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SCALING LIMITS OF RANDOM GRAPHS FROM SUBCRITICAL
CLASSES

BY KONSTANTINOS PANAGIOTOU1,∗, BENEDIKT STUFLER∗
AND KERSTIN WELLER†

University of Munich∗ and ETH Zurich†

We study the uniform random graph Cn with n vertices drawn from a
subcritical class of connected graphs. Our main result is that the rescaled
graph Cn/

√
n converges to the Brownian continuum random tree Te multi-

plied by a constant scaling factor that depends on the class under considera-
tion. In addition, we provide sub-Gaussian tail bounds for the diameter D(Cn)

and height H(C•
n) of the rooted random graph C•

n. We give analytic expres-
sions for the scaling factor in several cases, including for example the class of
outerplanar graphs. Our methods also enable us to study first passage perco-
lation on Cn, where we also show the convergence to Te under an appropriate
rescaling.

1. Introduction. Let G be a connected graph with vertex set V (G) and edge
set E(G). We can associate in a natural way a metric space (V (G), dG) to G,
where dG(u, v) is the number of edges on a shortest path that contains u and v

in G. In this work, we study the case where G is a random graph, and we consider
several properties of the associated metric space as the number of vertices of G

becomes large.
In the series of seminal papers [3–5], Aldous studied the fundamental case of

G being a critical Galton–Watson random tree with n vertices, where the offspring
distribution has finite nonzero variance. Among other results, he showed that the
asymptotic properties of the associated metric space admit an universal descrip-
tion: they can be depicted, up to an appropriate rescaling, in terms of “continuous
trees” whose archetype is the so-called Brownian Continuum Random Tree (CRT
for short). Since Aldous’s pioneering work, the CRT has been identified as the lim-
iting object of many different classes of discrete structures, in particular trees; see,
for example, Haas and Miermont [26] and references therein, and for planar maps,
see, for example, Albenque and Marckert [2], Bettinelli [9], Caraceni [13], Curien,
Haas and Kortchemski [15] and Janson and Stefansson [29].

Although the aforementioned papers identify the CRT as the universal limiting
object in various settings, much less is known about the scaling limit of random
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graphs from complex graph classes. In this paper, we study in a unified way the
asymptotic distribution of distances in random graphs from so-called subcritical
classes, where informally a class is called subcritical if for a typical graph with
n vertices the largest block (i.e., inclusion maximal 2-connected subgraph) has
O(logn) vertices. Random graphs from such classes have been the object of in-
tense research in the last years; see, for example [7, 18, 19, 41], especially be-
cause of their close connection to the class of planar graphs. Prominent examples
of classes that are subcritical are outerplanar and series-parallel graphs. However,
with the notable exception of [19], most research on such random graphs has fo-
cused on additive parameters, like the number of vertices of a given degree; the fine
study of global properties, like the distribution of the distances, poses a significant
challenge.

In the present paper we study the random graph Cn drawn uniformly from the
set of connected graphs with n vertices of a subcritical class C. Our first main result
is Theorem 5.1, which shows that, up to an appropriate rescaling, the associated
metric space converges in distribution to a multiple of the CRT. Postponing the
introduction of the appropriate notation to later sections (see the outline), our main
result asserts that there is a constant s = s(C) > 0 such that

(
V (Cn), sn

−1/2dCn

) (d)−→Te,

where Te is the CRT and convergence is with respect to the Gromov–Hausdorff
metric. In particular, this establishes that the CRT is the universal scaling limit for
random graphs from subcritical clases, and it proves (in a strong form) a conjec-
ture by Drmota and Noy [19]. The proof of Theorem 5.1 (see Section 5) gives a
natural combinatorial characterization of the “scaling” constant s. Our methods
are based on the algebraic concept of R-enriched trees; more specifically, we use
a size-biased enriched tree in order to study a coupling of Cn with an appropri-
ate conditioned critical Galton–Watson tree Tn on the same vertex set. Our main
step establishes that with a probability that converges to 1 as n → ∞ for any two
vertices u, v in Cn the distance dCn(u, v) is concentrated around dTn(u, v) multi-
plied by a constant factor κ ≥ 1 that depends only on C, and which is, very roughly
speaking, the average length of a shortest path between two random distinct ver-
tices in a random block of Cn. Thus, the constant s turns out to be the product of
two quantities: the constant involved in the scaling limit of Tn, and the reciprocal
of κ . In Section 8, we exploit this characterization of s and compute its value for
several important classes, including outerplanar graphs.

As a consequence of our main result, we obtain the following statements;
see Corollary 5.2. The diameter D(G) of a graph G is defined as the maxi-
mum distance of any pair of vertices, that is, as maxu,v∈V (G) dG(u, v). The height
H(G•) of a pointed graph G• = (G, r), which is G rooted at a vertex r , is
maxv∈V (G) dG(r, v). Then the limit distribution for the diameter of Cn and the
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height of C•
n satisfy for x > 0, as n → ∞

P
(
D(Cn) > s−1n1/2x

)→ ∞∑
k=1

(
k2 − 1

)(2

3
k4x4 − 4k2x2 + 2

)
e−k2x2/2,

P
(
H
(
C•

n

)
> s−1n1/2x

)→ 2
∞∑

k=1

(
4k2x2 − 1

)
e−2k2x2

.

Apart from the convergence in distribution, we also show sharp tail bounds for the
diameter and the height; see Theorem 6.1. In particular, we show that there are
constants C,c > 0 such that for all n and x ≥ 0

P
(
D(Cn) ≥ x

)≤ C exp
(−cx2/n

)
and P

(
H
(
C•

n

)≥ x
)≤ C exp

(−cx2/n
)
.

A similar result was shown for critical Galton–Watson random trees by Addario-
Berry, Devroye and Janson [1], and our proof of these bounds builds on the meth-
ods in that paper. From this, we deduce that all moments of the rescaled height and
diameter converge as well. In particular, we obtain the universal and remarkable
asymptotic behaviour

E
[
D(Cn)

]∼ 23/2

3s

√
πn ∼ 4

3
E
[
H
(
C•

n

)]
.

This improves the previously best known bounds c1
√

n ≤ E[D(Cn)] ≤ c2
√

n logn

given in [19]. The higher moments can also be determined and are depicted in
Sections 5 and 2.4.

In addition to the previous results, we demonstrate that our proof strategy is
powerful enough to enable us to study the far more general setting of first passage
percolation: suppose that the edges of Cn are equipped with independent random
“lengths,” drawn from a distribution that has exponential moments, and let the
distance of two vertices u, v be the minimum sum of those lengths along a path that
contains both u and v. Our last main result shows that again, up to an appropriate
rescaling, the associated metric space converges to a multiple of the CRT; see
Section 7 for the details.

Outline. Section 2 fixes some basic notation and summarizes several results
related to Galton–Watson random trees and the Continuum Random Tree (CRT).
In particular, Section 2.4 states the distribution and expressions for arbitrarily high
moments of the height and diameter of the CRT—to our knowledge, these results
are scattered across several papers and we provide a concise presentation. Sec-
tion 3 is devoted to the definition of combinatorial species, R-enriched trees and
subcritical graph classes. In this part of the paper, we collect some general and
relevant properties of the these objects—many of them were already known in
special cases, and we put them in a broader context. In Section 4, we describe
a construction of a powerful object called the size-biased R-enriched tree that is
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novel in this context and will allow us to study systematically the distribution of
distances in random graphs from subcritical graph classes. Subsequently, in Sec-
tion 5 we show our main result: the convergence of the rescaled random graphs
toward a multiple of the CRT. Section 6 complements this result by proving sub-
Gaussian tail-bounds for the height and diameter. Section 7 is devoted to several
extensions of our results, in particular first passage percolation. The paper closes
with many examples, including among others the prominent class of outerplanar
graphs. We leave determining the explicit scaling constant for the class of series-
parallel graphs as an open problem.

2. Galton–Watson trees and the CRT. We briefly summarize required no-
tions and results related to the Brownian Continuum Random Tree (CRT) and refer
the reader to [5, 35] for a thorough treatment.

2.1. Graphs and (plane) trees. All graphs considered in this paper are undi-
rected and may not contain multiple edges or loops. That is, a graph G consists
of a nonempty set V (G) of vertices and a set E(G) of edges that are two-element
subsets of V (G). If |V (G)| ∈ N we say that |G| := |V (G)| is the size of G. Fol-
lowing Diestel [17], we recall and fix basic definitions and notation. Two vertices
v,w ∈ V (G) are said to be adjacent if {v,w} ∈ E(G). We will often write vw

instead of {v,w}. A path P is a graph such that

V (P ) = {v0, . . . , v�}, E(P ) = {v0v1, . . . , v�−1v�}
with the vi being distinct. The number � = �(P ) of edges of a path is its length.
We say P connects its end-vertices v0 and v� and we often write P = v0v1 · · ·v�.
If P has length at least two we call the graph C� = P + v0v� obtained by adding
the edge v0v� a cycle. The complete graph with n vertices in which each pair of
distinct vertices is adjacent is denoted by Kn.

We say the graph G is connected if any two vertices u, v ∈ V (G) are connected
by a path in G. The length of a shortest path connecting the vertices u and v is
called the distance of u and v and it is denoted by dG(u, v). Clearly, dG is a metric
on the vertex set V (G). A graph G together with a distinguished vertex v ∈ V (G)

is called a rooted graph with root-vertex v. The height h(w) of a vertex w ∈ V (G)

is its distance from the root. The height H(G) is the maximum height of the vertices
in G. A tree T is a nonempty connected graph without cycles. Any two vertices of
a tree are connected by a unique path. If T is rooted, then the vertices w′ ∈ V (T )

that are adjacent to a vertex w and have height h(w) + 1 form the offspring set of
the vertex w. Its cardinality is the outdegree d+(w) of w.

The Ulam–Harris tree is an infinite rooted tree with vertex set
⋃

n≥0 N
n con-

sisting of finite sequences of natural numbers. The empty string ∅ is the root and
the offspring of any vertex v is given by the concatenations v1, v2, v3, . . . . In par-
ticular, the labelling of the vertices induces a linear order on each offspring set.
A plane tree is defined as a subtree of the Ulam–Harris tree that contains the root
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such that the offspring set of each vertex v is of the form {v1, v2, . . . , vk} for some
integer k ≥ 0 depending on v.

2.2. Galton–Watson trees. Throughout this section, we fix an integer-valued
random variable ξ ≥ 0. By abuse of language, we will often not distinguish be-
tween ξ and its distribution. A ξ -Galton–Watson tree T is the family tree of a
Galton–Watson branching process with offspring distribution ξ , interpreted as
a (possibly infinite) plane tree. It is well known that if P(ξ = 1) < 1, then T
is almost surely finite if and only if E[ξ ] ≤ 1. If E[ξ ] = 1, we call T critical.
Let supp(ξ) = {k|P(ξ = k) > 0} denote the support of ξ and define the span
d = span(ξ) as the greatest common divisor of {k − �|k, � ∈ supp(ξ)}. If T is
finite, then

|T| = 1 + ∑
v∈V (T)

d+
T (v) ≡ 1 mod d.

Conversely, if ξ is not almost surely positive, then P(|T| = n) > 0 for all large
enough n ∈ N satisfying n ≡ 1 mod d . We need the following standard result for
the probability that a critical Galton–Watson tree has size n.

LEMMA 2.1 ([31], page 105). Suppose that ξ has expected value one and
finite nonzero variance σ 2. Let (ξi)i∈N be an infinite family of i.i.d. copies of ξ .
Then, for any n with n ≡ 1 mod d , where d = span(ξ),

P
(|T| = n

)= n−1
P

(
n∑

i=1

ξi = n − 1

)
∼ d√

2πσ 2
n−3/2 as n → ∞.

