
The Annals of Probability
2016, Vol. 44, No. 4, 2889–2979
DOI: 10.1214/15-AOP1038
© Institute of Mathematical Statistics, 2016

LOCAL LIMIT THEOREM AND EQUIVALENCE OF DYNAMIC
AND STATIC POINTS OF VIEW FOR CERTAIN BALLISTIC

RANDOM WALKS IN I.I.D. ENVIRONMENTS

BY NOAM BERGER∗,†,1, MORAN COHEN∗,1 AND RON ROSENTHAL‡,2

Hebrew University of Jerusalem∗, TU Munich† and ETH Zürich‡

In this work, we discuss certain ballistic random walks in random envi-
ronments on Z

d , and prove the equivalence between the static and dynamic
points of view in dimension d ≥ 4. Using this equivalence, we also prove
a version of a local limit theorem which relates the local behavior of the
quenched and annealed measures of the random walk by a prefactor.

1. Introduction.

1.1. Background. Let d ≥ 1. A random walk in a random environment
(RWRE) on Z

d is defined by the following procedure: let Md denote the space of
all probability measures on Ed = {±ei}di=1 (the standard unit coordinate vectors),

and define � = (Md)Z
d
. An environment is an element ω ∈ �. For x ∈ Z

d and
e ∈ Ed , we denote by ω(x, e) the probability that the measure ω(x) gives to e.
Let P be an i.i.d. measure on �, in the sense that P = νZ

d
for some probability

measure ν on Md . Throughout this paper, we assume that P is uniformly elliptic,
that is, there exists some η > 0 such that for every e ∈ Ed

P
({

ω ∈ � : ω(0, e) ≥ η
}) = ν

({
ω ∈ Md : ω(e) ≥ η

}) = 1.(1.1)

For a given, fixed environment ω ∈ � and x ∈ Z
d , the quenched random walk on it

(or the quenched law) is a time homogeneous Markov chain on Z
d with transition

probabilities

P x
ω(Xn+1 = y + e|Xn = y) = ω(y, e) ∀y ∈ Z

d, e ∈ Ed

and initial distribution P x
ω(X0 = x) = 1. We let Px = P ⊗ P x

ω be the joint law of
the environment and the walk, and define the annealed (or averaged) law as its
marginal on the space of trajectories

P
x(·) =

∫
�

P x
ω(·) dP (ω).
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We use the notation E, Ex
ω and E

x for the expectations of the measures P , P x
ω

and P
x , respectively.

In [27, 29], Sznitman and Zerner proved that the limiting velocity of the random
walk

v = lim
n→∞

Xn

n

exists for P -almost every environment and P 0
ω-almost every trajectory of the ran-

dom walk on it. A question to remain open, which in fact is one the most important
open questions in the field, is whether the limiting velocity is an almost sure con-
stant.

An important family of measures P for the model is given by the following
definition.

DEFINITION 1.1. The RWRE is said to be ballistic if the limiting velocity is
a nonzero almost sure constant.

1.2. Conditions for ballisticity. In [25, 26], Sznitman introduced two criteria
for ballisticity of RWRE, called conditions (T ) and (T ′). In order to give a formal
definition of these conditions, some preliminary definitions are needed.

DEFINITION 1.2. Let � ∈ Sd−1 := {x ∈ R
d : ‖x‖2 = 1} be a direction in R

d .

(1) For L > 0 and a sequence {Xn} (in Z
d ), define

TL = T
(�)
L

({Xn}) = inf
{
n ≥ 0 : 〈Xn, �〉 ≥ L

}
,

where 〈·, ·〉 denotes the standard inner product in R
d .

(2) Similarly, for a set A ⊂ Z
d and a sequence {Xn} (in Z

d ), denote

TA = TA

({Xn}) = inf{n ≥ 0 : Xn ∈ A}.
We can now state the definition of Sznitman’s ballisticity conditions.

DEFINITION 1.3. (1) Given 0 < γ ≤ 1, we say that P satisfies condition (Tγ )

in direction �0 ∈ Sd−1 if for every � ∈ Sd−1 in some neighborhood of �0 there
exists a finite constant C such that

P
0(T (−�)

L < T
(�)
L

)
< Ce−Lγ

.

(2) P is said to satisfy condition (T ) if it satisfies condition (T1).
(3) P is said to satisfy condition (T ′) if it satisfies condition (Tγ ) for some

1
2 < γ < 1.

REMARK 1.4. It was shown in [26] that all the conditions (Tγ ) for 1
2 < γ < 1

are equivalent.

The relation between ballisticity and the above definition is given by the follow-
ing theorem and conjecture.
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THEOREM 1.5 (Sznitman [26]). If condition (T ′) holds for some direc-
tion �0 ∈ Sd−1, then the RWRE is ballistic, and the limiting velocity v satis-
fies 〈v, �0〉 > 0. In addition, under this assumption, condition (T ′) holds for all
� ∈ Sd−1 satisfying 〈v, �〉 > 0.

CONJECTURE (Sznitman). Condition (T ′) is equivalent to ballisticity.

In recent years, several improvements of Theorem 1.5 have been proved: in [10],
Drewitz and Ramírez showed that for some constant γd ∈ (0.366,0.388) which is
dimension dependent (Tγ ) for γ ∈ (γd,1) are all equivalent. In [2], Theorem 1.4,
Berger showed that in dimension d ≥ 4 the condition (Tγ ) for γ ∈ (0,1) implies
ballisticity. In an additional work [11], Drewitz and Ramírez showed that in di-
mension d ≥ 4 all the conditions (Tγ ) for γ ∈ (0,1) are equivalent. In [5], Berger,
Drewitz and Ramírez showed that in fact (fast enough) polynomial decay (see Def-
inition 1.6 below) is equivalent to condition (Tγ ) for any 0 < γ < 1. Finally, in [9]
Campos and Ramírez proved ballisticity for some nonuniformly elliptic environ-
ments satisfying (fast enough) polynomial decay.

DEFINITION 1.6 [Condition (P)]. Let N0 be an even integer. For a coordi-
nate direction � = �1, let �2, . . . , �d be any fixed completion of �1 to an orthonor-
mal basis of Rd and define

Boxx =
{
y ∈ Z

d : −N0

2
< 〈y − x, �〉 < N0, 〈y − x, �j 〉 < 25N3

0 ∀2 ≤ j ≤ d

}
,

B̃oxx = {
y ∈ Z

d : 1
3N0 ≤ 〈y − x, �〉 < N0, 〈y − x, �j 〉 < N3

0 ∀2 ≤ j ≤ d
}
,

∂ Boxx = {
y ∈ Z

d \ Boxx : ∃z ∈ Boxx such that ‖y − z‖1 = 1
}

and

∂+ Boxx = {
y ∈ ∂ Boxx : 〈y − x, �〉 ≥ N0,

∣∣〈y − x, �j 〉
∣∣ < 25N3

0 ∀2 ≤ j ≤ d
}
.

Fix M > 0 and � ∈ Sd−1. We say that condition PM |� is fulfilled if

sup
x∈B̃ox0

P
x(T∂ Box0 �= T∂+ Box0) <

1

NM
0

holds for some N0 ≥ exp(100 + 4d(lnη)2), where η is the ellipticity constant de-
fined in (1.1). We say that condition (P) holds in direction � if condition PM |�
holds for some M > 15d + 5.

DEFINITION 1.7. Throughout this paper, we denote by (P) the following
equivalent conditions:

(1) (T ′).
(2) (Tγ ) for some γ ∈ (0,1).
(3) (Tγ ) for all γ ∈ (0,1).
(4) (P).
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1.3. The environment viewed from the particle. Let {Xn} be a RWRE. The
environment viewed from the particle is the discrete time process {ωn} defined
on � by

ωn = σXnω,

where for x ∈ Z
d we denote by σx the shift in direction x of ω, that is, σxω(y, ·) =

ω(x + y, ·) for every y ∈ Z
d .

Beside the fact that the environment viewed from the particle process takes
values in a compact space, it has the advantage of being Markovian, cf. [7], with
respect to the transition kernel

Rg(ω) = ∑
e∈Ed

ω(0, e)g(σeω),(1.2)

defined for every bounded measurable function g : � →R.
It is natural to ask what are the invariant measures of the Markov chain {ωn}.
DEFINITION 1.8. A probability measure Q on � is said to be invariant (or

invariant with respect to the point of view of the particle), if for every bounded
continuous function g : � →R∫

�
Rg(ω)dQ(ω) =

∫
�

g(ω)dQ(ω).(1.3)

One can find many examples for invariant measures with respect to the process
{ωn}. For example, every Dirac probability measure of any translation invariant
environment provides such an example. One additional method to obtain invariant
measures is by taking any sub-sequential limit of the Céasro means { 1

n

∑n−1
k=0 R

kν},
where ν is any probability measure on � and Rν is the measure defined by
the identity

∫
� f (ω)d(Rν)(ω) = ∫

�Rf (ω)dν(ω) for every bounded measurable
function f : � →R.

As it turns out, an invariant measure Q is particularly useful when it is also
equivalent to the original measure P . In this case, we say that the static point
of view (the one related to P ) is equivalent to the dynamic point of view (the one
related to Q). If such a measure exists, it can be used to prove law of large numbers
and central limit theorem type results; see, for example, [3, 8, 12, 14, 15, 17, 19,
24, 28] and the references therein.

The existence of an equivalent invariant measure was proved in several cases.
In the one-dimensional case, the existence of an equivalent measure was proved
by Alili [1]. In the reversible case, also known as random conductance model, the
existence of an invariant equivalent measure is a well-known fact for most cases.
For balanced RWRE, the existence of such a measure was proved by Lawler in
[16]. Later on, this was strengthened to the case of balanced elliptic RWRE by
Guo and Zeitouni in [13] and even further to the nonelliptic case (for genuinely d-
dimensional measures) by Berger and Deuschel in [4]. For Dirichlet random walks,
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a classification for the cases where such a measure exists was proved by Sabot
in [23]. Finally, partial results in the ballistic case are also known; see Section 1.5
below.

The following result was proved by Kozlov in [15] (for the proof see also
[8, 12]).

THEOREM 1.9 (Kozlov [15]). Assume P is elliptic3 and ergodic with respect
to {σx}x∈Zd . Assume there exists an invariant probability measure Q for the envi-
ronment seen from the point of view of the particle which is absolutely continuous
with respect to P . Then the following hold:

(1) Q is equivalent to P .
(2) The environment viewed from the particle with initial law Q is ergodic.
(3) Q is the unique invariant probability measure for the point of view of the

particle which is absolutely continuous with respect to P .
(4) The Céasro means { 1

N+1
∑N

k=0 R
kP } converge weakly to Q.

1.4. Main goal. This paper has two purposes. The first is to prove the equiv-
alence of the dynamic and static point of views under condition (P), uniform
ellipticity and the additional assumption that d ≥ 4. The second purpose of this
paper is to prove a certain type of local limit theorem relating the quenched and
annealed laws by a prefactor.

1.5. Known results in the strongly ballistic case. Let d ≥ 2. In [25], Sznitman
proved an annealed CLT under condition (T ′). The ideas he presented may also
be used to prove an annealed local CLT. For completeness, we present a proof of
the annealed local CLT in the Appendix. In [7], Bolthausen and Sznitman proved
the equivalence of the static and dynamic point of views for certain (nonnestling)
ballistic random walks in random environment, when d ≥ 4 and the disorder is
low. In [19], Rassoul-Agha proved the existence of an equivalent invariant mea-
sure on half spaces under Kalikow’s condition, mixing and uniform ellipticity. In
[6], Berger and Zeitouni and in [20–22] Rassoul-Agha and Seppäläinen proved
quenched invariance principle under moments assumptions for the first regenera-
tion time. In particular, a quenched CLT holds under condition (P).

1.6. Main results. Our two main results are the following.

THEOREM 1.10. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satis-
fies condition (P). Then there exists a unique probability measure Q on the space
of environments which is invariant with respect to the point of view of the particle
and is equivalent to the original measure P . In addition, E[(dQ

dP
)k] < ∞ for every

k ∈N.

3P is called elliptic if P(mine∈Ed
ω(x, e) > 0) = 1 ∀x ∈ Z

d .



2894 N. BERGER, M. COHEN AND R. ROSENTHAL

THEOREM 1.11. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and sat-
isfies condition (P). Then there exists a unique measurable, nonnegative function
f ∈ L1(�,P ) such that for P -almost every ω ∈ �

lim
n→∞

∑
x∈Zd

∣∣P 0
ω(Xn = x) − P

0(Xn = x)f (σxω)
∣∣ = 0.(1.4)

This unique function f is the Radon–Nikodym derivative dQ
dP

of the probability
measure Q constructed in Theorem 1.10.

1.7. Remarks about lower dimensions. In this paper, we only prove Theo-
rem 1.10 and Theorem 1.11 in dimension 4 or higher. Here, we wish to remark
about the situation in lower dimensions.

For d = 1, the existence of an equivalent measure which is invariant with respect
to the point of view of the particle was proved by Alili; see [1].

We conjecture that similar results should hold in dimension 3. In fact, the only
place in the proof where we directly use the condition d ≥ 4 is in [2], Lemma 4.10;
see also Lemma 2.12 below. On the other hand, we believe that in dimension 2 an
equivalent probability measure which is invariant with respect to the point of view
of the particle does not exist.

1.8. Structure of the paper and general remarks. In Section 2, we recall some
of the notation from [2] as well as some of the result obtained there. In addition, we
prove a slightly different version of [2], Lemma 4.2, thus giving annealed estima-
tions for a fixed time. In Section 3, we generalize [2], Proposition 4.5, which gives
an upper bound on the difference between the annealed and quenched distribution,
to include estimations on the exit time of the box. Section 4 is devoted to convert-
ing the estimation obtained in Section 3 for (d − 1)-dimensional cubes in a time
interval into a result about d-dimensional cubes in a fixed time. In Section 5, we
bootstrap the result for large d-dimensional cubes obtained in Section 4 all the way
to boxes of finite size. Section 6 is devoted to the proof of the first main result, the
existence of an equivalent probability measure on the space of environments which
is invariant with respect to the point of view of the particle. Finally, in Section 7
we prove the second main result regarding the existence of a prefactor.

Throughout this paper, the value of constants c and C may change from one line
to the next. Numbered constants, such as c1, c2, . . . are fixed according to their first
appearance in the text. Expectation with respect to a measure μ which is not P,Pω

or P is denoted by Eμ. Finally, some of the inequalities may only hold for large
enough values of N,n and M .

2. Notation and other preliminary results. We start by recalling some of
the notation and results from [2] to be used throughout the paper. In addition, we
cite an inequality by McDiarmid for future use and state analogous result to [2],
Lemma 4.2, for the annealed measure in a fixed time.
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For k,N ≥ 0, define Rk(N) = �e(logN)(k+2)/(k+3)� and denote R(N) = R1(N).
Note that R0(N) = �logN� and that for every k,n ≥ 0, and every large enough N ,

Rn
k (N) := (

Rk(N)
)n ≤ Rk+1(N) < N.

Let

ϑ = lim
n→∞

Xn

‖Xn‖2

be the direction of the speed. We assume without loss of generality that 〈ϑ, e1〉 > 0
and note that due to the results of [25, 26], this implies that (P) holds both in
direction ϑ and in direction e1.

DEFINITION 2.1. For k ∈ N, define Hk to be the hyperplane Hk = {x ∈ Z
d :

〈x, e1〉 = k}.

DEFINITION 2.2. By the term N−ξ(1), we mean a nonnegative function of
N ∈ N which decays faster than any polynomial, that is, if f (N) = N−ξ(1), then
for every k ∈ N

lim
N→∞Nkf (N) = 0.

Note that N−ξ(1) is independent of the environment unless otherwise stated.

DEFINITION 2.3. For two nonempty sets A,B ⊂ Z
d , we define dist(A,B) =

min{‖x − y‖1 : x ∈ A,y ∈ B}. If A = {x} we write dist(x,B) instead of
dist({x},B).

DEFINITION 2.4. For x = (x1, . . . , xd) ∈ Z
d and n ∈ N, we denote x ↔ n if

x and n have the same parity, that is,
∑d

i=1 xi + n is even. In a similar way for
x, y ∈ Z

d , we denote x ↔ y if
∑d

i=1(xi + yi) is even.

DEFINITION 2.5. Recall that for x ∈ Z
d we denote by σx the shift in direction

x in ω, that is, σxω(y, ·) = ω(x + y, ·) for every y ∈ Z
d .

DEFINITION 2.6. For z ∈ Z
d and N ∈ N, we define (see also Figure 1):

(1) the parallelogram of size N and center z to be

P(z,N) =
{
x ∈ Z

d : ∣∣〈x − z, e1〉
∣∣ < N2,∥∥∥∥x − z − ϑ · 〈x − z, e1〉

〈ϑ, e1〉
∥∥∥∥∞

< NR5(N)

}
.
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FIG. 1. The basic block P(z,N): the box P̃(z,N) is in gray and the right boundary ∂+P(z,N) is
the dashed line.

(2) The middle third of P(z,N)

P̃(z,N) =
{
x ∈ Z

d : ∣∣〈x − z, e1〉
∣∣ < 1

3
N2,∥∥∥∥x − z − ϑ · 〈x − z, e1〉

〈ϑ, e1〉
∥∥∥∥∞

<
1

3
NR5(N)

}
.

(3) The boundary of P(z,N)

∂P(z,N) = {
x ∈ Z

d \P(z,N) : ∃y ∈ P(z,N) s.t. ‖x − y‖1 = 1
}
.

(4) The right boundary of P(z,N)

∂+P(z,N) = {
x ∈ ∂P(z,N) : 〈x − z, e1〉 = N2}.

2.1. Regeneration times.

DEFINITION 2.7. Let {Xn} be a nearest-neighbor sequence in Z
d , and let � ∈

Sd−1 be a direction. We say that t is a regeneration time for {Xn} in direction � if
the following holds:

(1) 〈Xs, �〉 < 〈Xt, �〉 for every s < t .
(2) 〈Xt+1, �〉 > 〈Xt, �〉.
(3) 〈Xs, �〉 > 〈Xt+1, �〉 for every s > t + 1.

The following theorem summarize the results on the regeneration time structure.

THEOREM 2.8 ([26, 27]). Assume that P satisfies (Tγ ) in direction �0 for
some γ > 0. Then:
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(1) With probability one, there exist infinitely many regeneration times, which
we denote by τ1 < τ2 < · · · .

(2) The ensemble {
(τn+1 − τn,Xτn+1 − Xτn)

}
n≥1

is an i.i.d. ensemble under the annealed measure.
(3) There exists C > 0 such that for every n ∈ N

P(τ2 − τ1 = n) ≤ CP(τ1 = n),

and for every y ∈ Z
d

P(Xτ2 − Xτ1 = y) ≤ CP(Xτ1 = y).

(4) There exists c > 0 such that for every n,

P
(∃k ≤ τ1 : ‖Xk‖∞ > n

) ≤ e−cnγ

.

The following is the main technical statement from [2].

THEOREM 2.9 ([2], Proposition 2.2). If d ≥ 4, and P satisfies condition (P)

in one of the 2d-principal directions, then for every α < d

P(τ1 > k) ≤ exp
(−(log t)α

)
.

COROLLARY 2.10. For N ∈ N denote by BN = BN({Xn}), the event

BN

({Xn}) = {∀1 ≤ k ≤ N2 : τk − τk−1 ≤ R(N)
}
,

where τ0 = 0. Then P(BN) ≥ 1 − N−ξ(1).

REMARK 2.11. Note that the event BN({Xn}) implies the event that the dis-
tance traveled between two regeneration times is bounded by R(N) as well, that
is,

AN

({Xn}) = {∀1 ≤ k ≤ N2 : max
{‖Xt − Xτk−1‖∞ : τk−1 ≤ t ≤ τk

} ≤ R(N)
}

satisfies BN({Xn}) ⊂ AN({Xn}) and in particular P(AN) ≥ 1 − N−ξ(1).

2.2. Intersections of paths of random walks. The following lemma estimates
the number of intersections of two independent random walks in dimension d ≥ 4.
This is in fact the only place in the proof where the assumption d ≥ 4 is used ex-
plicitly. Denote by P z,z

ω,ω, Ez,z
ω,ω the law (resp., expectation) of two random walks on

the same environment ω, which conditioned on ω evolve independently according
to the quenched law of ω starting from z.
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LEMMA 2.12 ([2], Lemma 4.10). Let d ≥ 4 and assume P is uniformly ellip-
tic, i.i.d. and satisfies (P). Let X(1) = {X(1)

n } and X(2) = {X(2)
n } be two indepen-

dent random walks running in the same environment ω. For i ∈ {1,2}, let [X(i)] be
the set of points visited by X(i). Then

P
({

ω ∈ � : E0,0
ω,ω

[∣∣[X(1)]∩ [
X(2)]∩P(0,N)

∣∣1
AN({X(1)

n })∩AN({X(2)
n })

] ≥ R2(N)
})

= N−ξ(1).

For future use, we denote

J (N) = {
ω ∈ � : Ez,z

ω,ω

[∣∣[X(1)]∩ [
X(2)]∩P(0,N)

∣∣
(2.1)

× 1
AN({X(1)

n })∩AN({X(2)
n })

] ≤ R2(N), ∀z ∈ P̃(0,N)
}
.

Therefore, due to the last lemma, we have P(J (N)) = 1 − N−ξ(1).

2.3. McDiarmid’s inequality. The following Azuma type inequality, proved
by McDiarmid in [18], is used in Section 3.

THEOREM 2.13 ([18], Theorem 3.14). Let {Mk}nk=0 be a martingale with re-
spect to a probability measure P, given by Mk = EP[X|Fk], with M0 = EP[X].
For 1 ≤ k ≤ n let Uk = esssup(|Mk − Mk−1||Fk−1) and define U = ∑n

k=1 U2
k .

Then

P
(|Mn − M0| > α,U ≤ c

) ≤ 2e−α2/(2c).

2.4. Annealed estimation for a fixed time. In this subsection, we state some
standard estimations on the annealed measure of the random walk. The proof is
a standard and straightforward use of Fourier transform techniques applied to the
regeneration structure described in Section 2.1. The first three claims are proved in
a very similar way to the proof of [2], Lemma 4.2 (see also Lemma 3.3 for another
version). The formal statement is the following.

LEMMA 2.14. Assume that P is uniformly elliptic, i.i.d. and satisfies (P).
Then for large enough n ∈ N and x, y, z,w ∈ Z

d such that ‖x − y‖1 = 1, ‖z −
w‖1 = 1

P
z(Xn = x) ≤ Cn−d/2,(2.2) ∣∣Pz(Xn = x) − P

z(Xn+1 = y)
∣∣ ≤ Cn−(d+1)/2,(2.3) ∣∣Pz(Xn = x) − P

w(Xn+1 = x)
∣∣ ≤ Cn−(d+1)/2.(2.4)

In addition, for every ε > 0 and every partition �
(ε)
n of Zd into boxes of side

length nε . ∑
�∈�

(ε)
n

∑
x∈�
x↔n

[
max
y∈�

P
0(Xn = y) − P

0(Xn = x)
]
≤ Cn−1/2+3dε.(2.5)
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The proof of Lemma 2.14 can be found in Appendix A.2.
Before turning to the last estimation of this subsection, we state here a very

simple claim to be used in several places.

CLAIM 2.15. Let A be an event in the σ -algebra of (Zd)N and assume
that P(A) ≤ ε, then P({ω ∈ � : Pω(A) ≥ √

ε}) ≤ √
ε. In particular, if a se-

quence of events {AN } satisfies P(AN) = 1 − N−ξ(1), then P({ω ∈ � : Pω(AN) =
1 − N−ξ(1)}) = 1 − N−ξ(1).

PROOF. Define the random variable X : � → [0,1] by X(ω) = Pω(A). By the
Markov inequality, P(X(ω) ≥ √

ε) ≤ E[X(ω)]√
ε

= P(A)√
ε

≤ ε√
ε

= √
ε. �

Next, we show that the location of the walk at time n is concentrated in a box
which is a bit larger than

√
n. More formally, we have the following.

LEMMA 2.16. Assume that P is uniformly elliptic, i.i.d. and satisfies (P).
Then:

(1) P
z(‖Xn −E

z[Xn]‖∞ >
√

nR5(n)) ≤ e−R5(n) = n−ξ(1),
(2) P({ω ∈ � : P z

ω(‖Xn − E
z[Xn]‖∞ >

√
nR5(n)) ≤ e−(1/2)R5(n)}) = 1 −

n−ξ(1),
(3) For every δ > 0 there exists C > 0 such that P

z(‖Xn − E
z[Xn]‖∞ >

C
√

n) < δ.

The proof of Lemma 2.16 can be found in Appendix A.2.

3. Adding time estimation. The goal of this section is to prove a generalized
version of [2], Proposition 4.5. The original lemma gives a bound on the difference
between the probability measures Pz(XT∂P(0,N)

∈ ·) and P z
ω(XT∂P(0,N)

∈ ·) to hit any
cube in a partition of ∂+P(0,N) into cubes of side length Nθ , for any 0 < θ ≤ 1.
This estimation immediately implies that the total variation of the two measures
goes to zero as N goes to infinity. Here, we show that if an estimation on the hitting
time T∂P(0,N) is added, then a similar estimation can be derived. More formally,
we have the following.

PROPOSITION 3.1. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and
satisfies (P). For every 0 < θ ≤ 1, let F(N) = F(N, θ) be the event that for every
z ∈ P̃(0,N), every cube � of side length Nθ which is contained in ∂+P(0,N) and
every interval I of length Nθ∣∣P z

ω(XT∂P(0,N)
∈ �,T∂P(0,N) ∈ I ) − P

z(XT∂P(0,N)
∈ �,T∂P(0,N) ∈ I )

∣∣
≤ CN−d(1−θ)−((d−2)/(d+2))θ .

