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ONE-DIMENSIONAL LONG-RANGE DIFFUSION-LIMITED
AGGREGATION I

BY GIDEON AMIR1,∗, OMER ANGEL2,†,
ITAI BENJAMINI3,‡ AND GADY KOZMA4,‡

Bar Ilan University,∗ University of British Columbia† and Weizmann‡

We examine diffusion-limited aggregation generated by a random walk
on Z with long jumps. We derive upper and lower bounds on the growth rate
of the aggregate as a function of the number of moments a single step of the
walk has. Under various regularity conditions on the tail of the step distribu-
tion, we prove that the diameter grows as nβ+o(1), with an explicitly given β.
The growth rate of the aggregate is shown to have three phase transitions,
when the walk steps have finite third moment, finite variance, and conjec-
turally, finite half moment.

1. Introduction. Start with a single seed particle fixed in space. Bring a sec-
ond particle from infinity, doing a random walk. Once it hits the first particle, freeze
it at the last place it visited before hitting the first particle. Bring a third particle
and freeze it when it hits the existing particles. Repeat, and watch the aggregate
grow. This process, known as diffusion-limited aggregation, DLA for short, was
suggested by physicists Witten and Sander [37] when the space is Z

2. They ran
simulations with several thousand particles and discovered that a random fractal
ensues. The elegance of the model immediately caught the eyes of both physicists
and mathematicians.

However, very little has been proved about this model rigorously. Kesten [22–
24] proved nontrivial upper bounds for the growth rate, but these do not demon-
strate the fractal nature of the model. Eberz-Wagner [16] has some results about lo-
cal statistics of the aggregate. Various simplified models have been suggested, but
the fractal nature of the aggregate is at best partially replicated. DLA on a cylinder
was shown to have a fingering phenomenon, when the base of the cylinder mixes
sufficiently rapidly [12] (see also [10]). In the superficially similar internal DLA,
a process where the particles start from 0, walk on the aggregate and are glued
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at their point of departure, the limiting shape is a ball [4, 5, 20, 21, 26, 27, 29,
35]. A similar phenomenon happens for the Richardson model, where the position
of the glued particle is picked from the uniform measure on the boundary of the
aggregate. Here, the limit shape is some (unknown) convex shape which is a far
cry from being a fractal [30, 33]. DLA on trees requires one to adjust the param-
eters in order to get a “fingering” phenomenon [8]. See also [6, 7, 24, 32] and the
fascinating deterministic analog, the Hele–Shaw flow [14, 17].

In this paper, we study one-dimensional long-range DLA. The random walk
of the particles has unbounded long jumps. When such a long jump lands on a
site already in the aggregate the jump is not performed and the particle is glued
in its current position. Thus, we deviate from the view of DLA as a connected
aggregate, but that is of course necessary to have an interesting aggregate in one
dimension. (As a particle system, there are interesting problems even in the con-
nected one-dimensional case; see [25].) One-dimensional long-range models have
been studied for various questions, for example, for percolation, Ising, and others
[1, 9, 13, 15, 19, 31, 34]. Such models frequently exhibit interesting phenomenol-
ogy, reminiscent of the behaviour in Z

d but different from it. In particular, there
is no canonical correspondence between the dimension d and the strength of the
long-range interactions.

It is time to state our results (precise definitions will be given in Section 2). We
say that a random variable ξ has α moments if

α := sup
{
a ≥ 0 : E|ξ |a < ∞}

.

A random walk {Rn} has α moments if its step distribution does. In particular, if
P(|R1 − R0| = k) = k−1−α+o(1), then R has α moments. Our results focus on the
effect of α on the growth rate of the DLA generated by the random walk. We need
our walk to be irreducible in order to have a reasonable definition of “coming from
infinity”, and assume this implicitly throughout the paper.

THEOREM 1. Let R be a symmetric random walk on Z with step distribution
satisfying P(|R1 − R0| = k) = (c + o(1))k−1−α . Let Dn be the diameter of the n

particle aggregate. Then almost surely:

• If α > 3, then n − 1 ≤ Dn ≤ Cn + o(n), where C is a constant depending only
on the random walk.

• If 2 < α ≤ 3, then Dn = nβ+o(1), where β = 2
α−1 .

• If 1 < α < 2 then Dn = n2+o(1).
• If 1

3 < α < 1 then

nβ+o(1) ≤ Dn ≤ nβ ′+o(1),

where β = max(2, α−1) and β ′ = 2
α(2−α)

.

• If 0 < α < 1
3 then Dn = nβ+o(1), where β = α−1.
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FIG. 1. If the random walk R has α finite moments, then the diameter of the resulting n-particle
aggregate grows as nβ . For 1

3 < α < 1, our lower and upper bounds for β differ, and we believe the
lower bound is correct.

Figure 1 depicts the various regimes described in Theorem 1. Not all of Theo-
rem 1 is proved in this paper—the cases α < 1 are delegated to part II [3]. Let us
remark that this formulation is significantly weaker than our results below for each
regime. The theorems dealing with the various ranges of α apply to much more
general random walks, and give more precise estimates on the diameter Dn. The
exact requirements and resulting estimates vary, and the above formulation lies in
their intersection. See the statement of Theorems 4.1, 5.1, 5.3 and 6.1 throughout
the text, and the results in part II. While our results as stated do not cover the “crit-
ical” cases α = 1,2, the reasons are mainly simplicity of presentation. The proofs,
generally speaking, can be extended to the boundary case with additional effort
(and sometimes with additional regularity conditions).

The most interesting feature of Theorem 1, is of course the multiple phase
transitions—as seen from Figure 1—at 3, 2 and at an (as yet) unknown place in
[1

3 ,1]. We feel compelled to discuss them on a heuristic level. Before we consider
the transitions at 2 and 3, there is a point about the regime α > 2 that should be
made.

When α > 2, R has a finite second moment and the large scale behaviour of R

is similar to that of the simple random walk on Z. In particular, the random walk
has Brownian motion as its scaling limit. This suggests that all walks with finite
step variation will give rise to similar DLA aggregates. As already stated, this is
not the case. While the Green’s function and the potential kernel of any such walk
have linear asymptotics (see Section 5), the growth rate of the DLA diameter can
differ. The basic reason is that the walker is more likely to discover new territory
when making a large jump: A jump of size k takes the walker out of an interval
where it has typically spent the past k2 steps. Such a jump is therefore roughly k2
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times more likely to reach previously unvisited vertices. This causes large jumps to
contribute disproportionately to the aggregate growth. A similar effect is exhibited
by the ladder process corresponding to the random walk (see [36], Section 18): A
large jump is more likely to bring the walk to a new maximum, and consequently
the ladder steps have a thicker tail than the walk itself.

Throughout the regime α > 2, the process is directed: particles coming from
+∞ have a bigger probability of hitting the right side and particles coming from
−∞ will have a bigger probability of hitting the left side. Further, each particle
has probability bounded away from 0 of hitting the extreme particle on its side and
increase the aggregate’s diameter. The diameter can now be compared to a sum
of i.i.d. variables (though the increments are, of course, dependent) where if the
expectation is finite then the sum increases linearly whereas if the expectation is
infinite then the largest contribution dominates all the rest. The phase transition at
3 reflects a transition between a regime of incremental additions and a regime of
large jumps.

In the regime 2 < α < 3, a calculation shows that P(�Dn > m) ≈ nm1−α ,
where here and below, the notation ≈ denotes that the ratio between the two sides
are bounded between two positive constants that depend only on the walk. When
m = n2/(α−1) this probability is ≈ 1/n and there is probability bounded away from
0 that at least one such event occurs in the first n particles. As explained above,
such an event dominates all the rest, and hence Dn ≈ n2/(α−1). For this reason,
the proof of the lower bound is the easier (the calculation of the probability above,
once justified, yields it immediately). The upper bound requires to bound the con-
tribution of the smaller jumps, which turns out to be trickier and requires some
insight into the structure of the aggregate.

The next phase transition is at α = 2. This corresponds to the transition from
Gaussian behaviour of the random walk to stable behaviour: for α < 2 the walk
scales to an α-stable process, and the Green’s function grows like nα−1. In the
recurrent stable regime, 1 < α < 2, the calculation is quite similar to the one for
the case 2 < α < 3, but the result is that the additional contribution from the fatter
tail of the walk is exactly canceled by the slower growth of the Green’s function
and the growth of the aggregate is always n2.

Let us first state what we believe is the true behaviour in the regime 0 < α < 1,
which is that the lower bound of Theorem 1 is sharp:

CONJECTURE. Let R be a symmetric random walk on Z with step distribution
satisfying P(|R1 − R0| = k) ≈ ck−1−α for some 0 < α < 1. Then Dn = nβ+o(1)

with β = max(2, 1
α
).

