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PERMANENTAL VECTORS WITH NONSYMMETRIC KERNELS

BY NATHALIE EISENBAUM

CNRS, Université Pierre et Marie Curie

A permanental vector with a symmetric kernel and index 2 is a squared
Gaussian vector. The definition of permanental vectors is a natural extension
of the definition of squared Gaussian vectors to nonsymmetric kernels and to
positive indexes. The only known permanental vectors either have a positive
definite kernel or are infinitely divisible. Are there some others? We present
a partial answer to this question.

1. Introduction. A real-valued positive vector ψ = (ψi,1 ≤ i ≤ n) is a per-
manental vector if its Laplace transform satisfies for every (α1, α2, . . . , αn) in R

n+

E

[
exp

{
−1

2

n∑
i=1

αiψi

}]
= |I + αG|−β,(1.1)

where I is the n × n-identity matrix, α is the diagonal matrix Diag((αi)1≤i≤n),
G = (G(i, j))1≤i,j≤n and β is a fixed positive number.

Such a vector (ψi,1 ≤ i ≤ n) is a permanental vector with kernel (G(i, j),

1 ≤ i, j ≤ n) and index β . Note that the kernel of ψ is not uniquely determined.
Indeed any matrix DGD−1 with D n × n-diagonal matrix with nonzero entries is
a kernel for ψ . The matrices G and DGD−1 are said to be diagonally equivalent.
But remark that ψ also admits Gt for kernel. More generally, the kernels of ψ are
said to be effectively equivalent.

Vere-Jones has established a necessary and sufficient condition on the couple
(G,β) for the existence of such a vector. His criterion is reminded at the beginning
of Section 3.

For G n × n-symmetric positive definite matrix and β = 2, (1.1) is the Laplace
transform of the vector (η2

1, η
2
2, . . . , η

2
n) where (η1, η2, . . . , ηn) is a centered Gaus-

sian vector with covariance G. The definition of permanental vectors hence repre-
sents an extension of the definition of squared Gaussian vectors. The question is: to
which point? More precisely, one already knows two classes of matrices that sat-
isfy Vere-Jones criterion: the symmetric positive definite matrices and the inverse
M-matrices (a nonsingular matrix A is a M-matrix if its off-diagonal entries are
nonpositive and the entries of A−1 are nonnegative). Up to effective equivalence,
these are the only known examples of permanental kernels. The question becomes:
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Is there an irreducible permanental kernel that would not belong to any of this two
classes?
This two classes correspond respectively to vectors with the Laplace transform of
a squared Gaussian vector to a positive power and to infinitely divisible permanen-
tal vectors. Infinitely divisible permanental processes are connected to local times
of Markov processes thanks to Dynkin’s isomorphism theorem and its extensions
(see [3]). Besides, we have shown in [1] that for permanental vectors, infinite di-
visibility and positive correlation are equivalent properties.
In dimension one, obviously, the above two classes are identical and the answer is
negative. One easily checks that a 2-dimensional permanental vector with index 2
is a squared Gaussian couple. Moreover, Vere-Jones [7], solving a question raised
by Lévy [6], proved that a squared Gaussian couple is always infinitely divisible.
Hence, in this case also the two classes are identical and the answer is negative. In
dimension 3, the situation is different. Indeed, Kogan and Marcus [5] have shown
that if the kernel of a 3-dimensional permanental vector is not effectively equiv-
alent to a symmetric matrix (in short, is not symmetrizable), then it is diagonally
equivalent to an inverse M-matrix. Since there exist inverse M-matrices that are
not symmetrizable, the two classes are not identical and have a nonempty intersec-
tion. But the answer to the above question remains negative.
The case of dimension d strictly greater than 3 is still an open question. We show
here that if the kernel of a d-dimensional permanental vector is strongly not sym-
metrizable, meaning that none of its principal submatrices of dimension 3 is sym-
metrizable, then it is diagonally equivalent to the inverse of an M-matrix. The
result presented below is actually a little stronger and suggests that the answer
should still be negative in the general case. In other words, one might think that
the permanental vectors with a kernel not effectively equivalent to a symmetric
matrix, are always infinitely divisible.
For a set of indexes I , we adopt the notation: GI×I = (G(i, j))(i,j)∈I×I .

THEOREM 1.1. For d > 3, let ψ be a d-dimensional permanental vector with
kernel G. Assume that there exists at most one subset I of three indexes such that
GI×I is symmetrizable. Then ψ is infinitely divisible.

Theorem 1.1 can also be stated as follows:

For ψ = (ψi)1≤i≤d permanental vector of dimension d > 3, assume that there
exists at most three integers 1 ≤ i1, i2, i3 ≤ d such that (ψi1,ψi2,ψi3) has the
Laplace transform of a squared Gaussian vector to some power. Then ψ is in-
finitely divisible.

