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A QUANTITATIVE BURTON–KEANE ESTIMATE UNDER STRONG
FKG CONDITION

BY HUGO DUMINIL-COPIN∗,1, DMITRY IOFFE†,2 AND YVAN VELENIK∗,1

University of Geneva∗ and Technion†

We consider translationally-invariant percolation models on Z
d satis-

fying the finite energy and the FKG properties. We provide explicit upper
bounds on the probability of having two distinct clusters going from the end-
points of an edge to distance n (this corresponds to a finite size version of
the celebrated Burton–Keane [Comm. Math. Phys. 121 (1989) 501–505] ar-
gument proving uniqueness of the infinite-cluster). The proof is based on
the generalization of a reverse Poincaré inequality proved in Chatterjee and
Sen (2013). As a consequence, we obtain upper bounds on the probability of
the so-called four-arm event for planar random-cluster models with cluster-
weight q ≥ 1.

1. Introduction and main result. This article is devoted to deriving a weak
reverse Poincaré-type inequality for percolation models satisfying strong associ-
ation and finite-energy properties, and examining some of its consequences. Let
� be a finite set and consider a percolation model on �, that is, a random binary
field ω ∈ {0,1}�. The value of the field at i ∈� is denoted by ωi , and the field on
the complementary set � \ i is denoted by ωi . The law of ω on {0,1}� is denoted
by P. There is a standard partial order ≺ on {0,1}�, and a function f on {0,1}� is
said to be nondecreasing if f (ω)≤ f (ψ) whenever ω ≺ψ . An event A⊂ {0,1}�
is said to be nondecreasing if its indicator function 1A is.

We will be interested in percolation models satisfying the following two condi-
tions:

(FE) Finite energy: There exists cFE > 0 such that, for any i ∈ � and ω ∈
{0,1}�,

P(ωi = 1|ωj , j �= i) ∈ (cFE,1− cFE).(1.1)

(FKG) Strong positive association: For any i ∈� and ξ ≺ψ in {0,1}�\{i},
P(ωi = 1|ωj = ξj , j �= i)≤ P(ωi = 1|ωj =ψj , j �= i).(1.2)
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Recall that (1.2) is equivalent to the so-called FKG lattice condition; see [18],
Theorem (2.24). For a discussion of the relation between this condition and the
weaker condition of positive association (characterized by the FKG inequality),
we refer the reader to [2].

Before stating the theorem, let us define two more objects. For a configuration
ω and i ∈ �, define the configurations ωi × 1 and ωi × 0 obtained from ω by
changing the state i to 1 and 0, respectively. Define

∇if (ω)
def= f

(
ωi × 1

)− f
(
ωi × 0

)
.

Also, for a nondecreasing event A, define the set Pivi (A) of configurations ω such

that ωi × 1 ∈A and ωi × 0 /∈A. Equivalently, Pivi (A)
def= {ω : ∇i1A(ω)= 1}.

THEOREM 1.1. Consider a percolation model on a finite set � satisfying (FE)

and (FKG). Then there exists cP = cP(cFE) > 0 such that, for any nondecreasing
function f : {0,1}� −→R,

Var
(
f (ω)

)≥ cP

∑
i∈�

(
E[∇if ])2

.(1.3)

In particular, for any nondecreasing event A

P(A)
(
1− P(A)

)≥ cP

∑
i∈�

P
(
Pivi (A)

)2
.(1.4)

We emphasize that the constant cP is not depending on the size of �. One may
think of this theorem as a weak reverse Poincaré inequality. Indeed, when {ωi :
i ∈�} are independent, the standard discrete Poincaré inequality (see, e.g., [16])
states that

P(A)
(
1− P(A)

)≤ 1

4

∑
i∈�

P
(
Pivi (A)

)
.(1.5)

In the independent case, P(Pivi (A)) = P(A|ωi = 1) − P(A|ωi = 0)
def= IA(i) is

the so-called influence of i on A. Let us also mention that some inequalities for
influences in models with dependency have been obtained by encoding strongly
positively-associated measures in terms of the Lebesgue measure on the hypercube
[0,1]�. Nevertheless, these inequalities bound influences from below; see [18],
Theorem (2.28) and [17]. They are therefore not directly relevant here.

Inequality (1.3) was derived in the independent Bernoulli case in [10]. The latter
work was one of the motivations for our study of dependent models here.

Our proof of (1.3) hinges on the following simple but apparently new obser-
vation, which may be of independent interest. Fix 0 < p < 1; given a realization
ω ∈ {0,1}� of the percolation model, we construct a field σ ∈ {0,1}� of (condi-
tionally on ω) independent random variables, σi taking value 1 with probability

P̂(σi = 1|ω)= p ·ωi

P(ωi = 1|ωi)
,
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for each i ∈�. Then the distribution of the field σ , once integrated over ω, enjoys
a form of negative dependence. Namely, for any i ∈� and for any nondecreasing
functions f : {0,1}�\{i} →R and g : {0,1}→R,

Ê
[
f

(
σ i)g(σi)

]≤ Ê
[
f

(
σ i)]

Ê
[
g(σi)

]
.

This is proved in Theorem 3.1 below, together with additional relevant properties.

2. Applications.

2.1. Some examples of percolation models. Our applications to percolation
models will be mostly dealing with connectivity properties of the graph induced
by {i ∈� : ωi = 1}. For simplicity, we will focus on bond percolation models—
similar results would also hold for so-called site percolation models. The set � is
now the edge-set EG of a finite graph G= (VG,EG). The edge i is said to be open
(resp., closed) if ωi = 1 (resp., ωi = 0). The configuration ω can therefore be seen
as a subgraph of G with vertex set VG and edge set composed of open edges. Two
vertices x and y are said to be connected if they belong to the same connected
component of ω (we denote the event that x and y are connected by x←→ y).
Connected components of ω are called clusters.

The most classical example of a percolation model is provided by Bernoulli
percolation. This model was introduced by Broadbent and Hammersley in the
1950s [7]. In this model, each edge i is open with probability p, and closed with
probability 1−p independently of the states of the other edges. For general back-
ground on Bernoulli percolation, we refer the reader to the books [19, 20].