The reason for this conjecture will be discussed in more detail in part II, but
for now let us remark that we can prove this conjecture in the regime 0 < α < 1

3 ,
and the same argument used there would show that same in the regime 1

3 < α < 1
2



3550 AMIR, ANGEL, BENJAMINI AND KOZMA

under very reasonable assumptions on the amount far away parts of the aggregate
influence one another. Thus, we have a sound basis to believe that at α = 1

2 , the
aggregate grows like n2+o(1). But this is exactly the growth rate at α = 1. It is
reasonable to believe that β is decreasing as a function of α (though, again, we
have no proof of that either), and hence the exponent should be 2 throughout the
interval [1

2 ,1].
This conjecture raises two questions. The first: why is there a transition at 1

2 ?
One may point at a certain transition in the behaviour of a certain bound on the ca-
pacity of a fractal, but that is not much different than saying “because that is what
the calculation shows”. But a more fundamental question is: why is there no tran-
sition at 1? After all, 1 is the location of the most dramatic transition in our picture,
the transition between the recurrent and transient regimes (see, e.g., [36], E8.2). In
the transient regime, one needs to modify the definition of the process: we can-
not simply have a particle “coming from infinity”. Instead one must condition on
the particle ever hitting the aggregate. Put differently, even though the processes at
both sides of 1 are different processes with only some kind of heuristic connection,
they still seem to grow at the same rate.

We remark that even if our conjecture is false and there is a phase transition at 1,
it must be very weak. Indeed, the upper bound of n2/(α(2−α)) in Theorem 1 shows
that β(α), assuming it exists, must be differentiable at 1, and β ′(1) = 0. Thus,
despite the fundamental difference between the process for α < 1 and α > 1, the
effect on the behaviour of Dn is not so great. Let us stress again that for all we
know the growth rate of the aggregate at 1

3 < α < 1 might be undefined, or depend
on the particular walk.

We should caution that there are difficulties in simulating the process to get good
numerical support for the conjecture. There are heuristic reasons to believe (see
Section 7) that the growth rate is not quite nmax(2,1/α), but that there are corrections
which are at least logarithmic in size.

While Theorem 1 and the bulk of our results describe only the behaviour of the
diameter of the aggregates, they give reason to believe that rescaling the process
might yield an interesting process. One could ask, does the random set An have a
scaling limit? Note that there several interpretations to this question. The scaling
could be by some deterministic factor, or by normalizing the set An to the interval
[0,1]. There are also several topologies under which this question is interesting,
including the Hausdorff topology on subsets of [0,1], and weak convergence of
the uniform measure on (the rescaled) An. A natural topology to consider might
be weak convergence of the rescaled harmonic measure.

Last but not least, let us discuss A∞, the infinite aggregate defined as the union
of the aggregates at all finite times. The natural expectation is that the density of
A∞ should reflect the growth rate of Dn, at least to order of magnitude, that is if
Dn = nβ+o(1) then ∣∣A∞ ∩ [−n,n]∣∣ = n1/β+o(1).(1.1)
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Indeed, in part III [2] we give a proof of (1.1) for the case α > 2. When α > 3
we show that the process has renewal times, at which the subsequent growth of the
aggregate is independent of the structure of the aggregate. Equation (1.1) is a direct
consequence. When 2 < α < 3, these renewal times no longer exist. However, we
show that it is still hard for particles to penetrate deep into the aggregate, and derive
(1.1) in this case as well. The case α < 2 has other difficulties and at present we
are not ready to speculate on the validity of (1.1). However, in Section 7 we give an
example of a walk with α = 0, “the Z

3 restricted walk” for which, despite the fact
that Dn grows super-exponentially, A∞ = Z. We do not know if such examples
exist for 0 < α < 2, as the construction we use is somewhat special.

Roadmap. In Section 2, we derive a general formula for the gluing measure in
the recurrent case. This section is a prerequisite for the rest of the paper. We then
highly recommend reading Section 3 in which we analyze one specific case, the
Z

2 restricted walk (this walk has α = 1). The proof in this case is much easier than
the other cases, and does not require any knowledge of stable random variables.
The next sections are arranged by α; Section 4 for α > 3, Section 5 for 2 < α < 3,
Section 6 for 1 < α < 2. Finally, Section 7 describes the aforementioned example
with α = 0.

A nontrivial portion of the paper (and of part II) is dedicated to discrete potential
theory, both general and that of stable walks (e.g., Lemma 6.4). We expected to find
many of these results in standard references, and did not.

2. Preliminaries.

2.1. Notation. For a subset A ⊂ Z we will denote by diamA the diameter
of A, namely maxA−minA. For x ∈ Z we will denote by d(x,A) the point-to-set
distance, namely miny∈A |x − y|. Throughout we let An be the n point aggregate,
and denote Dn = diamAn, �Dn = Dn+1 − Dn. Let Fn be the minimal σ -field
generated by A0, . . . ,An.

We denote a single step of the random walk by ξ , and the random walk itself
by R = (R0,R1, . . .). We denote by Px the probability measure of the random
walk started at x. The transition probabilities of the random walk are denoted by
px,y = P(ξ = y − x). For a given set A, define

p(x,A) = ∑
a∈A

px,a.

We denote by TA be the hitting time of A, defined as

TA = min{n > 0 s.t. Rn ∈ A}.
Note that TA > 0 even if the random walks starts in A. For a set {x} with a single
member we also write Tx for T{x}. Denote by g(x, y) the Green’s function of R

defined by

g(x, y) =
∞∑

n=0

Px(Rn = y).
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If A ⊂ Z, then we define the relative Green’s function (a.k.a. the Green’s function
for the walk killed on A) by

gA(x, y) =
∞∑

n=0

Px(Rn = y,TA > n)

and the hitting measure by

HA(x, a) =
{
Px(RTA

= a), x /∈ A,
δx,a, x ∈ A,

HA(±∞, a) = lim
x→±∞HA(x, a)

by [36], T30.1, the limit on the right-hand side exists for any irreducible random
walk and any finite A (recall that a random walk is irreducible if for any x, y ∈ Z

there exists some n such that Px(Rn = y) �= 0—note that Spitzer uses “aperiodic”
for what we call “irreducible”—see [36], D2.2).

By C and c, we denote constants which depend only on the law of ξ but not
on any other parameter involved. The same holds for the constants hidden in the
o(·) notation, except when it is used in estimates for Dn (as in Theorem 1 above
and other results below) where the factor o(·) is random (this should always be
clear from the context). Generally, C and c might take different values at different
places, even within the same formula. C will usually pertain to constants which
are “big enough” and c to constants which are “small enough”.

X � Y denotes that X < CY . By X ≈ Y we mean cX < Y < CX (that is,
X � Y � X). By X  Y we mean that X/Y is a slowly varying function—see
Section 6 for details. �x� denotes the integer value of x.

2.2. Gluing measures. Let R be a recurrent irreducible random walk on Z.
We will assume implicitly throughout the paper that all our random walks are
irreducible. Let A ⊂ Z be some finite set, and TA the (a.s. finite) hitting time of
A by R. We would like to define the measure P∞ = limy→∞ Py . However, care
must be taken here, since the limit is not a probability measure using the natural
σ -algebra of the random walks, and the laws of natural quantities such as Rn or TA

do not have a limit. However, the law of RTA
—the point at which A is hit—does

have a limit, as do the probabilities of events like {Ta < Tb}.
We define the measure P+∞, depending implicitly on A, as follows. This mea-

sure is supported on paths {γi}i≤0, that is, paths with no beginning but a last step.
It is defined as the limit as y → ∞ of the law of {RTA+i}i≤0. Informally, P+∞ is
interpreted as the random walk started at +∞, and stopped when it hits A. Clearly,
it is supported on paths in Z \ A, except for R0 ∈ A. The measure P−∞ is defined
similarly using y → −∞. We define the measure P∞ = 1

2(P+∞ + P−∞). Finally,
let

μ(x, a) = μ(x, a;A) = P∞(R−1 = x,R0 = a)

be the probability that the random walk hits A by making a step from x to a.
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LEMMA 2.1. For any recurrent random walk and any finite set A, the
limits P±∞ exist and are probability measures. Further, for any x0 ∈ A and
x−1, . . . , x−n /∈ A

P±∞(Ri = xi for − n ≤ i ≤ 0) = P±∞(Tx−n < TA)

Px−n(TA < Tx−n)

−1∏
i=−n

pxi,xi+1(2.1)

and in particular

μ(x, a) = μ(x, a;A) = px,aP∞(Tx < TA)

Px(TA < Tx)
.(2.2)

PROOF. Fix a starting point y and denote

Py(x0, x−1, . . . , x−n) = Py(RTA−i = xi for − n ≤ i ≤ 0)

(where RTA−k is undefined if the walk hits A in less than k steps). For clarity,
write z = x−n. Now, in order for the event on the right-hand side to happen, the
walk must first hit z, which happens with probability Py(Tz < TA). By the strong
Markov property at Tz, with probability Pz(TA < Tz) the walk will hit A before its
next return to z. Thus, the expected number of visits to z before TA is

Py(Tz < TA)

Pz(TA < Tz)
.