We also state some results given in [1, 28] that will be useful in our arguments.
Suppose that ξ satisfies E[ξ ] = 1 and has finite nonzero variance. Let n ≡ 1 mod d

be sufficiently large such that P(T = n) > 0 and let Tn denote the Galton–Watson
tree conditioned on having size n. By [1], Theorem 1.2 and [1], page 6, there are
constants C1, c1,C2, c2 > 0 such that the height H(Tn) satisfies the following tail
bounds for all n and h ≥ 0:

P
(
H(Tn) ≤ h

)≤ C1 exp
(−c1(n − 2)/h2),(1)

P
(
H(Tn) ≥ h

)≤ C2 exp
(−c2h

2/n
)
.(2)

2.3. Convergence of rescaled conditioned Galton–Watson trees. Throughout
this and the following subsections in Section 2 we write T for a critical ξ -Galton–
Watson tree having finite nonzero variance σ 2. Moreover, n will always denote an
integer satisfying n ≡ 1 mod span(ξ) and is assumed to be large enough such that
the conditioned tree Tn having exactly n vertices is well defined.

Given a plane tree T of size n we consider its canonical depth-first search walk
(vi)0≤i≤2(n−1) that starts at the root and always traverses the leftmost unused edge
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FIG. 1. The contour function of a plane tree.

first. That is, v0 is the root of T and given v0, . . . , vi walk if possible to the leftmost
unvisited son of vi . If vi has no sons or all sons have already been visited, then try
to walk to the parent of vi . If this is not possible either, being only the case when vi

is the root of T and all other vertices have already been visited, then terminate the
walk. The corresponding heights c(i) := d(root of T , vi) define the search-depth
function c of the tree T . The contour function C : [0,2(n−1)] →R+ is defined by
C(i) = c(i) for all integers 0 ≤ i ≤ 2(n−1) with linear interpolation between these
values; see Figure 1 for an example. It can be shown that after a suitable rescaling
the contour process of Tn converges to a normalized Brownian excursion.

THEOREM 2.2 ([36], Theorem 6.1). Let Tn be a critical ξ -Galton–Watson tree
conditional on having n vertices, where ξ has finite nonzero variance σ 2. Let Cn

denote the contour function of Tn. Then(
σ

2
√

n
Cn

(
t2(n − 1)

))
0≤t≤1

(d)−→e

in C([0,1],R+), where e = (et )0≤t≤1 denotes the Brownian excursion of duration
one.

This result is due to Aldous [5], Theorem 23, who stated it for aperiodic off-
spring distributions. See also [21, 32] for further extensions. Theorem 2.2 can
be formulated as a convergence of random trees with respect to the Gromov–
Hausdorff metric. We introduce the required notions following Le Gall and Mier-
mont [37]. A continuous function g : [0,1] → [0,∞) with g(0) = g(1) = 0 in-
duces a pseudo-metric on the interval [0,1] by

d(u, v) = g(u) + g(v) − 2 inf
u≤s≤v

g(s)

for 0 ≤ u ≤ v ≤ 1. This defines a metric on the quotient Tg = [0,1]/ ∼, where
u ∼ v if and only if d(u, v) = 0; we denote the corresponding metric space by
(Tg, dg) and call the equivalence class r0(Tg) of the origin its root.

Given a metric space (E,d) the set of compact subsets is again a metric space
with respect to the Hausdorff metric

δH
(
K,K ′)= inf

{
ε > 0|K ⊂ Uε

(
K ′),K ′ ⊂ Uε(K)

}
,

where Uε(K) = {x ∈ E|d(x,K) ≤ ε}. The sets K (K•) of isometry classes of
(pointed) compact metric spaces, where a pointed space is a triple (E,d, r) where
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(E,d) is a metric space and r ∈ E is a distinguished element, are Polish spaces
with respect to the (pointed) Gromov–Hausdorff metric

dGH
(
(E1, d1), (E2, d2)

)= inf
ϕ1,ϕ2

δH
(
ϕ1(E1), ϕ2(E2)

)
,

dGH
(
(E1, d1, r1), (E2, d2, r2)

)
= inf

ϕ1,ϕ2
max

{
δH
(
ϕ1(E1), ϕ2(E2)

)
, dE

(
ϕ1(r1), ϕ2(r2)

)}
,

where the infimum is in both cases taken over all isometric embeddings ϕ1 : E1 →
E and ϕ2 : E2 → E into a common metric space (E,dE) ([37], Theorem 3.5). We
will make use of the following characterisation of the Gromov–Hausdorff metric.
Given two compact metric spaces (E1, d1) and (E2, d2) a correspondence between
them is a subset R ⊂ E1 × E2 such that any point x ∈ E1 corresponds to at least
one point y ∈ E2 and vice versa. The distortion of R is

dis(R) = sup
{∣∣d1(x1, x2) − d2(y1, y2)

∣∣|(x1, y1), (x2, y2) ∈ R
}
.

PROPOSITION 2.3 ([37], Proposition 3.6). Given two pointed compact metric
spaces (E1, d1, r1) and (E2, d2, r2) we have that

2dGH
(
(E1, d1, r1), (E2, d2, r2)

)= inf
R

dis(R),

where R ranges over all correspondences between E1 and E2 such that r1, r2
correspond to each other.

An important consequence is that the mapping({
g ∈ C

([0,1],R+
)|g(0) = g(1) = 0

}
,‖ · ‖∞

)→ (
K

•, dGH

)
, g �→ Tg

is Lipschitz-continuous ([37], Corollary 3.7).

DEFINITION 2.4. The random metric space (Te, de, r0(Te)) coded by the
Brownian excursion of duration one e is called the Brownian continuum random
tree (CRT).

We may view Tn as a random pointed metric space (V (Tn), dTn,∅) ∈ K. This
space is close to the real tree encoded by its contour function, hence Theorem 2.2
implies convergence with respect to the Gromov–Hausdorff metric; see [36],
page 740.

THEOREM 2.5. Let Tn be a critical ξ -Galton–Watson tree conditional on hav-
ing n vertices, where ξ has finite nonzero variance σ 2. As n tends to infinity, Tn

with edges rescaled to length σ
2
√

n
converges in distribution to the CRT, that is,(

V (Tn),
σ

2
√

n
dTn,∅

)
(d)−→(

Te, de, r0(Te)
)

(3)

in the metric space (K•, dGH).
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This invariance principle is due to Aldous [5] and there exist various extensions,
see for example [21, 22, 26]. Adopting common terminology, instead of (3) we will
often write in the sequel

σ

2
√

n
Tn

(d)−→Te.

2.4. Height and diameter of the CRT. The height H(Tn) and diameter D(Tn)

of Tn may be recovered from its contour function. From the results in Section 2.3,
it follows that

σ

2
√

n
H(Tn)

(d)−→ H(Te)
(d)= sup

0≤t≤1
e(t),(4)

σ

2
√

n
D(Tn)

(d)−→ D(Te)
(d)= sup

0≤t1≤t2≤1

(
e(t1) + e(t2) − 2 inf

t1≤t≤t2
e(t)

)
.(5)

Since D(Tn) ≤ 2H(Tn) the tail bound (1) implies that all moments in (4) and (5)
converge. It is well known that H(Te)/

√
2 follows a Theta distribution, that is,

P
(
H(Te) > x

)= 2
∞∑

k=1

(
4k2x2 − 1

)
exp
(−2k2x2)(6)

for all x > 0. The moments of the height are given by

E
[
H(Te)

]=√
π/2 and E

[
H(Te)

k]= 2−k/2k(k − 1)
(k/2)ζ(k),
(7)

k ≥ 2.

This follows from standard results on the Brownian excursion; see, for example,
[10, 14], or by calculating directly the limit distribution of extremal parameters of
a class of trees that converges to the CRT (see, e.g., [42]). The distribution of the
diameter is given by

P
(
D(Te) > x

)= ∞∑
k=1

(
k2 − 1

)(2

3
k4x4 − 4k2x2 + 2

)
exp
(−k2x2/2

)
.(8)

This expression may be obtained (by tedious calculations) from results of Szek-
eres [43], who proved the existence of a limit distribution for the diameter of
rescaled random unordered labelled trees. It is also proved directly in the con-
tinuous setting by Wang [44]. The moments of this distribution were calculated
for example in Broutin and Flajolet [12] and are given by

E
[
D(Te)

]= 4

3

√
π/2, E

[
D(Te)

2]= 2

3

(
1 + π2

3

)
,

(9)
E
[
D(Te)

3]= 2
√

2π,

E
[
D(Te)

k]= 2k/2

3
k(k − 1)(k − 3)
(k/2)

(
ζ(k − 2) − ζ(k)

)
, k ≥ 4.(10)
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3. Combinatorial species and subcritical graph classes. We recall parts of
the theory of combinatorial species and Boltzmann samplers to the extend required
in this paper. A reader who is already familiar with the framework of subcritical
graph classes may skip some parts of this section. However, we stress the impor-
tance of the representation of connected graphs as enriched trees in Section 3.5 and
the coupling of random graphs with a Galton–Watson tree in Section 3.7. More-
over, several intermediate lemmas that we state and prove here were already shown
in previous papers, albeit under stronger assumptions.

3.1. Combinatorial species. The framework of combinatorial species allows
for a unified treatment of a wide range of combinatorial objects. We give only a
concise introduction and refer to Joyal [30] and Bergeron, Labelle and Leroux [6]
for a detailed discussion. The essentially equivalent language of combinatorial
classes was developed by Flajolet and Sedgewick [24].

A combinatorial species may be defined as a functor F that maps any finite set
U of labels to a finite set F[U ] of F -objects and any bijection σ : U → V of finite
sets to its (bijective) transport function F[σ ] : F[U ] → F[V ] along σ , such that
composition of maps and the identity are preserved. We say that a species G is a
subspecies of F and write G ⊂F if G[U ] ⊂ F[U ] for all finite sets U and G[σ ] =
F[σ ]|U for all bijections σ : U → V . Given two species F and G, an isomorphism
α :F ∼→G from F to G is a family of bijections α = (αU : F[U ] → G[U ])U where
U ranges over all finite sets, such that G[σ ]αU = αVF[σ ] for all bijective maps
σ : U → V . The species F and G are isomorphic if there exists and isomorphism
from one to the other. This is denoted by F � G or, by abuse of notation, just
F = G. An element γU ∈ F[U ] has size |γU | := |U | and two F -objects γU and γV

are termed isomorphic if there is a bijection σ : U → V such that F[σ ](γU) = γV .
We will often just write σ.γU = γV instead, if there is no risk of confusion. An
isomorphism class of F -structures is called an unlabeled F -object.

We will mostly be interested in subspecies of the species of finite simple graphs
and use basic species such as the species of linear orders SEQ or the SET-species
defined by SET[U ] = {U} for all U . Moreover, let 0 denote the empty species,
1 the species with a single object of size 0 and X the species with a single object
of size 1.

Given n ∈ N0 we set [n] := {1, . . . , n} and, where there is no danger of confu-
sion, use the notation Fn for the set F[n] = F[{1, . . . , n}]. By abuse of notation,
we will often let F also refer to the set

⋃
nFn. The exponential generating series

of a combinatorial species F is defined by F(x) =∑
n≥0 |Fn|xn/n!. In general,

this is a formal power series that may have radius of convergence zero. If the se-
ries F(x) has positive radius of convergence, we say that F is an analytic species
and F(x) is its exponential generating function. For any power series f (x), we let
[xn]f (x) denote the coefficient of xn.
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3.2. Operations on species. The framework of combinatorial species offers a
large variety of constructions that create new species from others. In the following,
let F , (Fi)i∈N and G denote species and U an arbitrary finite set. The sum F + G
is defined by the disjoint union

(F + G)[U ] =F[U ] � G[U ].
More generally, the infinite sum (

∑
i Fi ) may be defined by (

∑
i Fi)[U ] =⊔

i Fi[U ] if the right-hand side is finite for all finite sets U . The product F · G
is defined by the disjoint union

(F · G)[U ] = ⊔
(U1,U2)

U1∩U2=∅,U1∪U2=U

F[U1] × G[U2]

with componentwise transport. Thus, n-sized objects of the product are pairs of
F -objects and G-objects whose sizes add up to n. If the species G has no objects
of size zero, we can form the substitution F ◦ G by

(F ◦ G)[U ] = ⊔
π partition of U

F[π] × ∏
Q∈π

G[Q].

