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We introduce an interacting particle system in which two families of
reflected diffusions interact in a singular manner near a deterministic inter-
face I . This system can be used to model the transport of positive and neg-
ative charges in a solar cell or the population dynamics of two segregated
species under competition. A related interacting random walk model with
discrete state spaces has recently been introduced and studied in Chen and
Fan (2014). In this paper, we establish the functional law of large numbers
for this new system, thereby extending the hydrodynamic limit in Chen and
Fan (2014) to reflected diffusions in domains with mixed-type boundary con-
ditions, which include absorption (harvest of electric charges). We employ
a new and direct approach that avoids going through the delicate BBGKY
hierarchy.

1. Introduction. With motivation to model and analyze the transport of pos-
itive and negative charges in solar cells, an interacting random walk model in do-
mains has recently been introduced in [9]. In that model, a bounded domain in R

d

is divided into two adjacent subdomains D+ and D− by an interface I . The subdo-
mains D+ and D− represent the hybrid medias which confine the positive and the
negative charges, respectively. At microscopic level, positive and negative charges
are modeled by independent continuous time random walks on lattices inside D+
and D−. These two types of particles annihilate each other at a certain rate when
they come close to each other near the interface I . This interaction models the an-
nihilation, trapping, recombination and separation phenomena of the charges. Such
a stochastic system can also model population dynamics of two segregated species
under competition near their boarder. Under an appropriate scaling of the lattice
size, the speed of the random walks and the annihilation rate, we proved in [9] that
the hydrodynamic limit is described by a system of nonlinear heat equations that
are coupled on the interface.

While the random walk model in [9] is more amenable to computer simulation,
it is subject to technical restrictions associated with the discrete approximations
of both the diffusions performed by the particles and the underlying domains D±.
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FIG. 1. I = Interface, �± = Harvest sites.

Furthermore, that model does not consider harvest of charges, which is of practical
interest.

In this paper, a new continuous state stochastic model is introduced and investi-
gated. This model is different from that of [9] in three ways: the particles perform
reflected diffusions on continuous state spaces rather than random walks over dis-
crete state spaces, particles are absorbed (harvested) at some regions (harvest sites)
away from the interface I , and the annihilation mechanism near I is different. The
model in this paper allows more flexibility in modeling the underlying spatial mo-
tions performed by the particles and in the study of their various properties. In
particular, it is more convenient to work with when we study the fluctuation limit
(or, functional central limit theorem) of the interacting diffusion system, which is
the subject of an on-going project [10].

Here is a heuristic description of our new model (see Figure 1): Let D± and I

be as above. There is a harvest region �± ⊂ ∂D± \ I that absorbs (harvests) ±
charges, respectively, whenever it is being visited. Let N be the common initial
number of particles in each of D+ and D−. For simplicity, we assume here that
each particle in D± performs a Brownian motion with drift in the interior of D±.
These random motions model the transport of positive (resp., negative) charges
under an electric potential. When a particle hits the boundary, it is absorbed (har-
vested) on �±, and is instantaneously reflected on ∂D± \ �± along the inward
normal direction of D±. In other words, we assume that each particle in D± per-
forms a reflected Brownian motions (RBM) with drift in D± that is killed upon
hitting �±. In addition, a pair of particles of opposite signs has a chance of being
annihilated with each other when they are near I . Actually, when two particles of
different types come within a small distance δN (which must occur near the in-
terface I ), they disappear with intensity λ

Nδd+1
N

. Here, λ > 0 is a given parameter

modeling the rate of annihilation.
The choice of the scaling λ

Nδd+1
N

for the per-pair annihilation intensity is to guar-

antee that, in the limit N → ∞, a nontrivial proportion of particles is killed during
the time interval [0, t]. Here is the heuristic reasoning. Since diffusive particles
typically spread out in space, the number of pairs near the interface is of order
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N2δd+1
N (because there are NδN number of particles in D+ near I , and each of

them is near to Nδd
N number of particles in D−). With the above choice of per-pair

annihilation intensity, the expected number of pairs killed within t units of time is
about (N2δd+1

N )( λ

Nδd+1
N

t) = λNt when t > 0 is small. This implies that a nontrivial

proportion of particle is annihilated during [0, t] and accounts for the boundary
term in the hydrodynamic limit.

In our model, even though the boundary is static and there is no creation of
particles, the interactions do affect the correlations among the particles: whether or
not a positive particle disappears at a given time affects the empirical distribution
of the negative particles, which in term affects that of the positive particles. This
challenge is reflected by the nonlinearity of the macroscopic limit and also by
the nonproduct structure of the system of equations satisfied by the correlation
functions in the pre-limit. The latter equations are computed in [10]; see also the
BBGKY hierarchy in [9].

1.1. Main result and applications. We consider the normalized empirical
measures

X
N,+
t (dx) := 1

N

∑
α:α∼t

1X+
α (t)(dx) and X

N,−
t (dy) := 1

N

∑
β:β∼t

1X−
β (t)(dy).

Here, 1y(dx) stands for the Dirac measure concentrated at the point y, while α ∼ t

(resp., β ∼ t) denotes the condition that particle X+
α (resp., X−

β ) is alive at time t .
Our main result (Theorem 5.1) implies the following: Suppose each particle

in D± is a RBM with gradient drift 1
2∇(logρ±), where ρ± is a strictly posi-

tive function on D±. Suppose δN tends to zero and lim infN→∞ Nδd
N ∈ (0,∞].

If (X
N,+
0 ,X

N,−
0 ) converges in distribution to (f (x) dx, g(y) dy) where f and g

are bounded continuous functions, then the random measures (X
N,+
t ,X

N,−
t ) con-

verge in distribution to a deterministic limit (u+(t, x)ρ+(x) dx,u−(t, y)ρ−(y) dy)

for any t > 0, where (u+, u−) is the unique solution of the coupled heat equations
[in the sense of integral equation (4.1)]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u+
∂t

= 1

2
	u+ + 1

2
∇(logρ+) · ∇u+, on (0,∞) × D+,

u+ = 0, on (0,∞) × �+,

∂u+
∂ �n+

= λ

ρ+
u+u−1{I }, on (0,∞) × ∂D+ \ �+

(1.1)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u−
∂t

= 1

2
	u− + 1

2
∇(logρ−) · ∇u−, on (0,∞) × D−,

u− = 0, on (0,∞) × �−,

∂u−
∂ �n−

= λ

ρ−
u+u−1{I }, on (0,∞) × ∂D− \ �−

(1.2)
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with initial condition u+(0, x) = f (x) and u−(0, y) = g(y), where �n± is the in-
ward unit normal vector field on ∂D± of D± and 1{I } is the indicator function
on I . Note that ρ± = 1 corresponds to the particular case when there is no drift.

REMARK 1.1 (Generalizations and applications). Theorem 5.1 is general
enough to deal with any symmetric reflected diffusions and covers the case when λ

is any continuous function λ(x) on I . It is routine to generalize to any continuous
time-dependent function λ(t, x) and the details are left to the readers. Moreover,
it is likely that a further generalization to tackle multiple deletion of particles near
the interface (similar to that in [18]) can be done in an analogous way. As an imme-
diate application of Theorem 5.1, we obtain an analytic formula for the asymptotic
mass of positive charges harvested during the time interval [0, T ], which is

1 −
∫
D+

u+(T , x)ρ+(x) dx − λ

∫ T

0

∫
I
u+(s, z)u−(s, z) dσ (z) ds,

where σ denotes the surface measure on ∂D± throughout this paper.

REMARK 1.2. The condition lim infN→∞ Nδd
N ∈ (0,∞] is a lower bound for

the rate at which the annihilations distance δN tends to 0. Such kind of condition is
necessary by the following reason: The dimension of I is d + 1 lower than that of
D+ × D−. So we can choose δN small enough so that particles of different types
cannot “see” each other in the limit N → ∞, resulting a decoupled linear system of
PDEs with Dirichlet boundary condition on �± and Neumann boundary condition
on ∂D± \ �±. See Example 5.3 for a rigorous statement and proof.

1.2. Key ideas. Theorem 3.2.39 of [22] from geometric theory asserts that

lim
δ→0

H2d(I δ)

cd+1δd+1 = Hd−1(I ),(1.3)

where I δ := {(x, y) ∈ D+ × D− : |x − z|2 + |y − z|2 < δ2 for some z ∈ I }, cd+1
is the volume of the unit ball in R

d+1, and Hm is the m-dimensional Hausdorff
measure. In Lemma 7.3, we strengthen it to

lim
δ→0

1

cd+1δd+1

∫
I δ

f (x, y) dx dy =
∫
I
f (z, z) dHd−1(z)(1.4)

uniformly in f from any equi-continuous family in C(D+ × D−). Property (1.4)
leads us to the following key observation that

lim
δ→0

lim
N→∞

1

cd+1δd+1E

∫ T

0
XN,+

s ⊗XN,−
s

(
I δ)ds

= lim
N→∞ lim

δ→0

1

cd+1δd+1E

∫ T

0
XN,+

s ⊗XN,−
s

(
I δ)ds.
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This interchange of limit in turn allows us to characterize the mean of any subse-
quential limit of (XN,+,XN,−) by comparing the integral equations (4.1) satisfied
by the hydrodynamic limit with its stochastic counterpart (7.6). Using a similar
argument, we can identify the second moment of any subsequential limit, and
hence characterize any subsequential limit of (XN,+,XN,−). We point out here
that 1

cd+1δ
d+1

∫ t
0 X

N,+
s ⊗ XN,−

s (I δ) ds quantifies the amount of interaction among
the two types of particles, and is related (but different from) the collision local
time introduced in [20]. The direct approach developed in this paper to establish
the hydrodynamic limit avoids going through the delicate BBGKY hierarchy as
was done in [9].

1.3. Literature. Interacting diffusion systems have been studied by many au-
thors and they continue to be the subject of active research. See [30] and [33] for
such a system on a circle whose hydrodynamic limit is established using the en-
tropy method. We also mention [17] for a recent large deviation result for a system
of diffusions in R interacting through their ranks. This large deviation principle
implies convergence of the system to the hydrodynamic limit. However, the meth-
ods in these papers do not seem to work (at least not in a direct way) for our
annihilating diffusion model due to the singular interaction on the interface.

An extensively studied class of stochastic particle systems is reaction-diffusion
systems (R–D systems in short), whose hydrodynamic limits are described by R–
D equations ∂u

∂t
= 1

2	u + R(u), where R(u) is a function in u which represents
the reaction. R–D systems are an important class of interacting particle systems
arising from various contexts. They were investigated by many authors in both
the discrete setting (particles perform random walks) and the continuous setting
(particles perform continuous diffusions). For instance, for the case R(u) is a
polynomial in u, these systems were studied in [18, 19, 28, 29] on a cube with
Neumann boundary conditions, and in [3, 4] on a periodic lattice. See also [7]
for a survey of a class of discrete (lattice) models called the Polynomial Model
which contains the Schlögl’s model. Recently, perturbations of the voter mod-
els which contain the Lotka–Volterra systems are considered in [14]. The authors
showed that the hydrodynamic limits are R–D equations and established general
conditions for the existence of nontrivial stationary measures and for extinction of
the particles. Another class of stochastic particle systems which are related to our
annihilation-diffusion model are the Fleming–Viot type systems [5, 6, 24]. In [6],
Burdzy and Quastel studied an annihilating-branching system of two families of
random walks on a domain. In their model, when a pair of particles of differ-
ent types meet, they annihilate each other and they are immediately reborn at a
site chosen randomly from the remaining particles of the same type. So the to-
tal number of particles of each type remains constant over the time, and thus this
Fleming–Viot type system is different from the annihilating random walk model
of [9]. The hydrodynamic limit of the model in [6] is described by a linear heat



SYSTEMS OF INTERACTING DIFFUSIONS WITH PARTIAL ANNIHILATION 105

equation with zero average temperature. An elegant result obtained by Dittrich
[18] is on a system of reflected Brownian motions on the unit interval [0,1] with
multiple deletion of particles. More precisely, any k-tuples (2 ≤ k ≤ n) of par-
ticles with distances between them of order ε, say (xi1, . . . , xik ), disappear with
intensity ck(k − 1)!εk−1 ∫[0,1] p(ε2, xi1, y) · · ·p(ε2, xik , y) dy, where ck > 0 are
constants and p(t, x, y) is the transition density of the reflected Brownian mo-
tion on [0,1]. The hydrodynamic limit is a R–D equation with reaction term
R(u) = −∑n

k=2 cku
k and Neumann boundary condition. In contrast to [18], our

model has two types of particles instead of one. Moreover, the interaction of our
model is singular near the boundary and gives rise to a boundary integral term in
the hydrodynamic limit.

The rest of the paper is organized as follows. Preliminary materials on setup,
reflecting diffusions, and notation are given in Section 2. A rigorous description of
the interacting stochastic particle system introduced in this paper is presented in
Section 3. In Section 4, we give an existence and uniqueness result of solution of
a coupled heat equation with nonlinear boundary condition, analogous to Proposi-
tion 2.19 of [9]. The full statement and the proof of our main result (Theorem 5.1)
is given in Section 5 and Section 6, respectively. The proof of a key proposition
that identifies the first and second moments of subsequential limits of empirical
distributions is postponed to Section 7.

2. Preliminaries.

2.1. Reflected diffusions killed upon hitting a closed set � ⊂ D. Let D ⊂ R
d

be a bounded Lipschitz domain, and

W 1,2(D) = {
f ∈ L2(D;dx) : ∇f ∈ L2(D;dx)

}
.

Consider the bilinear form on W 1,2(D) defined by

E(f, g) := 1

2

∫
D

∇f (x) · a∇g(x)ρ(x) dx,

where ρ ∈ W 1,2(D) is a positive function on D which is bounded away from zero
and infinity, a = (aij ) is a symmetric bounded uniformly elliptic d × d matrix-
valued function such that aij ∈ W 1,2(D) for each i, j . Since D is Lipschitz bound-
ary, (E,W 1,2(D)) is a regular symmetric Dirichlet form on L2(D;ρ(x) dx), and
hence has a unique (in law) associated ρ-symmetric strong Markov process X

(cf. [8]).

DEFINITION 2.1. Let (a, ρ) and X be as in the preceding paragraph. We call
X an (a, ρ)-reflected diffusion. A special but important case is when a is the iden-
tity matrix, in which X is called a reflected Brownian motion with drift 1

2∇(logρ).
If in addition ρ = 1, then X is called a reflected Brownian motion (RBM).
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Denote by �n the unit inward normal vector of D on ∂D. The Skorokhod repre-
sentation of X tells us (see [8]) that X behaves like a diffusion process associated
to the elliptic operator

A := 1

2ρ
∇ · (ρa∇)(2.1)

in the interior of D, and is instantaneously reflected at the boundary in the inward
conormal direction �ν := a�n. It is well known (cf. [2, 25] and the references therein)
that X has a transition density p(t, x, y) with respect to the symmetrizing measure
ρ(x) dx [i.e., Px(Xt ∈ dy) = p(t, x, y)ρ(y) dy and p(t, x, y) = p(t, y, x)], that p

is locally Hölder continuous and hence p ∈ C((0,∞)×D ×D), and that we have
the following: for any T > 0, there are constants c1 ≥ 1 and c2 ≥ 1 such that

1

c1td/2 exp
(−c2|y − x|2

t

)
≤ p(t, x, y) ≤ c1

td/2 exp
(−|y − x|2

c2t

)
(2.2)

for every (t, x, y) ∈ (0, T ] × D × D. Using (2.2) and the Lipschitz assumption for
the boundary, we can check that

sup
x∈D

sup
0<δ≤δ0

1

δ

∫
Dδ

p(t, x, y) dy ≤ C√
t

for t ∈ (0, T ] and(2.3)

sup
x∈D

∫
∂D

p(t, x, y)σ (dy) ≤ C√
t

for t ∈ (0, T ],(2.4)

where C,δ0 > 0 are constants which depends only on d , T , the Lipschitz char-
acteristics of D, the ellipticity of a and the lower and upper bound of ρ. Here,
Dδ := {x ∈ D : dist(x, ∂D) < δ}. In fact, (2.4) follows from (2.3) via Lemma 7.1.

