
The Annals of Probability
2016, Vol. 44, No. 5, 3474–3545
DOI: 10.1214/15-AOP1055
© Institute of Mathematical Statistics, 2016

CONFORMAL WELDINGS OF RANDOM SURFACES:
SLE AND THE QUANTUM GRAVITY ZIPPER1

BY SCOTT SHEFFIELD

Massachusetts Institute of Technology

We construct a conformal welding of two Liouville quantum gravity ran-
dom surfaces and show that the interface between them is a random frac-
tal curve called the Schramm–Loewner evolution (SLE), thereby resolving
a variant of a conjecture of Peter Jones. We also demonstrate some surpris-
ing symmetries of this construction, which are consistent with the belief that
(path-decorated) random planar maps have (SLE-decorated) Liouville quan-
tum gravity as a scaling limit. We present several precise conjectures and
open questions.
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1. Introduction.

1.1. Overview. Liouville quantum gravity and the Schramm–Loewner evo-
lution (SLE) rank among the great mathematical physics discoveries of the last
few decades. Liouville quantum gravity, introduced in the physics literature by
Polyakov in 1981 in the context of string theory, is a canonical model of a random
two-dimensional Riemannian manifold [74, 75]. The Schramm–Loewner evolu-
tion, introduced by Schramm in 1999, is a canonical model of a random path in
the plane that does not cross itself [82, 85]. Each of these models is the subject of
a large and active literature spanning physics and mathematics.

Our goal here is to connect these two objects to each other in the simplest pos-
sible way. Roughly speaking, we will show that if one glues together two indepen-
dent Liouville quantum gravity random surfaces along boundary segments (in a
boundary-length-preserving way)—and then conformally maps the resulting sur-
face to a planar domain—then the interface between the two surfaces is an SLE.

Peter Jones conjectured several years ago that SLE could be obtained in a sim-
ilar way—specifically, by gluing (what in our language amounts to) one Liouville
quantum gravity random surface and one deterministic Euclidean disc. Astala,
Jones, Kupiainen and Saksman showed that the construction Jones proposed pro-
duces a well-defined curve [5, 6], but Binder and Smirnov recently announced a
proof (involving multifractal exponents) that this curve is not a form of SLE, and
hence the original Jones conjecture is false [96] (see Section 1.5). Our construction
shows that a simple variant of the Jones conjecture is in fact true.

Beyond this, we discover some surprising symmetries. For example, it turns
out that there is one particularly natural random simply connected surface (called
a γ -quantum wedge) that has an infinite-length boundary isometric to R (almost
surely) which contains a distinguished “origin.” Although this surface is simply
connected, it is almost surely highly nonsmooth and it has a random fractal struc-
ture. We will explain precisely how it is defined in Section 1.6. The origin di-
vides the boundary into two infinite-length boundary arcs. Suppose we glue (in a
boundary-length preserving way) the right arc of one such surface to the left arc
of an independent random surface with the same law, then conformally map the
combined surface to the complex upper half plane H (sending the origin to the ori-
gin and ∞ to ∞—see figure below), and then erase the boundary interface. The
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FIG. 1. Welding surfaces.

geometric structure of the combined surface can be pushed forward to give geo-
metric structure (including an area measure) on H. One wonders if one can guess,
from this geometric structure on H, where the now-erased interface used to be, see
Figure 1.

We will show that the geometric structure yields no information at all. That
is, the conditional law of the interface is that of an SLE in H independently of
the underlying geometry (a fact formally stated as part of Theorem 1.8). Another
way to put this is that conditioned on the combined surface, all of the information
about the interface is contained in the conformal structure of the combined surface,
which determines the embedding in H (up to rescaling H via multiplication by a
positive constant, which does not affect the law of the path, since the law of SLE
is scale-invariant).

This apparent coincidence is actually quite natural from one point of view. We
recall that one reason (among many) for studying SLE is that it arises as the fine
mesh “scaling limit” of random simple paths on lattices. Liouville quantum grav-
ity is similarly believed (though not proved) to be the scaling limit of random
discretized surfaces and random planar maps. The independence mentioned above
turns out to be consistent with (indeed, at least heuristically, a consequence of)
certain scaling limit conjectures (and a related conformal invariance Ansatz) that
we will formulate precisely (in Section 2.2) for the first time here.
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Polyakov initially proposed Liouville quantum gravity as a model for the intrin-
sic Riemannian manifold parameterizing the space–time trajectory of a string [74].
From this point of view, the welding/subdivision of such surfaces is analogous to
the concatenation/subdivision of one-dimensional time intervals (which parame-
terize point-particle trajectories). It seems natural to try to understand complicated
string trajectories by decomposing them into simpler pieces (and/or gluing pieces
together), which should involve subdividing and/or welding the corresponding Li-
ouville quantum gravity surfaces. The purpose of this paper is to study these weld-
ings and subdivisions mathematically. We will not further explore the physical
implications here.

In a recent memoir [76], Polyakov writes that he first became convinced of
the connection between the discrete models and Liouville quantum gravity in the
1980s after jointly deriving, with Knizhnik and Zamolodchikov, the so-called KPZ
formula for certain Liouville quantum gravity scaling dimensions and comparing
them with known combinatorial results for the discrete models [46]. With Du-
plantier, the present author recently formulated and proved the KPZ formula in a
mathematical way [28, 29] (see also [9, 79]). This paper is in some sense a sequel
to [29], and we refer the reader there for references and history.

We will find it instructive to develop Liouville quantum gravity along with a
closely related construction called the AC geometry or imaginary geometry. Both
Liouville quantum gravity and the imaginary geometry are based on a simple ob-
ject called the Gaussian free field.

1.2. Random geometries from the Gaussian free field. The two-dimensional
Gaussian free field (GFF) is a natural higher dimensional analog of Brownian mo-
tion that plays a prominent role in mathematics and physics. See the survey [91]
and the introductions of [86, 87] for a detailed account. On a planar domain D, one
can define both a zero boundary GFF and a free boundary GFF (the latter being de-
fined only modulo an additive constant, which we will sometimes fix arbitrarily).
In both cases, an instance of the GFF is a random sum

h = ∑
i

αifi,

where the αi are i.i.d. mean-zero unit-variance normal random variables, and the
fi are an orthonormal basis for a Hilbert space of real-valued functions on D (or
in the free boundary case, functions modulo additive constants) endowed with the
Dirichlet inner product

(f1, f2)∇ := (2π)−1
∫
D

∇f1(z) · ∇f2(z) dz.

The Hilbert space is the completion of either the space of smooth compactly sup-
ported functions f : D → R (zero boundary) or the space of all smooth functions
f : D →R modulo additive constants with (f, f )∇ < ∞ (free boundary). In each
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case, h is understood not as a random function on D but as a random distribution or
generalized function on D. (Mean values of h on certain sets are also defined, but
the value of h at a particular point is not defined.) One can fix the additive constant
for the free boundary GFF in various ways, for example, by requiring the mean
value of h on some set to be zero. We will review these definitions in Section 3.

There are two natural ways to produce a “random geometry” from the Gaussian
free field. The first construction is (critical) Liouville quantum gravity. Here, one
replaces the usual Lebesgue measure dz on a smooth domain D with a random
measure μh = eγh(z) dz, where γ ∈ [0,2) is a fixed constant and h is an instance
of (for now) the free boundary GFF on D (with an additive constant somehow
fixed—we will actually consider various ways of fixing the additive constant later
in the paper; one way is to require the mean value of h on some fixed set to be 0).
Since h is not defined as a function on D, one has to use a regularization procedure
to be precise:

μ = μh := lim
ε→0

εγ 2/2eγhε(z) dz,(1.1)

where dz is Lebesgue measure on D, hε(z) is the mean value of h on the circle
∂Bε(z) and the limit represents weak convergence (on compact subsets) in the
space of measures on D. (The limit exists almost surely, at least if ε is restricted
to powers of two [29].) We interpret μh as the area measure of a random surface
conformally parameterized by D. When x ∈ ∂D, we let hε(x) be the mean value
of h on D ∩ ∂Bε(x). On a linear segment of ∂D, we may define a boundary length
measure by

ν = νh := lim
ε→0

εγ 2/4eγhε(x)/2 dx,(1.2)

where dx is Lebesgue measure on ∂D. (For details, see [29], which also relates
the above random measures to the curvature-based action used to define Liouville
quantum gravity in the physics literature.)

We could also parameterize the same surface with a different domain D̃, and our
regularization procedure implies a simple rule for changing coordinates. Suppose
that ψ is a conformal map from a domain D̃ to D and write h̃ for the distribution
on D̃ given by h ◦ ψ + Q log |ψ ′| where

Q := 2

γ
+ γ

2
,

as in Figure 2.2 Then μh is almost surely the image under ψ of the measure μ
h̃
.

That is, μ
h̃
(A) = μh(ψ(A)) for A ⊂ D̃. Similarly, νh is almost surely the image

2 We use the same distribution composition notation as [29]: that is, if φ is a conformal map from

D to a domain D̃ and h is a distribution on D, then we define the pullback h◦φ−1 of h to be a distri-
bution on D̃ defined by (h ◦ φ−1, ρ̃) = (h,ρ) whenever ρ ∈ Hs(D) and ρ̃ = |φ′|−2ρ ◦ φ−1. (Here,
φ′ is the complex derivative of φ, and (h,ρ) is the value of the distribution h integrated against ρ.)
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FIG. 2. A quantum surface coordinate change.

under ψ of the measure ν
h̃

[29]. In fact, [29] formally defines a quantum surface
to be an equivalence class of pairs (D,h) under the equivalence transformations
(see Figure 2)

(D,h) → ψ−1(D,h) := (
ψ−1(D),h ◦ ψ + Q log

∣∣ψ ′∣∣) = (D̃, h̃),(1.3)

noting that both area and boundary length are well defined for such surfaces. The
invariance of νh under (1.3) actually yields a definition of the quantum boundary
length measure νh when the boundary of D is not piecewise linear, that is, in
this case, one simply maps to the upper half plane (or any other domain with a
piecewise linear boundary) and computes the length there.3

The second construction involves “flow lines” of the unit vector field eih/χ

where χ 
= 0 is a fixed constant (see Figure 9), or alternatively flow lines of
ei(h/χ+c) for a constant c ∈ [0,2π). The author has proposed calling this collec-
tion of flow lines the AC geometry4 of h, but a recent series of joint works with
Jason Miller uses the term imaginary geometry [64–67]. Makarov once proposed
the term “magnetic gravity” in a lecture, suggesting that in some sense the AC
geometry is to Liouville quantum gravity as electromagnetism is to electrostatics.
We will discuss additional interpretations in Section 2 and the Appendix.

Although h is a distribution and not a function, one can make sense of flow lines
using the couplings between the Schramm–Loewner evolution (SLE) and the GFF

Note that if h is a continuous function [viewed as a distribution via the map ρ → ∫
D ρ(z)h(z) dz],

then the distribution h ◦ φ−1 thus defined is the ordinary composition of h and φ−1 (viewed as a
distribution).

3It remains an open question whether the interior of a quantum surface is canonically a metric
space. A pair (D,h) is a metric space parameterized by D when, for distinct x, y ∈ D and δ > 0,
one defines the distance dδ(x, y) to be the smallest number of Euclidean balls in D of μh mass δ

required to cover some continuous path from x to y in D. We conjecture but cannot prove that for
some constant β the limiting metric

lim
δ→0

δβdδ

exists a.s. and is invariant under the transformations described by (1.3).
4AC stands for “altimeter-compass.” If the graph of h is viewed as a mountainous terrain, then a

hiker holding an analog altimeter—with a needle indicating altitude modulo 2πχ—in one hand and
a compass in the other can trace an AC ray by walking at constant speed (continuously changing
direction as necessary) in such a way that the two needles always point in the same direction.
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FIG. 3. An AC surface coordinate change.

in [87, 90], which were further developed in [20] and more recently in [38, 39, 59].
The paths in these couplings are generalizations of the GFF contour lines of [87].

We define an AC surface to be an equivalence class of pairs under the following
variant of (1.3):

(D,h) → (
ψ−1(D),h ◦ ψ − χ argψ ′) = (D̃, h̃),(1.4)

as in Figure 3. The reader may observe that (at least when h is smooth) the flow
lines of the LHS of (1.4) are the ψ images of the flow lines of the RHS. To check
this, first consider the simplest case: if ψ−1 is a rotation (i.e., multiplication by a
modulus-one complex number), then (1.4) ensures that the unit flow vectors eih/χ

(as in Figure 9) are rotated by the same amount that D is rotated. The general claim
follows from this, since every conformal map looks locally like the composition
of a dilation and a rotation (see Section 2.1).

Recalling the conformal invariance of the GFF, if the h on the left-hand side
of (1.3) and (1.4) is a centered (expectation zero) Gaussian free field on D then
the distribution on the right-hand side is a centered (expectation zero) GFF on D̃

plus a deterministic function. In other words, changing the domain of definition
is equivalent to recentering the GFF. The deterministic function is harmonic if D

is a planar domain, but it can also be defined (as a nonharmonic function) when
D is a surface with curvature (see [29]). In what follows, we will often find it
convenient to define quantum and AC surfaces on the complex half-plane H using
a (free or zero boundary) GFF on H, sometimes recentered by the addition of a
deterministic function that we will call h0. We will state our main results in the
introduction for fairly specific choices of h0. We will extend these results to more
general underlying geometries in Section 4 and Section 5.

1.3. Theorem statements: SLE/GFF couplings. We will give explicit relation-
ships between the Gaussian free field and both “forward” and “reverse” forms of
SLE in Theorems 1.1 and 1.2 below. We will subsequently interpret these theorems
as statements about AC geometry and Liouville quantum gravity, respectively. We
will prove Theorem 1.1 in Section 4.1 using a series of calculations. These calcula-
tions are not really new to this paper, although the precise form of the argument we
give has not been published elsewhere.5 Our main reason for proving Theorem 1.1

5The argument presented in Section 4.1, together with the relevant calculations, appeared in lecture
slides some time ago [90], and is by now reasonably well known. Dubédat presented another short
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in Section 4.1 is that we wish to simultaneously prove Theorem 1.2. Theorem 1.2
is completely new to this paper (and essential to the other results obtained in this
paper), but it is very closely related to Theorem 1.1. Proving the two results side
by side allows us to highlight the similarities and differences.

We will not give a detailed introduction to SLE here, but there are many ex-
cellent surveys on SLE; see, for example, the introductory references [48, 104]
for basic SLE background. To set notation, we recall that when η is an instance
of chordal SLEκ in H from 0 to ∞, the conformal maps gt : H \ η([0, t]) → H,
normalized so that limz→∞ |gt (z) − z| = 0, satisfy

dgt (z) = 2

gt (z) − Wt

dt,(1.5)

with Wt = √
κBt = gt (η(t)), where Bt is a standard Brownian motion. In fact, this

can be taken as the definition of SLEκ . Rohde and Schramm proved in [82] that for
each κ and instance of Bt , there is almost surely a unique continuous curve η in H

from 0 to ∞, parameterized by [0,∞), for which (1.5) holds for all t . When η is
parameterized so that (1.5) holds, the quantity t is called the (half-plane) capacity
of γ ([0, t]). The curve η is almost surely a simple curve when κ ∈ [0,4], a self-
intersecting but nonspace-filling curve when κ ∈ (4,8), and a space-filling curve
(ultimately hitting every point in H) when κ ≥ 8 [82].

The maps

ft (z) := gt (z) − Wt

satisfy

dft (z) = 2

ft (z)
dt − √

κ dBt ,

and ft (η(t)) = 0. Throughout this paper, we will use ft rather than gt to describe
the Loewner flow. If ηT = η([0, T ]) is a segment of an SLE trace, denote by KT

the complement of the unbounded component of H \ ηT . In the statements of The-
orem 1.1 and Theorem 1.2 below and throughout the paper, we will discuss several
kinds of random distributions on H. To show that these objects are well defined as
distributions on H, we will make implicit use of some basic facts about distribu-
tions:

1. If h is a distribution on a domain D then its restriction to a subdomain is a
distribution on that subdomain. (This follows by simply restricting the class of test
functions to those supported on the subdomain.)

derivation of this statement within a long foundational paper [20]. More recent variants appear in [38,
39], and in the series of papers [64–67], which studies the couplings in further detail. Prior to these
works, Kenyon and Schramm derived (but never published) a calculation relating SLE to the GFF
in the case κ = 8. One could also have inferred the existence of such a relationship from the fact—
due to Lawler, Schramm and Werner—that SLE8 is a continuum scaling limit of uniform spanning
tree boundaries [50], and the fact—due to Kenyon—that the winding number “height functions” of
uniform spanning trees have the GFF as a scaling limit [43–45].
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2. If h a distribution on a domain D and φ is a conformal map from D to a
domain D̃ then h ◦ φ−1 is a distribution on D̃. (Recall footnote 2.)

3. An instance of the zero boundary GFF on a subdomain of D is also well
defined as a distribution on all of D. (See Section 2.1 of [87].)

4. If h is an L1 function on D, then h can be understood as a distribution on D

defined by (h,ρ) = ∫
D ρ(z)h(z) dz.

In the proof of Theorem 1.1 in Section 4.1, we will show that even though the
function argf ′

t that appears in the theorem statement is a.s. unbounded, it can also
a.s. be understood as a distribution on H (see the discussion after the theorem
statement below).

THEOREM 1.1. Fix κ ∈ (0,4] and let ηT be the segment of SLEκ generated
by the Loewner flow

dft (z) = 2

ft (z)
dt − √

κ dBt , f0(z) = z(1.6)

up to a fixed time T > 0. Write

h0(z) := −2√
κ

arg z, χ := 2√
κ

−
√

κ

2
,

ht (z) := h0
(
ft (z)

) − χ argf ′
t (z).

Here, arg(ft (z)) (which is a priori defined only up to an additive multiple of 2π ) is
chosen to belong (0, π) when ft (z) ∈ H; we similarly define argf ′

t (z) by requiring
that (when t is fixed) it is continuous on H \ ηT and tends to 0 at ∞. Let h̃ be an
instance of the zero boundary GFF on H, independent of Bt . Then the following
two random distributions on H agree in law:6

h := h0 + h̃,

h ◦ fT − χ argf ′
T = hT + h̃ ◦ fT .

The two distributions above also agree in law when κ ∈ (4,8) if we replace
h̃ ◦ fT with a GFF on H \ η([0, t]) (which in this case means the sum of an
independent zero boundary GFF on each component of H \ η([0, t])) and take
ht (z) := lims→τ(z)− hs(z) if z is absorbed at time τ(z) ≤ t .

Alternative statement of Theorem 1.1: Using our coordinate change and AC
surface definitions, we may state the theorem when κ < 4 somewhat more ele-
gantly as follows: the law of the AC surface (H, h) is invariant under the operation
of independently sampling fT using a Brownian motion and (1.6), transforming

6Note that fT maps H \ KT to H, so (H, h) and (H \ KT ,h ◦ fT − χ argf ′
T ) describe equivalent

AC surfaces by (1.4).
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FIG. 4. Forward coupling.

the AC surface via the coordinate change f −1
T (going from right to left in Fig-

ure 47—see also Figure 11) in the manner of (1.4), and erasing the path ηT (to
obtain an AC surface parameterized by H instead of H \ ηT ). We discuss the geo-
metric intuition behind the alternative statement in Section 2.1.

Note that, as a function, hT is not defined on ηT itself. However, we will see
in Section 4.1 that hT is a.s. well defined as a distribution, independently of how
we define it as a function on ηT itself. This will follow from the fact that, when
κ = 4, this hT is almost surely a bounded function off of ηT , and when κ 
= 4, the
restriction of hT to any compact subset of H is almost surely in Lp for each p < ∞
(see Section 4). The fact that h̃ ◦ fT is well defined as a distribution on H (not just
as a distribution on H \ ηT ) follows from conformal invariance of the GFF, and
the fact (mentioned above, proved in [87]) that a zero boundary GFF instance on a
subdomain can be understood as a distribution on the larger domain.

Another standard approach for generating a segment ηT of an SLE curve is
via the reverse Loewner flow, whose definition is recalled in the statement of the
following theorem. (Note that if T is a fixed constant, then the law of the ηT

generated by reverse Loewner evolution is the same as that generated by forward
Loewner evolution; see Figures 4 and 5.)

FIG. 5. Reverse coupling.