More generally, the states of edges may not be independent. In such case, we
speak of a dependent percolation model. Among classical examples, we mention
the random-cluster model (or Fortuin–Kasteleyn percolation) introduced by For-
tuin and Kasteleyn in [14]. Let o(ω) be the number of open edges in ω, c(ω) be
the number of closed edges and k(ω) be the number of clusters. The probability
measure φp,q,G of the random-cluster model on a finite graph G with parameters
p ∈ [0,1] and q > 0 is defined by

φp,q,G

({ω}) def= po(ω)(1− p)c(ω)qk(ω)

Zp,q,G

for every configuration ω on G, where Zp,q,G is a normalizing constant referred
to as the partition function.

The random-cluster models satisfy (FE) for q > 0 and (FKG) for any q ≥ 1. For
this reason, random-cluster models are good examples of models satisfying our
two assumptions, but they are not the only ones. The uniform spanning tree (P is
simply the uniform measure on trees containing every vertices of G) is a typical
example of a model not satisfying (FE).
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Our applications provide upper bounds on the probability of having two distinct
clusters from the inner to the outer boundaries of annuli. In two dimensions be-
cause of dual connections, the usual name would be four-arm type events, namely
probabilities of having two long disjoint clusters attached to two vertices of a given
edge.

In order to deduce such estimates for individual bonds from (1.3) or (1.4), we
need to assume some form of translation invariance.

2.2. First application. To give a simple illustration of how Theorem 1.1 might
be put to work, let us mention the following result. Consider the d-dimensional
torus T(d)

n of size 2n+ 1 and denote by Ãe
2(n) the event that the edge e is pivotal

for the existence of an open circuit of nontrivial homotopy in T
(d)
n .

PROPOSITION 2.1. Let d ≥ 2, there exists cÃ2
= cÃ2

(cFE, d) > 0 such that,

for every n≥ 1 and any edge e of T(d)
n ,

P
[
Ãe

2(n)
]≤ cÃ2

nd/2 ,

where P is the law of an arbitrary translation invariant percolation model on T
(d)
n

satisfying (FE) and (FKG).

Note that Ãe
2(n) is basically the event that there are two disjoint clusters emanat-

ing from the end-points of e and going to distance n, with some additional topo-
logical requirement on the macroscopic structure of these clusters (among these
requirements, they should join into a cluster of T

(d)
n ). This additional condition

is not so nice, and it does not directly apply to models on Z
d . We would like to

replace this by the event that there are two disjoint clusters going from the end-
points of some fixed bond e to distance n. Let Ae

2(n) be the event that there are two
disjoint clusters going from the endpoints of the edge e to distance n.

In the next two applications, we explain two ways of deriving upper bounds on
P(Ae

2(n)).

2.3. A quantitative Burton–Keane argument. Our second application is an ex-
tension of the results of [10] to arbitrary bond percolation models P on Z

d which
satisfy (FE), (FKG) and are invariant under translations:

(TI) The measure P is invariant under shift τx : {0,1}Zd →{0,1}Zd
defined by

τx(ω)(u,v)
def= ω(u+x,v+x) ∀u, v ∈ Zd .

THEOREM 2.1. Consider a percolation model on Z
d satisfying (FE), (FKG)

and (TI). Then there exists cBK > 0 such that, for any edge e,

P
[
Ae

2(n)
]≤ cBK

(logn)d/2 .(2.1)
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As we have already mentioned a quantitative Burton–Keane argument leading to
(2.1) for Bernoulli percolation-type models was developed in [10]. In the case
of Bernoulli site percolation, polynomial order upper bounds on P[Ae

2(n)] were
derived in the recent paper [9] via a clever refinement of techniques introduced
by [4] and [15].

2.4. Continuity of percolation probabilities away from critical points. Con-
sider a one-parametric family {Pα}α∈(a,b) of bond or site strong-FKG percolation
models on Z

d . Define percolation probabilities

θ(α)
def= Pα(0↔∞).(2.2)

Assume that the measures Pα satisfy the finite energy condition (FE) uniformly
over compact intervals of (a, b), and assume that θ > 0 on (a, b). At last, assume
that α �→ Pα is increasing (in the FKG-sense), that is, assume that Pα is stochas-
tically dominated by Pβ whenever a < α ≤ β < b. We shall say that α �→ Pα is
continuous at α0 ∈ (a, b) if the map α �→ Pα(f ) is continuous at α0 for any local
function f .

THEOREM 2.2. Under the above conditions: α �→ θ(α) cannot have jumps at
continuity points of α �→ Pα .

In the case of Bernoulli percolation, continuity comes for free and Theorem 2.2
implies continuity of percolation probabilities away from critical points, as it was
originally proved in [4]. In the case of FK-percolation for the Ising model on Z

d ,
proving continuity of measures seems to be on the same level of difficulty as prov-
ing continuity of percolation probabilities [6]. On the other hand, in view of [6]
and [3], Theorem 2.2 does imply continuity of the site +-spin percolation away
from critical inverse temperature for the latter.

2.5. Spanning clusters and polynomial decay. Proposition 2.1 and Theo-
rem 2.1 are based on (1.4). Yet, (1.3) provides us with additional degrees of free-
dom: one can try various model-dependent monotone functions f .

Let P be a bond percolation measure on Z
d . Consider the boxes �k

def=
[−k, . . . , k]d and the annuli Am,n

def= �n \�m for 0 < m < n. Let N = Nm,n be
the number of distinct clusters of ∂�n crossing Am,n in the restriction of the per-
colation configuration to the bonds of �n. In the sequel, we shall use η for a per-
colation configuration on Z

d \�m, ω for a percolation configuration on �m, and
η× ω for the configuration obtained by merging the two previous configurations.

For a given η, the function ω �→ N(η × ω)
def= Nη(ω) is decreasing. Hence, (1.3)

implies that

Var
(
Nη(ω)|η)≥ cP

∑
e∈E�m

(
E

(∇eN
η(ω)|η))2

.(2.3)
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Above E�m is the set of nearest neighbor bonds of �m. Note that, for any e ∈ E�m ,

−∇eN
η
m,n(ω)≥ 1Ae

2(2n)(η×ω).