Now we consider an (a, ρ)-reflected diffusion killed upon hitting a closed subset
� of D. In particular, � can be a subset of ∂D such as �± in Figure 1. Define

X
(�)
t :=

{
Xt, t < T�,

∂, t ≥ T�,
(2.5)

where ∂ is a cemetery point and T� := inf {t > 0 : Xt ∈ �} is the first hitting
time of X on �. Since D \ � is open in D, Theorem A.2.10 of [23] asserts
that X(�) is a Hunt process on (D \ �) ∪ ∂ with transition function P �

t (x,A) =
P

x(Xt ∈ A, t < T�). The characterization of the Dirichlet form of X(�) can be
found in Theorem 3.3.8 of [11] or Theorem 4.4.2 of [23]; in particular, it im-
plies that the semigroup {P �

t }t≥0 of X(�) is symmetric and strongly continuous
on L2(D \ �,ρ(x) dx). Clearly, X(�) has a transition density p(�) with respect
to ρ(x) dx [i.e., P �

t (x, dy) = p(�)(t, x, y)ρ(y) dy]. Note that p(�)(t, x, y) ≤
p(t, x, y) for all x, y ∈ D and t > 0.

So far � is only assumed to be closed in D. We will also need the following
regularity assumption.
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DEFINITION 2.2. � ⊂ D is said to be regular with respect to X if Px(T� =
0) = 1 for all x ∈ �, where T� := inf {t > 0 : Xt ∈ �}.

This regularity assumption implies that p(�)(t, x, y) is jointly continuous in x

and y up to the boundary. In particular, p(�)(t, x, y) is continuous for x and y in a
neighborhood of I . We now gather some basic properties of p(�)(t, x, y) for later
use.

PROPOSITION 2.3. Let X be an (a, ρ)-reflected diffusion defined in Defini-
tion 2.1, and p(�)(t, x, y) be the transition density, with respect to ρ(x) dx, of
X� defined in (2.5). Suppose � is closed and regular with respect to X. Then
p(�)(t, x, y) ≥ 0 and p(�)(t, x, y) = p(�)(t, y, x) for all x, y ∈ D and t > 0.
Moreover, p(�)(t, x, y) can be extended to be jointly continuous on (0,∞) × D ×
D. The last property implies that the semigroup {P �

t }t≥0 of X� is strongly contin-
uous on the Banach space C∞(D \�) := {f ∈ C(D) : f vanishes on �} equipped
with the uniform norm on D. The domain of the Feller generator of {P (�)

t }t≥0, de-
noted by Dom(A(�)), is dense in C∞(D \ �).

PROOF. Define, for all (t, x, y) ∈ (0,∞) × D × D,

q(�)(t, x, y) := p(t, x, y) − r(t, x, y)

where r(t, x, y) := E
x
[
p(t − T�,XT�, y); t ≥ T�

]
.

Using the fact that x �→ P
x(T� < t) is lower semicontinuous (cf. Proposition 1.10

in Chapter II of [1]), it is easy to check that if � is closed and regular, then

lim
n→∞P

xn(T� < t) = 1(2.6)

whenever t > 0 and xn ∈ D converges to a point in �. Recall that p(t, x, y) is
symmetric in (x, y), has two-sided Gaussian estimates (2.2), and is jointly contin-
uous on (0,∞) × D × D. Using these properties of p together with (2.6), then
applying the same argument of Section 4 of Chapter II in [1], we have:

(a) q(�)(t, x, y) is a density for the transition function of X�,
(b) q(�)(t, x, y) ≥ 0 and q(�)(t, x, y) = q(�)(t, y, x) for all x, y ∈ D and t > 0,

and
(c) q(�)(t, x, y) is jointly continuous on (0,∞) × D × D.

From (c), the semigroup {P (�)
t } of X(�) is strongly continuous by a standard ar-

gument. C∞(D \ �) is a Banach space since it is a closed subspace of C(D). The
domain of the Feller generator Dom(A(�)) of {P (�)

t } is dense in C∞(D \ �) be-
cause any f ∈ C∞(D \ �) is the strong limit limt↓0

1
t

∫ t
0 P

(�)
s f ds in C∞(D \ �),

and
∫ t

0 P
(�)
s f ds ∈ Dom(A(�)). �
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2.2. Assumptions and notation. We now return to our annihilating diffusion
system. Recall that before being annihilated by a particle of the opposite kind
near I , a particle in D± performs a reflected diffusion with absorption on �± ⊂
∂D± \ I . If a particle is absorbed (in �±) rather than annihilated (near I ), it is
considered to be harvested.

The following assumptions are in force throughout this paper.

ASSUMPTION 2.4 (Geometric setting). Suppose D+ and D− are given adja-
cent bounded Lipschitz domains in R

d such that I := D+ ∩ D− = ∂D+ ∩ ∂D− is
Hd−1-rectifiable. �± is a closed subset of D± \ I which is regular with respect to
the (a±, ρ±)-reflected diffusion X±, where ρ± ∈ W(1,2)(D±) ∩ C(D±) is a given
strictly positive function, a± = (a

ij
± ) is a symmetric, bounded, uniformly elliptic

d × d matrix-valued function such that a
ij
± ∈ W 1,2(D±) for each i, j .

ASSUMPTION 2.5 (Parameter of annihilation). Suppose λ ∈ C+(I ) is a given
nonnegative continuous function on I . Let λ̂ ∈ C(D+ × D−) be an arbitrary but
fixed extension of λ in the sense that λ̂(z, z) = λ(z) for all z ∈ I . (Such λ̂ always
exists.)

ASSUMPTION 2.6 (The annihilation potential). We choose annihilation po-
tential functions {
δ : δ > 0} ⊂ C+(D+ × D−) in such a way that 
δ(x, y) ≤

λ̂(x,y)

cd+1δ
d+1 1I δ (x, y) on D+ × D− and

lim
δ→0

∥∥∥∥
δ − λ̂

cd+1δd+1 1I δ

∥∥∥∥
L2(D+×D−)

= 0,(2.7)

where I δ := {(x, y) ∈ D+ ×D− : |x −z|2 +|y −z|2 < δ2 for some z ∈ I } and cd+1
is the volume of the unit ball in R

d+1.

Assumption 2.6 is natural in view of (1.3). Intuitively, if N is the initial number
of particles, then δN is the annihilation distance and I δN controls the frequency of
interactions. As remarked in the Introduction, we need to assume that the annihi-
lation distance δN does not shrink too fast. This is formulated in Assumption 2.7
below.

ASSUMPTION 2.7 (The annihilation distance). lim infN→∞ Nδd
N ∈ (0,∞],

where {δN } ⊂ (0,∞) converges to 0 as N → ∞.

Convention: To simplify notation, we suppress �± and write X± in place of
X�± for a (a±, ρ±)-reflected diffusions on D± killed upon hitting �±. We also
use p±(t, x, y), P ±

t and A± to denote, respectively, the transition density w.r.t. ρ±,
the semigroup associated to p±(t, x, y) and the C∞(D± \ �±)-generator (called



SYSTEMS OF INTERACTING DIFFUSIONS WITH PARTIAL ANNIHILATION 109

the Feller generator) of X± = X�± . Under Assumption 2.4, X± is a Hunt (hence
strong Markov) process on

D∂± := (
D± \ �±)∪ {

∂±},
where ∂± is the cemetery point for X± (see Proposition 2.3).

For the reader’s convenience, we list other notation that will be adopted in this
paper:

B(E) Borel measurable functions on E

Bb(E) bounded Borel measurable functions on E

B+(E) nonnegative Borel measurable functions on E

C(E) continuous functions on E

Cb(E) bounded continuous functions on E

C+(E) nonnegative continuous functions on E

Cc(E) continuous functions on E with compact support
D([0,∞),E) space of càdlàg paths from [0,∞) to E equipped with the Sko-

rokhod metric
C∞(D \ �) {f ∈ C(D) : f vanishes on �}
C

(n,m)∞ {� ∈ C(D
n

+ × D
m

−) : � vanishes outside (D+ \ �+)n × (D− \
�−)m}, see Section 7.2

Hm m-dimensional Hausdorff measure
I δ {(x, y) ∈ D+ × D− : |x − z|2 + |y − z|2 < δ2 for some z ∈ I },
cd the volume of the unit ball in R

d


δ the annihilating potential functions in Assumption 2.6
X(N)

t the configuration process defined in Section 3.1
SN

⋃N
m=1(D

∂+(m) × D∂−(m)) ∪ {∂}, the state space of (X(N)
t )t≥0

(X
N,+
t ,X

N,−
t ) the normalized empirical measure defined in Section 3.2

EN

⋃N
M=1 E

(M)
N ∪ {0∗}, the state space of (X

N,+
t ,X

N,−
t )t≥0

M+(E) space of finite nonnegative Borel measures on E, with weak
topology

M≤1(E) {μ ∈ M+(E) : μ(E) ≤ 1}
M M≤1(D+ \ �+) × M≤1(D− \ �−), see Section 5
{FX

t : t ≥ 0} filtration induced by the process (Xt), that is, FX
t = σ(Xs, s ≤

t)

1x indicator function at x or the Dirac measure at x (depending on
the context)

L−→ convergence in law of random variables (or processes)
〈f,μ〉 ∫

f (x)μ(dx)

x ∨ y max{x, y}
x ∧ y min{x, y}
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3. Annihilating diffusion system. In this section, we fix N ∈ N and con-
struct the configuration process X(N) and the normalized empirical measure pro-
cess (XN,+,XN,−) for our annihilating diffusion system. In the construction, we
will label (rather than annihilate) pairs of particles to keep track of the annihilated
particles. This provides a coupling of our annihilating particle system and the cor-
responding system without annihilation.

Let m ∈ {1,2, . . . ,N} (in fact, m can be any positive integer). Starting with m

points in each of D∂+ and D∂−, we perform the following construction.

Let {X±
i = X

�±
i }mi=1 be (a±, ρ±)-reflected diffusions on D± killed upon hitting

�±, starting from the given points in D∂± and are mutually independent. In case
X±

i starts at the cemetery point ∂±, we set X±
i (t) = ∂± for all t ≥ 0. Let {Rk}mk=1

be i.i.d. exponential random variables with mean one which are independent of
{X+

i }mi=1 and {X−
i }mj=1.

Define the first time of labeling (or annihilation) to be

τ1 := inf

{
t ≥ 0 : 1

2N

∫ t

0

m∑
i=1

m∑
j=1


δN

(
X+

i (s),X−
j (s)

)
ds ≥ R1

}
,(3.1)

with the convention inf∅ = ∞. In the above, 
δN
(x, y) = 0 if either x = ∂+ or

y = ∂−. Hence particles absorbed at �± do not contribute to rate of labeling (or
annihilation). It is possible that τ1 = ∞, which means that there is no annihilation
between positive and negatives charges. However, limm→∞ P(τ1 = ∞) = 0. On
{τ1 < ∞}, we label at time τ1 exactly one pair in {(i, j)} according to the proba-
bility distribution given by


δN
(X+

i (τ1−),X−
j (τ1−))∑m

p=1
∑m

q=1 
δN
(X+

p (τ1−),X−
q (τ1−))

assigned to (i, j).

Denote (i1, j1) to be the labeled pair at τ1 (think of the labeled pair as begin re-
moved due to annihilation of the corresponding particles).

On {τ1 < ∞}, we repeat this labeling procedure using the remaining unlabeled
2(m − 1) particles. Precisely, for k = 2,3, . . . ,m, we define

τk := inf
{
t ≥ 0 :

1

2N

∫ τ1+···+τk−1+t

τ1+···+τk−1

∑
i /∈{i1,...,il−1}

∑
j /∈{j1,...,jl−1}


δN

(
X+

i (s),X−
j (s)

)
ds ≥ Rk

}

on
⋂k−1

j=1{τj < ∞} and τk = ∞ otherwise. Define σk := τ1 + τ2 + · · · + τk . When
σk < ∞, we label at σk the kth time of labeling (annihilation), exactly one pair
(ik, jk) in {

(i, j) : i /∈ {i1, . . . , ik−1}, j /∈ {j1, . . . , jk−1}}
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according to the probability distribution given by


δN
(X+

i (σk−),X−
i (σk−))∑

i /∈{i1,...,ik−1}
∑

j /∈{j1,...,jk−1} 
δN
(X+

i (σk−),X−
i (σk−))

assigned to (i, j).

We will study the evolution of the unlabeled (or surviving) particles in detail
below.

3.1. Configuration process. We denote D∂±(m) the space of unordered m-
tuples of elements in D∂± := (D± \ �±) ∪ {∂±}. The configuration space for the
particles is defined as

SN :=
N⋃

m=1

(
D∂+(m) × D∂−(m)

)∪ {∂},(3.2)

where ∂ is a cemetery point (different from ∂±).
We define X(N)

t ∈ SN to be the following unordered list of (the position of)
unlabeled (surviving) particles at time t . That is,

X(N)
t :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

({
X+

1 (t), . . . ,X+
m(t)

}
,
{
X−

1 (t), . . . ,X−
m(t)

})
,

if t ∈ [0, σ1 = τ1);({
X+

i (t)
}
i /∈{i1,...,ik−1},

{
X−

j (t)
}
j /∈{j1,...,jk−1}

)
,

if t ∈ [σk−1, σk), for k = 2,3, . . . ,m;
∂, if t ∈ [σm,∞).

By definition, X(N)
t ∈ D∂+(m − k + 1) × D∂−(m − k + 1) when t ∈ [σk−1, σk), and

X(N)
t = ∂ if and only if all particles are labeled (annihilated) at time t (in particular,

none of them is absorbed at �±). We call X(N) = (X(N)
t )t≥0 the configuration

process.
Denote (�,F,℘) the ambient probability space on which the above random

objects {X+
i }mi=1, {X−

i }mj=1, {Ri}mi=1 and {(i1, j1), . . . , (im, jm)} are defined. For

any z ∈ SN , we define P
z to be the conditional measure ℘(·|X(N)

0 = z). From the
construction, we have

PROPOSITION 3.1. {X(N)} is a strong Markov processes under {Pz : z ∈ SN }.
The key is to note that the choice of (ik, jk) depends only on the value of X(N)

σk−,
and that

τk+1 = inf
{
t ≥ 0 : A(k)

t > Rk+1
}

where A
(k)
t = 1

2N

∫ σk+t

σk

∑
i=1

∑
j=1


δN

(
X+

i (s),X−
j (s)

)
ds.