An object of the substitution may be interpreted as an F -object whose labels are
substituted by G-objects. The transport along a bijection σ is defined by applying
the induced map σ : π → π = {σ(Q)|Q ∈ π} of partitions to the F -object and the
restricted maps σ |Q with Q ∈ π to their corresponding G-objects. We will often
write F(G) instead of F ◦ G. The rooted or pointed F -species is given by

F•[U ] =F[U ] × U

with componentwise transport. That is, a pointed object is formed by distinguish-
ing a label, named the root of the object, and any transport function is required to
preserve roots. The derived species F ′ is defined by

F ′[U ] = F
[
U ∪ {∗U }]

with ∗U referring to an arbitrary fixed element not contained in the set U (e.g.,
we could take ∗U = U ). The transport along a bijective map σ : U → V is done
by applying the canonically extended bijection σ ′ : U � {∗U } → V � {∗V } with
σ ′(∗U) = ∗V to the object. Derivation and pointing are related by an isomorphism
F• � X ·F ′.

Note that F ′• and F•′ are in general different species. In F•′ objects, the root
and ∗-label may coincide, since

F•′[U ] = F•[U ∪ {∗U }]
implies that a F•′-object over U is a F -object over U ∪ {∗U } together with a
distinguished element from U ∪ {∗U }. On the other hand, F ′•-objects are always
rooted at non-∗-labels, since

F ′•[U ] = F ′[U ] × U
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TABLE 1
Relation between combinatorial constructions and generating series

∑
i Fi

∑
i Fi(x)

F · G F(x)G(x)

F ◦ G F(G(x))

F• x d
dx

F (x)

F ′ d
dx

F (x)

SET exp(x)

SEQ 1/(1 − x)

0 0
1 1
X x

implies that a F ′•-object over U is a F -object over U ∪ {∗U } together with a
distinguished element from U .

Explicit formulas for the exponential generating series of these constructions
are summarized in Table 1. The notation is quite suggestive: up to (canonical)
isomorphism, each operation considered in this section is associative. The sum
and product are commutative operations and satisfy a distributive law, that is,

F · (G1 + G2) � F · G1 +F · G2(11)

for any two species G1 and G2. The operation of deriving a species is additive and
satisfies a product rule and a chain rule, analogous to the derivative in calculus:

(F · G)′ � F ′ · G +F · G′ and F(G)′ � F ′(G) · G′.(12)

Recall that for the chain rule to apply we have to require G[∅] = ∅, since oth-
erwise F(G) is not defined. A thorough discussion of these facts is beyond the
scope of this introduction. We refer the inclined reader to Joyal [30] and Bergeron,
Labelle and Leroux [6].

3.3. Combinatorial specifications. In this section, we briefly recall Joyal’s im-
plicit species theorem that allows us to define combinatorial species up to unique
isomorphism and construct recursive samplers that draw objects of a species ran-
domly (see Section 3.6 below). In order to state the theorem, we need to introduce
the concept of multisort species. As it is sufficient for our applications, we restrict
ourselves to the 2-sort case.

A 2-sort species H is a functor that maps any pair U = (U1,U2) of finite sets to
a finite set H[U ] = H[U1,U2] and any pair σ = (σ1, σ2) of bijections σi : Ui → Vi

to a bijection H[σ ] : H[U ] → H[V ] in such a way, that identity maps and com-
position of maps are preserved. The operations of sum, product and composi-
tion extend naturally to the multisort-context. Let H and K be 2-sort species and
U = (U1,U2) a pair of finite sets. The sum is defined by

(H+K)[U ] = H[U ] �K[U ].
We write U = V + W if Ui = Vi ∪ Wi and Vi ∩ Wi = ∅ for all i. The product is
defined by

(H ·K)[U ] = ⊔
V +W=U

H[V ] ×K[W ].
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The partial derivatives are given by

∂1H[U ] = H
[
U1 ∪ {∗U1},U2

]
and ∂2H[U ] = H

[
U1,U2 ∪ {∗U2}

]
.

In order state Joyal’s implicit species theorem, we also require the substitution
operation for multisort species; this will allow us to define species “recursively”
up to (canonical) isomorphism. Let F1 and F2 be (1-sort) species and M a fi-
nite set. A structure of the composition H(F1,F2) over the set M is a quadrupel
(π,χ,α,β) such that:

1. π is partition of the set M .
2. χ : π → {1,2} is a function assigning to each class a sort.
3. α a function that assigns to each class Q ∈ π a Fχ(Q)-object

α(Q) ∈ Fχ(Q)[Q].
4. β a H-structure over the pair (χ−1(1),χ−1(2)).

This construction is functorial: any pair of isomorphisms α1, α2 with

αi : Fi
∼→Gi

induces an isomorphism

H[α1, α2] : H(F1,F2)
∼→H(G1,G2).

Let H be a 2-sort species and recall that X denotes the species with a unique
object of size one. A solution of the system Y = H(X ,Y) is pair (A, α) of a
species A with A[0] = 0 and an isomorphism α :A ∼→H(X ,A). An isomorphism
of two solutions (A, α) and (B, β) is an isomorphism of species u : A ∼→B such
that the following diagram commutes:

A

u

α
H(X ,A)

H(id,u)

B
β

H(X ,B)

We may now state Joyal’s implicit species theorem.

THEOREM 3.1 ([30], Théorème 6). Let H be a 2-sort species satisfying
H(0,0) = 0. If (∂2H)(0,0) = 0, then the system Y = H(X ,Y) has up to isomor-
phism only one solution. Moreover, between any two given solutions there is exactly
one isomorphism.

We say that an isomorphism F � H(X ,F) is a combinatorial specification for
the species F if the 2-sort species H satisfies the requirements of Theorem 3.1.
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3.4. Block-stable graph classes. Any graph may be decomposed into its con-
nected components, that is, its maximal connected subgraphs. These connected
components allow a block-decomposition which we recall in the following. Let C

be a connected graph. If removing a vertex v (and deleting all adjacent edges) dis-
connects the graph, we say that v is a cutvertex of C. The graph C is 2-connected,
if it has size at least three and no cutvertices.

A block of an arbitrary graph G is a maximal connected subgraph B ⊂ G that
does not have a cutvertex (of itself). It is well known (see, e.g., [17]) that any
block is either 2-connected or an edge or a single isolated point. Moreover, the
intersection of two blocks is either empty or a cutvertex of a connected component
of G. If G is connected, then the bipartite graph whose vertices are the blocks and
the cutvertices of G and whose edges are pairs {v,B} with v ∈ B is a tree and
called the block-tree of G.

Let G denote a subspecies of the species of graphs, C ⊂ G the subspecies of
connected graphs in G and B ⊂ C the subspecies of all graphs in C that are 2-
connected or consist of only two vertices joined by an edge. We say that G or C
is a block-stable class of graphs, if B �= 0 and G ∈ G if and only if every block
of G belongs to B or is a single isolated vertex. Block-stable classes satisfy the
following combinatorial specifications that can be found, for example, in [6, 27,
30]:

G � SET ◦ C and C• � X · (SET ◦B′ ◦ C•).(13)

The first correspondence expresses the fact that we may form any graph on a given
vertex set U by partitioning U and constructing a connected graph on each parti-
tion class. The specification for rooted connected graphs, illustrated in Figure 2, is
based on the construction of the block-tree. The idea is to interpret B′ ◦ C•-objects
as graphs by connecting the roots of the C• objects on the partition classes and
the ∗-vertex with edges according to the B′-object on the partition. An object of
SET ◦ (B ′ ◦ C•) can then be interpreted as a graph by identifying the ∗-vertices
of the B ′ ◦ C• objects. This construction is compatible with graph isomorphisms,

FIG. 2. Decomposition of a rooted graph from C• into a X · (SET ◦B′ ◦ C•) structure. Labels are
omitted and the roots are marked with squares.
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hence C′ � SET ◦B′ ◦C• and the second specification in (13) follows. By the rules
for computing the generating series of species, we obtain the equations

G(x) = exp
(
C(x)

)
and C•(x) = x exp

(
B ′(C•(x)

))
.(14)

The following lemma was given in Panagiotou and Steger [41] and Drmota et
al. [18] under some additional assumptions.

LEMMA 3.2. Let C be a block-stable class of connected graphs, B �= 0 its
subclass of all graphs that are 2-connected or a single edge. Then C(z) has radius
of convergence ρ < ∞ and the sums y := C•(ρ) and λ := B ′(y) are finite and
satisfy

y = ρ exp(λ).(15)

PROOF. It suffices to consider the case ρ > 0. By assumption, we have B �= 0
and hence there is a k ∈ N such that [zk]B ′(z) �= 0. Thus, by (14) we have, say,
C•(z) = czC•(z)2k + R(z) for some constant c > 0 and R(z) a power series in
z with nonnegative coefficients. This implies limx↑ρ C•(x) < ∞ and thus ρ and
C•(ρ) are both finite. The coefficients of all power series involved in (14) are non-
negative, and so it follows that y = ρ exp(λ) and thus λ < ∞. �

We will only be interested in the case where C is analytic. The following obser-
vation (made, e.g., also in [19]) shows that this is equivalent to requiring that B is
analytic. We include a short proof for completeness.

PROPOSITION 3.3. Let C be a block-stable class of connected graphs, B �= 0
its subclass of all graphs that are 2-connected or a single edge. Then C is analytic
if and only if B is analytic.

PROOF. By nonnegativity of coefficients, we see easily that ρ > 0 implies
that B is analytic. Conversely, suppose that B(z) has positive radius of con-
vergence R > 0. By the inverse function theorem, the block-stability equation
f (z) = z exp(B ′(f (z))) has an analytic solution whose expansion at the point 0
agrees with the series C•(z) by Lagrange’s inversion formula. Hence, C is an ana-
lytic class. �

3.5. R-Enriched trees. The class A of rooted trees2 is known to satisfy the
decomposition

A �X · SET(A).

This is easy to see: in order to form a rooted tree on a given set of vertices, we
choose a root vertex v, partition the remaining the vertices, endow each partition

2Arborescence is the French word for rooted tree, hence the notation A.
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FIG. 3. Correspondence of the classes C• and SET(B′)-enriched trees.

class with a structure of a rooted tree and connect the vertex v with their roots.
More generally, given a species R the class AR of R-enriched trees is defined by
the combinatorial specification

AR � X ·R(AR).

In other words, an R-enriched tree is a rooted tree such that the offspring set of
any vertex is endowed with an R-structure. Natural examples are labeled ordered
trees, which are SEQ-enriched trees, and plane trees, which are unlabeled ordered
trees. Ordered and unordered tree families defined by restrictions on the allowed
outdegree of internal vertices also fit in this framework. R-enriched trees were in-
troduced by Labelle [33] in order to provide a combinatorial proof of Lagrange
Inversion. They have applications in various fields of mathematics; see, for exam-
ple, [16, 34, 40].

The combinatorial specification (13) together with Theorem 3.1 allows us to
identify a block-stable graph class C• with the class R-enriched trees where
R = SET(B′), that is, rooted trees from A where the offspring set of each ver-
tex is partitioned into nonempty sets and each of these sets carries a B′-structure.
Compare with Figure 3.

COROLLARY 3.4. Let C be a block-stable class of connected graphs, B �= 0
its subclass of all graphs that are 2-connected or a single edge. Then there is a
unique isomorphism between C• and the class ASET◦B′ of pairs (T ,α) with T ∈ A
and α a function that assigns to each v ∈ V (T ) a (possibly empty) set α(v) ∈
(SET ◦B′)[Mv] of derived blocks whose vertex sets partition the offspring set Mv

of v.