Therefore, we infer from (2.3) the following corollary.

THEOREM 2.3. Consider a percolation model on Z
d satisfying (FE), (FKG)

and (TI). Then, for any edge e,

P
(
Ae

2(2n)
)≤√

1

cP(2m)d
E

(
Var

(
N

η
m,n(ω)|η))

(2.4)

≤
√

1

cP(2m)d
Var(Nm,n),

for any 0 < m < n.

Of course, (2.4) is useful only when one is able to control the number of cross-
ing clusters of Am.n, specifically E(Var(Nη

m,n(ω)|η)). This requires work: a trivial
upper bound of order m2(d−1) gives nothing even in two dimensions. Settling this
in any dimension would be a feat even in the case of Bernoulli percolation; see [1].
For the moment, it is not clear to us that a nice closed form bound can be obtained
in the full generality suggested by (FE), (FKG) and (TI), even if one requires er-
godicity instead of just translation invariance.

In the case of Bernoulli site percolation, the following bound was derived using
very different methods based on independence (see [9]):

P
(
Ae

2(2n)
)≤ c logn

nd/2 E(
√

Nn,2n).(2.5)

Unlike (2.4), (2.5) always gives a nontrivial polynomial decay, even if the roughest
possible bound Nn,2n ≤ cNd−1 is used.

2.6. Four-arm event for critical planar random-cluster models with q ≥ 1.
Using very recent results of [12, 13] for the random-cluster model on Z

2, the dis-
tribution of the number of crossing clusters can be controlled, and the upper bound
(2.4) implies the following refinement of Theorem 2.1, which is of the same order
as the bound of Proposition 2.1.

THEOREM 2.4. Let d = 2, q ∈ [1,4], there exists cA2 = cA2(p, q) > 0 such
that, for any edge e and every n≥ 1,

φp,q,Z2
[
Ae

2(n)
]≤ cA2

n
,

where φp,q,Z2 is the unique infinite volume random-cluster measure with edge-
weight p and cluster-weight q (see Section 4.4 for a precise definition).
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The proof is easy whenever p �= pc. In the critical case p = pc, the proof is
based on Russo–Seymour–Welsh (RSW) bounds obtained in [12, 13]. We give two
arguments: one is based on the implied mixing properties of φp,q,Z2 and on a sub-
sequent reduction to Proposition 2.1. The second directly relies on RSW bounds
to check that one can fix ε > 0 such that {φp,q,Z2(N2

εn,n)} is a bounded sequence.
Then (2.3) applies.

Note that the phase transition is expected to be discontinuous for q > 4 (see the
discussion in Section 4.4) and the probability of A2(n) should decay exponentially
fast at every p.

3. Proof of Theorem 1.1. We shall prove Theorem 1.1 with cP = cFE
3

(2−cFE)2 .
From now on in this section, we fix a finite set �. Consider a percolation model

on �
def= {0,1}� satisfying (FE) and (FKG) and let P be the law of the random

configuration ω. Furthermore, for I ⊂�, we define ωI
def= {ωi : i ∈ I } and ωI def=

{ωi : i /∈ I }. To keep notation compatible, we set ωi and ωi when I = {i}.
Recall that ωi × 1 and ωi × 0 denote the configurations obtained from ω by

setting the value of ωi to 1 and 0, respectively.

To lighten the notation, we write p = cFE/2 for the rest of this section.

3.1. A representation of fields satisfying (FE) and (FKG). In order to prove
Theorem 1.1, we introduce an auxiliary Bernoulli field σ ∈ {0,1}� and utilize the
projection method of [10] with respect to σ -algebras generated by this auxiliary
field. The efficiency of such approach hinges on the fact that σi ’s happen to be
negatively correlated in the sense specified in P3 of Theorem 3.1 below.

DEFINITION 1. Consider a probability space (�̂, P̂) containing (�,P) and
an additional field σ ∈ {0,1}� which, conditionally on ω ∈ �, has independent
entries satisfying, for every i ∈�,

P̂(σi = 1|ω)= p ·ωi

P(ωi = 1|ωi)
.(3.1)

Note that by our choice of p, which is adjusted to the finite energy prop-
erty (1.1), the right-hand side of (3.1) always belongs to [0,1].

We claim that σ enjoys the following set of properties.

THEOREM 3.1. Let ω be a field satisfying (FE) and (FKG). Then:

P1 For each i ∈�, if σi = 1, then ωi = 1.
P2 For any i ∈� and any nondecreasing function f :�→ R, the conditional

expectation Ê(f (ω)|σi) is also nondecreasing.
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P3 For any i ∈� and for any nondecreasing functions f : {0,1}�\{i} →R and
g : {0,1}→R,

Ê
[
f

(
σ i)g(σi)

]≤ Ê
[
f

(
σ i)]

Ê
[
g(σi)

]
.(3.2)

P4 The family {σi − p : i ∈�} is free in L
2(�̂, P̂).

Property P3 provides a form of negative association. It is weaker than the usual
form of negative association [which corresponds to the analogue of (3.2) with i

and � \ {i} replaced by arbitrary disjoint subsets A,B ⊂ �], but stronger than
other related notions, such as totally negative dependence (see [11] for this and
other forms of negative dependence).

PROOF OF THEOREM 3.1. Property P1. The first property follows directly
from the definition of σ .

Property P2. Let us first prove that, for each i ∈ �, σi is a Bernoulli random
variable of parameter p, independent of ωi . This follows from (3.1) and the fol-
lowing computation:

P̂
(
σi = 1;ωi)= P̂

(
σi = 1;ωi = 1;ωi)= p

P(ωi = 1|ωi)
P

(
ωi = 1;ωi)= pP

(
ωi).

Hence, σi is indeed a Bernoulli random variable of parameter p (also σi and ωi are

independent). Now, let us simplify the notation by setting fi(σi)
def= Ê(f (ω)|σi).