Hence, X(N) is obtained through a patching procedure reminiscent to that of Ikeda,
Nagasawa and Watanabe [26]. The proof is standard and is left to the reader.
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3.2. Normalized empirical process (XN,+,XN,−). Next, we consider EN :=⋃N
M=1 E

(M)
N ∪ {0∗}, where

E
(M)
N :=

{(
1

N

M∑
i=1

1xi
,

1

N

M∑
j=1

1yj

)
: xi ∈ D∂+, yj ∈ D∂−

}

and 0∗ is an abstract point isolated from
⋃N

M=1 E
(M)
N . We define the normalized

empirical measure (XN,+,XN,−) by(
X

N,+
t ,X

N,−
t

) := UN

(
X(N)

t

)
,(3.3)

where UN : SN → EN is the canonical map given by UN(∂) := 0∗ and

UN : (x, y) = (x1, . . . , xm, y1, . . . , ym) �→
(

1

N

m∑
i=1

1xi
,

1

N

m∑
j=1

1yj

)
.

For comparison, we also consider the empirical measure for the independent
reflected diffusions without annihilation:

(
X

N,+
,X

N,−) :=
(

1

N

m∑
i=1

1X+
i (t),

1

N

m∑
j=1

1X−
j (t)

)
.(3.4)

For any μ ∈ EN , we define P
μ to be the conditional measure ℘(·|(XN,+

0 ,

X
N,−
0 ) = μ). From Proposition 3.1, we have the following.

PROPOSITION 3.2. {(XN,+,XN,−)} is a strong Markov processes under {Pμ :
μ ∈ EN }.

4. Coupled heat equation with nonlinear boundary condition. Denote by
C∞([0, T ];D \ �) the space of continuous functions on [0, T ] taking values
in C∞(D \ �) := {f ∈ C(D) : f vanishes on �}. We equip the Banach space
C∞([0, T ];D+ \ �+) × C∞([0, T ];D− \ �−) with norm ‖(u, v)‖ := ‖u‖∞ +
‖v‖∞, where ‖ · ‖∞ is the uniform norm. Using a probabilistic representation and
the Banach fixed point theorem in the same way as we did in the proof of the
existence and uniqueness result for the PDE in [9], Propostion 2.19, we have the
following.

PROPOSITION 4.1. Let T > 0 and u±
0 ∈ C∞(D± \ �±). Then there is a

unique element (u+, u−) ∈ C∞([0, T ];D+ \ �+) × C∞([0, T ];D− \ �−) that
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satisfies the coupled integral equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+(t, x) = P �+
t u+

0 (x)

− 1

2

∫ t

0

∫
I
p�+

(t − r, x, z)
[
λ(z)u+(r, z)u−(r, z)

]
dσ(z) dr,

u−(t, y) = P �−
t u−

0 (y)

− 1

2

∫ t

0

∫
I
p�−

(t − r, y, z)
[
λ(z)u+(r, z)u−(r, z)

]
dσ(z) dr.

(4.1)

Moreover, (u+, u−) satisfies⎧⎪⎪⎨⎪⎪⎩
u+(t, x) = E

x

[
u+

0

(
X�+

t

)
exp

(
−
∫ t

0
(λ · u−)

(
t − s,X�+

s

)
dLI,+

s

)]
,

u−(t, y) = E
y

[
u−

0

(
X�−

t

)
exp

(
−
∫ t

0
(λ · u+)

(
t − s,X�−

s

)
dLI,−

s

)]
,

(4.2)

where LI,± is the boundary local time of X�±
on the interface I , that is, the posi-

tive continuous additive functional having Revuz measure σ |I , the surface measure
σ restricted to I .

DEFINITION 4.2. Motivated by the probabilistic representation (4.2), we call
the unique solution (u+, u−) ∈ C∞([0, T ];D+ \ �+) × C∞([0, T ];D− \ �−)

of (4.1) the probabilistic solution to the following coupled PDEs starting from
(u+

0 , u−
0 ): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u+
∂t

=A+u+, on (0,∞) × D+,

u+ = 0, on (0,∞) × �+,

∂u+
∂ �ν+

= λ

ρ+
u+u−1{I }, on (0,∞) × ∂D+ \ �+

(4.3)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u−
∂t

= A−u−, on (0,∞) × D−,

u− = 0, on (0,∞) × �−,

∂u−
∂ �ν−

= λ

ρ−
u+u−1{I }, on (0,∞) × ∂D− \ �−,

(4.4)

where �ν± := a±�n± is the inward conormal vector field on ∂D±. Here, 1{I } is the
indicator function of I .

It can be shown that the pair of continuous functions (u+, u−) satisfying (4.1) is
weakly differentiable and satisfies the PDEs (4.3)–(4.4) in the distributional sense
(see Section 3 of [12]); however, we do not need this property in this paper. Our
method only requires continuity of u+ and u−.
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5. Main result: Rigorous statement. Denote by M≤1(D± \ �±) the space
of nonnegative Borel measures on D± \ �± with mass at most 1 and set

M := M≤1(D+ \ �+) × M≤1(D− \ �−),

equipped with the topology of weak convergence. Regard 1∂± as 0± and 0∗ as
(0+,0−), where 0± is the zero measure on D±, respectively. Then EN ⊂ M for
all N , and the processes (XN,+,XN,−) have sample paths in D([0,∞),M), the
Skorokhod space of càdlàg paths in M.

We can now rigorously state our main result. In what follows,
L−→ denotes

convergence in law.

THEOREM 5.1 (Hydrodynamic limit). Suppose that Assumptions 2.4 to 2.6

hold. If as N → ∞, (X
N,+
0 ,X

N,−
0 )

L−→ (u0+(x)ρ+(x) dx,u0−(y)ρ−(y) dy) in M,
where u0± ∈ C∞(D± \ �±), then(
XN,+,XN,−) L−→ (

u+(t, x)ρ+(x) dx,u−(t, y)ρ−(y) dy
)

in D
([0, T ],M)

for any T > 0, where (u+, u−) is the probabilistic solution of (4.3)–(4.4) with
initial value (u0+, u0−).

REMARK 5.2. M is in fact a Polish space. Let {fn;n ≥ 1} and {gn;n ≥ 1} be
sequences of continuous functions with |fn| ≤ 1 and |gn| ≤ 1 whose linear span
are dense in C∞(D+ \ �+) and C∞(D− \ �−), respectively. For μ = (μ+,μ−)

and ν = (ν+, ν−) in M, define

�(μ, ν) :=
∞∑

n=1

2−n

(∣∣∣∣∫
D+

fn(x)(μ+ − ν+)(dx)

∣∣∣∣+ ∣∣∣∣∫
D−

gn(y)(μ− − ν−)(dy)

∣∣∣∣).

It is well known that M is a complete separable metric space under the metric �.

As mentioned in Remark 1.2 in the Introduction, an assumption on the rate at
which δN tends to zero, such as Assumption 2.7, is necessary for Theorem 5.1 to
hold. Below is a counter-example.

EXAMPLE 5.3. Suppose that {X+
i (t)}∞i=1 and {X−

j (t)}∞j=1 are RBMs on D+
and D−, respectively, and they are all mutually independent. Note that X+

i and
X−

j never meet in the sense that

P
(
X+

i (t) = X−
j (t) for some t ∈ [0,∞) and i, j ∈ {1,2,3, . . .})= 0.(5.1)

This implies that there exists {δN } so that
∑∞

N=1 αN < ∞, where

αN := P
((

X+
i (t),X−

j (t)
) ∈ I δN

(5.2)
for some t ∈ [0,∞) and i, j ∈ {1,2, . . . ,N}).
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Hence, by the Borel–Cantelli lemma, we know that with probability 1, there will be
no annihilation for the particle system (which occurs only when a pair of particles
are in I δN ) when N is sufficiently large. In this case, (X

N,+
t ,X

N,−
t ) converges to

(P +
t u+

0 (x) dx,P −
t u−

0 (y) dy) in distribution in D([0, T ],M) instead, provided that

(X
N,+
0 ,X

N,−
0 ) converges to (u+

0 (x) dx,u−
0 (y) dy) in distribution in M.

Question. We will see from Theorem 6.6 below that the tightness of (X
N,+
t ,

X
N,−
t ) holds without Assumption 2.7. Can we characterize all limit points of

(X
N,+
t ,X

N,−
t ) without Assumption 2.7? Is lim infN→∞ Nδd

N ∈ (0,∞] the sharpest
condition for Theorem 5.1 to hold?

6. Hydrodynamic limit. Recall that Assumptions 2.4 to 2.6 are in force
throughout this paper.

6.1. Martingales and tightness. In this subsection, we present some key mar-
tingales that are used to establish tightness of (XN,+,XN,−). More martingales re-
lated to the time dependent process (t, (X

N,+
t ,X

N,−
t )) will be given in Section 7.2.

6.1.1. Martingales for reflected diffusions. We will need the following col-
lection of fundamental martingales, together with their quadratic variations, for
reflected diffusions.

LEMMA 6.1. Suppose X� is an (a, ρ)-reflected diffusion in a bounded Lips-
chitz domain D killed upon hitting �. Suppose all assumptions in Proposition 2.3
hold, and f is in the domain of the Feller generator Dom(A(�)). Then

M(t) := f
(
X�(t)

)− f
(
X�(0)

)−
∫ t

0
A(�)f

(
X�(s)

)
ds(6.1)

is a FX�

t -martingale that is bounded on each compact time interval and has pre-
dictable quadratic variation 〈M〉t := ∫ t

0 (a∇f · ∇f )(X�(s)) ds under P
x for any

x ∈ D. Moreover, if X1 and X2 are independent copies of X�, and if Mi is the
above M with X� replaced by Xi , then the cross variation 〈M1,M2〉t = 0.

PROOF. For f ∈ Dom(A(�)), M(t) defined in (6.1) is an FX�

t -martingale that
is bounded on each compact time interval. Since D is bounded, f is clearly in
the domain of the L2-generator of X�. Hence, it follows from the Fukushima
decomposition of f (X�

t ) (see Theorems 4.2.6 and 4.3.11 of [11]), that M(t) is a
martingale additive functional of X� of finite energy having quadratic variation
〈M(t)〉t = ∫ t

0 (a∇f · ∇f )(X�(s)) ds. If X1 and X2 are independent copies of X�,
then M1 and M2 are independent and so 〈M1,M2〉 = 0. �
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An immediate consequence of Lemma 6.1 is∫ t

0
P �

s (a∇f · ∇f )(x) ds = E
x[M(t)2]≤ 8

(‖f ‖2 + ∥∥A(�)f
∥∥2

t2)
(6.2)

for x ∈ D,

where ‖g‖ is the uniform norm of g on D.

6.1.2. Martingales for annihilating diffusion system.

THEOREM 6.2. Fix any positive integer N . Suppose F ∈ Cb(EN) is a
bounded continuous function and G ∈ B(EN) is a Borel measurable function on
EN such that

Mt := F
(
X

N,+
t ,X

N,−
t

)−
∫ t

0
G
(
X

N,+
s ,X

N,−
s

)
ds

is an F (X
N,+

,X
N,−

)
t -martingale under Pμ for any μ ∈ EN . Then

Mt := F
(
X

N,+
t ,X

N,−
t

)−
∫ t

0
(G + KF)

(
XN,+

s ,XN,−
s

)
ds

is a F (XN,+,XN,−)
t -martingale under Pμ for any μ ∈ EN , where

KF(ν) := − 1

2N

M∑
i=1

M∑
j=1


δN
(xi, yj )

(6.3)
× (

F(ν) − F
(
ν+ − N−11{xi}, ν− − N−11{yj }

))
whenever ν = ( 1

N

∑M
i=1 1{xi}, 1

N

∑M
j=1 1{yj }) ∈ E

(M)
N , and KF(0∗) := 0.

REMARK 6.3. (i) Theorem 6.2 indicates the infinitesimal generator of
(XN,+,XN,−) on Cb(EN) is given by L + K , where L is the infinitesimal gen-

erator of (X
N,+

,X
N,−

) on Cb(EN). Note that G is merely assumed to be Borel
measurable, the above provides us with a broader class of martingales (such as
N

(φ+,φ−)
t in Corollary 6.4) than from using the Cb(EN)-generator.
(ii) Theorem 6.2 can be generalized to deal with time-dependent functions Fs ∈

Cb(EN) (s ≥ 0). See Theorem 7.7 in Section 7.2.

PROOF OF THEOREM 6.2. We adopt the abbreviation X := (XN,+,XN,−)

when there is no confusion. In particular, we write FX
t in place of F (XN,+,XN,−)

t .
By the Markov property for X, it suffices to show that for all t ≥ 0 and ν ∈ EN ,

E
ν

[
F(Xt ) − F(X0) −

∫ t

0
(G + KF)(Xs) ds

]
= 0.(6.4)
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The idea is to spit the time interval [0, t] into pieces according to the jumping
times of F(Xs) (s ∈ [0, t]) caused by annihilation (excluding the jumps caused
by absorbtion at the harvest sites �±), then apply M in each piece and take into
account the jump distributions.

Suppose ν = (ν+, ν−) = ( 1
N

∑m
i=1 1xi

, 1
N

∑m
j=1 1yj

) ∈ E
(m)
N . Recall that σi :=

τ1 + · · · + τi (i = 1,2, . . . ,m) is the time of the ith labeling (annihilation) of par-
ticles. Then

F(Xt ) − F(X0)
(6.5)

=
m∑

i=0

(
F(X(t∧σi+1)−) − F(Xt∧σi

)
)+

m∑
j=1

(
F(Xt∧σj

) − F(X(t∧σj )−)
)
,

where σ0 := 0, σm+1 := ∞ and Xs− := limr↗s Xr . Hence, it suffices to show that

E
ν

[
F(X(t∧σi+1)−) − F(Xt∧σi

) −
∫ t∧σi+1

t∧σi

G(Xs) ds

]
= 0 and(6.6)

E
ν

[
F(Xt∧σj

) − F(X(t∧σj )−) −
∫ t∧σj

t∧σj−1

KF(Xs) ds

]
= 0(6.7)

for i ∈ {0,1,2, . . . ,m} and j ∈ {1,2, . . . ,m}.
The left-hand side of (6.6) equals

E
ν

[
E

ν

[
F(X(t∧σi+1)−) − F(Xt∧σi

) −
∫ t∧σi+1

t∧σi

G(Xs) ds
∣∣∣FX

t∧σi

]]

= E
ν

[
E
Xσi

[
F(X(t∧σi+1−σi)−) − F(X0) −

∫ t∧σi+1−σi

0
G(Xs) ds

]
1t>σi

]

= E
ν

[
E
Xσi

[
F(X((t−σi)∧τi+1)−) − F(X0) −

∫ (t−σi)∧τi+1

0
G(Xs) ds

]
1t>σi

]
.

The first equality follows from the strong Markov property of X (applied to the
stopping time σi) and the fact that the expression inside the expectation vanishes
when t ≤ σi . Note that σi is regarded as a constant w.r.t. the expectation E

Xσi , be-
cause FX

σi
contains the sigma-algebra generated by σi . The second equality follows

from the easy fact that (t ∧ σi+1) − σi = (t − σi) ∧ (σi+1 − σi) = (t − σi) ∧ τi+1
on t > σi . Therefore, to establish (6.6), it is enough to show that for any η ∈ EN

and w ≥ 0, we have

E
η

[
F(X(w∧τ)−) − F(X0) −

∫ w∧τ

0
G(Xs) ds

]
= 0,(6.8)

where τ is the time of the first annihilation for X starting from η [i.e., τ = τ1 under
P

η where τ1 is defined by (3.1)].
Equation (6.8) obviously holds if η is the zero measure since both sides vanish.