The proof of Theorem 1.1 is given in Section 3. Section 2 introduces the needed
preliminaries and definitions. Section 4 presents some examples and remarks.
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2. Preliminaries. We remind first the necessary and sufficient condition es-
tablished by Vere-Jones [8] for a given matrix K to be the kernel of a permanental
vector.

A n × n-matrix K is the kernel of a permanental vector with index β > 0 if and
only if :

(I) All the real eigenvalues of K are nonnegative.
(II) For every γ > 0, set Kγ = (I + γK)−1K , then Kγ is β-positive definite.

A n × n-matrix M = (M(i, j))1≤i,j≤n is said to be β-positive definite if for
every integer m, every (not necessarily distinct) k1, k2, . . . , km in {1,2, . . . , n}

perβ
((

M(ki, kj )
)
1≤i,j≤m

) ≥ 0,

where for any m×m-matrix A = (A(i, j))1≤i,j≤m, the quantity perβ(A) is defined
as follows: perβ(A) = ∑

τ∈Sm
βν(τ) ∏m

i=1 Ai,τ(i), with Sm the set of the permuta-
tions on {1,2, . . . ,m}, and ν(τ ) the signature of τ .

Note that the property of β-positive definiteness for a matrix M is supported by
an infinite family of matrices derived from M .

The proposition below is just the regrouping of results of Kogan and Marcus
on the three dimensional permanental kernels. For the sake of clarity, we explain
where to find this results in [5]. Adopting their convention, 0 is both positive and
negative.

DEFINITION 2.1. Two d × d-matrices A and B are said to be effectively
equivalent if for every x in R

d : |I + xA| = |I + xB|.

DEFINITION 2.2. A squared matrix is symmetrizable if it is effectively equiv-
alent to a symmetric matrix.

PROPOSITION 2.3. Let ψ be a 3-dimensional permanental vector with kernel
G = (Gij )1≤i,j≤3. Then we have:

(i) G is diagonally equivalent either to a matrix with all positive entries or to
a matrix with all negative off-diagonal entries.

(ii) If G has all its off-diagonal entries strictly negative, then G is diagonally
equivalent to a symmetric matrix.

(iii) If G has all its off-diagonal entries strictly positive, then G is either an
inverse M-matrix or it is diagonally equivalent to a symmetric matrix.

(iv) If G has one or more zero off-diagonal entries, it is effectively equivalent
to a symmetric matrix G̃ such that G̃ij = 0 when GijGji = 0.

Up to some misprints, (i) is Remark 2.1 in [5], which is a consequence of the
fact that GijGji ≥ 0 for every 1 ≤ i, j ≤ 3. Indeed, for example, for G with only
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positive entries⎛
⎝G11 G12 G13

G21 G22 G23
G31 G32 G33

⎞
⎠ and

⎛
⎝ G11 −G12 −G13

−G21 G22 G23
−G31 G32 G33

⎞
⎠

are diagonally equivalent.

(ii) is established in the first part of the proof of Lemma 4.1 in [5].
(iii) is established in the first part of the proof of Lemma 5.1 in [5].
(iv) When G is diagonally equivalent to a matrix with all negative off-diagonal

entries, this is a consequence of the second part of the proof of Lemma 4.1 in [5].
When G is diagonally equivalent to a matrix with all positive off-diagonal entries,
(iv) is a consequence of the last paragraph of the proof of Lemma 5.1 in [5] together
with its Lemma 2.3 cleaned from a misprint. For the last sentence of Lemma 2.3
to be correct, the word “diagonally” should be replaced by “effectively.” Indeed
Lemma 2.3 in [5], assuming that the two matrices⎛

⎝ 1 0 c2
a2 1 b1
c1 0 1

⎞
⎠ and

⎛
⎝ 1 0

√
c1c2

0 1 0√
c1c2 0 1

⎞
⎠

are permanental kernels, states that for a2b1c1c2 �= 0, they are diagonally equiva-
lent. But they cannot be diagonally equivalent. They are effectively equivalent.

We will use repeatedly the following lemma which is an elementary remark.

LEMMA 2.4. For A n × n-matrix, the following points are equivalent:

(i) A is diagonally equivalent to a symmetric matrix.
(ii) For every couple (D1,D2) of diagonal n×n-matrices with strictly positive

diagonal entries, D1AD2 is diagonally equivalent to a symmetric matrix.
(iii) There exist two diagonal n × n-matrices with strictly positive diagonal en-

tries D1 and D2 such that D1AD2 is diagonally equivalent to a symmetric matrix.