7All figures in this paper are sketches, not representative simulations.
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THEOREM 1.2. Fix κ > 0 and let ηT be the segment of SLEκ generated by a
reverse Loewner flow

dft (z) = −2

ft (z)
dt − √

κ dBt , f0(z) = z(1.7)

up to a fixed time T > 0. Write

h0(z) := 2√
κ

log |z|, Q := 2√
κ

+
√

κ

2
,

ht (z) := h0
(
ft (z)

) + Q log
∣∣f ′

t (z)
∣∣,

and let h̃ be an instance of the free boundary GFF on H, independent of Bt . Then
the following two random distributions (modulo additive constants) on H agree in
law:8

h := h0 + h̃,

h ◦ fT + Q log
∣∣f ′

T

∣∣ = hT + h̃ ◦ fT .

Alternative statement of Theorem 1.2: A more elegant way to state the theorem
is that the law of (H, h) is invariant under the operation of independently sam-
pling fT , cutting out KT (equivalent to ηT when κ ≤ 4), and transforming via the
coordinate change f −1

T (going from right to left in Figure 5) in the manner of (1.3).

Both theorems give us an alternate way of sampling a distribution with the law
of h, that is, by first sampling the Bt process (which determines ηT ), then sampling
a (fixed or free boundary) GFF h̃ and taking

h = hT + h̃ ◦ fT .

This two part sampling procedure produces a coupling of ηT with h. In the forward
SLE setting of Theorem 1.1, it was shown in [20] that in any such coupling, ηT is
almost surely equal to a particular path-valued function of h. (This was also done
in [87] in the case κ = 4.) In other words, in such a coupling, h determines ηT

almost surely. This is important for our geometric interpretations. Even though h

is not defined pointwise as a function, we would like to geometrically interpret
η as a level set of h (when κ = 4) or a flow line of eih/χ (when κ < 4), as we
stated above and will explain in more detail in Section 2.1. It is thus conceptually
natural that such curves are uniquely determined by h (as they would be if h were
a smooth function, see Section 2.1).

As mentioned earlier, this paper introduces and proves Theorem 1.2 while high-
lighting its similarity to Theorem 1.1. Indeed, it won’t take us much more work to

8Note that fT maps H to H\KT , so (H, h◦fT +Q log |f ′
T |) and (H\KT ,h) describe equivalent

quantum surfaces by (1.3). Indeed, (H, h ◦ fT + Q log |f ′
T |) = f −1

T (H \ KT ,h).
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prove Theorems 1.1 and 1.2 together than it would take to prove one of the two
theorems alone. It turns out that in both Figure 4 (which illustrates Theorem 1.1)
and Figure 5 (which illustrates Theorem 1.2), the field illustrated on the left side
of the figure (which agrees with h in law) actually determines ηT and the map fT ,
at least when κ < 4. In the former context (Figure 4), this a major result due to
Dubédat [20] (see also the exposition on this point in [64]). It says that a certain
“flow line” is a.s. uniquely determined by h. The statement in the latter context is
a major result obtained in this paper, stated in Theorems 1.3 and 1.4. With some
hard work, we will be able to show that the map fT describes a conformal welding
in which boundary arcs of equal quantum boundary length are “welded together.”
Once we have this, the fact that the boundary measure uniquely characterizes fT

will be obtained by applying a general “removability” result of Jones and Smirnov,
as we will explain in Section 1.4.

1.4. Theorem statements: Conformal weldings. We will now try to better un-
derstand Theorem 1.2 in the special case κ < 4. Note that a priori the h in Theo-
rem 1.2 is defined only up to additive constant. We can either choose the constant
arbitrarily (e.g., by requiring that the mean value of h on some set be zero) or avoid
specifying the additive constant and consider the measures μh and νh to be defined
only up to a global multiplicative constant. The choice does not affect the theorem
statement below.

THEOREM 1.3. Suppose that κ < 4 and that h and ηT are coupled in the way
described at the end of the previous section, that is, h is generated by first sampling
the Bt process up to time T in order to generate fT via a reverse Loewner flow,
and then choosing h̃ independently and writing h = hT + h̃◦fT , and ηT ((0, T ]) =
H\fT H.9 Given a point z along the path ηT , let z− < 0 < z+ denote the two points
in R that fT (continuously extended to R) maps to z. Then almost surely

νh

([z−,0]) = νh

([0, z+])
for all z on ηT .

Theorem 1.3 is a relatively difficult theorem, and it will be the last thing
we prove. We next define R = Rh : (−∞,0] → [0,∞) so that νh([x,0]) =
νh([0,R(x)]) for all x (recall that ν is a.s. atom free [29]). This R gives a home-
omorphism from [0−,0] to [0,0+] that we call a conformal welding of these two
intervals. We stress that the values 0− and 0+ depend on T , but the overall home-
omorphism R between (−∞,0] and [0,∞) is determined by the boundary mea-
sure νh, whose law does not depend on T (although the coupling between h, h̃ and

9It is not known whether an analog of Theorem 1.3 can obtained in the case κ = 4. The standard
procedure for constructing the boundary measure νh breaks down when κ = 4, γ = 2, but a scheme
was introduced [25, 26] to create a nontrivial boundary measure νh. The open problems listed in
Section 6 also address a related question in the κ > 4 setting.
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FIG. 6. Sketch of η with marks spaced at intervals of the same νh length along ∂D1 and ∂D2.
Here, (−∞,0] and [0,∞) are the two open strands of the “zipper” while η is the closed (zipped up)
strand. Semicircular dots on R are “zipped together” by f h

t . Circular dots on η are “pulled apart”
by f

η
t . (Recall that under the reverse Loewner flow f h

t , the center of a semicircle on the negative
real axis will reach the origin at the same time as the center of the corresponding semicircle on the
positive real axis.) The law of ((D1, hD1), (D2, hD2 )) is invariant under “zipping up” by t capacity
units or “zipping down” by t capacity units.

ηT described in the theorem statement clearly depends on T ). Since ηT is simple,
it clearly determines the restriction of R to [0−,0]. (See Figure 6.) It turns out that
R also determines ηT .

THEOREM 1.4. For κ < 4, in the setting of Theorem 1.3, the homeomorphism
R from [0−,0] to [0,0+] uniquely determines the curve ηT . In other words, it
is almost surely the case that if η̃T̃ is any other simple curve in H such that the
homeomorphism induced by its reverse Loewner flow is the same as R on [0−,0],
then η̃T̃ = ηT . In particular, h determines ηT almost surely.

PROOF. The author learned from Smirnov that Theorem 1.4 follows almost
immediately from Theorem 1.3 together with known results in the literature. If
there were a distinct candidate η̃T with a corresponding f̃T , then φ = f̃T ◦ f −1

T —
extended from H to R by continuity, and to all of C by Schwarz reflection—would
be a nontrivial homeomorphism of C [with limz→∞ φ(z)− z = 0] which was con-
formal on C \ (ηT ∪ η̄T ), where η̄T denotes the complex conjugate of ηT . Thus, to
prove Theorem 1.4, it suffices to show that no such map exists. In complex analysis
terminology, this is equivalent by definition to showing that the curve ηT ∪ η̄T is
removable. Rohde and Schramm showed that the complement of η([0, T ]) is a.s. a
Hölder domain for κ < 4 (see Theorem 5.2 of [82]) and that η is a.s. a simple curve
in this setting. In particular, ηT ∪ η̄T is almost surely the boundary of its comple-
ment, and this complement is a Hölder domain. (More about Hölder continuity
appears in work of Beliaev and Smirnov [7] and Kang [42] and Lind [57].) Jones
and Smirnov showed generally that boundaries of Hölder domains are removable
(Corollary 2 of [41]). The same observations are used in [6]. �

We remark that the above arguments also show that η ∪ η̄ is removable when η

is the entire SLE path. In the coming sections, we will often interpret the left and
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right components of H \ η as distinct quantum surfaces, where the right boundary
arc of one surface is welded (along η) to the left boundary arc of another surface
in a quantum-boundary-length-preserving way. When the law of η is given by
SLEκ with κ < 4, removability implies that η is almost surely determined (up to a
constant rescaling of H) by the way that these boundary arcs are identified. In other
words, aside from constant rescalings, there is no homeomorphism of H, fixing 0
and ∞, whose restriction to H \ η is conformal.

1.5. Corollary: Capacity stationary quantum zipper. This subsection contains
some discussion and interpretation of some simple consequences of Theorems 1.3
and 1.4, in particular Corollary 1.5 below. We first observe that for κ < 4, Theo-
rem 1.4 implies that R determines ηT almost surely for any given T > 0. In par-
ticular, this means that R determines an entire reverse Loewner evolution ft = f h

t

for all t ≥ 0, and that this f h
t is (in law) a reverse SLEκ flow. Similarly, given a

chordal curve η from 0 to ∞ in H, we denote by f
η
t the forward Loewner flow

corresponding to η. The following is now an immediate corollary of the domain
Markov property for SLE and Theorems 1.2, 1.3 and 1.4. As usual, transformations
f (D,h) are defined using (1.3).

COROLLARY 1.5. Fix κ ∈ (0,4). Let h = h0 + h̃ be as in Theorem 1.2 and let
η be an SLEκ on H chosen independently of h. Let D1 be the left component of
H \ η and hD1 the restriction of h to D1. Let D2 be the right component of H \ η

and hD2 the restriction of h to D2. For t ≥ 0, write

ZCAP
t

((
D1, h

D1
)
,
(
D2, h

D2
)) = (

f h
t

(
D1, h

D1
)
, f h

t

(
D2, h

D2
))

,

ZCAP−t

((
D1, h

D1
)
,
(
D2, h

D2
)) = (

f
η
t

(
D1, h

D1
)
, f

η
t

(
D2, h

D2
))

.

Note that both h and η are determined by the pair ((D1, h
D1), (D2, h

D2)), and that
f h

t and f
η
t are also a.s. determined by this pair, so that the maps ZCAP

t and ZCAP−t

are well defined for almost all pairs ((D1, h
D1), (D2, h

D2)) chosen in the manner
described above. Then the law of ((D1, h

D1), (D2, h
D2)) is invariant under ZCAP

t

for all t . Also, for all s and t ,

ZCAP
s+t =ZCAP

s ZCAP
t

almost surely.

Because the forward and reverse Loewner evolutions are parameterized accord-
ing to half plane capacity, we refer to the group of transformations ZCAP

t as the
capacity quantum zipper; see Figure 6. (The term “zipper” in the Loewner evo-
lution context has been used before; see the “zipper algorithm” for numerically
computing conformal mappings in [61] and the references therein.) When t > 0,
applying ZCAP

t is called “zipping up” the pair of quantum surfaces by t capacity
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units and applying ZCAP−t is called “zipping down” or “unzipping” by t capacity
units.

To begin to put this construction in context, we recall that the general conformal
welding problem is usually formulated in terms of identifying unit discs D1 and D2
along their boundaries via a given homeomorphism φ from ∂D1 to ∂D2 to create
a sphere with a conformal structure. Precisely, one wants a simple loop η in the
complex sphere, dividing the sphere into two pieces such that if conformal maps ψi

from the Di to the two pieces are extended continuously to their boundaries, then
ψ1 ◦ψ−1

2 is φ. In general, not every homeomorphism φ between disc boundaries is
a conformal welding in this way, and when it is, it does not always come from an η

that is (modulo conformal automorphisms of the sphere) unique; in fact, arbitrarily
small changes to φ can lead to large changes in η and some fairly exotic behavior
(see, e.g., [13]).

The theorems of this paper can also be formulated in terms of a sphere ob-
tained by gluing two discs along their boundaries: in particular, one can zip up the
quantum surfaces of Corollary 1.5 “all the way” (see Figure 16 and Section 5.2),
which could be viewed as welding two Liouville quantum surfaces (each of which
is topologically homeomorphic to a disc) to obtain an SLE loop in the sphere,
together with an instance of the free boundary GFF on the sphere.

Note that in the construction described above, the quantum surfaces are defined
only modulo an additive constant for the GFF, and we construct the two surfaces
together in a particular way. In Section 1.6 (Theorem 1.8), we will describe a
related construction in which one takes two independent quantum surfaces (each
with its additive constant well defined) and welds them together to obtain SLE.

As mentioned in Section 1.1, Peter Jones conjectured several years ago that an
SLE loop could be obtained by (what in our language amounts to) welding a quan-
tum surface to a deterministic Euclidean disc. (The author first learned of this con-
jecture during a private conversation with Jones in early 2007 [40].) Astala, Jones,
Kupiainen and Saksman recently showed that such a welding exists and deter-
mines a unique loop (up to conformal automorphism of the sphere) [5, 6]. Binder
and Smirnov recently announced (to the author, in private communication [96])
that they have obtained a proof that the original conjecture of Jones is false. By
computing a multifractal spectrum, they showed that the loop constructed in [5, 6]
does not look locally like SLE. However, our construction, together with Theo-
rem 1.8 below, shows that a natural variant of the Jones conjecture—involving two
independent quantum surfaces instead of one quantum surface and one Euclidean
disc—is in fact true.

We also remark that the “natural” d-dimensional measure on (or parameteri-
zation of) an SLE curve of Hausdorff dimension d was only constructed fairly
recently [49, 51, 52], and it was shown to be uniquely characterized by certain
symmetries, in particular the requirement that it transforms like a d-dimensional
measure under the maps ft (i.e., if the map locally stretches space by a factor of r ,
then it locally increases the measure by a factor of rd ). Our construction here can
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be viewed as describing, for κ < 4, a natural “quantum” parameterization of SLEκ ,
which is similarly characterized by transformation laws, in particular the require-
ment that adding C to h—which scales area by a factor of eγC—scales length by
a factor of eγC/2. These ideas are discussed further in [30].

The relationship between Euclidean and quantum natural fractal measures and
their evolution under capacity invariant quantum zipping is developed in [30] in a
way that makes use of the KPZ formula [29, 46].

1.6. Quantum wedges and quantum length stationarity. This subsection con-
tains ideas and definitions that are important for the proofs of Theorem 1.3 and 1.4,
as well as the statement of another of this paper’s main results, Theorem 1.8, which
we will actually prove before Theorem 1.3. The reader who prefers to first see
proofs of Theorems 1.1 and 1.2 and some discussion of the consequences may
read Sections 3 and 4, as well as much of Section 5, independently of this subsec-
tion.

Theorem 1.8 includes a variant of Corollary 1.5 in which one parameterizes
time by “amount of quantum length zipped up” instead of by capacity. The “sta-
tionary” picture will be described as a particular random quantum surface S with
two marked boundary points and a chordal SLE η connecting the two marked
points. The theorem will state that this η divides S into two quantum surfaces S1
and S2 that are independent of each other. (One can also reverse the procedure
and first choose the Si—these are the so-called γ -quantum wedges mentioned
earlier—and then weld them together to produce S and the interface η.) As we
have already mentioned, this independence appears at first glance to be a rather
bizarre coincidence. However, as we will see in Section 2.2, this kind of result is
to be expected if SLE-decorated Liouville quantum gravity is (as conjectured) the
scaling limit of path-decorated random planar maps.

Before we state Theorem 1.8 formally, we will need to spend a few paragraphs
constructing a particular kind of scale invariant random quantum surface that we
will call an “α quantum wedge.” The reader who has never encountered quantum
wedges before may wish to first read Section 1.4 of [23], which contains a more
recent and better illustrated discussion of the quantum wedge construction.

We begin this construction by making a few general remarks. Recall that given
any quantum surface represented by (D̃, h̃)—with two distinguished boundary
points—we can change coordinates via (1.3) and represent it as the pair (H, h) for
some h, where H is the upper half plane, and the two marked points are taken to be
0 and ∞. We will represent the “quantum wedges” we construct in this way, and
we will focus on constructions in which there is almost surely a finite amount of
μh mass and νh mass in each bounded neighborhood of 0 and an infinite amount in
each neighborhood of ∞. In this case, the corresponding quantum surface is half-
plane-like in the sense that it has one distinguished boundary point “at infinity” and
one distinguished “origin”—and each neighborhood of “infinity” includes infinite
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area and an infinite length portion of the surface boundary, while the complement
of such a neighborhood contains only finite area and a finite-length portion of the
surface boundary. We will let Sh denote the doubly marked quantum surface de-
scribed by h in this way.

The h describing Sh is canonical except that we still have one free parameter
corresponding to constant rescalings of H by (1.3). For each a > 0, such a rescaling
is given by

(H, h) → (
H, h(a·) + Q log |a|).(1.8)

We can fix this parameter by requiring that μh(B1(0) ∩ H) = 1. We will let μh

be zero on the negative half plane so that we write this slightly more compactly
as μh(B1(0)) = 1. (Alternatively, one could normalize so that νh([−1,1]) = 1.)
We call the h for which this holds the canonical description of the doubly marked
quantum surface.

Now to construct a “quantum wedge” it will suffice to give the law of the corre-
sponding h. To this end, we first recall that one can decompose the Hilbert space
for the free boundary GFF into an orthogonal sum of the space of functions which
are radially symmetric about zero and the space of functions with zero mean about
all circles centered at zero [29]. Consequently, we can write h(·) = h|·|(0) + h†(·),
where h†

ε(0) = 0 for all ε, and h|z|(0) is (of course) a continuous and radially sym-
metric function of z. This is a decomposition of the GFF h into its projection onto
two (·, ·)∇ orthogonal subspaces, so h|·|(0) and h†(·) are independent of each other
[91]; the latter is a scale invariant random distribution and defined without an ad-
ditive constant (since its mean is set to be zero on all circles centered at the origin).
Now we define three types of quantum surfaces (the first two being defined only
up an additive constant for h, which corresponds to a constant-factor rescaling of
the surface itself). The third may seem unmotivated; however, the reader may note
that it is similar in the spirit to the second, except that the third h is actually a well-
defined random distribution (as opposed to a random distribution modulo additive
constant), so that (H, h) is a well-defined quantum surface.

1. Definition—unscaled quantum wedge on H: The quantum surface (H, h)

where h is an instance of the free boundary GFF (which is defined up to addi-
tive constant, so that the quantum surface is defined only up to rescaling). In this
case, h|·| agrees in law with B− log |·| when Bt, t ∈R is

√
2 times a standard Brow-

nian motion defined up to a global additive constant. We think of Bt as a Brownian
motion with diffusive rate 2, which will be understood throughout the discussion
below. We can write

h = h†(·) + B− log |·|,

where h†(·) and B− log |·| are independent.
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2. Definition—α-log-singular free quantum surface on H: The quantum sur-
face (H, h) where

h = h†(·) + α
(− log | · |) + B− log |·|,(1.9)

with h† and B as above (and h also defined only up to additive constant).
3. Definition—α-quantum wedge: for α < 0, the quantum surface (H, h) where

h = h†(·) + Q
(− log | · |) + A− log |·|,(1.10)

and the process At, t ∈ R is defined in a particular way: namely, for t ≥ 0, At is a
Brownian motion with drift α − Q, that is, At = Bt + (α − Q)t . Also, for t ≥ 0,
the negative-time process A−t is chosen independently as a Brownian motion with
drift −(α − Q) conditioned not to revisit zero. This involves conditioning on a
probability zero event, so let us state this another way to be clear. Note that B̃t =
Bt − (α − Q)t has positive drift, and hence a.s. s0 = sup{s : B̃s = 0} < ∞. Then
the law of A−t (for t ≥ 0) is the law of B̃t+s0 , for t ≥ 0.

To begin to motivate the definition above, note that applying the coordinate
transformation (1.8) to the α-quantum wedge defined by (1.10), where the coordi-
nate change map is a rescaling by a factor of a, amounts to replacing (1.10) with

h†(a·) + Q
(− log |a · |) + A− log |a·| + Q log |a|

= h†(a·) + Q
(− log | · |) + Aloga−log |·|.

Since the law of h† is scaling invariant, we find that the coordinate change de-
scribed amounts to a horizontal translation of A by − loga. That is, the quantum
surface obtained by sampling A and then sampling h† independently agrees in law
with the quantum surface obtained by sampling A, translating the graph of A hori-
zontally by some (possibly random) amount, and then sampling h† independently.

We think of At as a Brownian process that drifts steadily as a Brownian motion
with drift (α − Q) from −∞, reaches zero at some point, and then subsequently
evolves as a regular Brownian motion with the same drift. Since translating the
graph of At horizontally does not affect the law of the quantum surface obtained,
we choose (for concreteness) the translation for which inf{t : At = 0} = 0. (We
remark that the process At can also be interpreted as the log of a Bessel process,
reparameterized by quadratic variation, noting that the graph of such a reparame-
terization is a priori only defined up to a horizontal translation; this point of view
is explained and used extensively in [23].)