Then P(F(N)) = 1 − N−ξ(1).
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The proof of Proposition 3.1 follows the one of [2], Proposition 4.5 (see also [2],
Section 4, and in particular Lemma 4.15). Here are the main steps of the proof: the
proof starts with another version for annealed derivatives bounds (see Lemma 3.3).
Next, in Lemma 3.4 we prove an annealed concentration inequality for the hitting
time T∂P(0,N). Lemma 3.5 provides a first weak estimation for the difference be-
tween the quenched and annealed hitting probabilities for large enough boxes, that
is, θ > d

d+1 . Using induction and the estimation from the last lemma, we prove
an upper bound on the probability to hit a given box of side length Nθ in a time
interval of length Nθ for every 0 < θ ≤ 1 (see Lemma 3.6). In Lemma 3.7, we
use the upper quenched estimations in order to show that the difference between
the quenched and annealed hitting probabilities, in a slightly further hyperplane
are as required. Finally, in the proof of Proposition 3.1, we show how to translate
the estimations from the further hyperplane back to the original hyperplane. The
first main tool used in the proof is an environment exposure procedure, which in
the context of ballistic RWRE already appeared in the work of Bolthausen and
Sznitman [7]. This exposure procedure defines a martingale and allows the use of
Azuma’s and McDiarmid’s inequalities. The second main tool is the intersection
estimate for two independent random walks from Lemma 2.12.

REMARK 3.2. In Section 4, we use Proposition 3.1 for boxes whose side
length is only asymptotic to Nθ (for some 0 < θ < 1), that is, the side length is
Nθ + o(Nθ). One can verify that the same proof holds for such boxes as well.

We start by stating another version for the estimation on the annealed measure
(see Lemma 2.14 and [2], Lemma 4.2).

LEMMA 3.3 (Annealed derivative estimations). Assume P is uniformly ellip-
tic, i.i.d. and satisfies (P). Fix z1 ∈ Z

d , N ∈ N and let z ∈ P̃(z1,N). Let {Xn} be
an RWRE starting at z. Then for large enough N :

(1) For every m ∈N and every x ∈ ∂+P(z1,N)

P
z(T∂P(0,N) = m,XT∂P(0,N)

= x) < CN−d .(3.1)

(2) For every m ∈N and every x, y ∈ ∂+P(z1,N) such that ‖x − y‖1 = 1∣∣Pz(T∂P(0,N) = m,XT∂P(0,N)
= x) − P

z(T∂P(0,N) = m + 1,XT∂P(0,N)
= y)

∣∣
(3.2)

< CN−d−1.

(3) For every m ∈N, every x ∈ ∂+P(z1,N) and every 1 ≤ j ≤ d∣∣Pz(T∂P(0,N) = m,XT∂P(0,N)
= x) − P

z+ej (T∂P(0,N) = m + 1,XT∂P(0,N)
= x)

∣∣
(3.3)

< CN−d−1.
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The proof of Lemma 3.3 can be found in Appendix A.2.
Next, we prove an annealed concentration inequality for the hitting time T∂P .

LEMMA 3.4. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satisfies
(P). Then

P
z(T∂P(0,N) �= T∂+P(0,N)) = N−ξ(1)(3.4)

and for every z ∈ P̃(0,N)

P
z(∣∣T∂P(0,N) −E

z[T∂P(0,N)]
∣∣ > NR2(N)

) = N−ξ(1).(3.5)

PROOF. The fact that (3.4) holds was proved in [2], Lemma 4.2(1). For (3.5),
we first show that |Ez[τk] − E

z[τk|BN ]| = N−ξ(1) for every 1 ≤ k ≤ N2, where
BN is as defined in Corollary 2.10. Indeed, using the notation τ0 = 0, for every
1 ≤ k ≤ N2

E
z[|τk − τrk − 1| · 1Bc

N

]
≤ E

z[|τk − τk−1| · 1∃j �=k|τj−τj−1|≥R(N)

]+E
z[|τk − τk−1| · 1|τk−τk−1|≥R(N)

]
≤ E

z[|τk − τk−1|]Pz(Bc
N

)+ ∑
t>R(N)

t · Pz(|τk − τk−1| = t
)

≤ E
z[|τk − τk−1|]Pz(Bc

N

)+ ∑
t>R(N)

t · exp
(−(log t)α

) = N−ξ(1),

where for the last inequality we used Theorem 2.8 and for the last equality we used
Corollary 2.10. Therefore, for every 1 ≤ k ≤ N2∣∣Ez[τk − τk−1|BN ] −E

z[τk − τk−1]
∣∣

≤ ∣∣Ez[τk − τk−1|BN ] −E
z[(τk − τk−1)1BN

]∣∣
+ ∣∣Ez[(τk − τk−1)1BN

]−E
z[τk − τk−1]

∣∣
= ∣∣(1 − P

z(BN)
)
E

z[(τk − τk−1)|BN

]∣∣+ ∣∣Ez[(τk − τk−1)1Bc
N

]∣∣
= P

z(Bc
N

)
E

z[(τk − τk−1)|BN

]+E
z[(τk − τk−1)1Bc

N

]
≤ R(N)Pz(Bc

N

)+ N−ξ(1) = N−ξ(1).

Summing the differences {Ez[τj − τj−1|BN ] −E
z[τj − τj−1]}kj=1 gives∣∣Ez[τk|BN ] −E

z[τk]
∣∣ = N−ξ(1), 1 ≤ k ≤ N2.

Since we know that Pz(BN) = 1 − N−ξ(1) (see Corollary 2.10), it is enough to
show that

P
z(∣∣T∂P(0,N) −E

z[T∂P(0,N)]
∣∣ > NR2(N)|BN

) = N−ξ(1).
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Under the event BN , there exist some 1 ≤ k ≤ N2 such that τk ≤ T∂P ≤ τk +R(N)

and thus (using the first estimation)

P
z(∣∣T∂P(0,N) −E

z[T∂P(0,N)]
∣∣ > NR2(N)|BN

)
≤

N2∑
k=1

P
z

(∣∣τk −E
z[τk]

∣∣ > 1

2
NR2(N)

∣∣∣BN

)

≤
N2∑
k=1

P
z

(∣∣τk −E
z[τk|BN

]∣∣ > 1

4
NR2(N)

∣∣∣BN

)
+ N−ξ(1).

Note that conditioned on BN the first N regenerations are still i.i.d., so by Azuma’s
inequality this can be bounded by

N2∑
k=1

2 exp
(
− N2R2

2(N)

32kR2(N)

)
+ N−ξ(1) ≤ e−R2(N) + N−ξ(1) = N−ξ(1).

�

LEMMA 3.5. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satisfies
(P). Fix 0 < θ ≤ 1. Let L(N) = L(θ,N) be the event that for every 2

5N2 ≤ M ≤
N2, every z ∈ P̃(0,N), every (d − 1)-dimensional cube � of size Nθ which is
contained in HM and every interval I ⊂ N of length Nθ∣∣P z

ω(XTM
∈ �,TM ∈ I,BN) − P

z(XTM
∈ �,TM ∈ I,BN)

∣∣ ≤ Nd(θ−1).

Then for θ > d
d+1 , P(L(θ,N)) = 1 − N−ξ(1).

PROOF. Fix θ , and let d
d+1 < θ ′ < θ . Let V = [N2θ ′ ]. Fix 2

5N2 ≤ M ≤ N2,
v ∈ HM+V and m ∈ N. Finally denote by G the σ -algebra determined by the con-
figuration on

PM(0,N) := P(0,N) ∩ {
x : 〈x, e1〉 ≤ M

}
.

We are interested in the quantity (see also Figure 2)

J (M)(v,m) = E
[
P z

ω(XTM+V
= v,TM+V = m,BN)|G].

In order to estimate J (M)(v,m) we order the vertices of PM(0,N) lexico-
graphically, x1, x2, . . . with the first coordinate being the most significant and let
{Fk} be the σ -algebra determined by ω(x1, ·), . . . ,ω(xk, ·), so in particular for ev-
ery −N2 + 1 ≤ l ≤ M the vertices in Hl ∩ PM(0,N) are exposed after those in
Hl−1 ∩PM(0,N).

Consider the martingale Mk = E[P z
ω(XTM+V

= v,TM+V = m|BN)|Fk]. In
order to use McDiarmid’s inequality, we first bound Uk := esssup(|Mk − Mk−1||
Fk−1). We claim that for an event of environments with P probability ≥ 1 −
N−ξ(1)

Uk ≤ CR(N)E
[
P z

ω

(
xk is visited |BN

)|Fk−1
]
V −(d+1)/2.
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FIG. 2. The quantity J (M)(v,m) is the probability of hitting the point v at time m, conditioned
on the environments in the gray area, and averaged (annealed) elsewhere. The small parallelogram
indicates the middle third P̃(0,N) in which the random walk starts.

Indeed, let ω′ be an environment that agrees with ω everywhere except possibly
in xk . Let P be the probability measure under which the random walk has quenched
transition probabilities given by ω in {xi : i ≤ k} and averaged (annealed) transition
probabilities in Z

d \ {xi : i ≤ k} conditioned the event BN . Similarly, let P′ be the
probability measure defined like Pwith ω′ instead of ω. More formally for an event
A ⊂ (Zd)N, we have P(A) = E[P z

ω(A|BN)|Fk] and equivalently for P′. Then

Uk ≤ sup
ω′

∣∣P′(XTM+V
= v,TM+V = m) − P(XTM+V

= v,TM+V = m)
∣∣

≤ sup
ω′

∣∣P′(XTM+V
= v,TM+V = m, {xk is not visited})

− P
(
XTM+V

= v,TM+V = m, {xk is not visited})∣∣
+ sup

ω′

∣∣P′(XTM+V
= v,TM+V = m, {xk is visited})

− P
(
XTM+V

= v,TM+V = m, {xk is visited})∣∣,
where the supremum is taken over all environments ω′ that agree with ω on Z

d \
{xk}. Note that on the event {xk is not visited}, the distributions P and P′ are the
same and, therefore, the difference of the probabilities equals zero. On the other
hand, on the event {xk is visited}, we can couple both walks together until the first
hitting time of xk (which in particular implies that the hitting time of xk is the
same). Since we conditioned on the event BN , the next regeneration time after
hitting xk is at most R(N) steps later. Therefore, from Lemma 3.3 it follows that∣∣Pz(XTM+V

= v,TM+V = m|xk is visited) − P
xk (XTM+V

= v,TM+V = m)
∣∣

< CR(N)V −(d+1)/2
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and ∣∣P′z(XTM+V
= v,TM+V = m|xk is visited) − P

xk (XTM+V
= v,TM+V = m)

∣∣
< CR(N)V −(d+1)/2.

Consequently, we get

Uk ≤ CR(N)V −(d+1)/2Pz(xk is visited)

as required.
Next, we show that U := ∑

k U2
k is bounded by CR2

2(N)V −d−1 provided ω ∈
J (N). Indeed, noting that if x is visited and BN holds, then the first visit to the
layer H〈x,e1〉−1 is in the box B(x) = {y : y ∈ H〈x,e1〉−1,‖y − x‖∞ ≤ R(N)} it
follows that

Uk ≤ CR(N)V −(d+1)/2Pz(xk ∈ [X]|Fk−1,BN

)
≤ CR(N)V −(d+1)/2

∑
y∈B(xk)

Pz(T〈x,e1〉−1 = y|Fk−1)

= CR(N)V −(d+1)/2
∑

y∈B(xk)

P z
ω(T〈x,e1〉−1 = y)

≤ CR(N)V −(d+1)/2
∑

y∈B(xk)

P z
ω

(
y ∈ [X]).

Since |B(xk)| ≤ C · 2d · Rd(N) and every y ∈ Z
d is in B(x) for at most 2dRd(N)

points x ∈ Z
d , we get

U :=
n∑

k=1

U2
k ≤ C

n∑
k=1

R2(N)V −d−1 ·
[ ∑
y∈B(xk)

P z
ω

(
y ∈ [X])]2

≤ R2(N) · 2dRd(N)V −d−1
n∑

k=1

∑
y∈B(xk)

P z
ω

(
y ∈ [X])2

≤ C · 22d · R2d+2(N)V −d−1
∑

y∈P(0,N)

P z
ω

(
y ∈ [X],BN

({Xn}))2

(1)≤ C · 22d · R2d+2(N) · R2(N)V −d−1 ≤ C · R2
2(N)V −d−1,

where for (1) we used the assumption ω ∈ J (N). Thus, by McDiarmid’s inequality
(see Theorem 2.13) for every δ > 0

P
(∣∣E[

P z
ω(XTM+V

= v,TM+V = m,BN |G)
]

− P
z(XTM+V

= v,TM+V = m,BN)
∣∣ > δ

)
≤ P

(
J (N)c

)+ 2 exp
(
− δ2

2CR2
2(N)V −d−1

)
.
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In particular, for δ = 1
4N−d = 1

4V −(d+1)/2V η, with η = (d+1)θ ′−d
2θ ′ > 0 we get

P

(∣∣E[
P z

ω(XTM+V
= v,TM+V = m,BN |G)

]
− P

z(XTM+V
= v,TM+V = m,BN)

∣∣ > 1

4
N−d

)

≤ N−ξ(1) + 2 exp
(
− [N2θ ′ ]2η

32CR2
2(N)

)
= N−ξ(1).

Using Corollary 2.10, this also gives

P
(∣∣E[

P z
ω(XTM+V

= v,TM+V = m|G)
]− P

z(XTM+V
= v,TM+V = m)

∣∣ > 1
2N−d)

= N−ξ(1).

Let W1(N) ⊂ � be the event that∣∣E[
P z

ω(XTM+V
= v,TM+V = m,BN |G)

]− P
z(XTM+V

= v,TM+V = m,BN)
∣∣

≤ 1
2N−d

for every 2
5N2 ≤ M ≤ N2, every v ∈ HM+V ∩ P(0,2N), every z ∈ P̃(0,N) and

every m ∈ [0,N3]. Then by the above argument P(W1(N)) = 1 − N−ξ(1). Con-
sider now ω ∈ W1(N), 2

5N2 ≤ M ≤ N2 a cube � of side length Nθ which is
contained in HM and an interval I of length Nθ . We wish to estimate∣∣P z

ω(XTM
∈ �,TM ∈ I,BN) − P

z1(XTM
∈ �,TM ∈ I,BN)

∣∣.
Let c(�) and c(I ) be the centers of the cube � and the interval I , respectively. Let
c′(�) = c(�) + V ϑ

〈ϑ,e1〉 , c′(I ) = c(I ) + V 1
〈v,e1〉 and define (see also Figure 3)

�(1) = {
v ∈ HM+V : ∥∥v − c′(�)

∥∥∞ < 1
2 · 9

10 · Nθ},
�(2) = {

v ∈ HM+V : ∥∥v − c′(�)
∥∥∞ < 1

2 · 11
10 · Nθ},

I (1) = {
t ∈ N : ∣∣t − c′(I )

∣∣ < 1
2 · 9

10 · Nθ},
and

I (2) = {
t ∈ N : ∣∣t − c′(I )

∣∣ < 1
2 · 11

10 · Nθ}.
Annealed estimations (for the proof see Appendix A.3) yields

P
z(XTM+V

∈ �(1), TM+V ∈ I (1)) < P
z(XTM

∈ �,TM ∈ I ) + N−ξ(1),(3.6)

P
z(XTM+V

∈ �(2), TM+V ∈ I (2)) > P
z(XTM

∈ �,TM ∈ I ) − N−ξ(1)(3.7)
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FIG. 3. Using the annealed walk in the area between the hyperplane HM and HM+V , we can turn
the estimates on the hitting probabilities of the small box �(1) and big box �(2) in the hyperplane
HM+V into both quenched and annealed estimations for the hitting probabilities of the box � in the
hyperplane HM . The probability to hit � and not to hit �(2) as well as the probability not to hit �

but to hit �(1) are of order N−ξ(1).

and also, due to Claim 2.15, for an event W2(N) of P probability ≥ 1 − N−ξ(1)

E
[
P z

ω

(
XTM+V

∈ �(1), TM+V ∈ I (1))|G]
(3.8)

< P z
ω(XTM

∈ �,TM ∈ I ) + N−ξ(1),

E
[
P z

ω

(
XTM+V

∈ �(2), TM+V ∈ I (2))|G]
(3.9)

> P z
ω(XTM

∈ �,TM ∈ I ) − N−ξ(1).

Thus, from the definition of W1(N), W2(N) and the last 4 estimations, it follows
that W1(N) ∩ W2(N) ⊂ L(θ,N) and the proof is complete. �

LEMMA 3.6. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satisfies
(P). For every 0 < θ ≤ 1 and h ∈ N let D(θ,h)(N) be the event that for every
z ∈ P̃(0,N), every 1

2N2 ≤ M ≤ N2, every (d −1)-dimensional cube of side length
Nθ which is contained in HM and every interval I ⊂N of length Nθ

P z
ω(XTM

∈ �,TM ∈ I ) ≤ Rh(N)N(θ−1)d(3.10)

and

P z
ω(XTM

∈ �) ≤ Rh(N)N(θ−1)(d−1).(3.11)

Then for every 0 < θ ≤ 1 there exists h = h(θ) such that P(D(θ,h)(N)) = 1 −
N−ξ(1).
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PROOF. The proof of (3.11) is the content of [2], Lemma 4.13, and, therefore,
we restrict attention to the proof of (3.10). We prove the lemma by a descend-
ing induction on θ . From Lemma 3.5 together with Lemma 3.3(1), P(D(θ,1)) ≥
P(L(θ,N)) = 1 −N−ξ(1) for every d

d+1 < θ ≤ 1. For the induction step, fix θ and

assume that the statement of the lemma holds for some θ ′ such that θ > d
d+1θ ′.

Define h′ = h(θ ′) and ρ = θ
θ ′ > d

d+1 . Let

S(N) = D(ρ,1)(N) ∩ ⋂
z∈P(0,2N)

s∈[−2NR5(N),2NR5(N)]

σz�s

(
D(θ ′,h′)([Nρ]))∩ T (N,ρ),

where � is the time shift for the random walk, defined by �(X1,X2, . . .) =
(X2,X3, . . .) and

T (N,ρ) = {
ω ∈ � : ∀v ∈ P(0,N),P v

ω

(
XT∂P(v,[Nρ ]) /∈ ∂+P

(
v,

[
Nρ])) < e−R(N)

and P v
ω

(∣∣T∂P(v,[Nρ ]) −E
v[T∂P(v,[Nρ ])]

∣∣ > NR2(N)
) = N−ξ(1)}.

From the definition of S(N), Lemma 3.4 and the induction assumption, we know
that P(S(N)) = 1 − N−ξ(1). Therefore, we need to show that for some h and
all N large enough, we have S(N) ⊂ D(θ,h)(N). To this end, fix ω ∈ S(N),
z ∈ P̃(0,N), 1

2N2 ≤ M ≤ N2, a (d − 1)-dimensional cube � of size length Nθ

in P(0,N) ∩ HM and an interval I ⊂ [Ez[TM ] − NR2(N),Ez[TM ] + NR2(N)]
of length Nθ . As before, we denote by c(�) and c(I ) the centers of � and I ,
respectively. Let V = [Nρ]2, c(�)′ = c(�) − V ϑ

〈ϑ,e1〉 and c(I )′ = c(I ) − V 1
〈v,e1〉 .

Since ω ∈ ⋂
z∈P(0,2N)

⋂
s∈[−2NR5(N),2NR5(N)] σz�s(D

(θ ′,h′)([Nρ])) it follows that
for every v ∈ HM−V and every t ∈ N

P v
ω(XTM

∈ �,TM ∈ I − t) < Rh′(N)Nρ(θ ′−1)d = Rh′(N)N(θ−ρ)d .

In addition, due to the Markov property of the quenched law

P z
ω(XTM

∈ �,TM ∈ I )

= ∑
v∈HM−V ∩P(x′,[Nρ ])
|t−c′(I )|≤NρR5(N

ρ)

P z
ω(XTM−V

= v,TM−V = t)P v
ω(XTM

∈ �,TM ∈ I − t)

+ N−ξ(1)

≤ ∑
v∈HM−V ∩P(x′,[Nρ ])
|t−c′(I )|≤NρR5(N

ρ)

P z
ω(XTM−V

= v,TM−V = t)Rh′(N)N(θ−ρ)d + N−ξ(1).

Now, the last sum can be separated into the sum over 2d−1R5(N
ρ)d−1 (d − 1)-

dimensional cubes of side length Nρ and 2R2(N
ρ) intervals of length Nρ . Since
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ω ∈ D(ρ,1)(N) the probability to hit each of these cubes in any of these time inter-
vals is bounded by R1(N)N(ρ−1)d . Thus,

P z
ω(XTM

∈ �,TM ∈ I ) < 2dR5
(
Nρ)dR1(N)N(ρ−1)dRh′(N)N(θ−ρ)d + N−ξ(1)

≤ Rmax{6,h′}+1(N)N(θ−1)d ,

and the proof is complete by taking h = max{6, h′} + 1. �

LEMMA 3.7. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satisfies
(P). Let G be the σ -algebra generated by {ω(z) : 〈z, e1〉 ≤ N2}. Let η > 0, V =
[Nη] and define R(N,η) to be the event that for every z ∈ P̃(0,N), every v ∈
HN2+V and every m ∈N∣∣E[

P z
ω(XT

N2+V
= v,TN2+V = m)|G]− P

z(XT
N2+V

= v,TN2+V = m)
∣∣

≤ N−dV (1−d)/6.

Then P(R(N,η)) = 1 − N−ξ(1).

PROOF. Let v ∈ HN2+V , m ∈ N and let θ > 0 be such that θ < 1
20η. Let K be

an integer such that 2−K−1N2 ≤ V < 2−KN2, and for 0 ≤ k ≤ K define (see also
Figure 4)

P(k) = P(0,N) ∩ {
x ∈ Z

d : 0 ≤ N2 − 〈x, e1〉 ≤ 2−kN2} ∀1 ≤ k ≤ K,

P(0) = P(0,N) ∩
{
x ∈ Z

d : N2

2
≤ N2 − 〈x, e1〉

}
,

F (v) =
{
x ∈ P(0,N) :

∥∥∥∥x − v − ϑ
〈x − v, e1〉

〈ϑ, e1〉
∥∥∥∥∞

≤ ∣∣〈v − x, e1〉
∣∣1/2

R2(N)

}
,

P(k)(v) = P(k) ∩ F(v),

and

P̂(k)(v) = {
y ∈ Z

d : ∃x ∈ P(k)(v) such that ‖x − y‖∞ < R2(N)
}
.

Condition on the event D(θ,h) from Lemma 3.6, with h such that
P(D(θ,h)(N)) = 1 − N−ξ(1). As in [2], Lemma 4.14, for 0 ≤ k ≤ K and ω ∈
D(θ,h), we have the estimation

V (k) = Ez,z
ω,ω

[∣∣[X(1)]∩ [
X(2)]∩P(k)(v)

∣∣]
≤

{
R2(N), k = 0,
Rh+1(N)N2((d+1)/2+(1−θ)(1−d))2−k�(d+1)/2�, 1 ≤ k ≤ K ,

where Ez,z
ω,ω is as defined in Section 2.2.
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FIG. 4. The dark gray areas are P(k)(v) for different values of k. The environment in the light gray
area has negligible influence on the probability of hitting v. (The picture is not to scale.)

Indeed, for k = 0 this follows from Lemma 2.12 while for k > 0

V (k) = ∑
x∈P(k)(v)

[
P z

ω(x is visited)
]2

≤ ∑
x∈P(k)(v)

[ ∑
y:‖y−x‖∞<R(N)

P z
ω(XT〈y,e1〉 = y)

]2

+ N−ξ(1)

(1)≤ ∑
x∈P(k)(v)

C · Rd(N) · ∑
y:‖y−x‖∞<R(N)

[
P z

ω(XT〈y,e1〉 = y)
]2 + N−ξ(1)

(2)≤ C · R2d(N)
∑

y∈P̂(k)(v)

[
P z

ω(XT〈y,e1〉 = y)
]2 + N−ξ(1)

(3)≤ R2(N)
∑

y∈P̂(k)(v)

R2
h(N)N2(1−θ)(1−d)

≤ Rh+1(N)N2((d+1)/2+(1−θ)(1−d))2−k�(d+1)/2�,
where for (1) we used Cauchy–Schwarz inequality, for (2) we used the fact
that each point is counted at most Rd(N) times and for (3) the assumption
ω ∈ D(θ,h)(N).

We now use again the filtration {Fi} from Lemma 3.5, and consider the martin-
gale

Mi = E
[
P z

ω(XT
N2+V

= v,TN2+V = m|BN)|Fi

]
.
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In order to use McDiarmid’s inequality, we need to bound Ui = esssup(|Mi −
Mi−1||Fi−1) under the assumption ω ∈ D(θ,h)(N). Let x be such that ωx is mea-
surable with respect to Fi but not with respect to Fi−1. By a similar argument as
in the proof of Lemma 3.5, we have Ui = N−ξ(1) if x /∈ F(v), while for x ∈ F(v)

Ui ≤ R(N)E
[
P z

ω(x is hit|BN)|Fi−1
]
Der

(
N2 + V − 〈x, e1〉),

where Der(N2 +V −〈x, e1〉) is the maximal derivative of the annealed distribution
with respect to both place and time with distance N2 + V − 〈x, e1〉 to the hitting
hyperplane. By Lemma 3.3, this derivative is bounded by CN−d−12k(d/2) and,
therefore, whenever ω ∈ D(θ,h)

U = ∑
i

U2
i ≤ C

K∑
k=0

V (k)N−2(d+1)2kd + N−ξ(1)

≤ CRh+1(N)N−2(d+1)

+ CRh+1(N)N2((d+1)/2+(1−θ)(1−d))−2(d+1)
K∑

k=1

2kd−k((d+1)/2) + N−ξ(1)

≤ CRh+1(N)
[
N−2(d+1) + N2((d+1)/2+(1−θ)(1−d))−2(d+1)c2((d−1)/2)K]

+ N−ξ(1)

≤ CRh+1(N)
[
N−2(d+1) + N2((d+1)/2+(1−θ)(1−d))−2(d+1)2((d−1)/2)K]

+ N−ξ(1).

