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CHARACTERISTIC FUNCTIONS OF MEASURES ON
GEOMETRIC ROUGH PATHS

BY ILYA CHEVYREV1 AND TERRY LYONS2

University of Oxford

We define a characteristic function for probability measures on the sig-
natures of geometric rough paths. We determine sufficient conditions under
which a random variable is uniquely determined by its expected signature,
thus partially solving the analogue of the moment problem. We furthermore
study analyticity properties of the characteristic function and prove a method
of moments for weak convergence of random variables. We apply our results
to signature arising from Lévy, Gaussian and Markovian rough paths.

1. Introduction. Paths serve as a natural description of an ordered progres-
sion of events and are abundant throughout mathematics. Furthermore, measures
on paths are almost as common in nature as paths. Considering the flow of infinites-
imal elements, one sees that any system involving rigid motions can be represented
as a measure on paths; the same can be said of a gas or fluid flow. For this reason,
the ability to characterize paths, and measures on them, becomes of value.

It was first shown by Chen [7] that an irreducible piecewise regular continuous
path in Euclidean space (which includes all paths that are smooth when parameter-
ized at unit speed) may be faithfully represented, up to reparametrization, by the
collection of its iterated integrals known as the signature. The representation of a
path through its signature has been recently explored in much greater detail due
to its connection with rough paths theory [31]. The exact geometric equivalence
of paths of bounded variation possessing the same signature was first described by
Hambly and Lyons [19], and recently extended to all geometric rough paths [2].
Methods to recover information encoded by the signature have also been explored
and, in general, pose a difficult problem [30].

The signature may be viewed concretely as the universal solution to the ex-
ponential differential equation dS(X)t = S(X)t ⊗ dXt , and serves as the fully
non-commutative analogue of the classical exponential function for points in R.
Its importance is further emphasized when one considers a general differential
equation

dYt = M(Yt) dXt ,(1.1)
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since the solution Yt is invariant under reparametrizations of the driving signal Xt .
This relationship is most evident in the case of linear differential equations, where
Xt ∈ V and Yt ∈ W lie in Banach spaces, and M : V �→ L(W) is a continuous
linear map. In this case, the extension of M to an algebra homomorphism M :
T (V ) �→ L(W), when applied to the signature of Xt , provides a series converging
rapidly to the flow of (1.1) [31]. In particular, when M takes values in a Lie algebra,
the flow of (1.1) corresponds to the Cartan development of Xt in the corresponding
Lie group, thus naturally inducing a representation of the group of signatures.

In the case of a one-dimensional path Xt in R, the signature takes the sim-
ple form (1,Xt − X0, (Xt − X0)

2/2!, . . .). When Xt is a random variable, the se-
quence of expectations (1,E[Xt −X0],E[(Xt −X0)

2/2!], . . .), whenever it exists,
describes precisely the moments of Xt −X0. Thus, for a stochastic process Xt , the
expectations of its iterated integrals, termed the expected signature, naturally form
the generalization of the moments of the process.

The expected signature has been exploited in high order approximation
schemes [24] and is explicitly known for certain stochastic processes [14, 27].
Moreover, the fundamental property that every polynomial function on signatures
may be realized as a linear functional implies that the expected signature distin-
guishes any two random variables of compact support [10] and implicitly demon-
strates the potential of the path signature in applications to numerical analysis and
machine learning [26, 29].

The moments of a random variable are of course closely related to the character-
istic function φX(λ) = E[eiλX]. For a topological group G, a classical extension of
the characteristic function to a G-valued random variable X is φX(M) = E[M(X)]
where M is a unitary representation of G [21]. Under suitable conditions, par-
ticularly the existence of sufficiently many unitary representations, φX uniquely
determines the law of X.

This paper aims to study the characteristic function φX(M) = E[M(X)] where
X is a random signature and M is a unitary representation arising from a linear map
M : V �→ u into a unitary Lie algebra. Our main result asserts that φX uniquely
determines every random variable X and greatly extends the analogous result for
the expected signature beyond the case of compact support.

We now briefly outline the structure of the paper. Section 2 studies a universal
topological algebra E(V ) in which we embed the group of signatures. Roughly
speaking, the induced topology is such that a sequence of signatures converges
if and only if the solution to (1.1) converges for every continuous linear map
M : V �→ L(W). In Section 3, we derive important properties of probability mea-
sures on the set G(V ) of group-like elements of E(V ). In Section 4, we study
representations of E(V ). Our first main result is Theorem 4.8, which describes
explicitly a family of representations of E(Rd) which preserves unitary elements
and separates the points. An immediate consequence is that one is able to define
a meaningful characteristic function for G(Rd)-valued random variables (Corol-
lary 4.12). Though our results for uniqueness of random variables are restricted
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to the case V = R
d , we mostly work in the general setting of Banach spaces and

make precise whenever finite dimensionality is required.
In Section 5, we recall elements of rough paths theory and show that the sig-

natures of geometric rough paths form a topological subgroup of G(Rd). In Sec-
tion 6, we describe applications of our results to stochastic rough paths, particularly
in connection with the expected signature. We split Section 6 into three parts.

In Section 6.1, we study the analogue of the moment problem. Proposition 6.1
provides a general criterion under which a G(Rd)-valued random variable is
uniquely determined by its expected signature. In turn, Theorem 6.3 provides a
method to verify this criterion without explicit knowledge of the expected signa-
ture itself. We demonstrate applications of these results to the Lévy–Khintchine
formula derived in [14] and to families of Gaussian and Markovian rough paths
studied in [4] and [5].

In Section 6.2, we study analyticity properties of the characteristic function. The
main result is Theorem 6.13 (and its Corollaries 6.17 and 6.18), which provides a
criterion to establish analyticity of the characteristic function and solve the mo-
ment problem within a restricted family of random variables. We demonstrate an
application to Markovian rough paths stopped upon exiting a domain.

In Section 6.3, we conclude with Theorem 6.31, which demonstrates a method
of moments for weak convergence of G(Rd)-valued random variables.

2. Universal locally m-convex algebra. Throughout the paper, all vector
spaces are assumed real and all algebras are assumed unital. For topological vector
spaces V,W , let L(V ,W) be the space of continuous linear maps from V to W ,
and denote L(V ) = L(V ,V ) and V ′ = L(V ,R). For terminology and basic prop-
erties of topological algebras we refer to [32].

For a topological vector space V , a topological algebra A, and a topology on
T (V ) = ⊕

k≥0 V ⊗k , consider the statement:

For all M ∈ L(V ,A), the extension M : T (V ) �→ A is continuous.(2.1)

One may then topologize T (V ) by requiring that (2.1) holds for all topological
algebras A of a given category. In this paper, we consider the category of locally
m-convex algebras.

DEFINITION 2.1. Let V be a locally convex space. Let Ea(V ) = T (V )

equipped with the coarsest topology such that (2.1) holds for all locally m-convex
algebras A (or equivalently, all normed algebras A). Denote by E(V ) the comple-
tion of Ea(V ).

Thus for any normed algebra A, the set of continuous algebra homomorphisms
Hom(Ea,A) is in bijection with L(V ,A). For any M ∈ L(V ,A), we shall usually
denote by the same letter M the corresponding element in Hom(Ea,A), but shall
write ME ∈ Hom(Ea,A) whenever a clear distinction is needed.
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Though in most parts of the paper we shall assume that V is normed, most
results in this section are more easily understood for locally convex spaces and so
unless stated otherwise, we only assume V is locally convex.

In most of our notation, we shall drop the reference to V when it is clear from
the context. It holds that Ea and E are locally m-convex algebra ([32], pages 14
and 22). While most results in this section are stated for E, it is easy to verify
which remain valid for Ea .

This method to obtain a universal topological algebra of a specific category is
very natural, and we note that this construction is not new; the same construction
(and essentially Proposition 2.3 below) appeared in [8] in relation to cyclic coho-
mology, while analogous constructions were investigated for locally convex alge-
bras with continuous multiplication in [37] and for commutative locally m-convex
algebras (particularly in relation to nuclear spaces) in [9] Section 6.4.

REMARK 2.2. If we start with V as a general topological vector space, an
easy verification shows that we arrive at the same space Ea as when we equip V

with the finest locally convex topology coarser than its original.

A family of semi-norms � on V is called fundamental if for every semi-norm ξ

on V , there exist γ ∈ � and ε > 0 such that εξ ≤ γ (note that by a semi-norm we
always mean a continuous semi-norm). For any collection of semi-norms � on V ,
define �∗ = {nγ | n ≥ 1, γ ∈ �}.

For semi-norms γ, ξ on locally convex spaces V,W , respectively, let γ ⊗ ξ

denote the projective semi-norm on V ⊗ W . Denote by V ⊗π W the projective
tensor product and V ⊗̂W its completion. For a normed space F , and M ∈ L(V ,F )

denote γ (M) = supγ (v)=1 ‖Mv‖ (possibly infinite).
Define the projective extension of a semi-norm γ on V as the semi-norm

exp(γ ) = ∑
k≥0 γ ⊗k on Ea . Remark that exp(γ ) is a sub-multiplicative semi-norm

on Ea . Moreover for any normed algebra A, M ∈ L(V ,A), and a semi-norm γ on
V such that γ (M) ≤ 1, it holds that exp(γ )(ME) ≤ 1. We thus readily obtain the
following.

PROPOSITION 2.3. Let � be a family of semi-norms on V . Then � is a funda-
mental family of semi-norms on V if and only if exp(�∗) is a fundamental family
of semi-norms on E.

COROLLARY 2.4. The space E is Hausdorff (resp., metrizable, separable) if
and only if V is Hausdorff (resp., metrizable, separable).

Whenever we speak of a topological space, we shall henceforth always assume
it is Hausdorff. The following result identifies E with a subspace of P(V ) :=∏

k≥0 V ⊗̂k . For x ∈ P , we write xk for the projection of x onto V ⊗̂k , so that x =
(x0, x1, x2, . . .).
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COROLLARY 2.5. Let � be a fundamental family of semi-norms on V . Then
E = {x ∈ P | ∀γ ∈ �∗,∑k≥0 γ ⊗k(xk) < ∞}.

By noting the identification P ⊗̂2 = ∏
i,j≥0 V i,j , where V i,j ∼= V ⊗̂(i+j), the

same considerations show that

E⊗̂2 =
{
x ∈ P ⊗̂2 ∣∣ ∀γ ∈ �∗,

∑
i,j≥0

γ ⊗(i+j)(xi,j ) < ∞
}
.

Let ρk : E �→ V ⊗̂k denote the projection ρk(x) = xk . The following result shall
also be useful later and is another consequence of Proposition 2.3.

COROLLARY 2.6. The operators T (n) := ∑n
k=0 ρk : E �→ E converge uni-

formly on bounded sets to the identity operator on E.

When V is a normed space, we always equip V ⊗k with the projective norm
unless stated otherwise. For an element x ∈ P define its radius of convergence
R(x) as the radius of convergence of the series

∑
k≥0 ‖xk‖λk . Corollary 2.5 then

implies that x ∈ E if and only if R(x) = ∞.
We now come to a more interesting permanence property. For a semi-normed

space (W,γ ) denote the quotient normed space Wγ = (W/Ker(γ ), γ ) and Ŵγ

its completion. For a locally convex space W and a Banach space A, a map M ∈
L(W,A) is called compact (resp., nuclear) if there exists a semi-norm γ on W

such that the γ (M) < ∞ and the induced map Mγ : Ŵγ �→ A is compact (resp.,
nuclear). Recall that W is called Schwartz (resp., nuclear) if every M ∈ L(W,A)

is compact (resp., nuclear) for every Banach space A.