Now we make another simple claim: the α-quantum wedge is a doubly marked
quantum surface whose law is invariant under the multiplication of its area by a
constant. To explain what this means, let us observe that when C ∈ R, we can
“multiply the surface area by the constant eC” by replacing h with h + C/γ , or
equivalently, by replacing A with A+C/γ . Let t0 = inf{t : Ãt = 0} and write Ãt =
At0+t +C/γ . By the definition of t0, we find that Ãt (like At ) is a process that drifts
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up from −∞, reaches zero for the first time when t = 0, and then subsequently
evolves as a Brownian motion with drift. Indeed, it is not hard to see that Ãt has the
same law as At . To deduce the claim, we then observe that the distribution of h† is
fixed; and since the radial parts h|·|(0) of the GFF are continuous and independent
of μh† and converge to a limit in law, we may conclude that eγh|·|(0) dμh† converges
in law.

For future reference, we mention that one has a natural notion of “convergence”
for quantum surfaces of this type: if h1, h2, . . . are the canonical descriptions of a
sequence of doubly marked quantum surfaces and h is the canonical description
of Sh, then we say that the sequence Shi converges to Sh if the corresponding
measures μhi converge weakly to μh on all bounded subsets of H.

One motivation for the definition of a quantum wedge is the following, which
can be deduced from the description of quantum typical points given in Section 6
of [29]. It says (in a certain special setting; for a stronger result, see Proposi-
tion 5.5) that if one zooms in near a “quantum-boundary-measure-typical” point,
one finds that the quantum surface looks like a γ -quantum wedge near that point.

PROPOSITION 1.6. Fix γ ∈ [0,2) and let D be a bounded subdomain of H
for which ∂D ∩R is a segment of positive length. Let h̃ be an instance of the GFF
with zero boundary conditions on ∂D \R and free boundary conditions on ∂D∩R.
Let [a, b] be any subinterval of ∂D ∩R and let h0 be a continuous function on D

that extends continuously to the interval (a, b). Let dh be the law of h0 + h̃, and
let νh[a, b]dh denote the measure whose Radon–Nikodym derivative w.r.t. dh is
νh[a, b]. (Assume that this is a finite measure, i.e., the dh expectation of νh[a, b]
is finite.) Now suppose we:

1. sample h from νh[a, b]dh (normalized to be a probability measure),
2. then sample x uniformly from νh restricted to [a, b] (see Figure 7) (normal-

ized to be a probability measure),
3. and then let h∗ be h translated by −x units horizontally (i.e., recentered so

that x becomes the origin).

Then as C → ∞ the random quantum surfaces Sh∗+C/γ converge in law (w.r.t.
the topology of convergence of doubly-marked quantum surfaces) to a γ -quantum
wedge.

FIG. 7. Point x sampled from νh (restricted to [a, b]).
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PROOF. We first recall that in this setting the description of quantum typical
points in Section 6 of [29] implies a very explicit description of the joint law of the
pair x and h sampled in Proposition 1.6. The marginal law of x is absolutely con-
tinuous with respect to Lebesgue measure, and conditioned on x the law of h is that
of its original law plus a deterministic function that has the form −γ log |x −·| plus
a deterministic smooth function. In a small neighborhood of x, this deterministic
smooth function is approximately constant, which means that h∗ looks like (up to
additive constant) the h used to define an α-log-singular free quantum surface in
(1.9), with α = γ . If we write A′

t = Bt + (α − Q)t , then we find that h∗ looks like
the h used to define a γ -quantum wedge in (1.10), except with A replaced by A′.

Now replacing h∗ by h∗ + C/γ corresponds to adding C/γ to the process B

from (1.9), and hence also corresponds to adding C/γ to the process A′, which
translates the graph of A′ vertically. Recall from above that translating the graph
of A′ horizontally corresponds to a coordinate change; so we can translate A′ so
that it hits zero for the first time at the origin. It is not hard to see that as C → ∞,
the law of A′ thus translated converges to the law of A. Since the law of h† is scale
invariant and can be chosen independently, this implies the proposition statement.

�

We will later show (see Proposition 5.5) that the conclusion of the proposi-
tion still holds if (when generating x and h) we condition on particular values for
νh[a, x] and νh[x, b].

The following is an immediate consequence of Proposition 1.6. It tells us that
the γ -quantum wedge is stationary with respect to shifting the origin by a given
amount of quantum length. (When γ = 0, the proposition simply states that H it-
self is invariant under horizontal translations. Proposition 1.7 is the general quan-
tum analog of this invariance.)

PROPOSITION 1.7. Fix a constant L > 0. Suppose that (H, h) is a γ -quantum
wedge. Then choose y > 0 so that νh[0, y] = L, and let h∗ be h translated by −y

units horizontally (i.e., recentered so that y becomes the origin). Then (H, h∗) is a
γ -quantum wedge.

PROOF. Suppose that x is the point chosen uniformly from the quantum
boundary measure in Proposition 1.6, and x′ is the point translated δL quantum
length units to the right from x, so that νh[x, x′] = δL. Note that such an x′ exists
with a probability that tends to 1 as δ → 0, and that the law of x′ converges (in
total variation sense) to the law of x as δ → 0. In the rescaled surfaces in Propo-
sition 1.6, boundary lengths are scaled by eC/2, so if we set δ = e−C/2, then the
distance between x and x′ is L after the rescaling. Since this δ tends to zero as
C → ∞ we conclude that the limiting surface law is (as desired) invariant under
the operation that translates the origin by L units of quantum boundary length. �

The following will be proved in Section 5.
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THEOREM 1.8. Wedge decomposition: Fix γ ∈ (0,2), and let S be a (γ −
2/γ )-quantum wedge with canonical description h. Let η be a chordal SLEκ in H

from 0 to ∞, with κ = γ 2, chosen independently of h. Let D1 and D2 be the left
and right components of H\η, and let hD1 and hD2 be the restrictions of h to these
domains. Then the quantum surfaces represented by (D1, h

D1) and (D2, h
D2) are

independent γ -quantum wedges (marked at 0 and ∞), and their quantum bound-
ary lengths along η agree.

Zipper stationarity: Moreover, suppose we define

ZLEN−t

((
D1, h

D1
)
,
(
D2, h

D2
))

as follows. First, find z on η for which the quantum boundary lengths along D1
and D2 (which are well defined by unzipping) along η between 0 and z are both
equal to t . Let t ′ be the time that η hits z (when η is parameterized by capacity)
and define

ZLEN−t

((
D1, h

D1
)
,
(
D2, h

D2
)) = rescaling of

(
f

η

t ′
(
D1, h

D1
)
, f

η

t ′
(
D2, h

D2
))

,

where the rescaling is done via (1.8) with the parameter a chosen so that B1(0)

has area one in the transformed quantum measure. Then the following hold:

1. The inverse ZLEN
t of the operation ZLEN−t is a.s. uniquely defined (via con-

formal welding).
2. ZLEN

s+t = ZLEN
s ZLEN

t almost surely for s, t ∈ R.
3. The law of the pair ((D1, h

D1), (D2, h
D2)) is invariant under ZLEN

t for all
t ∈ R.

It also follows from Theorem 1.4 and the subsequent discussion that the two
independent γ -quantum wedges uniquely determine h and η almost surely. We
refer to the group of transformations ZLEN

t as the length quantum zipper. When
t > 0, applying ZLEN

t is called “zipping up” the pair of quantum surfaces by t

quantum length units and applying ZLEN−t is called “zipping down” or “unzipping”
by t quantum length units. When we defined the operations ZCAP

t , h was defined
only up to additive constant, and the zipping maps ft were independent of that
constant. By contrast, ZLEN

t represents zipping by an actual quantity of quantum
length, and hence cannot be defined without the additive constant being fixed.

We will give a detailed proof in Section 5, which is in some sense the heart of the
paper. But for now, let us give a brief overview of the proof and the relationship
to our other results. We will start with the scenario described in Figure 6, with
h normalized to have mean zero on ∂B1(0), except that the measure dh on h is
replaced by the probability measure whose Radon–Nikodym derivative w.r.t. dh is
νh(−δ,0) for some fixed δ (see Figure 8).

Then we will sample x from νh restricted to (−δ,0) (normalized to be a prob-
ability measure) and “zip up” until x hits the origin (to obtain a “quantum-length-
typical” configuration). We then zoom in near the origin (multiplying the area by
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FIG. 8. Choose h as in Theorem 1.2 [normalized by h1(0) = 0] except with the law of h weighted
by νh([−δ,0]) for some fixed δ ∈ (0,1). Then conditioned on h, sample x from νh restricted to
[−δ,0] (normalized to be a probability measure). Take T so that fT is the map zipping up [x,0] with
[0,R(x)]. Consider the three random surfaces obtained by choosing a semi-disc of quantum area ε̃

centered at each of x and R(x) (on the left-hand side) and 0 (on the right side), and multiplying
areas by 1/ε̃ (zooming in) so that all three balls have quantum area 1. In the ε̃ → 0 limit, the left two
quantum surfaces become independent γ -quantum wedges, and the right is the conformal welding
of these two.

ε̃−1—and hence the boundary length by ε̃−1/2—say). We then use a variant of
Proposition 1.6 (namely, Proposition 5.5) to show that (in the ε̃ → 0 limit) the
lower two rescaled surfaces on the lower left of Figure 8 become independent
γ -quantum wedges.

The fact that the curve on the right in Figure 8 is (in the ε̃ → 0 limit) an SLEκ

independent of the canonical description h on the right will be shown in Section 5
by directly calculating the law of the process that “zips up” [x,0] with [0,R(x)].
It could also be seen by showing that we can construct an equivalent pair of glued
surfaces by beginning with Figure 6 [with h normalized to have mean zero on
∂B1(0)] and then zipping down by a random amount (chosen uniformly from an
interval) of quantum length, then zooming in by multiplying lengths by 1/ε̃, and
then taking the ε̃ → 0 limiting law. (In this case, the domain Markov property of
the original SLE, and its independence from the original GFF, would imply that
the conditional law of the still-zipped portion of the curve is an SLEκ , independent
of h.)

Similar arguments to those in [29] will show that the procedure in Figure 8
produces a configuration related to the one in Figure 5 except that it is in some
sense weighted by the amount of quantum mass near zero. It will turn out that
this weighting effectively adds −γ log | · | to the h0 of Theorem 1.2 and Corol-
lary 1.5. This is why Theorem 1.8 involves a (γ − 2/γ )-quantum wedge, instead
of a (−2/γ )-quantum wedge, as one might initially guess based on Theorem 1.2.
Once we have all of this structure in place, the really crucial step will be showing
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that parameterizing time by the amount of “left boundary quantum length” zipped
up yields the same stationary picture as parameterizing time the amount of “right
boundary quantum length” zipped up. Given this, we will then use the ergodic the-
orem to show that over the long term, the amount of left bounday quantum length
zipped up approximately agrees with the amount of right boundary length zipped
up. Using scale invariance symmetries, we will then deduce that this agreement
almost surely holds exactly on all scales.

1.7. Organization. Section 2 provides heuristic justification and motivation
for the main results about AC geometry and Liouville quantum gravity. (An inter-
pretation of AC geometry in terms of “imaginary curvature” appears in the Ap-
pendix.) Section 3 gives a brief overview of the Gaussian free field. Section 4
proves Theorems 1.1 and 1.2, along with a generalization to other underlying ge-
ometries. Section 5 proves Theorems 1.8 and 1.3 (in that order), along with some
additional results about zipping processes and time changes. (Recall that we have
already proved that Theorem 1.4 is a consequence of Theorem 1.3.) Section 6,
finally, presents a list of open problems and conjectures.

2. Geometric interpretation. This section summarizes some of the conjec-
tures and intuition behind our main results, including some discrete-model-based
reasons that one would expect the coupling and welding theorems to be true. This
section may be skipped by the reader who prefers to proceed directly to the proofs.

2.1. Forward coupling: Flow lines of eih/χ . Fix a planar domain D, viewed
as a subset of C, a function h : D → R, and a constant χ > 0. An AC ray of h is
a flow line of the complex vector field eih/χ beginning at a point x ∈ D, that is, a
path η : [0,∞) →C that is a solution to the ODE:

η′(t) := ∂

∂t
η(t) = eih(η(t))/χ when t > 0, η(0) = x,(2.1)

until time T = inf{t > 0 : η(t) /∈ D}. When h is Lipschitz, the standard Picard–
Lindelöf theorem implies that if x ∈ D, then (2.1) has a unique solution up until
time T (and T is itself uniquely determined). The reader can visually follow the
flow lines in Figure 9.

If h is continuous, then the time derivative η′(t) moves continuously around the
unit circle, and h(η(t))−h(η(0)) describes the net amount of winding of η′ around
the circle between times 0 and t .

A major problem (addressed in depth in an imaginary geometry series [64–67])
is to make sense of these flow lines when h is a multiple of the Gaussian free field.
We will give here just a short overview of the way these objects are constructed.
Suppose that η is a smooth simple path in H beginning at the origin, with (forward)
Loewner map ft = f

η
t . We may assume that η starts out in the vertical direction,

so that the winding number is π/2 for small times. Then when η and h are both
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FIG. 9. The complex vector flow eih: h(x, y) = y, h(x, y) = x2 + y2.

smooth, the statement that η is a flow line of eih/χ is equivalent to the statement
that for each x on η((0, t)) we have

χ argf ′
t (z) → −h(x)(2.2)

as z approaches x from the left side of η and

χ argf ′
t (z) → −h(x) + χπ(2.3)

as z approaches x from the right side of η (as Figure 10 illustrates). Recall that
argf ′

t (z)—a priori determined only up to a multiple of 2π—is chosen to be con-
tinuous on H \ η([0, t]) and 0 on R. If χ = 0, then (2.2) and (2.3) hold if and only
if h is identically zero along the path η, that is, η is a zero-height contour line of h.

In [86, 87], it is shown that when one takes certain approximations hε of an
instance h of the GFF that are piecewise linear on an ε-edge-length triangular
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FIG. 10. Winding number along ηT determines argf ′
T , which is the amount a small arrow near

ηT is rotated by fT .

mesh, then conditioned on a zero chordal contour line of hε there is in some ε → 0
limiting sense a constant “height gap” between the expected heights immediately
to one side of the contour line and those heights on the other. We might similarly
expect that if one looked at the expectation of hε , given a chordal flow line ηε of
eihε/χ , there would be a constant order limiting height gap between the two sides;
see Figure 11.

This suggests the form of ht given in Theorem 1.1, which comes from taking
(2.2) and (2.3) and modifying the height gap between the two sides by adding a
multiple of argft . (As in [87], the size of the height gap—and hence the coefficient
of argft in the definition of ht—is determined by the requirement that ht (z) be a
martingale in t ; see Section 4.) Interestingly, the fact that winding may be ill-
defined at a particular point on a fractal curve turns out to be immaterial. It is the
harmonic extension of the boundary winding values (the argf ′

t ) that is needed to
define ht , and this is defined even for nonsmooth curves.

The time-reversal of a flow line of eihε/χ is a flow line of ei(hε/χ+π), which
at first glance appears to imply that there should not be a height gap between the
two sides (since if the left side were consistently smaller for the forward path,
then the right side would be consistently smaller for the reverse path). To counter
this intuition, observe that, in the left diagram in Figure 9, the left-going infinite

FIG. 11. Forward coupling with arrows in eih/χ direction (sketch), illustrating the constant angle
gap between the two sides of the curve η, constant angles along the positive and negative real axes,
and random angles (not actually point-wise defined if h is the GFF) in H \ η.
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horizontal flow lines (at vertical heights of kπ , k odd) are “stable” in that the
flow line beginning at a generic point slightly off one of these lines will quickly
converge to the line. The right-going horizontal flow lines (at heights kπ , k even)
are unstable. In a stable flow line, h appears to generally be larger to the right
side of the flow line and smaller to the left side. It is reasonable to expect that a
flow line of eihε/χ started from a generic point would be approximately stable in
that direction—and in particular would look qualitatively different from the time
reversal of a flow line of ei(hε/χ+π) started from a generic point.

2.2. Reverse coupling: Planar maps and scaling limits. In this section, we
conjecture a connection between path-decorated planar maps and SLE-decorated
Liouville quantum gravity (in particular, the quantum-length-invariant decorated
quantum wedge of Theorem 1.8). We will explain the details in just one example
based on the uniform spanning tree. (Variants based on Ising and O(n) and FK
models on random planar maps—or on random planar maps without additional
decoration besides the chordal paths—are also possible. Many rigorous results for
percolation and the Ising model have been obtained for deterministic graphs in [14,
16, 97–100] (and in many other papers we will not survey here), and one could
hope to extend these results to random graphs. One could also consider discrete
random surfaces decorated by loops and in the continuum replace SLE decorations
with CLE decorations [92, 94].) As mentioned earlier, we will see that the more
surprising elements of Theorem 1.8 are actually quite natural from the discrete
random surface point of view.

Let G be a planar map with exactly n edges (except that each edge on the outer
face is counted as half an edge) and let T be a subgraph consisting of a single
boundary cycle, a chordal path from one boundary vertex a to another boundary
vertex b that otherwise does not hit the boundary cycle, and a spanning forest
rooted at this “Figure 8” structure. (See Figure 12.) Here, T is like the wired span-
ning tree (in which the entire boundary is considered to be one vertex), except that

FIG. 12. Planar map with a distinguished outer-boundary-plus-one-chord-rooted spanning tree
(solid black edges), with chord joining marked boundary points a and b, plus image of tree under
conformally uniformizing map φ to H (sketch).
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there is also one chord connecting a pair of boundary vertices. What happens if we
consider the uniform measure on all pairs (G,T ) of this type? This model is fairly
well understood combinatorially (tree-rooted maps on the sphere are in bijective
correspondence with certain walks in Z

2 — see, e.g., [73] as well as [12] and the
references therein—and our model is a simple variant of this) and in particular, it
follows from these bijections that the length of the boundary of the outer face of
this map will be of order

√
n with high probability when n is large. Now, can we

understand the scaling limit of the random pair (G,T ) as n → ∞?
There are various ways to pose this problem. For example, one could consider G

as a metric space and aim for convergence in law w.r.t. the Gromov–Hausdorff met-
ric on metric spaces. The reader is probably aware that there is a sizable literature
on the realization of a random metric space called the Brownian map as a Gromov–
Hausdorff scaling limit of random planar maps of various types. However, since
this paper is concerned with the conformal structure of random geometry, we will
try to phrase the problem in a way that keeps track of that structure.

First, we would like to understand how to conformally map the planar map to the
half plane, as in Figure 12. We may consider G as embedded in a two-dimensional
manifold with boundary in various ways, one of which we sketch here: first add an
interior vertex to each face of G and an edge joining it to each vertex of that face (as
in Figure 13). Each interior edge of G is now part of a quadrilateral (containing one
vertex for each interior face of G and one for each vertex of G) and we will endow
that quadrilateral with the metric of a unit square [0,1] × [0,1]. Similarly, the
triangle containing an exterior edge of G is endowed with the metric of half a unit
square (split on its diagonal, with the exterior edge as the hypotenuse). When two
squares or half squares share an edge, the points along that edge are identified with
one another in a length preserving way. We may view the collection of (whole and
half) unit squares, glued together along boundaries, as a manifold (with isolated
conical singularities at vertices whose number of incident squares is not four) with
a uniquely defined conformal structure (note that it is trivial to define a Brownian
motion on the manifold, since it a.s. never hits the singularities). We may choose a
conformal map φ from this manifold to H, sending a to 0 and b to ∞, as sketched
in Figure 12.

FIG. 13. An arbitrary planar map can be used to construct a collection of stitched-together unit
squares and half unit squares. The result is viewed as a two-dimensional manifold with boundary.
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This φ is determined only up to scaling, but we can fix the scaling in many
ways. We will do so by considering a number k < n and requiring that the area of
φ−1(B1(0)) be equal to k. Then φ determines a random measure on H (the image
of the area measure on the manifold) in which the measure of B1(0) is determin-
istically equal to k; let μn,k denote this random measure divided by k, so that
μn,k(B1(0)) = 1. We expect that if one lets n and k tend to ∞ in such a way that
n/k tends to ∞, then the random measures μn,k will converge in law with respect
to the metric of weak convergence on bounded subsets of H to the μ = μh corre-
sponding to the canonical description h of the (γ − 2/γ )-quantum wedge of The-
orem 1.8. [By compactness, the laws of the μn,k restricted to the closure of B1(0)

have at least a subsequential limit.] We similarly conjecture that νn,k—defined to
be 1/

√
k times the image of the manifold’s boundary measure—will converge in

law to the corresponding νh. (We remark that one could alternatively formulate
the conjecture by taking an infinite volume limit first, that is, letting n go to infin-
ity while keeping k constant to define a limiting measure μ∞,k := limn→∞ μn,k .
This kind of infinite volume limit of random planar maps was constructed in [3].
One can subsequently take k → ∞ and conjecture that the limit is μh. A similar
conjecture in [29] was formulated in terms of infinite volume limits.)