Suppose η ∈ E
(n)
N . Observe that τ is a stopping time for F̃X

t := σ(FX
t , {Ri;1 ≤
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i ≤ n}) and that Mt is a F̃X
t -martingale under Pη since {Ri} is independent of X

under Pη. Hence, by the optional sampling theorem, (6.8) is true, and so is (6.6).
Following the same arguments as above, the left-hand side of (6.7) equals

E
ν

[
E
Xσj−1

[
F(X(t−σj−1)∧τj

) − F(X((t−σj−1)∧τj )−)

+
∫ (t−σj−1)∧τj

0
KF(Xs) ds

]
1t>σj−1

]
,

where σj−1 is regarded as a constant w.r.t. the expectation E
Xσj−1 . Therefore, (6.7)

holds if for any η ∈ EN and θ ≥ 0, we have

E
η

[
F(Xθ∧τ ) − F(X(θ∧τ)−) −

∫ θ∧τ

0
KF(Xs) ds

]
= 0,(6.9)

where τ is the time of the first killing for X starting from η.
Suppose η = ( 1

N

∑n
i=1 1xi

, 1
N

∑n
j=1 1yj

) ∈ E
(n)
N and Xτ− = ( 1

N

∑n
i=1 1X+

i (τ−),

1
N

∑n
j=1 1X−

j (τ−)), where {X±
k : k = 1, . . . , n} are reflected diffusions killed upon

hitting �± in the construction of X. At time τ , one pair of particles among
{(X+

i ,X−
j ) : 1 ≤ i, j ≤ n} is labeled (annihilated), where the pair (X+

i ,X−
j ) is

chosen to be labeled (annihilated) with probability

δN

(X+
i (τ−),X−

j (τ−))∑n
p=1

∑n
q=1 
δN

(X+
p (τ−),X−

q (τ−))
.

Hence,

E
η[F(X(θ∧τ)−) − F(Xθ∧τ )

]
= E

η[
E

η[F(Xτ−) − F(Xτ )|FX
τ−
]; τ < θ

]
= E

η

[
n∑

i=1

n∑
j=1


δN
(X+

i (τ−),X−
j (τ−))∑n

p=1
∑n

q=1 
δN
(X+

p (τ−),X−
q (τ−))

×
(
F(Xτ−) − F

(
Xτ− −

(
1

N
1X+

i (τ−),
1

N
1X−

j (τ−)

)))
; τ < θ

]

= E
η

[ −(2N)KF(Xτ−)∑n
p=1

∑n
q=1 
δN

(X+
p (τ−),X−

q (τ−))
; τ < θ

]

= E
η

[∫ θ∧τ

0
−KF(Xs) ds

]
.

The last equality follows from the fact that

τ = inf

{
t ≥ 0 : 1

2N

∫ t

0

n∑
p=1

n∑
q=1


δN

(
X+

p (s),X−
q (s)

)
ds ≥ R

}
,
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where R is an independent exponential random variable of mean 1 under Pη (see
Proposition 2.2 of [13] for a rigorous proof). Hence, (6.9) is established and the
proof is complete. �

The following corollary is the key to the tightness of (XN,+,XN,−). Recall that
A± is the Feller generator of the diffusion X± = X�± on D± \ �±, respectively.

COROLLARY 6.4. Fix any positive integer N . For any φ± ∈ Dom(A±), we
have

M
(φ+,φ−)
t := 〈

φ+,X
N,+
t

〉+ 〈
φ−,X

N,−
t

〉
−
∫ t

0

〈
A+φ+,XN,+

s

〉+ 〈
A−φ−,XN,−

s

〉
− 1

2

〈

δN

(φ+ + φ−),XN,+
s ⊗XN,−

s

〉
ds

is an F (XN,+,XN,−)
t -martingale under Pμ for any μ ∈ EN , where

〈
f (x, y),μ+(dx) ⊗ μ−(dy)

〉 := 1

N2

∑
i

∑
j

f (xi, yj )

whenever μ =
(
N−1

∑
i

1xi
,N−1

∑
j

1yj

)
.

Moreover, M
(φ+,φ−)
t has predictable quadratic variation

〈
M(φ+,φ−)〉

t = 1

N

∫ t

0

(〈
a+∇φ+ · ∇φ+,XN,+

s

〉+ 〈
a−∇φ− · ∇φ−,XN,−

s

〉
(6.10)

+ 1

2

〈

δN

(φ+ + φ−)2,XN,+
s ⊗XN,−

s

〉)
ds

and supt∈[0,T ]Eμ[(M(φ+,φ−)
t )2] ≤ C

N
for some constant C that is independent of N

and μ.

PROOF. From Lemma 6.1, we have the following two F (X
N,+

,X
N,−

)
t -

martingales for φ± ∈ Dom(A±):

M
(φ+,φ−)

t := 〈
φ+,X

N,+
t

〉+ 〈
φ−,X

N,−
t

〉− ∫ t

0

〈
A+φ+,X

N,+
s

〉
+ 〈

A−φ−,X
N,−
s

〉
ds and

N
(φ+,φ−)

t := (〈
φ+,X

N,+
t

〉+ 〈
φ−,X

N,−
t

〉)2
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−
∫ t

0
2
(〈
φ+,X

N,+
s

〉+ 〈
φ−,X

N,−
s

〉)(〈
A+φ+,X

N,+
s

〉+ 〈
A−φ−,X

N,−
s

〉)
+ 1

N

(〈
a+∇φ+ · ∇φ+,X

N,+
s

〉+ 〈
a−∇φ− · ∇φ−,X

N,−
s

〉)
ds.

Note that F1(μ) = F1(μ
+,μ−) := 〈φ+,μ+〉 + 〈φ−,μ−〉 is a function in

C(EN), with the convention that φ±(∂±) := 0 and F1(0∗) := 0. A direct calcu-
lation shows that

KF1(μ) = −1
2

〈

δN

(φ+ + φ−),μ+ ⊗ μ−〉.
Therefore, by Theorem 6.2, M

(φ+,φ−)
t is a martingale. Similarly, F2(μ) :=

(〈φ+,μ+〉 + 〈φ−,μ−〉)2 ∈ C(EN) and

KF2(μ) = −(〈φ+,μ+〉+ 〈
φ−,μ−〉)〈
δN

(φ+ + φ−),μ+ ⊗ μ−〉
+ 1

2N

〈

δN

(φ+ + φ−)2,μ+ ⊗ μ−〉.
Hence, Theorem 6.2 asserts that

N
(φ+,φ−)
t := (〈

φ+,X
N,+
t

〉+ 〈
φ−,X

N,−
t

〉)2
−
∫ t

0
2
(〈
φ+,XN,+

s

〉+ 〈
φ−,XN,−

s

〉)
× (〈

A+φ+,XN,+
s

〉+ 〈
A−φ−,XN,−

s

〉)
+ 1

N

(〈
a+∇φ+ · ∇φ+,XN,+

s

〉+ 〈
a−∇φ− · ∇φ−,XN,−

s

〉)
− (〈

φ+,XN,+
s

〉+ 〈
φ−,XN,−

s

〉)〈

δN

(φ+ + φ−),XN,+
s ⊗XN,−

s

〉
+ 1

2N

〈

δN

(φ+ + φ−)2,XN,+
s ⊗XN,−

s

〉
ds

is a martingale. Denote �t to be the expression on the right-hand side of (6.10). We
claim that (M

(φ+,φ−)
t )2 −N

(φ+,φ−)
t −�t is a martingale. By definition, M(φ+,φ−)

t =
ft − ∫ t

0 gs ds, where

ft = 〈
φ+,X

N,+
t

〉+ 〈
φ−,X

N,−
t

〉
,

gs = 〈
A+φ+,XN,+

s

〉+ 〈
A−φ−,XN,−

s

〉− 1
2

〈

δN

(φ+ + φ−),XN,+
s ⊗XN,−

s

〉
.

Then N
(φ+,φ−)
t = f 2

t − 2
∫ t

0 fsgs ds − �t and(
M

(φ+,φ−)
t

)2 − N
(φ+,φ−)
t − �t

=
(∫ t

0
gs ds

)2

− 2ft

∫ t

0
gs ds + 2

∫ t

0
fsgs ds
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=
(∫ t

0
gs ds

)2

− 2
∫ t

0
Gs

(
dM(φ+,φ−)

s − 2gs ds
)+ [f,G]t

= −2
∫ t

0
Gs dM(φ+,φ−)

s ,

which is a martingale, where Gt = ∫ t
0 gs ds and [f,G]t is the quadratic covariation

(also called square bracket process) of f and G. The second equality follows from
integration by parts applied to ftGt . See, for example, Corollary 2 in Chapter 2,
Section 6 of [32]. In the last equality, we used the fact that [f,G]t = 0 since G

has bounded variation. Therefore, (M
(φ+,φ−)
t )2 − �t is a martingale. Since �t is a

continuous process of finite variation, we have 〈M(φ+,φ−)〉t = �t , proving (6.10).
Clearly, (6.10) implies that

E
μ[(M(φ+,φ−)

t

)2]
= E

μ[〈M(φ+,φ−)〉
t

]
≤ 1

N

(∫ t

0

〈
P +

s (a+∇φ+ · ∇φ+),μ+〉ds +
∫ t

0

〈
P −

s (a−∇φ− · ∇φ−),μ−〉ds

+ 1

2

∥∥(φ+ + φ−)2∥∥∫ t

0
E

μ〈
δN
,XN,+

s ⊗XN,−
s

〉
ds

)
≤ 1

N

(
8
(‖φ+‖2 + ∥∥A+φ+

∥∥2
t2)+ 8

(‖φ−‖2 + ∥∥A−φ−
∥∥2

t2)
+ 1

2

∥∥(φ+ + φ−)2∥∥∫ t

0
E

μ〈
δN
,XN,+

s ⊗XN,−
s

〉
ds

)
,

where we have used (6.2) in the last inequality. Finally, we show that

sup
μ∈EN

∫ t

0
E

μ[〈
δN
,XN,+

s ⊗XN,−
s

〉]
ds ≤ 1.(6.11)

Let (X̃N,+, X̃N,−) be the normalized empirical measure corresponding to the case
�± being empty sets. By applying the martingale M

(φ+,φ−)
t to the case �± being

empty sets and φ± = 1 (now 1 is in the domain of the Feller generator), we have∫ t

0
E
[〈

δN

, X̃N,+
s ⊗ X̃N,−

s

〉]
ds = (〈

1, X̃
N,+
0

〉−E
[〈

1, X̃
N,+
t

〉])≤ 1.

We then obtain (6.11) by a coupling of (XN,+,XN,−) and (X̃N,+, X̃N,−). The idea
is that (X̃N,+, X̃N,−) dominates (XN,+,XN,−). This coupling can be constructed
by labeling (rather than killing) particles which hit �±, using the same method of
Section 3.1. Hence, we obtain the desired bound for Eμ[(M(φ+,φ−)

t )2]. �
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6.1.3. Tightness. The proof of tightness for (XN,+,XN,−) is nontrivial be-

cause the natural bound 〈
δN
,X

N,+
s ⊗X

N,−
s 〉2 for 〈
δN

,XN,+
s ⊗XN,−

s 〉2 blows up
near s = 0 in such a way that

lim
N→∞

∫ t

0
E
[〈

δN

,X
N,+
s ⊗X

N,−
s

〉2]
ds = ∞,

which follows directly from the Gaussian bound (2.2). Here, (X
N,+

,X
N,−

) is the
empirical measure for the independent reflected diffusions without annihilation,
defined in (3.4). To deal with this singularity at s = 0, we will use the following
lemma whose proof is based on the Prohorov’s theorem. We omit the proof here
since it is simple. A proof can be found in [21].

LEMMA 6.5. Let {YN } be a sequence of real-valued processes such that t �→∫ t
0 YN(r) dr is continuous on [0, T ] a.s., where T ∈ [0,∞). Suppose the following

two conditions hold:

(i) There exists q > 1 such that limN→∞E[∫ T
h |YN(r)|q dr] < ∞ for any

h > 0,

(ii) limα↘0 limN→∞ P(
∫ α

0 |YN(r)|dr > ε0) = 0 for any ε0 > 0.

Then {∫ t
0 YN(r) dr; t ∈ [0, T ]}N∈N is tight in C([0, T ],R).

Here is our tightness result for (XN,+,XN,−). Note that it does not require As-
sumption 2.7.

THEOREM 6.6 (Tightness). Suppose {δN } tends to 0. Then {(XN,+,XN,−)}
is tight in D([0, T ],M) and any of subsequential limits is carried on CM[0, T ].
Moreover, {JN } is tight in C([0, T ]), where JN(t) := ∫ t

0 〈
δN
,XN,+

s ⊗XN,−
s 〉ds.

PROOF. Recall from Remark 5.2 that M is a complete separable metric
space. Since Dom(A±) is dense in C∞(D± \ �±), we only need to check
a “weak tightness criteria” (cf. Proposition 1.7 of [27]), that is, it suffices to
check that {(〈φ+,XN,+〉, 〈φ−,XN,−〉)}N is tight in D([0, T ],R2) for any φ± ∈
Dom(A±). By Prohorov’s theorem (see Theorem 1.3 and Remark 1.4 of [27]),
{(〈φ+,XN,+〉, 〈φ−,XN,−〉)}N is tight in D([0, T ],R2) if the following two prop-
erties (a) and (b) hold:

(a) For all t ∈ [0, T ] and ε0 > 0, there exists a compact set K(t, ε0) ⊂ R
2 such

that

sup
N

P
((〈

φ+,X
N,+
t

〉
,
〈
φ−,X

N,−
t

〉)
/∈ K(t, ε0)

)
< ε0.
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(b) For all ε0 > 0,

lim
γ→0

lim
N→∞P

(
sup

|t−s|<γ

0≤s,t≤T

∣∣(〈φ+,X
N,+
t

〉
,
〈
φ−,X

N,−
t

〉)

− (〈
φ+,XN,+

s

〉
,
〈
φ−,XN,−

s

〉)∣∣
R2 > ε0

)
= 0.

Property (a) is true since we can always take K = [−‖φ+‖∞,‖φ+‖∞] ×
[−‖φ−‖∞,‖φ−‖∞]. To verify property (b), we only need to focus on XN,+. Note
that (writing φ = φ+ for simplicity) by Corollary 6.4, we have〈

φ,X
N,+
t

〉− 〈
φ,XN,+

s

〉
=
∫ t

s

〈
A+φ,XN,+

r

〉
dr − 1

2

∫ t

s

〈

δN

φ,XN,+
r ⊗XN,−

r

〉
dr(6.12)

+ (
MN(t) − MN(s)

)
,

where MN(t) is a martingale. So we only need to verify (b) with 〈φ,X
N,+
t 〉 −

〈φ,XN,+
s 〉 replaced by each of the three terms on the right-hand side of (6.12).

The first term of (6.12) is obvious since 〈A+φ,XN,+
r 〉 ≤ ‖A+φ‖. For the third

term of (6.12), recall that limN→∞E[MN(t)2] = 0 by Corollary 6.4. Hence, by
applying Chebyshev’s inequality and then Doob’s maximal inequality, we see that
(b) is satisfied by the third term of (6.12).

For the second term of (6.12), we show that

lim
γ→0

lim
N→∞P

(
sup

|t−s|<γ

0≤s,t≤T

∫ t

s

〈

δN

,XN,+
r ⊗XN,−

r

〉
dr > ε0

)
= 0.(6.13)

Observe that, since 〈
δN
,XN,+

r ⊗XN,−
r 〉 is nonnegative, it suffices to prove (6.13)

for the dominating case where �± are empty. We now prove this together with the
tightness of {JN } at one stroke by applying Lemma 6.5 to the special case q = 2
and YN(r) = 〈
δN

,XN,+
r ⊗XN,−

r 〉.
Using the Gaussian upper bound (2.2) for the heat kernel of the reflected diffu-

sions, we have

lim
N→∞

∫ T

h
E
[〈

δN

,X
N,+
s ⊗X

N,−
s

〉2]
ds ≤ C(d,D+,D−)‖ρ+‖‖ρ−‖

∫ T

h
s−2d ds

< ∞.