PROOF. By the isomorphism given in (13), the classes ASET◦B′ and C• are
both solutions of the system Y = H(X ,Y) with H(X ,Y) = X · SET ◦ B′ ◦ Y .
Joyal’s implicit species Theorem 3.1 yields that there is a unique isomorphism
between any two solutions. �

3.6. Boltzmann samplers. Boltzmann samplers provide a method of generat-
ing efficiently random discrete combinatorial objects. They were introduced in
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TABLE 2
Rules for the construction of Boltzmann samplers

F =A+B if Bern(A(x)/(A(x) + B(x))) then return 
A(x)

else return 
B(x)

F =A ·B return (
A(x),
B(x)) relabeled uniformly at random

F =A ◦B γ ← 
A(y) with y = B(x)

for i = 1 to |γ |
γi ← 
B(x)

return (γ, (γi)i ) relabeled uniformly at random

F = SET m ← Pois(x)

return the unique structure of size m

Duchon, Flajolet, Louchard and Schaeffer [20] and were developed further in Fla-
jolet, Fusy and Pivoteau [23]. Following these sources, we will briefly recall the
theory of Boltzmann samplers to the extend required for the applications in this
paper. Let F �= 0 be an analytic species of structures and F its exponential gen-
erating function. Given a parameter x > 0 such that 0 < F(x) < ∞, a Boltzmann
sampler 
F(x) is a random generator that draws an object γ ∈F with probability

P
(

F(x) = γ

)= x|γ |

F(x)|γ |! .
In particular, if we condition on a fixed output size n, we get the uniform distribu-
tion on Fn. We describe Boltzmann samplers using an informal pseudo-code nota-
tion. Given a specification of the species of structures F in terms of other species
using the operations of sums, products and composition, we obtain a Boltzmann
sampler for F in terms of samplers for the other species involved. The rules for the
construction of Boltzmann samplers are summarized in Table 2. We let Bern(p)

and Pois(λ) denote Bernoulli and Poisson distributed generators.
Note that if F = AμB with A,B �= 0, μ ∈ {+, ·,◦} and 0 < F(x) < ∞, then

the samplers of A and B are almost surely called with valid parameters, since the
coefficients of all power-series involved are nonnegative.

Given a combinatorial specification Y � H(X ,Y) satisfying the conditions of
Theorem 3.1 we may apply the rules above to construct a recursive Boltzmann
sampler that is guaranteed to terminate almost surely. In our setting, this allows
us to construct a Boltzmann sampler for block-stable graph classes. More specif-
ically, let C be a block-stable class of connected graphs such that the radius of
convergence ρ of the generating series C(z) is positive. The rooted class C• has a
combinatorial specification given in (13) in terms of the subclass B of edges and
2-connected graphs. By Lemma 3.2, we know that y = C•(ρ) and λ = B ′(y) are
finite.

Since ρ is an admissible parameter for the Boltzmann-distribution of C•, we
may apply the rules in Table 2 in order to obtain an explicit sampler 
C•(ρ). By
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the rule concerning products of species, we have to start with independent calls to
the samplers 
X(ρ) and 
(SET ◦ B ′ ◦ C•)(ρ), and relabel uniformly at random
afterward. The sampler 
X(ρ) generates (deterministically) a single root-vertex.
The rule for compositions states that a Boltzmann sampler for (SET ◦ B ′) ◦ C•
is obtained by starting with 
(SET ◦ B ′)(y), and making independent calls to

C•(ρ) for each atom (i.e., non-∗-vertex) of the result. The graph is then con-
structed from these objects according to the isomorphism illustrated in Figure 2.
Putting everything together, we obtain the following recursive procedure.

COROLLARY 3.5. Let C be a block-stable class of connected graphs, B �= 0 its
subclass of all graphs that are 2-connected or a single edge. The following recur-
sive procedure terminates almost surely and samples according to the Boltzmann
distribution for C• with parameter ρ.


C•(ρ): γ ← a single root vertex
M ← 
(SET ◦ B ′)(y)

for each derived block B ′ in M

merge the ∗-vertex of B ′ with γ

for each non ∗-vertex v of B ′
Cv ← 
C•(ρ)

merge v with the root of Cv

return the resulting graph, relabeled uniformly at random

We may interpret this sampler as a deterministic recursive procedure whose
input data is a list of SET ◦ B′-objects (M1,M2, . . .) (which we choose indepen-
dently at random according to a Boltzmann distribution) from which it always
reads the next so far unused entry in the second line of the pseudo code.

This procedure was used before in the study of certain block-stable graph
classes; see, for example, [41]. Using the rules for the composition and the SET-
species, we also obtain an explicit description of a Boltzmann sampler for the
species SET ◦B′:


(SET ◦ B ′)(y): m ← Pois(λ)

for k = 1 · · ·m
B ′

k ← 
B ′(y)

return {B ′
1, . . . ,B

′
m}, relabeled u.a.r.

3.7. Subcritical graph classes. Let C be a block-stable class of connected
graphs and B its subclass of all graphs that are 2-connected or a single edge.
Assume that B is nonempty and analytic, hence C is analytic as well by Propo-
sition 3.3. Denote by ρ and R the radii of convergence of the corresponding
exponential generating series C(z) and B(z). By Lemma 3.2, we know that ρ,
y = C•(ρ) and λ = B ′(y) are finite. The following proposition provides a cou-
pling of a Boltzmann-distributed random graph drawn from the class C with a
Galton–Watson tree. This will play a central role in the proof of the main theorem.
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PROPOSITION 3.6. Let (T, α) denote the enriched tree corresponding to the
Boltzmann Sampler 
C•(ρ) given in Corollary 3.5. Then the rooted labeled un-
ordered tree T is distributed like the outcome of the following process:

1. Draw a Galton–Watson tree with offspring distribution ξ given by the prob-
ability generating function ϕ(z) = exp(B ′(yz) − λ).

2. Distribute labels uniformly at random.
3. Discard the ordering on the offspring sets.

PROOF. The sampler 
C•(ρ) given in Corollary 3.5 starts with a single root-
vertex and a set M of B′-objects drawn according to 
(SET ◦ B ′)(y). Each non-
∗-vertex of the blocks in M corresponds to an offspring vertex of the root in the
tree T. Thus, the root receives total offspring with size distributed according to
|
(SET ◦ B ′)(y)|, which by definition of the Boltzmann distribution has proba-
bility generating function exp(B ′(yz) − λ). For any offspring vertex, the sampler
proceeds with a recursive call to 
C•(ρ). After this recursive procedure termi-
nates, the vertices of the resulting graph are relabeled uniformly at random. Thus,
T is distributed like a Galton–Watson tree with offspring distribution given by the
pgf ϕ(z), except that we neglect all orderings on the offspring sets and relabel the
vertices uniformly at random after constructing the tree. �

Let ξ denote the offspring distribution given in Proposition 3.6. As discussed
above, the rules governing Boltzmann samplers guarantee that the sampler 
C•(ρ)

terminates almost surely. Hence, we have

1 ≥ E[ξ ] = ϕ′
�(1) = yB ′′(y) = B ′•(y)

and in particular y ≤ R, where R is the radius of convergence of B . We define
sub-criticality depending on whether this inequality is strict.

DEFINITION 3.7. A block-stable class of connected graphs C is termed sub-
critical if y < R.

Prominent examples of subcritical graph classes are trees, outer-planar graphs
and series-parallel graphs; the class of planar graphs does not fall into this frame-
work [7, 18], that is, it satisfies y = R. The following lemma was proved in [41],
Lemma 2.8, by analytic methods.

LEMMA 3.8. If B ′•(R) ≥ 1, then B ′•(y) = 1. If B ′•(R) ≤ 1, then y = R. In
particular, C is subcritical if and only if B ′•(R) > 1.

Thus, if B ′•(R) ≥ 1, then the offspring distribution ξ has expected value 1 and
variance

σ 2 = 1 + B ′′′(y)y2 = E
[∣∣
B ′•(y)

∣∣]
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with 
B ′•(y) denoting a Boltzmann sampler for the class B′• with parameter y.
By Proposition 3.6, the size of the outcome of the sampler 
C•(ρ) is distributed
like the size of a ξ -Galton–Watson tree. Hence, we may apply Lemma 2.1 to obtain
the following result, which was shown in [18] under stronger assumptions.

COROLLARY 3.9. Let C be an analytic block-stable class of graphs, and let
ξ be the distribution from Proposition 3.6. Suppose that B ′•(R) ≥ 1 and B ′′′(y) <

∞, that is, ξ has finite variance. Let d = span(ξ). Then, as n ≡ 1 mod d tends to
infinity,

P
(∣∣
C•(ρ)

∣∣= n
)∼ d√

2πE[|
B ′•(y)|]n
−3/2

and

|Cn| ∼ yd√
2πE[|
B ′•(y)|]n

−5/2ρ−nn!.

3.8. Deviation inequalities. We will make use of the following moderate de-
viation inequality for one-dimensional random walks found in most textbooks on
the subject.

LEMMA 3.10. Let (Xi)i∈N be independent copies of a real-valued random
variable X with E[X] = 0. Let Sn = X1 + · · · + Xn. Suppose there is a δ > 0 such
that E[eθX] < ∞ for |θ | < δ. Then there is a c > 0 such that for every 1/2 < p < 1
there is a number N such that for all n ≥ N and 0 < ε < 1

P
(∣∣Sn/np

∣∣≥ ε
)≤ 2 exp

(−cε2n2p−1).
4. A size-biased random R-enriched tree.

4.1. A size-biased random R-enriched tree. An important ingredient in our
forthcoming arguments will be an accurate description of the distribution of the
blocks on sufficiently long paths in random graphs from an analytic block-stable
class of connected graphs C. In order to study this distribution, we will make use
of a special case of a size-biased random R-enriched tree. The use of size-biased
structures to study distances for large random trees is a fruitful approach used in
classic and recent literature (see, e.g., [1, 38]), and applying it to R-enriched trees
allows for a particular short and elegant proof of our main result.

In order to motivate our construction and to create a direct analogy to previous
work, we begin with a concise description of the size biased ξ -Galton–Watson tree
T(�) from [1], where ξ ≥ 0 is an integer valued random variable with E[ξ ] = 1.
The size-biased tree T(�) is a random plane tree that has a distinguished vertex
having height �. For � = 0, it is distributed like the ξ -Galton–Watson tree T and the
distinguished vertex coincides with the root. For � ≥ 1 it is constructed as follows.
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There are two types of vertices called normal and mutant. We start with a mutant
root. Normal vertices have offspring according to an independent copy of ξ and
each of their offspring is declared normal as well. Mutant vertices have offspring
according to an independent copy of the size-biased offspring distribution ξ̂ , given
by

P(ξ̂ = m) = mP(ξ = m).

For each mutant vertex, one of its children is selected uniformly at random and
declared its heir. The remaining offspring is declared normal. The heir is declared
mutant if it has height less than �, and normal otherwise. The distinguished vertex
is given by the unique heir with height �.

The construction guarantees that for any plane tree T and any vertex u with
height � in T

P
(
T(�) = (T ,u)

)= P(T = T );(16)

see equation (26) in [1]. The importance of (16) is that it may be used to study
properties of the ξ -Galton–Watson tree T by making use of the fact that the out-
degrees of the � mutant vertices of T(�) are independent and identically distributed.

Our size-biased R-enriched tree is constructed in a similar though more in-
volved fashion. Let C be an analytic block-stable class of connected graphs and
B �= 0 its subclass of graphs that are 2-connected or a single edge. Recall that by
Corollary 3.4 the class C• may be identified with the class of R-enriched trees
with R := SET ◦ B′, that is, pairs (T ,α) with T being a rooted labeled unordered
tree and α a function that assigns to each v ∈ V (T ) a (possibly empty) set α(v) of
derived blocks whose vertex sets partition the offspring set of v.

In our construction, we make use of Boltzmann samplers 
R(y) and 
R•(y)

for the classes R and R•, and of the Boltzmann sampler 
AR(ρ) for AR. With
this notation at hand, we are going to construct the size-biased R-enriched tree A(�)

R
as a random R-enriched tree (T, α) together with a distinguished vertex v having
height hT(v) = �.

For � = 0, it is given by 
AR(ρ) and the distinguished vertex coincides with
the root. For � ≥ 1, we consider again two kinds of vertices termed normal and
mutant. We begin with a single mutant root. The offspring of any normal vertex is
given by an independent copy of 
R(y) and each vertex of that copy is declared
normal as well. Mutant vertices have an independent copy of 
R•(y) as offspring,
and all vertices except for the root in the R•-object are declared normal. The root
in the R•-object is declared mutant unless it is in the �th copy of 
R•(y). The
final result is then obtained by letting the root of the �th copy of 
R•(y) be the
distinguished vertex and additionally distributing the labels of the resulting pointed
enriched tree uniformly at random. The construction of the size-biased R-enriched
tree is illustrated in Figure 4.