Recalling that K was chosen so that 2K < N2V −1 we can bound the last sum term
by

CRh+1(N)
[
N−2(d+1) + N2((d+1)/2+(1−θ)(1−d))−2(d+1)N(d−1)V −(d−1)/2]

+ N−ξ(1)

= CRh+1(N)
[
N−2(d+1) + N−2d−2θ(1−d)V −(d−1)/2]+ N−ξ(1)

≤ CN−2dN−((d−1)/6)+ε

for some small enough ε > 0.
Using McDiarmid’s inequality (see Theorem 2.13),

P
(∣∣E[

P z
ω(XT

N2+V
= v,TN2+V = m,BN)|G]

− P
z(XT

N2+V
= v,TN2+V = m,BN)

∣∣ > N−dV (1−d)/6)
≤ P

(∣∣E[
P z

ω(XT
N2+V

= v,TN2+V = m,BN)|G]
− P

z(XT
N2+V

= v,TN2+V = m,BN)
∣∣ > N−dV (1−d)/6,D(θ,h)(N)

)
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+ N−ξ(1)

≤ P
(∣∣E[

P z
ω(XT

N2+V
= v,TN2+V = m,BN)|G]

− P
z(XT

N2+V
= v,TN2+V = m,BN)

∣∣ > N−dV (1−d)/6,

U ≤ CN−2d−((d−1)/6)+ε)+ N−ξ(1)

≤ C exp
(−cN−((d+1)/6)(1−2η)−ε)+ N−ξ(1) = N−ξ(1).

Since P(BN) = 1 − N−ξ(1) by Corollary 2.10, this completes the proof. �

We are finally ready to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. Let η > 0 and define V = [Nη]. By Lemma 3.7,
we know that P(R(N,η)) = 1 − N−ξ(1). As before, all we need to show is that
R(N,η) ∩ S(N,η) ⊆ F(N, θ) for an appropriate choice of η > 0 and some event
S(N,η) satisfying P(S(N,η)) = 1−N−ξ(1). This is done identically as in the last
step of the proof of Lemma 3.5. Let ω ∈ R(N,η), let � be a cube of side length
Nθ which is contained in ∂+P(0,N) and let I be an interval of length Nθ in N.
As in Lemma 3.5 (see also Figure 3), we denote by c(�) and c(I ) the center of �

and I , respectively, and let c′(�) = c(�) + V ϑ
〈ϑ,e1〉 , c′(I ) = c(I ) +E

0[TV ].
Let �(1) and �(2) be (d − 1)-dimensional cubes that are contained in HN2+V ,

centered at c′(�) and are of side lengths Nθ − R3(N)
√

V and Nθ + R3(N)
√

V ,
respectively. In a similar fashion, let I (1) and I (2) be intervals centered at c′(I )

which are of lengths Nθ − R3(N)
√

V and Nθ + R3(N)
√

V , respectively.
As in the proof of Lemma 3.5 (the proof can be found in Appendix A.3), we

know that

P
z(XT

N2+V
∈ �(1), TN2V ∈ I (1))

(3.12)
< P

z(XT
N2 ∈ �,TN2 ∈ I ) + N−ξ(1),

P
z(XT

N2+V
∈ �(2), TN2+V ∈ I (2))

(3.13)
> P

z(XT
N2 ∈ �,TN2 ∈ I ) − N−ξ(1)

and using Claim 2.15 for an event S(N,η) such that P(S(N,η)) = 1 − N−ξ(1) we
have

E
[
P z

ω

(
XT

N2+V
∈ �(1), TN2+V ∈ I (1))|G]

(3.14)
< P z

ω(XT
N2 ∈ �,TN2 ∈ I ) + N−ξ(1),

E
[
P z

ω

(
XT

N2+V
∈ �(2), TN2+V ∈ I (2))|G]

(3.15)
> P z

ω(XT
N2 ∈ �,TN2 ∈ I ) − N−ξ(1).
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In addition, on the event R(N,η), for i = 1,2∣∣E[
P z

ω

(
XT

N2+V
∈ �(i), TN2+V ∈ I (i))|G]− P

z(XT
N2+V

∈ �(i), TN2+V ∈ I (i))∣∣
≤ ∣∣�(i)

∣∣ · ∣∣I (i)
∣∣ · N−dV (1−d)/6.

Therefore, for ω ∈ R(N,η) ∩ S(N,η) we have∣∣P z
ω(XT∂P(0,N)

∈ �,T∂P(0,N) ∈ I ) − P
z(XT∂P(0,N)

∈ �,T∂P(0,N) ∈ I )
∣∣

≤ (∣∣�(1)
∣∣∣∣I (1)

∣∣+ ∣∣�(2)
∣∣∣∣I (2)

∣∣)N−dV (1−d)/6

+ (∣∣�(2)
∣∣∣∣I (2)

∣∣− ∣∣�(1)
∣∣∣∣I (1)

∣∣)CN−d + N−ξ(1)

≤ C
[(

Nθ + R3(N)
√

V
)d

N−dV (1−d)/6 + R3(N)
√

V Nθ(d−1)−d].
Taking η < 2θ we can bound the last term by

C
[
Nθd−d+η((1−d)/6) + R3(N)Nθ(d−1)−d+η/2].

Notice that the exponents of the powers of N are the same when η = 6θ
d+2 < 2θ ,

in which case the last bound equals C(1 + R3(N)) · N−d(1−θ)−((d−1)/(d+2))θ ≤
CN−d(1−θ)−((d−2)/(d+2))θ . Thus, the proof is complete. �

4. From (d − 1)-dimensional boxes and time intervals to d-dimensional
boxes in a fixed time. The goal of this section is to use the estimation proved
in Section 3, for the difference between the quenched and annealed probabilities
to hit boxes in a hyperplane within a time interval, in order to achieve similar
estimation for the difference between the quenched and annealed probabilities to
hit a d-dimensional box in a specific time. Formally, we have the following.

PROPOSITION 4.1. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and
satisfies (P). For every 0 < θ ≤ 1

2 , let H(N) = H(N, θ) be the event that for

every z ∈ P̃(0,N) and every d-dimensional cube � of side length Nθ∣∣P z
ω(XN ∈ �) − P

z(XN ∈ �)
∣∣ ≤ CN−d(1−θ)−(1/3)θ .

Then P(H(N)) = 1 − N−ξ(1).

REMARK 4.2. The constant 1
3 can in fact be replaced by any number which is

smaller than min{1
2 , d−2

d+2}.
The idea of the proof is to exploit the estimation of Proposition 3.1 and the fact

that regeneration times occur quite often. More precisely, we show that the event
of hitting a box � at time N is bounded both from below and from above by the
event of hitting a certain hyperplane in a specific (d − 1)-dimensional box within
a specific time interval. This implies that the difference between the probabilities
is roughly the same as in Proposition 3.1, and thus gives the required result.
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PROOF OF PROPOSITION 4.1. Due to Lemma 2.16, we may restrict our-
selves to boxes � whose center c(�) satisfies ‖c(�) − E

z[XN ]‖∞ <
√

NR5(N).
Given a cube � of side length Nθ such that c(�) satisfies ‖c(�) − E

z[XN ]‖∞ <√
NR5(N) let �(1) and �(2) be the (d − 1)-dimensional cubes in the hyperplane

H〈c(�),e1〉−Nθ with center c(�) − Nθ

〈ϑ,e1〉ϑ and side length Nθ − R5(N)Nθ/2 and

Nθ + R5(N)Nθ/2, respectively. Noting that

L := 〈
c(�), e1

〉− Nθ ≥ 〈
E

z[XN ], e1
〉− 2

√
NR5(N)

≥ cN − 2
√

NR5(N),

it follows from Proposition 3.1 [for every ω ∈ F(N, θ) and every z ∈ P̃(0,N)] that∣∣P z
ω

(
XT

∂P(0,
√

L)
∈ �(1), T

∂P(0,
√

L)
∈ I (1))

− P
z(XT

∂P(0,
√

L)
∈ �(1), T

∂P(0,
√

L)
∈ I (1))∣∣(4.1)

≤ CN−d(1−θ)−((d−2)/(d+2))θ ,

with I (1) = N − Nθ

〈v,e1〉 + [−1
2(Nθ − R5(N)Nθ/2), 1

2(Nθ − R5(N)Nθ/2)], and∣∣P z
ω

(
XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2))

− P
z(XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2))∣∣(4.2)

≤ CN−d(1−θ)−((d−2)/(d+2))θ ,

with I (2) = N − Nθ

〈v,e1〉 + [−1
2(Nθ + R5(N)Nθ/2), 1

2(Nθ + R5(N)Nθ/2)].
In addition, by a standard CLT type arguments, as the one in Lemma 3.5 (see

Appendix A.3 for the proof), we have the following annealed estimations:

P
z(XT

∂P(0,
√

L)
∈ �(1), T

∂P(0,
√

L)
∈ I (1),XN /∈ �

) ≤ N−ξ(1),(4.3)

P
z((XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2))c,XN ∈ �

) ≤ N−ξ(1).(4.4)

Using Claim 2.15 again, this also implies that

P
({

ω ∈ � : P z
ω

(
XT

∂P(0,
√

L)
∈ �(1), T∂P(0,

√
L) ∈ I (1),XN /∈ �

) ≤ N−ξ(1)})
(4.5)

≥ 1 − N−ξ(1)

and

P
({

ω ∈ � : P z
ω

((
XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2))c,XN ∈ �

) ≤ N−ξ(1)})
(4.6)

≥ 1 − N−ξ(1).
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Combining all of the above, we get for an event with P probability ≥ 1 − N−ξ(1)

that

P z
ω(XN ∈ �)

(4.6)≤ P z
ω

(
XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2),XN ∈ �

)+ N−ξ(1)

≤ P z
ω

(
XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2))+ N−ξ(1)

(4.2)≤ P
z(XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2))+ CN−d(1−θ)−((d−2)/(d+2))θ

+ N−ξ(1)

≤ P
z(XT

∂P(0,
√

L)
∈ �(1), T

∂P(0,
√

L)
∈ I (1))

+ P
z(XT

∂P(0,
√

L)
∈ �(2) \ �(1), T

∂P(0,
√

L)
∈ I (2))

+ P
z(XT

∂P(0,
√

L)
∈ �(2), T

∂P(0,
√

L)
∈ I (2) \ I (1))

+ CN−d(1−θ)−((d−2)/(d+2))θ

(4.3)≤ P
z(XT

∂P(0,
√

L)
∈ �(1), T

∂P(0,
√

L)
∈ I (1),XN ∈ �

)
+ P

z(XT
∂P(0,

√
L)

∈ �(2) \ �(1), T
∂P(0,

√
L)

∈ I (2))
+ P

z(XT
∂P(0,

√
L)

∈ �(2), T
∂P(0,

√
L)

∈ I (2) \ I (1))
+ CN−d(1−θ)−((d−2)/(d+2))θ

≤ P
z(XN ∈ �) + P

z(XT
∂P(0,

√
L)

∈ �(2) \ �(1), T
∂P(0,

√
L)

∈ I (2))
+ P

z(XT
∂P(0,

√
L)

∈ �(2), T
∂P(0,

√
L)

∈ I (2) \ I (1))
+ CN−d(1−θ)−((d−2)/(d+2))θ

(1)≤ P
z(XN ∈ �) + CR5(N) · Nθ(d−1/2) · N−d + CN−d(1−θ)−((d−2)/(d+2))θ

= P
z(XN ∈ �) + CN−d(1−θ)−(1/3)θ ,

whereas for (1), we used the annealed derivative estimation proved in Lemma 3.3
as well as the fact that the number of pairs (x, t) such that (x, t) ∈ (�(2) \
�(1), I (2)) or (x, t) ∈ (�(2), I (2) \ I (1)) is bounded by CR5(N)Nθ(d−1/2). The
other direction

P z
ω(XN ∈ �) ≥ P

z(XN ∈ �) − CN−d(1−θ)−(1/3)θ

follows via the same argument except we use (4.1), (4.4) and (4.5) instead of (4.2),
(4.3) and (4.6). �
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5. Total variation bound for finite boxes. In the previous section, it was
shown that for every 0 < θ ≤ 1 the difference between the quenched and annealed
probabilities to hit a d-dimensional box of side length Nθ at time N is bounded by
CN−d(1−θ)−((d−2)/(d+2))θ . Since a must be inside a the box of side length 2N + 1
around its starting point at time N , it in particular implies that the total variation
between the quenched and annealed distribution over any partition of Zd into d-
dimensional boxes of side length Nθ goes to zero as N goes to infinity. The goal
of this section is to strengthen this result and prove that the same result hold for
partitions of Zd into boxes whose side length is of constant size, independent of N .
More formally, we have the following.

THEOREM 5.1. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and sat-
isfies (P). For N,M ∈ N denote by G(N) = G(N,M) the set of environments
ω ∈ � such that for every z ∈ Z

d satisfying ‖z‖∞ ≤ N∑
�∈�

∣∣P z
ω(XN ∈ �) − P

z(XN ∈ �)
∣∣ ≤ C2

Mc1
+ C2

Nc1
,

where � is any partition of Zd into boxes of side length M . Then for an appropriate
0 < c1,C2 < ∞, P(G(N)) = 1 − N−ξ(1).

The idea of the proof is to shrink the size of the boxes repeatedly, each time by
a constant factor from the previous step. This is done as follows: first, we fix some
factor, say θ = 1

200 . Then, in the kth step of the process, we let the random walk

run for N1/2k
steps and ask for the difference between the annealed and quenched

measures hit the same box of side Nθ/2k
. Repeating the last procedure roughly

log logN times, we get boxes of constant side length M . The idea is to bound
the total variation of the (k + 1)th step of this process by the one of the kth step.
Denoting by λk the total variation of the kth step, we show that λk ≤ λk−1 +CN−α

k

for some C,α > 0. An additional short calculation then yields the result.

PROOF OF THEOREM 5.1. We start by introducing some notation to be used
throughout the proof. Let θ = 1

200 . For j ∈ N denote Nj = �N1/2j � and let r(N) =
�log2(

logN
θ logM

)� (which is the minimal natural number such that Nθ
r(N) ≤ M).

Moreover, denote n0 = n − ∑r(N)
j=1 Nj and nk = ∑k

j=1 Nj , ∀1 ≤ k ≤ r(N). For

0 ≤ k ≤ r(n), let �k be a partition of Zd into boxes of side length �Nθ
k �. Finally,

for 0 ≤ k ≤ r(N) let

λk = ∑
�∈�k

∣∣P z
ω(Xnk

∈ �) − P
z(Xnk

∈ �)
∣∣.

Note that in particular λr(N) is the total variation between the quenched and an-
nealed measures on cubes of side length ≤ M which is the term we wish to bound
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from above. If one wish to be slightly more precise, one should replace Nr(N)

by M , and thus obtaining total variation for boxes of side length M , this however
does not influence the estimates to follow.

As stated before the main idea of the proof is to prove an inequality of the form

λk ≤ λk−1 + CN−α
k ∀1 ≤ k ≤ r(N)

for some α > 0, which immediately implies λr(N) ≤ λ1 +C
∑r(N)

k=1 N−α
k . As it turns

out the last term is bounded by C2M
−c1 for some constants 0 < c1,C2 < ∞, while

the first term, that is, λ1, is bounded (due to Proposition 4.1) by CN−((d−2)/(d+2))θ ,
and the result follows.

We now turn to the estimation of λk . By the triangle inequality and the Markov
property of Pω, we have

λk = ∑
�∈�k

∣∣P z
ω(Xnk

∈ �) − P
z(Xnk

∈ �)
∣∣

= ∑
�∈�k

∣∣∣∣ ∑
�′∈�k−1

[
P z

ω

(
Xnk

∈ �,Xnk−1 ∈ �′)− P
z(Xnk

∈ �,Xnk−1 ∈ �′)]∣∣∣∣
≤ ∑

�∈�k

∑
�′∈�k−1

∣∣P z
ω

(
Xnk

∈ �,Xnk−1 ∈ �′)− P
z(Xnk

∈ �,Xnk−1 ∈ �′)∣∣
≤ ∑

�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P u
ω(Xnk−nk−1 ∈ �)

(5.1)

× [
P z

ω(Xnk−1 = u) − P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)]∣∣∣∣

+ ∑
�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)

(5.2)

× [
P u

ω(Xnk−nk−1 ∈ �) − P
u(Xnk−nk−1 ∈ �)

]∣∣∣∣
+ ∑

�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
u(Xnk−nk−1 ∈ �)

(5.3)

× [
P

z(Xnk−1 ∈ �′)P z
ω

(
Xnk−1 = u|Xnk−1 ∈ �′)− P

z(Xnk−1 = u)
]∣∣∣∣

+ ∑
�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
u(Xnk−nk−1 ∈ �)Pz(Xnk−1 = u)

(5.4)

− P
z(Xnk

∈ �,Xnk−1 ∈ �′)∣∣∣∣.
We turn to estimate each of the terms (5.1)–(5.4) separately.
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For the first term (5.1), we have

(5.1) = ∑
�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P u
ω(Xnk−nk−1 ∈ �)

× [
P z

ω(Xnk−1 = u) − P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)]∣∣∣∣

≤ ∑
�∈�k

∑
�′∈�k−1

∑
u∈�′

P u
ω(Xnk−nk−1 ∈ �)

× ∣∣P z
ω(Xnk−1 = u) − P

z(Xnk−1 ∈ �′)P z
ω

(
Xnk−1 = u|Xnk−1 ∈ �′)∣∣

= ∑
�′∈�k−1

∑
u∈�′

∣∣P z
ω(Xnk−1 = u)

− P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)∣∣

= ∑
�′∈�k−1

∑
u∈�′

P z
ω

(
Xnk−1 = u|Xnk−1 ∈ �′)

× ∣∣P z
ω

(
Xnk−1 ∈ �′)− P

z(Xnk−1 ∈ �′)∣∣
= ∑

�′∈�k−1

∣∣P z
ω

(
Xnk−1 ∈ �′)− P

z(Xnk−1 ∈ �′)∣∣ = λk−1.

For the second term (5.2), the triangle inequality yields

(5.2) = ∑
�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)

× [
P u

ω(Xnk−nk−1 ∈ �) − P
u(Xnk−nk−1 ∈ �)

]∣∣∣∣
≤ ∑

�′∈�k−1

∑
u∈�′

P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)

× ∑
�∈�k

∣∣P u
ω(Xnk−nk−1 ∈ �) − P

u(Xnk−nk−1 ∈ �)
∣∣.

By Lemma 2.16, this can be bounded by∑
�′∈�k−1

∑
u∈�′

P
z(Xnk−1 ∈ �′)P z

ω

(
Xnk−1 = u|Xnk−1 ∈ �′)

× ∑
�∈�k

dist(�,u)≤√
nk−nk−1R5(nk−nk−1)

∣∣P u
ω(Xnk−nk−1 ∈ �) − P

u(Xnk−nk−1 ∈ �)
∣∣(5.5)

+ (nk − nk−1)
−ξ(1).
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We say that a cube �′ ∈ �k−1 is good if for every u ∈ �′ and every � ∈ �k∣∣P u
ω(Xnk−nk−1 ∈ �) − P

u(Xnk−nk−1 ∈ �)
∣∣ ≤ CN

(θ−1)(d−1)−(1/3)θ
k ,

otherwise we say that �′ is bad. Note that the condition holds trivially for all �

such that dist(u,�) > nk − nk−1. Noting that:

• For every u we only need to consider boxes � such that dist(�,u) ≤√
nk − nk−1R5(nk − nk−1) = √

NkR5(Nk) whose number is bounded by
N

d/2
k Rd

5 (Nk)

|�| .
• We only need to consider boxes �′ such that dist(z,�′) ≤ nk−1.
• The event GN = {all boxes �′ such that dist(�′, z) ≤ nk−1 are good} satisfies

P(Gc
N) ≤ nd

k−1 · N−ξ(1) = N−ξ(1) due to Proposition 4.1.

We conclude that (5.5) is bounded by

CN
(θ−1)(d−1)−(1/3)θ
k · N

d/2
k R5(Nk)

�Nθ
k �d

+ P
(
Gc

N

)
≤ CN

1−(4/3)θ−d/2
k Rd

5 (Nk) + N−ξ(1) ≤ CN
1−(4/3)θ−d/2
k Rd

5 (Nk).

Turning to deal with (5.3), notice that

(5.3) = ∑
�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
u(Xnk−nk−1 ∈ �)

× [
P

z(Xnk−1 ∈ �′)P z
ω

(
Xnk−1 = u|Xnk−1 ∈ �′)− P

z(Xnk−1 = u)
]∣∣∣∣

≤ ∑
�∈�k

∑
�′∈�k−1

P
z(Xnk−1 ∈ �′)

×
∣∣∣max
u∈�′ P

u(Xnk−nk−1 ∈ �) − min
u∈�′ P

u(Xnk−nk−1 ∈ �)
∣∣∣

= ∑
�′∈�k−1

P
z(Xnk−1 ∈ �′)

× ∑
�∈�k

∣∣∣max
u∈�′ P

u(Xnk−nk−1 ∈ �) − min
u∈�′ P

u(Xnk−nk−1 ∈ �)
∣∣∣

(1)≤ ∑
�′∈�k−1

P
z(Xnk−1 ∈ �′)

× ∑
�∈�k s.t. ∃u∈�′

dist(�,Eu[Xnk−nk−1 ])
≤√

nk−nk−1R5(nk−nk−1)

∣∣∣max
u∈�′ P

u(Xnk−nk−1 ∈ �)

− min
u∈�′ P

u(Xnk−nk−1 ∈ �)
∣∣∣+ (nk − nk−1)

−ξ(1),
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where for (1) we used Lemma 2.16. Due to the annealed derivative estimation
from Lemma 2.14, we can bound the last term by

∑
�′∈�k−1

P
z(Xnk−1 ∈ �′)(dNθ

k−1 + √
nk − nk−1R5(nk − nk−1)

�Nθ
k �

)d

︸ ︷︷ ︸
number of relevant boxes

· ⌊
Nθ

k

⌋d

︸ ︷︷ ︸
size of each box

× C

(nk − nk−1)(d+1)/2︸ ︷︷ ︸
derivative estimation

+ (nk − nk−1)
−ξ(1)

= C(dNθ
k−1 + √

NkR5(Nk))
d

N
(d+1)/2
k

+ N
−ξ(1)
k ≤ CR6(Nk)N

−1/2
k .

Finally, for (5.4) we have

(5.4) = ∑
�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
u(Xnk−nk−1 ∈ �)Pz(Xnk−1 = u)

− P
z(Xnk

∈ �,Xnk−1 ∈ �′)∣∣∣∣
= ∑

�∈�k

∑
�′∈�k−1

∣∣∣∣∑
u∈�′

P
z(Xnk−1 = u)

× [
P

u(Xnk−nk−1 ∈ �) − P
z(Xnk

∈ �|Xnk−1 = u)
]∣∣∣∣

≤ ∑
�′∈�k−1

∑
u∈�′

P
z(Xnk−1 = u)

× ∑
�∈�k

∣∣Pu(Xnk−nk−1 ∈ �) − P
z(Xnk

∈ �|Xnk−1 = u)
∣∣.

Notice that under the event BN , which by Corollary 2.10 satisfies P(BN) ≥ 1 −
N−ξ(1), the first regeneration time after hitting u is after no more than R(N) steps.
Therefore, the distance between the regeneration times of both annealed walks
started in u and started in z conditioned to hit u is at most 2R(N) of one another.
Using the annealed derivative estimation from Lemma 2.14 for the annealed walks
after the regeneration times, we get

∣∣Pu(Xnk−nk−1 ∈ �) − P
z(Xnk

∈ �|Xnk−1 = u)
∣∣ ≤ CR(N) · Ndθ

k

(nk − nk−1 − R(N))(d+1)/2

≤ CR(N) · Ndθ
k

N
(d+1)/2
k

,
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recalling that due to Lemma 2.16 we only need to consider boxes � at distance ≤√
nk − nk−1R5(nk −nk−1) from the annealed expectation E

u[Xnk−nk−1], it follows
that

(5.4) ≤ ∑
�′∈�k−1

∑
u∈�′

P
z(Xnk−1 = u) ·

(
dNθ

k−1 + √
nk − nk−1R5(nk − nk−1)

�Nθ
k �

)d

× CR(N) · Ndθ
k

N
(d+1)/2
k

+ N
−ξ(1)
k

=
(

dNθ
k−1 + √

NkR5(Nk)

�Nθ
k �

)d

· CR(N) · Ndθ
k

N
(d+1)/2
k

+ N
−ξ(1)
k

≤ CR6(N)N
−1/2
k .

Combining all of the above we conclude that under the event GN ∩ BN (whose
probability is ≥1 − N−ξ(1)) for every k ≥ 1

λk ≤ λk−1 + CN
1−(4/3)θ−d/2
k Rd

5 (Nk) + CN
−1/2
k + CR(N)N

−1/2
k

≤ λk−1 + CN
−1/2
k R5(Nk) ≤ λk−1 + CN

−1/3
k .

Consequently,

λr(N) ≤ λ1 + C

r(N)∑
k=1

N
−1/3
k = λ1 + C

r(N)∑
k=1

1

�N1/2k�1/3

≤ λ1 + C

r(N)∑
k=1

N−1/(3·2k) ≤ λ1 + C

∫ r(N)+1

1
e−1/(3·2t )·logN dt

u=1/(3·2t )·logN= λ1 + C

∫ βN

αN

e−u

− ln 3 · u du,

where αN = 1
6 · logN and βN = 1

3·2r(N)+1 · logN . Since for large enough N , we

have βN ≥ θ
6√

M
logN ≥ 1 we get

λk ≤ λ1 + C

∫ βN

αN

−e−u du = λ1 + C
[
e−u]βN

αN
≤ λ1 + Ce−βN

= λ1 + C

N1/(3·2r(n)+1)
≤ λ1 + C

M1/6 .