We are currently unable to prove these conjectures, but related questions about
Brownian motion on random surfaces have been explored in [32], where it was
shown that certain infinite random triangulations and quadrangulations (without
boundaries) are parabolic (as opposed to hyperbolic) Riemann surfaces [32]. (This
is equivalent to showing that a Brownian motion visits each face infinitely often
almost surely; see analogous discrete results in [3].)

Now let us make some more observations. If we take k, n, and n/k to be large
and condition on G, a, and b, then what is the conditional law of φ(T ), as de-
picted in Figure 12? The conditional law of T itself is uniform among all valid
8-rooted spanning forest configurations. The physics literature frequently invokes
a kind of “conformal invariance Ansatz” which suggests that this random path (and
many other random sets in critical two-dimensional statistical physics) should be
a conformally invariant object.

In this case, we claim that the law of the chordal path should be approximately
that of a chordal SLE2 even after we have conditioned on G, a, and b, which deter-
mine the measure μn,k . The reason for our claim is that a related SLE2 convergence
result is obtained in [50] in the case that G is a deterministic lattice graph, and this
was generalized substantially in [105] where it was shown that if a graph can be
embedded in the plane in such a way that simple random walk approximates Brow-
nian motion, then the uniform spanning tree paths approximate a form of SLE2.
We do not know whether the hypotheses of [105] hold in our setting. Brownian
motion is conformally invariant, but it is not clear whether simple random walk on
our random G approximates Brownian motion on the corresponding quadrangu-
lated manifold with high probability. However, it seems very natural to conjecture
that the hypotheses hold. In any case, we stress the following: if our scaling limit
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conjecture holds, then the asymptotic independence of the chordal path from μn,k

would be consistent with the independence of η and h in Theorem 1.8.
Next let D1 and D2 be the wired-spanning-tree decorated manifolds to the left

and right of the chordal path. Note that once we condition on the length of the
chordal path in (G,T ) and the number of edges on each side of it, the laws of D1
and D2 are independent of one another. We might guess that the local behavior
of D1 and D2 near a would be approximately independent of these global num-
bers. We expect a similar property to hold in the scaling limit, which would be
consistent with the independence of the left and right quantum surfaces described
in Theorem 1.8. (The idea of gluing together independent discrete surfaces in this
manner has been explored in many works by Duplantier and others, beginning per-
haps in [22]. The idea of gluing a whole series of discrete surfaces was used in [21]
to heuristically derive certain “cascade relations” via the KPZ formula.)

Finally, if we condition on the point b and on D1 and D2, then the length of
the path along which D1 and D2 are glued to each other is uniform among all
possibilities (which range between 1 and the minimum M of the boundary lengths
of the two Di’s minus 1). In other words, once D1 and D2 and b are all fixed, we
can randomly decide how far to “zip up” or “unzip” these two surfaces (moving
the vertex a accordingly). If r is the random number of steps we zip, then r and
r + m have approximately the same law (as long as m/M is small). We expect a
similar property to hold in the scaling limit, which would be consistent with the
quantum-length-zipper invariance described in Theorem 1.8.

3. Gaussian free field overview. We refer the reader to [91] for a survey of
the Gaussian free field (GFF) and several additional references. For completeness,
we include a short overview, closely following [87, 91]. For the reader who is
already familiar with the zero and free boundary GFF, it may be sufficient (to set
notation) to read only the numbered equations in this section and the statement of
Proposition 3.1.

3.1. GFF definitions.

3.1.1. Dirichlet inner product. Fix a simply connected planar domain D ⊂ C

(with D 
= C). Let Hs(D) be the space of smooth, compactly supported functions
on D, and let H(D) [sometimes denoted by H

1
0(D) or W 1,2(D)] be its Hilbert

space closure under the Dirichlet inner product

(f1, f2)∇ := (2π)−1
∫
D

∇f1(z) · ∇f2(z) dz.

Let ψ be a conformal map from another domain D̃ to D. Then an elementary
change of variables calculation shows that∫

D̃
∇(f1 ◦ ψ) · ∇(f2 ◦ ψ)dx =

∫
D

(∇f1 · ∇f2) dx.
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In other words, the Dirichlet inner product is invariant under conformal transfor-
mations.

We write (f1, f2) = ∫
D f1(x)f2(x) dx for the L2 inner product on D. We write

‖f ‖ := (f, f )1/2 and ‖f ‖∇ := (f, f )
1/2
∇ . If f1, f2 ∈ Hs(D), then integration by

parts gives

(f1, f2)∇ = 1

2π
(f1,−�f2).(3.1)

3.1.2. Distributions and the Laplacian. It is conventional to use Hs(D) as
a space of test functions. This space is a topological vector space in which the
topology is defined so that φk → 0 in Hs(D) if and only if there is a compact
set on which all of the φk are supported and the mth derivative of φk converges
uniformly to zero for each integer m ≥ 1.

A distribution on D is a continuous linear functional on Hs(D). Since Hs(D) ⊂
L2(D), we may view every h ∈ L2(D) as a distribution ρ �→ (h,ρ). A modulo-
additive-constant distribution on D is a continuous linear functional on the sub-
space of Hs(D) consisting of ρ for which

∫
D ρ(z) dz = 0. We will frequently abuse

notation and use h—or more precisely the map denoted by ρ → (h,ρ)—to rep-
resent a general distribution (which is a functional of ρ), even though h may not
correspond to an element of L2(D). [Later, we will further abuse notation and use
ρ to represent a nonsmooth function or a measure; in the latter case (h,ρ), when
defined, will represent the integral of h against that measure.]

We define partial derivatives and integrals of distributions in the usual way (via
integration by parts), that is, for ρ ∈ Hs(D),(

∂

∂x
h,ρ

)
:= −

(
h,

∂

∂x
ρ

)
.

In particular, if h is a distribution then �h is a distribution defined by (�h,ρ) :=
(h,�ρ). When h is a distribution and ρ ∈ Hs(D), we also write

(h,ρ)∇ := 1

2π
(−�h,ρ) = 1

2π
(h,−�ρ).

When x ∈ D is fixed, we let G̃x(y) be the harmonic extension to y ∈ D of the
function of y on ∂D given by − log |y − x|. Then Green’s function in the domain
D is defined by

G(x,y) = − log |y − x| − G̃x(y).

When x ∈ D is fixed, Green’s function may be viewed as a distributional solution
of �G(x, ·) = −2πδx(·) with zero boundary conditions [91]. It is nonnegative for
all x, y ∈ D and G(x,y) = G(y,x).

For any ρ ∈ Hs(D), we write

−�−1ρ := 1

2π

∫
D

G(·, y)ρ(y) dy.
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This is a C∞ function in D whose Laplacian is −ρ. Indeed, a similar definition can
be made if ρ is any signed measure (with finite positive and finite negative mass)
rather than a smooth function. Recalling (3.1), if f1 = −2π�−1ρ1 then (h, f1)∇ =
(h,ρ1), and similarly if f2 = −2π�−1ρ2. Now (f1, f2)∇ = (ρ1,−2π�−1ρ2) de-
scribes a covariance that can (by the definition of −�−1ρ2 above) be rewritten
as

Cov
(
(h,ρ1), (h,ρ2)

) =
∫
D×D

ρ1(x)G(x, y)ρ2(y) dx dy.(3.2)

If ρ ∈ Hs(D), may define the map (h, ·) by (h,ρ) := (h,−2π�−1ρ)∇ , and
this definition describes a distribution [91]. [It is not hard to see that −2π�−1ρ ∈
H(D), since its Dirichlet energy is given explicitly by (3.2).]

3.1.3. Zero boundary GFF. An instance of the GFF with zero boundary con-
ditions on D is a random sum of the form h = ∑∞

j=1 αjfj where the αj are i.i.d.
one-dimensional standard (unit variance, zero mean) real Gaussians and the fj

are an orthonormal basis for H(D). This sum almost surely does not converge
within H(D) (since

∑∞
j=1 |αj |2 is a.s. infinite). However, it does converge almost

surely within the space of distributions—that is, the limit (
∑∞

j=1 αjfj , ρ) almost
surely exists for all ρ ∈ Hs(D), and the limiting value as a function of ρ is almost
surely a continuous functional on Hs(D) [91]. We may view h as a sample from
the measure space (�,F) where � = �D is the set of distributions on D and F
is the smallest σ -algebra that makes (h,ρ) measurable for each ρ ∈ Hs(D), and
we sometimes denote by dh the probability measure which is the law of h. If fj

are chosen in Hs(D), then the values αj are clearly F -measurable. In fact, for any
f ∈ H(D) with f = ∑

j βjfj the sum (h, f )∇ := ∑
j αjβj is a.s. well defined

and is a Gaussian random variable with mean zero and variance (f, f )∇ .

3.2. Green’s functions on C and H: Free boundary GFF. The GFF with free
boundary conditions is defined the same way as the GFF with zero boundary con-
ditions except that we replace Hs(D) with the space of all smooth functions with
gradients in L2(D) (i.e., we remove the requirement that the functions be com-
pactly supported). However, to make the correspondingly defined H(D) a Hilbert
space, we have to consider functions only modulo additive constants (since all
constant functions have norm zero). On the whole plane C, we may define the
Dirichlet inner product on the Hilbert space closure H(C) of the space of such
functions defined modulo additive constants.

Generally, given a compactly supported ρ (or more generally, a signed mea-
sure), we can write

−�−1ρ(·) := 1

2π

∫
C

G(·, y)ρ(y) dy,(3.3)

with G(x,y) = − log |x − y|.
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As before, for compactly supported f and g, we have (f, g)∇ = 1
2π

(f,−�g)

by integration by parts, and moreover (f,−�−1ρ)∇ = 1
2π

(ρ,f ). The same holds
for bounded and not necessarily compactly supported smooth functions f and g if
the gradient of −�−1ρ tends to zero at infinity, which in turn happens if and only
if

∫
C

ρ(z) dz = 0.
If

∫
C

ρ(z) dz 
= 0, then the Dirichlet energy of −�−1ρ will be infinite and more-
over (h,ρ) will not be independent of the additive constant chosen for h. [If we
view C as a Riemann sphere, then

∫
C

ρ(z) dz 
= 0 can also be interpreted as the
statement that the Laplacian of −�−1ρ has a point mass at ∞.] When h is the
free boundary GFF on C, we will thus define the random variables (h,ρ) only if
the integral of ρ over C is zero. If ρ1 and ρ2 each have total integral zero, we may
write

Cov
(
(h,ρ1), (h,ρ2)

) =
∫
C×C

ρ1(x)G(x, y)ρ2(y) dx dy.(3.4)

Using z → z̄ to denote complex conjugation, we define, for smooth functions
h ∈ H(C), the pair of projections

hO(z) := 1√
2

(
h(z) − h(z̄)

)
,

hE(z) := 1√
2

(
h(z) + h(z̄)

)
.

If h is an instance of the free boundary GFF on C, we may still define hO and hE

as projections of h onto complementary orthogonal subspaces. Their restrictions
to H are instances of the zero boundary GFF and free boundary GFF, respectively,
on H. For ρ supported on H we write (for z ∈ C) ρ∗(z) := ρ(z̄). Then we have by
definition (

hO, ρ
) = 1√

2

(
h,ρ − ρ∗)

,

(
hE, ρ

) = 1√
2

(
h,ρ + ρ∗)

.

Note that (hE, ρ) is only defined if the total integral of ρ is zero, while (hO, ρ) is
defined without that restriction (since in any case the total integral of ρ − ρ∗ will
be zero).

For ρ1 and ρ2 supported on H we now compute the following (first integral
taken over C×C, second over H×H):

Cov
((

hO, ρ1
)
,
(
hO, ρ2

))
= 1

2

∫ (
ρ1(x) − ρ∗

1 (x)
)

log |x − y|(ρ2(y) − ρ∗
2 (y)

)
dx dy(3.5)

=
∫

ρ1(x)GH0(x, y)ρ2(y) dx dy,
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where GH0(x, y) := log |x − ȳ| − log |x − y|. Similarly (first integral over C×C,
second over H×H),

Cov
((

hE, ρ1
)
,
(
hE, ρ2

))
= 1

2

∫ (
ρ1(x) + ρ∗

1 (x)
)

log |x − y|(ρ2(y) + ρ∗
2 (y)

)
dx dy(3.6)

=
∫

ρ1(x)GHF (x, y)ρ2(y) dx dy,

where GHF (x, y) := − log |x − ȳ| − log |x − y|.

3.3. GFF as a continuous functional. Note that we could have used (3.5) and
(3.6) to give an alternate and more direct definition of the zero and free boundary
Gaussian free fields on H. Here, (3.5) and (3.6) define inner products on the space
of functions ρ on H. They are well defined when ρ1 and ρ2 are smooth and com-
pactly supported functions on H [each with total integral zero in the case of (3.6)].
By taking the Hilbert space closure of functions of this type, we get a larger space
of ρ, which correspond to Laplacians of elements of H(H), and which cannot all
be interpreted as functions on H. For example, the ρ for which (h,ρ) is hε(z),
the mean value of h on ∂Bε(z), is not a function, though it can be interpreted
as a measure—a uniform measure on ∂Bε(z)—and the inner products (3.5) and
(3.6) still make sense when ρ1(z) dz and ρ2(z) dz are replaced with more general
measures, as do the definitions of −�−1ρ1 and −�−1ρ2.

The (h,ρ) are centered jointly Gaussian random variables, defined for each ρ

in this Hilbert space, with covariances given by the inner products (3.5) and (3.6)
(which can be defined on the entire Hilbert space). For each particular ρ in this
Hilbert space, (h,ρ) is a.s. well defined and finite; however, ρ → (h,ρ) is almost
surely not a continuous linear functional defined on the entire Hilbert space, since
a.s. h /∈ H(H).

In addition to the description of h as a distribution above, there are various ways
to construct a space of ρ values—a subset of the complete Hilbert space—endowed
with a topology that makes ρ → (h,ρ) almost surely continuous. For example,
the map h → hε(z) is an a.s. Hölder continuous function of ε and z [29]. Also,
the zero boundary GFF can be defined as a random element of (−�)−εL2(D)

for any ε > 0, and is hence a continuous linear function on (−�)εL2(D), if D is
bounded. (See [91] for definitions and further discussion of fractional powers of
the Laplacian in this context.) Also, as mentioned earlier, both the free and zero
boundary GFFs can be understood as random distributions [91].

The issues that come up when defining ρ → (h,ρ) as a continuous function on
some topological space of ρ values are the same ones that come up when rigor-
ously constructing a Brownian motion Bt : one can give the joint law of Bt for any
finite set of t values explicitly by specifying covariances, and this determines the
law for any fixed countable set of t values, but one needs to overcome some (mild)
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technicalities in order to say “Bt is almost surely a continuous function.” Indeed,
if one uses the smallest σ -algebra in which Bt is measurable for each fixed t , then
the event that Bt is continuous is not even in the σ -algebra.

On the other hand, if we are given a construction that produces a random contin-
uous function with the right finite dimensional marginals, then it must be a Brow-
nian motion. A standard fact (proved using characteristic functions and Fourier
transforms) states that a random variable on a finite dimensional space is a centered
Gaussian with a given covariance structure if and only if all of its one-dimensional
projections are centered Gaussians with the appropriate variance. Thus, to establish
that Bt is a Brownian motion, it is enough to show that each finite linear combina-
tion of Bt values is a (one-dimensional) centered Gaussian with the right variance.
The following proposition formalizes the analogous notion in the GFF context. It
is a standard and straightforward result about Gaussian processes (see [91] for a
proof in the zero boundary case; the free boundary case is identical).

PROPOSITION 3.1. The zero boundary GFF on H is the only random distri-
bution h on H with the property that for each ρ ∈ Hs(H) the random variable
(h,ρ) is a mean-zero Gaussian with variance given by (3.5) (with ρ1 = ρ2 = ρ).
Similarly, the free boundary GFF is the only random modulo-additive-constant
distribution on H with the property that for each ρ ∈ Hs(H) with

∫
H

ρ(z) dz = 0
the random variable (h,ρ) is a mean-zero Gaussian with variance given by (3.6).

In our proofs of Theorem 1.1 and Theorem 1.2 in Section 4, we will first con-
struct a random distribution in the manner prescribed by the theorem statement
and then check the laws of the one dimensional projections (which determine the
laws of the finite and countably infinite dimensional projections) to conclude by
Proposition 3.1 that it must be the GFF.

We remark that knowing h as a distribution determines the values of αj in a ba-
sis expansion h = ∑

j αjfj , as long as the −�fj are sufficiently smooth. This in
turn determines the value of hε(z) almost surely for a countable dense set of ε and
z values, which determines the values for all ε and z by the almost sure continuity
of hε(z) [29]. This is convenient because it means that h, as a distribution, a.s.
determines (z, ε) → hε(z) as a function, which in turn determines μh and νh. [We
could alternatively have defined hε(z)—and hence μh and νh—using weighted av-
erages of h defined by integrating against smooth bump functions on Bε(z) instead
of averages on ∂Bε(z). Though we will not do this here, one can easily construct
measures this way that are almost surely equivalent to μh and νh.]

4. Coupling the GFF with forward and reverse SLE.

4.1. Proofs of coupling theorems. This section will simultaneously prove The-
orem 1.1 and Theorem 1.2. It is instructive to prove them together, and we will put
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TABLE 1

Forward flow SLE Reverse flow SLE

dft (z) = 2
ft (z)

dt − √
κ dBt dft (z) = −2

ft (z)
dt − √

κ dBt

d logft (z) = (4−κ)

2ft (z)2 dt −
√

κ
ft (z)

dBt d logft (z) = −(4+κ)

2ft (z)2 dt −
√

κ
ft (z)

dBt

df ′
t (z) = −2f ′

t (z)

ft (z)2 dt df ′
t (z) = 2f ′

t (z)

ft (z)2 dt

d logf ′
t (z) = −2

ft (z)2 dt d logf ′
t (z) = 2

ft (z)2 dt

the relevant calculations in tables, with those for the forward SLE coupling of The-
orem 1.1 on the left side and those for the reverse SLE coupling of Theorem 1.2
on the right side.

Now, using the language of stochastic differential equations and applying Itô’s
formula in the case Wt = √

κBt , we compute the time derivatives of the four pro-
cesses ft (z), logft (z), f ′

t (z), and logf ′
t (z) in both forward and reverse SLE set-

tings. Here, f ′
t (z) denotes the spatial derivative ∂

∂z
ft . (Similar calculations appear

in [87] in the case κ = 4.)
We next define the martingales ht in both settings and compute their stochastic

derivatives. The purpose of the stochastic calculus below is to show that the quan-
tities (ht , ρ) are continuous local martingales (the fact that they are martingales
will become apparent later) and to explicitly computing their quadratic variations,
so that they can be understood as Brownian motions subject to an explicit time
change. Ultimately, we will use the properties of these Brownian motions to estab-
lish couplings between SLE and the Gaussian free field.

Note that while the two columns have differed only in signs until now, the defi-
nitions of ht below will diverge in that one involves the imaginary and one the real
part of h∗

t . We will write γ := √
min(κ,16/κ) ∈ [0,2].

Before continuing with the calculation, we make several remarks.

TABLE 2

Forward flow SLE Reverse flow SLE

χ := 2√
κ

−
√

κ
2 Q := 2√

κ
+

√
κ

2 = 2
γ + γ

2

h∗
t (z) := −2√

κ
logft (z) − χ logf ′

t (z) h∗
t (z) := 2√

κ
logft (z) + Q logf ′

t (z)

dh∗
t (z) = 2

ft (z)
dBt dh∗

t (z) = −2
ft (z)

dBt

ht (z) := Imh∗
t (z) ht (z) := Reh∗

t (z)

dht (z) = Im 2
ft (z)

dBt dht (z) = Re −2
ft (z)

dBt
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REMARK 4.1. The form of dht (z) in the forward case is significant. At time
t = 0, the function −2 Im(ft (z)

−1) is simply −2 Im(z−1). This is a positive har-
monic function whose level sets are circles in H that are tangent to R at the origin.
It is a multiple of the so-called Poisson kernel, and it is a derivative of the Green’s
function G(y, z) = GH0(y, z) = log |y−z̄

y−z
| in the following sense:[

∂

∂s
G(is, z)

]
s=0

= ∂

∂s

∣∣∣∣z + is

z − is

∣∣∣∣
s=0

= Re
2iz

|z2| = 2 Im
(
z−1)

.

Intuitively, the value of −2 Im(ft (z)
−1) represents the harmonic measure of the

tip of ηt := η([0, t]) as seen from the point z. Roughly speaking, as one makes
observations of the GFF at points near the tip of ηt , the conditional expectation of
h goes up or down by multiples of this function.