PROPOSITION 2.7. The space E is Schwartz (resp., nuclear) if and only if V

is Schwartz (resp., nuclear).

We note that the case when V is simply Schwartz shall not be used later in the
paper and is recorded simply for completeness. Moreover, nuclearity of E shall
only be applied in Section 6.3 to the case V = R

d . However the equivalent state-
ment for V = R

d uses essentially the same proof and thus we record the result in
full generality.

Let � be a fundamental family of sub-multiplicative semi-norms of a locally
m-convex algebra F . Equipping �∗ with its natural partial order, (F̂γ )γ∈�∗ is
a projective system of Banach algebras and one obtains a dense topological al-
gebra embedding F ↪→ lim←− γ∈�∗F̂γ known as the Arens–Michael decomposition
(see [32], Chapter III). As compact (resp., nuclear) operators form an operator
ideal, we obtain the following.

LEMMA 2.8. Let F be a locally m-convex algebra. Then F is Schwartz (resp.,
nuclear) if and only if every continuous algebra homomorphism M : F �→ A is
compact (resp., nuclear) for every Banach algebra A.
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For a normed space V and Banach space W , denote by N (V ,W) the Banach
space of nuclear operators from V to W with the nuclear norm ‖ · ‖N .

LEMMA 2.9. Let (V , γ ) be a normed space and A a Banach algebra. Let M ∈
N (V ,A) with ‖M‖N < 1. Equip T (V ) with the norm exp(γ ). Then the extension
ME : T (V ) �→ A is nuclear and ‖ME‖N ≤ (1 − ‖M‖N)−1.

PROOF. It holds that product map M⊗k : V ⊗πk �→ A⊗πk is nuclear with nu-
clear norm bounded by ‖M‖k

N ([22] Theorem 3.7—the bound is clear from the
proof therein), and the multiplication map A⊗πk �→ A has unit operator norm. It
follows that M⊗k : V ⊗πk �→ A is nuclear with nuclear norm at most ‖M‖k

N ([18],
page 84). The conclusion follows since ME = ∑

k≥0 M⊗k is an absolutely conver-
gent series in N (T (V ),A). �

For a semi-norm γ on V , let Bγ = {v ∈ V | γ (v) < 1}, and for a subset B ⊆ V ,
let �(B) be the absolutely convex hull of B .

PROOF OF PROPOSITION 2.7. The “only if” direction is clear. Let A be a
Banach algebra, M ∈ L(V ,A), and let � be a fundamental family of semi-norms
on V . For a semi-norm γ on V , recall that Bγ ⊗k = �(B⊗k

γ ) ⊂ V ⊗k .
Suppose V is Schwartz. Take γ ∈ �∗ such that M(Bγ ) ⊂ A is relatively com-

pact and γ (M) < 1. It follows that M(Bγ ⊗k ) is relatively compact in A ([36]
Proposition 7.11). Since the unit ball Bexp(γ ) is given by �(

⋃
k≥0 Bγ ⊗k ), we ob-

tain that M(Bexp(γ )) is totally bounded in A. Thus E is Schwartz by Lemma 2.8.
Suppose V is moreover nuclear. Take γ ∈ �∗ such that the induced map

Mγ : Vγ �→ A is nuclear with ‖Mγ ‖N < 1. As (V ⊗πk)γ ⊗k and (Vγ )⊗πk are isomet-
rically isomorphic ([18], page 38), we have the natural identification T (V )exp(γ )

∼=
(T (Vγ ), exp(γ )). It follows that ME : T (V )exp(γ ) �→ A is nuclear by Lemma 2.9.
Thus, E is nuclear again by Lemma 2.8. �

One may also ask when the extension map ·E : L(V ,A) �→ Hom(E,A) is con-
tinuous under certain topologies. In the case of the strong topology when V is
normed, we obtain a homeomorphism by the following proposition. First, remark
that if ‖xj‖ ≤ c and ‖xj − yj‖ ≤ ε for x1, . . . , xn, y1, . . . , yn ∈ A, where A is a
normed algebra, then

‖x1 · · ·xn − y1 · · ·yn‖ ≤
n∑

j=1

(
n

j

)
εj cn−j = (c + ε)n − cn.(2.2)

PROPOSITION 2.10. Let V be a normed space and A a Banach algebra. The
extension map ·E : M �→ ME from L(V ,A) to Hom(E,A) is continuous (and thus
a homeomorphism) when one equips both sides with the strong topology.
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PROOF. Let (Mj)j≥1 → M in L(V ,A). Let γ be a norm on V such that
γ (M) ≤ 1 and γ (Mj) ≤ 1 for all j ≥ 1.

Remark that for any bounded set B ⊂ E and ε > 0, there exists kε ≥ 1 such
that supx∈B γ ⊗k(xk) ≤ εk for all k ≥ kε [if not, then take a sequence xn ∈ B such
that γ ⊗n(xn

n) > εn. Then exp(cγ )(xn) > cnεn for any c > 1 and n ≥ 1, which is
implies that exp(cγ ) is not bounded on B for some c > 1 which is a contradiction].

Remark that every bounded set in V ⊗k is contained in �(B1 ⊗ · · · ⊗ Bk) for
bounded sets B1, . . . ,Bk ⊂ V , and that the supremum of a convex function on a
set is equal to its supremum on the set’s convex hull. Together with (2.2), this
implies that for any fixed n,

sup
x∈B

∑
0≤k≤n

∥∥M⊗k
i

(
xk)− M⊗k(xk)∥∥ → 0.

Hence,

sup
x∈B

∥∥Mj(x) − M(x)
∥∥ ≤ sup

x∈B

∑
0≤k≤n

∥∥M⊗k
i

(
xk)− M⊗k(xk)∥∥+ 2 sup

x∈B

∑
k>n

γ ⊗kxk

can be made arbitrarily small with sufficiently large n and j . �

REMARK 2.11. If we assume only that V is locally convex and M ∈ L(V ,A),
where A is a real (resp., complex) Banach algebra, applying the above proposition
to the semi-norm γ (x) := ‖M(x)‖ on V implies in particular that the map λ �→
(λM)E is continuous from R (resp., C) to Hom(E,A), where the latter is equipped
with the strong topology.

3. Group-like elements. We recall that T (V ) is a Hopf algebra with coprod-
uct �v = 1 ⊗ v + v ⊗ 1 for all v ∈ V and antipode α(v1 · · ·vk) = (−1)kvk · · ·v1
for all v1 · · ·vk ∈ V ⊗k ([33] Proposition 1.10).

Consider now V a locally convex space. Since E⊗̂2 is itself a locally m-convex
algebra ([32], page 378), and since � ∈ L(V ,E⊗π 2), the extension � : E �→ E⊗̂2

is continuous by the universal property of E. Moreover, the antipode α extends to a
continuous linear map α : E �→ E. This endows E with an “almost” Hopf algebra
structure (“almost” since E is not mapped to E⊗2 under the coproduct � as for
Hopf algebras, but to its completion E⊗̂2).

Denote by U(V ) = {g ∈ E | α(g) = g−1} and G(V ) = {g ∈ E | �(g) =
g ⊗ g,g �= 0} the groups of unitary elements and group-like elements of E, re-
spectively. Note that since multiplication and inversion in E are continuous (and
indeed in every locally m-convex algebra; [32], pages 5 and 52), U and G are topo-
logical groups when endowed with the subspace topology. Moreover, U is closed
in E since the map φ : x �→ (α(x)x, xα(x)) from E into E × E is continuous
and U = φ−1{(1,1)}. Likewise, G is closed in E since g0 = 1 for all g ∈ G and
G = ψ−1{0}\ {0} for the continuous map ψ : x �→ x ⊗x −�(x) from E into E⊗̂2.
Finally, note the inclusion G ⊂ U .
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In this section, we collect several results concerning measures on G. While
these results shall later be applied mostly to the case V = R

d , we find making this
assumption does not simplify the proofs, and thus make most statements in full
generality.

All measures (resp., random variables) are assumed to be Borel. Denote by P(S)

the space of probability measures on a topological space S endowed with the topol-
ogy of weak convergence on Cb(S,C).

Recall that for a locally convex space F , an F -valued random variable X is
weakly (Gelfand–Pettis) integrable, or that E[X] exists, if f (X) is integrable for
all f ∈ F ′ and if there exists E[X] := x ∈ F such that E[f (X)] = f (x). Letting
μ be the probability measure associated with X, we denote by μ∗ = E[X] its
barycenter. Unless stated otherwise, we shall always assume that μ is the measure
associated to X and that integrals are taken in the weak sense.

DEFINITION 3.1. For an E-valued random variable X, we call the sequence

ESig(X) := (
E
[
X0],E[X1], . . .) ∈ P = ∏

k≥0

V ⊗̂k

the expected signature of X whenever Xk is integrable for all k ≥ 0.
When V is normed, define r1(X) as the radius of convergence of the series∑

k≥0

E
[∥∥Xk

∥∥]λk

[setting r1(X) = 0 whenever Xk is not norm-integrable for some k ≥ 0], and r2(X)

as the radius of convergence of the series∑
k≥0

∥∥E[Xk]∥∥λk,

[setting r2(X) = 0 whenever Xk is not integrable for some k ≥ 0].

Note that r2(X) = R(ESig(X)). Remark also that r1(X) ≤ r2(X) and that
Proposition 3.4 provides a partial converse when V = R

d and X is G(Rd)-valued.
Note that ESig(X) exists whenever X is integrable as an E-valued random vari-

able. The following proposition now provides a converse when X is G-valued.
Recall that we identify E as a subspace of P (Corollary 2.5).

PROPOSITION 3.2. Let X be a G-valued random variable. Then X is weakly
integrable if and only if ESig(X) exists and lies in E. In this case E[X] = ESig(X).

In the case that V is normed, note that in order to conclude that a G-valued ran-
dom variable X is (weakly) integrable (as an E-valued random variable), Proposi-
tion 3.2 implies that one only needs to check that each projection Xk is (weakly)
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integrable and that ‖E[Xk]‖ decays sufficiently fast as k → ∞. Remark that this
is certainly not true for an arbitrary E-valued random variable.

We observe that for any f ∈ E′, it holds that f ⊗2 ◦ � ∈ E′ and f (g)2 =
f ⊗2(�g) for all g ∈ G. In particular, for all μ ∈P(G), we have

μ
(|f |) ≤

√
μ
(
f 2

) =
√

μ
(
f ⊗2 ◦ �

)
.(3.1)

This simple observation allows for very easy control of a measure through its
barycenter. For example, whenever μ ∈ P(G) and E[X] exists, it follows immedi-
ately that for all f ∈ E′, the real random variable f (X) has finite moments of all
orders.

The main idea behind the proof of Proposition 3.2 is that given the existence
of E[Xk] for all k ≥ 0, we wish to approximate E[f (X)] by

∑n
k=0 E[f (Xk)].

Using the estimate (3.1) and the grading of the coproduct �, we apply dominated
convergence to obtain E[f (X)] = ∑

k≥0 E[f (Xk)].
PROOF OF PROPOSITION 3.2. The “only if” direction is clear. Assume that

ESig(X) exists and ESig(X) ∈ E. As usual, let μ be the measure on G associated
to X. We are required to show that f is μ-integrable and that μ(f ) = 〈f,ESig(X)〉
for all f ∈ E′.