The hypothesis (i) of Lemma 6.5 is therefore satisfied, since (X
N,+

,X
N,−

) domi-
nates (XN,+,XN,−).

It remains to verify hypothesis (ii) of Lemma 6.5, that is, to prove that for any
ε0 > 0, limα→0 limN→∞ P(Jn(α) > ε0) = 0. By Corollary 6.4 again, for any φ ∈
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Dom(A+), we have

1

2

∫ t

0

〈

δN

φ,XN,+
s ⊗XN,−

s

〉
ds

(6.14)

= 〈
φ,X

N,+
0

〉− 〈
φ,X

N,+
t

〉+ ∫ t

0

〈
A+φ,XN,+

s

〉
ds + MN(t),

where MN(t) is a martingale and limN→∞E[(MN(t))2] = 0 for all t > 0. Note
that the left-hand side of (6.14) is comparable to JN(t) whenever we pick φ ∈
Dom(A+) in such a way that 
δN

φ ≈ 
δN
. The idea is to pick φ ≈ 1(D+)r , then

let r → 0 to bound JN(t) from above. Here, (D+)r is the set of points in D+
whose distance from the boundary is less than r . More specifically, for any r > 0,
let ψr ∈ C(D+) be such that ψr = 1 on (D+)r , ψr = 0 on D+ \ (D+)2r and
0 ≤ ψ ≤ 1. Let φr ∈ Dom(A+) ∩ C+(D+) be such that ‖φr − ψr‖∞ = o(r). Such
φr exists since Dom(A+) is dense in C(D+). Then (6.14) implies

0 ≤ JN(α)

≤
∣∣∣∣∫ α

0

〈

δN

− 
δN
φr,X

N,+
s ⊗XN,−

s

〉
ds

∣∣∣∣+ 〈
φr,X

N,+
0

〉− 〈
φr,X

N,+
α

〉
+ ∥∥A+φr

∥∥α + ∣∣MN(α)
∣∣

≤ o(r)JN(α) + 〈
φr,X

N,+
0

〉+ ∥∥A+φr

∥∥α + ∣∣MN(α)
∣∣ whenever r > 2δN .

This is because when r > 2δN , φr(x) is close to 1 on (D+)δN
. Hence, we have, for

r > 2δN , (
1 − o(r)

)
JN(α) ≤ 〈

φr,X
N,+
0

〉+ ∥∥A+φr

∥∥α + ∣∣MN(α)
∣∣.

From this, we have

lim
α→0

lim
N→∞P

(
JN(α) > 3ε0

)≤ lim
N→∞P

(〈
φr,X

N,+
0

〉
> ε0

(
1 − o(r)

))
.

Note that 0 ≤ φr ≤ 1(D+)2r
+ o(r). So for r > 0 small enough,

P
(〈
φr,X

N,+
0

〉
> ε0

(
1 − o(r)

))≤ P
(〈

1(D+)2r
,X

N,+
0

〉
> ε0/2

)
.

Moreover, since X
N,+
0

L−→ u+
0 (x) dx with u+

0 ∈ C(D), we have

lim
r→0

lim
N→∞P

(〈
1(D+)2r

,X
N,+
0

〉
> ε0/2

)= 0.

Hence, the second hypothesis of Lemma 6.5 is verified. We have shown that (ii)
is true. Thus, (XN,+,XN,−) is relatively compact. Property (ii) above also tells us
that any subsequential limit has law concentrated on C([0,∞),M) (details can be
found in [21]). �
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6.2. Identifying subsequential limits. Recall that we have already established
tightness of {(XN,+,XN,−);N ≥ 1} in Theorem 6.6. Hence, any subsequence
has a further subsequence which converges in distribution in D([0, T ],M).
Let P

∞ be the law of an arbitrary subsequential limit (X∞,+,X∞,−). Then
P

∞((X∞,+,X∞,−) ∈ C([0,∞),M)) = 1 by Theorem 6.6. Our goal is to show
that (

X∞,+,X∞,−)= (
u+(t, x)ρ+(x) dx,u−(t, y)ρ−(y) dy

)
, P

∞-a.s.

An immediate question is whether X∞,+ and X∞,− have densities with re-
spect to the Lebesque measure. For this, we can compare (XN,+,XN,−) with

(X
N,+

,X
N,−

) to get an affirmative answer. The construction in Section 3.1

provides a natural coupling between {(XN,+,XN,−)} and {(XN,+
,X

N,−
)}. We

summarize some preliminary information about (X∞,+,X∞,−) in the following
lemma. Its proof can be found in [21]. Denote 〈f,g〉ρ := ∫

f (x)g(x)ρ(x) dx and
〈f,μ〉ρ := ∫

f (x)ρ(x)μ(dx) if f,g,ρ are functions on a domain D and μ is a
measure on D.

LEMMA 6.7.

P
∞(〈

φ+,X
∞,+
t

〉≤ 〈
φ+,P +

t u+
0

〉
ρ+ and

〈
φ−,X

∞,−
t

〉≤ 〈
φ−,P −

t u−
0

〉
ρ−

for t ≥ 0 and φ± ∈ C∞(D± \ �±)
)= 1.

In particular, both X
∞,+
t and X

∞,−
t are absolutely continuous with respect to

the Lebesque measure for t ≥ 0. Moreover, (X
∞,+
t ,X

∞,−
t ) = (v+(t, x)ρ+(x) dx,

v−(t, y)ρ−(y) dy) for some v±(t) ∈ Bb(D±) with v+(t, x) ≤ P +
t u+

0 (x) and
v−(t, y) ≤ P −

t u−
0 (y) for a.e. (x, y) ∈ D+ × D−.

The characterization (X∞,+,X∞,−) will be accomplished by the following re-
sult of “mean–variance analysis”:

PROPOSITION 6.8. For all φ± ∈ C∞(D± \ �±) and t ≥ 0, we have

E
∞[〈

v±(t), φ±
〉
ρ±
]= 〈

u±(t), φ±
〉
ρ±,(6.15)

E
∞[〈

v±(t), φ±
〉2
ρ±
]= 〈

u±(t), φ±
〉2
ρ±,(6.16)

where v± is the density of X∞,± w.r.t. ρ±(x) dx stated in Lemma 6.7, and u± is
the function defined in Section 4.

We postpone the proof of Proposition 6.8 to Section 7, and proceed to present
the proof of Theorem 5.1.
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6.3. Proof of Theorem 5.1.

PROOF. Tightness of {(XN,+,XN,−)} was proved in Theorem 6.6. It remains
to identify any subsequential limit. We conclude from (6.15) and (6.16) that〈
X

∞,+
t , φ+

〉= 〈
u+(t), φ+

〉
ρ+ and

〈
X

∞,−
t , φ−

〉= 〈
u−(t), φ−

〉
ρ−, P

∞-a.s.

for any fixed t > 0 and φ± ∈ C∞(D± \ �±). Recall that (X∞,+,X∞,−) ∈
C([0,∞),M) by Theorem 6.6 and that C∞(D± \ �±) is separable. Hence,
through rational numbers and a countable dense subset of C∞(D± \ �±) to
strengthen the previous statement to

P
∞((

X
∞,+
t ,X

∞,−
t

)
= (

u+(t, x)ρ+(x) dx,u−(t, y)ρ−(y) dy
) ∈ M for every t ≥ 0

)= 1.

This completes the proof of Theorem 5.1. �

7. Characterization of the mean and the variance. The goal of this last
section is to prove Proposition 6.8.

7.1. Results about Minkowski content. We first look at a single domain and
strengthen some results from geometric measure theory.

7.1.1. Minkowski content for ∂D.

LEMMA 7.1. Let D ⊂R
d be a bounded Lipschitz domain and Dε is the set of

points in D whose distance from the boundary is less than ε. If F ⊂ C(D) is an
equi-continuous and uniformly bounded family of functions on D, then

lim
ε→0

sup
f ∈F

∣∣∣∣1ε
∫
Dε

f (x) dx −
∫
∂D

f (x)σ (dx)

∣∣∣∣= 0.

PROOF. The result holds trivially when d = 1, by the uniform continuity of f .
We will only consider d ≥ 2. The idea is to cut ∂D into small pieces so that f is
almost constant in each piece, and then apply (1.3) in each piece.

Fix η > 0. There exists δ > 0 such that |f (x)−f (y)| < η whenever |x −y| ≤ δ.
Since D is bounded and Lipschitz (or by a more general result by David in [15] or
Section 2 of [16]), we can reduce to local coordinates to obtain a partition {Qi}Ni=1
of ∂D in such a way that for any i, Qi is the Lipschitz image of a bounded sub-
set of Rd−1 [hence it is (Hd−1)-rectifiable], diam(Qi) ≤ δ and ∂Qi is (Hd−2)-
rectifiable. Here, ∂Qi is the boundary of Qi with respect to the topology induced
by ∂D.
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Let (Qi)ε := {x ∈ D : dist(x,Qi) < ε} and (∂Qi)ε := {x ∈ D : dist(x, ∂Qi) <

ε}. Since {(Qi)ε \ (∂Qi)ε}Ni=1 are disjoint and
⋃N

i=1(Qi)ε \ (∂Qi)ε ⊂ Dε ⊂⋃N
i=1(Qi)ε , we have∣∣∣∣∣

N∑
i=1

∫
(Qi)ε

f dx −
∫
Dε

f dx

∣∣∣∣∣≤
N∑

i=1

∫
(∂Qi)ε

|f |dx.(7.1)

Therefore, we have∣∣∣∣1ε
∫
Dε

f dx −
∫
∂D

f dσ

∣∣∣∣
≤
∣∣∣∣∣1ε

∫
Dε

f dx − 1

ε

N∑
i=1

∫
(Qi)ε

f dx

∣∣∣∣∣+
∣∣∣∣∣1ε

N∑
i=1

∫
(Qi)ε

f dx −
∫
∂D

f dσ

∣∣∣∣∣
≤ 1

ε

N∑
i=1

∫
(∂Qi)ε

|f |dx +
N∑

i=1

∣∣∣∣1ε
∫
(Qi)ε

f dx −
∫
Qi

f dσ

∣∣∣∣ by (7.1)

≤
N∑

i=1

(
‖f ‖∞

|(∂Qi)ε|
ε

+
∣∣∣∣1ε

∫
(Qi)ε

f − f (ξi) dx

∣∣∣∣
+ ∣∣f (ξi)

∣∣∣∣∣∣ |(Qi)ε|
ε

− σ(Qi)

∣∣∣∣+ ∣∣∣∣∫
Qi

f − f (ξi) dσ

∣∣∣∣)

≤ η

N∑
i=1

( |(Qi)ε|
ε

+ σ(Qi)

)
+ ‖f ‖∞

N∑
i=1

( |(∂Qi)ε|
ε

+
∣∣∣∣ |(Qi)ε|

ε
− σ(Qi)

∣∣∣∣).

In the third inequality, ξi is an arbitrary point in Qi . Since ∂Qi and (Qi)ε are
(Hd−2)-rectifiable and (Hd−1)-rectifiable, respectively, Theorem 3.2.39 of [22]
tells us that

lim
ε→0

|(∂Qi)ε|
c2ε2 = Hd−2(∂Qi) and lim

ε→0

|(Qi)ε|
ε

=Hd−1(Qi),

where cm := |{x ∈R
m : |x| < 1}|. Thus,

lim
ε→0

∣∣∣∣1ε
∫
Dε

f dx −
∫
∂D

f dσ

∣∣∣∣≤ 2η
∑
i

σ (Qi) = 2σ(∂D)η.

Since η > 0 is arbitrary and the above estimate is uniform over f ∈ F , we get the
desired result. �

By the same proof of Lemma 7.1, we obtain the following stronger result.

LEMMA 7.2. Let D ⊂ R
d be a bounded Lipschitz domain and k ∈ N. If F ⊂

C(D
k
) is an equi-continuous and uniformly bounded family of functions, then

lim
ε→0

1

εk

∫
(Dε)k

f (z1, . . . , zk) dz1 · · · dzk =
∫
(∂D)k

f (z1, . . . , zk)σ (dz1) · · ·σ(dz1)
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uniformly for f ∈F , where σ is the surface measure on ∂D.

7.1.2. Minkowski content for {(z, z) : z ∈ I }. Now we prove analogous results
for the interface I for our annihilation model.

LEMMA 7.3. Under our geometric setting in Assumption 2.4, if F ⊂ C(D+ ×
D−) is an equi-continuous and uniformly bounded family of functions on D+ ×
D−, then

lim
δ→0

sup
f ∈F

∣∣∣∣(cd+1δ
d+1)−1

∫
I δ

f (x, y) dx dy −
∫
I
f (z, z) dσ (z)

∣∣∣∣= 0.

PROOF. By the same argument as in the proof of Lemma 7.1, we can construct
a nice partition {Qi}Ni=1 of I and apply Theorem 3.2.39 (page 275) of [22]. The
only essential difference is that now we require ∂Qi \ ∂I to be (Hd−2)-rectifiable,
where ∂I is the boundary of I with respect to the topology induced by ∂D+, or
equivalently by ∂D−. Moreover, instead of (7.1), we now have∣∣∣∣∣

N∑
i=1

∫
(Qi)δ

f dx dy −
∫
I δ

f dx dy

∣∣∣∣∣≤
N∑

i=1

∫
(∂Qi\∂I)δ

|f |dx dy.(7.2)

Note that we do not need any assumption on ∂I . �

By the same proof of Lemma 7.1, we obtain the following stronger result.

LEMMA 7.4. Suppose Assumptions 2.4, 2.5 and 2.6 hold. Suppose k ∈ N and
F ⊂ C((D+ ×D−)k) is an equi-continuous and uniformly bounded family of func-
tions on (D+ × D−)k . Then as δ → 0, we have∫

(x1,y1)∈D+×D−
· · ·

∫
(xk,yk)∈D+×D−

f (x1, y1, . . . , xk, yk)

×
k∏

i=1


δ(xi, yi) d(x1, y1, . . . , xk, yk)

→
∫
z1∈I

· · ·
∫
zk∈I

f (z1, z1, . . . , zk, zk)

×
k∏

i=1

λ(zi) dσ (z1) · · ·dσ(zk)

uniformly for f ∈F .

REMARK 7.5. Following the same proof as above, clearly we can strengthen
Lemmas 7.3 and 7.4 by only requiring F to be equi-continuous and uniformly
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bounded on a neighborhood of the interface I . We can also generalize Lemmas 7.1
and 7.2 to deal with

∫
J f (x) dσ(x) for any closed Hd−1-rectifiable subset of J

of ∂D (rather than the whole boundary ∂D), and by requiring F to be equi-
continuous and uniformly bounded on a neighborhood of J .

7.2. Martingales for space–time processes. In this subsection, we collect
some integral equations satisfied by (XN,+,XN,−) that will be used later to iden-
tify the limit. These integral equations can be viewed as the Dynkins’ formulae for
our annihilating diffusion system, and will be proved rigorously by considering
suitable martingales associated with the process (t, (X

N,+
t ,X

N,−
t )).