REMARK 4.2. Also, in the forward case, h0 is the harmonic function on H

with boundary conditions −2π/
√

κ on the negative real axis and 0 on the positive
real axis. We could have (for sake of symmetry) added a constant to h0 (and gen-
eral ht ) so that h0 is equal to −λ on the negative real axis and λ on the positive
real axis, where λ := π/

√
κ . Observe that when κ = 4, we have χ = 0, and hence

each ht would be the harmonic function on H \ ηt with boundary conditions −λ

on the left side of the tip of ηt and λ on the right side. In this case, the λ = π/2 is
the same (up to a

√
2π factor stemming from a different choice of normalization

for the GFF) as the value λ = √
π/8 obtained in [87].

REMARK 4.3. In the reverse case, the expression for dht has Re −2
ft (z)

in place

of Im 2
ft (z)

. Intuitively, at time zero, when one observes what ft looks like for
small t , one learns something about the difference between h just to the left of 0
and h just to the right of 0. (It is this difference that determines the ratio of the
νh densities to the left and to the right of zero, which is what determines how
the zipping-up should behave in the short term.) The conditional expectation of h

thus changes by a small multiple of Re 2
ft (z)

, which is negative on one side of the

imaginary axis and positive on the other side. Unlike Im 2
ft (z)

, the function Re 2
ft (z)

is nonzero on R.

We use 〈Xt,Yt 〉 to denote cross variation between processes Xt and Yt up to
time t , so that 〈Xt,Xt 〉 represents the quadratic variation of the process Xt up to
time t . (The cross variation 〈Xt,Yt 〉 is also often written as 〈X,Y 〉t .) In both for-
ward and reverse flow settings, ht (z) is a continuous local martingale for each fixed
z and is thus a Brownian motion under the quadratic variation parameterization,
which we can give explicitly.

If z is a point in a simply connected domain D, and φ conformally maps the
unit disc to D, with φ(0) = z, then we refer to the quantity |φ′(0)| as the confor-
mal radius of D viewed from z. If, in the above definition of conformal radius, we
replaced the unit disc with H and 0 with i, this would only change the definition by
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TABLE 3

Forward flow SLE Reverse flow SLE

Ct (z) := log Imft (z) − Re logf ′
t (z) Ct (z) := − log Imft (z) − Re logf ′

t (z)

d〈ht (z),ht (z)〉 = −dCt (z) d〈ht (z),ht (z)〉 = −dCt (z)

an additive constant. Thus, in the forward flow case, Ct(z) is (up to an additive con-
stant) the log of the conformal radius of H \η([0, t]) viewed from z. In both cases,
ht (z) is a Brownian motion when parameterized by the time parameter −Ct(z)

(which is increasing as a function of t). The fact that d〈ht (z),ht (z)〉 = −dCt(z)

may be computed directly via Itô’s formula but it is also easy to see by taking
y → z in the formulas for 〈ht (y),ht (z)〉 and −dGt(y, z) that we will give below.

We will now show that weighted averages of ht over multiple points in H are
also continuous local martingales (and hence Brownian motions when properly
parameterized). The calculation will make use of the function G(y, z), which we
take to be the zero boundary Green’s function GH0(y, z) on H in the forward case
and the free boundary Green’s function GHF (y, z) in the reverse case.

Now write Gt(y, z) = G(ft(y), ft (z)) in the reverse case. In the forward case,
write Gt(y, z) = G(ft(y), ft (z)) when y and z are both in the infinite component
of H\ηt—otherwise, let Gt(y, z) be the limiting value of Gs(y, z) as s approaches
the first time at which one of y or z ceases to be in this infinite component. The
reader may check that for fixed y and z, this limit exists almost surely when 4 <

κ < 8: it is equal to zero when y and z are in different connected components
of H \ ηt , and when y and z lie in the same component, it is simply the Green’s
function of y and z on this bounded domain. Now we let ρ be a smooth compactly
supported function on H (which we will assume has mean zero in the reverse case)
and do some more calculations.

Each of the equations above comes from a straightforward Itô calculation. To
explain their derivation, we begin by expanding the dGt computation in the for-
ward case (the reverse case is similar):

dGt(x, y) = −d Re log
[
ft (x) − ft (y)

] + d Re log
[
ft (x) − ft (y)

]
= −2 Re

ft (x)−1 − ft (y)−1

ft (x) − ft (y)
dt

+ 2 Re
ft (x)−1 − ft (y)−1

ft (x) − ft (y)
dt

= 2 Re
(
ft (x)−1ft (y)−1)

dt − 2 Re
(
ft (x)−1(

ft (y)
)−1)

dt

= 2 Re
(
ift (x)−1 Im

[
2ft (y)−1])

dt

= − Im
2

ft (x)
Im

2

ft (y)
dt.
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TABLE 4

Forward flow SLE Reverse flow SLE

G(y, z) := log |y − z̄| − log |y − z| G(y, z) := − log |y − z| − log |y − z̄|
Gt(y, z) := G(ft (y), ft (z)) Gt (y, z) := G(ft (y), ft (z))

dGt (y, z) = − Im 2
ft (y)

Im 2
ft (z)

dt dGt (y, z) = −Re 2
ft (y)

Re 2
ft (z)

dt

d〈ht (y),ht (z)〉 = −dGt (y, z) d〈ht (y),ht (z)〉 = −dGt (y, z)

Et (ρ) := ∫
H

ρ(y)Gt (y, z)ρ(z) dy dz Et (ρ) := ∫
H

ρ(y)Gt (y, z)ρ(z) dy dz

d〈(ht , ρ), (ht , ρ)〉 = −dEt (ρ) d〈(ht , ρ), (ht , ρ)〉 = −dEt (ρ)

The fact that d〈ht (y),ht (z)〉 = −dGt(y, z) is then immediate from our calculation
of dht .

The fact that d〈(ht , ρ), (ht , ρ)〉 = −dEt(ρ) is essentially a Fubini calculation
but it requires some justification. First, we claim that the (ht , ρ) are continuous
martingales. We begin by considering ht (z) for a fixed z in the support of ρ. We
have shown above that the quantity ht (z) is a Brownian motion under a certain
parameterization. In the reverse case, the Loewner evolution gives that | ∂

∂t
Ct (z)|

is uniformly bounded above for z in the support of ρ and for all times t . [Note that
Imft (z) is strictly increasing in t .] This immediately implies that ht (z) is a mar-
tingale (not merely a local martingale) because for each z and t , ht (z) represents
the value of a Brownian motion stopped at a random time that is strictly less than
a constant times t . The fact that the expectation of ht (z)—given the filtration up to
time s < t—is hs(z) is then immediate from the optional stopping theorem.

In the forward case, one obtains something similar by noting that the law of the
conformal radius r of z in H \ η([0, t]) has a power law decay as r → 0—that is,
the probability that −Ct(z) > c decays exponentially in c, and is in fact bounded
by an exponentially decaying function that is independent of z, for z in the support
of ρ. (A precise description of the law of the conformal radius at time infinity
appears as the main construction in [88].) This implies that ht (z) is a Brownian
motion stopped at a time whose law decays exponentially (uniformly over z in
the support of ρ) which is again enough to apply the optional stopping theorem
and conclude that ht (z) is martingale. In both cases, we obtain that for any t , the
probability distribution function for |ht (z)| decays exponentially fast, uniformly
for z in the support of ρ. In both cases, we also see that (for any fixed t), ht (z)

is an L1 function of z and the probability space, which allows us to use Fubini’s
theorem and conclude that the (ht , ρ) are martingales.

Let L
p
loc denote the set of ψ for which the integral of |ψ |p over every compact

subset of H is finite. The exponential decay above implies that ht is almost surely
in L1

loc, since the expected integral of |ht | over any compact set is finite. (Note
that we can define ht arbitrarily on the measure zero set η([0, t]) without affecting
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the definition of ht as an element of L1
loc(H).) In fact, since E|ht (z)|p is bounded

uniformly for z in a compact set, it follows that ht is almost surely in L
p
loc(H) for

any p ∈ (1,∞). The fact that ht is almost surely in L1
loc also implies that it can be

understood as a random distribution on H.
Moreover,

sup
s∈[0,t]

∣∣hs(z)
∣∣(4.1)

also has, by Doob’s inequality, a law that decays exponentially, uniformly in z.
Thus, (4.1) also belongs a.s. to L

p
loc(H) for any p ∈ (1,∞). From this and the

a.s. continuity of SLE, it follows that (ht , ρ) is a.s. continuous in t . [This conti-
nuity is obvious in the reverse case; in the forward case, it is also obvious if one
replaces ρ by ρε , which we define to be zero on an ε neighborhood of η and ρ

elsewhere. The fact that (4.1) belongs to L
p
loc(H) implies that the (ht , ρε) converge

to (ht , ρ) uniformly, for almost all η, and a uniform limit of continuous functions
is continuous.]

Now we can show d〈(ht , ρ), (ht , ρ)〉 = −dEt(ρ), as noted in [87], either via a
stochastic Fubini’s theorem (see, e.g., [77], Section IV.4) or by using the following
simpler approach proposed in private communication by Jason Miller.

First, note that 〈(ht , ρ1), (ht , ρ2)〉 is characterized by the fact that

(ht , ρ1)(ht , ρ2) − 〈
(ht , ρ1), (ht , ρ2)

〉
is a local martingale. Thus, it suffices for us to show that

(ht , ρ1)(ht , ρ2) +
∫

ρ1(x)ρ2(y)Gt(x, y) dx dy(4.2)

is a martingale. We know from the above calculations that

ht (x)ht (y) + Gt(x, y)

is a martingale for fixed x and y in H. Since Gt(x, y) is nonincreasing and the ht (z)

have laws that decay exponentially, uniformly in z, we can use Fubini’s theorem to
conclude that (4.2) is a martingale. Thus, we have that (ht , ρ) is a Brownian motion
when parameterized by time −Et(ρ). To complete the proofs of Theorems 1.1
and 1.2, recall that in the theorem statements h̃ denotes an instance of the free
boundary GFF on H, and note that since each (hT + h̃ ◦ fT ,ρ) is a sum of a
standard Brownian motion stopped at time E0(ρ) − ET (ρ) and a conditionally
independent Gaussian of variance ET (ρ), it has the same law as a Gaussian of
variance E0(ρ) and mean (h0, ρ). (See Figure 14.) For future reference, we note
that in the reverse flow case one may integrate the expression for dht (z) above to
find (using the stochastic Fubini’s theorem) that

d(ht , ρ) = (−2 Re(ft )
−1, ρ

)
dBt .(4.3)
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FIG. 14. The pair (−Et (ρ), (ht , ρ)) traces the graph of a Brownian motion (solid curve) as t

ranges from 0 to T . Conditioned on this, the difference between (h,ρ) and (hT ,ρ) is a centered
Gaussian of variance ET (ρ). Choosing (h,ρ) to be (hT ,ρ) plus a Gaussian of this variance is
equivalent to continuing the Brownian motion parameterized by −Et (ρ) time (solid curve) all the
way to time zero (dotted curve) and letting (h,ρ) be its value at time zero.

REMARK 4.4. The statement of Theorem 1.1 excluded the case κ ≥ 8, since
SLE(κ) is space-filling in that case and ht cannot be defined as a function al-
most everywhere. Nonetheless, we may still define (ht , ρ) to be the solution to the
stochastic differential equation d(ht , ρ) = (−2 Im(ft )

−1, ρ) dBt . In this case, the
calculations above again yield that d〈(ht , ρ), (ht , ρ)〉 = −dEt(ρ), which as before
implies that (hT + h̃ ◦ fT ,ρ) and (h0 + h̃, ρ) agree in law for each ρ, just as in the
κ < 8 case, which yields a κ ≥ 8 analog of Theorem 1.1. (Figure 14 still makes
sense then κ ≥ 8.)

It will be useful for later purposes to note that (at least in the reverse SLE case)
the graph in Figure 14 actually uniquely determines (and is uniquely determined
by) the process Wt = √

κBt almost surely; see Figure 15. This is a special case
of a much more general theorem about stochastic processes (see Chapter IX, The-
orem 2.1 of [78]—it suffices that (ht , ρ) satisfies an SDE in Wt with a diffusive
coefficient that remains strictly bounded away from zero and infinity, at least as
long as we stop at any time strictly before t = ∞). This means that the evolution
of η can be described by the Brownian motion in Figure 14, as well as by the Brow-
nian motion Bt . Context will determine which description is more convenient to
work with.

FIG. 15. The graph traced by (−Et (ρ), (ht , ρ)) as t ranges from 0 to T (left) and the graph traced
by (t,Bt ) (right), where Wt = √

κBt . The left graph uniquely determines the right graph, and vice
versa, almost surely. Each has the law of a standard Brownian motion (up to a stopping time).
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4.2. Alternative underlying geometries and SLEκ,ρ . Both Theorems 1.1
and 1.2 can be generalized to other values of h0 using the so-called SLEκ,ρ pro-
cesses. (As discussed at the end of Section 1.2, changing h0 can be interpreted as
changing the underlying geometry on which Liouville quantum gravity is defined.)
We generalize the latter here (see [20] for the former). We take G = GHF in the
following. Slightly abusing notation, we will consider situations where ρ(y) dy

represents a general signed measure (instead of requiring that ρ be a smooth test
function). In this case, (F,ρ) = ∫

F(y)ρ(y) dy represents integration of F w.r.t.
this measure.

THEOREM 4.5. Fix κ > 0 and a signed measure ρ(y) dy on H with finite
positive and finite negative mass supported on some closed C ⊂ H. Write

ĥt (z) = ht (z) + 1

2
√

κ

∫
Gt(y, z)ρ(y) dy,(4.4)

where ht (z) is as in Theorem 1.2, and let h̃ be an instance of the free boundary
GFF on H, independent of Bt . Let ηT be the segment generated by the reverse
Loewner flow

dft (z) = −2

ft (z)
dt − dWt,(4.5)

where

dWt =
(∫

Re
−1

ft (y)
ρ(y) dy

)
dt + √

κ dBt

(4.6)
= (−Re(ft )

−1, ρ
)
dt + √

κ dBt ,

up to any stopping time T ≥ 0 at or before the smallest t for which 0 ∈ ft (C)

(here ft is extended continuously from H to H). Then the following two random
distributions (modulo additive constants) on H agree in law: h = ĥ0 + h̃ and ĥT +
h̃ ◦ fT .

We will make several observations before we prove Theorem 4.5. First, if ρ is
supported on a set of n points y1, . . . , yn in H, with masses given by real numbers
ρ1, ρ2, . . . , ρn, then the process defined by (4.5) and (4.6) is (the reverse form of)
what is commonly called an SLEκ,ρ process in the literature: in this case, (4.6)
takes the form

dWt =
n∑

i=1

Re
−ρi

ft (yi)
dt + √

κ dBt ,(4.7)

which is the same expression one finds in the usual definition of the forward-flow
SLEκ,ρ process, as in [89]. (Note that the notation here differs from [89], since
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here we use ρ to denote the measure, not the vector of mass values ρi .) In the
special case that ρ is supported at a single point x ∈ R, with mass ρ1 we find that

dft (x) = −2

ft (x)
dt − dWt = −2 + ρ1

ft (x)
dt − √

κ dBt ,(4.8)

so that ft (x)/
√

κ is a Bessel process of dimension δ satisfying (δ − 1)/2 = (ρ1 −
2)/κ , that is,

δ = 1 + 2(ρ1 − 2)

κ
.(4.9)

For this and future discussion, it will be useful to recall a few standard facts:

1. The Bessel process Xt of dimension δ by definition satisfies dXt = dBt +
δ−1

2 X−1
t dt . Hence d logXt = 1

Xt
dBt + δ−1

2X2
t

dt − 1
2X2

t

dt . The process logXt , when

parameterized by its quadratic variation, is a Brownian motion with a constant drift
of magnitude δ−2

2 .
2. If Xt is a Bessel process of dimension δ started at X0 = x and run until

the first time T that it reaches zero, then the time reversal XT −t has the law of
a Bessel process of dimension δ′, started at zero and run until the last time that
it hits x, where δ′ is the dimension one gets by changing the sign of the drift in
logXt . That is, δ−2

2 = − δ′−2
2 , so that

δ = 4 − δ′.(4.10)

3. In the usual forward flow definition of SLEκ,ρ′
1

the function ft (x) is a Bessel
process of dimension

δ′ = 1 + 2(ρ′
1 + 2)

κ
.(4.11)

The reason for the difference from (4.9) can be seen by considering the case ρ1 =
ρ′

1 = 0. In the reverse process, the Loewner drift is pulling ft (x) toward the origin,
while in the forward process the Loewner drift is pushing ft (x) away from the
origin. In both cases, ρ1 (or ρ′

1) indicates a quantity of additional force pushing
ft (x) away from the origin.

4. Combining (4.9), (4.10) and (4.11) gives a relationship between ρ1 and ρ′
1.

Namely, 1 + 2(ρ′
1+2)

κ
= 4 − (1 + 2(ρ1−2)

κ
), so that

ρ′
1 = κ − ρ1.(4.12)

This means that if we run a reverse SLEκ,ρ′
1

until the time T at which ft (x) hits
zero, then fT maps H to H \ ηT where ηT has the law of an initial segment of a
forward SLEκ,ρ1 . In particular, if ρ′

1 = κ , then ηT has the law of an ordinary SLE
stopped at a time T (which corresponds to the last time that a Bessel process hits
a certain value). This will be important later.
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Recall from Section 1.2 that changing h0 to ĥ0 can be interpreted as changing
the underlying geometry on which Liouville quantum gravity is defined. More-
over, ρ is proportional to −�(ĥ0 − h0), and −�ĥ0 is proportional to the overall
Gaussian curvature density (see the Appendix).

We will give a formal proof of Theorem 4.5 below using Itô calculus, but first
let us offer an informal explanation of why the result is true. The idea behind
Theorem 4.5 is to interpret (4.4) as the expectation of h in a certain weighted
measure and (4.6) as the description of the law of Wt in that measure. This is
easiest to understand when we first switch coordinates using the correspondence
shown in Figure 15. Suppose first that ρ is such that (3.6) is finite with ρ1 = ρ2 =
ρ and that the total integral of ρ is zero. If dh is the law of a (centered or not
centered) GFF, then the standard Gaussian complete-the-square argument shows
that e(h,ρ) dh = e(h,−2π�−1ρ)∇ dh (normalized to be a probability measure) is the
law of the standard GFF plus −2π�−1ρ. When we weight the law of the Brownian
motion in Figure 14 by eα(h,ρ) for some constant α [note that (h,ρ) is the terminal
value that the Brownian motion in that figure reaches at time zero] this is equivalent
to adding a constant drift term to the Brownian motion [parameterized by −Et(ρ)]
in Figure 14.

We take α = 1
2
√

κ
and weight by

e(h,(1/(2
√

κ))ρ),(4.13)

which, as explained above, modifies the law in a way that amounts to adding the
drift term of 1

2
√

κ
(E0(ρ) − Et(ρ)) to the Brownian motion in Figure 14. Recalling

the correspondence shown in Figure 15, the fact that the left figure is a Brownian
motion with this constant drift (up to a stopping time) completely determines the
law of Wt up to that stopping time. Indeed, recalling (4.3), we find that the law of
Wt is necessarily the one described by (4.6).

We have now related the weighted measure to (4.6), but what does this have to
do with (4.4)? Observe that

(ĥt , ρ) = (ht , ρ) + 1

2
√

κ
Et(ρ)

represents the conditional expectation (in the weighted measure) of (h,ρ) given B·
up to time t . In fact, by the standard complete-the-square argument, the function ĥt

in Theorem 4.5 represents the conditional expectation (in the weighted measure)
of h, given B· up to time t , and is thus a martingale in t . The above construction
(and a bit of thought) actually constitutes a proof of Theorem 4.5 when (3.6) is
finite and the total integral of ρ is zero.

The argument above can be adapted to more general ρ. If the total integral of ρ

is not zero, we may modify ρ by adding some mass very far from the origin, so that
the total integral becomes zero but the drift in (4.6) does not change very much.
If (3.6) is infinite, we may be able to modify it to make it finite: for example,
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TABLE 5

Reverse flow SLE

dft (z) = −2
ft (z)

dt + (
∫

Re 1
ft (y)

ρ(y) dy)dt − √
κ dBt

d logft (z) = −(4+κ)

2ft (z)2 dt + ft (z)
−1(

∫
Re 1

ft (y)
ρ(y) dy)dt −

√
κ

ft (z)
dBt

df ′
t (z) = 2f ′

t (z)

ft (z)2 dt

d logf ′
t (z) = 2

ft (z)2 dt

if ρ is a point mass, then we may replace it with a uniform measure on a tiny
ball centered at that point mass, and the harmonicity of Gt(·, z) in (4.4) and of
Re(ft )

−1 in (4.6) show that (outside of this small ball) neither (4.4) nor (4.6) is
affected by this replacement. We will present a more direct Itô calculation below,
which also applies when (3.6) is infinite.