Recall the projection ρk : E �→ V ⊗̂k . Treating V ⊗̂k as a subspace of E, for all
f ∈ E′ denote f k := f ◦ρk ∈ E′. Furthermore, we canonically embed (V ⊗̂k)′ into
E′ by f �→ f ◦ρk for all f ∈ (V ⊗̂k)′. Observe that for all f ∈ E′, by Corollary 2.6,∑n

k=0 f k converges uniformly on bounded sets (and a fortiori pointwise) to f .
Remark that for any f ∈ E′, f ∈ (V ⊗̂k)′ if and only if f = f k . Recall that �

is a graded linear map from T (V ) to T (V )⊗2. In particular, for all f1 ∈ (V ⊗̂k)′,
f2 ∈ (V ⊗̂m)′, and x ∈ T (V ), it holds that

(f1 ⊗ f2)�(x) = (f1 ⊗ f2)�
(
xk+m).(3.2)

As T (V ) is dense in E, (3.2) holds for all x ∈ E, from which it follows that (f1 ⊗
f2) ◦ � ∈ (V ⊗̂(k+m))′.

Let f ∈ E′ and note that μ(f k) = 〈f k,E[Xk]〉 for all k ≥ 0. Since μ has support
on G, it follows from (3.1) and (3.2) that

μ

(∑
k≥0

∣∣f k
∣∣) ≤ ∑

k≥0

√
μ
((

f k
)⊗2 ◦ �

) = ∑
k≥0

√(
f k

)⊗2
�E

[
X2k

]
.(3.3)

Without loss of generality, we can assume that |f (1)| ≤ 1. Let γ be a semi-norm
on V such that exp(γ ) ≥ |f | and ξ a semi-norm on E such that ξ ≥ exp(γ )⊗2 ◦�.
It follows that exp(γ ) ≥ |f k| for all k ≥ 0, and thus ξ ≥ |(f k)⊗2 ◦�| for all k ≥ 0.

Since ESig(X) ∈ E, it follows from Corollary 2.5 that
∑

k≥0

√
ξ(E[Xk]) is fi-

nite, and hence (3.3) is finite. By dominated convergence, we obtain

μ(f ) = lim
n→∞μ

(
n∑

k=0

f k

)
.
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It then follows that μ(f ) = 〈f,ESig(X)〉 as desired since

lim
n→∞μ

(
n∑

k=0

f k

)
= lim

n→∞
n∑

k=0

〈
f k,E

[
Xk]〉 = 〈

f,ESig(X)
〉
.

�

COROLLARY 3.3. Let V be a normed space and X a G-valued random vari-
able. Then E[X] ∈ E exists if and only if r2(X) = ∞, that is, ESig(X) exists and
has an infinite radius of convergence. In this case E[X] = ESig(X).

We are moreover able to show explicit bounds between r1(X) and r2(X) when
V = R

d . Suppose first that V is a normed space. Remark that ‖�v‖ = 2‖v‖ for all
v ∈ V , from which it follows that ‖� |V ⊗̂k ‖ = 2k and thus∥∥�xk

∥∥ ≤ 2k
∥∥xk

∥∥ for all x ∈ E.(3.4)

Let V = R
d equipped with the �1 norm from its standard basis e1, . . . , ed , and

denote eI = ei1 · · · eik ∈ V ⊗k for a word I = i1 · · · ik in the alphabet {1, . . . , d}.
Then the grading of � gives

E
[∥∥Xk

∥∥2] = E

[( ∑
|I |=k

∣∣〈eI ,X
k 〉∣∣)2]

≤ dk
E

[ ∑
|I |=k

〈
eI ,X

k 〉2]

= dk
∑

|I |=k

e⊗2
I �E

[
X2k]

≤ dk
∥∥�E

[
X2k]∥∥,

where the last inequality follows since (eI ⊗ eJ )|I |=|J |=k is an �1 basis for V ⊗2k .
Using (3.4), we now obtain the following.

PROPOSITION 3.4. Let X be a G(Rd)-valued random variable. It follows that
E[‖Xk‖2] ≤ dk22k‖E[X2k]‖. In particular, r1(X) ≤ r2(X) ≤ 2d1/2r1(X).

4. Representations. Recall that for any Hopf algebra, one may define the
tensor product and dual of representations via the coproduct and antipode by
M1 ⊗ M2(x) := (M1 ⊗ M2)�(x) and M∗(x) := M(α(x))∗. By virtue of conti-
nuity of � and α, we observe that the family of continuous representations of E

over finite dimensional Hilbert spaces is closed under tensor products and duals.

DEFINITION 4.1. Denote by A(V ) the family of finite dimensional represen-
tations of E which arise from extensions of all linear maps M ∈ L(V ,u(HM)),
where HM ranges over all finite dimensional complex Hilbert spaces and u(HM)

denotes the Lie algebra of the anti-Hermitian operators on HM . Denote by C(V )

the set of corresponding matrix coefficients, that is, the set of linear functionals
Mu,v ∈ L(E,C), Mu,v(x) = 〈M(x)u, v〉 for all M ∈ A and u, v ∈ HM .
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The family A possesses the desirable property that it is closed under taking
tensor products and duals of representations. Moreover, we see that A contains
exactly those finite dimensional representations of E which preserve involution,
that is, M(αx) = M(x)∗ for all x ∈ E. It follows that every M ∈ A is a unitary
representation of the group U , and thus of G.

Observe that the tensor product M1 ⊗M2 (of any representations M1,M2 of E)
coincides on G with the usual group-theoretic tensor product of representations.
Moreover, the dual representation M∗ of M ∈ A can be identified on U with the
conjugate representation of M on U . It follows that C |G forms a ∗-subalgebra of
Cb(G,C).

Let S be a topological space and F a separating ∗-subalgebra of Cb(S,C). Re-
call that for Radon measures μ and ν on S (see [3], Definition 7.1.1), it follows
from the Stone–Weierstrass theorem that μ = ν if and only if μ(f ) = ν(f ) for
all f ∈ F ([3] Exercise 7.14.79). We now obtain the following from the above
discussion.

LEMMA 4.2. Assume that A separates the points of G. Then for tight Borel
measures μ,ν on G, μ = ν if and only if μ(f ) = ν(f ) for all f ∈ C, or equiva-
lently, μ(M) = ν(M) for all M ∈ A.

We show in Theorem 4.8 that in fact A(Rd) separates the points of E(Rd).

4.1. Separation of points. We investigate conditions under which algebra ho-
momorphisms of E separate points. Though ultimately we apply the theory to the
case V = R

d , the arguments used in the general case are exactly the same and we
provide them here.

For a Banach algebra A and M ∈ L(V ,A), let (λM) denote the algebra ho-
momorphism on E induced by λM ∈ L(V ,A) (λ possibly complex if A is
over C). For λ ∈ R, let δλ : E �→ E denote the dilation operator δλ(x

0, x1, . . .) =
(λ0x0, λ1x1, . . .) [note that (λM) = Mδλ for λ ∈ R].

LEMMA 4.3. Let V be locally convex, A a Banach algebra and M ∈ L(V ,A).
Let x ∈ E such that M(xk) �= 0 for some k ≥ 0. Then there exists ε > 0 sufficiently
small such that (εM)(x) �= 0.

PROOF. Since ‖M(x)‖ is a semi-norm on E,
∑

k≥0 ‖M(xk)‖ converges by
Corollary 2.5, from which the conclusion follows. �

Let F be a field and A an F-algebra. A polynomial identity over F on a subset
Q ⊆ A is a polynomial in non-commuting indeterminates x1, . . . , xk , with coeffi-
cients in F, which is non-zero (i.e., not every coefficient is zero) and which van-
ishes under all substitutions of variables x1, . . . , xk ∈ Q. We refer to Giambruno
and Zaicev [17] for further details.
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Let V be a vector space with Hamel basis �. Then the set of pure tensors �⊗k =
{v1 · · ·vk | vj ∈ �,1 ≤ j ≤ k} is a Hamel basis for V ⊗k . Thus for every x ∈ V ⊗k

define �x as the finite set of vectors in � which appear in the representation of
x in the basis �⊗k . Define f �

x the canonical formal non-commuting polynomial
in indeterminates �x associated with x. As �x is a finite set, the following is a
consequence of the Hahn–Banach theorem.

LEMMA 4.4. Let V be a locally convex space with Hamel basis �, A an
algebra which is a topological vector space, and Q ⊆ A a subset. Let k ≥ 0 and
x ∈ V ⊗k . The following two assertions are equivalent.

(i) f �
x is not a polynomial identity over R on Q.

(ii) There exists a continuous linear map M : V �→ span(Q) such that M(x) is
non-zero and M(v) is in Q for all v ∈ �x .

REMARK 4.5. If one is not interested in the topological aspects, the same
statement holds if one replaces R by a field F, V by a vector space over F, A by
an F-algebra, and drops the continuity assumption in (ii).

4.2. Polynomial identities over Lie algebras. From Lemmas 4.3 and 4.4, it is
clear that to study how representations in A(Rd) separate the points of E(Rd),
we must look at polynomial identities in unitary Lie algebras. Let m ≥ 1 be an
integer and denote by ·s the symplectic involution on M2m(C), which we recall is
an involution of the first kind (see [16]).

Recall the real Lie algebra sp(m) = {u ∈ u(C2m) | us + u = 0} [sp(m) is the
Lie algebra of the compact symplectic group Sp(m)]. A closely related complex
Lie subalgebra of gl(C2m) is sp(m,C) = {u ∈ M2m(C) | us + u = 0}. It holds that
sp(m,C) is the complexification of sp(m).

We now illustrate our interest in the Lie algebras sp(m) and sp(m,C). From the
remark that sp(m,C) = {u − us | u ∈ M2m(C)}, we may reformulate a result due
to Giambruno and Valenti as follows.

THEOREM 4.6 ([16] Theorem 6). Let m ≥ 2 and f (x1, . . . , xk) a polynomial
identity over C on sp(m,C) ⊂ M2m(C). Then deg(f ) > 3m.

The following is a slight generalization of [17] Theorem 1.3.2 and follows from
exactly the same inductive proof.

LEMMA 4.7. Let F be an infinite field, A an F-algebra and Q a linear
subspace of A. If f is a polynomial identity over F on Q, then every multi-
homogeneous component of f is a polynomial identity over F on Q.
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We remark that every multi-homogeneous polynomial identity over C (and a
fortiori over R) on sp(m) ⊂ M2m(C) is also a polynomial identity over C on its
complexification sp(m,C). Thus if f is a polynomial identity over R on sp(m) for
m ≥ 2, then by Theorem 4.6 and Lemma 4.7, every multi-homogeneous compo-
nent of f has degree greater than 3m. Together with Lemmas 4.3 and 4.4, we have
the following result.

THEOREM 4.8. Let x ∈ E(Rd) such that xk �= 0 for some k ≥ 0. Then for any
integer m ≥ max{2, k/3} there exists M ∈ L(Rd, sp(m)) such that M(x) �= 0. In
particular, A(Rd) separates the points of E(Rd).