Finally, recalling the definition λ1 and the fact that n0 ≥ cN it follows from Propo-
sition 4.1, that λ1 ≤ CN−(1/3)θ , which completes the proof. �
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6. Proof of Theorem 1.10. In this section, we prove our first main result, that
is, the existence of a probability measure on the space of environments, which is
equivalent to the original i.i.d. measure and is invariant with respect to the point
of view of the particle. The proof is divided into two parts. In the first and main
part of the proof the existence of an invariant measure which is not singular with
respect to the original i.i.d. measure is proved. In the second part, we show that
the existence of such a measure guarantees the existence of an equivalent invariant
measure.

In order to prove the existence of a nonsingular invariant measure, we exploit the
result from the last section which allows us to construct a coupling of the annealed
and quenched law of the walk at time N such that for most environments, that is,
with P probability ≥ 1 − N−ξ(1), will keep them at distance at most M of one
another with positive probability independent of N . Using the uniform ellipticity,
the last coupling can be strengthen to guarantee the walks will coincide at time N

with positive probability, which again is uniform in N . Defining now, two random
environments ωN,ω′

N which are the original environment shifted according to the
location of the annealed and quenched random walks at time N , respectively, we
get a coupling of the two such that ωN = ω′

N with positive probability. Taking a
Cesaro partial limit of the laws of ωN and ω′

N , we get two probability measures
on environments which are the original i.i.d. measure and an invariant measure
with respect to the point of view of the particle, respectively. By taking the above
coupling to the limit, we can conclude that both measures will give the same en-
vironment with positive probability, and, therefore, in particular that they are not
singular.

In the second part of the proof (see Lemma 6.2), we use general properties of
probability measures which are invariant with respect to the point of view of the
particle in order to show that the existence of a nonsingular invariant probabil-
ity measure guarantees the existence of an equivalent invariant one. Recently, we
learned that the method of obtaining an absolutely continuous probability mea-
sure from a nonsingular one already appeared in [19], Lemma 5. For the readers
convenience and in order to keep the section self-contained, we include a proof
below.

In Section 6.2, we discuss several properties of the Radon–Nikodym derivative
of the invariant measure with respect to the i.i.d. measure. This includes estimation
on its average on a box as well as the existence of all of its moments.

6.1. Existence of an equivalent measure.

LEMMA 6.1. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satisfies
(P). Then there exists a measure Q on the space of environments which is invari-
ant with respect to the point of view of the particle and is not singular with respect
to the original i.i.d. measure P .
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PROOF. Fix 0 < ε < 1, a large M ∈ N and denote by K(N) = K(N,M,ε) the
set of environments ω ∈ � such that∑

�∈�(M)

∣∣P 0
ω(XN ∈ �) − P

0(XN ∈ �)
∣∣ < ε,(6.1)

where �(M) is a partition of Zd into d-dimensional boxes of side length M . By
Theorem 5.1, for every ε > 0 there exists M ∈ N (independent of N ) such that
P(K(N)) ≥ 1 − N−ξ(1). Equation (6.1) tells us that the total variation distance
of the respective distributions P

0(XN ∈ ·) and P 0
ω(XN ∈ ·) on �(M) is less than

ε and that therefore there exists a coupling �̃ω,N,M on �(M) × �(M) of both
measures such that �̃ω,N,M(��) > 1 − ε, where �� = {(�,�) : � ∈ �(M)}.

Next, using the last coupling, we show how to construct a new coupling of
P

0(XN = ·) and P 0
ω(XN = ·) on Z

d × Z
d which gives a positive (independent of

N ) probability to the event � = {(x, x) : x ∈ Z
d}. Define �ω,N on Z

d ×Z
d by

�ω,N(x, y) := ∑
�,�′∈�(M)

�̃ω,N−dM,M

(
�,�′)

P
0(XN = x|XN−dM ∈ �)P 0

ω

× (
XN = y|XN−dM ∈ �′).

Note that due to the law of total probability �ω,N is indeed a coupling of
P

0(XN = ·) and P 0
ω(XN = ·).

For x ∈ Z
d , let �x be the unique cube that contains x in the partition �(M).

Since the side length of each box in the partition �(M) is M it follows that the
random walk can reach from each point in the box �x to x in less than dM steps.
Recalling also that the law of P is uniformly elliptic with elliptic constant η [see
(1.1)] we conclude that

�ω,N(x, x) ≥ �̃ω,N−dM,M(�x,�x)P
0(XN = x|XN−dM ∈ �x)P

0
ω

× (XN = x|XN−dM ∈ �x)

≥ �̃ω,N−dM,M(�x,�x)η
2dM.

Summing over x, we get

�ω,N(�) = ∑
x∈Zd

�ω,N(x, x) ≥ ∑
x∈Zd

�̃ω,N,M(�x,�x)η
2dM

= ∑
�∈�(M)

�̃ω,N,M(�,�)Mdη2dM > (1 − ε)Mdη2dM.

The last coupling allows us to construct for every N two probability measures
on � that coincide with positive probability (independent of N ). Indeed, for N ∈N

let QN and PN be defined by

PN(A) = E

[ ∑
x∈Zd

P
0(XN = x)1σxω∈A

]
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and

QN(A) = E

[ ∑
x∈Zd

P 0
ω(XN = x)1σxω∈A

]
.

Note that for every N ∈ N the measure PN is in fact the i.i.d. measure P since the
annealed walk is independent of the environment distribution. Indeed, for every
measurable event A ⊂ �

PN(A) = E

[ ∑
x∈Zd

P
0(XN = x)1σxω∈A

]
= ∑

x∈Zd

P
0(XN = x)E[1σxω∈A]

= ∑
x∈Zd

P
0(XN = x)P (σ−xA) = ∑

x∈Zd

P
0(XTN

= x)P (A) = P(A).

Also note that using the coupling �ω,N we have for every measurable event A

∣∣QN(A) − PN(A)
∣∣ = ∣∣∣∣E[ ∑

x∈Zd

[
P

0(XN = x) − P 0
ω(XN = x)

]
1σxω∈A

]∣∣∣∣
=

∣∣∣∣E[ ∑
x∈Zd

[ ∑
y∈Zd

�ω,N(x, y) − ∑
z∈Zd

�ω,N(z, x)

]
1σxω∈A

]∣∣∣∣
=

∣∣∣∣E[ ∑
x∈Zd

[∑
y �=x

�ω,N(x, y) − ∑
z �=x

�ω,N(z, x)

]
1σxω∈A

]∣∣∣∣
≤ max

{ ∑
x∈Zd

∑
y �=x

�ω,N(x, y),
∑

x∈Zd

∑
z �=x

�ω,N(z, x)

}

< 1 − (1 − ε)Mdη2dM.

Let {nk} be a subsequence such that the weak limits of the Cesaro sequences
{ 1
nk

∑nk−1
N=0 QN }k≥1, { 1

nk

∑nk−1
N=0 PN }k≥1 and { 1

nk

∑nk−1
N=0 �ω,N }k≥1 exists. Since

for every N ∈ N the measure PN equals P it follows that the limit of
{ 1
nk

∑nk−1
N=0 PN }k≥1 is P as well. Next, notice that the weak limit of

{ 1
nk

∑nk−1
N=0 QN }k≥1 which we denote by Q is invariant with respect to the point

of view of the particle [see (1.2) and (1.3) for the definition]. Indeed, for every
bounded continuous function f : � →R∫

�
Rf (ω)dQ(ω) = lim

k→∞
1

nk

nk−1∑
N=0

∫
�
Rf (ω)dQN(ω)

= lim
k→∞

1

nk

nk−1∑
N=0

∫
�

∑
e∈Ed

ω(0, e)f (σeω)dQN(ω)
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= lim
k→∞

1

nk

nk−1∑
N=0

∫
�

f (ω)dQN+1(ω)

= lim
k→∞

1

nk

nk∑
N=1

∫
�

f (ω)dQN(ω)

=
∫
�

f (ω)dQ(ω),

where R is as in (1.2). Finally, we show that Q and P are not singular. Using the
coupling of PN and QN , for every event A ⊂ � we have

∣∣P(A) − Q(A)
∣∣ = lim

k→∞
1

nk

∣∣∣∣∣
nk−1∑
N=0

(
PN(A) − QN(A)

)∣∣∣∣∣
≤ lim

k→∞
1

nk

nk−1∑
N=0

∣∣PN(A) − QN(A)
∣∣

≤ 1 − (1 − ε)Mdη2dM.

Since this holds for all events, it follows that ‖P − Q‖TV ≤ 1 − (1 − ε)Mdη2dM ,
and thus P and Q are not singular. �

LEMMA 6.2. Assume P is uniformly elliptic and i.i.d. If there exists a proba-
bility measure Q on the space of environments which is invariant with respect to
the point of view of the particle and is not singular with respect to P , then there
exists a probability measure Q̃ which is invariant with respect to the point of view
of the particle and is also equivalent to P .

PROOF. Denote by Q = Qc + Qs the Lebesgue decomposition of Q to an
absolutely continuous part Qc (w.r.t. P ) and a singular part Qs (w.r.t. P ). Let
f = dQc

dP
and define A = {ω ∈ � : f (ω) = 0}. From the invariance with respect to

the point of view of the particle and the uniform ellipticity, we have

Q = ∑
e∈Ed

ω(e)σe ◦ Q ≥ η
∑
e∈Ed

σe ◦ Q

and, therefore, σe ◦Q � Q for every e ∈ Ed . Since in addition we have (σe ◦Q)s =
σe ◦ Qs , (σe ◦ Q)c = σe ◦ Qc and d(σe◦Q)c

dP
(·) = f (σe(·)) we get that

Qc = ∑
e∈Ed

ω(e)σe ◦ Qc ≥ η
∑
e∈Ed

σe ◦ Qc(6.2)

and thus

f (ω) ≥ η
∑
e∈Ed

f
(
σe(ω)

)
.

Consequently, ω ∈ A implies σeω ∈ A for every e ∈ Ed , P -a.s.
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In particular, we get that A is σe1 invariant and, therefore, by ergodicity that it is
a 0–1 event. This immediately implies that if Q is not singular with respect to P ,
that is, P(A) �= 1, then P(A) = 0 and thus P � Qc. Taking Q̃ = Qc

Qc(�)
, we get

that Q̃ is equivalent to the i.i.d. measure and is invariant with respect to the point
of view of the particle [by the first equality in (6.2)]. �

REMARK 6.3. Note that the sequence of probability measures {∑n−1
N=0 QN }n≥1

equals to {∑n−1
N=0 R

NP }n≥1. Recalling Theorem 1.9 it follows that the measure∑n−1
N=0 QN converges (without taking a subsequence) to the equivalent measure Q

which is the unique probability measure invariant with respect to the point of view
of the particle. In particular, there is no need to restrict ourselves to the absolutely
continuous part as done in Lemma 6.2.

6.2. Some properties of the Radon–Nikodym derivative. In this subsection, we
discuss some properties of the equivalent probability measure Q and its Radon–
Nikodym derivative. The next definition will be useful in the statement of the lem-
mas.

DEFINITION 6.4. Given two environments ω,ω′ ∈ � define their distance by

dist
(
ω,ω′) = inf

{‖x‖1 : ω′ = σxω
}
,

where the infimum over an empty set is defined to be infinity.

For future use, we denote by � and �N the couplings of P and Q and of PN

and QN , respectively, on � × �, that is,

�N(A) = E

[ ∑
x,y∈Zd

�ω,N(x, y)1(σxω,σyω)∈A

]
,(6.3)

and � is the weak limit of the Cesaro sequence { 1
n

∑n−1
N=0 �N }∞n=1 along any con-

verging sub-sequence which we denote from here on by {nk}k≥1.
Our main goal is to prove the following concentration inequality for the average

of the Radon–Nikodym derivative on a box.

LEMMA 6.5. Let M ∈ N and denote by �0 a d-dimensional cube of side
length M in Z

d . Then for every ε > 0,

P

(∣∣∣∣ 1

|�0|
∑

x∈�0

dQ

dP
(σxω) − 1

∣∣∣∣ > ε

)
≤ M−ξ(1).

As a first step toward the proof of Lemma 6.5, we prove the following.
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LEMMA 6.6. For M ∈ N let D
(1)
M : � → [0,∞] and D

(2)
M : � → [0,∞] be

defined by

D
(1)
M (ω) = E� [1dist(ω1,ω2)>dM |Fω1](ω)

and

D
(2)
M (ω) = E� [1dist(ω1,ω2)>dM |Fω2](ω),

where Fω1 , Fω2 are the σ -algebras generated by the first, respectively, second co-
ordinate in � × � and � is as defined below (6.3). For every M ∈ N, there exists
an event FM with the following properties:

(1) P(FM) = 1 − M−ξ(1).
(2) For every ε > 0, if M is large enough, then D

(1)
M (ω) ≤ ε1FM

(ω) + 1Fc
M

(ω)

and dQ
dP

(ω)D
(2)
M (ω) ≤ ε1FM

(ω) + 1Fc
M

(ω).

PROOF. Let

FM =
∞⋂

k=M

{
ω ∈ � : ∀x ∈ [−k, k]d ∩Z

d,

∑
�∈�M

∣∣Px(Xk ∈ �) − P x
ω(Xk ∈ �)

∣∣ ≤ C2

Mc1
+ C2

kc1

}
,

where �M is a partition of Zd into boxes of side length M and 0 < c1,C2 < ∞ are
the constants from Theorem 5.1. Thus, by the same theorem, we have P(FM) =
1 − M−ξ(1). Fix some ε > 0. The definition of FM together with the definition of
the couplings �̃ω,k,M constructed in the proof of Lemma 6.1 implies that for every
ω ∈ FM , every k ≥ M and every x ∈ [−k, k]d ∩ Z

d we have �̃σxω,k,M(��M
) >

1− 2C2
Mc1 > 1− ε for large enough M , where as before ��M

= {(�,�) : � ∈ �M}.
Before turning to prove the estimates for {D(i)

M (ω)}i∈{1,2}, we prove a similar
results for the conditional expectations of �N . For N,M ∈ N and i ∈ {1,2}, define

D
(i)
M,N : � → [0,∞] by D

(i)
M,N(ω) = E�N

[1dist(ω1,ω2)>dM |Fωi
](ω). Note that for

P -almost every environment ω ∈ � we have

D
(1)
M,N(ω) = ∑

x,y∈Zd

�σ−xω,N(x, y)1‖x−y‖1>dM(6.4)

and

D
(2)
M,N(ω) =

(
dQN

dP
(ω)

)−1 ∑
x,y∈Zd

�σ−yω,N(x, y)1‖x−y‖1>dM.(6.5)
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Indeed, using (6.3) we have for every measurable event A ⊂ �

E�N
[1A×�1dist(ω1,ω2)>dM ]
= �N

(
A × � ∩ {

(ω1,ω2) : dist(ω1,ω2) > dM
})

= E

[ ∑
x,y∈Zd

�ω,N(x, y)1(σxω,σyω)∈A×�1dist(σxω,σyω)>dM

]

= ∑
x,y∈Zd

E
[
�ω,N(x, y)1σxω∈A1‖x−y‖1>dM

]
,

which by translation invariance of P equals∑
x,y∈Zd

E
[
�σ−xω,N(x, y)1ω∈A1‖x−y‖1>dM

]

= E

[ ∑
x,y∈Zd

�σ−xω,N(x, y)1ω∈A1‖x−y‖1>dM

]
.

Due to the fact that the first marginal of �N is P the last term equals

E�N

[
1(ω,ω′)∈A×� · ∑

x,y∈Zd

�σ−xω,N(x, y)1‖x−y‖1>dM

]
,

which by the definition of conditional expectation implies (6.4). A similar argu-
ment shows that

E�N
[1�×A1dist(ω1,ω2)>dM ]
= E

[ ∑
x,y∈Zd

�σ−xω′,N (x, y)1ω′∈A1‖x−y‖1>dM

]

= EQN

[(
dQN

dP

(
ω′))−1 ∑

x,y∈Zd

�σ−xω′,N (x, y)1‖x−y‖1>dM1ω′∈A

]

= E�N

[(
dQN

dP
(ω2)

)−1 ∑
x,y∈Zd

�σ−xω2,N (x, y)1‖x−y‖1>dM · 1�×A(ω1,ω2)

]
and thus that (6.5) holds as well.

Since �σ−xω,N(x, y) > 0 implies x ∈ [−N,N]d ∩ Z
d , it follows that for large

enough M , every ω ∈ FM and every N ≥ M∑
x,y∈Zd

�σ−xω,N(x, y)1‖x−y‖1>dM

= 1 − ∑
x,y∈Zd

�σ−xω,N(x, y)1‖x−y‖1≤dM
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≤ 1 − min
z∈[−N,N]d∩Zd

∑
x,y∈Zd

�σ−zω,N(x, y)1‖x−y‖1≤dM

≤ 1 − min
z∈[−N,N]d∩Zd

∑
�∈�M

∑
x,y∈�

�σ−zω,N(x, y)

= 1 − min
z∈[−N,N]d∩Zd

( ∑
�∈�M

�̃σ−zω,N,M(�,�)

)

= 1 − min
z∈[−N,N]d∩Zd

�̃σ−zω,N,M(��M
) < ε.

Thus,

D
(1)
M,N(ω) = ∑

x,y∈Zd

�σ−xω,N(x, y)1‖x−y‖1>dM ≤ ε1FM
(ω) + 1Fc

M
(ω)

and similarly,

dQN

dP
(ω)D

(2)
M,N(ω) = ∑

x,y∈Zd

�σ−yω,N(x, y)1‖x−y‖1>dM ≤ ε1FM
(ω) + 1Fc

M
(ω).

Next, we turn to prove the estimate for {D(i)
M }i∈{1,2}. It is enough to show that

along some sub-sequence of {nk}k≥1 (which for simplicity we still denote by
{nk}k≥1)

D
(1)
M (ω) = lim

k→∞
1

nk

nk−1∑
N=0

D
(1)
M,N(ω) and

(6.6)

D
(2)
M (ω) =

(
dQ

dP
(ω)

)−1

lim
k→∞

1

nk

nk−1∑
N=0

dQN

dP
(ω)D

(2)
M,N(ω), P -a.s.

Indeed, if (6.6) holds, then for P -almost every ω we have

D
(1)
M (ω) = lim

k→∞
1

nk

nk−1∑
N=0

D
(1)
M,N(ω)

= lim
k→∞

1

nk

[
M−1∑
N=0

D
(1)
M,N(ω) +

nk−1∑
N=M

D
(1)
M,N(ω)

]

≤ lim
k→∞

1

nk

[
M +

nk−1∑
N=M

D
(1)
M,N(ω)

]

≤ lim
k→∞

1

nk

[
M +

nk−1∑
N=M

(
ε1FM

(ω) + 1Fc
M

(ω)
)]

= ε1FM
(ω) + 1Fc

M
(ω)
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and similarly

dQ

dP
(ω)D

(2)
M (ω)

= lim
k→∞

1

nk

nk−1∑
N=0

dQN

dP
(ω)D

(2)
M,N(ω)

= lim
k→∞

1

nk

[
M−1∑
N=0

dQN

dP
(ω)D

(2)
M,N(ω) +

nk−1∑
N=M

dQN

dP
(ω)D

(2)
M,N(ω)

]

≤ lim
k→∞

1

nk

[
M−1∑
N=0

dQN

dP
(ω) +

nk−1∑
N=M

dQN

dP
D

(1)
M,N(ω)

]

≤ lim
k→∞

1

nk

[
M−1∑
N=0

dQN

dP
(ω) +

nk−1∑
N=M

(
ε1FM

(ω) + 1Fc
M

(ω)
)]

= ε1FM
(ω) + 1Fc

M
(ω).

Turning to prove (6.6), for every measurable event A ⊂ � we have

E
[
D

(1)
M (ω)1A(ω)

]
= E�

[
1dist(ω1,ω2)>dM · 1A×�(ω1,ω2)

]
= �

({
(ω1,ω2) : dist(ω1,ω2) > dM

}∩ A × �
)

(1)= lim
k→∞

1

nk

nk−1∑
N=0

�N

({
(ω1,ω2) : dist(ω1,ω2) > dM

}∩ A × �
)

= lim
k→∞

1

nk

nk−1∑
N=0

E�N

[
1dist(ω1,ω2)>dM · 1A×�(ω1,ω2)

]
(2)= lim

k→∞
1

nk

nk−1∑
N=0

E�N

[
D

(1)
M,N(ω1) · 1A×�(ω1,ω2)

]

= lim
k→∞

1

nk

nk−1∑
N=0

E
[
D

(1)
M,N(ω1) · 1A(ω1)

]

= lim
k→∞E

[
1

nk

nk−1∑
N=0

D
(1)
M,N(ω1) · 1A(ω1)

]
,

where (1) is due to the definition of � below (6.3) and (2) uses the definition of
D

(1)
M,N as the conditional expectation. This implies that 1

nk

∑nk−1
N=0 D

(1)
M,N converges

in L1(P ) to D
(1)
M and thus by standard arguments contains a subsequence that
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converges P -almost surely. Similarly, for D
(2)
M

EQ

[
D

(2)
M (ω)1A(ω)

]
= E�

[
1dist(ω1,ω2)>dM · 1�×A(ω1,ω2)

]
= �

({
(ω1,ω2) : dist(ω1,ω2) > dM

}∩ � × A
)

= lim
k→∞

1

nk

nk−1∑
N=0

�N

({
(ω1,ω2) : dist(ω1,ω2) > dM

}∩ � × A
)

= lim
k→∞

1

nk

nk−1∑
N=0

E�N

[
1dist(ω1,ω2)>dM · 1�×A(ω1,ω2)

]

= lim
k→∞

1

nk

nk−1∑
N=0

E�N

[
D

(2)
M,N(ω2) · 1�×A(ω1,ω2)

]

= lim
k→∞

1

nk

nk−1∑
N=0

EQN

[
D

(2)
M,N(ω2) · 1A(ω2)

]

= lim
k→∞

1

nk

nk−1∑
N=0

EQ

[(
dQ

dP
(ω2)

)−1

· dQN

dP
(ω2) · D(2)

M,N(ω2) · 1A(ω2)

]

= lim
k→∞EQ

[(
dQ

dP
(ω2)

)−1

· 1

nk

nk−1∑
N=0

dQN

dP
(ω2) · D(2)

M,N(ω2) · 1A(ω2)

]
.

This proves the second quality in (6.6), Q (and thus P )-almost surely for an ap-
propriate sub-sequence. �

PROOF OF LEMMA 6.5. The proof deals separately with the events B−
ε = {ω ∈

� : 1
|�0|

∑
x∈�0

dQ
dP

(σxω) < 1 − ε} and B+
ε = {ω ∈ � : 1

|�0|
∑

x∈�0
dQ
dP

(σxω) > 1 +
ε}. We start with the event B−

ε . The idea is to separate the event B−
ε into two

events the first with probability M−ξ(1) and the second, denoted S−
ε , which will

turn out to be with P probability zero measure. To this end, assume without loss
of generality that �0 is centered at the zero, denote Mε = ε

6d2 M , define �−
0 = {x ∈

Z
d : ‖x‖∞ < M − dMε} and let

S−
ε = {

ω ∈ B−
ε : σxω ∈ FMε,∀x ∈ �0

}
,

where FMε is the event from Lemma 6.6. Due to property (1) of FMε from
Lemma 6.6

P
(
S−

ε

) ≥ P
(
B−

ε

)− |�0|P (
Fc

Mε

) = P
(
B−

ε

)− Md · (Mε)
−ξ(1)

= P
(
B−

ε

)− M−ξ(1),
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and, therefore, it is enough to show that P(S−
ε ) = 0. We claim that there exists

an event K ⊂ S−
ε such that (1) P (K) ≥ P(S−

ε ) · ((4d)d |�0|)−1 and (2) if ω,ω′ ∈
K and ω �= ω′, then dist(ω,ω′) > 4dM . Indeed, for every x ∈ Z

d let Ux be an
independent (of everything defined so far) random variable uniformly distributed
on [0,1], and define4

K = {
ω ∈ S−

ε : ∀x ∈ 4d�0 if σxω ∈ B−
ε then Ux < U0

}
.

Informally, from each family of environments whose distance is smaller than 4dM

we choose one uniformly. This immediately implies that for two distinct points
in K property (2) holds. Property (1) on the other hand holds due to translation
invariance of P .

Now, let

H = ⋃
x∈�0

σxK and H− = ⋃
x∈�−

0

σxK.

By property (2) of K , in both cases this is a disjoint union and, therefore, recalling
once more the translation invariance of the measure P , we have

P(H) = |�0|P(K) and
(6.7)

P
(
H−) = ∣∣�−

0

∣∣P(K) = |�0|
(

1 − ε

6d2

)d

P (K) >

(
1 − ε

6

)
P(H).

Going back to the definition of the event B−
ε and recalling that K ⊂ S−

ε ⊂ B−
ε we

get

Q(H) =
∫
H

dQ

dP
(ω)dP (ω) = ∑

x∈�0

∫
σxK

dQ

dP
(ω)dP (ω)

=
∫
K

∑
x∈�0

dQ

dP
(σxω)dP (ω)

≤
∫
K

(1 − ε)|�0|dP (ω) = (1 − ε)|�0|P(K)

= (1 − ε)P (H).

Combining with (6.7), for small enough ε > 0 this yields

Q(H) ≤ (1 − ε)P (H) = 1 − ε

1 − ε/6

(
1 − ε

6

)
P(H) <

1 − ε

1 − ε/6
P
(
H−)

(6.8)

<

(
1 − ε

3

)
P
(
H−)

.