Note the analogies in the construction to the size-biased ξ -Galton–Watson tree:
there, normal vertices have offspring according to ξ , and similarly in A(�)

R before
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FIG. 4. Illustration of the size-biased R-enriched tree.

the relabeling, the R-structures of normal vertices are independent 
R(ρ) struc-
tures. Moreover, in T(�) mutant vertices have an offspring distributed like ξ̂ , while
in A(�)

R the offspring is given by an independent copy of 
R•(y); since R• =X ·R′

the analogy with the probability generating function E[zξ̂ ] = z d
dz
E[zξ ] of the size-

biased offspring distribution ξ̂ is established.
The main aim of this section is to establish a statement analogous to (16).

LEMMA 4.1. With the notation in this section, let ρ denote the radius of
convergence of the exponential generating series C(z) and set y = C•(ρ). Let
A = (T ,α) ∈ AR be an R-enriched tree and let u be a vertex in A having height
hT (u) = �. Then

P
(
A(�)
R = (A,u)

)= (
ρR′(y)

)−�
P
(

AR(ρ) = A

)
.(17)

In order to facilitate the proof of (17), we first consider a decomposition of
enriched trees along paths that start at the root. More specifically, consider the
species A•

R of pointed enriched trees, that is of enriched trees A = (T ,α) together
with a distinguished vertex u of T . In order to avoid confusion, we call u the outer
root, and the root of T the inner root. The directed path in T from the inner root to
the outer root is termed the spine. The species A•

R admits the following classical
decomposition due to Labelle [33], Theorem A. First, we split the species into
summands

A•
R �∑

�≥0

A(�)
R

with A(�)
R denoting the subspecies of all pointed R-enriched trees whose spine has

length �. In the case � = 0, the inner and outer root coincide, yielding A(0)
R �AR.

For � ≥ 1, we are going to argue that there is an isomorphism

A(�)
R � X ·R′(AR) ·A(�−1)

R ,(18)

as illustrated in Figure 5.
Indeed, suppose that we are given an arbitrary A(�)

R -object. The maximal (en-
riched) subtree rooted at the successor v of the inner root along the spine is an
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FIG. 5. The decomposition of A(�)
R , with the squares marking the vertices on the spine.

A(�−1)
R -object, as the length of its spine is decreased by 1. If we cut this tree away

and replace v with a ∗-vertex, we are left with the inner root, accounting for the
factor X in (18), together with an R′-object whose non-∗-labels are the roots of
AR-objects, accounting for the factor R′(AR).

By iterating (18), we arrive at

A(�)
R � (

X ·R′(AR)
)� ·AR.(19)

PROOF OF LEMMA 4.1. Recall that ρ > 0 denotes the radius of convergence
of the exponential generating series C•(z) = AR(z) and that y = AR(ρ) < ∞ by
Lemma 3.2. We are going to study a Boltzmann sampler 
A

(�)
R (ρ) for the class

A(�)
R . Of course, we first have to check whether ρ is an admissible parameter for

the Boltzmann distribution, that is, if A
(�)
R (ρ) < ∞. This is easily confirmed, as

the isomorphism in (19) yields

A
(�)
R (ρ) = (

ρR′(AR(ρ)
))�

AR(ρ) = (
ρR′(y)

)�
y = (

ρB ′′(y)eB ′(y))�y.

By Lemmas 3.2 and 3.8, we have that B ′(y),B ′′(y) < ∞, i.e. A
(�)
R (ρ) is finite. We

infer that for any pointed enriched tree (A,u) from A(�)
R with k vertices

P
(

A

(�)
R (ρ) = (A,u)

)= ρk/A
(�)
R (ρ) = ρk(ρR′(y)

)−�
/y.

Moreover, letting 
AR(ρ) denote a Boltzmann sampler for AR, we have that

P
(

AR(ρ) = A

)= ρk/y

and hence

P
(

A

(�)
R (ρ) = (A,u)

)= (
ρR′(y)

)−�
P
(

AR(ρ) = A

)
.(20)

Thus, in order to prove (17), it suffices to establish that the size-biased random tree
A(�)

R follows a Boltzmann distribution with parameter ρ. To see that this is indeed
the case, we apply the rules in Table 2 to the isomorphism in (18) in order to obtain
the following sampling procedure for 
A

(�)
R (ρ):
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1. If � = 0, then return 
AR(ρ). Otherwise, proceed with the following steps.
2. Make independent calls to Boltzmann samplers 
X(ρ), 
R′(AR)(ρ), and


A
(�−1)
R (ρ).

3. Apply the isomorphism in (18) to the result in order to obtain an A(�)
R -

structure.
4. Relabel uniformly at random.

The rule for the composition in Table 2 yields the following description for

R′(AR)(ρ):

(a) Call 
R′(y) with y = AR(ρ). Let R′ denote the result.
(b) For each non-∗-label v of R′ call 
AR(ρ) and let Av denote the result.
(c) Relabel (R′, (Av)v) uniformly at random.

Since everything is labeled uniformly at random in step 4, we may skip step (c)
each time the sampler 
R′(AR)(ρ) is called. In the same way, every time the
sampler 
AR(ρ) = 
C•(ρ) described in Section 3.6 is called, we may also skip
the relabelling at the end.

After completing step 3, there are two kinds of vertices in the resulting enriched
tree: normal and special. The offspring of a normal vertex is distributed according
to an independent copy of 
AR(ρ), and each of its children is also normal. The
offspring of a special vertex is given by taking an independent copy of 
R′(y) and
replacing the ∗-vertex by regular vertex, so that it receives a label afterwards in step
4. (Recall that in the definition of the derivative operator for species we stated that
∗-vertices do not receive labels.) Moreover, the (former) ∗-vertex is also special,
except if it is in the �th independent copy of 
R′(y). Note that since R• � R′ ·X ,
the product rule for the construction of Boltzmann samplers yields that the sampler

R•(y) is given by taking 
R′(y), replacing the ∗-vertex by a regular vertex, and
relabeling everything uniformly at random. Thus, up to relabeling, the offspring
of special vertices is distributed according to an independent copy of 
R•(y).
We have thus identified the size-biased enriched tree A(�)

R as a Boltzmann sampler


A
(�)
R (ρ) for the class A(�)

R . �

4.2. Uniform random graphs via size-biased R-enriched trees. In this section,
we show a lemma that will enable us to study random graphs from block-stable
classes through the size-biased R-enriched tree. We begin with a simple obser-
vation. Note that the R-objects along the spine of A(�)

R are drawn according to �

independent copies of 
R•(y). In the setting of a block-stable class of connected
graphs C, we have that R = SET ◦B′, where B �= 0 denotes the subclass of blocks
of C. Using (12), we obtain

R• � (
SET ◦B′) ·B′•

and the sampler 
R•(y) is given by independent calls of 
(SET ◦ B ′)(y) and

B ′•(y). Hence, up to relabelling of vertices, the blocks along the spine are drawn
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according to � independent copies of 
B ′•(y)—this observation will be used in
the proof of our main result later.

We are going to apply the following general lemma in Section 5 in order to show
that the blocks along sufficiently long paths in random graphs behave asymptoti-
cally like the spine of A(�)

R for a corresponding integer �.

LEMMA 4.2. Let E be a property of pointed R-enriched trees (i.e., a subset
of A•

R) and let n ∈ N be such that AR[n] is nonempty. Consider the function

f :AR[n] → R, A �→ ∑
v∈[n]

1(A,v)∈E

counting the number of “admissible” outer roots with respect to E . Let An ∈ AR[n]
be drawn uniformly at random. Then E[f (An)] is given by

P
(∣∣
AR(ρ)

∣∣= n
)−1

n−1∑
�=0

(
ρR′(y)

)�
P
(
A(�)
R has size n and satisfies E

)
.

PROOF. First, observe that

n∑
v=1

P
(
(An, v) ∈ E

)= n−1∑
�=0

∑
(A,u)∈E∩A(�)

R [n]
P(An = A).

By (17), we have for all (A,u) ∈ E ∩A(�)
R [n] that

P
(

AR(ρ) = A|∣∣
AR(ρ)

∣∣= n
)

= (
ρR′(y)

)�
P
(
A(�)
R = (A,u)

)
P
(∣∣
AR(ρ)

∣∣= n
)−1

.

This proves the claim. �

5. Convergence toward the CRT. Let C be an analytic block-stable class of
connected graphs and B �= 0 its subclass of all graphs that are 2-connected or a
single edge. We let ρ > 0 denote the radius of convergence of the exponential
generating series C(z) and set y = C•(ρ). As before, we identify C• with the
class AR of R-enriched trees with R = SET ◦ B′. By Proposition 3.6, we know
that if we draw an R-enriched tree (T, α) according to the Boltzmann distribution
with parameter ρ, then T is distributed like a ξ -Galton–Watson tree with ξ :=
|
(SET ◦B′)(y)|, relabelling uniformly at random and discarding the ordering on
the offspring sets.

Throughout this section, let n ≡ 1 mod span(ξ) denote a large enough integer
such that the probability of a ξ -GWT having size n is positive. Let Cn ∈ Cn be
drawn uniformly at random and generate C•

n ∈ C•
n by uniformly choosing a root

from [n]. We let (Tn,αn) be the corresponding enriched tree.
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For any pointed derived block B ∈ B′•, we let sp(B) := dB(∗, root) denote the
length of a shortest path connecting the ∗-vertex with the root. In this section, we
prove our main result.

THEOREM 5.1. Let C be a subcritical class of connected graphs. Then

σ

2κ
√

n
C•

n

(d)−→Te and
σ

2κ
√

n
Cn

(d)−→Te

with respect to the (pointed) Gromov–Hausdorff metric. The constants are given
by σ 2 = E[|B|] and κ = E[|sp(B)|] with B ∈ B′• a random block drawn according
to the Boltzmann distribution with parameter y = C•(ρ), and in particular σ 2 =
1 + B ′′′(y)y2.

As a consequence, we obtain the limit distributions for the height and diameter
of C•

n.

COROLLARY 5.2. Let C be a subcritical class of connected graphs. Then the
rescaled height σ

2κ
√

n
H(C•

n) and diameter σ
2κ

√
n

D(Cn) converge in distribution to

H(Te) and D(Te), i.e. for all x > 0, as n tends to infinity

P

(
H
(
C•

n

)
>

2κ
√

n

σ
x

)
→ 2

∞∑
k=1

(
4k2x2 − 1

)
exp
(−2k2x2),

P

(
D(Cn) >

2κ
√

n

σ
x

)
→

∞∑
k=1

(
k2 − 1

)(2

3
k4x4 − 4k2x2 + 2

)
exp
(−k2x2/2

)
.

Moreover, all moments converge as well. In particular,

E
[
D(Cn)

]∼ 25/2κ

3σ

√
πn ∼ 4

3
E
[
H
(
C•

n

)]
.

Expressions for arbitrarily high moments are given in (7) and (9).

PROOF. The limiting distributions are given in (6) and (8). In order to show
convergence of the moments, we argue that the rescaled height and diameter are
bounded in the space Lp for all 1 < p < ∞. This follows for example from the
sub-Gaussian tail-bounds of Theorem 6.1 given in Section 6 below (note that the
proof of Theorem 6.1 does not depend on the results in this section). �

In the following, we are going to prove Theorem 5.1. The idea is to show that
the pointed Gromov–Hausdorff distance of C•

n and κTn is small with a probability
that tends to 1 as n becomes large and use the convergence of Tn toward a multiple
of the CRT Te.
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FIG. 6. The trees T and S correspond to the rooted graphs (C,x) and (C, z).

DEFINITION 5.3. Let C ∈ C. For any x, y ∈ V (C) set d̄C(x, y) := dT (x, y)

with (T ,α) the enriched tree corresponding to (C, x), that is, C rooted at the ver-
tex x.

Less formally speaking, d̄C(x, y) denotes the minimum number of blocks re-
quired to cover the edges of a shortest path linking x and y. As the example illus-
trated in Figure 6 shows, the distance between x and y in the tree corresponding to
a root z �= x, y might differ from d̄C(x, y). The following lemma ensures that this
difference is bounded.

LEMMA 5.4. Let C ∈ C be a connected graph and x, y, z vertices of C. Let S

be the tree corresponding to the graph C rooted at z. Then

d̄C(x, y) ≤ dS(x, y) ≤ d̄C(x, y) + 1.