Then, using P̂(σi = 1)= p in the second equality below,

(1− p)
(
fi(1)− fi(0)

) def= (1− p)

[
Ê(f (ω)1σi=1)

P̂(σi = 1)
− Ê(f (ω)1σi=0)

P̂(σi = 0)

]

=
(

1

p
− 1

)
Ê

(
f (ω)1σi=1

)− Ê
(
f (ω)1σi=0

)
(P1)= 1

p
Ê

(
f (ω)1ωi=11σi=1

)−E
(
f (ω)

)
(3.3)

(3.1)= 1

p
E

(
f (ω)1ωi=1

p

P(ωi = 1|ωi)

)
−E

(
f (ω)

)
= E

(
f

(
ωi × 1

))−E
(
f (ω)

) (FKG)≥ 0.

Property P3. We wish to prove the negative association formula (3.2). Since g

is a nondecreasing function of only one site, we only need to treat the case g = id
(any nondecreasing function of one site is of the form αid+ β with α ≥ 0). For
ωI ∈ {0,1}I and ωI ∈ {0,1}�\I , let ωI × ωI be the configuration in � coinciding
with ωI on I and ωI on � \ I .
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CLAIM. For any subset I ⊂ �, the following happens: If ωI � ω̃I , then, for
any ωI and for any nondecreasing function f : {0,1}�\I →R,

Ê
(
f

(
σ I )|ωI ×ωI )≤ Ê

(
f

(
σ I )|ω̃I ×ωI )

.(3.4)

PROOF. Under the conditional measure P̂(·|ω), the sequence σ is simply a
collection of independent Bernoulli random variables with probabilities of success
specified by (3.1). By (1.2),

p

P(ωi = 1|(ωI ×ωI )i)
≤ p

P(ωi = 1|(ω̃I ×ωI )i)
,

for any i /∈ I and ωI � ω̃I , a fact which implies that the random variable σI con-
ditioned on ωI × ωI is stochastically dominated by the random variable σI con-
ditioned on ω̃I × ωI . The claim follows by definition of stochastic domination.

�

In particular, the claim yields that if f is a nondecreasing function of σ i , then
for any i and any ωi ,

Ê
(
f

(
σ i)|ωi × 1

)≤ Ê
(
f

(
σ i)|ωi).(3.5)

As a result, we infer

Ê
(
f

(
σ i)σi

) = Ê
(
f

(
σ i)1σi=11ωi=1

)
(3.1)= ∑

ωi

pÊ
(
f

(
σ i)|ωi × 1

)
P

(
ωi)

(3.5)≤ p
∑
ωi

Ê
(
f

(
σ i)|ωi)

P
(
ωi)

= pÊ
[
f

(
σ i)] (P1)= Ê[σi]Ê[

f
(
σ i)].

Property P4. Assume that X
def= ∑

i∈� λi(σi − p)= 0. We deduce that

0= Ê
[
X2]= Ê

[(
X− Ê[X|ω])2]+ Ê

[
Ê[X|ω]2]≥ Ê

[(
X− Ê[X|ω])2]

.

Now,

X− Ê[X|ω] =∑
i∈�

λi

(
σi − Ê[σi |ω])

and, conditionally on ω, the random variables σi − Ê[σi |ω] are independent and
have mean 0. We deduce that

Ê
[(

X− Ê[X|ω])2]= Ê
[
Ê

[(
X− Ê[X|ω])2|ω]]

= Ê

[
Ê

[(∑
i∈�

λi

(
σi − Ê[σi |ω]))2∣∣∣ω]]
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= Ê

[∑
i∈�

λ2
i Ê

[(
σi − Ê[σi |ω])2|ω]]

=∑
i∈�

λ2
i Ê

[(
σi − Ê[σi |ω])2]

.

Now, Ê[σi |ω] ≤ 1/2 by (3.1) and (1.1) and, therefore,

Ê
[(

σi − Ê[σi |ω])2]= E
[
Ê[σi |ω](1− Ê[σi |ω])]

(3.6)

≥ 1

2
E

[
Ê[σi |ω]]= p

2
> 0,

which implies that λi = 0 for every i ∈�. �

3.2. Proof of Theorem 1.1. Recall our notation fi(σi)
def= Ê(f (ω)|σi). We may

represent f (ω) as

f =∑
i

γifi(σi)+ f⊥,

with f⊥ orthogonal to the subspace of L2(�̂, P̂) spanned by (fi(σi), i ∈�). Since
Ê[fi(σi)] = 0 and Ê[σi] = p by P1 of Theorem 3.1, we deduce that

fi(σi)= (
fi(1)− fi(0)

)
(σi − p).(3.7)

Should the random variables σi be independent, we would immediately infer that
γi ≡ 1 and

Var
(
f (ω)

)≥ p(1− p)
∑
i

(
fi(1)− fi(0)

)2
,

which, by (3.3), would be the end of the proof. This is precisely the computation
done in the Bernoulli case in [10]. In our case, however, the random variables
σi are dependent, and we need additional information and more care in order to
control both the coefficients γi and the cross-terms. It is precisely at this stage that
negative dependence, as stated in P3 of Theorem 3.1, becomes crucial.

Before proceeding with the proof of the theorem, let us formulate and prove the
following elementary lemma.

LEMMA 3.1. Let (H, 〈·, ·〉) be a finite dimensional Hilbert space, and let
{f1, . . . , fn} be a normalized basis of H, such that 〈fi , fj 〉 ≤ 0 for every pair i �= j .
Then, for any f=∑n

i=1 λi fi such that 〈f, fi〉 ≥ 0 for every 1 ≤ i ≤ n, we have that
λi ≥ 〈f, fi〉 for every 1≤ i ≤ n.

Note that when the basis {f1, . . . , fn} is orthogonal, we find that λi = 〈f, fi〉 for
every 1≤ i ≤ n.
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PROOF OF LEMMA 3.1. Lemma 3.1 relies on the following transparent geo-
metric fact.