4The event K is not measurable in the σ -algebra of �. However, using Fubini’s theorem we can
find a section in � which is measurable and have the desired properties.
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Let A = {(ω,ω′) : ω ∈ H−,ω′ /∈ H }. Then by (6.7) and (6.9)

�(A) ≥ P
(
H−)− Q(H) ≥ P(H) −

(
1 − ε

3

)
P
(
H−)

(6.9)

≥ ε

3
P
(
H−)

>
ε

3

(
1 − ε

6

)
P(H) >

ε

4
P(H).

By the construction of K , for every (ω,ω′) ∈ A we have dist(ω,ω′) > dMε and,
therefore,∫

H
D

(1)
Mε

(ω)dP (ω)

=
∫
H×�

D
(1)
Mε

(ω)d�
(
ω,ω′) ≥

∫
H−×�

D
(1)
Mε

(ω)d�
(
ω,ω′)

=
∫
�×�

E�[1dist(ω,ω′)>dMε
|Fω](ω)1H−×�

(
ω,ω′)d�

(
ω,ω′)

=
∫
�×�

E�

[
1dist(ω,ω′)>dMε

1H−×�

(
ω,ω′)|Fω

]
(ω)d�

(
ω,ω′)

(6.10)
=

∫
�×�

1dist(ω,ω′)>dMε
1H−×�

(
ω,ω′)d�

(
ω,ω′)

≥
∫
�×�

1dist(ω,ω′)>dMε
1A

(
ω,ω′)d�

(
ω,ω′)

=
∫
�×�

1A

(
ω,ω′)d�

(
ω,ω′)

= �(A) >
ε

4
P(H),

where for the last inequality we used (6.9). However, recalling that H ⊂ FMε by
definition, and using Lemma 6.6 with Mε and ε

5 instead of M and ε we get∫
H

D
(1)
Mε

(ω)dP (ω) ≤
∫
H

ε

5
1FMε

(ω) + 1Fc
Mε

(ω)dP (ω)

(6.11)
=

∫
H

ε

5
dP (ω) = ε

5
P(H).

Combining (6.10) and (6.11) we must conclude that P(H) = 0 and, therefore
P(K) = 0. This however, by property (1) of K , implies that P(S−

ε ) = 0 and, there-
fore, finally that P(B−

ε ) = M−ξ(1).
Next, we turn to deal with the event B+

ε . As in the proof for B−
ε for ε > 0 we

denote Mε = ε
6d2 M . Also assume without loss of generality that �0 is centered in

zero, define �+
0 = {x ∈ Z

d : ‖x‖∞ < M + dMε} and let

S+
ε = {

ω ∈ B+
ε : σxω ∈ FMε,∀x ∈ �+

0

}
,
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where FMε is the event from Lemma 6.6. Due to property (1) of FMε from
Lemma 6.6

P
(
S+

ε

) ≥ P
(
B+

ε

)− ∣∣�+
0

∣∣P (
Fc

Mε

) = P
(
B+

ε

)−
(

1 + ε

6d

)d

Md · (Mε)
−ξ(1)

= P
(
B+

ε

)− M−ξ(1)

and, therefore, it is enough to show that P(S+
ε ) = 0. As for S−

ε we claim that there
exists an event K ⊂ S+

ε such that (1) P(K) ≥ P(S+
ε )/((4d)d |�+

0 |)−1 and (2) if
ω,ω′ ∈ K and ω �= ω′, then dist(ω,ω′) > 4d(M + Mε).

Now, let

H = ⋃
x∈�0

σxK and H+ = ⋃
x∈�+

0

σxK.

By property (2) of K , in both cases this is a disjoint union and, therefore, recalling
once more the translation invariance of the measure P , we have for small enough
ε > 0

P(H) = |�0|P(K) and
(6.12)

P
(
H+) = ∣∣�+

0

∣∣P(K) =
(

1 + ε

6d2

)d

|�0|P(K) <

(
1 + ε

6

)
P(H).

Going back to the definition of the event B+
ε and recalling that K ⊂ S+

ε ⊂ B+
ε we

get

Q(H) =
∫
H

dQ

dP
(ω)dP (ω) = ∑

x∈�0

∫
σxK

dQ

dP
(ω)dP (ω)

=
∫
K

∑
x∈�0

dQ

dP
(σxω)dP (ω)

(6.13)
>

∫
K

(1 + ε)|�0|dP (ω) = (1 + ε)|�0|P(K)

= (1 + ε)P (H),

and, therefore, combining with (6.12), for small enough ε > 0 this yields

Q(H) > (1 + ε)P (H) = 1 + ε

1 + ε/6

(
1 + ε

6

)
P(H) >

1 + ε

1 + ε/6
P
(
H+)

(6.14)

>

(
1 + ε

3

)
P
(
H+)

.

Let A = {(ω,ω′) : ω /∈ H+,ω′ ∈ H }. Then by (6.14)

�(A) ≥ Q(H) − P
(
H+)

> Q(H) − 1

1 + ε/3
Q(H) = ε/3

1 + ε/3
Q(H)

(6.15)
≥ ε

4
Q(H).
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By the construction of K , for every (ω,ω′) ∈ A we have dist(ω,ω′) > dMε and,
therefore,∫

H
D

(2)
Mε

(ω)dQ(ω)

=
∫
�×H

D
(2)
Mε

(
ω′)d�

(
ω,ω′)

=
∫
�×�

E�[1dist(ω,ω′)>dMε
|Fω′ ](ω′)1�×H

(
ω,ω′)d�

(
ω,ω′)

=
∫
�×�

E�

[
1dist(ω,ω′)>dMε

1�×H

(
ω,ω′)|Fω′

](
ω′)d�

(
ω,ω′)

(6.16)
=

∫
�×�

1dist(ω,ω′)>dMε
1�×H

(
ω,ω′)d�

(
ω,ω′)

≥
∫
�×�

1dist(ω,ω′)>dMε
1A

(
ω,ω′)d�

(
ω,ω′)

=
∫
�×�

1A

(
ω,ω′)d�

(
ω,ω′)

= �(A) ≥ ε

4
Q(H),

where for the last inequality we used (6.15). However, recalling that H ⊂ FMε by
definition, that P(H) ≤ Q(H) by (6.13) and using Lemma 6.6 with Mε and ε

5
instead of M and ε we get∫

H
D

(2)
Mε

dQ(ω) ≤
∫
H

1

f (ω)

[
ε

5
1FMε

+ 1Fc
Mε

]
dQ(ω)

=
∫
H

[
ε

5
1FMε

+ 1Fc
Mε

]
dP (ω)(6.17)

=
∫
H

ε

5
dP (ω) = ε

5
P(H) ≤ ε

5
Q(H).

Combining (6.16) and (6.17), we must conclude that Q(H) = 0. Therefore, by
(6.13) we have P(H) = 0, and thus that P(K) = 0. This however, by property (1)
of K , implies that P(S+

ε ) = 0 and, therefore, finally that P(B+
ε ) = M−ξ(1). �

COROLLARY 6.7. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and
satisfies (P). Then E[(dQ

dP
)k] < ∞ for every k ∈ N.

PROOF. For every M ∈ N large enough, Lemma 6.5 implies

P

(
dQ

dP
(ω) ≥ 2(2M + 1)d

)
≤ P

(
1

(2M + 1)d

∑
x∈[−M.M]d∩Zd

dQ

dP
(σxω) ≥ 2

)
= M−ξ(1).

Thus, dQ
dP

has super polynomial decay and the result follows. �



LOCAL LIMIT FOR CERTAIN BALLISTIC RWRE 2935

PROOF OF THEOREM 1.10. The proof is the content of Lemmas 6.1, 6.2 and
Corollary 6.7. �

7. Proof of Theorem 1.11. In this section, we prove our second main result,
the prefactor local limit theorem. The uniqueness of the prefactor follows from
its definition quite easily and most of the work is concentrated into the proof of
existence. Our candidate for the prefactor is the Radon–Nikodym derivative of the
equivalent measure Q constructed in the previous section. The proof proceeds as
follows: instead of directly comparing the quenched measure P 0

ω(Xn = ·) and the
annealed times the prefactor measure P

0(Xn = ·)f (σ·ω), we introduce two new
measures (denoted temporarily by ρ1 and ρ2) and show that the total variation
of the pairs (P0(Xn = ·)f (σ·ω),ρ1), (ρ1, ρ2), (ρ2,P

0
ω(Xn = ·)) goes to zero as

n goes to infinity for P -almost every environment. Both measures ρ1 and ρ2 are
constructed in a way that allows us to exploit the previous results on the connection
between the quenched and annealed measures in the total variations estimations.
More formally, we fix two parameters 0 < δ < ε < 1

2 and define the measures ρ1
and ρ2 as follows: for ρ1, we choose a point by first choosing a point according
to the annealed law at time n − nε times the prefactor and then letting it “evolve”
according to the quenched law for nε additional steps. For ρ2 we fix some partition
of Zd to boxes of side length nδ , choose a box according to the quenched measure
at time n−nε , choose a point inside the box proportionally to its prefactor and then
let it “evolve” into a new point according to the quenched law for nε additional
steps. For a more precise definition of the measures, see Definition 7.2.

7.1. Uniqueness. We start with a proof that the prefactor, if exists, is unique.
Assume both f and g satisfy (1.4) and denote h = f −g. By the triangle inequality
for P -almost every ω ∈ �

lim
n→∞

∑
x∈Zd

P
0(Xn = x)

∣∣h(σxω)
∣∣ = 0,(7.1)

that is, limn→∞E
0[|h(σXnω)|] = 0, P -a.s. If h �= 0, then there exists a measurable

subset A of � such that P(A) > 0 and |h| > c > 0 on A. Thus, for every n ∈N

E
[
E

0[∣∣h(σXnω)
∣∣]] ≥ E

[
E

0[∣∣h(σXnω)
∣∣1σXnω∈A

]] ≥ cE
[
E

0[1σXnω∈A]]
= cE

[
P

0(σXnω ∈ A)
] = c

∑
y∈Zd

P
0(Xn = y)E[1σyω∈A]

= c
∑

y∈Zd

P
0(Xn = y)P (σyω ∈ A)(7.2)

= cP (A)
∑

y∈Zd

P
0(Xn = y)

= cP (A) > 0.
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Since

E
[
E

0[∣∣h(σXnω)
∣∣]] = E

[ ∑
y∈Zd

∣∣h(σyω)
∣∣P0(Xn = y)

]

= ∑
y∈Zd

P
0(Xn = y) · E[∣∣h(σyω)

∣∣]
= ∑

y∈Zd

P
0(Xn = y) · E[∣∣h(ω)

∣∣] = E
[|h|],

the sequence {|h(σXnω)|}n∈N is tight and, therefore, by (7.2) it follows that
limn→∞E

0[|h(σXnω)|] > 0 a contradiction to (7.1).

7.2. Existence. Let f (ω) be the Radon–Nikodym derivative of Q defined in
Theorem 1.10. We will show that f satisfies Theorem 1.11 starting with the fol-
lowing simple proposition.

PROPOSITION 7.1. For P -almost every ω every n ∈ N and every x ∈ Z
d

f (σxω) = ∑
y∈Zd

P y
ω(Xn = x)f (σyω).

PROOF. For n = 1, this follows from the definition of f = dQ
dP

as the Radon–
Nikodym derivative of the measure Q which is invariant with respect to the point
of view of the particle. Indeed, using (1.2) and (1.3) and the translation invariance
of P for every bounded measurable function g : � →R we have∫

�
g(ω)f (ω)dP (ω) =

∫
�

g(ω)dQ(ω) =
∫
�
Rg(ω)dQ(ω)

=
∫
�

(
Rg(ω)

)
f (ω)dP (ω)

=
∫
�

∑
e∈Ed

ω(0, e)g(σeω)f (ω)dP (ω)

=
∫
�

∑
e∈Ed

ω(−e,0)g(ω)f (σ−eω)dP (ω)

=
∫
�

g(ω)
∑
e∈Ed

ω(e,0)f (σeω)dP (ω)

and, therefore,

f (ω) = ∑
e∈Ed

ω(e,0)f (σeω) = ∑
e∈Ed

P e
ω(X1 = 0)f (σeω).

Applying the last equality for σxω gives the result in the case n = 1.
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For n > 1, the proof follows by induction. Indeed,∑
y∈Zd

P y
ω(Xn = x)f (σyω) = ∑

y∈Zd

∑
z∈Zd

P y
ω(Xn−1 = z)P z

ω(X1 = x)f (σyω)

= ∑
z∈Zd

P z
ω(X1 = x)

∑
y∈Zd

P y
ω(Xn−1 = z)f (σyω)

(1)= ∑
z∈Zd

P z
ω(X1 = x)f (σzω)

(2)= f (σxω),

where for (1) we used the induction assumption and in (2) we used the case n = 1.
�

As stated at the beginning of the section, the proof of Theorem 1.11 uses com-
parison with two additional probability measures which we now define.

DEFINITION 7.2. For n ∈N and ω ∈ �, define the following probability mea-
sures on Z

d :

(1) ν
ann×pre,n
ω —the annealed at time n times the prefactor (normalized)

νann×pre,n
ω (x) = 1

Zω,n

P
0(Xn = x)f (σxω),

where Zω,n = ∑
x∈Zd P

0(Xn = x)f (σxω) is a normalizing constant. In Lem-
ma 7.3, we show that limn→∞ Zω,n = 1, P -almost surely.

(2) ν
que,n
ω —the quenched measure at time n

νque,n
ω (x) = P 0

ω(Xn = x).

(3) ν
box-que×pre,n
ω = ν

box-que×pre,n
ω,� —the quenched measure on boxes with a

choice of a point in the box proportional to the prefactor. Given a partition � of Zd

into boxes of side length l, we choose a box according to the quenched measure at
time n and then choose a point inside of the box proportionally to the value of the
Radon–Nikodym derivative there.

ν
box-que×pre,n
ω,� (x) =

⎧⎨⎩P 0
ω(Xn ∈ �x)

f (σxω)∑
y∈�x,y↔n f (σyω)

, x ↔ n,

0, otherwise,

where �x is the unique d-dimensional box that contains x in the partition �.

Before turning to the proof of Theorem 1.11, we wish to study the normalization
constant Zω,n of the measure ν

ann×pre,n
ω .

LEMMA 7.3. With the notation as in Definition 7.2 for P -almost every ω, we
have limn→∞ Zω,n = 1.
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PROOF. Fix ε > 0, 0 < δ < 1
6d

and let � be a partition of Zd into boxes of side
length nδ . If x, y ∈ � for some � ∈ �, then the annealed derivative estimation (see
Lemma 2.14) gives∣∣P0(Xn = x) − P

0(Xn = y)
∣∣ ≤ C‖x − y‖1n

−(d+1)/2

(7.3)
≤ Cn−(d+1)/2+δ.

Denoting �n = {� ∈ � : � ∩ [−n,n]d �= ∅} we have

|Zω,n − 1| =
∣∣∣∣ ∑
x∈Zd

P(Xn = x)
[
f (σxω) − 1

]∣∣∣∣
=

∣∣∣∣ ∑
�∈�n

∑
x∈�
x↔n

P
0(Xn = x)

[
f (σxω) − 1

]∣∣∣∣.
By Lemma 2.16, there exists Cε > 0 such that P0(‖Xn −E

0[Xn]‖1 > Cε

√
n) < ε.

Separating the sum into boxes in �̂n = {� ∈ �n : � ∩ {x ∈ Z
d : ‖x − E

0[Xn]‖ ≤
Cε

√
n} �=∅} and in �n \ �̂n we can bound the last term by

≤
∣∣∣∣ ∑
�∈�n\�̂n

∑
x∈�
x↔n

P
0(Xn = x)

[
f (σxω) − 1

]∣∣∣∣(7.4)

+
∣∣∣∣ ∑
�∈�̂n

∑
x∈�
x↔n

(
1

|�|
∑
y∈�
y↔n

[
P

0(Xn = y) − P
0(Xn = x)

])[
f (σxω) − 1

]∣∣∣∣(7.5)

+
∣∣∣∣ ∑
�∈�̂n

∑
x∈�
x↔n

1

|�|
∑
y∈�
y↔n

P
0(Xn = y)

[
f (σxω) − 1

]∣∣∣∣.(7.6)

We start by evaluating the term (7.4). By Lemma 6.5, there exists some constant C,
such that with P probability ≥ 1 − n−ξ(1) for every � ∈ �n (and in particular in
�n \ �̂n) we have

∑
y∈�y↔n

[f (σyω) + 1] ≤ C|�|. Therefore, under the above
event, we can bound (7.4) by∑

�∈�n\�̂n

∑
x∈�
x↔n

P
0(Xn = x)

[
f (σxω) + 1

]

≤ ∑
�∈�n\�̂n

max
x∈�
x↔n

P
0(Xn = x)

∑
y∈�
x↔n

[
f (σyω) + 1

]

≤ C
∑

�∈�n\�̂n

|�| · max
x∈�
x↔n

P
0(Xn = x).
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Using Lemma 2.14, (2.5) and the definition of �̂n, we thus have

(7.4) ≤ C
∑

�∈�n\�̂n

|�| · max
x∈�
x↔n

P
0(Xn = x)

≤ C
∑

�∈�n\�̂n

max
y∈�
y↔n

[
max
x∈�
x↔n

P
0(Xn = x) − P

0(Xn = y)
]

+ C
∑

�∈�n\�̂n

max
y∈�
y↔n

P
0(Xn = y)

≤ C

n1/2−3dδ
+ ε.

Recalling that δ < 1
6d

and taking n → ∞ this gives (by an application of the Borel–
Cantelli lemma)

lim sup
n→∞

(7.4) ≤ lim sup
n→∞

∑
�∈�n\�̂n

∑
x∈�
x↔n

P
0(Xn = x)

[
f (σxω) + 1

] ≤ ε, P -a.s.

Next, we deal with the term (7.5). Due to (7.3), this is bounded by∑
�∈�̂n

∑
x∈�
x↔n

∣∣∣∣ 1

|�|
∑
y∈�
y↔n

[
P(Xn = y) − P(Xn = x)

]∣∣∣∣[f (σxω) + 1
]

≤ ∑
�∈�̂n

∑
x∈�
x↔n

C

n((d+1)/2)−δ

[
f (σxω) + 1

]

≤ C

n1/2−δ
·
(

1

nd/2

∑
‖x−E0[Xn]‖≤2Cε

√
n

f (σxω)

)
+ C

n1/2−δ
.

By Lemma 6.5 and an application of Borel–Cantelli for P -almost every ω once n

is large enough, we have 1
nd/2

∑
‖x−E0[Xn]‖≤2Cε

√
n f (σxω) ≤ (8Cε)

d , and thus the
last term tends to zero as n goes to infinity P -almost surely.

Finally, for (7.6), we recall that Lemma 2.14 also ensures P(Xn = x) ≤ Cn−d/2

for every x ∈ Z
d and, therefore,

(7.6) =
∣∣∣∣ ∑
�∈�̂n

∑
x∈�

1

|�|
∑
y∈�

P(Xn = y)
[
f (σxω) − 1

]∣∣∣∣
≤ ∑

�∈�̂n

1

|�|
∑
y∈�

P(Xn = y)

∣∣∣∣∑
x∈�

[
f (σxω) − 1

]∣∣∣∣
≤ C

nd/2

∑
�∈�̂n

∣∣∣∣∑
x∈�

[
f (σxω) − 1

]∣∣∣∣
= C

nd(1/2−δ)

∑
�∈�̂n

∣∣∣∣ 1

|�|
∑
x∈�

[
f (σxω) − 1

]∣∣∣∣.
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Lemma 6.5 now implies that

P

(
C

nd(1/2−δ)

∑
�∈�̂n

∣∣∣∣ 1

|�|
∑
x∈�

[
f (σxω) − 1

]∣∣∣∣ > ε

)

≤ P

(
∃� ∈ �̂n :

∣∣∣∣ 1

|�|
∑
x∈�

[
f (σxω) − 1

]∣∣∣∣ > ε

C · Cd
ε

)

≤ nd(1/2−δ)P

(∣∣∣∣ 1

|�0|
∑

x∈�0

[
f (σxω) − 1

]∣∣∣∣ > ε

C · Cd
ε

)

= nd(1/2−δ) · n−ξ(1) = n−ξ(1),

where �0 is any choice for �0 ∈ �̂n. Therefore, by Borel–Cantelli, we have

lim sup
n→∞

(7.6) ≤ lim sup
n→∞

C

nd(1/2−δ)

∑
�∈�̂n

∣∣∣∣ 1

|�|
∑
x∈�

[
f (σxω) − 1

]∣∣∣∣ ≤ ε.

Combining all of the above, we see that P -almost surely

lim sup
n→∞

|Zω,n − 1| ≤ 2ε.

Since ε > 0 was arbitrary, the result follows. �

Before turning to the main lemma in the proof of Theorem 1.11, we give two
additional preliminary definitions needed in order to construct the intermediate
measures:

DEFINITION 7.4. Let ν1
ω and ν2

ω be two probability measures on Z
d , which

may depend on ω ∈ �.

(1) The L1 distance of ν1
ω and ν2

ω is given by ‖ν1
ω − ν2

ω‖1 = ∑
x∈Zd |ν1

ω(x) −
ν2
ω(x)| (note that this equals twice the total variation between ν1

ω and ν2
ω).

(2) The environment-convolution of ν1
ω and ν2

ω is a new probability measure on
Z

d , denoted (ν1 ∗ ν2)ω, given by(
ν1 ∗ ν2)

ω(x) = ∑
y∈Zd

ν1
ω(y)ν2

σyω(x − y).

We can now state the main lemma in the proof of Theorem 1.11. As already
stated above, instead of comparing directly the L1 distance of ν

ann×pre,n
ω and ν

que,n
ω ,

that is, the annealed times the prefactor and the quenched probability measures,
appearing in Theorem 1.11, we take a more indirect approach and use two other
measures as intermediaries. This allows us to use previous results on the Radon–
Nikodym derivative and other relations between the quenched and annealed mea-
sures in the evaluation of the L1 distances.
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LEMMA 7.5. Fix 0 < δ < ε < 1
4 , and for n ∈ N abbreviate k = �nε� and l =

�nδ�. Fix a partition � of Zd into boxes of side length l. With the notation as in
Definitions 7.2 and 7.4, we have for P -almost every ω ∈ �:

(1) limn→∞ ‖νann×pre,n
ω − (νann×pre,n−k ∗ νque,k)ω‖1 = 0.

(2) limn→∞ ‖(νann×pre,n−k ∗ νque,k)ω − (ν
box-que×pre,n−k
� ∗ νque,k)ω‖1 = 0.

(3) limn→∞ ‖(νbox-que×pre,n−k
� ∗ νque,k)ω − (νque,n−k ∗ νque,k)ω‖1 = 0.

REMARK 7.6. (1) In the temporary notation from the beginning of this sec-
tion, we have ρ1 = (νann×pre,n−k ∗ νque,k)ω and ρ2 = (νbox-que×pre,n−k ∗ νque,k)ω.

(2) Note that by the Markov property of the quenched walk ν
que,·
ω we have

(νque,n−k ∗ νque,k)ω = ν
que,n
ω .

PROOF OF LEMMA 7.5 PART (1). We need to show that

lim
n→∞

∑
x∈Zd

∣∣∣∣ 1

Zn,ω

P
0(Xn = x)f (σxω)

− 1

Zn−k,ω

∑
y∈Zd

P
0(Xn−k = y)f (σyω)P y

ω(Xk = x)

∣∣∣∣ = 0,

which by Lemma 7.3 (and the fact that we can restrict attention to x ∈ Z
d such that

‖x‖1 ≤ n) is equivalent to showing

lim
n→∞

∑
x∈[−n,n]d∩Zd

∣∣∣∣P0(Xn = x)f (σxω)

− ∑
y∈[−n,n]d∩Zd

P
0(Xn−k = y)f (σyω)P y

ω(Xk = x)

∣∣∣∣ = 0.

Denote Bn = {x ∈ [−n,n]d ∩ Z
d : ‖x − E

0[Xn]‖1 ≤ R5(n)
√

n}. By the triangle
inequality,∑

x∈[−n,n]d∩Zd

∣∣∣∣P0(Xn = x)f (σxω)

− ∑
y∈[−n,n]d∩Zd

P
0(Xn−k = y)f (σyω)P y

ω(Xk = x)

∣∣∣∣
≤ ∑

x∈Bn

∣∣∣∣ ∑
y∈[−n,n]d∩Zd

[
P

0(Xn = x) − P
0(Xn−k = y)

]
f (σyω)P y

ω(Xk = x)

∣∣∣∣(7.7)

+ ∑
x∈Bn

P
0(Xn = x)

∣∣∣∣f (σxω) − ∑
y∈[−n,n]d∩Zd

f (σyω)P y
ω(Xk = x)

∣∣∣∣(7.8)
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+ ∑
x∈[−n,n]d∩Zd\Bn

∣∣∣∣P0(Xn = x)f (σxω)

(7.9)

− ∑
y∈[−n,n]d∩Zd

P
0(Xn−k = y)f (σyω)P y

ω(Xk = x)

∣∣∣∣.
Dealing with each of the terms separately [starting with (7.7)], by the annealed
derivative estimation from Lemma 2.14

(7.7) ≤ ∑
x∈Bn

Ck

n(d+1)/2

( ∑
dist(y,Bn)≤k

f (σyω)P y
ω(Xk = x)

)

≤ Ck

n(d+1)/2

∑
dist(y,Bn)≤k

f (σyω)

= Ck

n1/2 · 1

nd/2

∑
dist(y,Bn)≤k

f (σyω).

By Lemma 6.5 for P -almost every ω and large enough n, we have

1

nd/2

∑
dist(y,Bn)≤k

f (σyω) ≤ 2R6(n).

Thus, using the fact that k = nε � n1/4, it follows that the last term tends to zero
P -almost surely as n tends to ∞.