REMARK 4.9. The necessity that V =R
d only came into the above argument

to ensure that V ⊗k = V ⊗̂k . If one was able to find an analogue of Lemma 4.4
for elements x ∈ V ⊗̂k , or an analogue of Theorem 4.6 for appropriate series of
polynomials of bounded degree but an unbounded number of indeterminates, then
one could readily extend Theorem 4.8 to the case when V is infinite dimensional.

COROLLARY 4.10. The group U(Rd) is maximally almost periodic.

REMARK 4.11. For d ≥ 2, the topological group G(Rd) [and thus U(Rd)]
is not locally compact. To observe this, let V = R

d and L(V ) be the smallest Lie
algebra in T (V ) containing V . Since every � ∈ L(V ) satisfies �(�) = 1⊗�+�⊗1
([33] Theorem 1.4), a direct calculation shows that exp(�) ∈ G.

Let u, v ∈ V be linearly independent elements and W = span(u, v). Observe
that L(W) contains a non-zero element in W⊗k for every k ≥ 1. In light of Propo-
sition 2.3, for any neighborhood of zero B of L(W) one can construct a sequence
(�n)n≥1 ∈ B such that γ (exp(�i)− exp(�j )) ≥ 1 for all i �= j and some semi-norm
γ on E. Since exp : L(W) �→ G is continuous ([1] Theorem 3), it follows that no
neighborhood of the identity in G is contained in a sequentially compact set (the
same argument more generally applies whenever V is metrizable).

It follows from Corollary 2.4 that E is Polish whenever V is metrizable and
separable, and thus G, as a closed subset of E, is also Polish. By Lemma 4.2 and
Theorem 4.8, we have the following.

COROLLARY 4.12. For Borel probability measures μ and ν on G(Rd), it
holds that μ = ν if and only if μ(f ) = ν(f ) for all f ∈ C(Rd), or equivalently,
μ(M) = ν(M) for all M ∈ A(Rd).

For a Borel probability measure μ on G(Rd), with associated random vari-
able X, we are thus able to define its characteristic function (or Fourier transform)
by φX = μ̂ := μ |A, which uniquely characterizes μ.
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5. Signatures of paths. We now discuss the space E in the setting of rough
paths theory. The main connection is that the signature of any geometric rough
path in R

d lies in G(Rd). We treat rough paths in the sense of Lyons and refer
to [15] and [28] for details and terminology.

Let V be a Banach space, p ≥ 1, T > 0, and �[0,T ] = {(s, t) | 0 ≤ s ≤ t ≤ T }.
Let ω denote a control function and T n(V ) = ⊕

0≤k≤n V ⊗̂k the truncated tensor
algebra. We recall that the space of p-rough paths �p(V ) is the collection of all
continuous multiplicative maps x : �[0,T ] �→ T �p� with p-variation controlled by
some control ω, that is:

(a) x0
s,t = 1 and xs,txt,u = xs,u for all 0 ≤ s ≤ t ≤ u ≤ T , and

(b) for some control ω one has

sup
1≤k≤�p�

(
(k/p)!βp

∥∥xk
s,t

∥∥)p/k ≤ ω(s, t), ∀(s, t) ∈ �[0,T ],(5.1)

where βp is a constant that only depends on p.
The map x may alternatively be viewed as a path x0,· : [0, T ] �→ T �p�, t �→ x0,t

of finite p-variation, that is,

‖x‖p-var;[0,T ] :=
�p�∑
k=1

sup
D⊂[0,T ]

(∑
tj∈D

(
(k/p)!βp

∥∥xk
tj ,tj+1

∥∥)p/k
)1/p

(5.2)

is finite, which completely characterizes x due to the multiplicative property (a)
(noting that xs,t = x−1

0,sx0,t ).
Let x ∈ �p satisfy (5.1) for some control ω. A fundamental result of rough

paths theory is that for all n ≥ �p� there exists a unique lift Sn(x) : �[0,T ] �→ T n

such that (a) and (b) remain true for the same ω and with sup1≤k≤�p� replaced
by sup1≤k≤n in (5.1) ([28] Theorem 3.1.2). Equivalently, there exists a unique lift
to the entire product space S(x) : �[0,T ] �→ P = ∏

k≥0 V ⊗̂k such that (a) and (b)
remain true for the same ω and with sup1≤k≤�p� replaced by sup1≤k in (5.1).

An immediate consequence of the factorial decay in (5.1) is that the lift S(x)

takes values in the space E for any p ≥ 1 (see Corollary 2.5).

REMARK 5.1. While the value of βp does not affect the definition of the
space �p , its existence is crucial to ensure the factorial decay arising from the
lift. On this point, we mention the work of Hara and Hino [20] who have resolved
a conjecture on the optimal possible value of βp .

We thus make a canonical extension of the space �p .

DEFINITION 5.2. Define the space �Ep as the set of maps x : �[0,T ] �→ E

which satisfy (a) and (b) with sup1≤k≤�p� replaced by sup1≤k in (5.1).
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It follows that the lift S is a bijective map from �p to �Ep , with inverse provi-

ded naturally by the �p�th level truncation (x0
s,t ,x1

s,t , . . .) �→ (x0
s,t ,x1

s,t , . . . ,x�p�
s,t ).

The element S(x)0,T ∈ E is called the signature of a rough path x ∈ �p . For
1 ≤ p < 2, S(x)0,T is precisely the sequence of iterated integrals of the path x0,· :
[0, T ] �→ V taken in the sense of Young.

REMARK 5.3. The only property of the projective tensor norm used above
is that the projective extension provides a sub-multiplicative system of norms.
Completely analogous results hold true if one equips T (V ) with any system of
sub-multiplicative norms and defines E as the completion of T (V ) under scalar
dilations of these norms. Note that in the case V = R

d , all these systems lead to
identical definitions and topologies on the space E.

The lift S moreover exhibits a natural continuity property with respect to the
p-variation topology on �p , which we briefly recall. For x, (x(n))n≥1 ∈ �p , a con-
trol ω and a sequence of reals (an)n≥1 with an ≥ 0, consider the statement

ω controls the p-variation of x and x(n) for all n ≥ 1, and
(5.3)

sup
1≤k≤�p�

(
(k/p)!βpan

∥∥x(n)ks,t − xk
s,t

∥∥)p/k ≤ ω(s, t), ∀(s, t) ∈ �[0,T ].

When (5.3) is satisfied for some control ω and a sequence (an)n≥1 such that
an ≥ 0 and limn→∞ an = ∞, we say that x(n) converges to x in the p-variation
topology of �p . One makes the same definition for x, (x(n))n≥1 ∈ �Ep with
sup1≤k≤�p� replaced by sup1≤k in (5.3).

The following is an immediate consequence of the continuity of the individual
lifts Sn for n ≥ �p� ([28] Theorem 3.1.3).

PROPOSITION 5.4. If x, (x(n))n≥1 ∈ �p satisfy (5.3) for some ω and (an)n≥1
with an ≥ 0, then S(x), (S(x(n)))n≥1 ∈ �Ep satisfy (5.3) for the same control ω

and sequence (an)n≥1.
In particular, S is continuous (and thus a homeomorphism) when �p and �Ep

are equipped with their respective p-variation topologies.

We equip �p with the p-variation topology and define the evaluation map Ip :
�p �→ E, x �→ S(x)0,T .

COROLLARY 5.5. The map Ip is continuous.

Define the space of geometric p-rough paths G�p as the closure of S�p�(�1)

in �p .

DEFINITION 5.6. For p ≥ 1, define Rp(V ) = {S(x)0,T | x ∈ G�p} ⊂ E as
the set of signatures of all geometric p-rough paths.
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We equip Rp with the subspace topology from E. Observe that R1 is dense in
Rp as a consequence of Corollary 5.5.

Remark that Rp is closed under multiplication in E and that for all x ∈ G�p ,
the inverse of S(x)0,T is S(y)0,T = α(S(x)0,T ), where y ∈ G�p is the reversal of
x and α is the antipode of E defined in Section 3 ([28] Theorem 3.3.3). Thus Rp

is a subgroup of U = {g ∈ E | α(g) = g−1}.

5.1. Finite dimensional case. In this section, we consider V = R
d . It follows

that P(Rd) [resp., E(Rd)] can be identified with the algebra of non-commuting
formal power series in d indeterminates (resp., with an infinite radius of conver-
gence).

We remark that the coproduct � of E(Rd) is given by a locally finite formula
involving the shuffle product ([33] Proposition 1.8) and an element g ∈ E(Rd) is
in G(Rd) precisely when (g0, g1, . . . , gn) is in the free n-step nilpotent Lie group
Gn(Rd) for all n ≥ 1 ([31] Lemma 2.24). Unless otherwise stated, we always equip
Gn(Rd) with the metric induced by the Carnot–Carathéodory norm.

A fundamental result of Chen [6] is that the signature of a bounded vari-
ation path in R

d is a group-like element of E(Rd) ([31] Section 2.2.5), and
thus R1(R

d) ⊂ G(Rd). Since G is closed in E, we immediately obtain the in-
clusions Rp(Rd) ⊂ R1(Rd) ⊆ G(Rd) for all p ≥ 1.

A closely related set to G�p(Rd) is the space WG�p(Rd) ⊂ �p(Rd) of weakly
geometric p-rough paths, that is, those p-rough paths x ∈ �p(Rd) which take
values in the free �p�-step nilpotent Lie group, that is,(

x0
s,t ,x1

s,t , . . . ,x�p�
s,t

) ∈ G�p�(
R

d), ∀(s, t) ∈ �[0,T ].

We note the strict inclusions

G�p

(
R

d) ⊂ WG�p

(
R

d) ⊂ G�p′
(
R

d)
for all p′ > p ≥ 1 ([15] Section 8.5), and thus WRp(Rd) ⊂ Rp′(Rd), where

WRp

(
R

d) = {
S(x)0,T | x ∈ WG�p

(
R

d)}.
PROPOSITION 5.7. Let p ≥ 1. Then WRp(Rd) is σ -compact in G(Rd). In

particular, WRp(Rd) is a Borel set of G(Rd).

For the proof, we recall the (homogeneous) p-variation metric dp-var on �p(Rd)

under which (�p(Rd), dp-var) is a complete metric space with a coarser topology
than the p-variation topology, but for which convergence of a sequence in dp-var
implies the existence of a subsequence which converges in the p-variation topol-
ogy (see [15], Section 8, and [28], Proposition 3.3.3, but note the differing nota-
tions for homogeneous and inhomogeneous metrics in the two texts; we use the
notation of [15]).
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PROOF OF PROPOSITION 5.7. For r > 0, consider the set

Br
p = {

x ∈ WG�p

(
R

d) | ‖x‖p-var;[0,T ] ≤ r
}
.

For every x ∈ Br
p there exists y ∈ Br

p such that t �→ y0,t is (1/p)-Hölder contin-
uous, with Hölder coefficient depending only on r and p, and such that x is a
reparametrization of y (cf. [15] Proposition 5.14). In particular, ‖x‖p-var;[0,T ] =
‖y‖p-var;[0,T ] and S(x)0,T = S(y)0,T . Let Cr

p ⊂ Br
p denote the set of all such y

associated with all x ∈ Br
p .

Let p′ > p be such that �p′� = �p�. It follows from an interpolation estimate
and the Arzelà–Ascoli theorem ([15] Lemma 5.12, Proposition 8.17) that Cr

p is
compact in (G�p′(Rd), dp′-var) and thus sequentially compact in G�p′(Rd) under
the p′-variation topology.