Obtuse cone property. Consider a positive cone C = C(f1, . . . , fn) spanned by
vectors fi . The cone is called obtuse if 〈fi , fj 〉 ≤ 0 for any i �= j . Then 〈f, fi〉 ≥ 0
for every i implies that f ∈ C, that is, all the coefficients λj in the decomposition
f=∑

j λj fj are nonnegative.
Taking scalar product with normalized vectors fi yields

〈f, fi〉 = λi +
∑
j �=i

λj 〈fj , fi〉 ≤ λi

and one then gets the conclusion of Lemma 3.1.
Perhaps the simplest way to prove the above obtuse cone property is by induc-

tion on the cardinality of the basis. The two-dimensional case is straightforward.
Let us now consider the basis {f1, . . . , fn+1}. For i ≥ 2, let

Fi
def= fi − 〈fi , f1〉f1

1− 〈f1, fi〉2(3.8)

be the normalized projection of fi on vec(f1)⊥. Also, write f= 〈f, f1〉f1 + F where
F ∈ vec(F2, . . . ,Fn+1). We wish to apply the induction hypothesis with F and
F2, . . . ,Fn+1. For that, simply observe that, for i �= j ,

〈Fi ,Fj 〉 = 〈fi , fj 〉 − 〈fi , f1〉〈fj , f1〉
(1− 〈f1, fi〉2)(1− 〈f1, fj 〉2) ≤ 0

(we used that 〈fi , fj 〉 ≤ 0 for i �= j ) and

〈F,Fi〉 = 〈f,Fi〉 = 〈f, fi〉 − 〈fi , f1〉〈f, f1〉
1− 〈fi , f1〉2 ≥ 〈f, fi〉 ≥ 0,(3.9)

where the first equality is due to the orthogonality of f1 and Fi , and the first in-
equality to the fact that 〈fi , f1〉 ≤ 0 and 〈f, f1〉 ≥ 0. Therefore, by the induction as-
sumption, F lies in the cone C(F2, . . . ,Fn+1). By (3.8), all Fi ’s lie in C(f1, . . . , fn+1)

and hence F ∈ C(f1, . . . , fn+1) as well. Since the coefficient 〈f, f1〉 in f= 〈f, f1〉f1+F
is nonnegative, we are done. �

PROOF OF THEOREM 1.1. Consider a field ω ∈ {0,1}� satisfying (FE) and
(FKG). We keep the notation from the previous section. In particular, on the prob-
ability space (�̂, P̂), we associate the field σ to ω.

Let f be a square-integrable nondecreasing function of ω. As before, we set

fi(σi)
def= Ê[f (ω)|σi]. Without loss of generality, we assume that E[f (ω)] = 0,

and consequently, Ê[fi(σi)] = 0 for every i ∈�.
Let I be the set of indices i satisfying E[fi(σi)

2] > 0. Consider V =
vec(fi(σi) : i ∈ I ) and write

f =∑
i∈I

γifi(σi)+ f⊥,
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where f⊥ ∈ V ⊥. Properties P2 and P3 of Theorem 3.1 show that 〈fi(σi),

fj (σj )〉 ≤ 0 for every i �= j in I . Furthermore,〈
f (ω), fi(σi)

〉= Ê
[
f (ω)fi(σi)

]= Ê
[
fi(σi)

2]≥ 0.

(The last equality is due to the definition of the conditional expectation.) Last but
not least, the family {fi(σi) : i ∈ I } forms a basis of V . Indeed, this directly follows
from (3.7).

Now, fi(1)− fi(0) > 0 for i ∈ I , and the family {σi − p : i ∈ I } is free thanks

to P4. We are therefore in position to apply the previous lemma with fi (σi)
def=

fi(σi)/‖fi(σi)‖ in order to obtain that

γi ≥ 〈f (ω), fi(σi)〉
‖fi(σi)‖2 = Ê[fi(σi)

2]
‖fi(σi)‖2 = 1.(3.10)

We deduce that

Ê
[
f (ω)2] ≥ Ê

[(∑
i∈I

γifi(σi)

)2]

= Ê

[(∑
i∈I

γi

(
fi(σi)− Ê

[
fi(σi)|ω]))2]

+ Ê

[(∑
i∈I

γiÊ
[
fi(σi)|ω])2]

≥ Ê

[(∑
i∈I

γi

(
fi(σi)− Ê

[
fi(σi)|ω]))2]

= ∑
i∈I

γ 2
i Ê

[(
fi(σi)− Ê

[
fi(σi)|ω])2]

(3.10)≥ ∑
i∈I

Ê
[(

fi(σi)− Ê
[
fi(σi)|ω])2]

= ∑
i∈�

Ê
[(

fi(σi)− Ê
[
fi(σi)|ω])2]

,

where the second equality is due to the fact that, conditionally on ω, the random
variables {fi(σi)− Ê[fi(σi)|ω] : i ∈ I } are orthogonal (since the σi− Ê[σi |ω] are),
and the last equality to the observation that, for i /∈ I ,

0≤ Ê
[(

fi(σi)− Ê
[
fi(σi)|ω])2]≤ Ê

[
fi(σi)

2]= 0.

We are now ready to conclude. Similarly to (3.7), we find that (remember that we
chose p = cFE/2)

Ê
[(

fi(σi)− Ê
[
fi(σi)|ω])2]

= (
fi(1)− fi(0)

)2
Ê

[(
σi − Ê[σi |ω])2]

(3.11)
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(3.6)≥ p

2

(
fi(1)− fi(0)

)2

(3.3)= p

2(1− p)2

(
E

[
f

(
ωi × 1

)]−E
[
f (ω)

])2

= p

2(1− p)2

(
E

[(
f

(
ωi × 1

)− f
(
ωi × 0

))
1ωi=0

])2

(1.1)≥ 2p3

(1− p)2

(
E

[
f

(
ωi × 1

)− f
(
ωi × 0

)])2
.

Overall, we find that

Var
(
f (ω)

)= Ê
[
f (ω)2]≥ 2p3

(1− p)2

∑
i∈�

(
E

[
f

(
ωi × 1

)− f
(
ωi × 0

)])2
.