LEMMA 7.6. Suppose X� is an (a, ρ)-reflected diffusion in a bounded Lips-
chitz domain D killed upon hitting a closed subset � of ∂D that is regular with
respect to X. Then for any T > 0 and bounded measurable function φ on D \ �,
we have

P �
T −sφ

(
X�

s

)
is a FX�

s -martingale for s ∈ [0, T ],(7.3)

under P
x for any x ∈ D \ �. Moreover, its quadratic variation is

∫ s
0 a∇P �

T −rφ ·
∇P �

T −rφ(X�(r)) dr .

PROOF. Equation (7.3) follows from the Markov property of X�. Denote by
L(�) the L2-generator of X(�). Then for every t ∈ [0, T ), P �

T −sφ ∈ Dom(L(�)). It
follows from the spectral representation of L(�) that∥∥∥∥∂P �

T −sφ

∂s

∥∥∥∥
L2

= ∥∥−L(�)P �
T −sφ

∥∥
L2 ≤ ‖φ‖L2

T − s
.

Thus, (s, x) �→ P �
T −sφ(x) for s ∈ [0, T ) and x ∈ D \ � is in the domain of

the Dirichlet form for the space–time process (s,X
(�)
s ). By an application of

the Fukushima decomposition in the context of time-dependent Dirichlet forms,
one concludes that the quadratic variation of the martingale s �→ P �

T −sφ(X�
s ) is∫ s

0 a∇P �
T −rφ · ∇P �

T −rφ(X�(r)) dr ; see Example 6.5.6 of [31]. �

As mentioned in Remark 6.3, a time-dependent version of Theorem 6.2 is
valid. We now state it precisely. A proof can be obtained by following the same
argument in the proof of Theorem 6.2, but now to the time dependent process
(t, (X

N,+
t ,X

N,−
t )). The detail is left to the reader.

THEOREM 7.7. Let T > 0, and fs ∈ Cb(EN) and gs ∈ B(EN) for s ∈ [0, T ].
Suppose

Ms := fs

(
X

N,+
s ,X

N,−
s

)−
∫ s

0
gr

(
X

N,+
r ,X

N,−
r

)
dr
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is a F (X
N,+

,X
N,−

)
s -martingale for s ∈ [0, T ], under Pμ for any μ ∈ EN . Then

Ms := fs

(
XN,+

s ,XN,−
s

)−
∫ s

0
(gr + Kfr)

(
XN,+

r ,XN,−
r

)
dr

is a F (XN,+,XN,−)
r -martingale for s ∈ [0, T ], under Pμ for any μ ∈ EN , where the

operator K is given by (6.3).

Consider X(n,m) := (X+
1 , . . . ,X+

n ,X−
1 , . . . ,X−

m) ∈ (D∂+)n × (D∂−)m, which con-
sists of independent copies of X±’s. The transition density of X(n,m) w.r.t. ρ(n,m)

is p(n,m), where

p(n,m)(t, (�x, �y),
( �x′, �y′)) :=

n∏
i=1

p+(t, xi, x
′
i

) m∏
j=1

p−(t, yj , y
′
j

)
,

ρ(n,m)(�x, �y) :=
n∏

i=1

ρ+(xi)

m∏
j=1

ρ−(yj ).

The semigroup of X(n,m), denoted by P
(n,m)
t , is strongly continuous on

C(n,m)∞ := {
� ∈ C

(
D

n

+ × D
m

−
) :

(7.4)
� vanishes outside (D+ \ �+)n × (D− \ �−)m

}
.

Clearly, C
(1,0)∞ = C∞(D+ \ �+) and C

(0,1)∞ = C∞(D− \ �−).

COROLLARY 7.8. Let n and m be any nonnegative integers, T > 0 be any
positive number and � ∈ C

(n,m)∞ . Consider the function f : [0, T ] × EN → R de-
fined as follows: f (s,0∗) := 0 and for an arbitrary element μ ∈ EN \ {0∗}, we can
write μ = ( 1

N

∑
i∈A+ 1xi

, 1
N

∑
j∈A− 1yj

) for some index sets A+ and A−, then

f (s,μ) := ∑
i1,...,in
distinct

∑
j1,...,jm

distinct

P
(n,m)
T −s �

(
xi1, . . . , xin, yj1, . . . , yjm

)
,

where the first summation is on the collection of all n-tuples (i1, . . . , in) chosen
from distinct elements of A+, the second summation is on the collection of all
m-tuples (j1, . . . , jm) chosen from distinct elements of A−. Then we have

f
(
s,
(
XN,+

s ,XN,−
s

))−
∫ s

0
Kf (r, ·)(XN,+

r ,XN,−
r

)
dr

is a F (XN,+,XN,−)
s -martingale for s ∈ [0, T ], under Pν , for any ν ∈ EN .

PROOF. Clearly, f (s, ·) ∈ Cb(EN) for s ∈ [0, T ]. By Lemma 7.6, we have
f (s,Xs) is a FX

s -martingale for s ∈ [0, T ] for all T ≥ 0. Hence, we can take gr to
be constant zero and fr to be f (r, ·) in Theorem 7.7 to complete the proof. �
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As an immediate consequence, we obtain the Dynkin’s formula for our system:
For 0 ≤ t ≤ T , we have

E

[
f
(
T ,

(
X

N,+
T ,X

N,−
T

))− f
(
t,
(
X

N,+
t ,X

N,−
t

))
(7.5)

−
∫ T

t
Kf (r, ·)(XN,+

r ,XN,−
r

)
dr

]
= 0.

Corollary 7.8 is the key to obtain the system of equations satisfied by the corre-
lation functions of the particles in the annihilating diffusion system. This system of
equations, usually called BBGKY hierarchy, will be formulated in the forthcoming
paper [10]. The specific integral equations that we need to identify subsequential
limits of {(XN,+,XN,−)} are stated in the following lemmas. These equations are
a part of the BBGKY hierarchy.

LEMMA 7.9. For any φ± ∈ C∞(D± \ �±) and 0 ≤ t ≤ T < ∞, we have

E
[〈
φ+,X

N,+
T

〉+ 〈
φ−,X

N,−
T

〉]−E
[〈
P +

T −tφ+,X
N,+
t

〉+ 〈
P −

T −tφ−,X
N,−
t

〉]
(7.6)

= −1

2

∫ T

t
E
[〈

δN

(
P +

T −rφ+ + P −
T −rφ−

)
,XN,+

r ⊗XN,−
r

〉]
dr

and

E
[〈
φ+,X

N,+
T

〉2]−E
[〈
P +

T −tφ+,X
N,+
t

〉2]
= −

∫ T

t
E
[〈
P +

T −rφ+,XN,+
r

〉〈

δN

(
P +

T −rφ+
)
,XN,+

r ⊗XN,−
r

〉]
dr(7.7)

+ o(N),

where o(N) is a term which tends to zero as N → ∞. A similar formula for (7.7)
holds for XN,−.

PROOF. Since Dom(A±) is dense in C∞(D± \ �±), it suffices to check the
lemma for φ± ∈ Dom(A±).

Identity (7.6) follows directly from Corollary 7.8 by taking f (s,μ) = 〈P +
T −sφ+,

μ+〉 + 〈P −
T −sφ−,μ−〉.

For (7.7), we can apply Lemma 7.6 and Theorem 7.7, with fs(μ) = 〈P +
T −sφ+,

μ+〉2 and gs(μ) = 1
N

〈a+∇P +
T −sφ+ · ∇P +

T −sφ+,μ+〉, to obtain

E
[〈
φ+,X

N,+
T

〉2]−E
[〈
P +

T −tφ+,X
N,+
t

〉2]
= −

∫ T

t
E
[〈
P +

T −rφ+,XN,+
r

〉〈

δN

(
P +

T −rφ+
)
,XN,+

r ⊗XN,−
r

〉]
dr

+ 1

2N

∫ T

t
E
[〈

2a+∇P +
T −sφ+ · ∇P +

T −sφ+,XN,+
r

〉
+ 〈


δN

(
P +

T −rφ+
)2

,XN,+
r ⊗XN,−

r

〉]
dr.
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Note that the term with a factor 1
N

converges to zero as N → ∞. This can
be proved by the same argument for the bound of the quadratic variation
E

μ[(M(φ+,φ−)
t )2] in Corollary 6.4. Hence, we have (7.7). �

We now derive the integral equations satisfied by the integrands (with respect to
dr) on the right-hand side of (7.6) and (7.7). The integrand (with respect to dr) on
the right-hand side of (7.7) is of the form〈

φ,μ+〉〈ϕ,μ+ ⊗ μ−〉
= 1

N3

(∑
i

∑
j

φ(xi)ϕ(xi, yj ) +∑



∑
i �=


∑
j

φ(x
)ϕ(xi, yj )

)
,

where ϕ ∈ B(D+ × D−), φ = φ+ ∈ B(D+) and μ = ( 1
N

∑
i 1xi

, 1
N

∑
j 1yj

) ∈ EN .
We define

P
(∗)
t

(〈
φ,μ+〉〈ϕ,μ+ ⊗ μ−〉)

:= 1

N3

(∑
i

∑
j

P
(1,1)
t (φϕ)(xi, yj ) +∑




∑
i �=


∑
j

P
(2,1)
t (φϕ)(x
, xi, yj )

)
(7.8)

= 〈
P

(2,1)
t (φϕ)(x1, x2, y),μ+(dx1) ⊗ μ+(dx2) ⊗ μ−(dy)

〉
+ 1

N

〈
P

(1,1)
t (φϕ)(x, y) − P

(2,1)
t (φϕ)(x, x, y),μ+(dx) ⊗ μ−(dy)

〉
.

In P
(1,1)
t (φϕ), we view φϕ as the function of two variables (a, b) �→ φ(a)ϕ(a, b);

in P
(2,1)
t (φϕ), we view φϕ as the function of three variables (a1, a2, b) �→

φ(a1)ϕ(a2, b). The definition of P
(∗)
t is motivated by the fact that f (s,μ) :=

P
(∗)
T −s〈φ+ϕ,μ+ ⊗ μ+ ⊗ μ−〉 is of the same form as the function in Corol-

lary 6.4.

LEMMA 7.10. Suppose ϕ ∈ C
(1,1)∞ , φ± ∈ C∞(D± \ �±) and 0 ≤ t ≤ T < ∞.

Let Fr = P
(1,1)
T −r ϕ, Gr = P

(1,1)
T −r (φ+ϕ) and Hr = P

(2,1)
T −r (φ+ϕ). Then we have

E
[〈
ϕ,X

N,+
T ⊗X

N,−
T

〉]−E
[〈
P

(1,1)
T −t ϕ,X

N,+
t ⊗X

N,−
t

〉]
= −1

2

∫ T

t
E

[〈

δN

(x, y)

(7.9)

×
(〈

Fr(x, ·),XN,−
r

〉+ 〈
Fr(·, y),XN,+

r

〉− 1

N
Fr(x, y)

)
,

XN,+
r (dx) ⊗XN,−

r (dy)

〉]
dr
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and

E
[〈
φ+,X

N,+
T

〉〈
ϕ,X

N,+
T ⊗X

N,−
T

〉]−E
[
P

(∗)
T −t

〈
φ+ϕ,X

N,+
t ⊗X

N,+
t ⊗X

N,−
t

〉]
= −1

2

∫ T

t
E

[〈

δN

(x, y)

(〈
Hr(x, ·, ·),XN,+

r ⊗XN,−
r

〉
+ 〈

Hr(·, x, ·),XN,+
r ⊗XN,−

r

〉+ 〈
Hr(·, ·, y),XN,+

r ⊗XN,+
r

〉
(7.10)

− 1

N

[〈
2Hr(x, x, ·),XN,−

r

〉+ 〈
Hr(·, x, y),XN,+

r

〉+ 〈
Hr(x, ·, y),XN,+

r

〉]
+ 1

N

[〈
Gr(x, ·),XN,−

r

〉+ 〈
Gr(·, y),XN,+

r

〉− 〈
Hr(·, ·, y),XN,+

r

〉]
+ 1

N2

[
2Hr(x, x, y) − Gr(x, y)

])
,XN,+

r (dx) ⊗XN,−
r (dy)

〉]
dr.

In (7.10), 〈Hr(·, ·, y),XN,+
r 〉 is the integral of the function x �→ Hr(x, x, y) with

respect to XN,+
r . A similar formula for (7.10) holds for E[〈φ−,X

N,−
T 〉〈ϕ,X

N,+
T ⊗

X
N,−
T 〉].

PROOF. We first prove (7.9). Consider, for s ∈ [0, T ], fs(μ) = f (s,μ) :=
〈P (1,1)

T −s ϕ,μ+ ⊗μ−〉. Then (7.9) follows from Corollary 6.4 by directly calculating

E[K(fr)(X
N,+
r ,XN,−

r )] as follows: If UN(�x, �y) = μ where (�x, �y) ∈ E
(m)
N , then

−Kfr(μ) = 1

2N

m∑
i=1

m∑
j=1


δN
(xi, yj )

(
fr(μ) − fr

(
μ+ − 1

N
1{xi},μ− − 1

N
1{yj }

))

= 1

2N

m∑
i=1

m∑
j=1


δN
(xi, yj )

×
(

1

N2

(∑
l

Fr(xi, yl) +∑
k

Fr(xk, yj ) − Fr(xi, yj )

))

= 1

2N

m∑
i=1

m∑
j=1


δN
(xi, yj )

×
(

1

N

〈
Fr(xi),μ

−〉+ 1

N

〈
Fr(yj ),μ

+〉− 1

N2 Fr(xi, yj )

)
= 1

2

〈

δN

(〈
Fr,μ

−〉+ 〈
Fr,μ

+〉− N−1Fr

)
,μ+ ⊗ μ−〉.

For (7.10), we choose gs(μ) := P
(∗)
T −s〈φ+ϕ,μ+ ⊗ μ+ ⊗ μ−〉 instead and fol-

low the same argument as above. The expression on the right-hand side of (7.10)
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follows from the observation that, for fixed (i, j), we have

N3
(
gr(μ) − gr

(
μ+ − 1

N
1{xi},μ− − 1

N
1{yj }

))
=∑

q

∑



Hr(xi, xq, y
) +∑
p

∑



Hr(xp, xi, y
) +∑
p

∑
q

Hr(xp, xq, yj )

−∑



Hr(xi, xi, y
) −∑
p

Hr(xp, xi, yj )

−∑
q

Hr(xi, xq, yj ) + Hr(xi, xi, yj )

+∑



Gr(xi, y
) +∑
p

Gr(xp, yj ) − Gr(xi, yj )

−∑



Hr(xi, xi, y
) −∑
p

Hr(xp, xp, yj ) + Hr(xi, xi, yj ).

The above expression can be obtained by using the inclusion-exclusion principle.
�

The next two sections will be devoted to the proof of (6.15) and (6.16), respec-
tively.

7.3. First moment. The goal of this subsection is to prove (6.15) in Propo-
sition 6.8. The following key lemma allows us to interchange limits. This is a
crucial step in our characterization of (X∞,+,X∞,−), and is the step where As-
sumption 2.7 that lim infN→∞ Nδd

N ∈ (0,∞] is used.

LEMMA 7.11. Suppose Assumption 2.7 holds. Then for any t > 0 and any
φ ∈ C

(1,1)∞ , as ε → 0, each of E∞[〈
εφ, v+(t)ρ+⊗v−(t)ρ−〉] and E[〈
εφ,X
N,+
t ⊗

X
N,−
t 〉] converges uniformly in N ∈ N and in any initial distributions {(XN,+

0 ,

X
N,−
0 )}. Moreover,

Aφ(t) := lim
ε→0

E
[〈

εφ, v+(t)ρ+ ⊗ v−(t)ρ−

〉]
= lim

N ′→∞ lim
ε→0

E
[〈

εφ,X

N ′,+
t ⊗X

N ′,−
t

〉]
for any subsequence {N ′} along which {(XN,+,XN,−)}N converges to (X∞,+,

X∞,−) in distribution in D([0, T ],M). Furthermore, |Aφ(t)| ≤ ‖φ‖‖P +
t u+

0 ‖ ×
‖P −

t u−
0 ‖‖ρ+‖‖ρ−‖σ(I).