Since Ip′ : G�p′(Rd) �→ WRp′(Rd) is continuous by Corollary 5.5, and since
Ip′(Cr

p) = Ip′(Br
p), it follows that Ip′(Br

p) is sequentially compact in WRp′(Rd),
and thus compact. Since WRp(Rd) = ⋃

r≥1 Ip′(Br
p), it follows that WRp(Rd) is

σ -compact in G(Rd). �

We lastly record here a consequence of Theorem 4.8 and Theorem 4 of [19],
which strengthens Corollary 1.7 therein, and which was originally observed by
Prof. Thierry Lévy.

COROLLARY 5.8. A path of bounded variation in R
d is tree-like if and only if

its Cartan development into every finite-dimensional compact Lie group is trivial.

6. Expected signature. Our main focus in this section is the expected sig-
nature of G-valued random variables and its connection with the characteristic
function defined at the end of Section 4.

6.1. Moment problem. In this section, we study the moment problem for
G(Rd)-valued random variables, that is, conditions under which a G(Rd)-valued
random variable is uniquely determined by its expected signature. We mention
here that a large part of the results in this section arose from discussions with Dr.
Ni Hao, and we hope to soon jointly expand on this material in a future paper.

When V is a normed space, recall from Corollary 3.3 that if X is a G-valued
random variable such that ESig(X) exists and has an infinite radius of convergence,
then E[X] exists as an element of E and is equal to ESig(X). Thus E[f (X)] is
completely determined by ESig(X) for all f ∈ E′, and in particular for all M ∈ A.
The following is now a consequence of the uniqueness of probability measures
from Corollary 4.12.

PROPOSITION 6.1. Let X and Y be G(Rd)-valued random variables such that
ESig(X) = ESig(Y ) and ESig(X) ∈ E, that is, ESig(X) has an infinite radius of

convergence. Then X
D=Y .
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Recall from Corollary 5.5 that the evaluation map Ip : �p �→ E is continuous. It
follows that the signature S(X)0,T of any �p-valued (resp., G�p-valued) random
variable X is a well-defined (Borel) E-valued [resp., U -valued, or G(Rd)-valued
in case V =R

d ] random variable.

EXAMPLE 6.2. We apply Proposition 6.1 to the Lévy–Khintchine formula es-
tablished in [14]. Recall that [14] Theorem 52 describes a class of Lévy processes
in G2(Rd) which, by adding appropriate adjustments for jumps, may be treated as
G�p(Rd)-valued random variables for some 2 < p < 3 [which in particular in-
cludes all Lévy processes in R

d lifted to G2(Rd) by solving the associated Marcus
stochastic differential equation].

Let (a,b,K) be the triplet of a Lévy process in G2(Rd) satisfying the con-
ditions of [14] Theorem 52. Let X be the associated G�p(Rd)-valued random
variable for some 2 < p < 3, and X = S(X)0,T its signature. It follows from [14]
Theorem 55 that whenever the measure 1| logx|>1K(dx) integrates all powers of
| logx|, ESig(X) exists as an element of P(Rd) = ∏

k≥0(R
d)⊗k and is given by

ESig(X) = exp

[
T

(
1

2

d∑
i,j=1

ai,j eiej +
d∑

i=1

biei + ∑
j<k

bj,k[ej , ek]

+
∫
G2(Rd )

[
exp(logx) − x1| logx|<1

]
K(dx)

)]
,

where both appearances of exp are understood as exponentiation in P(Rd). In
particular, defining the norm ‖x‖λ = ∑

k≥0 λk‖xk‖ on E for λ > 0, one can readily
see that ESig(X) ∈ E whenever∫

G2(Rd )

∥∥exp(logx) − x1| logx|<1
∥∥
λK(dx) < ∞ for all λ > 0.(6.1)

Note that if X is the Marcus lift of a Lévy process in R
d with triplet (a, b,K),

then (6.1) holds precisely when∫
Rd

(
eλ|x| − 1 − 1|x|<1λ|x|)K(dx) < ∞ for all λ > 0.

It follows by Proposition 6.1 that whenever (6.1) is satisfied, S(X)0,T is uniquely
determined as a G(Rd)-valued random variable by its expected signature.

Recall the radius of convergence r1(X) from Definition 3.1. Theorem 6.3 be-
low provides sufficient conditions to ensure that r1(X) > 0 or r1(X) = ∞ without
explicit knowledge of ESig(X).

For a subset B ⊆ A of an algebra A and n ≥ 1, define Bn = {x1, . . . , xn |
x1, . . . , xn ∈ B}. For an element x ∈ A, define B(x) = inf{n ≥ 1 | x ∈ Bn} [tak-
ing B(x) = ∞ if x /∈ Bn for all n ≥ 1].
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Note that for a topological algebra A with (jointly) continuous multiplication,
an A-valued random variable X, and a (Borel) measurable set B ⊂ A, B(X) is a
well-defined random variable in {1,2, . . .} ∪ {∞}.

THEOREM 6.3. Let V be a normed space and X an E-valued random vari-
able. Suppose there exists a bounded, measurable set B ⊂ E such that B(X) has
an exponential tail, that is, E[eλB(X)] < ∞ for some λ > 0. Then r1(X) > 0. If
moreover E[eλB(X)] < ∞ for all λ > 0, then r1(X) = ∞.

PROOF. Equip E with the projective extension of the norm on V . For any
r > 0 and λ > 0 such that supx∈B ‖δr(x)‖ < eλ, it holds that∑

k≥0

rk
E
[∥∥Xk

∥∥] = E
[∥∥δr(X)

∥∥] ≤ E
[
eλB(X)],(6.2)

where the inequality follows from the fact that δr(X) = δr(X1) · · · δr(XB(X)) for
some X1, . . . ,XB(X) ∈ B .

Suppose first that E[eλB(X)] < ∞ for all λ > 0. For any r > 0 let λ > 0 be suf-
ficiently large such that supx∈B ‖δr(x)‖ < eλ. Then (6.2) implies that r1(X) ≥ r ,
and thus r1(X) = ∞.

Suppose now that E[eλB(X)] < ∞ for some λ > 0. By Proposition 2.10, the
functions δr converge strongly to δ0 as r → 0 and, in particular, uniformly on B .
Thus, there exists r > 0 such that supx∈B ‖δr(x)‖ < eλ. Then (6.2) implies that
r1(X) ≥ r > 0 as desired. �

We demonstrate how to apply Theorem 6.3 to random variables arising from
signatures of geometric rough paths.

Let V be a Banach space and p ≥ 1. We note that for any x ∈ �p , ωx(s, t) :=
‖x‖p

p-var;[s,t] defines a control for which (5.1) is satisfied. Thus for all k ≥ 1, the
lift S(x) : �[0,T ] �→ E satisfies

∥∥S(x)k0,T

∥∥ ≤ ω(0, T )k/p

βp(k/p)! .

We hence define

Kp =
{
x ∈ E

∣∣ sup
k≥0

βp(k/p)!∥∥xk
∥∥ ≤ 1

}
and observe that S(x)0,T ∈ Kp for every x ∈ �p with ‖x‖p-var;[0,T ] ≤ 1. Observe
furthermore that Kp is bounded and measurable in E.

For x ∈ �p , define kp(x) = Kp(S(x)0,T ), that is, the minimum positive integer
k for which there exist x1, . . . , xk ∈ Kp such that S(x)0,T = x1, . . . , xk .

We briefly recall the construction of the greedy sequence and function
Nκ,[0,T ],p(x) introduced in [4]. For κ > 0, define the sequence of times τ0 = 0,

τj+1 = inf
{
t > τj | ωx(τj , t) ≥ κ

}∧ T ,
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so that ωx(τj , τj+1) = κ for all 0 ≤ j < N = Nκ,[0,T ],p(x) := sup{j ≥ 0 | τj <

T } and ωx(τN, τN+1) ≤ κ (see [4], Definition 4.7, or [13], page 158). Note that
kp(x) ≤ N1,[0,T ],p(x) + 1.

REMARK 6.4. For any p,q ≥ 1 and x ∈ �q , note that the signature S(x)0,T

exists and so kp(x) is meaningfully defined. Moreover, in case q ≤ p, x can
canonically be viewed as an element of �p by its lift S�p�x ∈ �p , and we have
S(x)0,T = S(S�p�x)0,T .

However, if q < �p�, and N1,[0,T ],p(x) and the greedy sequence (τj )
∞
j=1 are

defined in terms of x (not its lift S�p�x), then N1,[0,T ],p(x) does not yield a deter-
ministic bound on kp(x) since the individual signatures S(x)τj ,τj+1 will in general
fail to be elements of Kp .

To obtain a bound on kp(x), one needs to consider N1,[0,T ],p(S�p�x) and (τj )
∞
j=1

defined in terms of S�p�x ∈ �p . Then S(x)τj ,τj+1 = S(S�p�x)τj ,τj+1 ∈ Kp for all
j = 0,1, . . . , and so kp(x) ≤ N1,[0,T ],p(S�p�x) + 1.

Let Kp(V ) be the family of �p-valued random variables X such that
E[eλkp(X)] < ∞ for all λ > 0.

COROLLARY 6.5. Let V be a Banach space, p ≥ 1 and X ∈ Kp(V ). Then
ESig[S(X)0,T ] has an infinite radius of convergence.

COROLLARY 6.6. Let p ≥ 1 and X ∈ Kp(Rd) such that X is G�p(Rd)-
valued. Then S(X)0,T is the unique G(Rd)-valued random variable whose ex-
pected signature is ESig[S(X)0,T ].

We now demonstrate two important examples of G�p(Rd)-valued random
variables in Kp(Rd). Remark that a non-negative random variable Z satisfies
E[eλZ] < ∞ for all λ > 0 whenever Zθ has a Gaussian tail for some θ > 1/2,
that is, P[Zθ > z] ≤ C−1e−Cz2

for all z > 0 and a constant C > 0. In both of the
following examples, [0, T ] is a fixed time interval.

EXAMPLE 6.7 (Gaussian rough paths). Recall that every centred continuous
Gaussian process in R

d with independent components and covariance matrix of
finite 2D ρ-variation, ρ ∈ [1,2), admits a natural lift to a G�p(Rd)-valued random
variable X for any p > 2ρ ([15] Theorem 15.33).

Recall that [4] Theorem 6.3 provides conditions which lead to bounds on the
tail of N1,[0,T ],p(X). In particular, due to [12] Theorem 1, the conditions of [4]
Theorem 6.3 are verified whenever the covariance matrix of X possesses finite
mixed (1, ρ)-variation for some ρ < 2, from which it follows that N1,[0,T ],p(X)θ

has a Gaussian tail, where θ = (2ρ)−1 + 1/2. We refer to [12] Section 2.3 for a
collection of examples satisfying the finite mixed (1, ρ)-variation condition, which
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in particular includes the natural lift of fractional Brownian motion with Hurst
parameter H > 1/4 and ρ = (2H)−1 ([12] Example 2.8).

Since kp(X) ≤ N1,[0,T ],p(X) + 1 as remarked before, it follows that whenever
the finite mixed (1, ρ)-variation condition is satisfied, X is a G�p(Rd)-valued
random variable in Kp(Rd) for any p > 2ρ.