At each of these visits, there is probability
∏−1

i=−n pxi,xi+1 of making the prescribed
sequence of jumps ending at x0 ∈ A. Since the walk is stopped once such a se-
quence of jumps is made, the events of making these jumps after the i’th visit to z

are disjoint (for different i’s). Hence,

Py(x0, x−1, . . . , x−n) = Py(Tz < TA)

Pz(TA < Tz)

−1∏
i=−n

pxi,xi+1 .

Thus, to see that limy→±∞Py(x0, x−1, . . . , x−n) exists, it suffices to show that
limPy(Tz < TA) exists. Recall that the harmonic measure from infinity on a finite
set A is defined by

HA(±∞, a) = lim
y→±∞HA(y, a) = lim

y→±∞Py(RTA
= a).

By [36], T30.1, this limit always exists. Note that

Py(Tz < TA) = Py(RTA∪{z} = z) = HA∪{z}(y, z).

Existence of limy→±∞ Py(x0, x−1, . . . , x−n) follows.
It remains to show that the limit is a probability measure, that is,∑

x0∈A

x−1,...,x−n /∈A

P±∞(x0, x−1, . . . , x−n) = 1.
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For any finite starting point y, this sum is 1 by recurrence. The problem is that as
y → ±∞, the walk might be have a high probability of hitting A by a large jump,
so that for some i, the law of xi is not tight as y → ∞. However, if we show that
the law of x−n is tight, then limy→±∞Py(x0, x−1, . . . , x−n) will be a probability
measure.

CLAIM 2.2. For any finite A ⊂ Z,

lim
m→∞H[−m,m](±∞,A) = 0.

PROOF. For clarity, we use H(x, y;A) in place of with HA(x, y). It suffices
to prove the claim for a singleton A = {a}. We may assume a ≥ 0. In this case, we
write

1 = ∑
|x|≤m

H
(±∞, x; [−m,m])

by monotonicity ≥ ∑
|x|≤m

H
(±∞, x; [x − 2a − 2m,x + 2m])

by translation invariance = ∑
|x|≤m

H
(±∞, a; [−a − 2m,a + 2m]).

Hence, H(±∞, a; [−(a + 2m),a + 2m]) ≤ 1/(2m + 1). �

Returning to the proof of Lemma 2.1, fix ε > 0. For any finite set A and any n,
we can pick a sequence of finite intervals A ⊂ I0 ⊂ I1 ⊂ · · · ⊂ In so that for any
k < n and any y /∈ Ik , the probability from y of hitting Ik at a point of Ik−1 is at
most ε/n. We get

Py(TIn < TA − n) < ε ∀y /∈ In

and, therefore, by the strong Markov property at the stopping time TIn ,

Py

(|RTA−n| > M
)
< EyPTIn

(|RTA−n| > M
) + ε ∀M ∀y /∈ In.

Now, the law of RTA−n with respect to any starting point in In is tight (since these
are just |In| distributions). Hence, we get

lim
M→∞ max

y∈Z Py

(|RTA−n| > M
) = 0,

which is the required tightness. �

DEFINITION 2.3. Let R be a random walk on Z. The DLA process with re-
spect to R is a sequence of random sets A0 = {0} ⊂ A1 ⊂ · · · such that for any
A ⊂ Z, and x ∈ Z \ A and any n > 0,

P
(
An+1 = A ∪ {x}|An = A

) = ∑
a∈A

μ(x, a;A),(2.3)

where μ is defined by (2.2).
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When ξ has infinite variance, P+∞(Tx < TA) = P−∞(Tx < TA) for any x and A

and indeed P+∞ = P−∞ (see [36], T30.1 (1)), but otherwise P+∞ and P−∞ differ.
It is possible to define the DLA using walks that start only at +∞ or −∞. This
leads to minor variations on our results, and the proofs remain valid with minimal
modification.

Since by the right-hand side of (2.3) the probability of adding a point x to An

can be interpreted as a measure over infinite paths ending at An, we will say that
x is “glued” to An at a if the last two steps of the path of the added particle are x

and a. The measure μ is thus called the “gluing” measure.

3. The restricted Z
2 walk. In this section, we discuss a special random walk

on Z resulting from an embedding of Z as a sub-group of Z2, say as the diagonal
{(x, x)}x∈Z. Consider the sequence of vertices of Z visited by a simple random
walk on Z

2, that is, the restriction of the random walk to Z. This sequence of
vertices forms a random walk on Z. It is well known that this walk has α = 1,
and more precisely that the steps of this random walk have approximately the
Cauchy distribution, that is, P(ξ = k) = (c+o(1))|k|−2 (for the special case of the
diagonal embedding, there is even a precise formula (see [36], E8.3), P(ξ = 0) =
1 − 2

π
,P(ξ = k) = 2

π(4k2−1)
but we do not use this extra precision). The fact that

Z
2 is recurrent immediately implies that the restricted Z

2 walk is recurrent as well,
hence we may consider the DLA formed by this walk.

While the restricted Z
2 walk is a very special example, its study has merit. The

proofs are simpler, but the general ideas are the basis for the proofs in more general
cases. The reason the proofs are simpler is the vast and very precise knowledge
concerning the behaviour of the simple random walk in Z

2. This allows us to get
sharp bounds for various quantities. Addition of a vertex to the DLA in Z may be
studied by examining a simple random walk on Z

2 and considering the last visit to
Z before hitting A.

THEOREM 3.1. Consider the DLA generated by the Z
2 restricted walk. For

some c > 0, we have almost surely

lim inf
Dn log logn

n2 > c and lim sup
Dn

n2 = ∞.

Theorem 3.4 below gives a matching upper bound for Dn, up to logarithmic
factors. Together we find that the diameter grows essentially quadratically. It is
reasonable to believe that {n−2Dnt }t converges to some random process, though
it is not even proved that the law of n−2Dn converges. To prove Theorem 3.1,
we argue as follows: if Dn is small then there is some probability that Dn+1 is
large. We estimate this probability for a suitable threshold for being “large”. We
then bound this probability uniformly in An. By Borel–Cantelli, it follows that
Dn is large for infinitely many n. To make this precise, suppose Dn > m. Then
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FIG. 2. The event that the random walk hits I at a point of An.

Dn+1 > m as well. On the other hand, for any set An with Dn ≤ m we have the
following. (Recall that �Dn = Dn+1 − Dn.)

LEMMA 3.2. In the DLA generated by the Z
2 restricted walk, there is a con-

stant c > 0 so that for any A and m with diam(A) < m we have

P(�Dn > m|An = A) ≥ cn

m
.

PROOF. Define the interval I ⊂ Z to be the m-neighbourhood of An. [This is
an interval since diam(A) < m.] Consider a random walk in Z

2 used for a DLA
step, and consider the first time it hits I . If it hits I at one of the points of An,
then the previous visit to Z must have been at distance more than m from An. See
Figure 2. In that case, a far point is added to An and �Dn > m. Hence,

P(�Dn > m) ≥ HI(∞,An),

where HI is the harmonic measure from infinity on I for a random walk in Z
2.

We now use the well-known fact5 that the harmonic measure satisfies the bound
HI(x) ≥ c/|I | for some universal c and any x ∈ I (near the ends of the interval the
harmonic measure is much larger).

It follows that

HI (An) ≥ c

|I | |An| = cn

Dn + 2m + 1
≥ cn

3m

as required. �

Recall that Fn is the σ -algebra spanned by A1, . . . ,An. In preparation for the
treatment of more general walks, we prove the following lemma. Theorem 3.1
follows by applying the following to Mn = Dn with β = 2.

5This follows from translation invariance and the Skorokhod invariance principle: By translation
invariance, it suffices to show this for I = [−m,m]. Let J = [−3m,3m]. By the invariance principle,
HJ (I) is bounded below by some constant c independent of m. This implies that HJ (x) > c/m for
some point x ∈ I . Translation invariance and monotonicity of the harmonic measure now imply (as in
the proof of Claim 2.2) that for any point y ∈ I , HI (y) = HI+(x−y)(x) ≥ HJ (x) ≥ c/m as required.
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LEMMA 3.3. Let {Mn} be a nondecreasing sequence adapted to a filtration
{Fn}, and suppose P(Mn+1 > m|Fn) ≥ min{c1nm−2/β,1} for some c1 > 0 and all
m,n > 0. Then there is some deterministic value K > 0 such that a.s.

lim supn−βMn = ∞ and lim infn−β(log logn)β/2Mn > K.