PROOF OF THEOREM 4.5. We will follow the calculations of Theorem 1.2
and check where differences appear. First, we find Table 5.

Also, as before, we compute

dGt(y, z) = −Re
2

ft (y)
Re

2

ft (z)
dt,

and recall that

ĥt (z) := 2√
κ

log
∣∣ft (z)

∣∣ + Q log
∣∣f ′

t (z)
∣∣ + 1

2
√

κ

∫
Gt(y, z)ρ(y) dy.

We then find that when computing dĥt (z) the extra term in d 2√
κ

Re logft (z) can-

cels the term d 1
2
√

κ

∫
Gt(y, z)ρ(y) dy so that dĥt (z) = Re −2

ft (z)
dBt , just as in the

proof of Theorem 1.2. The remaining calculations are the same as in the proof of
Theorem 1.2. �

We next remark, in the context of Theorem 4.5, that if (H, ĥT + h̃ ◦ fT ) is a
quantum surface, then

fT (H, ĥT + h̃ ◦ fT )
(4.14)

= fT

(
H,hT + 1

2
√

κ

∫
GT (y, ·)ρ(y) dy + h̃ ◦ fT

)
,

and this can be written(
H \ KT ,h0 + 1

2
√

κ

∫
G

(
fT (y), ·)ρ(y) dy + h̃

)
.(4.15)
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When κ < 4, this suggests the following interpretation of Theorem 4.5. We start
with ĥ0 + h̃, which is actually only defined up to additive constant, so it deter-
mines a quantum surface up to a multiplicative constant. We zip up this (modulo
multiplicative constant) quantum surface until a stopping time T , and condition
on the zipper map fT . Then the conditional law of the new zipped-up quantum
surface (which is also defined only up to a multiplicative constant) is the same
as the original law except that ρ is replaced by the fT image of ρ. We have not
fully established that this interpretation is correct, because we have not yet shown
that ĥ0 + h̃ uniquely determines fT . As in Theorem 1.2, we have only shown that
sampling h from ĥ0 + h̃ is equivalent to first zipping up according to a given law,
then sampling the field from a putative conditional law in the zipped up picture,
and then unzipping.

5. Quantum zippers and conformal welding.

5.1. Overview of zipper proofs. The goal of this section is to prove the state-
ments in Section 1 that we have not yet proved: namely, Theorem 1.3 (which, by
the a.s. removability of the SLE paths, implies Theorem 1.4 and Corollary 1.5,
as explained in Section 1) and Theorem 1.8. Both proofs will be completed in
Section 5.4.

Given what we know now, Theorem 1.3 may not seem surprising. In light of
Theorem 1.2, we know that, given the independent pair (h, η) described there, the
quantum boundary lengths along the left and right sides of η are both a.s. well
defined. Indeed, recall that to measure the νh length along the left side of η([0, t]),
we may “unzip” via f

η
t —and the transformation rule (1.3)—so that η([0, t]) maps

to an interval of R, and then measure the quantum length of that interval. We only
need to show that the quantum boundary measure of η measured from the left
agrees with the quantum boundary measure of η measured from the right.

We already have some information about how these measures depend on h. For
example, it is immediate from the definition of νh that if we change h—by adding
a smooth function to h that is equal to a constant C in a region A ⊂ H—then this
has the effect of multiplying the length of η([0, t]) ∩ A (as measured from both
left and right sides) by eCγ/2. More generally, if νh is the measure from one of the
two sides (viewed as a measure on H, which happens to be supported along η ∪R)
and φ : H →R is smooth, then

νh+φ = e(γ /2)φνh,(5.1)

(i.e., the measure whose Radon–Nikodym derivative w.r.t. νh is e(γ /2)φ). This im-
plies that the left and right measures depend on h in a similar way, but it does not
show that they agree.

One possible way to prove agreement might be to suppose otherwise for contra-
diction. Then if we cover η with a lot of small balls of comparable quantum size,
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we will find that in some of the balls the quantum length of η is greater measured
from the left side and in some greater from the right side. Still, we would expect
some long range near-independence and a law of large numbers to show that all of
these differences average out when the balls are small enough; taking limits as the
balls get smaller should show that the lengths on the two sides are in fact equal. (A
related argument based was used in [86] to prove the so-called height gap lemma
for discrete Gaussian free fields.)

An alternative approach to proving Theorem 1.3 would be to try to show that
both the left and right boundary measures give “quantum length” measures of the
curve that correspond to the quantum analog (as in [30]) of the natural time pa-
rameterization constructed via the Doob–Meyer decomposition in [51, 52]. The
uniqueness arguments introduced in [51] could then be used to show that these
two measures must agree.

While both of the above approaches appear viable, we will actually prove The-
orem 1.3 with a third approach, which we feel is instructive. Namely, we will first
construct the invariant measure described by Theorem 1.8, in the manner outlined
in Figure 8, and then use symmetries and the ergodic theorem to deduce that the
quantum measures on the two sides of the path are almost surely equal. Before
doing this, we establish some results of independent interest. Section 5.2 describes
a T = ∞ analog of Theorem 1.2 and Section 5.3 describes an interesting space–
time symmetry: by changing the underlying geometry of the space used to define
Liouville quantum gravity, one may construct a quantum zipper that is invariant
with respect to a modified notion of capacity time.

5.2. Zipping up “all the way” and capacity stationarity. Let �0 be the law
of the pair (h, η) in which h is 2√

κ
log |z| + h̃ (with h̃ a free boundary GFF on

H, defined modulo additive constant) and η is an independent SLEκ . This is the
measure that appears in Theorem 1.2 and Corollary 1.5. Note that the space of
((D1, h

D1), (D2, h
D2)) configurations is in one to one correspondence with the

space of pairs (h, η) on a full �0 measure set, so we can view the ZCAP
t of Corol-

lary 1.5 as acting on the pair (h, η) and we will denote the thus transformed pair
by ZCAP

t (h, η). By Theorem 1.2, the ZCAP
t of Corollary 1.5 with t < 0 (the “un-

zipping” direction) are measure preserving transformations of �0.
Using Theorem 1.2 alone, we do not yet have a definition of ZCAP

t for t > 0 (the
“zipping up” direction). However, we can construct a stationary process (ht , ηt ),
defined for all t , such that whenever t < 0 and s ∈R we have(

hs+t , ηs+t ) = ZCAP
t

(
hs, ηs).(5.2)

To construct this process, note that once we choose (hT , ηT ) for some large fixed
constant T from �0, the evolution rule (5.2) determines (ht , ηt ) for all t < T . [The
fact that the unzipping maps preserve �0 implies that for each fixed t < T , the pair
(ht , ηt ) also has the law of �0.] Taking a limit as T → +∞ (using Kolmogorov’s
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consistency theorem), we obtain a process defined for all t ∈ R. Denote by � the
law of this process. We frequently write h = h0 and η = η0.

For the remainder of Section 5, we will use ft to denote “zipping down” maps
when t < 0 and “zipping up” maps when t > 0. Once Corollary 1.5 is established,
this will amount to defining ft for all t ∈R (using the notation of Corollary 1.5) as

ft =
{

f h
t , t ≥ 0,

f
η
−t , t ≤ 0.

(5.3)

(We stress that this contrasts with earlier notation, where we defined ft only for
t > 0 and—to highlight similarities—used ft to describe both forward Loewner
evolution in the AC-geometry context and reverse Loewner evolution in the Liou-
ville quantum gravity context.) However, using Theorem 1.2 alone, it is not a priori
clear that h determines the map f h

t in (5.3). Even so, it is clear that these maps are
determined by the process (ht , ηt ) with the law � constructed above, so for now
we will define ft to be the maps determined by process (ht , ηt ).

Now compare (1.6) and (1.7) and note that the Brownian motion correspond-
ing to the forward Loewner evolution of an SLE segment ηT (the restriction of a
Brownian motion to an interval of time) is (up to additive constant) the time re-
versal of the Brownian motion corresponding to the reverse Loewner evolution ft

for the same curve. Indeed, if we write B̃t = BT −t and f̃t = fT −t , then (1.7) holds
for a general pair Bt and ft (indexed by t ∈ [0, T ]) precisely when (1.6) holds for
B̃t and f̃t . The ft map is driven by a Brownian motion in the t < 0 “unzipping”
direction (since the curve that it unzips is an SLE curve) and from the definition of
ft for general times (which involved starting at stationarity for some large T and
unzipping from there to get ft for t < T , taking the limit as T → ∞) we see that
we may define a standard Brownian motion Bt for all times t so that B0 = 0 and
ft satisfies (1.7) for all time. [This is also to be expected from (5.3), since once
we show that f h

t is determined by h, we will expect that the forward flow f
η
t and

reverse flow f h
t are driven by Brownian motions, for t ≥ 0, that are independent

of one another.]
We have shown above how to construct the ft corresponding to � from a single

Brownian motion (indexed by all of R). We will now give an alternate description
of the law � by coupling this ft with h using Theorem 1.2 applied with T =
+∞. Informally, this amounts to “zipping up all the way” and then sampling a
GFF on the fully zipped up surface. (This description comprises the remainder of
Section 5.2. It will not be used in subsequent sections and may be skipped on a
first read. See [23] for an analysis of what happens when two sides of a general
quantum wedge are zipped together.) To explain what this means, recall that we
showed in the proof of Theorem 1.2 that for each fixed ρ with total integral zero,
the process (ht , ρ) is a Brownian motion parameterized by −Et(ρ); in particular,
this implies that limt→+∞(ht , ρ) exists almost surely and has variance at most
E0(ρ).
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We will be interested in ht modulo additive constant. Let us focus on the func-
tion ht (z) − ht (y) for some fixed point y ∈ H. By harmonicity, ht (z) is equivalent
to its mean value on a ball centered at z, and hence ht (z) − ht (y) can be written as
(ht , ρ) for a smooth, compactly supported ρ with mean zero. Thus, ht (z) − ht (y)

is a Brownian motion when parameterized by −Et(ρ), and the total amount of
quadratic variation time elapsed as t → +∞ is at most E0(ρ) almost surely. When
z is restricted to a bounded domain D with closure in H, we can define such a ρ for
each z so that the quantity E0(ρ) is bounded uniformly in z. By Doob’s inequal-
ity, this implies that supt |ht (z) − ht (y)| has a finite second moment, uniformly
bounded for z in D, and hence

E

∫
D

sup
t

∣∣ht (z) − ht (y)
∣∣2 dz < ∞.

In fact, since ht (z) − ht (y) converges almost surely for each z, the above shows
that ht (·)−ht (y) restricted to D is almost surely Cauchy in the space L2(D); since
the ht are harmonic on D, this implies that ht almost surely converges uniformly
(on each compact subset of H, modulo additive constant) to a harmonic limit h∞
as t → +∞.

On the other hand, the maps ft clearly do not converge to a finite limit; the
Loewner evolution shows that when z ∈ H is fixed, ft (z) cannot converge to any
value except for ∞ as t → +∞. However, let us define f̂t to be atft + bt where
complex constants at and bt are chosen for each t so that f̂t (i − 1) = (i − 1) and
f̂t (i + 1) = i + 1. If fT is as in Figure 5, then f̂T would be as in Figure 16.

PROPOSITION 5.1. The limit

f̂∞(z) := lim
t→∞ f̂t (z)(5.4)

FIG. 16. The map f̂T is first normalized so that f̂T (i − 1) = (i − 1) and f̂T (i + 1) = i + 1.
(Here, i ± 1 are shown as dots; a curve η and its image under f̂T is also shown.) The limit
f̂∞(z) := limt→∞ f̂t (z) a.s. exists as a conformal map from H to the complement in C of a semi-in-
finite path from some starting point to ∞.
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exists almost surely as an analytic map from H to C. It conformally maps H to the
complement, in C, of a certain random path from some finite starting point in C

to ∞. (One may then translate the surface so that this starting point is the origin.)

PROOF. To establish the existence of this limit, we argue that each of the two
terms on the RHS of

ht (z) = h0
(
ft (z)

) + Q log
∣∣f ′

t (z)
∣∣(5.5)

converges almost surely (modulo additive constant) to a limit. By (5.4) the LHS
has a limit, so it will suffice to show that h0(ft (z)) − h0(ft (y)) a.s. converges
uniformly to zero (for y, z ∈ D). For contradiction, suppose otherwise. Then, for
some fixed C, let Tk be the first time after time 2k for which there exist y and z in
D such that ∣∣log

∣∣fT (z)
∣∣ − log

∣∣fT (y)
∣∣∣∣ ≥ C.(5.6)

By assumption, we may choose C so that with positive probability each of the
Tk is finite. In each case, we may assume |fT (z)| ≥ |fT (y)| so that (5.6) implies
|fT (z)|/|fT (y)| > 1 + C.

Now, conditioned on ft up to such a time T = Tk , there is at least a constant C1
probability that ht (z) − ht (y) will change by at least some constant C2 during the
next min{|fT (y)|2, |fT (z)|2} units of capacity time after time T . By scaling, it is
enough to observe that this is true when |fT (y)| < |fT (z)| and |fT (y)| = 1, which
follows from the claim in the caption to Figure 17.

To prove this claim, recall (5.5) (and the definition of h0 in Theorem 1.2):

ht (z) − ht (y)
(5.7)

= 2√
κ

(
log

∣∣ft (z)
∣∣ − log

∣∣ft (y)
∣∣) + Q

(
log

∣∣f ′
t (z)

∣∣ − log
∣∣f ′

t (y)
∣∣).

To deal with the first difference on the RHS of (5.7), note that

log
∣∣fT (z) − a

∣∣ − log
∣∣fT (y) − a

∣∣
cannot, as a function of a, be constant on the interval [−1/2,0] or constant on the
interval [0,1/2]. Indeed (if |fT (z)| > 1 + C) the amount by which this function

FIG. 17. Assume that |fT (y)| = 1 and |fT (z)| > 1 + C and consider the reverse Loewner flow
driven by Wt = √

κBt ). Claim: for some C1,C2 > 0 (depending only on C) there is at least a C1
probability that ht (z) − ht (y) changes by at least C2 after time T .
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varies over each interval is at least some c > 0. Thus, if Wt goes up or down by 1/2
during t� units of time after time T (and t� is small enough), then the Loewner
flow (1.7) shows that ft (z)−fT (z) is approximately WT −Wt during this time, so
that the first difference on the LHS of (5.7) changes by at least c√

κ
. If we choose t�

small enough, we can also ensure that the second difference on the RHS of (5.7)
changes by less than c

2
√

κ
[recall d logf ′

t = (2/f 2
t ) dt]. Thus, (5.7) changes by at

least C2 := c
2
√

κ
. The probability of this depends only on t�, which depends only

on C.
It follows from the above that on the event that the Tk are all finite, the quantity

(5.7) a.s. changes by C2 after Tk for infinitely many choices of k, contradicting the
fact (which we have already shown) that ht (z) − ht (y) a.s. converges uniformly
to a limit for y, z ∈ D. We conclude that there is almost surely a last time for
which log |fT (z)| − log |fT (y)| ≥ C for some y and z in D, and since this holds
for any C, the RHS of (5.5) a.s. converges uniformly to zero for y, z ∈ D. Since
log |f ′

t (z)| [the second term on the RHS of (5.5)] then converges almost surely
uniformly (modulo additive constant) to a limit, it follows (adding i times the har-
monic conjugate) that logf ′

t (z) converges almost surely uniformly on D (modulo
additive constant), which implies the uniform convergence of f ′

t (modulo multi-
plicative constant) and hence the convergence of f̂t to a limit. Since the limiting
map is analytic, it follows that the path (as in Figure 16) converges to a limiting
continuous path as well. �

Theorem 1.2 can now be stated for T = +∞. The statement is the same except
that we replace

h ◦ fT + Q log
∣∣f ′

T

∣∣ = h0 ◦ fT + h̃ ◦ fT + Q log
∣∣f ′

T

∣∣
with

h̃ ◦ f̂∞ + Q log
∣∣f̂ ′∞

∣∣,
considered modulo additive constant. [Recall that the h0(ft (z)) term on the RHS
of (5.5) a.s. tends to zero modulo additive constant as t → +∞.]

Note that in this case, after “zipping up all the way to +∞” the image f̂∞(H)

is a (dense) subset of C, rather than H, and thus h̃ is defined as a free boundary
GFF on C rather than just on H. Given this change, there is nothing in the proof of
Theorem 1.2 in Section 4, where the law of (h,ρ) was checked one test function
ρ at a time, that fails to hold if we take T = +∞.

To summarize, we have the following.

PROPOSITION 5.2. We may produce a sample from � explicitly as follows:
first sample a standard Brownian motion Bt for t ∈ R, which determines ft (and
hence ηt ) for all time (positive and negative) by solving (1.7). Then define (modulo
additive constant) h∞ := limt→+∞ ht and f̂∞ := limt→+∞ f̂t and write

h = h0 = h̃ ◦ f̂∞ + h∞,
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where h̃ is a free boundary GFF on C. Define ht for all other finite t as the quantum
surface transformation of h0 under ft . That is, ht = h0 ◦ f −1

t + Q log |(f −1
t )′|.

The entire process (ht , ηt ) is thus determined by h̃ and the process Bt . Note that
for each t , the curve ηt is a random path. The forward Loewner evolution of this
path—parameterized by its capacity time s—is given by ft−s , with s ranging from
0 to +∞. Its Loewner driving function is (as a function of s)

√
κBt−s . Note that

ZCAP
t has the effect of translating the process B· by t units to the left (and adding

a constant to maintain B0 = 0).

5.3. Re-parameterizing time: General observations. Now we make a general
observation about the GFF. Suppose we write dh for the law of a (not necessarily
centered) free boundary GFF h, and that f belongs to the Hilbert space on which h

is defined, so that Var(h, f )∇ = (f, f )∇ . As mentioned in Section 4.2, the standard
Gaussian complete-the-square calculation shows that e(h,f )∇ dh (multiplied by a
constant to make it a probability measure) is the law of the original GFF plus f .
In other words, weighting the law of h by e(h,f )∇ is equivalent to deterministically
adding f to h. Thus, weighting the law of h by e(h,ρ) (we assume that ρ has total
integral zero) is equivalent to adding −2π�−1ρ to h. Here �−1 is defined in the
Neumann sense, that is, by taking by (3.3) with G(x,y) = GHF (x, y). Note also
the following.

PROPOSITION 5.3. Let (ht , ηt ) be the process with law � (as in Section 5.2),
let ρ be a signed measure with total integral zero [for which (h0, ρ) is a.s. finite],
and write

sρ(t) :=
∫ t

0
e(hs,ρ) ds.

Then the weighted measure e(h0,ρ)� (normalized to be a probability measure) is
stationary w.r.t. sρ time.

PROOF. First, observe that the constant E�e(h0,ρ) is finite, and by Fubini’s the-
orem E�

∫ T
0 e(ht ,ρ) dt is T times that constant. The ergodic theorem implies that as

T → ∞ along integers the random variables sρ(T )/T converge to a (possibly ran-
dom) value c almost surely and in L1. To see that c is a.s. constant, we would need
to check that the pair (h·, η·) is ergodic. We do not really need ergodicity for the
proof of this proposition but we mention as an aside that it is not hard to prove [the
Brownian motion generating ηt is ergodic; and if t1 and t2 are distinct times, one
can use to GFF properties to show that the restrictions of h to tiny neighborhoods
of η(t1) and η(t2) are nearly independent; letting the neighborhoods get small, and
using scale invariance, one can establish a long-range mixing property that implies
ergodicity]. The reason that ergodicity is not necessary for the proof of the propo-
sition is that if (h·, η·) had multiple ergodic components but each component were
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invariant under the operation of translation by a fixed amount of sρ time, then the
entire process would be invariant under this operation as well; so it is enough to
focus on a single ergodic component.