EXAMPLE 6.8 (Markovian rough paths). Consider V = R
d , n ≥ 1, and g =

gn(Rd), which for convenience we identify with the Lie group Gn(Rd) via the
exponential map. Let X = Xa,x be a Markovian rough path constructed from a
Dirichlet form Ea on L2(g) for a ∈ �n,d(�), � ≥ 1, and starting point Xa,x

0 =
x ∈ g (taking the natural lift when n = 1; see [15] Chapter 16 for definitions). The
sample paths of this process are almost surely geometric p-rough paths for any
p > 2.

A recent result of Cass and Ogrodnik ([5] Theorem 5.3) implies that
N1,[0,T ],p(X)1−1/p has a Gaussian tail for any p > 2 (moreover the constant de-
termining the tail bounds depends only on �,p,n, d and T ). It follows that X is a
G�p(Rd)-valued random variable in Kp(Rd) for all p > 2.

6.2. Analyticity. In this section, we investigate conditions under which the
characteristic function is analytic. We apply these results to situations where the
expected signature does not necessarily have an infinite radius of convergence.

DEFINITION 6.9. Let X be an E-valued random variable, H a finite dimen-
sional complex Hilbert space, and M ∈ L(V ,L(H)). For λ ∈ C, define φX,M(λ) =
E[(λM)(X)] whenever ‖(λM)(X)‖ is integrable.

The above definition of φX,M does not introduce any new concept to the previ-
ously defined φX and simply makes the results in this section easier to state.

Recall that for a real random variable X, if E[|eλX|] < ∞ for all λ ∈ (−ε, ε),
then φX(λ) = E[eiλX] is well defined and analytic on the strip | Im(z)| < ε. This
property is known as the propagation of regularity (and similar results hold for C2k

regularity of φX on R; see, e.g., [25]).
We start by showing that the analogue of this property is not in general true for

G-valued random variables whenever dim(V ) ≥ 2. The propagation of regularity
for real [or equivalently G(R)-valued] random variables relies crucially on com-
mutativity in E(R), and we show how the lack of commutativity prevents the same
phenomenon from occurring when dim(V ) ≥ 2. Recall the radius of convergence
r1(X) from Definition 3.1.

EXAMPLE 6.10. Let V be a normed space with dim(V ) ≥ 2. We construct a
G-valued random variable X such that:

(1) r1(X) > 0, thus in particular, ESig(X) exists and φX,M is analytic in a
neighbourhood of zero for all M ∈ A,
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(2) there exists M ∈ L(V ,u(C2)) such that the set of λ ∈ C for which |λ| > 1
and E[‖(λM)(X)‖] = ∞ forms a dense subset of {z ∈ C | |z| > 1}, and

(3) φX,M is nowhere differentiable on (1,∞).

Let e1, e2 be fixed linearly independent vectors in V of unit length, s a non-
negative real random variable, and N a random variable in N = {0,1,2, . . .}
independent of s. Define the G-valued random variable X = exp(sfN), where
fN = [e1, [. . . , [e1, e2], . . .] with e1 appearing N times.

Suppose there exists r0 > 0 such that that E[ers] < ∞ for all 0 ≤ r < r0.
We claim this implies (1). Indeed, remark that ‖fn‖ ≤ 2n, and thus ‖δrX‖ ≤
exp(2NrNs). Denote pn = P[N = n]. It follows that for r > 0 sufficiently small

E
[‖δrX‖] ≤ ∑

n≥0

pnE
[
exp

(
2nrns

)]
< ∞,

which implies r1(X) > 0 as claimed.
Let su(2) be the special unitary Lie algebra of dimension 3 with the stan-

dard basis u1, u2, u3 satisfying [u1, u2] = u3, [u2, u3] = u1, [u3, u1] = u2. Let
M : V �→ su(2) defined by ei �→ ui for i = 1,2 and arbitrary otherwise.

Suppose moreover that E[ers] = ∞ for all r > r0 and that N has unbounded
support. We claim this implies (2). Indeed, let vn = M(fn) (thus v0 = u2, v1 =
u3, v2 = −u2, v3 = −u3, v4 = v0, . . .). Denote λ = reiθ for r, θ ≥ 0, so that
(λM)(X) = exp(srNeiNθvN). We obtain

E
[∥∥(λM)(X)

∥∥] = ∑
n≥1

pnE
[∥∥exp

(
srneinθvn

)∥∥]
= ∑

n≥1

pnE

[
exp

(
1

2

∣∣srn sin(nθ)
∣∣)],

where the last equality follows since ivn is Hermitian with eigenvalues ±1
2 .

Let D be any open subset of {z ∈ C | |z| > 1}. We observe that there ex-
ists n ≥ 1 sufficiently large and r > 1, θ > 0, such that pn > 0, reiθ ∈ D and
E[exp(1

2 |srn sin(nθ)|)] = ∞. Thus, (2) holds as claimed.
Finally, we make specific choices for s and N to obtain (3). Observe by Fubini’s

theorem that for all r ≥ 0

E
[
(rM)(X)

] = ∑
n≥1

pnE
[
exp

(
srnvn

)]
.

Suppose pn > 0 only if n = 4m for some integer m. Since

exp(tu3) =
(

eit/2 0
0 e−it/2

)
,

it follows that

E
[
(rM)(X)

] = ∑
n≥0

p4n

(
exp

(
ir4ns/2

)
0

0 exp
(−ir4ns/2

)) .
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It follows that φX,M has the same regularity at r > 0 as
∑

n≥0 p4nφs(r
4n/2), where

φs is the characteristic function of s.
It is now easy to find φs and pn such that the above series defines a nowhere

differentiable function on (1,∞). For example, let φs(λ) = (1 − q)(1 − qeiλ)−1

for any 0 < q < 1, that is, s is geometrically distributed with parameter 1 − q , and
let pn decay faster than any geometric sequence, that is, for any α ∈ (0,1) there
exists nα such that pn < αn for all n ≥ nα . The statement of (3) then follows by
Dini’s general construction of a nowhere differentiable function ([23], page 24).

REMARK 6.11. The random variable X constructed above is the exponential
of a Lie polynomial of degree N . Thus, when V = R

d , X is the signature of a ran-
dom weakly geometric N -rough path ([15], Exercise 9.17), and thus of a random
geometric p-rough path for p > N . Moreover, as the decay of ‖Xk‖ is exactly of
the order (k/N)!−1, there does not exist a fixed p ≥ 1 such that X is almost surely
the signature of a random geometric p-rough path.

One can however approximate each sample of X by the signature S(X)0,T of
a bounded variation path X0,· : [0, T ] �→ R

d in such as way that (1) and (2) in
Example 6.10 still hold for the G(Rd)-valued random variable S(X)0,T with the
change that the stated λ in (2) will be dense in the annulus {z ∈ C | 1 < |z| < R}
for any fixed R > 1 (where the random variable X depends on R).

DEFINITION 6.12. Let V be a normed space. Denote by �(V ) the set of G-
valued random variables X which satisfy:

(P1) r1(X) > 0, and
(P2) φX,M is (weakly) analytic on R for all M ∈A.

The importance of the set � is that when V = R
d and X,Y ∈ �(Rd) such that

ESig(X) = ESig(Y ), we have X
D=Y . To observe this, remark that for V normed

and X an E-valued random variable with r1(X) =: ε > 0, it follows by domi-
nated convergence that E[M(X)] = ∑

k≥0 M⊗k
E[Xk] whenever ‖M‖ < ε. Hence

for all M ∈ A, φX,M(λ) is completely determined by ESig(X) whenever |λ| is
sufficiently small, and the claim follows by Corollary 4.12.

Theorem 6.13 is the main result of this section and provides a criterion to ensure
that X ∈ �.

THEOREM 6.13. Let V be a normed space and X a U -valued random vari-
able. Suppose there exists a bounded, measurable set B ⊂ U such that B(X) has
an exponential tail, that is, E[eλB(X)] < ∞ for some λ > 0. Then (P1) and (P2)
hold for X.

PROOF OF THEOREM 6.13, (P1). This follows immediately from Theo-
rem 6.3. �

For the proof of (P2), we require the following two lemmas.
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LEMMA 6.14. Let F be a topological algebra, A a normed algebra, M ∈
Hom(F,A), B ⊂ F a bounded measurable set, and let c = supx∈B ‖M(x)‖. Let X

be an F -valued random variable such that ‖M(X)‖ and (c+ε)B(X) are integrable
for some ε > 0.

Then supM ′∈U ‖M ′(X)‖ is an integrable random variable, where

U =
{
M ′ ∈ Hom(F,A)

∣∣ sup
x∈B

∥∥M(x) − M ′(x)
∥∥ < ε

}
is an open subset of Hom(F,A) (under the strong topology).

PROOF. By definition of the strong topology, supx∈B ‖ · (x)‖ is a semi-norm
on L(F,A) and so U is indeed an open subset.

Moreover, x �→ supM ′∈U ‖M ′(x)‖ is the supremum of a family of continuous
functions, thus lower semi-continuous, and thus measurable. The claim now fol-
lows by a direct application of (2.2). �

For a bounded complex domain D ⊂ C, denote by Hb(D) the space of continu-
ous functions on D which are analytic on D. Recall that Hb(D) equipped with the
uniform norm is a separable Banach space.

LEMMA 6.15. Let V be a normed space, A a separable Banach algebra and
M ∈ L(V ,A). Let X be an E-valued random variable. Assume that for a bounded
domain D ⊂ C, supλ∈D ‖(λM)(X)‖ is an integrable random variable. Then for
every f ∈ A′, the map λ �→ E[〈f, (λM)(X)〉] is in Hb(D).

PROOF. Let f ∈ A′. For x ∈ E consider the map φM,f (x) : λ �→ 〈f, (λM)(x)〉,
which is an entire function on C.

We claim that the corresponding linear map φM,f : E �→ H(C), where H(C)

is the space of entire functions on C, is bounded when we equip H(C) with the
compact-open topology. Indeed, since λ �→ (λM) is a continuous map from C

into Hom(E,A) by Proposition 2.10, the collection of maps (λM)λ∈K is strongly
bounded in Hom(E,A) for any bounded set K ⊂ C. Thus for every bounded set
L ⊂ E, it holds that

sup
x∈L

sup
λ∈K

∥∥(λM)(x)
∥∥ < ∞.

In particular, this implies that φM,f (L) is a bounded subset of H(C) for every
bounded set L ⊂ E as claimed.

Since E is a Fréchet space (hence bornological), it follows moreover that φM,f :
E �→ H(C) is continuous. Hence φM,f (X) |D is a norm-integrable Hb(D)-valued
random variable and thus possesses a barycenter h ∈ Hb(D).

Let λ ∈ D. Since the evaluation map 〈·, λ〉 : x �→ x(λ) is in the continuous dual
of Hb(D), it follows that

h(λ) = E
[〈
φM,f (X),λ

〉] = E
[〈
f, (λM)(X)

〉] = 〈
f,E

[
(λM)(X)

]〉
,
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where the last equality follows since (λM)(X) is a norm-integrable A-valued ran-
dom variable and is thus weakly integrable by the separability of A. As h is in
Hb(D), the conclusion follows. �

PROOF OF THEOREM 6.13, (P2). Let M ∈ A. Since ‖M(g)‖ = 1 for all
g ∈ U , one obtains from Proposition 2.10 and Lemma 6.14 that there exists a do-
main D containing 1 ∈ C such that supλ∈D ‖(λM)(X)‖ is an integrable random
variable. The conclusion now follows by applying Lemma 6.15. �

Following the discussion at the end of Section 6.1, define

Np = Kp ∩ U =
{
g ∈ U

∣∣ sup
k≥0

βp(k/p)!∥∥gk
∥∥ ≤ 1

}
.