REMARK 2.5. In view of Proposition 2.3, a permanental kernel of dimen-
sion 3, G = (Gij )1≤i,j≤3, is symmetrizable iff:

• either G has an off-diagonal entry equal to zero,
• either G has no zero off-diagonal entry and it is diagonally equivalent to a sym-

metric matrix with strictly positive entries.

To check whether a 3 × 3-matrix K without zero off-diagonal entry, is symmetriz-
able, one has first to check the existence of a signature matrix σ (a diagonal matrix
with |σii | = 1,1 ≤ i ≤ 3) such that: σKσ = (|Kij |)1≤i,j≤3, and then check that∣∣K(1,2)K(2,3)K(3,1)

∣∣ = ∣∣K(2,1)K(1,3)K(3,1)
∣∣.
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3. Proof of Theorem 1.1. Step 1: Assume that d = 4 and that G has no sym-
metrizable 3 × 3-principal submatrices, we show then that ψ is infinitely divisible.

Thanks to Remark 2.5, we know that G has no entry equal to 0. Moreover, in
view of (i) and (ii) of Proposition 2.3, every 3 × 3-principal submatrix of G has
to be diagonally equivalent to a matrix with all positive entries. This means that
for every subset of three indexes I , there exists SI from I into {−1,+1} such that
SI (i)G(i, j)SI (j) ≥ 0, for i, j ∈ I . This leads to

G(i, j)G(j, k)G(k, i) > 0 ∀i, j, k ∈ {1,2,3,4}.
Since G has no zero entry, this property implies the existence of S from {1,2,3,4}
into {−1,+1} such that: S(i)G(i, j)S(j) > 0,∀i, j ∈ {1,2,3,4}. Since ψ also ad-
mits for kernel SGS, we will assume from now that the entries of G are all strictly
positive.

For σ > 0, consider the 3-dimensional vector φσ with Laplace transform

E[exp{−(1/2)
∑3

j=1 λjψj } exp{−(σ/2)ψ4}]
E[exp{−(σ/2)ψ4}] .(3.1)

This vector is a permanental vector with the same index as ψ and admits for kernel
H(σ,G) (see [5])

H(σ,G) =
(
G(i, j) − σ

1 + σG(4,4)
G(i,4)G(4, j)

)
1≤i,j≤3

.

For which values of σ , is H(σ,G) symmetrizable? For σ > 0, we have σ
1+σG(4,4)

<

1
G(4,4)

. We set: � = (
G(i,j)

G(i,4)G(4,j)
)1≤i,j≤4. Making use of Lemma 2.4, we are look-

ing for the values of c in (0, 1
G(4,4)

) such that (�(i, j)−c)1≤i,j≤3 is symmetrizable.
In view of Remark 2.5, this can occur in two ways:

• either (�(i, j) − c)1≤i,j≤3 has an off-diagonal entry equal to zero.
• either (�(i, j) − c)1≤i,j≤3 has no zero off-diagonal entry and it is diagonally

equivalent to a symmetric matrix.

The first possibility is excluded because it would imply the existence of i and
j distinct from 4, such that: G(i,j)

G(i,4)G(4,j)
< 1

G(4,4)
. But since the entries of G

are all strictly positive, we know by assumption that G{i,j,4}×{i,j,4} is an in-
verse M-matrix. This last property implies in particular that: G(i, j)G(4,4) ≥
G(i,4)G(4, j). This can bee seen by computing the inverse of G{i,j,4}×{i,j,4} or by
using Willoughby’s paper [9].

We now study the second possibility. Since (�(i, j)−c)1≤i,j≤3 has only strictly
positive entries, we know, thanks to Lemma 2.4(iii), that (�(i, j) − c)1≤i,j≤3
is diagonally equivalent to a symmetric matrix if and only if
(

�(i,j)−c
(�(i,3)−c)(�(3,j)−c)

)1≤i,j≤3 is. Denote this last matrix by Ac. Since Ac(i,3) =
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Ac(3, j) = 1
�(3,3)−c

for every 1 ≤ i, j ≤ 3, Ac is diagonally equivalent to a sym-
metric matrix if and only if (Ac(i, j))1≤i,j≤2 is symmetric. This translates into

�(1,2) − c

(�(1,3) − c)(�(3,2) − c)
= �(2,1) − c

(�(2,3) − c)(�(3,1) − c)
,

which means that c must solve a polynomial equation with degree 3. Hence, only
the two following cases might occur:

• either there are at most three distinct values for c such that (�(i, j) − c)1≤i,j≤3
is diagonally equivalent to a symmetric matrix,

• either for every value of c, (�(i, j) − c)1≤i,j≤3 is diagonally equivalent to a
symmetric matrix.