Moreover, d̄C is a metric on the vertex set V (C).

PROOF. Suppose that x �= y are two distinct vertices of the graph C. Let T

denote the tree corresponding to the rooted graph (C, x) and let P denote the
unique path in T that joins x and y. Then d̄C(x, y) equals the length �(P ) of P .
Similarly, let S denote the tree corresponding to the rooted graph (C, z) and let Q

denote the unique path in T that joins x and y. Again, the length �(Q) equals the
distance dS(x, y).

The path P consists of precisely the vertices of C whose removal would separate
x from y. Any such vertex must clearly also lie on the path Q. Conversely, if Q

contains a vertex u that does not lie on P , then the removal of u would not separate
x from y. This may only happen if u is equal to the lowest common ancestor w of
x and y in the tree S. See Figure 6 for an example of this case. Hence, the lengths
of the paths P and Q satisfy

�(P ) ≤ �(Q) ≤ �(P ) + 1,

and equality holds if and only if w lies on P . Thus,

dS(x, y) = d̄C(x, y) + 1{w/∈P }.
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The case z = y yields that d̄C is symmetric. The triangle inequality follows from
this fact and

d̄C(x, y) ≤ dS(x, y) ≤ dS(x, z) + dS(z, y) = d̄C(z, x) + d̄C(z, y).

Clearly, d̄C is also reflexive and hence a metric. �

In the following lemma, which is the most important ingredient in the proof of
Theorem 5.1, we apply the results on pointed enriched trees of Section 4.

LEMMA 5.5. Let C be a subcritical class of connected graphs and set κ =
E[sp(
B ′•(y))]. Then for all s > 1 and 0 < ε < 1/2 with 2εs > 1 we have
with a probability that tends to 1 as n becomes large that all x, y ∈ V (Cn) with
d̄Cn(x, y) ≥ logs(n) satisfy∣∣dCn(x, y) − κd̄Cn(x, y)

∣∣≤ d̄Cn(x, y)1/2+ε.

PROOF. We denote Ln = logs(n) and t� = �1/2+ε . Let E ⊂ A•
R � C•• with

R = SET ◦ B′ denote the set of all bipointed graphs or pointed enriched trees
((C, x), y) � ((T ,α), y), where we call x the inner root and y the outer root, such
that

dT (x, y) ≥ L|T | and
∣∣dC(x, y) − κdT (x, y)

∣∣> tdT (x,y).

We will bound the probability that there exist vertices x and y with ((Cn, x), y) ∈
E . First, observe that

∑
x,y∈[n]

P
((

(Cn, x), y
) ∈ E

)= ∑
((C,x),y)∈E

P(Cn = C) = n

n∑
y=1

P
((

C•
n, y

) ∈ E
)
.

By assumption, we may apply Corollary 3.9 to obtain P(|
C•(ρ)| = n) =
�(n−3/2). Moreover, Lemma 3.8 asserts that B ′•(y) = 1 and thus, with Lemma 3.2

ρR′(y) = ρB ′′(y)eB ′(y) = yB ′′(y) = 1.

Hence, by applying Lemma 4.2 we obtain that

P
((

(Cn, x), y
) ∈ E for some x, y

)

≤ O
(
n5/2) n−1∑

�=Ln

P
(
A(�)
R has size n and satisfies E

)
.

The height of the outer root in A(�)
R is distributed like the sum of � independent

random variables, each distributed like the distance of the ∗-vertex and the root
in the corresponding derived block of 
(SET ◦ B ′)•(y). Since (SET ◦ B′)• �
(SET ◦B′) ·B′•, these variables are actually sp(
B ′•(y))-distributed. Hence,

P
(
A(�)
R ∈ E,

∣∣A(�)
R
∣∣= n

)≤ P
(∣∣η1 + · · · + η� − �E[η1]

∣∣> t�
)
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with (ηi)i i.i.d. copies of η := sp(
B ′•(y)). Clearly, we have that η ≤ |
B ′•(y)|.
Since C is subcritical it follows that there is a constant δ > 0 such that E[eηθ ] <

∞ for all θ with |θ | ≤ δ. Hence, we may apply the standard moderate deviation
inequality for one-dimensional random walk stated in Lemma 3.10 to obtain for
some constant c > 0

P
((

(Cn, x), y
) ∈ E for some x, y

)≤ O
(
n7/2) exp

(−c(logn)2sε)= o(1). �

It remains to clarify what happens if d̄Cn is small. We prove the following state-
ment for random graphs from block-stable classes that are not necessarily subcrit-
ical.

PROPOSITION 5.6. Let C be a block-stable class of connected graphs. Sup-
pose that B ′•(y) = 1 and the offspring distribution ξ has finite second moment,
that is, B ′′′(y) < ∞. Let lb(Cn) denote the size of the largest block in Cn. Then

1. For any x, y ∈ Cn we have dCn(x, y) ≤ d̄Cn(x, y)lb(Cn).
2. If the offspring distribution ξ is bounded, then so is lb(Cn). Otherwise, for

any sequence Kn we have P(lb(Cn) ≥ Kn) = O(n)P(ξ ≥ Kn).

PROOF. We have that dCn ≤ d̄Cn(lb(Cn)−1) and lb(Cn) = lb(C•
n) ≤ �(Tn)+1

with �(Tn) denoting the largest out-degree. Recall that �(Tn) is distributed like
the maximum degree of a ξ -Galton–Watson tree conditioned to have n vertices.
By assumption, the offspring distribution ξ has expected value E[ξ ] = B ′•(y) = 1
and finite variance.

If ξ is bounded, then so is the largest outdegree of Tn. Otherwise, as argued in
the proof of [28], equation (19.20), for any sequence Kn

P
(
�(Tn) ≥ Kn

)≤ (1 + o(1)
)
nP(ξ ≥ Kn).(21)

Applying (21) yields P(lb(Cn) ≥ Kn) ≤ (1 + o(1))nP(ξ ≥ Kn) for any se-
quence Kn. �

Note that if C is subcritical then this implies that lb(Cn) = O(logn) with a prob-
ability that tends to 1: the definition of the Boltzmann model and the fact that y is
smaller than the radius of convergence of B(z) guarantee that there is a constant
β < 1 such that

P(ξ = k) = P
(∣∣
(SET ◦ B ′)(y)

∣∣= k
)= O

(
βk).

Combined with the bounds of Lemma 5.5, this yields the following concentration
result.

COROLLARY 5.7. Let C be a subcritical class of connected graphs. Then for
all s > 1 and 0 < ε < 1/2 with 2εs > 1 we have with a probability that tends to 1
as n becomes large that for all vertices x, y ∈ V (Cn)∣∣dCn(x, y) − κd̄Cn(x, y)

∣∣≤ d̄Cn(x, y)1/2+ε + O
(
logs+1(n)

)
.
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We may now prove the main theorem.

PROOF OF THEOREM 5.1. Lemma 5.4 implies that d̄Cn ≤ dTn ≤ d̄Cn + 1. By
Corollary 5.7, Proposition 2.3 and considering the distortion of the identity map as
correspondence between the vertices of Tn and C•

n, it follows that with a probability
that tends to 1 as n becomes large

dGH
(
C•

n/(κ
√

n),Tn/
√

n
)≤ D(Tn)

3/4/
√

n + o(1).

Using the tail bounds (1) for the diameter D(Tn), we obtain that

dGH
(
C•

n/(κ
√

n),Tn/
√

n
)

converges in probability to zero. Recall that the variance of the offspring distribu-

tion ξ is given by σ 2 = E[|
B ′•(y)|]. By Theorem 2.5, we have that σ
2
√

n
Tn

(d)−→Te,

and thus σ
2κ

√
n

C•
n

(d)−→Te. �

6. Sub-Gaussian tail bounds for the height and diameter. In this section,
we prove sub-Gaussian tail bounds for the height and diameter of the random
graphs C•

n and Cn. Our proof builds on results obtained in [1]. Recall that (Tn,αn)

denotes the enriched tree corresponding to the graph C•
n and that Tn has a nat-

ural coupling with a ξ -Galton–Watson conditioned on having size n, see Propo-
sition 3.6. With (slight) abuse of notation, we also write Tn for the conditioned
ξ -Galton–Watson tree within this section. We prove the following statement for
random graphs from block-stable classes that are not necessarily subcritical.

THEOREM 6.1. Let C be a block-stable class of connected graphs. Suppose
that C satisfies B ′•(y) = 1 and the offspring distribution ξ has finite variance, i.e.
B ′′′(y) < 1. Then there are C,c > 0 such that for all n,x ≥ 0

P
(
D(Cn) ≥ x

)≤ C exp
(−cx2/n

)
and P

(
H
(
C•

n

)≥ x
)≤ C exp

(−cx2/n
)
.

As H(Tn) ≤ H(C•
n), inequality (1) also yields a lower tail bound for the height

of C•
n.

COROLLARY 6.2. There are constants C,c > 0 such that for all x ≥ 0 and n

P
(
H
(
C•

n

)≤ x
)≤ C exp

(−c(n − 2)/x2).
As a main ingredient in our proof, we consider the lexicographic depth-first-

search (DFS) of the plane tree Tn by labeling the vertices in the usual way (as a
subtree of the Ulam–Harris tree) by finite sequences of integers and listing them in
lexicographic order v0, v1, . . . , vn−1. The search keeps a queue of Qd

i nodes with
Qd

0 = 1 and the recursion

Qd
i = Qd

i−1 − 1 + d+
Tn

(vi−1).
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The mirror-image of Tn is obtain by reversing the ordering on each offspring
set and the reverse DFS Qr

i is defined as the DFS of the mirror-image. Then
(Qd

i )0≤i≤n and (Qr
i )0≤i≤n are identically distributed and satisfy the following

bound given in [1], inequality (4.4):

P

(
max

j
Qd

j ≥ x
)

≤ C exp
(−cx2/n

)
(22)

with C,c > 0 denoting some constants that do not depend on x or n.

PROOF OF THEOREM 6.1. Since D(Cn) ≤ 2H(C•
n), it suffices to show the

bound for the height. Let h ≥ 0. If H(C•
n) ≥ h, then there exists a vertex whose

height equals h. Consequently, we may estimate P(H(C•
n) ≥ h) ≤ P(E1) + P(E2)

with E1 (resp., E2) denoting the event that there is a vertex v such that hC•
n
(v) = h

and hTn(v) ≥ h/2 [resp., hTn(v) ≤ h/2]. By the tail bound (1) for the height of
Galton–Watson trees, we obtain

P(E1) ≤ P
(
H(Tn) ≥ h/2

)≤ C2 exp
(−c2h

2/(4n)
)

for some constants C2, c2 > 0. In order to bound P(E2), suppose that there is a
vertex v with height hC•

n
(v) = h and hTn(v) ≤ h/2. If a is a vertex of Tn and b one

of its offspring, then dC•
n
(a, b) ≤ d+

Tn
(a). Hence,∑

u�v

d+
Tn

(u) ≥ hC•
n
(v) = h

with the sum index u ranging over all ancestors of v. Consider the lexicographic
depth-first-search (Qd

i )i and reverse depth-first-search (Qr
i )i of Tn. Let j (resp., k)

denote the index corresponding to the vertex v in the lexicographic (resp., reverse
lexicographic) order. It follows from the definition of the queues that if E2 occurs

Qd
j + Qr

k = 2 +∑
u�v

d+
Tn

(u) − hTn(v) ≥ h/2

and hence max(Qd
j ,Qr

k) ≥ h/4. Since Qd
j and Qr

k are identically distributed,
by (22)

P(E2) ≤ P

(
max

i

(
Qd

i

)≥ h/4
)

+ P

(
max

i

(
Qr

i

)≥ h/4
)

≤ 2P
(
max

i

(
Qd

i

)≥ h/4
)

≤ 2C exp
(−ch2/(16n)

)
.

This completes the proof. �

7. Extensions. In the following, we use the notation from Section 5.
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7.1. First passage percolation. Let ω > 0 be a given random variable with
finite exponential moments, that is, such that there is a δ > 0 with E[eθω] < ∞ for
all θ with |θ | ≤ δ. For any connected graph G, we may consider the random graph
Ĝ obtained by assigning to each edge e ∈ E(G) a weight ωe that is an independent
copy of ω. The d

Ĝ
-distance of two vertices a and b is then given by

d
Ĝ
(a, b) = inf

{ ∑
e∈E(P )

ωe|P a path connecting a and b in G

}
.