We observe that S(x)0,T ∈ Np for every x ∈ G�p with ‖x‖p-var;[0,T ] ≤ 1. As with
Kp , Np is bounded and measurable in E.

For x ∈ G�p , define np(x) = Np(S(x)0,T ), that is, the minimum positive inte-
ger n for which there exist g1, . . . , gn ∈ Np such that S(x)0,T = g1 · · ·gn. Recall
the functions kp and N1,[0,T ],p from Section 6.1 and note that kp(x) ≤ np(x) ≤
N1,[0,T ],p(x) + 1.

REMARK 6.16. As in Remark 6.4, we mention again that for 1 ≤ q ≤ p, every
x ∈ G�q is canonically defined as an element of G�p via its lift S�p�x ∈ G�p .
However, one cannot bound np(x) in terms N1,[0,T ],p(x) computed directly in
terms of x; instead one has np(x) ≤ N1,[0,T ],p(S�p�x) + 1.

Let Np(V ) be the family of G�p-valued random variables X such that np(X)

has an exponential tail. Note that if X ∈ Kp and is G�p-valued, then X ∈Np .

COROLLARY 6.17. Let V be a Banach space. Then for all p ≥ 1 and X ∈ Np ,
the signature S(X)0,T is a U -valued random variable satisfying (P1) and (P2).

In the finite dimensional setting, we obtain a result analogous to Corollary 6.6
but with weaker assumptions and a weaker conclusion.

COROLLARY 6.18. Let p ≥ 1 and X ∈ Np(Rd). Then S(X)0,T ∈ �(Rd). In
particular, S(X)0,T is the unique G(Rd)-valued random variable in �(Rd) whose
expected signature is ESig[S(X)0,T ].

REMARK 6.19. For a random variable X ∈ �(Rd), we cannot exclude the
possibility that there exists a G(Rd)-valued random variable Y (which might arise
as the signature of a geometric rough path) such that Y /∈ �(Rd) and ESig(X) =
ESig(Y ). Whether this is possible currently remains unknown.
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However, note that Corollaries 6.17 and 6.18 apply for all p ≥ 1. Thus for any
p,q ≥ 1 and random geometric rough paths X ∈ Np(Rd) and Y ∈ G�q(R

d), if
S(X)0,T and S(Y)0,T are not equal in law [as G(Rd)-valued random variables]
and ESig(S(X)0,T ) = ESig(S(Y)0,T ), then the lift S�q ′�Y cannot be in Nq ′(Rd)

for any q ′ ≥ q .

EXAMPLE 6.20 (Markovian rough paths stopped upon exiting a domain). Re-
call the notation of Example 6.8 and the result of Cass and Ogrodnik [5] that
N1,[0,1],p(Xa,x)1−1/p has a Gaussian tail for any p > 2.

In this example, we shall replace the interval [0,1] by [0, T ], where T is
the first exit time of Xa,x from a suitable set. In particular, we shall show that
Nκ,[0,T ],p(Xa,x) has an exponential tail and that this result is asymptotically sharp.

Throughout the example, we fix � ≥ 1 and g = gn(Rd). We first give a slight
extension of the support theorem [15] Theorem 16.33 in the Hölder topology. Re-
call the Sobolev path space W 1,2

x ([s, t],g) with starting point x ∈ g. In particular,
recall that for all h ∈ W 1,2

x ([s, t],g) and α ∈ [0,1/2]
‖h‖α-Höl;[s,t] ≤ (t − s)1/2−α‖h‖W 1,2;[s,t].

For θ > 0 consider the ball

Wθ;x := {
h ∈ W 1,2

x

([0,1],g) | ‖h‖W 1,2;[0,1] < θ
}
.

LEMMA 6.21. For any α ∈ [0,1/4), θ > 0 and c > 0, there exists δ > 0 such
that

P
a,x[dα-Höl;[0,1](X,h) < c

]
> δ

for all a ∈ �n,d(�), starting points x ∈ g, and h ∈ Wθ;x .

The proof is essentially the same as that in [15] and we defer it to the
end of the example. Recall now the greedy sequence (τj )

∞
j=1 associated with

Nκ,[0,T ],p(Xa,x). For ease of notation, we shall not stop τj at T for j > N :=
Nκ,[0,T ],p(Xa,x) (i.e., we do not necessarily have τN+1 = T ). Note this causes no
confusion since Xa,x

t is defined for all times t ≥ 0 as a diffusion in g.
Consider first Xa,x : [0,1] �→ g. Taking h ≡ x the trivial path, Lemma 6.21

implies that for any p > 4 and κ > 0, there exists δ > 0 such that

inf
x∈gP

a,x[‖X‖1/p-Höl;[0,1] < κ
] ≥ δ.

It follows that

inf
x∈gP

a,x[τ1 > 1] ≥ inf
x∈gP

a,x[‖X‖1/p-Höl;[0,1] < κ
] ≥ δ,

so by the (strong) Markov property of Xa,x and properties of conditional expecta-
tion

P
a,x[Nκ,[0,1],p(X) ≥ k

] = P
a,x[τk < 1] ≤ (1 − δ)k.
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That is, Nκ,[0,1],p(Xa,x) has an exponential tail [moreover δ does not depend on
x ∈ g or a ∈ �n,d(�)].

While this argument yields a strictly weaker asymptotic bound than that in [5],
the advantage is that by choosing appropriate h in Lemma 6.21, a very similar
argument gives upper and lower bounds on the tail of Nκ,[0,T ],p(Xa,x), where T

is now the first exit time of Xa,x from a suitable open set. We first show the lower
bound.

Recall that g is equipped with the (left-invariant) metric d induced by the
Carnot–Carathéodory norm (or any other symmetric sub-additive homogeneous
norm). For any r > 0 and x ∈ g, define Br(x) = {y ∈ g | d(x, y) ≤ r}.

PROPOSITION 6.22. Let p > 4, κ, r > 0. Define T = inf{t > 0 | Xa,x
t /∈

Br(x)} the first exit time of Xa,x from Br(x). Then there exists δ > 0 such that

P
a,x[Nκ,[0,T ],p(X) ≥ k

] ≥ δk

for all a ∈ �n,d(�) and x ∈ g.

PROOF. Let θ > 0 sufficiently large such for all x ∈ g and y ∈ Br/2(x)

there exists hy ∈ Wθ;y such that hy
1 = x, hy

t ∈ Br/2(x) for all t ∈ [0,1], and
‖hy‖p-var;[0,1] > κ + r/2 (e.g., take t �→ hy

t as a geodesic from y to x on [0,1/2]
and then hy

t = xh2t−1 for t ∈ [1/2,1] for a fixed h ∈ W
1,2
0 ([0,1],g) with h1 = 0,

ht ∈ Br/2(0) for all t ∈ [0,1], and ‖h‖p-var;[0,1] > κ + r/2).
Since ‖X‖p-var;[0,1] ≥ ‖hy‖p-var;[0,1] −d1/p-Höl;[0,1](X,hy), we have for all x ∈

g, y ∈ Br/2(x) and a ∈ �n,d(�)

P
a,y[Xt ∈ Br(x) for all t ∈ [0,1],‖X‖p-var;[0,1] > κ,X1 ∈ Br/2(x)

]
≥ P

a,y[d1/p-Höl
(
X,hy) < r/2

]
.

Applying Lemma 6.21 with c = r/2 and α = 1/p, along with the (weak) Markov
property and conditional expectation, concludes the proof. �

REMARK 6.23. Note that Proposition 6.22 deals only with the quantity
Nκ,[0,T ],p(Xa,x) and does not provide a lower bound on the tail of np(Xa,x

[0,T ]).
In particular, one cannot conclude that ESig[S(Xa,x)0,T ] does not have an infinite
radius of convergence.

We now show an upper bound on the tail of Nκ,[0,T ],p(Xa,x) which will im-
ply that S(Xa,x)0,T ∈ �(Rd) (see, however, Remark 6.26). For a subset D ⊂ g,
consider the following property:

There exist r, c > 0 such that sup
h∈Br(0)

inf
y∈D

d(xh, y) > c for all x ∈ D.(6.3)
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REMARK 6.24. For 1 ≤ k ≤ n, let πk : gn(Rd) �→ gk(Rd) denote the projec-
tion. Then whenever the image πk(D) satisfies (6.3) for some 1 ≤ k ≤ n [for the
respective metric on gk(Rd)], then so does D (with a different choice of r, c).

Indeed, on the one hand d(x, y) ≥ d(πk(x),πk(y)) for all x, y ∈ gn(Rd). On
the other hand, for every r > 0, there exists R > 0 such that Br(0) ⊂ πk(BR(0)) ⊂
gk(Rd). The conclusion readily follows since πk is a group homomorphism.

PROPOSITION 6.25. Let p > 4, κ > 0, and D ⊂ g be an open set satisfy-
ing (6.3) for some r, c > 0. Define T = inf{t > 0 | Xa,x

t /∈ D} the first exit time of
Xa,x from D. Then there exists δ > 0 such that

P
a,x[Nκ,[0,T ],p(X) ≥ k

] ≤ (1 − δ)k

for all a ∈ �n,d(�) and x ∈ D.

PROOF. Let θ > 0 be sufficiently large such that for every h ∈ Br(0) there
exists h ∈ Wθ;0 such that h1 = h. Note that it suffices to prove the statement for
any fixed κ > 0. In particular, we may assume that κ > θ + c.

It follows that to every point x ∈ D, we can assign hx ∈ Br(x) and hx ∈ Wθ;x
such that infy∈D d(hx, y) > c and hx

1 = hx . Then for all a ∈ �n,d(�) and x ∈ D

P
a,x[τ1 > 1 ≥ T ] ≥ P

a,x[‖X‖p-var;[0,1] < θ + c,X1 /∈ D
]

≥ P
a,x[‖X‖1/p-Höl;[0,1] < θ + c, d

(
X1, h

x) < c
]

≥ P
a,x[d1/p-Höl;[0,1]

(
X,hx) < c

]
.

Applying Lemma 6.21 with α = 1/p, along with the (strong) Markov property and
conditional expectation, concludes the proof. �

REMARK 6.26. The diffusion Xa,x is constructed on the space gn = gn(Rd)

[or equivalently on Gn(Rd)], and Proposition 6.25 gives an exponential bound
on the tail of N1,[0,T ],p(Xa,x) computed in terms of Xa,x for any p > 4. Fixing
4 < p < 5, Corollary 6.18 thus implies that S(Xa,x)0,T ∈ �(Rd) for n ≥ 4.

One could extend this to the case n = 2 or 3 (recall for n = 1 we consider the
diffusion Xa◦π1,x on g2) if the analogue of Lemma 6.21 were true for all α ∈
[0,1/2). However such a support theorem is currently unknown.

Nonetheless, in light of Remarks 6.4 and 6.16, for n = 2 or 3 we can still show
that S(Xa,x)0,T ∈ �(Rd) by showing that N1,[0,T ],p(S4Xa,x) has an exponential
tail.