Now, suppose that πT denotes uniform measure on [0, T ] and we sample s

from πT . Then consider the measure � × πT . Once we have a sample from this
measure, we may use it to generate a pair (h̄t , η̄t ) = (ht+s, ηt+s). That is, (h̄·, η̄·)
is the original process (h·, η·) translated by the random quantity s, which was
chosen uniformly from [0, T ]. The stationarity of � implies that (h̄·, η̄·) also has
the law �. Now suppose that we instead sample from the weighted measure �̃ =
e(hs,ρ)� ×πT (normalized to be a probability measure). Since e(hs,ρ) = e(h̄0,ρ), the

induced measure on (h̄·, η̄·) has the law e(h0,ρ)�.
However, sampling from �̃ can also be done by first choosing the process

(h·, η·) from its marginal law, which is the measure � weighted by
∫ T

0 e(ht ,ρ) dt

(which converges in law to c�—normalized to be a probability measure—in the
total variation sense as T → ∞, by the L1 ergodic theorem) and then sampling s

from e(ht ,ρ)πT (normalized to be a probability measure), which amounts to choos-
ing a uniform sρ time from the long interval. Since, as noted above, the process

centered at this random time has the law e(h0,ρ)�, we find, by letting T tend to
infinity, that e(h0,ρ)� must be stationary with respect to sρ time. �

Recall from Section 1.2 that adding −2π�−1ρ to h is equivalent to changing
the underlying geometry w.r.t. which Liouville quantum gravity is defined. Thus,
Proposition 5.3 says that a Liouville quantum gravity measure on an alternative
underlying geometry (h still taken modulo additive constant) is stationary under
zipping/unzipping in a modified version of capacity time.

This symmetry between space and time is intriguing for its own sake. It is re-
lated to but should not be confused with Theorem 4.5. Both theorems involve mod-
ifying the function h0. However, Theorem 4.5 does not describe a new stationary
process; instead, it gives a modified law for the zipping up map ft and does not
involve changing the time parameter. On the other hand, one can use Theorem 4.5
to describe how the process of Proposition 5.3 evolves in capacity time. The fol-
lowing is an immediate consequence of Theorem 4.5.

PROPOSITION 5.4. Given a signed measure ρ on H with (−�−1ρ,ρ) < ∞,
let �ρ denote the measure whose Radon–Nikodym derivative with respect to � is

proportional to e(h0,ρ) (normalized to be a probability measure). Then the �ρ law
of the zipping up map ft , for t ≥ 0, is the law of the modified SLE process in
Theorem 4.5. Moreover, given ft for some time t ≥ 0, the �ρ conditional law of h0

is that of h̃ ◦ ft + ĥt , as defined in the statement of Theorem 4.5.

5.4. Conclusion of zipper proofs.
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PROPOSITION 5.5. The conclusion of Proposition 1.6 (see Figure 7) remains
true even if, when we choose h and x, we condition on a particular pair of values
L1 = νh[a, x] and L2 = νh[x, b].

PROOF. We use the setup and notation of Proposition 1.6. Recall the explicit
form of the weighted measure νh[a, b]dh given in [29], as described earlier. Once
we condition on x, the conditional law of h is simply that of a zero boundary GFF
(except with free boundary conditions along R) plus a random harmonic function
plus −γ log |x − ·|. Roughly speaking, the proposition follows from the fact that
the restriction of h to an extremely small neighborhood of x (which tells us what
the quantum surface looks like when we zoom in near x) is almost independent of
the pair (L1,L2).

To express this point more carefully, consider smooth functions φ1 and φ2 on
∂D that are supported on disjoint neighborhoods U1 ⊂ D and U2 ⊂ D with U1 ∩
R ⊂ (a, x) and U2 ∩ R ⊂ (x, b). We assume (for i ∈ {1,2}) that each φi is equal
to one on some interval of Ui ∩ R and φi(z) ∈ [0,1] for all z ∈ D, and also that
x /∈ U1 ∪ U2.

Now, by the definition of the GFF we can write h = α1φ1 +α2φ2 +h0 where α1
and α2 are centered Gaussian random variables and h0 is projection of h onto the
orthogonal complement of the span of φ1 and φ2, so that (h0, φ1)∇ = (h0, φ2)∇ =
0 almost surely. In this construction, α1, α2 and h0 are independent of each other.
Recalling (5.1), we have, for i ∈ {1,2}, that the restriction of νh to ∂Ui is given by

νh = e(γ /2)αiφi νh0 .

In particular, this implies that once we condition on h0, each νh(∂Ui ∩ R) is
a.s. given by an increasing smooth function of αi . Here, the smoothness can be
verified by differentiating with respect to α and noting that no matter how many
times one differentiates one obtains a compactly supported test function integrated
against νh0 . This in particular implies that, once we condition on h0, the quantity
νh(∂Ui ∩ R) has a law which is absolutely continuous with respect to Lebesgue
measure on (a,∞) (for some a that depends on h0) and has a smooth density
function. Let ψ1 and ψ2 be the density functions for these laws. If we fix h0 outside
of some small Bε̄(x) disjoint from U1 ∪ U2 but rerandomize the restriction h′

0 of
h0 to Bε̄(x)—conditioned on (L1,L2)—then this is the same as rerandomizing h′

0
without conditioning on (L1,L2), except that we weight the law by (a quantity
proportional to) the product below (viewed as a function of h′

0)

ψ1
(
L1 − νh

([a, x] \ ∂U1
))

ψ2
(
L2 − νh

([x, b] \ ∂U2
))

.

As ε̄ tends to zero, the amount by which resampling h′
0 changes either νh[a, x] or

νh[x, b] is a quantity that tends to zero in probability. We conclude that weighting
the law of h′

0 by the big expression above (which is a smooth bounded function of
νh[a, x] and νh[b, x]) affects this law by an amount that (in total variation sense)
tends to zero as ε → 0. �
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In order to prove Theorem 1.8, we will follow the argument sketched in Figure 8
in Section 1.6. We begin with a lemma.

LEMMA 5.6. Suppose we first sample (ht , ηt ) from νh[−δ,0]� (normalized
to be a probability measure; here, we write h = h0) and then sample x from
νh[−δ,0]. Consider the joint law of the x and the (ht , ηt ) process chosen in this
way. Then given x, the conditional law of the zipping up process ft is that of the
modified SLE process in Theorem 4.5, with the ρ measure given by γ 2 times a
Dirac distribution at x minus γ 2 times a unit of uniformly distributed mass on the
unit circle. Moreover (as in Proposition 5.4), given ft for some time t ≥ 0, the con-
ditional law of h0 is that of h̃ ◦ ft + ĥt , as defined in the statement of Theorem 4.5.

PROOF. Recall (1.2) and define

νε
h := εγ 2/4eγhε(x)/2 dx.(5.8)

Suppose that for some positive δ′ < δ and ε < δ′ we weight by νε
h[−δ,−δ′] instead

of νh[−δ,0]—and then, given h, we choose x from νε
h restricted to [−δ,−δ′] and

normalized to be a probability measure. Then we know that this is the same as
sampling from

eγ [hε(x)−h1(0)]/2 dx dh(5.9)

(times a normalizing constant) where x is Lebesgue on [−δ, δ′] and dh is the � law
of h. [We have hε(x) − h1(0) instead of hε(x) in the exponent because the former
is defined independently of the additive constant for h, and is what we obtain if we
choose the additive constant so that h1(0) = 0.] Thus, given x, the conditional law
of h is eγ (hε(x)−h1(0))/2 dh, and Proposition 5.4 exactly determines the law of ft

[where the relevant ρ measure is a uniform measure on ∂Bε(x) minus a uniform
measure on ∂B1(0)].

The above gives an explicit way to construct a sample from νε
h[−δ,−δ′] and

the corresponding ft . To establish the lemma, we need to argue that an analogous
result holds when νε

h is replaced by νh. One way to deduce the νh result from the
νε
h result is as follows. Let U be the ε neighborhood of [−δ,−δ′] in H, as in Fig-

ure 18. Decompose the free boundary GFF Hilbert space into the space SuppU (the
closure of the space of smooth functions supported on U that vanish on ∂U \R,
with free boundary conditions on ∂U ∩ R) and the space HarmU (the orthogonal
complement of SuppU , which consists of functions that are harmonic on U with

FIG. 18. U ⊂H is an ε neighborhood of [−δ,−δ′].



3528 S. SHEFFIELD

Neumann boundary conditions along R [87]). Let hHARM be the projection of h

onto HarmU and hSUPP the projection of h onto SuppU , so that

h = hHARM + hSUPP.(5.10)

Roughly speaking, hHARM represents the conditional expectation of h given all of
the values of h outside of U . Note that hSUPP, which is independent of hHARM,
has the law of a GFF on U with zero boundary conditions on ∂U \ R and free
boundary conditions on ∂U ∩R.

If we take any ε′ < ε then the measure eγhε′ (x)/2 dh (normalized to be a prob-
ability measure) induces a law for hHARM that does not depend on ε′. We claim
that the � law of ft [up until the first time TU that a point in ft (U) reaches the
origin] is independent of the projection of h = h0 onto SuppU . This follows from
Theorem 1.2 and the way we constructed �: we may sample h and fTU

by first
sampling fTU

, then sampling hTU
from the law of h̃ + h0, and then using a co-

ordinate transformation via f −1
TU

to recover h0. The decomposition (5.10) can be
made using fTU

(U) instead of U before we apply this coordinate transformation.
It then follows from the conformal invariance of the zero boundary GFF (with
free boundary conditions along R) that the h = h0 we obtain after the coordinate
transformation has a projection to SuppU that is independent of fTU

.
Thus, the conditional law of fTU

given h depends only on the projection of h

onto HarmU . Since weighting � by νε′
h [−δ,−δ′] and by νh[−δ,−δ′] affects the

law of the projection of h to HarmU in an identical way, the law of this projection,
and hence the law of ft (up until TU ), is the same in each weighted measure. Since
this holds for any interval [−δ,−δ′] we conclude that the joint law of x and ft (up
until TU ) does not change if we replace νε

h with νh. To be explicit now about what
we get from Proposition 5.4, recall from (4.6) and the subsequent discussion that
we have dft (z) = −2

ft (z)
dt − dWt , where

dWt = (−Re(ft )
−1, ρ

)
dt + √

κ dBt ,

in the case that we weight by e(h,(1/(2
√

κ))ρ), the weight from (4.13). In our case,
we take ρ to be such that(

h,
1

2
√

κ
ρ

)
= γ

2

(
hε(x) − h1(0)

)
,

which implies

(h,ρ) = γ 2(
hε(x) − h1(0)

)
,

and the lemma follows by taking ε to zero. �

PROOF OF THEOREM 1.8. We begin by analyzing the construction described
in Lemma 5.6 in more detail. By Lemma 5.6, we find that if h and x are taken from
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the measure (5.9), then given x, the law of the zipping up procedure in Figure 8
[up until ft (x + ε) reaches zero] is determined by

dWt =
(
− γ 2

ft (x)
+ Re

∫ π

0

γ 2

ft (eiθ )

dθ

π

)
dt + √

κ dBt .(5.11)

As explained in the proof of Lemma 5.6, this law is independent of ε and also
holds when νε

h is replaced by νh in the construction of x and h above.
Now if the second term in the expression for the dt piece of (5.11) were

not there, then (5.11) would correspond to the one-force-point SLEκ,ρ1 with
ρ1 = γ 2 = κ , and the corresponding ft (x) would evolve precisely as a Bessel
process of [recall (4.9)] dimension

1 + 2(γ 2 − 2)

κ
= 3 − 4

γ 2 < 2,(5.12)

which would imply that ft (x) eventually reaches zero almost surely [78]. More-
over, by (4.12), the zipped up curve obtained, at the time x hit zero, would look
like ordinary SLE up to some time with a size of order δ2. For the next point in the
proof, it is (slightly) easier if we replace the mean value on ∂B1(0) ∩ H [in Fig-
ure 8 and in (5.11)] with the mean value on an arc of ∂B1(0) ∩H that is bounded
away from R. [The statement and proof of Lemma 5.6 do not change if we replace
∂B1(0)∩H with such an arc.] In this case, since Reft (z) is increasing in t for each
z ∈ H, the magnitude of the second term in the dt piece of (5.11) is a.s. bounded
by a constant for all t . Thus, when we zoom in (as in Figure 8), the effective drift
from this term in the zoomed-in process tends uniformly to zero.

We now claim that the limit sketched on the right in Figure 8 is a (γ − 2/γ )-
quantum wedge with an independent SLEκ curve. Lemma 5.6 implies that the
limiting curve is an SLEκ independent of the field. To see that the field corresponds
to a quantum wedge, note that before rescaling it looks like a GFF with a (γ −
2/γ )(− log | · |) singularity at the origin. (Recall that the −2γ corresponds to the
log singularity present in the capacity invariant model, and the γ comes from the
extra force point that has just collided with the origin.) The fact that the limit
is then a quantum wedge follows from the argument in Proposition 1.6 (which
shows generally that if h looks like a free boundary GFF plus a log singularity
at some point, then one obtains a quantum wedge when one zooms in near that
point). We also claim that in this limiting object [the (γ − 2/γ )-quantum wedge
decorated by an independent SLEκ curve] the two quantum surfaces divided by the
curve each have the law of a γ -quantum wedge. This follows for the left side from
Proposition 1.6 and for the right side by symmetry. [Note that a (γ −2γ )-quantum
wedge decorated by an independent SLEκ is an object with left-right symmetry.]

At this point, we need to show that the quantum length measures along the
two sides of η almost surely agree. Since x was sampled uniformly from quantum
measure (before we zipped up and zoomed in), the SLEκ decorated (γ − 2/γ )
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quantum wedge must be invariant under the operation of unzipping by a fixed
quantity of quantum boundary length as measured along the left of the two γ

quantum wedges. (This is similar to the argument used to show Proposition 1.7.)
Thus, the pair ((D1, h1), (D2, h2)) is invariant under zipping and unzipping by the
boundary length measure.

Let F(s) denote the quantum length (as measured from the right side) of
the curve segment η([0, t]), where t is chosen so that the quantum length (as
measured from the left side) of η([0, t]) is s. The ergodic theorem implies that
lims→∞ F(s)/s exists almost surely; denote this (possibly random) limit by c.
Since the law of the (γ − 2/γ )-quantum wedge is scale invariant, the fact that
F(s) ≈ cs holds for large scales (by the ergodic theorem) implies that the same
holds on all scales, and indeed we must have identically F(s) = cs. Since c is de-
termined by the restriction of η and h to arbitrarily small balls centered at zero.
In other words, if Fδ denotes the σ algebra generated by the restriction of h to
Bδ(0) and the curve η stopped when it first exits Bδ(0), then c is measurable w.r.t.
the intersection

⋂
δ>0 Fδ . However, it is easy to see that events in

⋂
δ>0 Fδ have

probability zero or one, so that c must be a.s. constant. (This is proved explicitly
in Lemma 8.2 of [23] in a setting that includes the field but not the path η. The
statement including the path η then follows from the well-known fact that if Gδ is
generated by the restriction of Brownian motion to [0, δ] then events in

⋂
δ>0 Gδ

have probability zero or one.) By the left-right symmetry of the law of SLEκ and
the quantum wedge, we have c = 1 almost surely.

Now that we know that the length measures on the two sides agree, we next
claim that each of the two sides in the limit sketched on the right in Figure 8 are
independent γ -quantum wedges. We will deduce this by applying Proposition 5.5
to Figure 8. More precisely, we consider the setting of the upper image in Figure 8
and we condition on the restriction of the GFF to the complement of B1 := Bε̄(x)

and B2 := Bε̄(R(x)), and we also condition on the quantum lengths νh(B
1 ∩ R)

and νh(B
2 ∩ R). We may choose δ small enough so that with high probability

R(x) ∈ B1(0), and we will focus our attention on the event that this is the case. If
ε̄ are small, then with high probability these balls do not contain the origin and are
contained in B1(0).

If we resample the restriction of h to B1 ∩H—conditioned on νh(B
1 ∩ [x,∞))

and νh(B1 ∩ (−∞, x]) and the restriction of h to the complement of B1—then
Proposition 5.5 implies that even with this conditioning it is a.s. the case that the
zoomed-in figures (as in lower left in Figure 8) converges in law to a γ -quantum
wedge as ε̄ → 0. The conditional law of h (just given its values outside of B1)
is that of a random harmonic function plus a GFF on B1 ∩ H with free boundary
conditions on R and zero boundary conditions on ∂B1 ∩H [91].

The same applies when we zoom in near R(x). Now if we condition on the GFF
values on ∂B1(0) together with the values on the line iR, together with the lengths
of [−1, x] and [x,0] and [0,R(x)] and [R(x),1], then the conditional law of the
restrictions of h to the two halfs of B1(0) ∩ H are independent by the standard
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GFF Markov property. A similar analysis to the above shows that even with this
conditioning, one still obtains the laws of quantum wedges, near each of x and
R(x), upon zooming in near those points. We conclude that in the ε̄ → 0 limit the
γ -quantum wedges are independent of each other. This completes the proof of the
items in the first paragraph of the theorem statement. Along the way, we have also
established the invariance of the law of the pair ((h1,D1), (h2D2)) under zipping
up or down by a unit of quantum length zipper stationarity, and the ZLEN

t properties
are now immediate from this. �

Deriving Theorem 1.3 as a consequence of Theorem 1.8 is now fairly straight-
forward. Essentially, one uses absolute continuity of the corresponding fields (at
least when restricted to certain compact sets, away from the origin) to say that if
the left and right boundary lengths a.s. agree in the setting of Theorem 1.8 then
they almost surely agree in the setting of Theorem 1.3 as well.

PROOF OF THEOREM 1.3. The above proof shows that if one draws an in-
dependent SLEκ on a (γ − 2/γ )-quantum wedge, the quantum lengths measured
along the left and right sides of the curve agree almost surely. The setting of Theo-
rem 1.3 is different because the law of h is different. On the other hand, we would
like to argue that it is not so different, that is, that the laws of the two random fields
(restricted to a compact set, bounded away from the boundary) are absolutely con-
tinuous w.r.t. each other, so that a statement that is a.s. true for one is a.s. for the
other.

That is, we would like to say that the h of Theorem 1.3 “looks like” the canonical
description h of a (γ − 2/γ )-quantum wedge, at least in the sense of absolute
continuity of the restriction to compact subsets of H. This is most immediate for
compact sets that lie outside of B1(0). If we consider a canonical description h of
a quantum wedge, then we know that by definition μh(B1(0)) = 1. However, once
we condition on the restriction of h to B1(0), the conditional law of h restricted
to H \ B1(0) is that of a GFF (with zero boundary conditions on ∂B1(0), free
elsewhere) plus a certain random smooth function on H \ B1(0). [Note that if h

is a canonical description, it will remain a canonical description even after we
resample its values outside of B1(0) in this way.] In particular, the restriction of
h to some compact D ⊂ H \ B1(0)) is absolutely continuous with respect to the
restriction to D of the h of Theorem 1.3, defined up to additive constant. (This is
immediate from the absolutely continuity results in Section 3.1 of [87].) We thus
find that in the setting of Theorem 1.3 the left and right quantum lengths along
η are almost surely equal, at least outside of B1(0). The object in Theorem 1.3
is scale invariant; hence, if the left and right quantum boundary lengths a.s. agree
outside of a unit ball of radius 1, then they a.s. agree outside of a unit ball of any
radius, which means that they a.s. agree everywhere along the SLEκ curve. �
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REMARK 5.7. The above argument also holds if we add any smooth func-
tion to h—which affects the restriction of h to each compact subset of H in an
absolutely continuous way (see [87, 91])—and then independently draw any path
whose law is absolutely continuous w.r.t. that of SLE. That is, even in this setting
one can use absolute continuity results about the GFF to prove that the quantum
lengths along the two sides of the path agree almost surely. In particular, Theo-
rems 1.3 and 1.4 still apply in the setting of Theorem 4.5.

6. Twenty questions. Update: Since the first version of this paper was posted
to the arXiv in 2010, there has been progress on several of the questions listed
below. The current version leaves the questions as they were in 2010 but includes
brief updates on work completed since.

Many of the most fundamental questions about quantum gravity are open. Be-
fore formulating some of these questions, we present some definitions that will
appear in the questions.

We have already seen that quantum wedges are natural random quantum sur-
faces of infinite area and infinite boundary length. We now describe some natural
random quantum surfaces of unit area or unit boundary length, in terms of lim-
its. We will say more about the sense in which the limits exist below, and more
detailed constructions appear in [23].

1. Fix a smooth bounded domain D. Let h be a GFF with free boundary con-
ditions on a linear segment L of ∂D and zero boundary conditions on ∂D \ L. Fix
C > 0 and condition on μh(D) = C. Let ĥ = h − (logC)/γ , so that μ

ĥ
(D) = 1.

We claim that as C → ∞, the law of (D, ĥ) (viewed as a quantum surface) tends
to a limit that does not depend on D or L. Call this the unit area quantum disc.

2. The unit boundary length quantum disc is defined the same way except that
we condition on νh(L) = √

C and the normalization gives ν
ĥ
(L) = 1.