Turning to deal with (7.8), we recall that by Proposition 7.1 we have f (σxω) −∑
y∈[−n,n]d∩Zd f (σyω)P

y
ω(Xk = x) = 0 for every x ∈ Z

d such that x + [−k, k]d ∩
Z

d ⊂ [−n,n]d ∩ Z
d . In particular, denoting B̃n = Bn \ {x ∈ Z

d : x + [−k, k]d ∩
Z

d ⊂ [−n,n]d ∩Z
d} and using the annealed estimations from Lemma 2.14

(7.8) = ∑
x∈B̃n

P
0(Xn = x)

∣∣∣∣f (σxω) − ∑
y∈[−n,n]d∩Zd

f (σyω)P y
ω(Xk = x)

∣∣∣∣
≤ ∑

x∈B̃n

P
0(Xn = x)f (σxω)

+ ∑
x∈B̃n

P
0(Xn = x)

∑
y∈[−n,n]d∩Zd

f (σyω)P y
ω(Xk = x)

≤ C|B̃n|
nd/2 · 1

|B̃n|
∑

x∈B̃n

f (σxω) + C|B̃n|
nd/2 · 1

|B̃n|
∑

x∈B̃n

∑
‖y−x‖1≤k

f (σyω),
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where |B̃n| is the size of B̃n. From the definition of B̃n, it follows that |B̃n| ≤
Ck(

√
nR5(n))d−1 and, therefore,

(7.8) = C|B̃n|
nd/2 · 1

|B̃n|
∑

x∈B̃n

f (σxω) + C|B̃n|
nd/2 · 1

|B̃n|
∑

x∈B̃n

∑
‖y−x‖1≤k

f (σyω)

≤ CkRd−1
5 (n)

n1/2 · 1

|B̃n|
∑

x∈B̃n

f (σxω)

+ CkRd−1
5 (n)

n1/2 · 1

|B̃n|
∑

x∈B̃n

∑
‖y−x‖1≤k

f (σyω).

Using again Lemma 6.5, and the choice k = nε = o(n1/4), it follows that both sums
tends to zero as n goes to infinity, P -almost surely.

Finally, we turn to deal with (7.9). Using Lemma 2.16, we have P(Xn /∈ Bn) =
n−ξ(1). Recalling also that k = �nε� = o(n), we note that if P

y
ω(Xk = x) > 0 then

‖x − y‖1 ≤ k, and thus for x ∈ [−n,n]d ∩Z
d \ Bn and large enough n∥∥y −E

0[Xn−k]
∥∥

1 ≥ ∥∥x −E
0[Xn]

∥∥
1 − ∥∥E0[Xn] −E

0[Xn−k]
∥∥

1 − ‖x − y‖1

≥ √
nR5(n) − 2k ≥ 1

2

√
nR5(n).

This, however, due to Lemma 2.16, yields P0(Xn−k = y) = n−ξ(1) and, therefore,

(7.9) ≤ ∑
x∈[−n,n]d∩Zd\Bn

P
0(Xn = x)f (σxω)

+ ∑
x∈[−n,n]d∩Zd\Bn

∑
y∈[−n,n]d∩Zd

P
0(Xn−k = y)f (σyω)P y

ω(Xk = x)

≤ n−ξ(1)
∑

x∈[−n,n]d∩Zd\Bn

f (σxω)

+ n−ξ(1)
∑

x∈[−n,n]d∩Zd\Bn

∑
y∈[−n,n]d∩Zd

f (σyω)P y
ω(Xk = x)

≤ 2 · n−ξ(1)
∑

x∈[−n,n]d∩Zd

f (σxω).

By Lemma 6.5, we have P(
∑

x∈[−n,n]d∩Zd f (σxω) ≤ 2nd) > 1−n−ξ(1) and, there-
fore, by the Borel–Cantelli lemma for large enough n

(7.9) ≤ 4n−ξ(1) · nd = n−ξ(1) −→
n→∞ 0. �

PROOF OF LEMMA 7.5 PART (2). Since∥∥(νann×pre,n−k ∗ νque,k)
ω − (

νbox-que×pre,n−k ∗ νque,k)
ω

∥∥
1

≤ ∥∥νann×pre,n−k
ω − νbox-que×pre,n−k

ω

∥∥
1,
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it is enough to deal with the right-hand side and show that

lim
n→∞

∑
x∈Zd

x↔n−k

∣∣∣∣ 1

Zn−k,ω

P
0(Xn−k = x)f (σxω)

− f (σxω)∑
y∈�x,y↔n−k f (σyω)

P 0
ω(Xn−k ∈ �x)

∣∣∣∣ = 0, P -a.s.

Using Lemma 7.3 once more, this is equivalent to showing

lim
n→∞

∑
x∈Zd

x↔n−k

f (σxω)

∣∣∣∣P0(Xn−k = x)

(7.10)

− P 0
ω(Xn−k ∈ �x)

1∑
y∈�x,y↔n−k f (σyω)

∣∣∣∣ = 0, P -a.s.

Denoting Bn = {x ∈ [−n,n]d ∩ Z
d : ‖x − E

0[Xn]‖1 ≤ Cε

√
n} [with Cε such that

P
0(‖Xn − E

0[Xn]‖1 > Cε

2

√
n) < ε for large enough n] and using the triangle in-

equality the last sum is bounded by

∑
x∈[−n,n]∩Zd\Bn

x↔n−k

f (σxω)

∣∣∣∣P0(Xn−k = x)

(7.11)

− 1∑
y∈�x,y↔n−k f (σyω)

P 0
ω(Xn−k ∈ �x)

∣∣∣∣
+ ∑

x∈Bn

x↔n−k

f (σxω)

∣∣∣∣P0(Xn−k = x) − 2

|�x |P
0(Xn−k ∈ �x)

∣∣∣∣(7.12)

+ ∑
x∈Bn

x↔n−k

f (σxω)

∣∣∣∣ 2

|�x |P
0(Xn−k ∈ �x)

(7.13)

− 1∑
y∈�x,y↔n−k f (σyω)

P
0(Xn−k ∈ �x)

∣∣∣∣
+ ∑

x∈Bn

x↔n−k

f (σxω)

∣∣∣∣ 1∑
y∈�x,y↔n−k f (σyω)

P
0(Xn−k ∈ �x)

(7.14)

− 1∑
y∈�x,y↔n−k f (σyω)

P 0
ω(Xn−k ∈ �x)

∣∣∣∣.
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Dealing with each of the terms separately, and starting with (7.11), we have the
following estimate:

(7.11) ≤ ∑
x∈[−n,n]d∩Zd\Bn

P
0(Xn−k = x)f (σxω)

+ P 0
ω

(∥∥Xn−k −E
0[Xn]

∥∥
1 > Cε

√
n
)
.

The term
∑

x∈[−n,n]d∩Zd\Bn
P

0(Xn−k = x)f (σxω) goes to zero as n goes to infinity
by the same argument used to bound (7.4) in Lemma 7.3. For the second term,
Claim 2.15 implies that for a set of environments, with P probability > 1 − √

ε,
for large enough n

P 0
ω

(∥∥Xn−k −E
0[Xn]

∥∥
1 > Cε

√
n
) ≤ P 0

ω

(∥∥Xn −E
0[Xn]

∥∥
1 >

Cε

2

√
n

)
≤ √

ε.

Since ε > 0 was arbitrary, this proves that the first term goes to zero as n goes to
infinity.

Turning to (7.12), the annealed derivative estimations from Lemma 2.14 yields

(7.12) ≤ C · ∑
x∈Bn

x↔n−k

f (σxω)
2

|�x |
∑

y∈�x

y↔n−k

∣∣P(Xn−k = x) − P(Xn−k = y)
∣∣

≤ C · ∑
x∈Bn

x↔n−k

f (σxω)
2

|�x |
∑

y∈�x

y↔n−k

C

(n − k)(d+1)/2 ‖x − y‖1

(1)≤ C · ∑
x∈Bn

f (σxω)
1

|�x |
∑

y∈�x

C

(n − k)(d+1)/2 · dnδ

= C′ · nd/2+δ

(n − k)(d+1)/2 ·
(

1

nd/2

∑
x∈Bn

f (σxω)

)
n→∞−→ 0, P -a.s.,

where for (1) we used the fact that the side length of every cube � is nδ and for the
limit we used Lemma 6.5, the fact that k = nε = o(n1/4) and also that δ < ε < 1

2 .
Next, we deal with (7.13). Denoting �̂n = {� ∈ � : �∩Bn �=∅} and using the

annealed derivative estimations from Lemma 6.5 we conclude that

(7.13) = ∑
x∈Bn

x↔n−k

f (σxω)
2

|�x |P(Xn−k ∈ �x)

∣∣∣∣1 − 1

2/|�x |∑y∈�x,y↔n−k f (σyω)

∣∣∣∣
≤ C

(n − k)d/2

∑
x∈Bn

x↔n−k

f (σxω)

∣∣∣∣1 − 1

2/|�x |∑y∈�x,y↔n−k f (σyω)

∣∣∣∣
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≤ C

(
1 − k

n

)−d/2 1

nd/2

× ∑
�∈�̂n

∑
x∈�

f (σxω)

∣∣∣∣1 − 1

2/|�|∑y∈�x,y↔n−k f (σyω)

∣∣∣∣
= C

(
1 − k

n

)−d/2 1

n(d/2)(1−2δ)

∑
�∈�̂n

∣∣∣∣ 1

|�|
∑
x∈�

x↔n−k

f (σxω) − 1
∣∣∣∣.

Using the same argument that was used to bound (7.6), we get that the last term
goes to zero as n goes to infinity P -a.s. Finally, we estimate (7.14).

(7.14) ≤ ∑
x∈Bn

x↔n−k

f (σxω)∑
y∈�x,y↔n−k f (σyω)

∣∣P0(Xn−k ∈ �x) − P 0
ω(Xn−k ∈ �x)

∣∣
= ∑

�∈�̂n

∣∣P0(Xn−k ∈ �) − P 0
ω(Xn−k ∈ �)

∣∣.
The last term, however, is bounded by Cn−(1/3)δ by Proposition 4.1 for P -almost
every ω and large enough n, and thus goes to zero as n goes to infinity. �

Part (3) of Lemma 7.5 will follow from the following more general lemma.

LEMMA 7.7. Let x, y ∈ Z
d satisfy ‖x − y‖1 ≤ nθ for some θ < 1

2 . Then the
set of environments for which∣∣P x

ω(Xn = z) − P y
ω(Xn = z)

∣∣ = n−ξ(1) ∀z ∈ Z
d

has P probability ≥ 1 − n−ξ(1).

PROOF. Fix θ < θ ′ < 1 such that θ ′ < d+1
2 θ , M ∈ N and a partition � of Zd

into boxes of side length M . By Theorem 5.1, if M is large enough, then the event

G(n,M) =
{
ω ∈ � : ∑

�∈�

∣∣P w
ω (X�nθ � ∈ �) − P

w(X�nθ � ∈ �)
∣∣ < 1

8
,

∀w s.t. ‖w − x‖1 ≤ n2
}

satisfies P(G(n,M)) = 1 − n−ξ(1). In particular, using Lemma 2.14, whenever
‖y − x‖1 ≤ nθ ′

, for large enough n we have∣∣P x
ω(X�nθ � ∈ �) − P y

ω(X�nθ � ∈ �)
∣∣

≤ ∣∣P x
ω(X�nθ � ∈ �) − P

x(X�nθ � ∈ �)
∣∣+ ∣∣Px(X�nθ � ∈ �) − P

y(X�nθ � ∈ �)
∣∣
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+ ∣∣P y
ω(X�nθ � ∈ �) − P

y(X�nθ � ∈ �)
∣∣

≤ 1

4
+ Cnθ ′

n((d+1)/2)θ
= 1

4
+ Cnθ ′−((d+1)/2)θ <

1

2
.

Consequently, there exists a coupling of P x
ω(X�nθ � ∈ ·) and P

y
ω(X�nθ � ∈ ·) on

� × � denoted �̃x,y = �̃
x,y
n,θ,ω such that �̃x,y({(�,�) : � ∈ Q}) > 1

2 . Using the
uniform ellipticity, and the last coupling we can construct a new coupling �

x,y
1

of P x
ω(X�nθ � = ·) and P

y
ω(X�nθ � = ·) on Z

d × Z
d such that �

x,y
1 (�) ≥ 1

2η2dM ,
where � = {(z, z) : z ∈ Z

d} (for a more detailed explanation on the construc-
tion, see the proof of Lemma 6.1). Next, for k ≥ 2 we construct inductively
a new coupling of P x

ω(Xk�nθ � = ·) and P
y
ω(Xk�nθ � = ·) on Z

d × Z
d such that

�
x,y

�log2 n�·�nθ ′ �(�) = 1 − n−ξ(1). The construction goes as follows: first, note that

if a, b ∈ Z
d are any pair of points such that ‖a − x‖1,‖b − x‖1 ≤ n2, then by the

same reasoning, we can construct a coupling of P a
ω(X�nθ � = ·) and P b

ω(X�nθ � = ·)
on Z

d × Z
d , denoted �

a,b
1 , such that �

a,b
1 (�) > 1

2η2dM . Next, assuming the cou-
pling �

x,y
k−1 was constructed we define �

x,y
k via the following procedure: choose

a pair of points (a, b) according to the previous coupling �
x,y
k−1. If a = b, couple

the random walks together (to go along the same path) for additional �nθ� steps.
If a �= b and ‖a − b‖ ≤ nθ ′

, couple the random walks using the coupling �
a,b
1 .

Finally, if ‖a − b‖ > nθ ′
we let the random walks evolve independently. Formally,

this is given by

�
x,y
k (w1,w2) = ∑

a,b∈Zd

�
x,y
k−1(a, b)

[
1a=b1w1=w2P

a
ω(X�nθ � = w1)

+ 10<‖a−b‖1≤nθ ′ · �a,b
1 (w1,w2)

+ 1‖a−b‖1>nθ ′ · P a
ω(Xnθ = w1)P

b
ω(Xnθ = w2)

]
.

It is not hard to verify that this indeed defines a coupling of P x
ω(Xk�nθ � = ·) and

P
y
ω(Xk�nθ � = ·), and that in fact by the definition of θ ′ and the assumption ‖x −

y‖1 ≤ nθ that �
x,y
k (a, b) = 0 whenever ‖a − b‖1 ≥ nθ ′

and n is large enough.
Therefore,

�
x,y
k (�) = ∑

w∈Zd

∑
a,b∈Zd

�
x,y
k−1(a, b)

[
1a=b1w=wP a

ω(X�nθ � = w)

+ 10<‖a−b‖1≤nθ ′ · �a,b
1 (w,w)

+ 1‖a−b‖>nθ ′ · P a
ω(X�nθ � = w)P b

ω(X�nθ � = w)
]

≥ ∑
w∈Zd

∑
a,b∈Zd

�
x,y
k−1(a, b)

[
1a=bP

a
ω(X�nθ � = w)

+ 10<‖a−b‖1≤nθ ′ · �a,b
1 (w,w)

]
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= �
x,y
k−1(�) + ∑

a,b∈Zd

�
x,y
k−1(a, b)10<‖a−b‖1≤nθ ′ · �a,b

1 (�)

≥ �
x,y
k−1(�) + ∑

a,b∈Zd

�
x,y
k−1(a, b)10<‖a−b‖1≤nθ ′ · 1

2
η2dM

= �
x,y
k−1(�) + 1

2
η2dM�

x,y
k−1

({
(a, b) : 0 < ‖a − b‖1 ≤ nθ ′})

= �
x,y
k−1(�) + 1

2
η2dM(

1 − �
x,y
k−1(�) − �

x,y
k−1

({
(a, b) : ‖a − b‖1 > nθ ′}))

≥ �
x,y
k−1(�) + 1

2
η2dM(

1 − �
x,y
k−1(�)

)
.

Fixing r > 0, as long as �
x,y
j (�) < 1 − n−r for j ≤ k the last inequality gives

�
x,y
k (�)

�
x,y
k−1(�)

≥ 1 + 1

2
η2dM · n−r

1 − n−r
,

which implies that �
x,y
k (�) grows exponentially in this regime. Hence, for

some C = C(r) < ∞ we have �
x,y
�C logn�(�) > 1 − n−r and in particular since

{�x,y
k (�)}k≥1 is nondecreasing �

x,y

�log2 n�(�) > �
x,y
�C logn�(�) > 1 − n−r for ev-

ery r ∈ N and large enough n, that is, �
x,y

�log2 n�(�) = 1 − n−ξ(1). We can now

construct a coupling of P x
ω(Xn = ·) and P

y
ω(Xn = ·) on Z

d , by using the cou-
pling �

x,y

�log2 n� until time �log2 n� · �nθ�. Formally, if they coincided until time

�log2 n� · �nθ� we couple them together (to go along the same path) until time
n, or if not to move independently until time n. This yields a coupling such that∑

z∈Z |P x
ω(Xn = z) − P

y
ω(Xn = z)| < n−ξ(1) as required. �

PROOF OF LEMMA 7.5 PART (3). Written explicitly (after some manipula-
tions) ∥∥(νbox-que×pre,n−k ∗ νque,k)

ω − (
νque,n−k ∗ νque,k)

ω

∥∥
= ∑

x∈Zd

x↔n

∣∣∣∣∑
�∈�

∑
y∈�

y↔n−k

P 0
ω(Xn−k ∈ �)P y

ω(Xk = x)

×
[

f (σyω)∑
z∈� f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

]∣∣∣∣(7.15)

≤ ∑
x∈Zd

x↔n

∑
�∈�

P 0
ω(Xn−k ∈ �)

∣∣∣∣ ∑
y∈�

y↔n−k

P y
ω(Xk = x)

[
f (σyω)∑

z∈� f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

]∣∣∣∣.
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Noticing that for every � ∈ � and x ∈ Z
d we have

∑
y∈�

y↔n−k

(
1

|�|
∑
w∈�

P w
ω (Xk = x)

)[
f (σyω)∑

z∈� f (σzω)
− P 0

ω(Xn−k = y|Xn−k ∈ �)

]
= 0,

it follows that (7.15) equals

∑
x∈Zd

x↔n

∑
�∈�

P 0
ω(Xn−k ∈ �)

∣∣∣∣ ∑
y∈�

y↔n−k

[
P y

ω(Xk = x) −
(

2

|�|
∑
w∈�
w↔n

P w
ω (Xk = x)

)]

×
[

f (σyω)∑
z∈�,z↔n−k f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

]∣∣∣∣
= ∑

x∈Zd

x↔n

∑
�∈�

P 0
ω(Xn−k ∈ �)

∣∣∣∣ ∑
y∈�

y↔n−k

[
2

|�|
∑
w∈�
w↔n

(
P y

ω(Xk = x) − P w
ω (Xk = x)

)]

×
[

f (σyω)∑
z∈�,z↔n−k f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

]∣∣∣∣
≤ ∑

x∈Zd

x↔n

∑
�∈�

P 0
ω(Xn−k ∈ �)

∑
y∈�

y↔n−k

∣∣∣∣ 2

|�|
∑
w∈�
w↔n

(
P y

ω(Xk = x) − P w
ω (Xk = x)

)∣∣∣∣
×

∣∣∣∣ f (σyω)∑
z∈�,z↔n−k f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

∣∣∣∣
= ∑

�∈�

∑
x∈Zd

dist(x,�)≤k
x↔n

P 0
ω(Xn−k ∈ �)

∑
y∈�

y↔n−k

∣∣∣∣ 2

|�|
∑
w∈�
w↔n

(
P y

ω(Xk = x)

− P w
ω (Xk = x)

)∣∣∣∣∣∣∣∣ f (σyω)∑
z∈�,z↔n−k f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

∣∣∣∣.
By Lemma 7.7 applied with k as n and θ = δ

ε
, this is bounded by∑

�∈�

∑
x∈Zd

dist(x,�)≤k
x↔n

P 0
ω(Xn−k ∈ �)

× ∑
y∈�

y↔n−k

k−ξ(1)

∣∣∣∣[ f (σyω)∑
z∈�,z↔n−k f (σzω)

− P 0
ω(Xn−k = y|Xn−k ∈ �)

]∣∣∣∣
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≤ ∑
�∈�

∑
x∈Zd

dist(x,�)≤k

P 0
ω(Xn−k ∈ �)2k−ξ(1)

≤ 2k−ξ(1) · (2k + l)d −→
n→∞ 0. �

PROOF OF THEOREM 1.11. Combining all the claims of Lemma 7.5 and using
the triangle inequality, we conclude that

lim
n→∞

∑
x∈Zd

∣∣∣∣ 1

Z ω,n
P

0(Xn = x)f (σxω)− ∑
y∈Zd

P 0
ω(Xn−k = y)P 0

σyω(Xk = x −y)

∣∣∣∣ = 0.

Using the Markov property of the quenched law and Lemma 7.3, this implies

lim
n→∞

∑
x∈Zd

∣∣P0(Xn = x)f (σxω) − P 0
ω(Xn = x)

∣∣ = 0,

and completes the proof. �

APPENDIX

A.1. Annealed local CLT.

PROPOSITION A.1. Let d ≥ 2 and assume P is uniformly elliptic, i.i.d. and
satisfies (P). Then

lim
n→∞

∑
x∈Zd

x↔n

∣∣∣∣P0(Xn = x)

− 2

(2πn)d/2
√

det�
exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))∣∣∣∣ = 0,

where � is the covariance matrix of Xτ2−τ1 .

The crucial ingredient in the proof is the annealed CLT proved by Sznitman in
[25] for uniformly elliptic i.i.d. random walks in random environments satisfying
condition (P). Then standard annealed derivative estimations to approximate the
value of the annealed in a given point by its average on a box of side length εn1/2

gives the required result.

PROOF OF PROPOSITION A.1. Fix ε, δ > 0 and let �
(ε)
n be a partition of Zd

into boxes of side length �εn1/2�. Let Cδ > 0 be a constant such that (due to
Lemma 2.16) P0(‖Xn −E

0[Xn]‖∞ > Cδ

√
n) < δ and denote by �̂

(ε,δ)
n the family



LOCAL LIMIT FOR CERTAIN BALLISTIC RWRE 2951

of boxes in �
(ε)
n intersecting {x ∈ Z

d : ‖x −E
0[Xn]‖∞ ≤ Cδ

√
n}. Then∑

x∈Zd

x↔n

∣∣∣∣P0(Xn = x)

− 2

(2πn)d/2
√

det�
exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))∣∣∣∣

= ∑
�∈�

(ε)
n \�̂(ε,δ)

n

∑
x∈Zd

x↔n

∣∣∣∣P0(Xn = x)

(A.1)

− 2

(2πn)d/2
√

det�
exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))∣∣∣∣

+ ∑
�∈�̂

(ε,δ)
n

∑
x∈Zd

x↔n

∣∣∣∣P0(Xn = x)

(A.2)

− 2

(2πn)d/2
√

det�
exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))∣∣∣∣.

We estimate each of the term separately starting with (A.1). Due to the choice
of Cδ

(A.1) ≤ ∑
x:‖x−E0[Xn]‖∞>Cδ

√
n

P
0(Xn = x)

+ 2

(2πn)d/2
√

det�
exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))

≤ δ + C · exp
(
−c

2
C2

δ

)
·

Thus, by increasing Cδ we can ensure that (A.1) is bounded by 2δ.
Turning to deal with (A.2), we estimate each of the terms inside the absolute

value by an average on the appropriate box containing it. Due to the annealed
derivative estimations from Lemma 2.14, we have∣∣∣∣P0(Xn = x) − 2

(�εn1/2�)d P
0(Xn ∈ �)

∣∣∣∣ ≤ Cεn1/2

n(d+1)/2 = Cε

nd/2 ,

for every � ∈ �
(ε)
n and every x ∈ � such that x ↔ n. In addition, for every � ∈

�
(ε)
n and every x ∈ �∣∣∣∣exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))

− 1

(�εn1/2�)d
∫
�

exp
(
− 1

2n

(
y −E

0[Xn])T �−1(y −E
0[Xn]))dy

∣∣∣∣
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≤ exp
(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))

× 1

(�εn1/2�)d
∣∣∣∣∫

�
1 − exp

(
− 1

2n
(y − x)T �−1(y − x)

)
dy

∣∣∣∣
≤ exp

(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn])) · Cε2 ≤ Cε2.

Combining the last two estimation gives

(A.1) ≤ ∑
�∈�̂

(ε,δ)
n

∑
x∈Zd

x↔n

∣∣∣∣P0(Xn = x) − 2

(�εn1/2�)d P
0(Xn ∈ �)

∣∣∣∣
+ ∑

�∈�̂
(ε,δ)
n

∑
x∈Zd

x↔n

∣∣∣∣ 2

(�εn1/2�)d P
0(Xn ∈ �) − 2

(2πn)d/2
√

det�

× 1

(�εn1/2�)d
∫
�

exp
(
− 1

2n

(
y −E

0[Xn])T �−1(y −E
0[Xn]))dy

∣∣∣∣
+ ∑

�∈�̂
(ε,δ)
n

∑
x∈Zd

x↔n

2

(2πn)d/2
√

det�

×
∣∣∣∣ 1

(�εn1/2�)d
∫
�

exp
(
− 1

2n

(
y −E

0[Xn])T �−1(y −E
0[Xn]))dy

− exp
(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))∣∣∣∣

≤ ∑
�∈�̂

(ε,δ)
n

∑
x∈Zd

x↔n

Cε

nd/2 + ∑
�∈�̂

(ε,δ)
n

∑
x∈�
x↔n

Cε2

(2πn)d/2
√

det�

+ ∑
�∈�̂

(ε,δ)
n

∑
x∈Zd

x↔n

∣∣∣∣ 2

(�εn1/2�)d P
0(Xn ∈ �) − 1

(2πn)d/2
√

det�

× 2

(�εn1/2�)d
∫
�

exp
(
− 1

2n

(
y −E

0[Xn])T �−1(y −E
0[Xn]))dy

∣∣∣∣.
The total number of vertices in the boxes in �̂

(ε,δ)
n is (Cδn

1/2)d and, therefore, the
first two sums are bounded by Cd

δ · Cε. As for the last term, we have∑
�∈�̂

(ε,δ)
n

∑
x∈Zd

x↔n

∣∣∣∣ 2

(�εn1/2�)d P
0(Xn ∈ �) − 1

(2πn)d/2
√

det�
· 2

(�εn1/2�)d

×
∫
�

exp
(
− 1

2n

(
y −E

0[Xn])T �−1(y −E
0[Xn]))dy

∣∣∣∣
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= ∑
�∈�̂

(ε,δ)
n

∣∣∣∣P0(Xn ∈ �) − 2

(2πn)d/2
√

det�

×
∫
�

exp
(
− 1

2n

(
y −E

0[Xn])T �−1(y −E
0[Xn]))dy

∣∣∣∣.
Apply the functional CLT proved by Sznitman in [25] and nothing that for a fixed
ε and δ the sum is finite gives that the last term goes to zero as n goes to infinity.