�

REMARK 1. Observe that, up to (3.11), the proof only made use of the lower
bound P(ωi = 1|ωi)≥ cFE = 2p in (1.1).

4. Applications.

4.1. Proof of Proposition 2.1.

PROOF. Let En be the event that there exists an open circuit with nontrivial
homotopy in Tn. Theorem 1.1 implies that∑

i∈ETn

P
[
Pivi (En)

]2 ≤ 1

cP
P(En)

(
1− P(En)

)≤ 1

cP
.

Note that edges are of two types: either “vertical” or “horizontal”. By shift invari-
ance of P and of the event En we therefore obtain, for an horizontal edge e (the
same reasoning can be applied to vertical edges),

|Tn| · P[
Ãe

2(n)
]2 ≤ ∑

i∈ETn

P
[
Pivi (En)

]2 ≤ 1

cP
.

�

4.2. Quantitative Burton–Keane argument. Recall that we are working with
(nearest neighbor) bond percolation models. For x ∈�n, the set Cn(x) is the con-
nected component of x in the restriction of the percolation configuration to the
edges with at least one end-point in �n.

For x ∈�n, let Trifn(x) be the event that:

(a) There are exactly three open bonds incident to x.
(b) Cn(x) \ x is a disjoint union of exactly three connected clusters, and each of

these three clusters is connected to ∂�n+1
def= �n+1 \�n.
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Recall the following classical fact [8]:

LEMMA 4.1. Consider a percolation model on �n. Then, for any ω,∑
x∈�n

1Trifn(x)(ω)≤ |∂�n+1|.(4.1)

Note that this lemma has the following useful consequence: if P is in fact a
translation invariant measure on the whole plane or on a torus, it implies that

P
[
Trif2n(0)

]≤ |∂�n+1|
|�n| .(4.2)

Let k ≤ n. Define the event CoarseTrifk,n that there are at least three distinct clus-

ters in the annulus Ak,n
def= �n \�k connecting the inner to the outer boundaries of

Ak,n. In other words, there are at least three distinct crossing clusters of Ak,n.

COROLLARY 4.1. Consider a percolation model on Z
d satisfying (FE),

(FKG) and (TI). There exists c1 = c1(cFE) > 0 such that, for any 0≤ k ≤ n,

P[CoarseTrifk,n] ≤ exp(c1k)

n
.

PROOF. By conditioning on the clusters in Ak,n, one may easily check that

P
[
Trifn(0)|CoarseTrifk,n

]≥ cFE
6dk.

(There may be some problems if the three clusters reach ∂�k near the corner, yet
such cases can be treated separately.) The result follows readily from Lemma 4.1.

�

PROOF OF THEOREM 2.1. Set ε
def= 1/(2c1) and let k = �ε logn�. Let En be

the event that there are exactly two clusters in Ak,n from the inner to the outer
boundaries. On En, let C be the set of vertices of Ak,n connected to the boundary of
�n by an open path. Since there are only two distinct clusters connecting the inside
and outside boundaries of Ak,n, the vertices of C ∩ �k can be divided into two

subsets E1
def= E1(C) and E2

def= E2(C) depending on which clusters they belong to.
For every possible realization C of C so that {C = C} ⊂En, define Cross(C) to

be the event that E1 and E2 are connected by an open path inside �k . Theorem 1.1
applied to P(·|C =C) and Cross(C) gives∑

e∈E�k

P
[
Pive

(
Cross(C)

)|C = C
]2 ≤ 1

4
,

which, by Cauchy–Schwarz, implies that∑
e∈E�k

P
[
Pive

(
Cross(C)

)|C = C
]≤ 1

2

√
|E�k

|.
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For an edge e′, let A2(n, e′) be the event that the two end-points of e′ are connected
to the boundary of �n by two disjoint clusters. By definition of C, we have that
Pive′(Cross(C)) ∩ {C = C} = A2(n, e′) ∩ {C = C} which, by summing over all
possible C, implies that∑

e′∈E�k

P
[
A2

(
n, e′

)
,En

]≤ 1

2

√
|E�k

|P(En)≤ 1

2

√
|E�k

| ≤
√

d|�k|/2.

It only remains to see that Corollary 4.1 implies

P
[
A2

(
n, e′

)
,CoarseTrifk,n

]≤ P[CoarseTrifk,n] ≤ exp(c1ε logn)

n
= 1√

n
.

At the end, we find that

1

|�k|
∑

e′∈E�k

P
[
A2

(
n, e′

)]≤ √d/2√|�k| +
1√
n
.

Consider for a moment that the edge e involved in Ae
2(2n) is horizontal. Since

Ae
2(2n) is included in a translate of A2(n, e′) for any horizontal edge e′ ∈E�k

, we
conclude that

P
[
Ae

2(2n)
]≤ 1

|�k|
∑

e′∈E�k

P
[
A2

(
n, e′

)]≤ √d/2√|�k| +
1√
n
,

which proves the theorem with cBK = cBK(cFE) > 0 small enough thanks to our
choice for k. �

4.3. Continuity of percolation probabilities away from critical points. Theo-
rem 2.2 is an easy consequence of the quantitative Burton–Keane bound (2.1). Let
α0 ∈ (a, b). Pick ε > 0 such that [α0 − ε,α0 + ε] is still in (a, b). By our assump-
tions on the family {Pα},

lim sup
n→∞

sup
α∈[α0−ε,α0+ε]

Pα(∂�n �∞)= lim sup
n→∞

Pα0−ε(∂�n �∞)= 0.(4.3)

On the other hand, for any N > n and any α ∈ [α0 − ε,α0 + ε],
θ(α)

def= Pα(0↔∞)

= Pα(0↔ ∂�N)(4.4)

− Pα(0↔ ∂�N ;0 �∞; ∂�n↔∞)− Pα(0↔ ∂�N ; ∂�n �∞).