In the later case, one obtains in particular (�(i, j))1≤i,j≤3 is diagonally equivalent
to a symmetric matrix. Thanks to Lemma 2.4, this implies that (G(i, j))1≤i,j≤3 is
diagonally equivalent to a symmetric matrix. But this is excluded by assumption.
Consequently, except for at most three distinct values of σ , H(σ,G) is not sym-
metrizable.

Set now Gσ = (I +σG)−1G. We have shown (Proposition 3.2 in [1]) that there
exists a permanental vector ψσ with the same index as ψ , admitting Gσ for kernel
and such that its Laplace transform satisfies

E

[
exp

{
−1

2

4∑
j=1

λjψσ (j)

}]

= E

[
exp{−(σ/2)

∑4
i=1 ψ(i)}

E[exp{−(σ/2)
∑4

i=1 ψ(i)}] exp

{
−1

2

4∑
j=1

λjψ(j)

}]
.

Hence, thanks to (3.1), it also satisfies

E

[
exp

{
−1

2

3∑
j=1

λjψσ (j)

}]
= c(σ )E

[
exp

{
−1

2

3∑
j=1

(λj + σ)φσ (j)

}]
,(3.2)

where c(σ ) = E[exp{−(σ/2)ψ(4)}]
E[exp{−(σ/2)

∑4
i=1 ψ(i)}] .

We show now that (ψσ (i))1≤i≤3 admits a kernel without zero entry. To do so,
we first adopt the notation: Gσ = (Gσ (i, j))1≤i,j≤3. Note that (3.2) can be written
as follows for every x ∈ R

3:

|I + xGσ | = |I + (x + σI)Hσ |
|I + σHσ | .

Besides denote by Rα the α-resolvent of Hσ :Rα = (I +αHσ )−1Hσ , then we have

|I + xRσ | = |I + x(I + σHσ )−1Hσ | = |I + σHσ |−1|I + (x + σI)Hσ |
= |I + xGσ |.
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Consequently: Gσ and Rσ are effectively equivalent. This implies that (Gσ )−1 and
R−1

σ are effectively equivalent.
Assume that Gσ has an off-diagonal entry equal to zero. Then thanks to Propo-

sition 2.3(iv), Gσ is effectively equivalent to a symmetric matrix. This implies that
(Gσ )−1, and consequently R−1

σ , is effectively equivalent to a symmetric matrix.
Since R−1

σ = H−1
σ + σI , we obtain that (H−1

σ + σI) is effectively equivalent to a
symmetric matrix, which easily implies that H−1

σ , and then Hσ must be effectively
equivalent to a symmetric matrix. Except for at most three values of σ , this is not
true.

Consequently, we have obtained, except for at most three values of σ , that
(Gσ (i, j))1≤i,j≤3 has no zero entry and is not effectively equivalent to a symmet-
ric matrix. In view of Proposition 2.3, the only possibility for (Gσ (i, j))1≤i,j≤3 is
to be diagonally equivalent to an inverse M-matrix.

Hence, there exists a function S from {1,2,3} into {−1,+1} such that for every
i, j in {1,2,3}:

S(i)Gσ (i, j)S(j) > 0,

which leads to

Gσ(i, j)Gσ (j, k)Gσ (k, i) > 0(3.3)

for every i, j, k in {1,2,3}.
The choice of the three indexes 1, 2 and 3, being arbitrary, we conclude that

excepted for at most a finite number of values of σ , Gσ has no zero entry and
satisfies

Gσ(i, j)Gσ (j, k)Gσ (k, i) > 0

for every i, j, k in {1,2,3,4}.
This last property implies that there exists a function Sσ from {1,2,3,4} into

{−1,+1} such that for every i, j in {1,2,3,4}
Sσ (i)Gσ (i, j)Sσ (j) > 0.(3.4)

For the three values of σ that we have excluded, we still have (3.4). Indeed assume
that there exists such a value and that it is strictly positive. Denote it by α. We
know now that there exists ε > 0, such that for every σ in (α,α + ε], Gσ satisfies
(3.4). Note that Gσ is the (σ − α)-resolvent of Gα :

Gα = Gσ

(
I − (σ − α)Gσ

)−1
.