To show this, note we can apply Proposition 6.25 to the diffusion Xa◦πn,y on
g4 and the open set (πn)−1(D) ⊂ g4 [which indeed satisfies (6.3) due to Re-
mark 6.24]. We thus obtain that N1,[0,T̃ ],p(Xa◦πn,y) has an exponential tail, where

T̃ is the first exit time of πnXa◦πn,y from D.
To conclude that N1,[0,T ],p(S4Xa,x) has an exponential tail, it suffices to show

that Yy· := y ∗ S4Xa,πny
0,· is equal in law to Xa◦πn,y· for all y ∈ g4 as processes on
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g4 (∗ denoting group multiplication in g4). This follows by a similar argument
as [11] Section 6: observe that the Markov process Yy

t is the solution of an RDE
with starting point y ∈ g4 and driven by π2(Xa,πny

t ) (which is non-Markov in
general) along the (unbounded) canonical left-invariant vector fields u1, . . . , ud

on g4. Denoting by Pt the semi-group on Cb(g
4) of Yy

t , it suffices to show that

lim
t→0

〈
t−1(f −Pt f ), g

〉
L2(g4) = Ea◦πn

(f, g)

for all f,g ∈ C∞
c (g4).

Consider f,g ∈ C∞
c (g4) with support in a ball BR(0) ⊂ g4 and fix smooth

vector fields uR
i which agree with ui on B2R(0) and have compact support. Let

YR,y
t denote the RDE driven by π2(X

a,πn(y)
t ) along uR

i starting at YR,y
0 = y. For

all y ∈ BR(0) and t ∈ [0,1], we have YR,y
t = Yy

t whenever Yy
s ∈ B2R(0) for all

s ∈ [0, t]. The probability that Yy
s leaves B2R(0) in [0, t] is bounded above by

C−1 exp(−Ct−2/p) for any 2 < p < 3 and some C = C(R,p) (which follows
from Fernique estimates on ‖Xa,x‖1/p-Höl;[0,1]).

Defining PR
t f (y) := E[f (YR,y

t )], it follows readily that

lim
t→0

〈
t−1(f −Pt f ), g

〉 = lim
t→0

〈
t−1(f −PR

t f
)
, g

〉
.

Finally, the latter limit is now seen to equal Ea◦πn
(f, g) following [11] Lem-

mas 26, 27 and the proof of Proposition 28 (note that one readily extends
Lemma 27 to diffusions on gn for n > 2, cf. [15] Proposition 16.20).

PROOF OF LEMMA 6.21. We mimic the proofs of [15] Lemma 16.32 and
Theorem 16.33 while keeping track of constants.

For α ∈ [0,1/4), h ∈ W 1,2
x ([0,1],g) and ε > 0 define the set

Bh
ε;α = {

x ∈ Cα-Höl
x

([0,1],g) | ‖x‖α-Höl ≤ 2‖h‖α-Höl + 1, d∞(x,h) ≤ ε
}
.

We claim that for all α ∈ [0,1/4) and ε > 0, there exists δ > 0 such that

P
a,x[X ∈ Bh

ε;α
]
> δ

for all a ∈ �n,d(�), x ∈ g, and h ∈ Wθ;x .
Indeed, we follow the proof [15] Lemma 16.32 (we also mention here that,

directly as stated, [15] Lemma 16.32 contains the minor error that it fails to hold
for the trivial path ‖h‖α-Höl = 0; this is readily fixed by modifying the definition of
their Bh

ε to our definition above; moreover the proof of [15] Theorem 16.33 then
goes through unchanged).

Using Step 1 of the proof of [15] Lemma 16.32, we obtain that for any β ∈
(α,1/2), Pa,x[X ∈ Bh

ε;α] ≥ �1 − �2, where �1 = P
a,x[d∞(X,h) ≤ ε] and

�2 = P
a,x[‖X‖β-Höl >

(‖h‖α-Höl + 1
)β/α

(2ε)1−β/α].
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The claim will follow once we show that �2/�1 → 0 as ε → 0 uniformly over
a ∈ �n,d(�), x ∈ g, and h ∈ Wθ;x .

By [15] Theorem E.21, we have log(�1) ≥ −c1ε
−2 where c1 = C(1 +

‖h‖W 1,2)2 and C is a constant depending only on the doubling and Poincaré con-
stants of Ea , which in turn depend only on �,n and d ([15] Proposition 16.5 and
Theorem E.8).

On the other hand, the Fernique estimate in [15] Corollary 16.12 implies that

log(�2) ≤ −c2
(‖h‖α-Höl + 1

)2β/α
ε2−2β/α ≤ −c2ε

2−2β/α,

where c2 depends only on β and �. So for fixed α ∈ [0,1/4), choose any β ∈
(2α,1/2). Since 2 − 2β/α < −2, we see �2/�1 → 0 as ε → 0 uniformly over the
desired variables, which proves the claim.

To conclude, we follow the proof of [15] Theorem 16.33. By the d0/d∞ estimate
on g ([15] Proposition 8.15),

d0(x,h) ≤ Cd∞(x,h) + Cd∞(x,h)1/n(‖x‖∞ + ‖h‖∞
)1−1/n

,

where C = C(n, d), and so by interpolation ([15] Lemma 8.16) we have for all
x ∈ g, x,h ∈ Cα-Höl

x ([0,1],g) and 0 ≤ α′ < α < 1/4 that

dα′-Höl(x,h) ≤ (‖x‖α-Höl + ‖h‖α-Höl
)α′/α

d0(x,h)1−α′/α

≤ C1−α′/α(‖x‖α-Höl + ‖h‖α-Höl
)α′/α

× [
d∞(x,h) + d∞(x,h)1/n(‖x‖∞ + ‖h‖∞

)1−1/n]1−α′/α
.

Since ‖h‖∞ ≤ ‖h‖α-Höl ≤ ‖h‖W 1,2 , it follows for all h ∈ Wθ;x and x ∈ Bh
ε;α that

dα′-Höl(x,h) ≤ c3
(
ε + ε1/n)1−α′/α

,

where c3 depends only on n,d,α,α′ and θ .
Choosing ε > 0 so that c3(ε + ε1/n)1−α′/α < c, it follows that there exists δ > 0

such that

P
a,x[dα′-Höl(X,h) < c

] ≥ P
a,x[X ∈ Bh

ε;α < c
]
> δ

for all a ∈ �n,d(�), x ∈ g, and h ∈ Wθ;x , which concludes the proof. �

6.3. Convergence of measures. We conclude the paper with a result analogous
to the method of moments for weak convergence of G(Rd)-valued random vari-
ables. We work first with a slightly general notion of coproduct spaces as this is
the only structure of E which we require.

DEFINITION 6.27. A coproduct space (F,�) is a locally convex space F and
a continuous linear map � : F �→ F ⊗̂2, with the additional property that G(F) :=
{g ∈ F | �(g) = g ⊗ g,g �= 0} is closed in F . Let PG(F) be the set of (weakly)
integrable probability measures on G(F).
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The extra condition that G(F) is closed in F will only arise in Lemma 6.30 to
ensure that G(F) is Polish whenever F is. Remark that (3.1) remains true for any
coproduct space (F,�), f ∈ F ′, and μ ∈ P(F ) with support on G(F).

LEMMA 6.28. Let (F,�) be a nuclear coproduct space and γ a semi-norm
on F . There exists a semi-norm ξ on F such that μ(γ ) ≤ √

ξ(μ∗) for all μ ∈
PG(F).

PROOF. Let ζ be a semi-norm on F such that the canonical map F̂ζ �→ F̂γ is
nuclear. Increasing ζ by a scalar multiple if necessary, it follows that there exist
(fn)n≥1 ∈ F ′ such that

∑
n≥1 ζ(fn) ≤ 1 and γ ≤ ∑

n≥1 |fn|. The conclusion then
follows from (3.1) for any semi-norm ξ on F such that ξ ≥ (ζ⊗2) ◦ �. �

LEMMA 6.29. Let (F,�) be a Fréchet nuclear coproduct space. Let R ⊆
PG(F) be a family of probability measures on G(F) such that (μ∗)μ∈R is
bounded. Then R is uniformly tight.

PROOF. Let (γn)n≥1 be a defining non-decreasing sequence of semi-norms
on F . By Lemma 6.28 there exists a sequence of semi-norms (ξn)n≥1 on F

such that μ(γn) ≤ √
ξn(μ∗) for all μ ∈ PG(F). Since (μ∗)μ∈R is bounded,

supμ∈R ξn(μ
∗) < ∞ for every n ≥ 1.

Let Bn = {x ∈ F | γn(x) < 1}. For any sequence of positive reals (λn)n≥1, the
set K := ⋂

n≥1 λnBn is bounded in H and thus relatively compact ([36], page 520).
For all μ ∈ PG(F) we have that

μ
(
Kc) ≤ ∑

n≥1

μ
({

x | γn(x) ≥ λn

}) ≤ ∑
n≥1

λ−1
n μ(γn) ≤ ∑

n≥1

λ−1
n

√
ξn

(
μ∗).

Taking λn sufficiently large, it follows that supμ∈R μ(Kc) can be made arbitrarily
small. �

LEMMA 6.30. Let (F,�) be a Fréchet nuclear coproduct space and let
(μn)n≥1 be a sequence of measures in PG(F) such that μ∗

n → x weakly for
some x ∈ F . Then there exists μ ∈ PG(F) and a subsequence (n(k))k≥1 such that

μn(k)
D→μ and x = μ∗.

PROOF. Recall that a Fréchet Montel space (thus in particular a Fréchet nu-
clear space) is always separable ([35], page 195), and hence Polish. As a closed
subset of F , G(F) is also Polish.

The sequence (μ∗
n)n≥1 is bounded ([34], Theorem 3.18) thus there exists a con-

vergent subsequence μn(k) → μ for some probability measure μ on G(F) by
Lemma 6.29.



4080 I. CHEVYREV AND T. LYONS

Let f ∈ F ′. Since supn≥1 μn(f
2) = supn≥1(f

⊗2)(�μ∗
n) < ∞, the sequence of

image measures (μnf
−1)n≥1 on R is uniformly integrable. It follows that f is

μ-integrable and f (μ∗
n) = μn(f ) → μ(f ) ([3] Lemma 8.4.3). Thus, x = μ∗ and

μ ∈ PG(F). �

Recall that E is Fréchet and nuclear whenever V is. The following is now a
consequence of Lemma 6.30 and Proposition 6.1.

THEOREM 6.31. Let (Xn)n≥1 be a sequence of G(Rd)-valued random vari-
ables such that E[Xn] ∈ E(Rd) exists [i.e., r2(Xn) = ∞] for all n ≥ 1. Sup-
pose that E[Xn] converges to some x ∈ E(Rd) in the weak topology of E(Rd).
Then there exists a unique integrable G(Rd)-valued random variable X such that

Xn
D→X and x = E[X].

REMARK 6.32. We remark that F := P(R) = ∏
k≥0(R)⊗k is also a Fréchet

nuclear coproduct space under the product topology. Moreover the exponential
map exp : R �→ G(R) = G(F) is a homeomorphism. One may then directly apply
Lemma 6.30 to obtain a proof of the classical method of moments for real random
variables: if μn are probability measures on R with finite moments (mn(j))j≥1
such that limn→∞ mn(j) = m(j) for every j ≥ 1, then (m(j))j≥1 are the mo-

ments of a probability measure μ on R for which μn(k)
D→μ along a subsequence

(n(k))k≥1 [if μ is moment-determined then in fact μn
D→μ].
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