Combining all of the above, we conclude that

lim sup
n→∞

∑
x∈Zd

x↔n

∣∣∣∣P0(Xn = x) − 2

(2πn)d/2
√

det�

× exp
(
− 1

2n

(
x −E

0[Xn])T �−1(x −E
0[Xn]))∣∣∣∣

≤ Cd
δ · Cε + 2δ.

By first taking δ > 0 arbitrary small and then choosing ε > 0 even smaller so that
Cd

δ · Cε < δ the result follows. �

A.2. Annealed derivative estimations. In this part of the Appendix, we
prove Lemma 3.3 and Lemma 2.14 regarding annealed derivative estimations.

A.2.1. General estimations. We start with the following claim which is a gen-
eral result for i.i.d. random variables on a lattice:

CLAIM A.2. Let {Yi}∞i=1 and {Zi}∞i=1 be a sequence of d-dimensional random
variables and a sequence of 1-dimensional nonnegative integer valued random
variables, respectively, such that {(Yi,Zi)}∞i=1 are independent and have joint dis-
tribution P. Assume in addition that {(Yi,Zi)}∞i=2 are i.i.d. and there exists v ∈ Z

d ,
k ∈N such that P((Y2,Z2) = (v, k)) > 0 and P((Y2,Z2) = (v + ei, k + 1)) > 0 for
every 1 ≤ i ≤ d . Let Sn = ∑n

i=1 Yi and Tn = ∑n
i=1 Zi . Then there exists C < ∞

which is determined by distribution P such that for every n ∈ N, m ∈ N, every
x, y ∈ Z

d such that ‖x − y‖1 = 1 and every 1 ≤ k ≤ d

P
(
(Sn, Tn) = (x,m)

)
< Cn−(d+1)/2,(A.3) ∣∣P((Sn, Tn) = (x,m)

)− P
(
(Sn, Tn) = (y,m + 1)

)∣∣ < Cn−(d+2)/2(A.4)

and ∣∣P((Sn, Tn) = (x,m)
)+ P

(
(Sn, Tn) = (y + ek,m)

)− P
(
(Sn, Tn)

(A.5)
= (x + ek,m + 1)

)− P
(
(Sn, Tn) = (y,m + 1)

)∣∣ < Cn−(d+3)/2.
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In addition, if {Yi}∞i=1 and {Zi}∞i=1 have finite moments. Then for every ε > 0, every
m ∈ N and every partition �n of Zd into boxes of side length nε∑

�∈�n

∑
x∈�
x↔m

[
max
y∈�

P
(
(Sn, Tn) = (y,m)

)− P
(
(Sn, Tn) = (x,m)

)]
(A.6)

≤ Cn−1+3dε.

PROOF. Let χ be the characteristic function of (Y2,Z2). Since (Y2,Z2) is
concentrated on a lattice χ is periodic. The existence of v, k as above implies that
the period is 2π in every coordinate. The existence of v and k also implies that
there are D > 0 and δ > 0 such that:

(1) |χ(ξ, s)| < 1 − D for every (ξ, s) ∈ [−π,π ]d+1 such that ‖(ξ, s)‖1 ≥ δ,
(2) |χ(ξ, s)| < 1 − D‖(ξ, s)‖2

1 for every (ξ, s) ∈ [−π,π ]d+1 such that
‖(ξ, s)‖1 < δ.

The last two facts implies [(A.3)–(A.5)]. Indeed,

P

(
n∑

i=2

(Yi,Zi) = (x,m)

)

= 1

(2π)d+1

∫
[−π,π ]d+1

e−i〈ξ,x〉−i〈s,m〉χn−1(ξ, s) dξ ds

≤
∫
[−π,π ]d+1

∣∣χn−1(ξ, s)
∣∣dξ ds

=
∫
‖(ξ,s)‖1>δ

∣∣χn−1(ξ, s)
∣∣dξ ds +

∫
‖(ξ,s)‖1≤δ

∣∣χn−1(ξ, s)
∣∣dξ ds

≤ (2π)d+1(1 − D)n−1 +
∫
‖(ξ,s)‖1≤δ

(
1 − D

∥∥(ξ, s)
∥∥2

1

)n−1
dξ ds

< Cn−(d+1)/2

and convolution with the distribution of (Y1,Z1) only decreases the supremum.
To see (A.4), note that y = x ± ej for some 1 ≤ j ≤ d and, therefore,∣∣∣∣∣P

(
n∑

i=2

(Yi,Zi) = (x,m)

)
− P

(
n∑

i=2

(Yi,Zi) = (x + ej ,m + 1)

)∣∣∣∣∣
= 1

(2π)d+1

×
∣∣∣∣∫[−π,π ]d+1

(
e−i〈ξ,x〉−i〈s,m〉 − e−i〈ξ,x±ej 〉−i〈s,m+1〉)χ(ξ, s)n−1 dξ ds

∣∣∣∣
≤ 1

(2π)d+1

∫
[−π,π ]d+1

∣∣e−i〈ξ,x〉−i〈s,m〉 − e−i〈ξ,x±ej 〉−i〈s,m+1〉∣∣
× ∣∣χ(ξ, s)

∣∣n−1
dξ ds.
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Recalling that |e−i〈ξ,x〉−i〈s,m〉 − e−i〈ξ,x±ej 〉−i〈s,m+1〉| ≤ |〈(ξ, s), 〈±ej ,1〉〉|, we can
bound the last term by

1

(2π)d+1

∫
[−π,π ]d+1

∣∣s ± 〈ξ, ej 〉
∣∣ · ∣∣χ(ξ, s)

∣∣dξ ds

≤ (1 − D)n+1 + C

∫
‖(ξ,s)‖1≤δ

∣∣s ± 〈ξ, ej 〉
∣∣(1 − D

∥∥(ξ, s)
∥∥2

1

)n−1
dξ ds

≤ (1 − D)n+1 + C

∫
‖(ξ,s)‖1≤δ

∣∣s ± 〈ξ, ej 〉
∣∣e−Dn‖(ξ,s)‖2

1 dξ ds.

Substituting ζ = ξ
√

n and t = s
√

n the last integral equals

C√
n

d+2

∫
‖(ζ,t)‖1≤δ

√
n

∣∣t ± 〈ζ, ej 〉
∣∣e−D‖(ζ,t)‖2

1 dζ dt

≤ C

n(d+2)/2

∫
Rd+1

∣∣t ± 〈ζ, ej 〉
∣∣e−D‖(ζ,t)‖2

1 dζ dt = O
(
n−(d+2)/2).

For (A.5), note that∣∣∣∣∣P
(

n∑
i=2

(Yi,Zi) = (x,m)

)
+ P

(
n∑

i=2

(Yi,Zi) = (y + ek,m)

)

− P

(
n∑

i=2

(Yi,Zi) = (y,m + 1)

)
− P

(
n∑

i=2

(Yi,Zi) = (x + ek,m + 1)

)∣∣∣∣∣
=

∣∣∣∣∣P
(

n∑
i=2

(Yi,Zi) = (x,m)

)
+ P

(
n∑

i=2

(Yi,Zi) = (x + ej + ek,m)

)

− P

(
n∑

i=2

(Yi,Zi) = (x + ej ,m + 1)

)

− P

(
n∑

i=2

(Yi,Zi) = (x + ek,m + 1)

)∣∣∣∣∣
= 1

(2π)d+1

∣∣∣∣∫[−π,π ]d+1

(
e−i〈ξ,x〉−i〈s,m〉 + e−i〈ξ,x+ej+ek〉−i〈s,m〉

− e−i〈ξ,x+ej 〉−i〈s,m+1〉 − e−i〈ξ,x+ek〉−i〈s,m+1〉)χ(ξ, s)n−1 dξ ds

∣∣∣∣
≤

∣∣∣∣∫[−π,π ]d+1

∣∣1 + e−i〈ξ,ej+ek〉 − e−i〈ξ,ej 〉−i〈s,1〉 − e−i〈ξ,ek〉−i〈s,1〉∣∣
× ∣∣χ(ξ, s)

∣∣n−1
dξ ds

∣∣∣∣
≤

∣∣∣∣∫[−π,π ]d+1

∣∣〈(ξ, s), (ej ,1)
〉∣∣∣∣〈(ξ, s), (ek,1)

〉∣∣∣∣χ(ξ, s)
∣∣n−1

dξ ds

∣∣∣∣
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and the proof continuous now as before except that we gained an additional factor
of n−1/2.

Finally, we turn to the proof of (A.6). For every � ∈ � denote by x� a point in
� such that P(Sn = x�) = maxy∈� P(Sn = y). As a first step, we show that∑

�∈�n

∑
x∈�

[
P(Sn = x�) − P(Sn = x)

] ≤ Cn−1/2+3dε.(A.7)

By [2], Claim 4.3, for every x, y ∈ Z
d such that ‖x − y‖1 = 1, we have |P(Sn =

y) − P(Sn = x)| ≤ Cn−(d+1)/2 and, therefore, for every � ∈ �∑
x∈�

[
P(Sn = x�) − P(Sn = x)

]
≤ ∑

x∈�

‖x� − x‖∞Cn−(d+1)/2(A.8)

≤ C
∑
x∈�

ndε · n−(d+1)/2 = Cn−(d+1)/2+2dε.

Splitting the sum over the boxes to those boxes whose distance from E[Sn] is
greater or smaller than n1/2+ε , we can the first with by an Azuma inequality which
yields P(‖Sn − E[Sn]‖1 > n1/2+ε) = n−ξ(1) and the second with (A.8) we get∑

�∈�n

∑
x∈�

[
P(Sn = x�) − P(Sn = x)

]
≤ ∑

�∈�n

dist(�,E[Sn])≤n1/2+ε

Cn−(d+1)/2+2dε + n−ξ(1) ≤ Cn−1/2+3dε

Finally, we turn to prove (A.6). Denote

g(m) = ∑
�∈�n

∑
x∈�
x↔m

[
max
y∈�

P
(
(Sn, Tn) = (y,m)

)− P
(
(Sn, Tn) = (x,m)

)]
.

By Azuma’s inequality P(|Tn − E[Tn]| > n1/2+ε) = n−ξ(1) and, therefore, it is
enough to deal with m ∈ N such that |m − E[Tn]| ≤ n1/2+ε . By the same estima-
tion and (A.7), we also know that n1/2+ε minm:|m−E[Tn]|≤n1/2+ε g(m) ≤ Cn−1/2+3dε

and, therefore,

min
m:|m−E[Tn]|≤n1/2+ε

g(m) ≤ Cn−1+(3d−1)ε.(A.9)

However, using (A.5), for every m ∈ N and x, z ∈ � such that x ↔ m, z ↔
m + 1 we have

max
y∈�

P
(
(Sn, Tn) = (y,m)

)− P
(
(Sn, Tn) = (x,m)

)
− max

w∈�
P
(
(Sn, Tn) = (w,m + 1)

)− P
(
(Sn, Tn) = (z,m)

)
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≤
d∑

k=1

∑
x,y∈�
x↔m

‖y−x‖1=1

∣∣P((Sn, Tn) = (x,m)
)+ P

(
(Sn, Tn) = (y + ek,m)

)

− P
(
(Sn, Tn) = (x + ek,m + 1)

)− P
(
(Sn, Tn) = (y,m + 1)

)∣∣
≤ Cn−(d+3)/2+dε

and, therefore, by separating the sum into boxes which are at distance ≤ n1/2+ε

and those who at distance > n1/2+ε we get∣∣g(m) − g(m + 1)
∣∣ ≤ Cn(1/2+ε)d · n−(d+3)/2+dε + n−ξ(1)

(A.10)
= Cn−3/2+2dε.

Using (A.9) and (A.10) gives

g(m) ≤ Cn−1+(3d−1)ε + Cn−3/2+2dε · n1/2+ε ≤ Cn−1+3dε

for every m ∈N such that |m−E[Tn]| ≤ n1/2+ε , and thus completes the proof. �

A.2.2. Proof of Lemma 3.3. Before turning to the proof of the lemmas, we
give the following estimations on hitting point of an hyperplane conditioned to
contain a regeneration time. More formally, we have the following.

LEMMA A.3. Let d ≥ 4 and assume P is uniformly elliptic, i.i.d. and satisfies
(P). Fix z ∈ Z

d , N ∈ N and let z1 ∈ P̃(0,N). Let {Xn} be an RWRE starting at
z1. For k, l ∈N let B(l, k) be the event that 〈Xτk

, e1〉 = l, B(l) = ⋃
k B(l, k) and

B̂
(
l,N2) ≡ B̂(l) = B(l) ∩

N2⋂
j=l+1

Bc(j).

Then (for a given l ≤ N2):

(1) For every n ∈ N and w ∈ Hl

P
z1
(
(XTl

, Tl) = (w,n)|B̂(l)
) ≤ Cl−d/2.(A.11)

(2) For every n ∈ N, and every w,z ∈ Hl such that ‖w − z‖1 = 1∣∣Pz1
(
(XTl

, Tl) = (w,n)|B̂(l)
)− P

z1
(
(XTl

, Tl) = (z, n + 1)|B̂(l)
)∣∣

(A.12)
≤ Cl−(d+1)/2.

(3) For every n ∈ N and every w ∈ Hl∣∣Pz1
(
(XTl

, Tl) = (w,n)|B̂(l)
)− P

z1+e1
(
(XTl

, Tl) = (w,n + 1)|B̂(l)
)∣∣

(A.13)
≤ Cl−(d+1)/2.
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PROOF. Due to the independence of (XTl
, Tl) from

⋂N2

j=l+1 Bc(j), we get that
for every M ∈ N

P
z1
(
(XTl

, Tl) = (w,n)|B̂(l)
)

= P
z1
(
(XTl

, Tl) = (w,n)|B(l)
)

= 1

Pz1(B(l))

∞∑
k=1

P
z1
(
(Xτk

, τk) = (w,n)
)

= 1

Pz1(B(l))

M∑
k=1

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτ�k/2�, e1〉 ≥ l

2

)

+ 1

Pz1(B(l))

M∑
k=1

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτk
− Xτ�k/2�, e1〉 ≥ l

2

)

+ 1

Pz1(B(l))

∞∑
k=M+1

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτ�k/2�, e1〉 ≤ l

2

)

+ 1

Pz1(B(l))

∞∑
k=M+1

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτk
− Xτ�k/2�, e1〉 ≤ l

2

)
.

Using Claim A.2 gives

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτ�k/2�, e1〉 ≤ l

2

)
= ∑

x:〈x,e1〉≤l/2

∑
s∈N

P
z1
(
(Xτ�k/2�, τ�k/2�) = (x, s)

)
× P

z1
(
(Xτk

, τk) = (w,n)|(Xτ�k/2�, τ�k/2�) = (x, s)
)

(A.14)

≤ Ck−(d+1)/2
∑

x:〈x,e1〉≤l/2

∑
s∈N

P
z1
(
(Xτ�k/2�, τ�k/2�) = (x, s)

)
= Ck−(d+1)/2

P
z1

(
〈Xτ�k/2�, e1〉 ≤ l

2

)
,

and in a similar manner

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτk
− Xτ�k/2�, e1〉 ≤ l

2

)
≤ Ck−(d+1)/2

P
z1

(
〈Xτk

− Xτ�k/2�, e1〉 ≤ l

2

)
≤ Ck−(d+1)/2

P
z1

(
〈Xτ�k/2�, e1〉 ≤ l

2

)
.
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Repeating the same calculations while separating the sum according to the events
〈Xτ�k/2�, e1〉 ≥ l

2 and 〈Xτk
− Xτ�k/2�, e1〉 ≥ l

2 we get that

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτ�k/2�, e1〉 ≥ l

2

)
≤ Ck−(d+1)/2

P
z1

(
〈Xτ�k/2�, e1〉 ≥ l

2

)
and

P
z1

(
(Xτk

, τk) = (w,n), 〈Xτk
− Xτ�k/2�, e1〉 ≥ l

2

)
≤ Ck−(d+1)/2

P
z1

(
〈Xτ�k/2�, e1〉 ≥ l

2

)
,

combining all of the above yields

P
z1
(
(XTl

, Tl) = (w,n)|B̂(l)
) ≤ C

M∑
k=1

k−(d+1)/2
P

z1

(
〈Xτ�k/2�, e1〉 ≥ l

2

)

+ C

∞∑
k=M+1

k−(d+1)/2
P

z1

(
〈Xτ�k/2�, e1〉 ≤ l

2

)
.

The argument continues now as in the proof of [2], Lemma 4.2. Choosing

M = l

Ez1[〈Xτ2 − Xτ1, e1〉] = �(l)

and using Theorem 2.8 (see also Remark 2.11) we get that τk − τk−1 has finite
2d moments, and from standard estimates for the sum of i.i.d. variable [that the
2d moment for the sum of k i.i.d. mean zero random variables grows like O(kd)],
thus

P
z1

(
〈Xτ�k/2�, e1〉 ≥ l

2

)
,Pz1

(
〈Xτ�k/2�, e1〉 ≤ l

2

)
≤ min

[
1,

Ckd

(M − k)2d

]
and, therefore,

P
z1
(
Xl = x|B̂(l)

) ≤ C

∞∑
k=1

k−(d+1)/2 min
[
1,

Ckd

(M − k)2d

]
= O

(
l−d/2).

To see the last equality, we have to separate the sum into four parts as in [2],
Lemma 4.2, the first part is a sum over k ∈ [1, M

2 ] which contains roughly l sum-
mands, each of them is bounded by Cl−d and therefore the whole sum is bounded
by Cl−d+1. The second part is a sum over k ∈ [M

2 ,M − √
M]. In this case, the
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sum is bounded up to a constant by∫ M−√
M

M/2
x(d−1)/2(M − x)−2d dx

=
∫ M/2

√
M

(M − y)(d−1)/2y−2d dy

≤
(

M

2

)(d−1)/2 ∫ M/2

√
M

y−2d dy

≤ CM(d−1)/2
√

M
−2d+1 = O

(
M−d/2) = O

(
l−d/2).

The third sum is over k ∈ [M − √
M,M + √

M]. This part contains roughly
√

M

summands, each of them is bounded by M−(d+1)/2 so the sum is O(l−d/2). Finally,
the last sum is over k ≥ M + √

M . This case is similar to the second sum and is
bounded up to a constant by∫ ∞

M+√
M

x(d−1)/2(x − M)−2d dx

=
∫ 2M

M+√
M

x(d−1)/2(x − M)−2d dx +
∫ ∞

2M
x(d−1)/2(x − M)−2d dx

=
∫ M

√
M

(y + M)(d−1)/2y−2d dy +
∫ ∞
M

(y + M)(d−1)/2y−2d dy

≤ CM(d−1)/2
∫ M

√
M

y−2d dy + C

∫ ∞
M

y(d−1)/2y−2d dy = O
(
l−d/2).

Thus,

P
z1
(
(XTl

, Tl) = (w,n)|B̂(l)
) ≤ Cl−d/2.

The arguments for the other two inequalities are very similar and, therefore, we
only discuss the proof for (A.12). Assuming without loss of generality that y =
x + ej for some 1 ≤ j ≤ d we have∣∣Pz1

(
(XTl

, Tl) = (w,n)|B̂(l)
)− P

z1
(
(XTl

, Tl) = (z, n + 1)|B̂(l)
)∣∣

= ∣∣Pz1
(
(XTl

, Tl) = (w,n)
∣∣B(l)

)− P
z1
(
(XTl

, Tl) = (z, n + 1)
∣∣B(l)

)∣∣
≤ 1

Pz1(B(l))

∞∑
k=1

∣∣Pz1
(
(Xτk

, τk) = (w,n)
)− P

z1
(
(Xτk

, τk) = (z, n + 1)
)∣∣.

We can now continue as in the previous case by separating the sum for k ≤ M

and k > M and also adding either the assumption 〈Xτk
− Xτ�k/2�, e1〉 ≥ l

2 or

〈Xτ�k/2�, e1〉 ≥ l
2 . Now we can estimate each term in the same way except that



LOCAL LIMIT FOR CERTAIN BALLISTIC RWRE 2961

in (A.14) we have∣∣∣∣Pz1

(
(Xτk

, τk) = (w,n), 〈Xτ�k/2�,e1〉 ≤ l

2

)
− P

z1

(
(Xτk

, τk) = (z, n + 1), 〈Xτ�k/2�,e1〉 ≤ l

2

)∣∣∣∣
≤ ∑

x:〈x,e1〉≤l/2

∑
s∈N

P
z1
(
(Xτ�k/2�, τ�k/2�) = (x, s)

)
× ∣∣Pz1

(
(Xτk

, τk) = (w,n)|(Xτ�k/2�, τ�k/2�) = (x, s)
)

− P
z1
(
(Xτk

, τk) = (z, n + 1)|(Xτ�k/2�, τ�k/2�) = (x, s)
)∣∣

≤ ∑
x:〈x,e1〉≤l/2

∑
s∈N

Ck−(d+2)/2
P

z1
(
(Xτ�k/2�, τ�k/2�) = (x, s)

)
= Ck−(d+2)/2

P
z1

(
〈Xτ�k/2�, e1〉 ≤ l

2

)
,

where for the last inequality we used (A.4) instead of (A.3). Apart from that dif-
ference, the proof continues via the same lines. �

Next, we turn to the proof of the annealed estimations. We follow the same ideas
as in the proof of [2], Lemma 4.2.

PROOF OF LEMMA 3.3. (1) Denote u := (XT∂P(0,N)
, T∂P(0,N)). Then

P
z(u = (x,m)

)
= ∑

l≤N2

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

P
z((XTl

, Tl) = (w,n)|B̂(l)
)

× P
z(u = (x,m)|B̂(l), (XTl

, Tl) = (w,n)
)

(1)≤ ∑
l≤N2

P
z(B̂(l)

)
max

w∈Hl,n∈N
w−z1↔n

Cl−d/2
P

z(u = (x,m)|B̂(l), (XTl
, Tl) = (w,n)

)
(2)= ∑

l≤N2

P
z(B̂(l)

)
Cl−d/2

(3)≤ ∑
l≤N2

Ce−c((N2−l)/2)γ Cl−d/2

= ∑
l≤N2/2

Ce−c((N2−l)/2)γ Cl−d/2 + ∑
N2/2≤l≤N2

Ce−c((N2−l)/2)γ Cl−d/2

≤ C
N2

2
e−c(N2/2)γ + C

Nd

∑
N2/2≤l≤N2

Ce−c((N2−l)/2)γ ≤ C

Nd
,
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where for (1) we used Lemma 3.3, (3.1), for (2) we used the shift invariance of
the annealed walk and for the first sum in (3) we used Corollary 2.10 (see also
Remark 2.11).

(2) For y ∈ Z
d such that ‖y − x‖1 = 1, we can find 2 ≤ j ≤ d such that y =

x ± ej (without loss of generality assume the sign is +) and, therefore,

P
z(u = (y,m + 1)

)
= ∑

l≤N2

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

P
z((XTl

, Tl) = (w + ej , n + 1)|B̂(l)
)

× P
z(u = (y,m + 1)|B̂(l), (XTl

, Tl) = (w + ej , n + 1)
)

= ∑
l≤N2

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

P
z((XTl

, Tl) = (w + ej , n + 1)|B̂(l)
)

× P
z(u = (x,m)|B̂(l), (XTl

, Tl) = (w,n)
)
.

Subtracting the formula for P
z(u = (y,m + 1)) from the one for Pz1(u = (x,m)),

we thus get∣∣Pz(u = (x,m)
)− P

z(u = (y,m + 1)
)∣∣

≤ ∑
l≤N2

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

[∣∣Pz((XTl
, Tl) = (w,n)|B̂(l)

)

− P
z((XTl

, Tl) = (w + ej , n + 1)|B̂(l)
)∣∣

× P
z(u = (x,m)|B̂(l), (XTl

, Tl) = (w,n)
)]

≤ ∑
l≤N2

P
z(B̂(l)

)
max

w∈Hl,2≤j≤d,n∈N
∣∣Pz((XTl

, Tl) = (w,n)|B̂(l)
)

− P
z((XTl

, Tl) = (w + ej , n + 1)|B̂(l)
)∣∣,

where as before we used the shift invariance. Using (A.12), we get∣∣Pz(u = (x,m)
)− P

z(u = (y,m + 1)
)∣∣ ≤ ∑

l≤N2

P
z(B̂(l)

)
Cl−(d+1)/2

which by the same argument as before is bounded by CN−d−1.
(3) We start with the case where w = z + ej for some 2 ≤ j ≤ d . Due to the (2),

we have ∣∣Pz(u = (x,m)
)− P

z+ej
(
u = (x,m + 1)

)∣∣
≤ ∣∣Pz(u = (x,m)

)− P
z+ej

(
u = (x + ej ,m)

)∣∣
+ ∣∣Pz+ej

(
u = (x + ej ,m)

)− P
z+ej

(
u = (x,m + 1)

)∣∣
≤ ∣∣Pz(u = (x,m)

)− P
z+ej

(
u = (x + ej ,m)

)∣∣+ CN−d−1,
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and, therefore, it is enough to compare P
z(u = (x,m)) with P

z+ej (u = (x +
ej ,m)). In this case, we have

P
z+ej

(
u = (x + ej ,m)

)
= ∑

l≤N2

P
z+ej

(
B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

P
z+ej

(
(XTl

, Tl) = (w + ej , n)|B̂(l)
)

× P
z+ej

(
u = (x + ej ,m)|B̂(l), (XTl

, Tl) = (w + ej , n)
)

= ∑
l≤N2

P
z+ej

(
B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

P
z+ej

(
(XTl

, Tl) = (w + ej , n)|B̂(l)
)

× P
z(u = (x,m)|B̂(l), (XTl

, Tl) = (w,n)
)

= ∑
l≤N2

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

P
z+ej

(
(XTl

, Tl) = (w + ej , n)|B̂(l)
)

× P
z(u = (x,m)|B̂(l), (XTl

, Tl) = (w,n)
)

and, therefore,∣∣Pz(u = (x,m)
)− P

z+ej
(
u = (x + ej ,m)

)∣∣
≤ ∑

l≤N2

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z1↔n

[∣∣Pz+ej
(
(XTl

, Tl) = (w + ej , n)|B̂(l)
)

− P
z((XTl

, Tl) = (w,n)|B̂(l)
)∣∣Pz(u = (x,m)|B̂(l), (XTl

, Tl) = (w,n)
)]

≤ ∑
l≤N2

P
z(B̂(l)

)
max

w∈Hl,2≤j≤d,n∈N
∣∣Pz+ej

(
(XTl

, Tl) = (w + ej , n)|B̂(l)
)

− P
z((XTl

, Tl) = (w,n)|B̂(l)
)∣∣.