PROOF. Since ρ± ∈ C(D±) and is strictly positive, for notational simplicity,
we assume without loss of generality that ρ± = 1. (The general case can be proved
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in the same way.) Recall from (7.9) that for any ϕ ∈ C
(1,1)∞ , φ± ∈ C∞(D± \ �±)

and 0 ≤ s ≤ t < ∞, we have

E
[〈
ϕ,X

N,+
t ⊗X

N,−
t

〉]−E
[〈
P

(1,1)
t−s ϕ,XN,+

s ⊗XN,−
s

〉]
= −1

2

∫ t

s
E

[〈

δN

(〈
P

(1,1)
t−r ϕ,XN,−

r

〉+ 〈
P

(1,1)
t−r ϕ,XN,+

r

〉− 1

N
P

(1,1)
t−r ϕ

)
,(7.11)

XN,+
r ⊗XN,−

r

〉]
dr.

Note that 
εφ ∈ C
(1,1)∞ for ε small enough since I is disjoint from �±. We fix

s ∈ (0, t). Putting 
ε1φ and 
ε2φ, respectively, in the place of ϕ in (7.11) and then
subtract, we have

� := ∣∣E[〈
ε1φ,X
N,+
t ⊗X

N,−
t

〉]−E
[〈

ε2φ,X

N,+
t ⊗X

N,−
t

〉]∣∣
=

∣∣∣∣E[〈Fs,X
N,+
s ⊗XN,−

s

〉]
− 1

2

∫ t

s
E

[〈

δN

(〈
Fr,X

N,−
r

〉+ 〈
Fr,X

N,+
r

〉− 1

N
Fr

)
,XN,+

r ⊗XN,−
r

〉]
dr

∣∣∣∣
≤ E

[〈|Fs |,XN,+
s ⊗X

N,−
s

〉]
+ 1

2

∫ t

s
E
[〈

δN

〈|Fr |,XN,−
r

〉
,X

N,+
r ⊗X

N,−
r

〉]
+ 1

2
E
[〈

δN

〈|Fr |,XN,+
r

〉
,X

N,+
r ⊗X

N,−
r

〉]
+ 1

2N
E
[〈|
δN

Fr |,XN,+
r ⊗X

N,−
r

〉]
dr

≤ ∥∥P (1,1)
s

(|Fs |)∥∥+ 1

2

∫ t

s
(A1 + A2 + A3) dr,

where Fr := P
(1,1)
t−r (
ε1φ − 
ε2φ), A1 := ‖P (1,1)

r (
δN
P

(0,1)
r (|Fr |))‖, A2 :=

‖P (1,1)
r (
δN

P
(1,0)
r (|Fr |))‖, and A3 := 1

N
‖P (1,1)

r (|
δN
Fr |)‖.

Clearly, ‖P (1,1)
s (|Fs |)‖ ≤ ‖Fs‖. By applying Lemma 7.3 to the equi-continuous

and uniformly bounded family,{
(x, y) �→ φ(x)p

(
t − s, (a, b), (x, y)

) : (a, b) ∈ D+ × D−
}

⊂ C(1,1)∞ ⊂ C(D+ × D−),

we see that ‖Fs‖ converges to zero uniformly for N ∈ N and for any initial config-
uration, as ε1 and ε2 both tend to zero.
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By definition of A1, (1.3), the Gaussian upper bound estimate (2.2) for the tran-
sition density p of the reflected diffusion, we have

A1 = sup
(a,b)

∫
D+

∫
D−


δN
(x, y)

(
sup
y

P −
r

(|Fr |)(x, y)
)
p
(
r, (a, b), (x, y)

)
dx dy

≤
(

sup
(x,y)

P −
r

(|Fr |)(x, y)
)C(d,D+,D−)

sd
if N ≥ N(d,D+,D−).

Using this bound, we have∫ t

s
A1 dr

≤ C

sd

∫ t

s
sup
(x,y)

P −
r

(∣∣P (1,1)
t−r (
ε1φ − 
ε2φ)

∣∣)(x, y) dr

= C

sd

∫ t−s

0
sup
(x,y)

P −
t−w

(∣∣P (1,1)
w (
ε1φ − 
ε2φ)

∣∣)(x, y) dw

(7.12)

= C

sd

∫ t−s

0

(
sup
(x,y)

∫
D−

∣∣∣∣∫
D+

∫
D−

(
ε1φ − 
ε2φ)(x̃, ỹ)

× p
(
w, (x, b), (x̃, ỹ)

)
dx̃ dỹ

∣∣∣∣p−(t − w,y, b) db

)
dw

≤ C

sd

(∫ α

0

2C√
w

t−d/2 dw +
∫ t−s

α

∥∥P (1,1)
w (
ε1φ − 
ε2φ)

∥∥dw

)
.

The last inequality holds for any α ∈ (0, t − s). This is because for ε > 0 and
w ∈ [0, T ],

sup
(x,y)

∫
D−

∫
D+

∫
D−


ε(x̃, ỹ)p
(
w, (x, b), (x̃, ỹ)

)
dx̃ dỹp−(t − w,y, b) db

= sup
(x,y)

∫
D−

∫
D+


ε(x̃, ỹ)p+(w,x, x̃)p−(t, y, ỹ) dx̃ dỹ

by Chapman–Kolmogorov equation for p−

≤ 2C(d,D+,D−, T )√
w

t−d/2 by applying the bound (2.3) on D+.

Hence, from (7.12), by letting α ↓ 0 suitably and applying Lemma 7.3 to the equi-
continuous and uniformly bounded family{

(x, y) �→ φ(x)p
(
w, (a, b), (x, y)

) : (a, b) ∈ D+ × D−,w ∈ [α, t − s]}
⊂ C(D+ × D−),

we see that
∫ t
s A1 dr converges to zero uniformly for N large enough, as ε1 and ε2

tend to 0. The same conclusion hold for
∫ t
s A2 dr by the same argument.
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So far we have not used the Assumption 2.7 of lim infN→∞ Nδd
N ∈ (0,∞]. We

now use this assumption to show that
∫ t
s A3 dr tends to 0 uniformly for N large

enough, as ε1 and ε2 tend to 0. By a change of variable r �→ t − w,∫ t

s
A3 dr ≤

∫ t−s

0
sup
(a,b)

∫
D+

∫
D−

p
(
t − w, (a, b), (x, y)

) 1

N

δN

(x, y)

× ∣∣P (1,1)
w (
ε1φ − 
ε2φ)(x, y)

∣∣dx dy dw

≤ 2C1

sd/2td/2

∫ α

0

1√
w

dw + C2

Nsd

∫ t−s

α

∥∥P (1,1)
w (
ε1φ − 
ε2φ)

∥∥dw.

The last inequality holds for any α ∈ (0, t − s), where C1 = C1(d,D+,D−, T ,φ)

and C2 = C2(d,D+,D−). This is because for ε > 0 and w ∈ [0, t − s],

sup
(a,b)

∫ ∫ (∫ ∫
p
(
w, (x, y), (x̃, ỹ)

)

ε(x̃, ỹ) dx̃ dỹ

)

× p
(
t − w, (a, b), (x, y)

) 1

N

δN

(x, y) dx dy

≤ |I ε|
cd+1εd+1 sup

(a,b)

sup
(x̃,ỹ)

1

cd+1Nδd+1
N

∫
D

δN+

∫
D−∩B(x,δN )

p
(
w, (x, y), (x̃, ỹ)

)
× p

(
t − w, (a, b), (x, y)

)
dy dx

≤ |I ε|
cd+1εd+1

C(d,D−)

td/2 sup
a

sup
x̃

1

cd+1Nδd+1
N

∫
D

δN+
p+(w,x, x̃)

× p+(t − w,a, x) dx

≤ |I ε|
cd+1εd+1

C(d,D−)

td/2

C(d,D+)

sd/2 sup
x̃

1

cd+1Nδd+1
N

∫
D

δN+
p+(w,x, x̃) dx

by the Gaussian upper bound (2.2) for p+

≤ |I ε|
cd+1εd+1

C(d,D+,D−)

sd/2td/2

1√
w

for N ≥ N(d,D+),

by the assumption lim infN→∞ Nδd
N ∈ (0,∞] and the bound (2.3) on D+.

In conclusion, we have shown that {E[〈
εφ,X
N,+
t ⊗ X

N,−
t 〉]}ε>0 is a Cauchy

family and converges as ε → 0 to a number in [−∞,∞]. Furthermore, the conver-
gence is uniformly for N large enough and for any initial configuration. On other
hand, {(XN,+,XN,−)}N converges along a subsequence N ′ in distribution to a con-
tinuous process to (v+(·, x) dx, v−(·, y) dy). Since (μ+,μ−) �→ 〈
εφ,μ+ ⊗ μ−〉
is a bounded continuous function on M, we have

E
∞[〈


εφ, v+(t) ⊗ v−(t)
〉]= lim

N ′→∞E
[〈

εφ,X

N ′,+
t ⊗X

N ′,−
t

〉]
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for all t ≥ 0. Hence, the proof for the convergence of limε→0 E
∞[〈
εφ, v+(t) ⊗

v−(t)〉] is the same. Finally, the bound for |Aφ(t)| follows directly from Lem-
mas 6.7 and 7.3 as

E
[〈

εφ, v+(t)ρ+ ⊗ v−(t)ρ−

〉]
≤ ‖φ‖∥∥P +

t u+
0

∥∥∥∥P −
t u−

0

∥∥‖ρ+‖‖ρ−‖
∫
D−

∫
D+


ε(x, y) dx dy

and
∫
D−

∫
D+ 
ε(x, y) dx dy → σ(I) as ε → 0. This bound also tells us that Aφ(t)

actually lies in R. �

From the above lemma, we immediately have the following.

COROLLARY 7.12. Suppose that Assumption 2.7 holds and {N ′} is any subse-
quence along which {(XN,+,XN,−)}N converges to (X∞,+,X∞,−) in distribution
in D([0, T ],M). Then for φ ∈ C∞(D+ \ �+) ∪ C∞(D− \ �−), we have

lim
N ′→∞E

[〈

δN ′ φ,XN ′,+

r ⊗XN ′,−
r

〉]= Aφ(r) for r > 0 and

lim
N ′→∞

∫ t

s
E
[〈

δN ′ φ,XN ′,+

r ⊗XN ′,−
r

〉]
dr =

∫ t

s
Aφ(r) dr(7.13)

for 0 < s ≤ t < ∞.

Question. It is an interesting question if one can strengthen (7.13) to include
s = 0.

We can now present our proof for (6.15) by applying a Gronwall type argument
to (7.18).

Proof of (6.15). Without loss of generality, we continue to assume ρ± = 1.
Recall from (7.6) that for φ+ ∈ C∞(D+ \ �+) and 0 < s ≤ t < ∞, we have

E
[〈
φ+,X

N,+
t

〉]−E
[〈
P +

t−sφ+,XN,+
s

〉]
(7.14)

= −1

2

∫ t

s
E
[〈

δN

P +
t−rφ+,XN,+

r ⊗XN,−
r

〉]
dr.

By (7.13), we can let N → ∞ to obtain

E
∞[〈

φ+, v+(t)
〉]−E

∞[〈
P +

t−sφ+, v+(s)
〉]= −1

2

∫ t

s
AP +

t−rφ+(r) dr(7.15)

for 0 < s ≤ t < ∞. Now let s → 0. By the uniform bound for (v+, v−) given by
Lemma 6.7, the continuity of (v+(s), v−(s)) in s and Lebesgue dominated conver-
gence theorem, we obtain

E
∞[〈

φ+, v+(t)
〉]− 〈

P +
t φ+, u+

0

〉
(7.16)

= −1

2

∫ t

0
lim
ε→0

E
∞[〈


εP
+
t−rφ+, v+(r) ⊗ v−(r)

〉]
dr.
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On other hand, the first equation in (4.1) reads as

u+(t, x) = P +
t u+

0 (x) − 1

2

∫ t

0

∫
I
p+(t − r, x, z)gr(z) dσ (z) dr,(7.17)

where gr(z) := λ(z)u+(r, z)u−(r, z). Multiply both sides by the φ+ and then inte-
grate over D+ w.r.t. Lebesque measure, we obtain〈

φ+, u+(t)
〉= 〈

φ+,P +
t u+

0

〉− 1

2

∫ t

0

∫
I
P +

t−rφ+(z)gr(z) dσ (z) dr

= 〈
P +

t φ+, u+
0

〉− 1

2

∫ t

0
lim
ε→0

〈

εP

+
t−rφ+, u+(r) ⊗ u−(r)

〉
dr,

where we used the symmetry of P +
t (guaranteed by Proposition 2.3) and

Lemma 7.3. This equation is (7.16) with (v+, v−) replaced by (u+, u−).
Subtracting (7.16) from its counterpart for (u+, u−), we get〈

φ+, u+(t) −E
∞[

v+(t)
]〉

= −1

2

∫ t

0
lim
ε→0

∫
D−

∫
D+


ε(x, y)P +
t−rφ+(x)(7.18)

× (
u+(r, x)u−(r, y) −E

∞[
v+(r, x)v−(r, y)

])
dx dy dr.

The above equation holds for φ+ ∈ C∞(D+ \ �+) (and since ρ+ has support in
the entire domain D+), so we have

u+(t) −E
∞[

v+(t)
]= −1

2

∫ t

0
lim
ε→0

∫
D−

∫
D+


ε(x, y)p+(t − r, x, ·)
(7.19)

× (
u+(r, x)u−(r, y) −E

∞[
v+(r, x)v−(r, y)

])
dx dy dr

almost everywhere in D+.
Let w±(t) := u±(t) −E

∞[v±(t)] ∈ Bb(D±) and ‖w±(r)‖± be the L∞ norm in
D±. Then by the a.s. bound of v± in Lemma 6.7 and a simple use of triangle in-
equality, we have ‖u+(r, x)u−(r, y)−E

∞[v+(r, x)v−(r, y)]‖ ≤ (‖u+
0 ‖‖w−(r)‖+

‖u−
0 ‖‖w+(r)‖). On other hand,∫

D−

∫
D+


ε(x, y)p+(t − r, x, a) dx dy

= 1

cd+1εd+1

∫
I ε

p+(t − r, x, a) dx dy

≤ 1

cd+1εd+1

∫
Dε+

∫
B(x,ε)∩Dε−

p+(t − r, x, a) dy dx(7.20)

≤ |B(x, ε) ∩ Dε−|
cd+1εd+1

∫
Dε+

p+(t − r, x, a) dx

≤ C(d,D+)√
t − r

+ C̃(d,D+) uniformly for a ∈ D+, for ε < ε(d,D+).
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Using these observations, it is easy to check that (7.19) implies∥∥w+(t)
∥∥+ ≤

∫ t

0

(∥∥u+
0

∥∥∥∥w−(r)
∥∥+ ∥∥u−

0

∥∥∥∥w+(r)
∥∥)C(d,D+, T )√

t − r
dr.(7.21)

By the same argument, we have∥∥w−(t)
∥∥− ≤

∫ t

0

(∥∥u+
0

∥∥∥∥w−(r)
∥∥+ ∥∥u−

0

∥∥∥∥w+(r)
∥∥)C(d,D−, T )√

t − r
dr.(7.22)

Adding (7.21) and (7.22), we have, for C = C(‖u+
0 ‖,‖u−

0 ‖, d,D+,D−, T ),∥∥w+(t)
∥∥+ + ∥∥w−(t)

∥∥− ≤ C

∫ t

0

(∥∥w−(r)
∥∥+ ∥∥w+(r)

∥∥) 1√
t − r

dr.(7.23)

By a “Gronwall type” argument (cf. [21]), we have ‖w+(t)‖+ +‖w−(t)‖− = 0 for
all t ∈ [0, T ]. Since T > 0 is arbitrary, we have ‖w+(t)‖+ + ‖w−(t)‖− = 0 for all
t ≥ 0. This completes the proof for (6.15).