For (σ −α) small enough, we have Gα = ∑∞
k=1(σ −α)kGk

σ . Making use of (3.4),
one obtains for every 1 ≤ i, j ≤ 4:

SσGαSσ (i, j) =
∞∑

k=1

(σ − α)kSσGk
σSσ (i, j) =

∞∑
k=1

(σ − α)k(SσGσSσ )k(i, j) > 0.
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Obviously, (3.4) implies that Gσ is β-positive definite for every β > 0. Vere-Jones
criteria allows then to conclude that ψ is infinitely divisible.
Conclusion of Step 1: We have actually established that if G is a permanental
kernel of dimension 4, with no symmetrizable 3 × 3-principal submatrices, then it
is the kernel of an infinitely divisible permanental vector, and moreover, for every
σ > 0, its σ -resolvent Gσ has a no zero entry.

Step 2: Define the claim (Rn) as follows.
(Rn): If G is a n × n-square matrix without symmetrizable 3 × 3-principal sub-

matrix, then ψ is infinitely divisible and for every σ > 0, its σ -resolvent Gσ has
no zero entry.

We have just established (R4). Assume that (Rn) is satisfied. We now establish
(Rn+1). First note that G is diagonally equivalent to a matrix with only strictly
positive entries. Indeed, using exactly the same argument as at the beginning of
Step 1, one obtains

G(i, j)G(j, k)G(k, i) > 0 ∀i, j, k ∈ {1,2, . . . , n}.
Similarly, as in Step 1, one concludes that there exists S from {1,2, . . . , n} into
{−1,+1} such that S(i)G(i, j)S(j) > 0,∀i, j ∈ {1,2, . . . , n}.

Hence, we can assume that all the entries of G are strictly positive. Then con-
sider the vector (φσ (i))1≤i≤n with Laplace transform

E[exp{−(1/2)
∑n

j=1 λjψj } exp{−(σ/2)ψn+1}]
E[exp{−(σ/2)ψn+1}] .(3.5)

The vector (φσ (i))1≤i≤n is a permanental vector admitting for kernel H(σ,G)

defined by

H(σ,G) =
(
G(i, j) − σ

1 + σG(n + 1, n + 1)
G(i, n + 1)G(n + 1, j)

)
1≤i,j≤n

.

We look for the values of σ such that H(σ,G) would have a 3 × 3-principal
symmetrizable matrix. We set � = (

G(i,j)
G(i,n+1)G(n+1,j)

)1≤i,j≤n+1. We hence look

for the values of c in (0, 1
G(n+1,n+1)

) such that (�(i, j) − c)1≤i,j≤n would have
a symmetrizable 3 × 3-principal submatrix. We fix I , a subset of three elements
of {1,2, . . . , n}. Similarly, as in the case d = 4, we know that (� − c)I×I has no
zero entry. The only way for (� − c)I×I to be symmetrizable is to be diagonally
equivalent to a symmetric matrix. Again as in Step 1, we have:

• either (� − c)I×I is symmetrizable for at most three distinct values of c,
• either for every real c, (� − c)I×I is diagonally equivalent to a symmetric ma-

trix.

In the second case, one obtains that �I×I , and consequently GI×I thanks to
Lemma 2.4, is diagonally equivalent to a symmetric matrix, which is excluded
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by assumption. Consequently, for σ outside of a finite set, H(σ,G) does not con-
tain any 3 × 3-principal symmetrizable matrix. Thanks to our assumption on the
case d = n, we know that φσ is infinitely divisible and that for every α > 0, Rα ,
the α-resolvant of Hσ has no zero entry. Besides there exists a permanental vector
with the same index as φσ , admitting Rα for kernel (see Proposition 3.2 in [1]).
Making use of Vere-Jones criteria, one easily shows that this permanental vector
is infinitely divisible too.

Setting Gσ = (I + σG)−1G, we know (Proposition 3.2 in [1]) that there exists
a permanental vector ψσ with the same index as ψ , admitting Gσ for kernel and
such that its Laplace transform satisfies

E

[
exp

{
−1

2

n+1∑
j=1

λjψσ (j)

}]

= E

[
exp{−(σ/2)

∑n+1
i=1 ψ(i)}

E[exp{−(σ/2)
∑n+1

i=1 ψ(i)}] exp

{
−1

2

n+1∑
j=1

λjψ(j)

}]
.

Hence, thanks to (3.5), it also satisfies

E

[
exp

{
−1

2

n∑
j=1

λjψσ (j)

}]
= c(σ )E

[
exp

{
−1

2

n∑
j=1

(λj + σ)φσ (j)

}]
,(3.6)

where c(σ ) = E[exp{−(σ/2)ψ(n+1)}]
E[exp{−(σ/2)

∑n+1
i=1 ψ(i)}] .

Similarly, as in Step 1, one shows that the two n × n-matrices Rσ and
(Gσ (i, j))1≤i,j≤n are effectively equivalent. Note that for every 1 ≤ i, j ≤ n:
Gσ(i, j)Gσ (j, i) = Rσ (i, j)Rσ (j, i).