PROOF. Take m = anβ . By the conditions of the lemma,

P
(
Mn+1 ≥ anβ |Fn

) ≥ c1n
(
anβ)−2/β ≥ cn−1,

uniformly in Fn. Consequently, Mn ≥ anβ infinitely often.

To estimate lim inf Mn(log logn)β/2

nβ , take m = c
β/2
1 nβ

(4 log logn)β/2 . It follows that

P

(
Mn+1 ≥ c

β/2
1 nβ

(4 log logn)β/2

∣∣∣Fn

)
≥ 4 log logn

n
.

Consequently, the probability that Mn+1 ≤ c
β/2
1 nβ

(4 log logn)β/2 for all n ∈ [N,2N) is at
most

2N−1∏
n=N

(
1 − 4 log logn

n

)
≤

(
1 − 4 log logN

2N

)N

≤ e−2 log logN = 1

log2 N
.

Considering only N of the form 2k , we find that a.s. for all large k there is a some

nk ∈ [2k,2k+1) such that Mnk
≥ c

β/2
1 n2

k

(4 log lognk)
β/2 . For any other n, we argue, using

the monotonicity of the sequence {Mn}, that if n ∈ [2k+1,2k+2] then

Mn ≥ Mnk
≥ c

β/2
1 n

β
k

(4 log lognk)β/2 ≥ c
β/2
1 (n/4)β

(4 log logn)β/2 .

Thus, lim inf Mn(log logn)β/2

nβ >
c
β/2
1

23β a.s. �

Theorem 3.1 now follows from Lemmas 3.2 and 3.3. As promised, we have a
matching upper bound, up to logarithmic factors.

THEOREM 3.4. For the DLA generated by the Z
2 restricted walk, a.s. for any

ε > 0 and all large enough n, Dn ≤ n2(logn)3+ε .

We begin by bounding the probability of a large increment in Dn.

LEMMA 3.5. In the DLA generated by the Z
2 restricted walk,

P(�Dn > m|Fn)�
n logm

m
.
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PROOF. We use the asymptotics

Px(TA < Tx) ≈ 1

logd(x,A)

(assuming d(x,A) > 1). This follows from asymptotics of the two-dimensional
random walk: The probability of reaching (in Z

2) distance 1
2d(x,A) before re-

turning to x is of order log−1 d(x,A) (this is a well-known fact; see, e.g., [11],
Lemma 9). On this event, the probability of hitting A before returning to x is
bounded away from 0 (even if A contains a single point).

Since P∞(Tx < TA) ≤ 1, the gluing formula (2.2) implies

μ(x, a)� px,a logd(x,A).

Summing over all x with d(x,A) > m, we get

P(�Dn > m|Fn) �
∑
a∈A

x:d(x,A)>m

px,a logd(x,A)

≤ ∑
a∈A

|x−a|>m

px,a logd(x, a)

≈ n logm

m
.

The last estimate comes from the fact that the restricted Z
2 walk satisfies P(ξ =

k) ≈ |k|−2. �

This allows us to bound the probability of Dn being large: We will also need
the following lemma, which translates upper bounds on the probability of making
large jumps into upper bounds on Dn

LEMMA 3.6. Assume that

P(�Dn > m|Fn)�
n logm

m
∀n,m.

Then we get, for all γ and N ,

P
(
DN ≥ γN2 log2 N

)
� 1

γ
.

If one has the weaker P(�Dn > m|Fn) ≤ nm−1+o(1) then one gets P(DN ≥
γφ(N)) � 1/γ for some deterministic φ(N) = N2+o(1).

PROOF. Fix N and some M > N2, and set for 0 ≤ k ≤ log2 M

Bk =
{
n ≤ N : �Dn ∈

(
M

2k+1 ,
M

2k

]}
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and

B−∞ = {n ≤ N : �Dn > M}.
We argue that with high probability the contribution to DN from increments in
each of the Bk’s is at most M . The event {DN ≥ M(2 + log2 M)} is a subset of the
event

∃k ∈ {−∞,0, . . . , log2 M} such that
∑
n∈Bk

�Dn > M.

By a union bound,

P
(
DN > M(2 + logM)

) ≤ P(B−∞ �= ∅) + ∑
k

P
(|Bk| > 2k).(3.1)

By the conditions of the lemma,

P(B−∞ �=∅) ≤ N · C N logM

M
.

Using also the bound
(N
a

) ≤ ( eN
a

)a ,

P
(|Bk| > 2k) ≤

(
N

2k

)(
CN2k logM

M

)2k

≤
(
CN2 logM

M

)2k

.

Setting M = γN2 logN and using the above bounds in (3.1) we get

P
(
DN > M(log2 M + 2)

) ≤ C

γ
+ ∑

k≥0

(
C1

γ

)2k

.

Clearly, we may assume γ is sufficiently large (by enlarging the constant im-
plicit in the � in the statement of the lemma, if necessary), and we assume
γ > 2C1. Now the sum is comparable to the first term. Since M(log2 M + 2) ≤
CγN2 log2 N , we are done.

The proof of the second part of the lemma is similar, and we omit it. �

PROOF OF THEOREM 3.4. By Lemmas 3.5 and 3.6, in the DLA generated by
the Z

2 restricted walk, for all γ ,

P
(
DN ≥ γN2 log2 N

)
� 1

γ
.

Now take N = 2k and γ = k1+ε for some ε > 0. By Borel–Cantelli only a finite
number of these events happen, and we get that DN < N2 log3+ε N for N = 2k

sufficiently large. The bound for other N ’s follows by monotonicity of DN . Since
ε was arbitrary, the theorem follows. �
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4. Walks with finite third moment. As discussed in the Introduction, despite
the fact that all symmetric walks with finite variance scale to Brownian motion, the
growth rates of the aggregates resulting from such walks vary. In this section and
the next, we analyze this phenomenon. We first consider the simpler case, where
ξ has a finite third moment. In that case, the behaviour is similar to the behaviour
when the walk has bounded steps, that is, the diameter grows linearly. The case of
walks with finite variance and infinite third moment is more complex and is dealt
with in Section 5.

THEOREM 4.1. If E|ξ |3 < ∞ and Eξ = 0, then there is some C so that
lim sup Dn

n
< C a.s.

Thus, in the case α > 3 (and sometimes when α = 3), the diameter grows lin-
early. Of course, the diameter Dn must be at least n − 1, so the theorem gives
the correct rate of growth. This suggests that the process behaves much as in the
case where the jumps are bounded: only a few particles in the extremes of An af-
fect subsequent growth, and the limit aggregate will have some positive density. In
part III, we shall discuss existence of the limit.

We start with a technical lemma regarding hitting probabilities of our walks,
which will be useful also in Section 5.

LEMMA 4.2. Let R be a random walk on Z with steps of mean 0 and variance
σ 2 < ∞. Then there are c,C > 0 such that for any A ⊂ Z, A �= ∅:

(i) If x > maxA, then limy→∞Py(Tx < TA) > c.
(ii) If d(x,A) is large enough then c < d(x,A)Px(TA < Tx) < C.

Note that the limit in clause (i) exists since the random walk is recurrent and
the harmonic measure on the set A ∪ {x} exists. If A lies to one side of x, then
in clause (ii) c and C can be arbitrarily close (this follows from the proof below).
The lemma is related to the asymptotic linearity of the harmonic potential for the
random walk (see [36], T28.1), P29.2, but we chose a somewhat different path for
the proof.

PROOF OF LEMMA 4.2. Let T− denote the hitting time of Z
−. Define the

half-line Green’s function

g(y, x) = ∑
n≥0

Py

(
R(n) = x,n < T−

)
,

that is, the mean time spent at x before T−. By [36], P19.3, P18.8, T18.1, g has a
representation using two auxiliary functions u and v,

g(y, x) =
min(x,y)∑

n=0

u(x − n)v(y − n).
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The functions u, v are defined in terms of their generating functions, which
are the anti-analytic and analytic parts of the Fourier transform of ξ—see
[36] for the details. For our purposes, all we need to know about them is
that the limits limn→∞ u(n) and limn→∞ v(n) both exist, and their product is
limn→∞ u(n)v(n) = 2/σ 2. It follows that for any ε > 0, there is an x0(ε) such that
for any y ≥ x ≥ x0 we have ∣∣∣∣g(y, x) − 2

σ 2 x

∣∣∣∣ ≤ εx.(4.1)

By the strong Markov property for the hitting time of Z− ∪ {x}, we have

g(y, x) = δy,x + Py(Tx < T−)g(x, x),

where δ is the Kronecker delta function. In particular, we find for y ≥ x ≥ x0 that

Py(Tx < T−) = g(y, x) − δy,x

g(x, x)
.