We may extend our main result to random graphs with link-weights.

THEOREM 7.1. Let C be a subcritical class of connected graphs and B its
subclass of graphs that are 2-connected or a single edge. Let Cn ∈ Cn and C•

n ∈ C•
n

denote the uniform (rooted) random graphs. Form the link-weighted versions Ĉn

and Ĉ•
n by assigning to each edge an independent copy of a random variable ω > 0

having finite exponential moments. Then

σ

2κ̂
√

n
Ĉ•

n

(d)−→Te and
σ

2κ̂
√

n
Ĉn

(d)−→Te

with respect to the (pointed) Gromov–Hausdorff metric. The scaling constant κ̂ is
given by κ̂ := E[sp(B̂)] with B drawn according to the Boltzmann sampler 
B ′•(y)

and sp(B̂) denoting the dB̂-distance from the ∗-vertex to the root vertex.

PROOF. For any n, let Kn denote the complete graph with n vertices. The idea
is to generate Ĉn by drawing Cn and K̂n independently and assign the weights via
the inclusion E(Cn) ⊂ E(Kn). By considering subsets E ⊂ C•• × R

⋃
n E(Kn), we

may easily prove a weighted version of Lemma 4.2, that is, the probability that the
random pair (C••

n , K̂n) has some property E is bounded by

O
(
n5/2) n−1∑

�=0

P
(∣∣
C•(�)(ρ)

∣∣= n,
(

C•(�)(ρ), K̂n

) ∈ E
)
.

This implies that the blocks along sufficiently long paths in Ĉn behave like inde-
pendent copies of the weighted block B̂ with B drawn according to the Boltzmann
sampler 
B ′•(y). Hence, weighted versions of Lemma 5.5 and Proposition 5.6
may be deduced analogously to their original proofs with κ̂ replacing κ and only
minor modifications otherwise. Thus, the scaling limit follows in the same fashion.

�

7.2. Random graphs given by their connected components. We study the case
of an arbitrary graph consisting of a set of connected components. Let G � SET◦C
denote a subcritical graph class given by its subclass C of connected graphs. For
simplicity, we are going to assume that all trees belong to the class C.
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Consider the uniform random graph Gn ∈ Gn. Of course, we cannot expect Gn

to converge to the continuum random tree since it may be disconnected with a
probability that is bounded away from zero. Instead we study a uniformly chosen
component Hn of maximal size. We are going to show that Hn/

√
n converges to a

multiple of the CRT.

THEOREM 7.2. Suppose C is a subcritical class of connected graphs contain-

ing all trees. Then σ
2κ

√
n

Hn
(d)−→Te with respect to the Gromov–Hausdorff metric,

where σ, κ are as in Theorem 5.1.

We are going to use the known fact that with a probability that tends to 1 as
n becomes large the random graph Gn has a unique giant component with size
n + Op(1). This follows for example from [39], Theorem 6.4.

LEMMA 7.3. If C contains all trees, then the size of a largest component sat-
isfies |Hn| = n + Op(1).

PROOF OF THEOREM 7.2. Let f : K→R be a bounded Lipschitz-continuous
function defined on the space of isometry classes of compact metric spaces. We
will show that E[f ( σ

2κ
√

n
Hn)] → E[f (Te)] as n tends to infinity. Set �n := logn.

By Lemma 7.3, we know that |Hn| = n + Op(1). Hence, with a probability that
tends to 1 as n becomes large we have n − |Hn| ≤ �n, and thus

E

[
f

(
σ

2κ
√

n
Hn

)]

= o(1) + ∑
0≤k≤�n

E

[
f

(
σ

2κ
√

n
Hn

)∣∣∣|Hn| = n − k

]
P
(|Hn| = n − k

)
.

The conditional distribution of Gn given the sizes (si)i of its components is given
by choosing components Ki ∈ C[si] independently uniformly at random and dis-
tributing labels uniformly at random. In particular, as a metric space, Hn condi-
tioned on |Hn| = n − k is distributed like the uniform random graph Cn−k . Thus,
given ε > 0 we have for n sufficiently large by Lipschitz-continuity

E

[
f

(
σ

2κ
√

n
Hn

)
||Hn| = n − k

]
= E

[
f

(
σ

2κ
√

n
Cn−k

)]
∈ E

[
f (Te)

]± ε

for all 0 ≤ k ≤ �n. Thus, |E[f ( σ
2κ

√
n

Hn)] −E[f (Te)]| ≤ ε for sufficiently large n.

Since ε > 0 was chosen arbitrarily it follows that E[f ( σ
2κ

√
n

Hn)] → E[f (Te)] as n

tends to infinity. �
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8. The scaling factor of specific classes. In this section, we apply our main
results to several specific examples of subcritical graph classes. The notation that
will be fixed throughout this section is as follows: C denotes a subcritical class of
connected graphs and B its subclass of 2-connected graphs and edges. The radius
of convergence of C(z) is denoted by ρ. The constant y = C•(ρ) is the unique
positive solution of the equation

yB ′′(y) = 1.

By Lemma 3.2, this determines ρ = y exp(−B ′(y)). Moreover, we set

κ = E
[
sp
(

B ′•(y)

)]
,

that is, the expected distance from the ∗-vertex to the root in a random block chosen
according to the Boltzmann distribution with parameter y. We call κ the scaling
factor for C. The offspring distribution ξ of the random tree corresponding to the
sampler 
C•(y) has probability generating function ϕ(z) = exp(B ′(yz) − λ) with
λ = B ′(y); see Proposition 3.6. Its variance is given by

σ 2 = 1 + B ′′′(y)y2 = E
[∣∣
B ′•(y)

∣∣].
We let d denote the span of the offspring distribution. By applying Corollary 5.2
we obtain

E
[
H
(
C•

n

)]
/
√

n → κ

√
2π/σ 2 =: H as n → ∞ with n ≡ 1 mod d

with C•
n ∈ C•

n drawn uniformly at random. We call H the expected rescaled height.
Moreover, Corollary 3.9 yields that

|Cn| ∼ cn−5/2ρ−n
C n! as n → ∞ with n ≡ 1 mod d

with c = yd/
√

2πσ 2. In this section, we derive analytical expressions for the rel-
evant constants κ,H, c,ρ, y,λ, σ 2 for several graph classes; Table 3 provides nu-
merical approximations. For a set of graphs M , we denote by Forb(M) the class
of all connected graphs that contain none of the graphs in M as a topological mi-
nor; if M contains only 2-connected graphs, then it is easy to see that Forb(M) is
block-stable, cf. [17]. For n ≥ 3, we denote by Cn a graph that is isomorphic to a
cycle with n vertices.

8.1. Trees. Let C be the class of trees, that is, B consists only of the graph K2.
It is easy to see that the offspring distribution follows a Poisson distribution with
parameter one. We immediately obtain the following.

PROPOSITION 8.1. For the class of trees, we have κ = 1 and σ 2 = 1.
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TABLE 3
Numerical approximations of constants for examples of subcritical classes of connected graphs

Graph class κ H c ρ y λ σ 2

Trees = Forb(C3) 1 2.50662 0.39894 0.36787 1 1 1
Forb(C4) 1 2.13226 0.20973 0.23618 0.27520 0.80901 1.38196
Forb(C5) 1.10355 1.88657 0.10987 0.06290 0.40384 1.85945 2.14989
Cacti Graphs 1.20297 1.99021 0.12014 0.23874 0.45631 0.64779 2.29559
Outerplanar Graphs 5.08418 1.30501 0.00697 0.13659 0.17076 0.22327 95.3658

8.2. Forb(C4). Let C denote the connected graphs of the class Forb(C4). Then
each block is either isomorphic to K2 or K3. Hence, B(z) = z2/2 + z3/6. More-
over, for any B ∈ B and any two distinct vertices in B their distance is one. A sim-
ple computation then yields the following.

PROPOSITION 8.2. For the class Forb(C4), we have κ = 1 and σ 2 = (5 −√
5)/2.

8.3. Forb(C5). Recall that the class Forb(C5) consists of all graphs that do not
contain a cycle with five vertices as a topological minor. Hence, a graph belongs
to this class if and only if it contains no cycle of length at least five as subgraph.

PROPOSITION 8.3. For the class Forb(C5), the constant y is the unique posi-
tive solution to zB ′′(z) = 1, where B ′ is given in (25). Moreover, we have

κ = (
2y2 + 4y + 3

)
yey − (3y2 + 12y + 4

)
y/2 ≈ 1.10355

and σ 2 = 1 + B ′′′(y)y2 ≈ 2.14989.

Before proving Proposition 8.3, we identify the unlabeled blocks of this class.
A similar result is given in [25]; we include a short proof for completeness.

PROPOSITION 8.4. The unlabeled blocks of the class Forb(C5) are given by

K2,K4, (K2,m)m≥1,
(
K+

2,m

)
m≥2.(23)

Here, Kn denotes the complete graph and Km,n the complete bipartite graph with
bipartition {[m], [n + m] \ [m]}. The graph K+

2,n is obtained from K2,n by adding
an additional edge between the two vertices from [m] = [2].

PROOF. We may verify (23) by considering the standard decomposition of
2-connected graphs: an arbitrary graph G is 2-connected if and only if it can be
constructed from a cycle by adding H -paths to already constructed graphs H [17].
If G ∈ Forb(C5), then so do all the graphs along its decomposition. In particular
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we must start with a triangle or a square. Since every edge of a 2-connected graph
lies on a cycle, we may only add paths of length at most two in each step. In
particular, for m ≥ 3 a K2,m may only become a K+

2,m or K2,m+1, and a K+
2,m may

only become a K+
2,m+1. Thus, (23) follows by induction on the number of vertices.

�

PROOF OF PROPOSITION 8.3. With foresight, we use the decomposition

B = S +H+P(24)

with the classes of labeled graphs S , H and P defined by their sets of unlabeled
graphs S̃ = {K2,K3,K4,C4}, H̃ = {K2,m|m ≥ 3} and P̃ = {K+

2,m|m ≥ 2}. Any
unlabeled graph from H or P with n vertices has exactly

(n
2

)
different labelings,

since any labeling is determined by the choice of the two unique vertices with
degree at least three. Hence,

S(x) = x2/2 + x3/6 + x4/6, H(x) =∑
n≥5

(
n

2

)
xn

n! and

P(x) = ∑
n≥4

(
n

2

)
xn

n!
and thus

B ′(x) = x(x + 2)ex − x
(
15x + 2x2 + 6

)
/6.(25)

Solving the equation B ′•(y) = 1 yields

y ≈ 0.40384.

First, let Hn ∈ H′•
n with n ≥ 4 be drawn uniformly at random. We say that a vertex

lies on the left if it has degree at least three, otherwise we say it lies on the right.
There are n

(n+1
2

)
graphs in the class H′•

n and precisely n2 of those have the property
that the ∗-vertex lies on the left. The distance of the root and the ∗-vertex equals
two if they lie on the same side and one otherwise. Hence,

E
[
sp(Hn)

]= n(n+1
2

)
(

1

n
· 2 + n − 1

n
· 1
)

+
(

1 − n(n+1
2

)
)(

2

n
· 1 + n − 2

n
· 2
)
.

Let Pn ∈ P ′•
n with n ≥ 3 and Sn ∈ Sn with n = 1,2,3 be drawn uniformly at ran-

dom. Analogously to the above calculation, we obtain

E
[
sp(Pn)

]= n(n+1
2

)1 +
(

1 − n(n+1
2

)
)(

2

n
· 1 + n − 2

n
· 2
)

and

E
[
sp(S1)

]= E
[
sp(S2)

]= 1, E
[
sp(S3)

]= 1
4 · 1 + 3

4

(2
3 · 1 + 1

3 · 2
)= 5

4 .
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Since B ′•(y) = 1, we have for any class F ∈ {S ′•,H′•,P ′•} that

E
[
sp
(

B ′•(y)

)
,
B ′•(y) ∈F

]=∑
n

([
zn]F(yz)

)
E
[
sp(Fn)

]
.