For σ outside a finite set, Rσ has no zero entry, and hence neither
(Gσ (i, j))1≤i,j≤n. Moreover, we know also that (ψσ (i))1≤i≤n is infinitely di-
visible. In particular for every triplet of indexes i, j and k in {1,2, . . . , n},
(ψσ (i),ψσ (j),ψσ (k)) is infinitely divisible. Consequently, (Gσ ){i,j,k}×{i,j,k} is
diagonally equivalent to an inverse M-matrix. The choice of the index (n + 1)

being arbitrary, we actually obtain that for σ outside of a finite set there exists
a function Sσ from {1,2, . . . , n, n + 1} into {−1,+1} such that for every i, j in
{1,2, . . . , n, n + 1}

Sσ (i)Gσ (i, j)Sσ (j) > 0.(3.7)

For σ element of the finite set of excluded values, one shows that (3.7) is still true
exactly as we did it for (3.4) in Step 1.

We conclude that for every σ > 0, Gσ has no zero entry and is β-positive def-
inite for every β > 0. Thanks to Vere-Jones criteria, ψ is infinitely divisible and
(Rn+1) is established.

Step 3: Assume that d = 4 and that G is such that the matrices
(G(i, j))i,j∈{1,2,4}, (G(i, j))i,j∈{1,3,4} and (G(i, j))i,j∈{2,3,4} are not symmetriz-



NONSYMMETRIC PERMANENTAL KERNELS 219

able. We show that ψ is infinitely divisible and that for every σ > 0, its σ -resolvent
Gσ has no zero entry.

First, note that according Remark 2.5, the three matrices (G(i, j))i,j∈{1,2,4},
(G(i, j))i,j∈{1,3,4} and (G(i, j))i,j∈{2,3,4} have no zero entry. Hence, G has no
zero entry. Since these three matrices are all diagonally equivalent to inverse of
M-matrices, we can then easily establish the existence of S from {1,2,3,4} into
{−1,+1} such that: S(i)G(i, j)S(j) > 0,∀i, j ∈ {1,2,3,4}. We can hence assume
that the entries of G are all strictly positive.

We now make the notation for H(σ,G) more precise, by writing

H(σ,G,4) =
(
G(i, j) − σ

1 + σG(4,4)
G(i,4)G(4, j)

)
1≤i,j≤3

.

Similarly, for any k in {1,2,3,4}, H(σ,G,k) is defined by

H(σ,G,k) =
(
G(i, j) − σ

1 + σG(k, k)
G(i, k)G(k, j)

)
i,j∈{1,2,3,4}\{k}

.

Making use of the argument developed in Step 1, we know that for each of
the three matrices H(σ,G,3), H(σ,G,2) and H(σ,G,1), there are at most three
distinct values of σ for which they are not symmetrizable. Consequently, for σ

outside of a finite set, the three matrices (Gσ (i, j))i,j∈{1,2,4}, (Gσ (i, j))i,j∈{1,3,4}
and (Gσ (i, j))i,j∈{2,3,4} have no zero entry and are diagonally equivalent to inverse
M-matrices. Setting I3 = {1,2,4}, I2 = {1,3,4} and I1 = {2,3,4}, we hence know
that there exist three functions S3, S2 and S1 from respectively I3, I2 and I1 into
{−1,+1} such that for every p = 1,2 or 3, and every couple (i, j) of Ip , we have

Sp(i)Gσ (i, j)Sp(j) > 0.

To determine the sign of Gσ(1,2)Gσ (2,3)Gσ (3,1), note that it has the same
sign as S3(1)S3(2) · S1(2)S1(3) · S2(3)S2(1). But S3(1)S2(1) has the same sign as
S3(4)S2(4)Gσ (4,1)2; S3(2)S1(2) has the same sign as S3(4)S1(4)Gσ (2,4)2 and
S1(3)S2(3) has the same sign as S1(4)S2(4)Gσ (4,3)2. One obtains

Gσ(1,2)Gσ (2,3)Gσ (3,1) > 0.

Consequently, for every i, j , k in {1,2,3,4} we have

Gσ(i, j)Gσ (j, k)Gσ (k, i) > 0,

which leads to the existence of a function S from {1,2,3,4} to {−1,+1} such that
for every i,j in {1,2,3,4}:

S(i)Gσ (i, j)S(j) > 0.(3.8)

For σ element of the finite set of excluded values, one shows that (3.8) is still true
exactly as we did it for (3.4) in Step 1.