Applying (4.1), we find that

inf
y≥x

Py(Tx < T−) →
x→∞ 1,(4.2)

thus if x is far from Z
− and the walk starts to the right of x, it is likely to hit x

before Z
−. If the walk starts at x, we have the asymptotics

Px(T− < Tx) = 1

g(x, x)
= σ 2

2x

(
1 + o(1)

)
(4.3)

as x → ∞.
To prove (i), note that by translation we may assume maxA = 0. By mono-

tonicity in A, it suffices to prove the bound for A = Z
−. In that case, the limit is

just limy→∞Py(Tx < T−). This limit is positive for any x (since the random walk
is irreducible), and by (4.2) it is close to 1 for large x. In particular, it is always
greater than some c.

To prove the upper bound in (ii), note that by monotonicity in A, given d =
d(x,A) it suffices to prove the bound for A = Z \ (x − d, x + d). Using (4.3), by
translation we find that

Px(T(−∞,x−d] < Tx) = σ 2

2d

(
1 + o(1)

)

as d → ∞. By symmetry, Px(T[x+d,∞) < Tx) has the same asymptotics. A union
bound gives for any A

Px(TA < Tx) ≤ σ 2 + o(1)

d(x,A)
.

It remains to prove the lower bound of (ii). By monotonicity in the set A, it
suffices to prove the bound for A that consist of a single point y, so that d =
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d(x,A) = |x − y|. We consider here only the case y = x − d as the case of y =
x + d is symmetric. Define the interval B = (−∞, y]. In order to hit y before
returning to x, the random walk must hit B (possibly at y) before returning to x.
We have

Px(Ty < Tx) = Px(TB < Tx) · P(Ty < Tx |TB < Tx).

The second term on the right-hand side is an average over starting points in B of
the probability that y is hit before x. When d is large, these probabilities are close
to 1, uniformly over B , since (4.2) estimates the probability of hitting y before
hitting [x,∞). Thus, the weighted average is also close to 1. As d → ∞, we find

Px(Ty < Tx) = Px(TB < Tx)
(
1 + o(1)

) ∼ σ 2 + o(1)

2d
. �

PROOF OF THEOREM 4.1. Since P±∞(Tx < TA) ≤ 1 by Lemma 4.2 and the
gluing formula (2.2), we have

μ(x) = ∑
a

μ(x, a) ≤ p(x,A)

c/d(x,A)
≤ Cd(x,A)P

(
ξ ≥ d(x,A)

)
.

Summing over all x with d(x,A) > t , we get

P(�Dn > t) ≤ C
∑
k>t

kP(ξ ≥ k).

Thus, we have the stochastic domination �Dn � Y with

P(Y > t) = 1 ∧ C
∑
k>t

kP(ξ ≥ k).

However,

EY = ∑
t

P(Y > t) ≤ C
∑
t,k

t<k

kP(ξ ≥ k)

≤ C
∑
k

k2
P(ξ ≥ k) ≤ CE|ξ |3 < ∞.

We find that Dn is dominated by a sum of n independent copies of Y . By the law
of large numbers, lim sup Dn

n
≤ EY < ∞. �

5. Walks with finite variance. In this section, we will analyze random walks
with 2 < α < 3 and show that the aggregate grows like n2/(α−1)+o(1). We prove the
lower bound in Section 5.1 and the upper bound in Section 5.2. The upper bound
is the harder of the two.

We remark that the upper bound on the growth of the aggregate requires only
an upper bound on P(|ξ | > t), while the lower bound on the aggregate requires a
lower bound on P(|ξ | > t) and the assumption of a finite second moment. Hence,
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we get information also on the case that P(|ξ | > k) decays irregularly, and satisfies
only ckα1 < P(|ξ | > k) < Ckα2 . Theorems 5.1 and 5.3 still apply, and give upper
and lower bounds on the diameter (in terms of α1 and α2, respectively). In such
cases, the bounds leave a polynomial gap, and it is reasonable to believe that logDn

logn

also fluctuates between the corresponding β’s.

5.1. Lower bound.

THEOREM 5.1. Assume E(|ξ |2) < ∞ and Eξ = 0. Fix α ∈ (2,3], and let β =
β(α) = 2

α−1 .

(i) If P(|ξ | > t) ≥ ct−α , then a.s. lim supn−βDn = ∞, and Dn ≥ nβ

log logn
for

all large enough n.
(ii) If one has only P(|ξ | > t) ≥ t−α+o(1) for 2 < α < 3 then a.s. Dn ≥ nβ+o(1).

Let D+
n = maxAn and D−

n = −minAn, so that Dn = D+
n + D−

n . With subse-
quent papers in mind, we work with D±

n instead of Dn. One small argument that
is needed to work with D+

n is the following lemma. Let A+
n = An ∩ Z+, be the

positive elements of An.

LEMMA 5.2. There exists c0 > 0 such that a.s. lim inf |A+
n |/n > c0.

PROOF. Fix k > 0 such that P(ξ = −k) > 0. Fix n, and consider the probabil-
ity of gluing xn = D+

n + k to An. By Lemma 4.2, P∞(Txn < TAn) > c and, there-
fore, μ(xn;An) ≥ cP(ξ = −k) so is uniformly bounded away from zero. Since
each time this happens a positive point is added to A+

n , we find that |A+
n | domi-

nates a sum of n i.i.d. Bernoulli variables. �

PROOF OF THEOREM 5.1. Consider some x to the right of A = An. Since
E|ξ |2 < ∞ Lemma 4.2 applies, giving the bounds P±∞(Tx < TA) > c > 0 and
Px(TA < Tx) ≈ 1/d(x,A). Therefore,

μ(x, a) � d(x,A)px,a.(5.1)

Summing over positive x > D+
n + m and all a ∈ A+

n we get

P
(
�(maxAn) > m|Fn

)
�

∑
x>a≥0

x>D+
n +m

d
(
x,A+

n

)
px,a

≥ m
∑

x>a≥0
x−a>m+D+

n

px,a

= m
∣∣A+

n

∣∣ · P(
ξ > m + D+

n

)
.
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It follows that on the event D+
n < m we have

P
(
�D+

n > m|Fn

)
� m

∣∣A+
n

∣∣ · P(ξ > 2m).

Consider the events

En(m) = {
D+

n+1 ≥ m
} ∪ {∣∣A+

n

∣∣ < c0n
}
,

where c0 is from Lemma 5.2. If A+
n is small, or if maxAn > m then En(m) occurs.

Hence, we have the uniform bound

P
(
En(m)|Fn

)
� mnP(ξ > 2m).

Note that this bound is uniform in Fn, and hence the events En(m) stochastically
dominate independent events with the above probabilities.

Applying the tail estimate of part (i), one finds

P
(
En(m)|Fn

)
� nm1−α.

Taking m = m(n) = anβ yields the bound P(En(anβ)|Fn) � n−1. By Borel–
Cantelli, a.s. infinitely many of the En(anβ) occur for any a > 0. By Lemma 5.2
{|A+

n | > c0n} for all but finitely many n. This implies the lim sup bound on D+
n .

For the uniform lower bound part of (i), take En = En(
nβ

log logn
) to find

P(En|Fn) ≥ c(log logn)α−1

n
.

Consequently, the probability that En fails to occur for all n ∈ [N,2N) is at most

2N∏
n=N

(
1 − c(log logn)α−1

n

)
≤ e−c(log logN)α−1 � 1

logN
.

Looking at an exponential scale N = 2k one finds that a.s. only finitely many scales
are bad. On this event, D+

n ≥ nβ

log logn
for all large enough n.

Given the weaker tail estimate P(X > t) ≥ t−α+o(1), we have for any α′ > α for

some c, P(X > t) ≥ ct−α′
. Thus, part (i) implies that a.s. eventually Dn ≥ nβ′

logn
. As

α′ decreases to α, we can get β ′ close to β . �

5.2. Infinite third moment: Upper bound.

THEOREM 5.3. Fix α ∈ (2,3] and let β = 2
α−1 . If the random walk is such

that P(|ξ | > t) ≤ ct−α and Eξ = 0, then a.s. Dn ≤ nβ+o(1).

The proof below gives Dn � nβ(logn)2, and with minimal modification one
logn factor can be removed.

We analyze only maxAn, noting that minAn behaves identically. This yields
bounds on DN = maxAN − minAN . Let J (n,m) be the event that
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�(maxAn) ≥ m. This will be referred to as “making a large jump to the right”
at time n. We treat maxAN as the sum of all jumps made to the right. The key
idea is that if many large jumps to the right were already made, the probability of
additional ones is smaller. This analysis is carried out for multiple scales of jumps.

The crux of the proof is the following estimate.