3. The unit area quantum sphere is defined the same way as the unit area quan-
tum disc except that we take D to have zero boundary conditions on all of D.

In the case of the discs (the first and second objects described above), one way
to formulate the convergence is to fix a point x ∈ D \ L and then to choose x1 and
x2 on L at random from ν

ĥ
. We change coordinates via (1.3) to H so that x1, x2

and x map respectively to 0, 1 and ∞ (see the left side of Figure 19). We then
obtain a random measure on H, and these unit random measures should converge
in law with respect to the topology of weak convergence of measures on H.

In the case of the sphere, one can choose two points x1 and x2 from μ
ĥ

and
conformally map D to an origin-centered disc in such a way that one point goes
to 0 and one to 1. (This determines the radius of the disc; see the right side of Fig-
ure 19.) We then obtain a random measure on C (which is incidentally supported
on a disc of finite radius; the radius of this supporting disc tends to ∞ as C → ∞),
and these random measures should converge in law with respect to the topology of
weak convergence of measures on C.
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FIG. 19. Constructing unit area/length quantum disc (left) or unit area quantum sphere (right).
When C is large, we expect x1 and x2 to be close with high probability, and for most quantum area
to be near those points.

We now present some conjectures and questions. Some are very concrete and
specific, and some are more speculative and open-ended. Some of the physics
questions have of course been extensively discussed in the physics literature al-
ready, but this literature is far too broad for us to survey here (though we can at
least mention Polyakov’s reflections, with references, on the history of the subject
in [76], as well as the extensive reference list in [29]).

Conjectures relevant to discrete model scaling limits:

1. Discrete random planar map models have Liouville quantum gravity as a
scaling limit in the metric of weak convergence of area measures. To be more
specific, in addition to the conjectures in Section 2 and in [29], we conjecture the
following:

(a) The uniform quadrangulation of a sphere with n quadrilaterals scales to the
unit area quantum sphere with γ = √

8/3. One way to formulate this is that
if we choose three points uniformly on the quadrangulation and conformally
map the quadrangulated surface to C with these three points going to 0, 1 and
∞, then the image of the area measure in C (normalized to the total area is
one) converges in law (w.r.t. the topology of the local weak convergence) to
the unit area quantum sphere measure described above.

(b) The random quadrangulation of a disc with boundary length n, where the prob-
ability of a quadrangulation is proportional to a (critical) constant to the num-
ber of quadrilaterals, scales to the unit boundary length quantum disc with
γ = √

8/3.
(c) The random quadrangulation of a disc with n quadrilaterals, where the proba-

bility of a quadrangulation is proportional to a (critical) constant to the bound-
ary length, scales to the unit area quantum disc with γ = √

8/3.
(d) Similar statements hold for random quadrangulations weighted by the parti-

tion functions of Ising configurations, O(n) configurations, uniform spanning
trees, etc., with γ = √

κ for the appropriate κ . In each case, the cluster bound-
ary loops (of the statistical model on the random surface) scale to a CLEκ in-
dependent of the measure. (Question: What happens if, for some d , we make
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the probability of a quadrangulation proportional to the partition function of
the d-dimensional discrete Gaussian-free field on the corresponding graph?)

Update: The problem as stated remains open. However, convergence of FK-
decorated random planar maps to CLE-decorated LQG has been established in
the so-called peanosphere topology and in the so-called loop structure topology,
in both infinite and finite volume settings [24, 34–37, 70, 93]; see also related re-
sults in [11, 17, 60, 101]. The construction of finite volume LQG spheres and disks
(briefly considered above) is discussed in more detail in [4, 19, 24, 70]. Partial
results in the direction of understanding the conformal structure of the discrete
models appear in [18]. Roman Boikii and Stanislav Smirnov have also described
progress in private communication.

2. A quantum surface is a coordinate-change-invariant random metric space in
the sense of the footnote in Section 1.2. In the special case γ = √

8/3, this is
equivalent to the Brownian map (see, e.g., [53, 56, 62]), which is a term given to
the random metric space scaling limit of uniform quadrangulations on the sphere.
Update: The metric space structure of LQG has now been constructed in the pure
quantum gravity case γ = √

8/3 in recent work (some in progress) showing that√
8/3-LQG is equivalent to the Brownian map [68, 69, 71, 72]. No such construc-

tion is currently available for other values of γ ∈ (0,2).
3. Assuming that 2 holds, the scaling limits in 1 also hold in the topology of

Gromov–Hausdorff convergence of metric spaces. Update: In light of the equiv-
alence of

√
8/3-LQG and the Brownian map [68, 69, 71, 72], and the Gromov–

Hausdorff convergence of discrete random planar maps to the Brownian map [54,
55, 63], this conjecture has now been established in the pure quantum gravity case
γ = √

8/3. It remains open for all other γ ∈ (0,2).

Related but more modest requests:

4. Show that simple random walk on a random quadrangulated surface is a
good approximation for Brownian motion on that surface. Update: This problem
remains open. However, works by Gill and Rohde, by Gurel-Gurevich and Nach-
mias and by Benjamini and Curien have derived some fundamental properties for
random walks and Brownian motion on infinite volume versions of these surfaces
[8, 32, 33].

5. Prove any SLE convergence result at all for random planar maps. Update:
As mentioned above, there are now a number of convergence results involving the
peanosphere and loop structure topologies.

6. Show that the following toy model has a scaling limit which is a metric
space. Begin with a unit square S. After an exponentially random amount of time,
divide S into new four squares of equal size. Each time a new square is created,
give it a new exponential clock (independent of the others) and so that it too will
divide into four new squares after an exponentially random amount of time. [Each
time a clock at an existing box rings, the total number of boxes increases by 3.
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Thus, if N(t) is the number of boxes at time t , then e−3tN(t) is a martingale.]
After time t , consider two squares to be adjacent if they have part of an edge
in common. Show that for some β > 0, the graph metric on the set of squares
times e−βt converges almost surely to a random metric space parameterized by S.
Update: This toy problem remains completely unsolved. However, we remark that
another interesting model for producing random squarings appears in [1].

Structural questions about Liouville quantum gravity and AC geometry:

7. If a quantum surface is well defined as a metric space, what does the bound-
ary of a unit ball look like? Is it a form of SLE (some collection of SLE loops) or
something completely different? How about a shortest (geodesic) path between
two points z1 and z2? How about the boundary of the set of points closer to z1 than
to z2? What is the continuum analog of the breadth first search tree (the tree that
appears in the Schaeffer bijection [84])? Can one even formulate a conjecture?
Update: As mentioned above, much has been now been established in the case
γ = √

8/3, where the ball boundaries are constructed using the quantum Loewner
evolution [68, 69, 71, 72], and a canonical embedding of the Brownian map in
the sphere has been constructed. The problem remains completely open for other
γ ∈ (0,2).

8. If κ ∈ (4,8), then the complement of SLEκ , run to time T , is not a single
simply connected domain; it consists of infinitely many components. The set of
components that lie to the left side of η comes with a tree-like hierarchical struc-
ture (where a component A1 is “above” a component A2 if η traces ∂A1 after it has
started tracing, but before it has finished tracing, ∂A2). The set of components on
the right side comes with a similar structure. This suggest that when we “unzip”
along η (as in Theorem 1.2) we obtain not merely a quantum surface parameter-
ized by H but a quantum surface parameterized by H together with a tree-like
structure of quantum-surface “beads” hanging off of its boundary. Does an analog
of Theorem 1.3 hold in this setting if one properly defines the boundary length
of the tree-like structure? How about an analog of Theorem 1.4? Proving the lat-
ter would likely require first showing that SLEκ is removable when κ ∈ (4,8). Is
this the case? Can a κ ∈ (4,8) version of the quantum zipper be used to prove the
time reversal symmetry of SLE for κ ∈ (4,8)? Update: The time-reversal symme-
try results were established in the imaginary geometry papers [64–67], and the
questions about the κ ∈ (4,8) analogs of Theorems 1.3 and 1.4 were answered
affirmatively in [24]. Interestingly, the zipping up” results in [24] were established
without a proof that SLEκ is removable when κ ∈ (4,8). It remains an open ques-
tion whether these SLEκ processes are removable. A new result on the inversion
symmetry of the quantum zipper welding (for the κ < 4 case) appears in [83].

9. What is the Hausdorff dimension of a quantum surface (assuming it is de-
fined as metric space) for general γ ? Can one at least handle the special case
γ = √

8/3 (where the answer should be 4, by analogy to discrete random trian-
gulations; see e.g. [3])? Update: This question is settled in the case γ = √

8/3, in
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light of the above-mentioned equivalence between the
√

8/3-LQG sphere and the
Brownian map. In that case, the Hausdorff dimension is indeed 4. For general γ ,
there is a Hausdorff dimension conjecture due to Watabiki [103], which has found
some support in recent simulations [2]. This conjecture is further explained and
discussed in [68].

10. Let hε be projections of h onto the space of functions that are piecewise
linear on an ε-edge-length triangular lattice (or alternatively, mollifications of h

obtained by convolving with a bump function supported on a disc of radius ε). Do
the flow lines of eihε/χ converge in law to SLE curves (AC geometry flow lines)
as ε → 0? If so, this would extend the main result of [86] to κ 
= 4. Do the other
results of [86, 87] for κ = 4 extend to κ 
= 4?

11. If hε are smooth mollifications or piecewise linear projections (as above)
of the free boundary GFF of Theorem 1.2, do the curves obtained by zipping up
part of the boundary via conformal welding (using the identification map R as in
Section 1.4, except that we use the approximate measures eγhε(x)/2 dx instead of
νh to define R) converge in law to SLE?

12. What happens when γ = 2 (so κ = 4, Q = 2)? The definition of a quantum
surface as an equivalence class—as given in Section 1.2—makes sense for γ = 2,
and as mentioned in the Introduction. Is the “zipping up” map in the coupling of
Theorem 1.2 determined by h, as in the γ < 2 case? Is it the limit of the curves
one obtains by using the same GFF h̃ but with different values of γ , and letting γ

approach 2? Is SLE4 almost surely removable, like SLEκ for κ < 4? Update: This
question remains open. However, recent results enable one to construct a quantum
length measure νh (as well as a quantum area measure μh) in the γ = 2 case [25,
26]. It is natural to conjecture that zipping up gives a welding that respects this
measure, and also that SLE4 is removable. We note that a closely related result has
been established by Tecu in [102], which builds on the work of [6].

13. Can the continuum limit of simple random walk on a random quadran-
gulation (or of Brownian motion on the corresponding Riemannian surface) be
somehow understood directly, in terms of the Schaeffer or Mullin bijections, as a
random process on an identified pair of continuum trees? Update: The results in
[24] and [68, 69, 71, 72] allow one to define a conformal structure (and hence a
Brownian motion, with a time change defined using the “Liouville Brownian mo-
tion” theory developed in [10, 31]) on these mated pairs of continuum trees. The
reader may decide whether these (SLE/LQG/QLE-based) constructions ought to
be considered “direct.”

14. What is the most natural formulation of a higher genus quantum surface,
where the conformal modulus is allowed to be random? What is the right conjec-
tural scaling limit of a random quadrangulation of a torus (or higher genus surface)
with n faces, as n → ∞? How about a surface with n holes (weighting by the
combined length of the hole boundaries in a critical way)? One way to construct
a quantum surface with holes is to put an independent conformal loop ensemble
on top of a quantum surface and then cut out the regions surrounded by some of
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the loops. (Here, one would have to give a rule for specifying which loops to cut
out, for example, one might try to cut out the k loops with the longest quantum
boundary lengths.) Is it possible to weld together surfaces constructed this way
and produce higher genus surfaces that answer the questions above? Update: See
[81] for some recent work on LQG tori by David, Rhodes and Vargas, which cites
many earlier works from the physics literature on higher genus LQG construc-
tions. It remains an open problem to implement the ideas mentioned above (i.e.,
to construct canonical higher-genus LQG random surfaces via weldings) and to
show that these approaches are equivalent to those discussed in [81].

15. One way to combine Liouville quantum gravity and AC geometry is to
let h be a complex valued free field. The real part of h encodes Liouville quantum
gravity and the imaginary part an AC geometry, which could be coupled with a
conformal loop ensemble on the quantum surface [92]. In this context, what new
meaning, if any, comes out of the extra symmetries of the complex Gaussian free
field (e.g., its invariance w.r.t. replacing h with a modulus-one complex constant
times h)?

16. Can one fully construct all rays in the AC geometry of an instance of the
GFF (starting from all points in D) and determine which rays intersect each other
and themselves, etc.? Does the list of properties shown to hold for smooth h in the
Appendix (Proposition A.1) hold in the GFF setting as well? Update: This question
has been affirmatively answered in [64–67].

Returning to the original physics motivation. . .

17. Can one construct a variant of Liouville quantum gravity with some of the
additional complexities of a physical string theory (and figure out what the follow-
ing things mean in this context mathematically)?

(a) Minkowski space time.
(b) Complex weights (in place of a probability measure).
(c) Supersymmetry.
(d) Gauge theories.
(e) Embeddings in Calabi–Yau manifolds.
(f) Quantum surfaces of nondeterministic genus.

18. When introducing Liouville quantum gravity, Polyakov wrote in 1981 that
it was necessary to develop a theory of random surfaces “because today gauge in-
variance plays the central role in physics. Elementary excitations in gauge theories
are formed by the flux lines (closed in the absence of charges) and the time de-
velopment of these lines forms the world surfaces. All transition amplitude(s) are
given by the sums over all possible surfaces with fixed boundary.” [74] Can one
formulate any version of this gauge/string duality as a theorem or conjecture relat-
ing gauge theory flux lines to Liouville quantum gravity? Update: We mention one
recent rigorous formulation of Yang–Mills gauge-string duality on a lattice due to
Chatterjee (not obviously related to Liouville quantum gravity) [15].
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19. Can any Liouville quantum gravity insights be used to study higher dimen-
sional random metrics? What are the most natural models? Update: We remark
that certain higher dimensional analogs are easy to describe. If h is an instance
of the log-correlated Gaussian field (LGF) as defined, for example, in the surveys
[27, 58], then eγh(z) dz is easy to define as a random measure when γ is in the right
range; see, for example, the survey [80]. Furthermore, the restriction of a higher
dimensional LGF to a (two-dimensional) plane yields a GFF on the plane, so that
the higher dimensional LGF can be interpreted as a coupling of planar GFFs,
one for each planar subspace; it remains unclear whether the imaginary geometry
or level set structures corresponding to the individual slices can be unified in a
coherent way [58].

20. Are there any natural three- or four-dimensional versions of AC geome-
try? For example, is it possible to interpret paths in the three-dimensional uniform
spanning tree scaling limit [47] as geodesics of a random affine connection? Up-
date: This remains open. We mention one attempt to describe a three-dimensional
analog of SLE6 (at least on the discrete level) via so-called tricolor percolation
[95], which also references relevant field theoretic constructions from the physics
literature.

APPENDIX: AC GEOMETRY: REAL VS. IMAGINARY
GAUSSIAN CURVATURE

This section gives a formal definition/interpretation/explanation of the AC ge-
ometry (and its relationship to Liouville quantum gravity) when h : D → R is
smooth. Denote by F(h,D) the collection of curves that are flow lines of ei(h/χ+c)

(beginning at a point in D), for some c ∈ [0,2π). For each x ∈ D, there is a one-
parameter family of “rays” in F(h,D) (indexed by c) that begin at x and ultimately
hit the boundary of D. We refer to c as the angle of the ray. Two rays of D are
parallel if they have the same angle. When h is constant, these are the rays of
Euclidean geometry. In general, the collection of rays is quite interesting and sat-
isfies some of the axioms describing rays in Euclidean geometry. For example, the
reader may verify the following.

PROPOSITION A.1. If h is a Lipschitz function on a simply connected domain
D ⊂ C, then the following hold:

1. Each ray beginning at x ∈ D is a differentiable simple path (i.e., it does not
intersect itself).

2. Two parallel rays in F(h,D) are disjoint unless one is a subset of the other.
3. Two nonparallel rays in F(h,D) intersect at most once in D.
4. If x ∈ D lies on a ray beginning at y ∈ D, then y lies on a ray of opposite

direction beginning at x.
5. The sum of the angles of a “triangle”—whose edges are segments of rays in

F(h,D)—is always π .
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When h is the GFF, the “flow line” described by the coupling in Theorem 1.1
begins at a special location on the boundary of D, but in principle one would like
to make sense of the entire set F(h,D) when h is an instance of the Gaussian free
field and χ is a positive constant. Even when h is smooth, the AC geometry is not
a Euclidean or non-Euclidean geometry in the usual sense; in particular, it does not
come with a notion of length or distance. We will interpret the AC rays of a smooth
h as the geodesics of a random torsion-free (defined below) affine connection that
is naturally dual to the Levi–Civita connection of a Liouville quantum surface.

Recall that an affine connection determines, for any smooth path segment P

in D, an orthogonal map on the two-dimensional tangent space, which we may
represent as multiplication by a complex number α(P ). Intuitively, it describes
the way a small object transforms under parallel transport (“sliding without ro-
tating”) along the path P . The Levi–Civita connection for a Riemannian metric
is (by definition) the unique metric-preserving and torsion-free affine connection.
For a two-dimensional metric conformally parameterized by a subset of D with
area measure eγh(z) dz, metric preservation implies that

log
∣∣α(P )

∣∣ = γ

2
h(z1) − γ

2
h(z2),(A.1)

where z1 and z2 are the first and last endpoints of P . In particular, this quantity is
independent of the trajectory P takes between z1 and z2.

We recall the following standard fact [29] (see also keywords “isothermal co-
ordinates” and “Gaussian curvature” in any text on Riemannian surfaces): write
λ = γ h and note that given a measurable subset A of D, the integral

∫
A eλ(z) dz

(where dz denotes Lebesgue measure on D) is the area of the portion of M
parameterized by A. The function K = −e−λ�λ (where �λ := λxx + λyy is
the Laplacian operator) is called the Gaussian curvature of M. If A is a mea-
surable subset of the (x, y) parameter space, then the integral of the Gaussian
curvature with respect to the portion of M parameterized by A can be written∫
A eλ(z)K(z) dz = ∫

A −�λ(z) dz where dz denotes Lebesgue measure on D. In
other words, −�λ gives the density of Gaussian curvature in the isothermal coor-
dinate space. In particular, M is flat if and only if h is harmonic.

We may define A(z, v) for each z ∈ D and v ∈ C so that if P is parameterized
by t ∈ [0,1] we have

logα(P ) =
∫ 1

0
A

(
P(t),

∂

∂t
P (t)

)
dt.

We may identify C with R
2 so that ∇h is a vector-valued function of R2; given

v ∈ C, let [∇h · v] denote the dot product of this vector with the vector v (viewed
as an element of R2), which is a real number.

In the case of the Levi–Civita connection, we have ReA(z, v) = −γ
2 [∇h · v].

Given this, ImA(z, v) is determined by the requirement that the connection is
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torsion-free. Using this notation, the statement that the connection is torsion-free
means that A(z, iv) = −iA(z, v) for all z and v, which implies

A(z, v) = −γ

2
[∇h · v] + i

−γ

2
[∇h · iv].

If P is the boundary of a smooth region R ⊂ D, then Green’s theorem implies that

logα(P ) = i

∫
R

−−γ

2
�h(z) dz.(A.2)

The RHS of (A.2) is (up to a constant imaginary multiplicative factor) the integral
of the Gaussian curvature over the region of the surface parameterized by R. In
fact, one may even define Gaussian curvature to be the function for which this the
case.

The AC rays are the geodesics of a connection satisfying an analog of (A.1):

argα(P ) = h(z2)/χ − h(z1)/χ,(A.3)

and if we require that this connection also be torsion-free we obtain

A(z, v) = i[∇h · v]/χ − [∇h · iv]/χ,

and hence, if P is the boundary of a smooth region R, then

logα(P ) =
∫
R

(−�h(z)/χ
)
dz ∈ R.

Intuitively, this means that a small object sliding around the path P will undergo no
net rotation, but will change in size (the opposite of what happens in a Levi–Civita
connection of a Riemannian surface). The definition of Gaussian curvature den-
sity suggested above, in terms of (A.2), suggests an imaginary Gaussian curvature
proportional to the real curvature obtained in Liouville quantum gravity.

We remark that the Laplacian of the GFF has a natural interpretation as the
charge density of a two-dimensional Coulomb gas (see the discussion and refer-
ences in the introduction to [86]). Thus, Liouville quantum gravity can be inter-
preted as imposing a Gaussian curvature density equal to a real constant times this
charge density. AC geometry is the same, except that the constant is required to be
imaginary.
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