Summing up yields

E
[
sp
(

B ′•(y)

)]= (
2y2 + 4y + 3

)
yey − (3y2 + 12y + 4

)
y/2 ≈ 1.10355. �

8.4. Cacti graphs. A cactus graph is a graph in which each edge is contained
in at most one cycle. Equivalently, the class of cacti graphs is the block-stable
class of graphs where every block is either an edge or a cycle. In the following,
C denotes the class of cacti graphs.

PROPOSITION 8.5. For the class of cacti graphs, the constant y is the unique
positive solution to zB ′′(z) = 1, where B ′ is given in (26). Moreover, we have

κ = y4 − 2y3 + 2y − 2

(y2 − 2y + 2)(1 + y)(y − 1)
≈ 1.20297

and σ 2 = 1 + B ′′′(y)y2 ≈ 2.29559.

PROOF. By counting the number of labelings of a cycle, we obtain |B′
n| = n!/2

for n ≥ 2. It follows that

B ′(z) = z + z2

2(1 − z)
(26)

and hence B ′•(z) = z + 1
2
∑

n≥2 nzn = z3−2z2+2z
2(z−1)2 . Solving the equation B ′•(y) = 1

yields

y = −1
3(17 + 3

√
33)1/3 + 2

3(17 + 3
√

33)−1/3 + 4
3 ≈ 0.45631.

Let 
B ′•(y) denote a Boltzmann-sampler for the class B′• with parameter y and
for any n ≥ 1 let Bn ∈ B′•

n be drawn uniformly at random. Since B ′•(y) = 1, it
follows that

κ = E
[
E
[
sp
(

B ′•(y)

)|∣∣
B ′•(y)
∣∣]]

= ∑
n≥1

sp(Bn)
[
zn]B ′•(yz) = sp(B1)y + 1

2

∑
n≥2

sp(Bn)ny
n.

Clearly, sp(B1) = 1 and for n ≥ 2 we have that sp(Bn) is distributed like the dis-
tance from the ∗-vertex to a uniformly at random chosen root from [n] in the cycle
(∗,1,2, . . . , n). Hence,

sp(Bn) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

n

n/2∑
i=1

i = n + 2

4
, n is even,

n + 1

2n
+ 2

n

(n−1)/2∑
i=1

i = (n + 1)2

4n
, n is odd.
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Summing up over all possible values of n yields the claimed value of κ . �

8.5. Outer-planar graphs. An outer-planar graph is a planar graph that can be
embedded in the plane in such a way that every vertex lies on the boundary of
the outer face. Any such embedding (considered up to continuous deformation) is
termed an outer-planar map. The scaling limit of the model “all outer-planar maps
with n vertices equally likely” was studied by Caraceni [13], who established con-
vergence to the CRT using a bijection by Bonichon, Gavoille and Hanusse [11].
Our results allow us to study the model “all outer-planar graphs with n vertices
equally likely,” which is a different setting. Note also that the scaling factor ob-
tained in the following differs from the one established for outer-planar maps.

Let C denote the class of connected outer-planar graphs and B the subclass
consisting of single edges or 2-connected outer-planar graphs.

PROPOSITION 8.6. For the class of outer-planar graphs the constant y is the
unique positive solution to zB ′′(z) = 1, where B ′(z) = (z + D(z))/2 and D is
given in (27). Moreover,

κ = y

2
+
(

1 − y

2

)
8w4 − 16w3 + 4w − 1

(4w3 − 6w2 − 2w + 1)(2w − 1)
≈ 5.0841

with w = D(y) and σ 2 = 1 + B ′′′(y)y2 ≈ 95.3658.

Following [8], we develop a specification of B′• that eventually will enable us
to prove the above expressions of the relevant constants. Any 2-connected outer-
planar graph has a unique Hamilton cycle, which corresponds to the boundary of
the outer face in any drawing having the property that all vertices lie on the outer
face. The edge set of a 2-connected outer-planar graph can thus be partitioned in
two parts: the edges of the Hamilton cycle, and all other edges, which we refer
to as the set of chords. Let D denote the class obtained from B′ by orienting the
Hamilton cycle of each object of size at least three in one of the two directions
and marking the oriented edge whose tail is the ∗-vertex. The block consisting of
a single edge is oriented in the unique way such that the ∗-vertex is the tail of the
marked edge. We start with some observations.

LEMMA 8.7. We have that B ′(z) = (z + D(z))/2 and

E
[
sp
(

B ′•(x)

)]= x

2B ′•(x)
+
(

1 − x

2B ′•(x)

)
E
[
sp
(

D•(x)

)]
.

PROOF. We have an isomorphism

B′ +B′ =: 2B′ �X +D.



3328 K. PANAGIOTOU, B. STUFLER AND K. WELLER

FIG. 7. Recursive specification of the class D.

Consequently, the classes B′• and D• obtained by additionally rooting at a non-∗-
vertex satisfy

2B′• � X + D•.
Hence, the following procedure is a Boltzmann sampler for the class B′• with
parameter x.


B ′•(x): s ← Bern( x
2B ′•(x)

)

if s = 1 then return a single edge {∗,1} rooted at 1
else return 
D•(x) without the orientation

This completes the proof. �

Hence, it suffices to study the class D•; see also Figures 7 and 8.

LEMMA 8.8. The classes D and D• satisfy

D = X +D×D +D×D×D + · · · ,
D• = X + (D•×D +D×D•)

+ (D•×D×D +D×D•×D +D×D×D•)+ · · · .
Their exponential generating functions are given by

D•(z) = z(D(z) − 1)2

2(D(z))2 − 4D(z) + 1
,(27)

D(z) = 1

4

(
1 + z −

√
z2 − 6z + 1

)
.(28)

PROOF. Let B ∈ D with |B| ≥ 2 be a derived outer-planar block, rooted at an
oriented edge −→e of its Hamilton cycle C such that the ∗-vertex is the tail of −→e .

FIG. 8. Decomposition of a D•-object into a D×D• ×D-object. The root is marked with a square.
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Given a drawing of B such that C is the boundary of the outer face, the root face
is defined to be the bounded face F whose border contains −→e . Then B may be
identified with the sequence of blocks along F , ordered in the reverse direction of
the edge −→e . This yields the decompositions illustrated in Figures 7 and 8. Solving
the corresponding equations of generating functions yields (27). �

The equation determining y = C•(ρ) is

1 = B ′•(y) = (
y + D•(y)

)
/2.

We obtain that y ≈ 0.17076 is the unique root of the polynomial

3z4 − 28z3 + 70z2 − 58z + 8

in the interval [0,1/2], and hence

σ 2 = 1 + B ′′′(y)y2 ≈ 95.3658.

It remains to compute κ .

LEMMA 8.9. We have that

E
[
sp
(

D•(y)

)]= 8w4 − 16w3 + 4w − 1

(4w3 − 6w2 − 2w + 1)(2w − 1)
≈ 5.46545

with w := D(y) ≈ 0.27578.

Since B ′•(y) = 1 this implies with Lemma 8.7 that

κ = E
[
sp
(

B ′•(y)

)]= y

2
+
(

1 − y

2

)
E
[
sp
(

D•(y)

)]≈ 5.08418,

and the this completes the proof of Proposition 8.6.

PROOF OF LEMMA 8.9. The rules for Boltzmann samplers translate the spec-
ification

D• = X + (D•×D +D×D•)
+ (D•×D×D +D×D•×D +D×D×D•)+ · · ·

of D• given in Lemma 8.8 into the following sampling algorithm.
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D•(x): s ← drawn with P(s = 2) = x
D•(x)

and, for i ≥ 3,

P(s = i) = (i − 1)(D(x))i−2

if s = 2 then
return a single directed edge (∗,1)

else
γ ← a cycle {v1, v2}, {v2, v3}, . . . , {vs, v1} with v1 = ∗
t ← a number drawn uniformly at random

from the set [s − 1]
γ ← identify (vt , vt+1) with

the root-edge of γt ← 
D•(x)

for each i ∈ [s − 1] \ {t}
γ ← identify (vi, vi+1) with the root-edge

of γi ← 
D(x)

end for
root γ at the directed edge (∗, vs)

return γ relabeled uniformly at random
end if

Given a graph H in D• let S(H), S′(H) denote the length of a shorted past
in H from the root-vertex to the tail v1 = ∗ or head vs of the directed root-edge,
respectively. Clearly, S(H) and S′(H) differ by at most one. It will be convenient
to also consider their minimum M(H). Let S, S′ and M denote the corresponding
random variables in the random graph D drawn according to the sampler 
D•(x).
For any integers �, k ≥ 0 with � + k ≥ 1 let D�,k be the random graph D condi-
tioned on the event that the graph is not a single edge and that in the root face
{v1, v2}, {v2, v3}, . . . , {vs, v1} the length of the path v1v2 · · ·vt equals � and the
length of the path vt+1vt+2 · · ·vs equals k. Note that the probability for this event
equals

p�,k = P(s = � + k + 2)P(t = � + 1|s = � + k + 2) = (
D(x)

)k+�
.

We denote by S�,k , S′
�,k and M�,k the corresponding distances in the conditioned

random graph D�,k . Summing over all possible values for k and �, we obtain

E[S] = x

D•(x)
+ ∑

k+�≥1

E[S�,k]p�,k, E
[
S′]= ∑

k+�≥1

E
[
S′

�,k

]
p�,k,

E[M] = ∑
k+�≥1

E[M�,k]p�,k.

Any shortest path from ∗ or vs to the root-vertex of a B′•-graph H ( �= a single
edge) must traverse the boundary of the root-face in one of the two directions until
it reaches the root-edge of the attached B′•-object H ′. From there, it follows a
shortest path to the root in the graph H ′. Hence, for all k, � ≥ 0 with k + � ≥ 1 the
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following equations hold:

S�,k
(d)= min

{
� + S, k + 1 + S′},

S′
�,k

(d)= min
{
� + 1 + S, k + S′},

M�,k
(d)= min

{
� + S, k + S′}.

Since S and S′ differ by at most one, this may be simplified further depending on
the parameters k and � as follows:

S�,k
(d)=
⎧⎨
⎩

� + S, � ≤ k,

� + M, � = k + 1,

k + 1 + S′, � ≥ k + 2,

S ′
�,k

(d)=
⎧⎪⎨
⎪⎩

k + S′, k ≤ �,

k + M, k = � + 1,

� + 1 + S, k ≥ � + 2

and

M�,k
(d)=
⎧⎨
⎩

� + S, � ≤ k − 1,

� + M, � = k,

k + S′, � ≥ k + 1.

Using this and (27), we arrive at the system of linear equations with parameter
w = D(x) and variables μS = E[S], μS′ = E[S′] and μM = E[M]

μS = 2w2 − 4w + 1

(w − 1)2 +∑
k≥1

k∑
�=0

(� + μS)w�+k +∑
�≥1

(� + μM)w2�−1

+∑
k≥0

∑
�≥k+2

(k + 1 + μS′)w�+k,

μS′ =∑
�≥1

�∑
k=0

(k + μS′)w�+k +∑
k≥1

(k + μM)w2k−1

+∑
�≥0

∑
k≥�+2

(� + 1 + μS)w�+k,

μM =∑
k≥2

k−1∑
�=0

(� + μS)w�+k +∑
�≥1

(� + μM)w2� +∑
k≥0

∑
�≥k+1

(k + μS′)w�+k.

Simplifying the equations yields the equivalent system

A · (E[S],E[S′],E[M])T = b

with

A =
⎛
⎜⎝

2w4 − 4w3 + 3w − 1 −w3 + w2 w3 − 2w2 + w

−w3 + w2 2w4 − 4w3 + 3w − 1 w3 − 2w2 + w

−w2 + w −w2 + w 2w4 − 4w3 + w2 + 2w − 1

⎞
⎟⎠
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and

bT = (2w4 − 4w3 − w2 + 3w − 1 −w −w2 ) .

For x = y ≈ 0.17076, we obtain w ≈ 0.27578 and det(A) ≈ −0.00799 �= 0.
Solving the system of linear equations yields

E[S] = 8w4 − 16w3 + 4w − 1

(4w3 − 6w2 − 2w + 1)(2w − 1)
≈ 5.46545,

and the proof is completed. �
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