LEMMA 5.4. Assume P(ξ < −t) ≤ ct−α for some α ∈ (2,3), then
∑
n≤N

P
(
J (n,m)

) ≤ CNm(1−α)/2 = CNm−1/β.

PROOF. Define for a ∈ An

W(a) = Wn(a) = maxAn − a

to be the distance from a to the rightmost point of An. Using Lemma 4.2 and the
gluing formula (2.2), we have the bound

P
(
J (n,m)|Fn

)
�

∑
a∈An

∑
x≥m+maxAn

px,ad(x,A)

= ∑
a∈An

∑
d≥m

dP
(
ξ = −W(a) − d

)

= ∑
a∈An

(
mP

(
ξ ≤ −m − W(a)

) + ∑
d>m

P
(
ξ ≤ −d − W(a)

))

�
∑

a∈An

(
m + W(a)

)1−α
.

We proceed to use this bound to estimate the total expected number of such
jumps up to time N . The idea is that if jumps are frequent then the maximum
of An quickly moves away from any fixed a ∈ An, and so W(a) is large and the
probability of additional jumps is small.

Fix some L (to be determined later) and define Ĵ (n,m) to be the event that
J (n,m) occurs and that either n ≤ L or J (n′,m) occurs for some n′ ∈ [n − L,n).
Thus, Ĵ (n,m) denotes the event that there is a large jump at time n and the process
has waited at most L steps since the previous large jump (or from the beginning).
In particular, J (n,m) and Ĵ (n,m) can differ only once in any L consecutive n’s.
Thus, when L is large, Ĵ (n,m) is typically the same as J (n,m), and there are at
most �N/L� different n ≤ N when J occurs and Ĵ does not.

Let {ti} be the set of times n at which J (n,m) occurs, including (for notational
convenience) t0 = 0 and tk+1 = N , where k is the number of large jumps that
occur. Let si = ti − ti−1 be the times spent waiting for large jumps. Finally, let
ŝi = min(si,L).
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Consider a particle at position a that has been added in the time interval
(ti, ti+1]. At any later time n ∈ (tj , tj+1], we have

Wn(a) ≥ (j − i)m

since there have been at least j − i large jumps to the right after the particle was
added to the aggregate. We now have

∑
n≤N

P
(
Ĵ (n,m)|Fn

)
�

k∑
j=0

tj+ŝj∑
n=tj

∑
a∈An

(
m + Wn(a)

)1−α

≤
k∑

j=0

tj+ŝj∑
n=tj

j∑
i=0

si
(
m(1 + j − i)

)1−α

= m1−α
k∑

j=0

j∑
i=0

si ŝj (1 + j − i)1−α

and since ŝj ≤ L

≤ m1−αL

k∑
i=0

si

k∑
j=i

(1 + j − i)1−α

� m1−αL

k∑
i=0

si = m1−αLN.

We now integrate over Fn to get
∑
n≤N

P
(
Ĵ (n,m)

) ≤ Cm1−αLN.

Since the difference between
∑

P(J ) and
∑

P(Ĵ ) is bounded by �N/L�, we get
∑
n≤N

P
(
J (n,m)

) ≤ �N/L� + Cm1−αNL.

Setting L = m(α−1)/2 completes the proof. �

PROOF OF THEOREM 5.3. Given n ≤ N , let � = logN , and let τn = τn,N

be the sum of all jumps to the right of size at most Nβ�2 up to time n (“τ” for
“truncated”). By Lemma 5.4, the probability that by time N there is some jump to
the right of size at least Nβ�2 is at most CN(Nβ�2)−1/β = C�−2/β . Considering
a geometric sequence of N ’s, since β < 2, we find that maxAn = τn for all large
enough N , and all n ≤ N .
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Truncating jumps at Nβ�2, we have that

Eτn =
N−1∑
n=0

Nβ�2∑
m=1

mP(maxAn+1 = maxAn + m)

by Abel resummation ≤
Nβ�2∑
m=1

∑
n≤N

P
(
J (n,m)

)

by Lemma 5.4 �
Nβ�2∑
m=1

Nm−1/β

� N
(
Nβ�2)1−1/β = Nβ�2(1−1/β).

By Markov’s inequality, P(τn > Nβ�2) < �−2/β . Considering a geometric se-
quence of N ’s, we find that a.s. τn ≤ cNβ�2 for all large enough N . �

REMARK. Suppose one tries to prove Theorem 5.3 like before, that is, like
Lemma 3.6, Theorem 4.1 or Claim 6.7 below. In other words, one looks for uniform
estimates for P(DN > m|Fn). The best we could find was

P(DN > m|Fn)
(5.1)

� min
(
nm1−α,m2−α)

.

This only gives an upper bound of Dn ≤ n4−α which is not sharp at any α ∈ (2,3).
The failure of this uniform estimate approach means that one must use some in-
formation about the structure of the aggregate. However, the proof of Lemma 5.4
demonstrates that we do not need to know too much about the structure of An—
only that it is not too concentrated near its right (or left) extremal points.

6. Walks with infinite variance.

6.1. Preliminaries. Walks with α ∈ (1,2) all fall into this category. Any walk
with mean 0 is recurrent (see [36], P2.8), and in particular so is any symmetric
walk with finite mean. Thus, we can use the gluing formula (2.2) to calculate glu-
ing probabilities. At the moment, our techniques do not work for completely gen-
eral walks in this regime, but only for walks with sufficiently nice tail behaviour.
Specifically, we focus on walks that are in the domain of attraction of a stable pro-
cess. In particular, our results apply to any walk with P(ξ > t) = (c + o(1))t−α .
Our main result here is the following.

THEOREM 6.1. If ξ is a symmetric variable satisfying P(ξ > t)  t−α with
1 < α < 2, then a.s. Dn = n2+o(1).

Here and below we write f  g if f/g is a slowly varying function, as in the
following definition:
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DEFINITION 6.2. A function h is slowly varying at 0 (resp., at ∞) if for any
x > 0,

lim
t→0

h(tx)

h(t)
= 1

(resp., limt→∞) and the limit is uniform on any compact set of x’s.

Note that a common definition of slowly varying (see, e.g., [18]) requires only
that the limit exists for all x. Since this is almost impossible to use, one then applies
Karamata’s theorem (see [18], Appendix 1), to show that any locally integrable
function which is slowly varying in the weaker sense, is also slowly varying in the
stronger (uniform) sense stated above. Occasionally, when we quote results from
[18], we implicitly use Karamata’s theorem to translate from the weaker to the
stronger sense of slowly varying.

A simple consequence of the definition of a slowly varying function at 0 is that
for any ε there are K,δ so that for x < y < ε

1

K

(
x

y

)δ

<
h(x)

h(y)
< K

(
y

x

)δ

and K → 1 and δ → 0 as ε → 0. If the function is slowly varying at ∞, the same
bounds hold for y > x > ε−1 instead.

Following [28, 36], we define the harmonic potential by

a(n) = ∑
t

(
P0(Rt = 0) − P0(Rt = n)

)
.

The harmonic potential is closely related to the Green’s function, and the first
stage is establishing its asymptotics. [36], T28.1, ensures us that the sum indeed
converges.

LEMMA 6.3. Assume P(ξ > n)  n−α for some 1 < α < 2. Then the har-
monic potential satisfies

a(n)  nα−1.

PROOF. Given the tail of the step distribution we know from [18], Theo-
rem 2.6.1, that ξ belongs to the domain of attraction of a (symmetric) stable ran-
dom variable with exponent α. Denote by φ(ζ ) the Fourier transform of ξ . By [18],
Theorem 2.6.5, we have as ζ → 0 for some real β,γ

logφ(ζ ) − iγ ζ  −|ζ |α
(

1 − iβ
ζ

|ζ | tan
(

π

2
α

))

(β is the skewness of the stable limit, γ corresponds to drift). In our case, ξ is
symmetric so φ is real valued and so β = γ = 0 and

logφ(ζ )  −|ζ |α.
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This is the most essential use we make of the symmetry of ξ . In effect, if one
only assumes that the drift γ is zero then the proof of the lemma follows through.
However, for γ �= 0 the conclusion of the lemma does not hold.

Now, write
∑
t≤T

(
P0(Rt = 0) − P0(Rt = n)

) =
∫ π

−π

(
1 − einζ ) ∑

t≤T

φt (ζ ) dζ.

Irreducibility gives that φ = 1 only at ζ = 0 and, therefore, (since α < 2), 1−einζ

1−φ(ζ )
is integrable. Hence, by dominated convergence,

a(n) =
∫ π

−π

1 − einζ

1 − φ(ζ )
dζ = 2Re

∫ π

0

1 − einζ

|ζ |α h(ζ ) dζ,

where h is slowly varying at 0. Our plan is to use the fact that h is slowly varying
and that bulk of the contribution to the last integral comes from ζ ∈ [ε/n,1/(εn)]
to compare this integral to Kαnα−1h(n−1). We begin with the constant and work
backward toward a(n).