We conclude that for every σ > 0, Gσ has no zero entry and that ψ is infinitely
divisible.
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Step 4: We assume that G has exactly one symmetrizable principal 3 × 3-
submatrix. Denote by I the subset of the corresponding three distinct indexes.
We show that ψ is infinitely divisible and that for every σ > 0, its σ -resolvent Gσ

has no zero entry. Define the claim (R̃n) as follows.
(R̃n): If G is a n × n-square matrix with exactly one symmetrizable 3 × 3-

principal submatrix, then ψ is infinitely divisible and for every σ > 0, its σ -
resolvent Gσ has no zero entry.

We just established (R̃4). Assume that (R̃n) is satisfied we show now that
(R̃n+1) is satisfied.

As in Step 3, one shows that we can assume that the entries of G are strictly
positive. Note that for every index p in {1,2, . . . , n + 1}, H(σ,G,p) is the kernel
of a n-dimensional permanental vector. We still set � = (

G(i,j)
G(i,p)G(p,j)

)1≤i,j≤n+1.
Fix J subset of three elements of {1,2, . . . , n + 1} \ {p}. We look for the values
c in (0, 1

G(p,p)
) for which (�(i, j) − c)i,j∈J×J is symmetrizable. Unless J = I ,

we know, similarly as in Step 2, that (�(i, j) − c)i,j∈J×J has no off-diagonal zero
entry. Hence, for J �= I , the only way for (�(i, j)−c)i,j∈J×J to be symmetrizable
is to be diagonally equivalent to a symmetric matrix. We know that:

• either (�(i, j) − c)i,j∈J×J is diagonally equivalent to a symmetric matrix for at
most three distinct values of c,

• either (�(i, j) − c)i,j∈J×J is diagonally equivalent for every value of c.

In the later case, one obtains GJ×J is symmetrizable, which implies that J = I .
Consequently for every p, and every σ outside of a finite set, H(σ,G,p) contains
at most one 3 × 3-symmetrizable principal submatrix. If there is none, then Step 2
tells us that the corresponding permanental vector is infinitely divisible and that for
every α > 0, its α-resolvent has no zero entry. If H(σ,G,p) has exactly one 3×3-
symmetrizable principal submatrix, we obtain the same property thanks to (R̃n).
Making use of the argument developed in Step 2, one shows that ψ is infinitely
divisible and for every σ > 0, its σ -resolvent has no zero. We have hence obtained
R̃n+1. This completes the proof of Theorem 1.1.

4. Remarks and examples.

REMARK 4.1. Theorem 1.1 can be reformulated in terms of linear algebra as
follows.

For d > 3, let G be a d × d-matrix with no zero entry such that at most one
of its 3 × 3-principal submatrices is diagonally equivalent to a symmetric matrix.
Assume that:

(I) all the real eigenvalues of G are nonnegative,
(II) there exists β > 0, such that for every γ > 0, setting Gγ = (I + γG)−1G,

Gγ is β-positive definite,

then G is diagonally equivalent to an inverse M-matrix.
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Assumptions (I) and (II) are necessary to obtain the conclusion. Indeed, con-
sider the following nonsingular matrix borrowed from [4]:

A =

⎛
⎜⎜⎝

1 0,10 0,40 0,30
0,40 1 0,40 0,65
0,10 0,20 1 0,60
0,15 0,30 0,60 1

⎞
⎟⎟⎠ .

It is not an inverse M-matrix, since A−1(2,3) is positive. But note that every
3 × 3-principal submatrix is an inverse M-matrix and is not symmetrizable. Con-
sequently, A is not the kernel of a permanental vector.

REMARK 4.2. The condition required by Theorem 1.1 to obtain infinite divis-
ibility, is sufficient and not necessary. Indeed, there exist nonsymmetrizable inverse
M-matrices with more than one symmetrizable 3 × 3-principal submatrix. Here is
a family of such matrices with dimension 4:

� =

⎛
⎜⎜⎝

�(1,1) a a �(4,4)

b �(2,2) e �(4,4)

b e �(3,3) �(4,4)

�(4,4) �(4,4) �(4,4) �(4,4)

⎞
⎟⎟⎠ ,

with �(i, i) > e for i = 1,2,3; a, b, e > �(4,4) and e > a,b.
For a �= b, � is not symmetrizable and has exactly two symmetrizable 3 × 3-
principal submatrices, �|{1,2,3}×{1,2,3} and �|{2,3,4}×{2,3,4} , and two nonsymmetrizable
3 × 3-principal submatrices.

Here are now examples of matrices illustrating Theorem 1.1.

