qε,y in Lemma D.2, this implies that

(2αβy − cyε)E
Qz

[
I{τn<t,x̄n=y}

∫ t∧σn
τn

I{0≤gy(ω(u))≤ε/2} du
]

≤ cyt
√
ε+ cytε+ 2ε2 + 2ε3/2 + 2cyt sup

z∈Ḡ∩Br′y (y)

∣∣b(z)∣∣ε.
Letting first ε ↓ 0 and then t→∞, we obtain

EQz

[
I{τn<∞,x̄n=y}

∫ σn

τn

I{gy(ω(u))=0} du
]
= 0.

Recall that I(ω(τn))= I(x̄n)= J by Lemma D.3. From the definition of σn and
gy given in (D.11) and (D.7), respectively, the fact that Bly (y)⊂Ny and (D.8), we
have

EQz

[
I{τn<∞,x̄n=y}

∫ σn

τn

I⋂
j∈J ∂Gj

(
ω(u)

)
du

]

= EQz

[
I{τn<∞,x̄n=y}

∫ σn

τn

I⋂
j∈I(y) ∂Gj

(
ω(u)

)
du

]

= EQz

[
I{τn<∞,x̄n=y}

∫ σn

τn

I{gy(ω(u))=0} du
]
= 0.

Thus, it follows that

EQz

[
I{τn<∞}

∫ σn

τn

IUJ
δ

(
ω(u)

)
du

]

≤ EQz

[
I{τn<∞}

∫ σn

τn

I⋂
j∈J ∂Gj

(
ω(u)

)
du

]

= ∑
y∈F̂J

δ

EQz

[
I{τn<∞,x̄n=y}

∫ σn

τn

I⋂
j∈J ∂Gj

(
ω(u)

)
du

]
= 0.

When combined with (D.14), this shows that (D.12) holds with n replaced by n+1.
Since σn→∞ as n→∞, the proposition follows by induction. �
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