We begin with
∫ 1/ε

ε

1 − eix

xα
dx = Kα + η1(ε),

where Kα is the integral from 0 to ∞ and where η1(ε) → 0 as ε → 0 (since 1 <

α < 2). This integral may be calculated explicitly. For example, one may change
the path of integration to the imaginary line (so that eix is transformed into e−x )
and integrate by parts to get the integral defining the Gamma function. The result
is that Kα = �(1 − α)eiπ(1−α)/2 and in particular ReKα is nontrivial.

Since h is slowly varying, using the compactness of the interval [ε,1/ε]:
∫ 1/ε

ε

1 − eix

xα

h(xn−1)

h(n−1)
dx = Kα + η1(ε) + η2(ε, n),

where for any fixed ε we have η2(ε, n) → 0 as n → ∞.
On the interval [0, ε], we have

∣∣∣∣h(xn−1)

h(n−1)

∣∣∣∣ < Cx−δ,

where δ can be made arbitrarily small as ε → 0 uniformly in n. Since α < 2 we
have ∣∣∣∣

∫ ε

0

1 − eix

xα

h(xn−1)

h(n−1)
dx

∣∣∣∣ ≤
∫ ε

0
Cx1−α−δ ≤ C′ε2−α−δ.

Similarly, on the interval [1/ε, εn] we have
∣∣∣∣h(xn−1)

h(n−1)

∣∣∣∣ < Cxδ,
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where δ can be made small provided n−1 and xn−1 ≤ ε are both small. Since
α < 2, we have∣∣∣∣

∫ εn

1/ε

1 − eix

xα

h(xn−1)

h(n−1)
dx

∣∣∣∣ ≤
∫ ∞

1/ε
2Cx−α+δ ≤ C′εα−1−δ.

Since 1 < α < 2, both these bounds vanish as ε → 0, and so we get
∫ εn

0

1 − eix

xα

h(xn−1)

h(n−1)
dx = Kα + η1(ε) + η2(ε, n) + η3(ε, n),

where lim supn→∞ |η3(ε, n)| → 0 as ε → 0. (Since for the lim sup it suffices to
consider n > 1/ε.)

Now we are ready to consider a(n). By a change of variable,
∫ ε

0

1 − einζ

|ζ |α h(ζ ) dζ = nα−1
∫ εn

0

1 − eix

xα
h
(
xn−1)

dζ.

Finally, ∣∣∣∣
∫ π

ε

1 − einζ

|ζ |α h(ζ ) dζ

∣∣∣∣ ≤
∫ π

ε

2

|ζ |α h(ζ ) dζ,

which is finite and independent of n.
Combining these identities, we get

a(n) = nα−1h
(
n−1)

Re[Kα + η1 + η2 + η3] + η4(ε),

with η4(ε) bounded. Using the estimates on the ηi’s, we find

lim
ε→0

lim sup
n→∞

∣∣∣∣ a(n)

nα−1h(n−1)
− ReKα

∣∣∣∣
≤ lim

ε→0
lim sup
n→∞

∣∣∣∣η1 + η2 + η3 + η4

nα−1h(n−1)

∣∣∣∣ = 0.

Since a(n) does not depend on ε, this in fact means that

lim sup
n→∞

∣∣∣∣ a(n)

nα−1h(n−1)
− ReKα

∣∣∣∣ = 0

and since ReKα �= 0, this means that a(n)  nα−1. �

Asymptotics of the potential kernel allow us to derive the following two esti-
mates for the hitting probabilities.

LEMMA 6.4. Assume P(ξ > n)  n−α for some 1 < α < 2, and let I be the
interval [−n,0], and k ∈ [n,2n]. Then

Pk(TI < Tk) ≈ n1−αh(n),(6.1)

P∞(Tk < TI ) > c,(6.2)

for some c > 0 and slowly varying function h.
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PROOF. Let g(x, y) = gI (x, y) be the Green’s function with respect to I ,
namely

g(x, y) =
∞∑
t=0

Px

(
R(t) = y;TI > t

)
,

and let H(x, ·) = HI(x, ·) be the hitting measures on I , namely

H(x, i) = Px

(
R(TI ) = i

)
.

Finally, let H(∞, i) = limH(x, i) be the harmonic measure on I .
We use Lemma 6.3 and get that

a(n) = nα−1h(n),(6.3)

where h is a slowly varying function. In particular, a(n) is unbounded so R is re-
current (this can also be inferred directly from [36], P2.8). Hence, Theorem T30.2
of [36] applies to R (the condition that the walk is not “left- or right-continuous”,
to use Spitzer’s terminology, is satisfied because R is symmetric). Combining (c)
and (d) of that theorem, we get for every x, y ∈ Z \ I

g(x, y) = −a(y − x) + κ + ∑
i∈I

H(∞, i)a(x − i) + ∑
i∈I

H(x, i)a(y − i),(6.4)

where κ = κI is some number. As a first step to understanding (6.4), let y → ∞.
Since ξ has infinite second moment, we may apply [36], T29.1(1), which states
that

lim|y|→∞a(y − x) − a(y) = 0 ∀x

and hence

lim|y|→∞−a(y − x) + ∑
i∈I

H(x, i)a(y − i) = 0 ∀x

or

g(x,∞) := lim|y|→∞g(x, y) = κ + ∑
i∈I

H(∞, i)a(x − i).(6.5)

Setting x = 1, we get

κ + ∑
i∈I

H(∞, i)a(1 − i) ≥ 0

(this is not obvious because κ is a negative constant which is difficult to estimate
directly from its definition). Consequently, for x = k ∈ [n,2n] we get

g(k,∞) ≥
0∑

i=−n

(
a(k − i) − a(1 − i)

)
H(∞, i)

≥ min
i=−n,...,0

a(k − i) − a(1 − i)(6.6)

≥ nα−1h(n)
(
2α−1 − 1

)(
1 + o(1)

)
.
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The last inequality requires clarification. Roughly, the minimum in the left-hand
side is achieved when i = −n and k = n. Other i ∈ I and other k ∈ [n,2n] give
larger values. This involves some simple playing around with the definition of a
slowly varying function, in the spirit of the previous lemma which we shall omit.

On the other hand, it is easy to see that g(k,∞)/g(k, k) is the harmonic measure
of k in the set I ∪ {k}. Because the walk is symmetric and this set has more than
1 point the harmonic measure of any point is at most 1/2, and hence g(k,∞) ≤
1
2g(k, k). With (6.6), this implies

g(k, k) ≥ cnα−1h(n).

However, we can also write, using (6.4) and (6.5),

g(k, k) = g(k,∞) + ∑
i∈I

H(k, i)a(k − i) ≤ 1

2
g(k, k) + ∑

i∈I

H(k, i)a(k − i)

or

g(k, k) ≤ 2
∑
i∈I

H(k, i)a(k − i) ≤ 2 max
i∈I

a(k − i)

≤ 2(3n)α−1h(n)
(
1 + o(1)

)
(6.7)

≤ Cnα−1h(n).

Since we have both upper and lower bounds, we find g(k, k) ≈ nα−1h(n). This
implies our first goal (6.1) since Pk(Tk < TI ) = g(k, k)−1.

Similarly, we get (6.2) from

P∞(Tk < TI ) = g(k,∞)

g(k, k)
≥ 2α−1 − 1

2 · 3α−1

(
1 + o(1)

)
. �

While Lemma 6.4 talks about hitting an interval, by translation invariance and
by monotonicity of TA in A, it implies similar bounds for any set A and sufficiently
far point x.

COROLLARY 6.5. Assume P(ξ > n)  n−α for some 1 < α < 2, and let x,A

satisfy x ≥ maxA + diamA. Then

Px(TA < Tx) ≤ Cd(x,A)1−αh
(
d(x,A)

)
,

P∞(Tx < TA) > c,

for some c > 0, C and slowly varying function h.
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6.2. Proof of the lower bound. We begin by proving a uniform lower bound on
the probability of making a large jump. Its use is analogous to the role Lemma 3.2
plays in the restricted Z

2 case.

LEMMA 6.6. Under the assumptions of Theorem 6.1, uniformly in m ≥ n,

P(Dn+1 ≥ m|Fn) ≥ n

m1+o(1)
.

PROOF. On the event Dn ≥ m the claim is trivial, so assume Dn < m. Con-
sider some x such that d(x,A) > m. By Corollary 6.5, for some slowly varying
function h

Px(TA < Tx) ≤ Cd(x,A)1−αh
(
d(x,A)

) ≤ Cd(x,A)1−α+ε ≤ Cm1−α+ε.