Set: K =

⎛
⎜⎜⎝

K(1,1) e a K(4,4)

b K(2,2) a K(4,4)

b e K(3,3) K(4,4)

K(4,4) K(4,4) K(4,4) K(4,4)

⎞
⎟⎟⎠ ,

with a, b and e positive: K(i, i) > K(4,4) for i = 1,2,3; K(i, i) > sup{a, b, e}
for i = 1,2,3; inf{a, b, e} > K(4,4).
For a, b, e distinct, K is not symmetrizable and K|{1,2,3}×{1,2,3} is its unique sym-
metrizable principal submatrix of order 3. Moreover, the matrix K is an inverse
M-matrix.

REMARK 4.3. For permanental vectors with symmetrizable kernel, one might
think that assuming the infinite divisibility of all its triplets would lead to the in-
finite divisibility of the vector itself. As it has been noticed in [2], the Brownian
sheet provides a counter-example. Here is another one found in [4]. Indeed the
following matrix B is a 4 × 4-covariance matrix of a centered Gaussian vector
(η1, η2, η3, η4) such that for every triplet of distinct indexes i, j , k, (η2

i , η
2
j , η

2
k) is
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infinitely divisible, but (η2
1, η

2
2, η

3
3, η

3
4) is not infinitely divisible:

B =

⎛
⎜⎜⎝

1 0,50 0,35 0,40
0,50 1 0,50 0,26
0,35 0,50 1 0,50
0,40 0,26 0,50 1

⎞
⎟⎟⎠

and B−1(2,4) is positive.

REMARK 4.4. Let (G(i, j))1≤i,j≤n be the kernel of a permanental vector ψ .
We assume that G is nonsingular. For α in [0,1], consider now the 2n× 2n-matrix
H(α) defined by

H(α) =
[

G αG

αG G

]
.

The matrix H(1) is the kernel of the vector (ψ,ψ). The matrix H(0) is the kernel
of the permanental vector (ψ, ψ̃), where ψ̃ is an independent copy of ψ .

PROPOSITION 4.5. If G does not contain any symmetrizable 3 × 3-principal
submatrix, then for any α in (0,1), H(α) is not the kernel of a permanental vector.

PROOF. For x complex number, we have

det
(
H(α) − xI

) = det
[
G − xI αG

αG G − xI

]

= ∣∣(G − xI)2 − α2G2∣∣ = ∣∣(1 + α)G − xI
∣∣∣∣(1 − α)G − xI

∣∣,
since αG and (G − xI) commute. Hence, H(α) satisfies the first condition of
Vere-Jones criterion of existence of a permanental vector. Moreover, for α < 1,
H(α) is not singular.

By assumption, G has no zero entry (if not it would contain a symmetrizable 3×
3-principal submatrix) and thanks to Theorem 1.1, it is hence diagonally equivalent
to an inverse M-matrix. In particular, there exists a signature matrix σ such that
the entries of σGσ are all strictly positive. Consequently, we can assume that the
entries of H(α) are all strictly positive.

For α in (0,1), H(α) is not an inverse M-matrix. Indeed, write

H(α) = H =
[
H11 H12
H21 H22

]
,

with H11 = H22 = G and H12 = H21 = αG, then

H−1 =
[

(H/H22)
−1 −(H/H22)

−1H12(H22)
−1

−H−1
22 H21(H/H22)

−1 (H/H11)
−1

]
,

where H/H11 is the Schur complement of H11 in H defined by

H/H11 = H22 − H21H
−1
22 H12,
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and similarly H/H22 is the Schur complement of H22 in H :

H/H22 = H11 − H12H
−1
22 H21.

Then, as it has been noticed by Johnson and Smith [4], H is an inverse M-matrix
iff:

(i) H/H11 is an inverse M-matrix,
(ii) H/H22 is an inverse M-matrix,

(iii) (H22)
−1H21(H/H22)

−1 has nonnegative entries only,
(iv) (H/H22)

−1H12(H22)
−1 has nonnegative entries only.

For H = H(α) with α in [0,1), this criterion gives the following:
(i) and (ii): (1 − α2)G is an inverse M-matrix.
(iii) and (iv): α

1−α2 G−1 has only nonnegative entries.
Hence unless α = 0, H(α) is never an inverse M-matrix.

Now assume that there exists a permanental vector admitting H(α) for ker-
nel. Then we know that this permanental vector is not infinitely divisible. But
as soon as G does not contain any 3 × 3-covariance matrix, neither does H(α).
Thanks to Theorem 1.1, a permanental vector that would admit H(α) for kernel
should be infinitely divisible. Hence, H(α) can not be the kernel of a permanental
vector. �

Note that for G symmetric positive definite matrix, we know that H(α) is still
a covariance matrix. But the corresponding 2n-dimensional permanental vector is
never infinitely divisible, because Conditions (i) and (iii) above are always antag-
onistic.
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