7.4. Second moment. In this subsection, we give a proof for (6.16) in Propo-
sition 6.8. We start with a key lemma that is analogous to Lemma 7.11.

LEMMA 7.13. Suppose Assumption 2.7 holds. Then for any t > 0 and any φ ∈
C∞(D+ \ �+), as ε → 0, each of E∞[〈φ,v+(t)〉ρ+〈
εφ, v+(t)ρ+ ⊗ v−(t)ρ−〉]
and E[〈φ,X

N,+
t 〉〈
εφ,X

N,+
t ⊗ X

N,−
t 〉] converges uniformly for N ∈ N and for

any initial distributions {(XN,+
0 ,X

N,−
0 )}. Moreover, we have

Bφ(t) := lim
ε→0

E
∞[〈

φ,v+(t)
〉
ρ+
〈

εφ, v+(t)ρ+ ⊗ v−(t)ρ−

〉]
= lim

N ′→∞ lim
ε→0

E
[〈
φ,X

N ′,+
t

〉〈

εφ,X

N ′,+
t ⊗X

N ′,−
t

〉] ∈ R

for any subsequence {N ′} along which {(XN,+,XN,−)}N converges to (X∞,+,

X∞,−) in distribution in D([0, T ],M). Similar results hold for φ ∈ C∞(D− \
�−), but with 〈φ,v−(t)〉ρ− and 〈φ,X

N,−
t 〉 in place of 〈φ,v+(t)〉ρ+ and 〈φ,X

N,+
t 〉,

respectively.

PROOF. The proof follows the same strategy as that of Lemma 7.11, based on
(7.10) rather than (7.9). We only provide the main steps. Without loss of generality,
assume φ = φ+ ∈ C∞(D+ \ �+) and ρ± = 1.

Suppose t > 0 and s ∈ (0, t) are fixed. Then (7.10) implies that

� := ∣∣E(〈φ,X
N,+
t

〉〈

ε1φ,X

N,+
t ⊗X

N,−
t

〉− 〈
φ,X

N,+
t

〉〈

ε2φ,X

N,+
t ⊗X

N,−
t

〉)∣∣
≤ ∣∣E(P (∗)

t−s

〈
φ(x1)

(

ε1(x2, y) − 
ε2(x2, y)

)
φ(x2),

X
N,+
t (dx1) ⊗X

N,+
t (dx2) ⊗X

N,−
t (dy)

〉)∣∣(7.24)
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+ 1

2

∫ t

s
E

[〈

δN

(x, y)

(〈
Hr(x, ·, ·),XN,+

r ⊗XN,−
r

〉
+ 〈

Hr(·, x, ·),XN,+
r ⊗XN,−

r

〉+ 〈
Hr(·, ·, y),XN,+

r ⊗XN,+
r

〉
+ 1

N

[〈
2Hr(x, x, ·),XN,−

r

〉+ 〈
Hr(·, x, y),XN,+

r

〉+ 〈
Hr(x, ·, y),XN,+

r

〉]
+ 1

N

[〈
Gr(x, ·),XN,−

r

〉+ 〈
Gr(·, y),XN,+

r

〉+ 〈
Hr(·, ·, y),XN,+

r

〉]
+ 1

N2

[
2Hr(x, x, y) − Gr(x, y)

])
,XN,+

r (dx) ⊗XN,−
r (dy)

〉]
dr,

where the operator P
(∗)
t−s is defined in (7.8),

Gr := ∣∣P (1,1)
t−r

(
φ2(x)

(

ε1(x, y) − 
ε2(x, y)

))∣∣ ∈ C(1,1)∞ ⊂ C(D+ × D−) and

Hr := ∣∣P (2,1)
t−r

(
φ(x1)φ(x2)

(

ε1(x2, y1) − 
ε2(x2, y1)

))∣∣
∈ C(2,1)∞ ⊂ C

(
D

2
+ × D−

)
.

Since (XN,+,XN,−) is dominated by (X
N,+

,X
N,−

) (see Lemma 6.7), the ab-
solute value of each term on the right-hand side of 7.24 can be bounded by the

corresponding expression with (XN,+,XN,−) replaced by (X
N,+

,X
N,−

). Hence,

� ≤
(

1 + 1

N

)
‖Hs‖ + 1

N
‖Gs‖ + 1

2

∫ t

s

( 9∑
i=1

Ai + B1 + B2

)
dr,(7.25)

where, with abbreviations that will be explained,

A1 := ∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (1,1)

r Hr(x, ·, ·)∥∥)∥∥,
A2 := ∥∥P (1,1)

r

(

δN

(x, y)
∥∥P (1,1)

r Hr(·, x, ·)∥∥)∥∥,
A3 := ∥∥P (1,1)

r

(

δN

(x, y)
∥∥P (2,0)

r Hr(·, ·, y)
∥∥)∥∥,

A4 := 2

N

∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (0,1)

r Hr(x, x, ·)∥∥)∥∥,
A5 := 1

N

∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (1,0)

r Hr(·, x, y)
∥∥)∥∥,

A6 := 1

N

∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (1,0)

r Hr(x, ·, y)
∥∥)∥∥,

A7 := 1

N

∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (0,1)

r Gr(x, ·)∥∥)∥∥,
A8 := 1

N

∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (1,0)

r Gr(·, y)
∥∥)∥∥,
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A9 := 1

N

∥∥P (1,1)
r

(

δN

(x, y)
∥∥P (1,0)

r Hr(·, ·, y)
∥∥)∥∥,

B1 := 2

N2

∥∥P (1,1)
r

(

δN

(x, y)Hr(x, x, y)
)∥∥,

B2 := 1

N2

∥∥P (1,1)
r

(

δN

(x, y)Gr(x, y)
)∥∥.

In the above, the first P
(1,1)
r acts on the (x, y) variable, while the second P

(i,j)
r in

each Ai acts on the “·” variable. Beware of the difference between P
(2,0)
r Hr(·, ·, y)

and P
(1,0)
r Hr(·, ·, y) in A3 and A9, respectively. In fact, P

(2,0)
r Hr(·, ·, y) is defined

as the function on D
2
+ which maps (a1, a2) to

∫
D2+ p(2,0)(r, (a1, a2), (x1, x2)) ×

Hr(x1, x2, y) d(x1, x2), while P
(1,0)
r Hr(·, ·, y) is defined as the function on D+

which maps a1 to
∫
D+ p(1,0)(r, a1, x)Hr(x, x, y) dx.

The rest of the proof goes in the same way as that for Lemma 7.11. For example,
note that

‖Hs‖ = sup
(a1,a2,b1)

∣∣∣∣∫
D2+×D−

φ(x1)φ(x2)
(

ε1(x2, y1) − 
ε2(x2, y1)

)
× p(2,1)(t − s, (a1, a2, b1), (x1, x2, y1)

)
d(x1, x2, y1)

∣∣∣∣.
By applying Lemma 7.3 to the equi-continuous and uniformly bounded family{

(x1, x2, y) �→ φ(x1)φ(x2)p
(2,1)(t − s, (a1, a2, b), (x1, x2, y)

) :
(a1, a2, b) ∈ D

2
+ × D−

}
⊂ C

(
D

2
+ × D−

)
,

we see that ‖Hs‖ converges to zero uniformly for N large enough and for any
initial configuration, as ε1 and ε2 both tend to zero. The integral term with respect
to dr can be estimated as in the proof of Lemma 7.11, using the bound (2.3),
Lemma 7.3 and Assumption 2.7 that lim infN→∞ Nδd

N ∈ (0,∞].
We have shown that {E[〈φ,X

N,+
t 〉〈
εφ,X

N,+
t ⊗X

N,−
t 〉]}ε>0 is a Cauchy family

which converges, as ε → 0, uniformly for N large enough and for any initial con-
figuration. Hence Bφ(t) in the statement of the lemma exists in [−∞,∞]. Finally,
we have Bφ(t) ∈ R since |Bφ(t)| < ∞ by Lemmas 6.7 and 7.3. �

From the above lemma, we immediately obtain the following.

COROLLARY 7.14. Suppose Assumption 2.7 holds and {N ′} is a subse-
quence along which {(XN,+,XN,−)} converges to (X∞,+,X∞,−) in distribution
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in D([0, T ],M). Then for φ ∈ C∞(D+ \ �+),

lim
N ′→∞E

[〈
φ,XN ′,+

r

〉〈

δN ′ φ,XN ′,+

r ⊗XN ′,−
r

〉]= Bφ(r) for r > 0 and

lim
N ′→∞

∫ t

s
E
[〈
φ,XN ′,+

r

〉〈

δN ′ φ,XN ′,+

r ⊗XN ′,−
r

〉]
dr(7.26)

=
∫ t

s
Bφ(r) dr for 0 < s ≤ t < ∞.

We are now ready to give the following.

PROOF OF (6.16). As before, without loss of generality we assume ρ± = 1.
Recall from (7.7) that for φ = φ+ ∈ C∞(D+ \ �+) and 0 < s ≤ t < ∞, we have

E
[〈
φ,X

N,+
t

〉2]−E
[〈
P +

t−sφ,XN,+
s

〉2]
= −

∫ t

s
E
[〈
P +

t−rφ,XN,+
r

〉〈

δN

(
P +

t−rφ
)
,XN,+

r ⊗XN,−
r

〉]
dr + o(N).

Letting N ′ → ∞ in (7.26), we get

E
∞[〈

φ,v+(t)
〉2]−E

∞[〈
P +

t−sφ, v+(s)
〉2]

= −1

2

∫ t

s
BP +

t−rφ(r) dr

for 0 < s ≤ t < ∞. Now let s → 0. By the uniform bound for (v+, v−) given by
Lemma 6.7, the continuity of (v+(s), v−(s)) in s (guaranteed by Theorem 6.6) and
the Lebesgue dominated convergence theorem, we obtain

E
∞[〈

φ+, v+(t)
〉2]− 〈

P +
t φ, u+

0

〉2
(7.27)

= −
∫ t

0
lim
ε→0

E
∞[〈

P +
t−rφ, v+(r)

〉〈

εP

+
t−rφ, v+(r) ⊗ v−(r)

〉]
dr.

On other hand, the first equation in (4.1) reads as (7.17) Chapman–
Kolmogorov’s equation implies that for t ≥ s ≥ 0,

P +
t−su+(s)(x) = P +

t u+
0 (x) − 1

2

∫ s

0

∫
I
p+(t − r, x, z)gr(z) dσ (z) dr.

Since gr(z) = λ(z)u+(r, z)u−(r, z) is bounded and continuous for (r, z) ∈ [0, T ]×
D+, we have

d

ds

〈
φ,P +

t−su+(s)
〉= 0 − 1

2

∫
I
P +

t−sφ(z)gs(z) dσ (z)
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for all φ = φ+ ∈ C∞(D+ \ �+). Therefore,〈
φ+, u+(t)

〉2 − 〈
φ+,P +

t u+
0

〉2 =
∫ t

0

d

ds

〈
φ,P +

t−su+(s)
〉2

ds

=
∫ t

0
2
〈
φ,P +

t−su+(s)
〉 d

ds

〈
φ,P +

t−su+(s)
〉
ds

= −
∫ t

0

〈
φ,P +

t−su+(s)
〉 ∫

I
P +

t−sφ(z)gs(z) dσ (z) ds.

In view of Lemma 7.3, the above equation is (7.27) with (v+, v−) replaced by
(u+, u−).

Subtracting (7.27) from its counterpart for (u+, u−), we get

E
∞[〈

φ,v+(t)
〉2]− 〈

φ,u+(t)
〉2

=
∫ t

0
lim
ε→0

E
∞[〈

P +
t−rφ, u+(r)

〉〈

εP

+
t−rφ, u+(r) ⊗ u−(r)

〉
(7.28)

− 〈
P +

t−rφ, v+(r)
〉〈

εP

+
t−rφ, v+(r) ⊗ v−(r)

〉]
dr.

The left-hand side of (7.28) equals E
∞[〈φ,v+(t) − u+(t)〉2] because E

∞[〈φ,

v+(t)〉] = 〈φ,u+(t)〉. Since E
∞[〈
εP

+
t−rφ, v+(r) ⊗ v−(r)〉] = 〈
εP

+
t−rφ, u+(r) ⊗

u−(r)〉, the integrand in the right-hand side of (7.28) with respect to dr equals

lim
ε→0

E
∞[〈


εP
+
t−rφ, v+(r) ⊗ v−(r)

〉(〈
P +

t−rφ, u+(r) − v+(r)
〉)]

≤ CE
∞[∣∣〈P +

t−rφ, u+(r) − v+(r)
〉∣∣].

The constant C = C(φ,f, g,D+,D−) above arises from the uniform bound for
v(r) in Lemma 6.7 and the bound (2.3). Hence, we have

E
∞[〈

φ,v+(t) − u+(t)
〉2]≤ C

∫ t

0
E

∞[∣∣〈P +
t−rφ, u+(r) − v+(r)

〉∣∣]dr.

Letting w+(t) = u+(t) − v+(t), we obtain

E
∞[〈

φ,w+(t)
〉2]≤ C

∫ t

0
E

∞[〈
P +

t−rφ,w+(r)
〉2]

dr.(7.29)

We can then deduce by a “Gronwall-type” argument that E∞[〈φ,w+(t)〉2] = 0 for
all t ≥ 0. In fact, by Fubinni’s theorem, the left-hand side of (7.29) equals∫

D+

∫
D+

φ(x1)φ(x2)E
∞[

w+(t, x1)w+(t, x2)
]
dx1 dx2,(7.30)

and the integrand with respect to dr of the right-hand side of (7.29) is∫
D+

∫
D+

φ(a1)φ(a2)

∫
D+

∫
D+

p+(t − r, x1, a1)p
+(t − r, x2, a2)

×E
∞[

w+(t, x1)w+(t, x2)
]
dx1 dx2 da1 da2.
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Hence, for a.e. a1, a2 ∈ D+, we have

E
∞[

w+(t, a1)w+(t, a2)
]

≤ C

∫ t

0

∫
D+

∫
D+

p+(t − r, x1, a1)p
+(t − r, x2, a2)

×E
∞[

w+(t, x1)w+(t, x2)
]
dx1 dx2 dr.

Let f (t) � sup
(a1,a2)∈D

2
+

|E∞[w+(t, a1)w+(t, a2)]|, then the above equation as-

serts that f (t) ≤ C
∫ t

0 f (r) dr . Note that f (r) ∈ L1[0, t] since it is bounded.
Hence, by Gronwall’s lemma, we have f (t) = 0 for all t ≥ 0. This together with
(7.30) yields E

∞[〈φ,w+(t)〉2] = 0. Hence E
∞[〈φ,v+(t)〉2] = 〈φ,u+(t)〉2. The

same holds for v−. This completes the proof for (6.16). �
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