The event {0↔ ∂�N ;0 �∞; ∂�n↔∞} implies the existence of at least two
disjoint crossings of the annulus An,N . If we choose N = eCn for some sufficiently
large constant C, then the second term in (4.4) tends to zero as n→∞, uniformly
in α ∈ [α0 − ε,α0 + ε]; this follows from (2.1), which in view of the assumed
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uniformity of (FE) on compact sub-intervals, yields uniform upper bounds for
α ∈ [α0− ε,α0+ ε]. The third term in (4.4) is controlled by (4.3). Hence, since the
events {0↔ ∂�N } are local, continuity of Pα at α0 implies that θ is continuous at
α0 as well. �

4.4. Proof of Theorem 2.4. Let us recall some additional facts on the random-
cluster model. First, let us introduce random-cluster measures with boundary con-
ditions. Fix a finite graph G. Boundary conditions ξ are given by a partition
P1 � · · · � Pk of ∂G. Two vertices are wired in ξ if they belong to the same Pi .
The graph obtained from the configuration ω by identifying the wired vertices to-
gether is denoted by ωξ . Let k(ωξ ) be the number of connected components of the
graph ωξ . The probability measure P

ξ
p,q,G of the random-cluster model on G with

edge-weight p ∈ [0,1], cluster-weight q > 0 and boundary conditions ξ is defined
by

P
ξ
p,q,G

({ω}) def= po(ω)(1− p)c(ω)qk(ωξ )

Z
ξ
p,q,G

(4.5)

for every configuration ω on G. The constant Z
ξ
p,q,G is a normalizing constant,

referred to as the partition function, defined in such a way that the sum over all
configurations equals 1. For q ≥ 1, infinite-volume random-cluster measures can
be defined as weak limits of random-cluster measures on larger and larger boxes.

Recall that the planar random-cluster model possesses a dual model on the dual
graph (Z2)�. The configuration ω� ∈ {0,1}E(Z2)� is defined as follows: each dual-
edge e� ∈ (Z2)� is dual-open in ω� if and only if the edge of Z2 passing through
its middle (there is a unique such edge) is closed in ω. If the law of ω is P

ξ
p,q,G,

then the law of the dual model is Pξ�

p�,q,G� for some dual boundary conditions ξ�.
We will only use that free and wired boundary conditions are dual to each other.

On Z
2, the random-cluster model undergoes a phase transition at some parame-

ter pc(q) satisfying, for every infinite-volume random-cluster model Pp,q,Z2 with
parameters p and q ,

Pp,q,Z2[0←→∞]=
{

θ(p, q) > 0, if p > pc(q),
0, if p < pc(q).

The critical point of the planar random-cluster model on Z
2 is known to correspond

to the self-dual point of the model, that is, pc(q)
def= √q/(1+√q) [5]. Also, for q ∈

[1,4], the behavior at criticality is known to be the following (see [13]): there is a
unique infinite-volume measure and, for any numbers 1 < a < b ≤∞, there exists
cRSW = cRSW(a, b) > 0 such that, for all n≥ 1 and any boundary conditions ξ ,

cRSW ≤ P
ξ

pc,q,R̂n

[
Cross(Rn)

]≤ 1− cRSW,(4.6)
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where Rn =Rn[a] def= [−an, an]× [−n,n], R̂n = R̂n[b] def= [−bn, bn]× [−2n,2n]
and Cross(Rn) is the event that the left-hand and right-hand sides of Rn are con-
nected by an open path in Rn.

PROOF OF THEOREM 2.4. Fix q ∈ [1,4]. Note that, for p < pc(q), there ex-
ists c= c(p, q) > 0 such that, for any edge e and every n≥ 1,

Pp,q,Z2
[
Ae

2(n)
]≤ Pp,q,Z2[0←→ ∂�n] ≤ e−c(p,q)n,

thanks to exponential decay of correlations, see [5] one more time. Similarly, when
p > pc(q), for any edge e and every n≥ 1,

Pp,q,Z2
[
Ae

2(n)
]= Pp�,q,(Z2)�

[
A2(n)

]≤ Pp�,q,(Z2)�
[
u

�←→ ∂��
n

]≤ e−c(p�,q)n.

The only interesting case is therefore the critical point p = pc.

4.4.1. Proof using mixing properties and Proposition 2.1. Recall that, by
Proposition 2.1, we already know that, for any edge e′ of T(2)

n and every n≥ 1,

P
pc,q,T

(2)
n

[
Ãe′

2 (n)
]≤ cÃ2

n
,

where P
pc,q,T

(2)
n

is the random-cluster measure on T
(2)
n . We therefore only need to

show that there exists C > 0 such that

Ppc,q,Z2
[
Ae

2(n)
]≤ CP

pc,q,T
(2)
n

[
Ãe′

2 (n)
]
.

Embed T
(2)
n into Z

2 in such a way that the vertex set is �n
def= [−n,n]2 and e is an

edge having 0 as an endpoint. First, we wish to highlight that (4.6) (more precisely
the mixing result [12], Theorem 5.45) classically implies the existence of c1 > 0
such that, for every boundary conditions ξ and n≥ 1,

Ppc,q,Z2
[
Ae

2(n/2)
]≤ c1P

ξ
pc,q,�n

[
Ae

2(n/2)
]
.

In particular, this is also true for so-called periodic boundary conditions, so that

Ppc,q,Z2
[
Ae

2(n/2)
]≤ c1Ppc,q,T

(2)
n

[
Ae

4(n/2)
]
.(4.7)

Now, introduce the event A
sep
2 (n/2) that there exist two open paths γ, γ̃ and two

dual-open dual-paths γ � and γ̃ �, originating from the endpoints of e and e∗, re-
spectively, satisfying:

• the endpoints (on the boundary of �n/2 and ��
n/2, resp.) x, x̃, x� and x̃� of the

paths are at distance larger or equal to n
10 from each others.

• x and x̃ are connected to ∂�3n/5 in x +�n/10 and x̃ +�n/10.
• x� and x̃� are connected to ∂��

3n/5 in x� +�n/10 and x̃� +�n/10.
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FIG. 1. The event A
sep
2 (n/2) together with the extension of the four paths using the sets S and S∗.

Estimates on crossing probabilities available from [13] show that these extensions cost a multiplica-
tive constant (not depending on n).