[Since any slowly varying positive function h has h(k) � kε for any ε > 0—the
constant C and all constants below may depend on ε.]

By the second part of Corollary 6.5, if m ≥ Dn then P∞(Tx < TA) > c. Using
these bounds in the gluing formula (2.2), we find that for any x with d(x,A) ≥ m

μ(x, a) = px,aP∞(Tx < TA)

Px(TA < Tx)
≥ cpx,am

α−1−ε.

Summing over all a ∈ A and x with d(x,A) ≥ m, we get

P(�Dn ≥ m|Fn) ≥ ∑
a

∑
x≥a+m+Dn

μ(x, a)

≥ cmα−1−ε
∑
a

∑
x≥a+m+Dn

px,a

= cnmα−1−ε
P(ξ ≥ m + Dn).

It follows that on the event Dn ≤ m, we have

P(�Dn ≥ m|Fn) ≥ cnmα−1−ε
P(ξ ≥ 2m)

(6.8)
≥ cnmα−1−εm−α−ε = cnm−1−2ε.

Since ε was arbitrary, the proof of the lemma is complete. �

PROOF OF THEOREM 6.1 (LOWER BOUND). This follows from the last
lemma and Lemma 3.3. �

6.3. Proof of the upper bound. Once again, we first prove a uniform bound
on the probability of making a large jump. The theorem then follows from the
bound the same way the upper bound for the Z

2 case (Theorem 3.4) follows from
Lemma 3.5.
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CLAIM 6.7. Under the conditions of Theorem 6.1,

P(�Dn > m|Fn) ≤ n

m1−o(1)
.

PROOF. Set A = An, and consider x outside the convex hull of A (so that its
addition will increase the diameter). We have Px(TA < Tx) ≥ Px(Ty < Tx), where
y is an arbitrary point in A. By [36], P11.5 or T30.2, we have Px(Ty < Tx) =
(2a(x − y))−1. Using this in the gluing formula (2.2) gives

P(�Dn > m|Fn) = ∑
y∈A

∑
x:d(x,A)>m

px,yP∞(Tx < TA)

Px(TA < Tx)

�
∑
y∈A

∑
|x−y|>m

px,ya(x − y).

Now, by Lemma 6.3, a(x − y) ≤ |x − y|α−1h(|x − y|) for some slowly varying h,
hence a(x − y) ≤ C|x − y|α−1+ε , for some C = C(ε). This yields

P(�Dn > m|Fn) �
∑
y∈A

∑
|x−y|>m

px,y |x − y|α−1+ε

(6.9)
� n

∑
k>m

kα−1+ε
P(ξ = k).

(All y’s give the same contribution, and there are two x’s at any distance k.) To es-
timate the last sum, we use the following Abel-type summation formula: Suppose
{an}, {bn} are two sequences, such that {bn} is summable, and anBn+1 → 0, where
Bs = ∑∞

k=s bk , then ∑
n≥m

anbn = amBm + ∑
n>m

(an − an−1)Bn.

(Restricting the sums to n ≤ N gives a discrepancy of aNBN+1, so if one series
converges so does the other and the identity holds.) Setting an = nα−1+ε and bn =
P(ξ = n), we get∑

k≥m

kα−1+ε
P(ξ = k)

= mα−1+ε
P(ξ ≥ m) + ∑

k>m

(
kα−1+ε − (k − 1)α−1+ε)

P(ξ ≥ k)

≤ mα−1+ε
P(ξ ≥ m) + C

∑
k>m

kα−2+ε
P(ξ ≥ k)

≤ Cmα−1+εm−α+ε + C
∑
k>m

kα−2+εk−α+ε

≤ Cm2ε−1.
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The penultimate inequality follows from the conditions on ξ together with the
fact that a slowly varying function grows slower than any power. Combining this
with (6.9), we get

P(�Dn > m|Fn) ≤ Cn

m1−2ε
.

Since ε is arbitrary, the proof is complete. �

PROOF OF THEOREM 6.1 (UPPER BOUND). Claim 6.7 implies P(�Dn >

m|Fn) ≤ nm−1−o(1). By the second part of Lemma 3.6, this implies that P(Dn ≥
γφ(n)) � 1/γ for any n and γ , with φ(n) = n2+o(1). Set γ = log2 n and con-
sider only the geometric sequence n = 2k . It follows by Borel–Cantelli that a.s.
Dn ≤ φ(n) log2 n = n2+o(1) for all large enough n = 2k , and by monotonicity this
holds for any n, as needed. �

7. Hyper-transient: The restricted Z
3 walk. We consider here the restric-

tion to Z of the simple random walk on Z
3, where Z is embedded in Z

3, say as
Z × {(0,0)}. Because simple random walk on Z

3 is transient, so is our induced
process on Z. This means that the gluing formula (2.2) is no longer valid, nor is
our definition of DLA. Let us therefore start by stating the analog of μ(x, a) in the
transient case. For a set A and an element x (possibly in A), we define the escape
probability EA(x) and the capacity Cap(A) by

EA(x) = Px(TA = ∞), Cap(A) = ∑
a∈A

EA(a).

Now define the transient gluing measure by

μ(x, a) = μ(x, a;A) = px,aEA(x)

Cap(A)
.(7.1)

In part II, we explain why (7.1) is the natural analog of (2.2) in the transient set-
tings, but for now we take it as the definition [note that in part II, (7.1) contains
E∗

A(x), the escape probabilities for the reversed walk, but here our walk is symmet-
ric]. With μ(x, a) defined the aggregate is defined exactly as in Definition 2.3. We
keep the notation of R and ξ for the walk, An for the aggregate and Dn = diamAn.

We now consider the specific case of the Z
3 restricted walk. It turns out that we

only need the following property.

DEFINITION 7.1. A random walk on Z is said to be log-avoiding if for some
c > 0 and any finite A ⊂ Z, and any x we have EA(x) ≥ c

log |A| .

PROPOSITION 7.2. The restricted Z
3 random walk is log-avoiding.
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PROOF. Since Z is embedded in Z
3, take a cylinder of radius |A|2 around Z,

and let B be the vertex boundary of the cylinder. Since the random walk projected
orthogonally to the embedded copy of Z is a two-dimensional random walk, for
any x ∈ Z we have Px(TB < TZ) ≥ c

log |A| (see, e.g., [11], Lemma 9).

The probability in Z
3 of ever hitting a given point at distance d is or order c/d

(see [36], T26.1 or [28], Theorem 4.3.1). Thus, for any point in B , the probability
of ever hitting A is at most c/|A|. Combining the two,

EA(x) ≥ Px(TB < TZ)PB(TA = ∞) ≥ c

log |A|
(
1 − c/|A|) ≥ c′

log |A| . �

With this property, we have super-exponential growth.

THEOREM 7.3. Let R be a log-avoiding random walk. Then a.s. for any C,
Dn > Cn infinitely often.

PROOF. For any walk Cap(An) ≤ n, and by log-avoidance EA(x) ≥ c
logn

and
putting this into (7.1) gives

μ(x, a;An) ≥ cpx,a

n logn
.(7.2)

Now, gluing any x with |x − a| > m will imply Dn+1 > m, and so since there are
n possible a’s,

P(Dn+1 > m|Fn) ≥ n
cP(ξ > m)

n logn
.

Next, we note that for any log-avoiding random walk with step ξ we have
P(ξ > m) ≥ c

logm
, since this is larger than the probability of escaping the inter-

val [−m,m]. Therefore,

P(Dn+1 > m|Fn) ≥ c

logm logn
.

Taking m = Cn, we see that a.s. Dn+1 > Cn for infinitely many n. �

In light of this very fast growth, the following result is somewhat surprising.

THEOREM 7.4. If R be a log-avoiding irreducible random walk, then a.s.
A∞ = Z (where A∞ = ∪An.)

PROOF. Fix some point x ∈ Z with p0,x > 0. Taking a = 0 in (7.2), we get

μ(x,0) ≥ cp0,x

n logn
.
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It follows that a.s. x ∈ A∞. If p0,x = 0 we use the irreducibility of the walk to find
0 = a1, a2, . . . , ak = x such that pai,aj

> 0. Since the same argument works with
any ai ∈ An in place of 0, we can show inductively that a.s. all ai are in A∞, and
in particular x. �

Let us conclude with a related conjecture.

CONJECTURE. For any transient random walk on Z, Cap(An) = o(n) a.s.

Our basis for this conjecture is similar to the argument for Theorem 7.4: If the
capacity grows linearly, then A∞ = Z which (morally) implies that An should have
particles clumped into small intervals. However, that contradicts the assumption of
linear capacity.

If this conjecture holds, then one may show that Dn = o(n1/α) for any 0 < α <
1
2 , so the aggregate does not grow in a precisely polynomial fashion, but rather has
some sub-polynomial correction.
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