Classically, (4.6) implies that there exists c2 > 0 such that, for any n≥ 1,

P
pc,q,T

(2)
n

[
Ae

2(n/2)
]≤ c2Ppc,q,T

(2)
n

[
A

sep
2 (n/2)

]
.(4.8)

See [21] for a treatment in the case of Bernoulli percolation and [12], Theo-
rems 10.22 and 10.23, for the FK–Ising model (the proofs of the theorems apply
mutatis mutandis to any random-cluster model with 1≤ q ≤ 4).

It remains to see that there exists c3 > 0 such that, for any n≥ 1,

P
pc,q,T

(2)
n

[
A

sep
2 (n/2)

]≤ c3Ppc,q,T
(2)
n

[
Ãe

2(n)
]
.

In order to do so, mimic the classical argument to prove quasi-multiplicativity of
arm-probabilities for Bernoulli percolation (see [21] again and Figure 1).

We only sketch the proof. Condition on A
sep
2 (n/2). Consider a thin area S of

width n
10 going from x + �n/10 to x̃ + �n/10 outside �n/2, an a thin dual area

S� of width n
10 going from x� +�n/10 to x̃� +�n/10 outside �n/2 so that these

two areas do not intersect. Now, (4.6) implies that there exist, with probability
c4 > 0, a primal path in S connecting the two paths γ and γ̃ , and a dual path in S�
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connecting γ � and γ̃ �. But whenever this occurs, the event Ãe
2(n) is satisfied, so

that

P
pc,q,T

(2)
n

[
Ãe

4(n)
]≥ c4Ppc,q,T

(2)
n

[
A

sep
2 (n/2)

]
.

It only remains to invoke (4.7) and (4.8) to conclude. �

4.4.2. Proof using bounds on Epc,q,Z2(N2
m,n) and (2.4). We shall check that

there exists cN = cN(cRSW) <∞, such that, uniformly in m,

Epc,q,Z2
(
N2

m,5m

)≤ cN.(4.9)

A substitution into (2.4) yields the claim.
Consider the annulus Am,5m and the four rectangles

Sm,U = [−5m,5m] × [m,5m], Sm,R = [−5m,−m] × [−5m,5m],
(4.10)

Sm,L = [m,5m] × [−5m,5m], Sm,D = [−5m,5m] × [−5m,−m].
For ∗ ∈ {U,R,L,D}, let Nm,∗ be the number of distinct short-side crossing clus-
ters of Sm∗. For instance Nm,U is the number of distinct clusters which connect
[−5m,5m] × {m} to [−5m,5m] × {5m} in the restriction of the percolation con-
figuration to the rectangle Sm,U. Clearly,

Nm,5m ≤
∑

∗∈{U,R,L,D}
Nm,∗,

and, by symmetry, it remains to give an upper bound on Epc,q,Z2(N2
m,U).

LEMMA 4.2. The RSW bound (4.6) implies

Ppc,q,Z2(Nm,U ≥ k)≤ (
1− cRSW(5,∞)

)k−1
,(4.11)

uniformly in k > 1 and m.

PROOF. Let us introduce the events Rk
def= {Nm,U ≥ k}. We claim that

Ppc,q,Z2(Rk|Rk−1)≤ 1− cRSW(5,∞),(4.12)

uniformly in m and k > 1. Indeed, distinct crossing clusters which show up in any
percolation configuration from Rk−1 are naturally ordered from left to right. There
are at least (k − 1) such clusters. The following somewhat standard construction,
which we sketch below, is depicted on Figure 2.

Consider the disjoint decomposition Rk−1 = ∪Ru,v
k−1, where u (resp., v) is the

rightmost vertex of the (k− 1)th crossing cluster on the bottom (resp., top) side of
Sm,U. The event Ru,v

k−1 implies that there is the left-most dual crossing γ u,v∗ from

u∗ to v∗, where u∗ def= u+ 1
2(1,−1) and v∗ def= v+ 1

2(1,1). Consider the remaining
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FIG. 2. The dual path γ∗ = γ
u,v∗ . Event D◦: a dual path η∗ crosses from left to right the middle

section S
γ,◦
m,U of S

γ
m,U and, as such, rules out the occurrence of the event Rk . The boundary conditions

(for the direct model) on the semi-infinite strip Ŝ
γ
m,U are w on the upper and lower parts, and f

on γ∗.

part, denoted by S
γ
m,U, of the rectangle Sm,U to the right of γ u,v∗ . Let S

γ,◦
m,U be the

middle section of S
γ
m,U, that is, S

γ,◦
m,U

def= S
γ
m,U ∩ (Z× [2m,4m]). Finally, consider

the infinite strip extension Ŝ
γ
m,U to the right of S

γ
m,U.

Let D◦ be the event that there is a left to right dual crossing of S
γ,◦
m,U. By the

FKG property of the random-cluster model,

Ppc,q,Z2(Rk|Rk−1)≤ 1−min
γ

P
w,f

pc,q,Ŝ
γ
m,U

(
D◦

)
,

where the boundary conditions are direct boundary conditions on the semi-
infinite strip Ŝ

γ
m,U: wired on upper and lower parts and free on γ . Note that

the model is self-dual at criticality. Hence, for any possible realization of
γ ,

P
w,f

pc,q,Ŝ
γ
m,U

(
D◦

)≥ P
f
pc,q,R̂m[∞]

(
Cross

(
Rm[5])),

and (4.6) applies. �

REMARK 2. Let us highlight the fact that SLE predictions, see [12], Sec-
tion 13.3.2, suggest that Pp,q,Z2[Ae

4(n)] = n−ξ1010+o(1), where

ξ1010
def= 3σ 2 + 10σ + 3

4(1+ σ)
with σ

def= 2

π
arcsin(

√
q/2).

This implies that Pp,q,Z2[Ae
4(n)]  1

n
for q < 2 arcsin[π 2−√3√

3
] ≈ 0.459. This il-

lustrates the fact that the claim of Theorem 1.1 can fail to hold when the condition
(FKG) is dropped.
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