Using (A.12) and (A.13) gives∣∣Pz(u = (x,m)
)− P

z+e1
(
u = (x + e1,m)

)∣∣ ≤ ∑
l≤N2

P
z(B̂(l)

)
Cl−(d+1)/2

and the proof is completed in the same way as in (2). Finally, we turn to deal with
the case w = z + e1. One can rewrite the term for Pz+e1(u = (x = m)) as

P
z+e1

(
u = (x,m)

)
= ∑

l≤N2−1

P
z+e1

(
B̂(l + 1)

)
× ∑

w∈Hl,n∈N
w−z↔n

P
z+e1

(
(XTl+1, Tl+1) = (w + e1, n)|B̂(l + 1)

)



2964 N. BERGER, M. COHEN AND R. ROSENTHAL

× P
z+e1

(
u = (x,m)|B̂(l + 1), (XTl+1, Tl+1) = (w + e1, n)

)
= ∑

l≤N2−1

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z↔n

P
z((XTl

, Tl) = (w,n)|B̂(l)
)

× P
z+e1

(
u = (x,m)|B̂(l + 1), (XTl+1, Tl+1) = (w + e1, n)

)
and, therefore, using Lemma A.3∣∣Pz(u = (x,m)

)− P
z+e1

(
u = (x,m)

)∣∣
≤ ∑

l≤N2−1

P
z(B̂(l)

) ∑
w∈Hl,n∈N
w−z↔n

P
z((XTl

, Tl) = (w,n)|B̂(l)
)

× ∣∣Pz(u = (x,m)|B̂(l), (XTl
, Tl) = (w,n)

)
− P

z+e1
(
u = (x,m)|B̂(l + 1), (XTl+1, Tl+1) = (w + e1, n)

)∣∣
+ P

z(B̂(
N2)) max

w∈H
N2 ,n∈N

w−z↔n

P
z((XT

N2 , TN2) = (w,n)|B̂(
N2))

× P
z(u = (x,m)|B̂(

N2), (XT
N2 , TN2) = (w,n)

)
≤ ∑

l≤N2−1

P
z(B̂(l)

)
× ∑

w∈Hl,n∈N
w−z↔n

Cl−(d+1)/2∣∣Pz(u = (x,m)|B̂(l), (XTl
, Tl) = (w,n)

)

− P
z+e1

(
u = (x,m)|B̂(l + 1), (XTl+1, Tl+1) = (w + e1, n)

)∣∣
+ P

z(B̂(
N2)) · CN−(d+1)/2

≤ 2C
∑

l≤N2−1

P
z(B̂(l)

)
l−(d+1)/2 + P

z(B̂(
N2)) · CN−(d+1)/2

≤ CN−(d+1)/2,

as required. �

A.2.3. Proof of Lemma 2.14. The proof of Lemma 2.14 follows very similar
lines to the one of Lemma 3.3 and is based on very similar estimations to the one
obtained in Lemma A.3. Here, we need a slightly different version of it in which
we replace ˆB(l) the event that the last regeneration time is in the hyperplane l with
the event Ẑ(l) in which the last regeneration time is at time l.

LEMMA A.4 (Middle step in Lemma 3.3). Let d ≥ 4 and assume P is uni-
formly elliptic, i.i.d. and satisfies (P). Fix z ∈ Z

d and n ∈ N. For k, l ∈ N let
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Z(l, k) be the event that τk = l, Z(l) = ⋃
k Z(l, k) and

Ẑn(l) ≡ Ẑ(l) = Z(l) ∩
n⋂

j=l+1

Zc(j).

Then for every z ∈ Z
d :

(1) For every l ≤ n and x ∈ Z
d

P
z(Xl = x|Ẑ(l)

) ≤ Cl−d/2.(A.15)

(2) For every l ∈ N, and every x, y ∈ Z
d such that ‖x − y‖1 = 1∣∣Pz(Xl = x|Ẑ(l)

)− P
z(Xl+1 = y|Ẑ(l + 1)

)∣∣ ≤ Cl−(d+1)/2.(A.16)

(3) For every l ∈ N every x ∈ Z
d and every 1 ≤ j ≤ d∣∣Pz(Xl = x|Ẑ(l)

)− P
z+ej

(
Xl+1 = x|Ẑ(l + 1)

)∣∣ ≤ Cl−(d+1)/2.(A.17)

(4) For every ε > 0, every partition �n of Zd into boxes of side length nε and
any l ∈ N ∑

�∈�n

∑
x∈�

x−z↔l

max
y∈�

P
z(Xl = y|Ẑ(l)

)− P
z(Xl = x|Ẑ(l)

) ≤ Cl−1/2+3dε.(A.18)

PROOF. Due to the independence of Xl from
⋂n

j=l+1 Zc(j) conditioned on
Z(l) we get that for every M ∈ N

P
z(Xl = x|Ẑ(l)

) = P
z(Xl = x|Z(l)

)
= 1

Pz(Z(l))

∞∑
k=1

P
z((Xτk

, τk) = (x, l)
)

= 1

Pz(Z(l))

M∑
k=1

P
z1

(
(Xτk

, τk) = (x, l), τ�k/2� ≥ l

2

)

+ 1

Pz(Z(l))

M∑
k=1

P
z1

(
(Xτk

, τk) = (x, l), τk − τ�k/2� ≥ l

2

)

+ 1

Pz(Z(l))

∞∑
k=M+1

P
z1

(
(Xτk

, τk) = (x, l), τ�k/2� ≤ l

2

)

+ 1

Pz(Z(l))

∞∑
k=M+1

P
z1

(
(Xτk

, τk) = (x, l), τk − τ�k/2� ≤ l

2

)
.
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Claim A.2 gives

P
z

(
(Xτk

, τk) = (x, l), τ�k/2� ≤ l

2

)

=
l/2∑
s=0

∑
w∈Zd

w−z↔s

P
z((Xτ�k/2�, τ�k/2�) = (w, s)

)

× P
z((Xτk

, τk) = (x, l)|(Xτ�k/2�, τ�k/2�) = (w, s)
)

≤ Ck−(d+1)/2
l/2∑
s=0

∑
w∈Zd

w−z↔s

P
z((Xτ�k/2�, τ�k/2�) = (w, s)

)

= Ck−(d+1)/2
P

z1

(
τ�k/2� ≤ l

2

)
,

and similarly we have

P
z

(
(Xτk

, τk) = (x, l), τk − τ�k/2� ≤ l

2

)
≤ Ck−(d+1)/2

P
z1

(
τk − τ�k/2� ≤ l

2

)
≤ Ck−(d+1)/2

P
z1

(
τ�k/2� ≤ l

2

)
.

Repeating the same calculations while separating the sum according to the events
τ�k/2� ≥ l

2 and τk − τ�k/2� ≥ l
2 , we get that

P
z

(
(Xτk

, τk) = (x, l), τ�k/2� ≥ l

2

)
≤ Ck−(d+1)/2

P
z

(
τ�k/2� ≥ l

2

)
and

P
z

(
(Xτk

, τk) = (x, l), τk − τ�k/2� ≥ l

2

)
≤ Ck−(d+1)/2

P
z

(
τ�k/2� ≥ l

2

)
,

combining all of the above yields

P
z(Xl = x|Ẑ(l)

) ≤ C

M∑
k=1

k−(d+1)/2
P

z

(
τ�k/2� ≥ l

2

)

+ C

∞∑
k=M+1

k−(d+1)/2
P

z

(
τ�k/2� ≤ l

2

)
.

Choosing

M = l

Ez[〈τ2 − τ1, e1〉] = O(l)



LOCAL LIMIT FOR CERTAIN BALLISTIC RWRE 2967

and using Theorem 2.9 (see also Corollary 2.10) we get that τk − τk−1 has finite
2d moments, and from standard estimates for the sum of i.i.d. variable [that the
2d moment for the sum of k i.i.d. mean zero random variables grows like O(kd)],
thus

P
z

(
τ�k/2� ≥ l

2

)
,Pz

(
τ�k/2� ≤ l

2

)
≤ min

[
1,

Ckd

(M − k)2d

]
and, therefore,

P
z1
(
Xl = x|Ẑ(l)

) ≤ C

∞∑
k=1

k−(d+1)/2 min
[
1,

Ckd

(M − k)2d

]
= O

(
l−d/2).

To see the last equality, we have to separate the sum into four parts as in [2],
Lemma 4.2, the first part is a sum over k ∈ [1, M

2 ] which contains roughly l sum-
mands, each of them is bounded by Cl−d and therefore the whole sum is bounded
by Cl−d+1. The second part is a sum over k ∈ [M

2 ,M − √
M]. In this case, the

sum is bounded up to a constant by∫ M−√
M

M/2
x(d−1)/2(M − x)−2d dx =

∫ M/2

√
M

(M − y)(d−1)/2y−2d dy

≤
(

M

2

)(d−1)/2 ∫ M/2

√
M

y−2d dy

≤ CM(d−1)/2
√

M
−2d+1

= O
(
M−d/2) = O

(
l−d/2).

The third sum is over k ∈ [M − √
M,M + √

M]. This part contains roughly
√

M

summands, each of them is bounded by M−(d+1)/2 so the sum is O(l−d/2). Finally,
the last sum is over k ≥ M + √

M . This case is similar to the second sum and is
bounded up to a constant by∫ ∞

M+√
M

x(d−1)/2(x − M)−2d dx

=
∫ 2M

M+√
M

x(d−1)/2(x − M)−2d dx +
∫ ∞

2M
x(d−1)/2(x − M)−2d dx

=
∫ M

√
M

(y + M)(d−1)/2y−2d dy +
∫ ∞
M

(y + M)(d−1)/2y−2d dy

≤ CM(d−1)/2
∫ M

√
M

y−2d dy + C

∫ ∞
M

y(d−1)/2y−2d dy = O
(
l−d/2).

Thus,

P
z1
(
Xl = x|Ẑ(l)

) ≤ Cl−d/2.
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The arguments for the other two inequalities are very similar and, therefore, we
only discuss the proof for A.12. Similarly, to the first case, we have∣∣Pz1

(
Xl = x|Ẑn(l)

)− P
z1
(
Xl+1 = y|Ẑn+1(l + 1)

)∣∣
= ∣∣Pz1

(
Xl = x|Z(l)

)− P
z1
(
Xl+1 = y|Z(l + 1)

)∣∣
=

∣∣∣∣∣ 1

Pz1(Z(l))

∞∑
k=1

P
z1
(
(Xτk

, τk) = (x, l)
)

− 1

Pz1(Z(l + 1))

∞∑
k=1

P
z1
(
(Xτk

, τk) = (y, l + 1)
)∣∣∣∣∣

≤ 1

Pz1(Z(l))

∞∑
k=1

∣∣Pz1
(
(Xτk

, τk) = (x, l)
)− P

z1
(
(Xτk

, τk) = (y, l + 1)
)∣∣(A.19)

+
∣∣∣∣ 1

Pz1(Z(l))
− 1

Pz1(Z(l + 1))

∣∣∣∣ ∞∑
k=1

P
z1
(
(Xτk

, τk) = (y, l + 1)
)
.(A.20)

For the first term, we can now continue as in the previous case, by first sep-
arating the sum for k ≤ M and k > M and also adding either the assumption
〈Xτk

− Xτ�k/2�, e1〉 ≥ l
2 or 〈Xτ�k/2�, e1〉 ≥ l

2 . Now we can estimate each term in
the same way except that in (A.14) we have∣∣∣∣Pz1

(
(Xτk

, τk) = (x, l), 〈Xτ�k/2�,e1〉 ≤ l

2

)
− P

z1

(
(Xτk

, τk) = (y, l + 1), 〈Xτ�k/2�,e1〉 ≤ l

2

)∣∣∣∣
≤ ∑

w:〈w,e1〉≤l/2

∑
s∈N

P
z1
(
(Xτ�k/2�, τ�k/2�) = (w, s)

)
× ∣∣Pz1

(
(Xτk

, τk) = (x, l)|(Xτ�k/2�, τ�k/2�) = (w, s)
)

− P
z1
(
(Xτk

, τk) = (y, l + 1)|(Xτ�k/2�, τ�k/2�) = (w, s)
)∣∣

≤ ∑
w:〈w,e1〉≤l/2

∑
s∈N

Ck−(d+2)/2
P

z1
(
(Xτ�k/2�, τ�k/2�) = (w, s)

)
= Ck−(d+2)/2

P
z1

(
〈Xτ�k/2�, e1〉 ≤ l

2

)
,

where for the last inequality we used (A.4) instead of (A.3). Apart from that dif-
ference the proof for the first term continues via the same lines. Regarding the
second term, since {τk − τk−1}∞k=2 are i.i.d. under P using the Fourier analysis
of Claim A.2, one can verify that |Pz1(Z(l)) − P

z1(Z(l + 1))| ≤ C
l

and, there-
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fore,

(A.20) ≤ C

l · Pz1(l)
· Pz1

(
Xl+1 = y|Z(l + 1)

)
≤ C

l
· Pz1

(
Xl+1 = y|Z(l + 1)

) ≤ C · l(d+2)/2 = o
(
l(d+1)/2),

where for the last inequality we used the first part of the lemma [see (A.16)].
Finally, we turn to discuss the last term. The proof is very similar to the previous

ones. For every � ∈ �n denote by x� a point in � such that Pz(Xl = x�|Ẑ(l)) =
maxy∈� P

z(Xl = y|Ẑ(l)) we get∑
�∈�n

∑
x∈�

x−z↔l

max
y∈�

P
z(Xl = y|Ẑ(l)

)− P
z(Xl = x|Ẑ(l)

)

= 1

Pz(Z(l))

×
∞∑

k=1

∑
�∈�n

∑
x∈�

x−z↔l

P
z((Xτk

, τk) = (x�, l)
)− P

z((Xτk
, τk) = (x, l)

)
.

Separating the sum as in the previous cases and using (A.6) in the appropriate
inequality, this completes the proof. �

PROOF OF LEMMA 2.14. (1) We have

P
z(Xn = x)

= ∑
l≤n

P
z(Ẑ(l)

) ∑
w∈Zd

P
z(Xl = w|Ẑ(l)

)
P

z(Xn = x|Ẑ(l),Xl = w
)

(1)≤ ∑
l≤n

P
z(Ẑ(l)

) ∑
w∈Zd

Cl−d/2
P

z(Xn = x|Ẑ(l),Xl = w
)

(2)= ∑
l≤n

P
z(Ẑ(l)

)
Cl−d/2

(3)≤ ∑
l≤n

e−(log(n−l))2
Cl−d/2

= ∑
l≤n/2

e−(log(n−l))2
Cl−d/2 + ∑

n/2≤l≤n

e−(log(n−l))2
Cl−d/2

≤ Ce−c(logn)2 + Cn−d/2
∑

n/2≤l≤n

e−(log(n−l))2 ≤ Cn−d/2,
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where for (1) we used Lemma A.4, (3.1), for (2) we used the shift invariance of
the annealed walk, and for the first sum in (3) we used Corollary 2.10.

(2) For y ∈ Z
d such that ‖y − x‖1 = 1, we can find 1 ≤ j ≤ d such that y =

x + ej and, therefore,

P
z(Xn+1 = y)

= ∑
l≤n+1

P
z(Ẑn+1(l)

) ∑
w∈Zd

w−z↔l

P
z(Xl = w|Ẑn+1(l)

)

× P
z(Xn+1 = y|Ẑn+1(l),Xl = w

)
= ∑

l≤n

P
z(Ẑn+1(l + 1)

) ∑
w∈Zd

w−z↔l

P
z(Xl+1 = w + ej |Ẑn+1(l)

)

× P
z(Xn+1 = y|Ẑn+1(l),Xl+1 = w + ej

)
= ∑

l≤n

P
z(Ẑn+1(l + 1)

) ∑
w∈Zd

w−z↔l

P
z(Xl+1 = w + ej |Ẑn+1(l + 1)

)

× P
z(Xn = x|Ẑn(l),Xl = w

)
.

Subtracting the formula for Pz(Xn+1 = y) from the one for Pz(Xn = x), we thus
get ∣∣Pz(Xn = x) − P

z(Xn+1 = y)
∣∣

≤ ∑
l≤n−1

∣∣Pz(Ẑn+1(l + 1)
)− P

z(Ẑn(l)
)∣∣

× ∑
w∈Zd

P
z(Xl+1 = w + ej |Ẑn+1(l + 1)

)
P

z(Xn = x|Ẑn(l),Xl = w
)

+∑
l≤n

P
z(Ẑn(l)

) ∑
w∈Zd

∣∣Pz(Xl = w|Ẑn(l)
)− P

z(Xl = w + ej |Ẑn(l)
)∣∣

× P
z(Xn = x|Ẑn(l),Xl = w

)
≤ ∑

l≤n−1

∣∣Pz(Ẑn+1(l + 1)
)− P

z(Ẑn(l)
)∣∣Pz(Xn+1 = x + ej |Ẑn+1(l + 1)

)
+∑

l≤n

P
z(Ẑn+1(l)

)
max

w∈Zd ,2≤j≤d

∣∣Pz(Xl = w|Ẑn(l)
)

− P
z(Xl+1 = w + ej |Ẑn+1(l + 1)

)∣∣,
where as before we used the shift invariance. Using (A.12), the second term is
bounded by

∑
l≤n P

z(Ẑn(l))Cl−(d+1)/2, which by the same argument as before is
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bounded by Cn−(d+1)/2. Regarding the first term, using the first part of the lemma,
see (2.2) and Theorem 2.9 gives∑

l≤n−1

∣∣Pz(Ẑn+1(l + 1)
)− P

z
n+1

(
Ẑ(l)

)∣∣Pz(Xn+1 = x + ej |Ẑ(l + 1)
)

≤ ∑
l≤n−1

|Pz(Ẑn+1(l + 1)) − P
z(Ẑn(l))|

Pz(Ẑn+1(l + 1))
P

z(Xn+1 = x + ej )

≤ ∑
l≤n−1

|Pz(Ẑn+1(l + 1)) − P
z(Ẑn(l))|

Pz(Ẑn+1(l + 1))
Cn−d/2

≤ ∑
l≤n−n1/4

e−(log(n−l))2
Cn−d/2 + n−d/2

× ∑
n−n1/4≤l≤n−1

∣∣Pz(Ẑn+1(l + 1)
)− P

z(Ẑn(l)
)∣∣

(1)= o
(
n−(d+1)/2)+ n−d/2

∑
n−n1/4≤l≤n−1

C

l
≤ Cn−d/2 · n1/4 · n−1

= o
(
n−(d+1)/2),

where for (1) we used the fact that for l ≥ n − n1/4 ≥ n
2∣∣Pz(Ẑn+1(l + 1)

)− P
z(Ẑn(l)

)∣∣
=

∣∣∣∣∣Pz

(
Z(l + 1) ∩

n+1⋂
j=l+2

Z(j)c

)
− P

z

(
Z(l) ∩

n⋂
j=l+1

Z(j)c

)∣∣∣∣∣
=

∣∣∣∣∣Pz(Z(l + 1)
)
P

z

(
n+1⋂

j=l+2

Z(j)c
∣∣∣Z(l + 1)

)

− P
z(Z(l)

)
P

z

(
n⋂

j=l+1

Z(j)c
∣∣∣Z(l)

)∣∣∣∣∣
=

∣∣∣∣∣Pz(Z(l + 1)
)
P

z

(
n⋂

j=l+1

Z(j)c
∣∣∣Z(l)

)

− P
z(Z(l)

)
P

z

(
n⋂

j=l+1

Z(j)c
∣∣∣Z(l)

)∣∣∣∣∣
= P

z

(
n⋂

j=l+1

Z(j)c
∣∣∣Z(l)

)
· ∣∣Pz(Z(l + 1)

)− P
z(Z(l)

)∣∣
≤ ∣∣Pz(Z(l + 1)

)− P
z(Z(l)

)∣∣ ≤ C

l
≤ Cn−1.
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(3) This follows exactly the same lines as the argument for the previous inequal-
ity.

(4) A similar calculation gives∑
�∈�

(ε)
n

∑
x∈�
x↔n

[
max
y∈�

P
0(Xn = y) − P

0(Xn = x)
]

= ∑
�∈�

(ε)
n

max
x∈�
x↔n

∑
l≤n

P
z(Ẑ(l)

) ∑
w∈Zd

w↔l

P
z(Xl = w|Ẑ(l)

)

× [
P

z(Xn = x�|Ẑ(l),Xl = w
)− P

z(Xn = x|Ẑ(l),Xl = w
)]

= ∑
l≤n

P
z(Ẑ(l)

) ∑
w∈Zd

w↔l

∑
�∈�

(ε)
n

∑
x∈�
x↔n

[
P

z(Xl = w|Ẑ(l)
)

− P
z(Xl = w + x − x0|Ẑ(l)

)]
P

z(Xn = x�|Ẑ(l),Xl = w
)
.

Using (A.18) and the shift invariance of the annealed measure this is bounded by∑
l≤n

P
z(Ẑ(l)

)
Cl−1/2+3dε ≤ ∑

l≤n

e−(log(n−l))2 · Cl−1/2+3dε ≤ Cn−1/2+3dε.
�

A.2.4. Proof of Lemma 2.16. Recalling Corollary 2.10, we have

P
z(∥∥Xn −E

z[Xn]
∥∥∞ >

√
nR5(n)

)
≤ P

z(∥∥Xn −E
z[Xn]

∥∥∞ >
√

nR5(n)|Bn

)+ P
(
Bc

n

)
(A.21)

≤ P
z(∃k ≤ n : ∥∥Xτk

−E
z[Xτk

]∥∥∞ > 1
3

√
nR5(n)|Bn

)+ n−ξ(1).

Note that conditioned on Bn the regenerations are still independent and all of them
are bounded by R(n). If we could show that ‖Ez[Xτk

] − E
z[Xτk

|Bn]‖∞ = n−ξ(1)

then

(A.21) ≤ P
z(∃k ≤ n :,∥∥Xτk

−E
z[Xτk

|Bn]
∥∥∞ > 1

4

√
nR5(n)|Bn

)+ n−ξ(1)

which by Azuma’s inequality is no more than

n∑
k=1

P
z

(∥∥Xτk
−E

z[Xτk
|Bn]

∥∥∞ >
1

4

√
nR5(n)|Bn

)
+ n−ξ(1)

≤ d

n∑
k=1

exp
(
− nR2

5(n)

16kR2(n)

)
≤ de−R5(n) = n−ξ(1).

Thus, it is left to show that ‖Ez[Xτk
] − E

z[Xτk
|Bn]‖∞ = n−ξ(1). Since k ≤ n, by

the triangle inequality it is enough to show that ‖Ez[Xτk
− Xτk−1] − E

z[Xτk
−
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Xτk−1 |Bn]‖∞ = n−ξ(1). However, for every k ≤ n∥∥Ez[Xτk
− Xτk−1] −E

z[Xτk
− Xτk−1 |Bn]

∥∥∞
≤ ∥∥Ez[Xτk

− Xτk−1] −E
z[(Xτk

− Xτk−1)1Bn

]∥∥∞
+ ∥∥Ez[(Xτk

− Xτk−1)1Bn

]−E
z[Xτk

− Xτk−1 |Bn]
∥∥∞

= ∥∥Ez[(Xτk
− Xτk−1)1Bc

n

]∥∥∞ + P
z(Bc

n

)∥∥Ez[Xτk
− Xτk−1 |Bn]

∥∥∞
≤ ∥∥Ez[(Xτk

− Xτk−1)1Bc
n

]∥∥∞ + R(n)Pz(Bc
n

)
≤ ∥∥Ez[(Xτk

− Xτk−1)1∃j �=k,τj−τj−1>R(n)

]∥∥∞
+ ∥∥Ez[(Xτk

− Xτk−1)1τk−τk−1>R(n)

]∥∥∞ + R(n)Pz(Bc
n

)
≤ ∥∥Ez[(Xτk

− Xτk−1)
]∥∥∞P

z(Bc
n

)+
∞∑

l=R(n)

le−clγ + R(n)Pz(Bc
n

)
= n−ξ(1),

where for the last inequality we used the assumption (P) which implies Tγ for
any 0 < γ < 1, and for the last equality we used Corollary 2.10.

The quenched estimation follows from the first inequality together with
Claim 2.15, while the second annealed estimation follows by the exact same proof
with R5(n) replaced with a large constant C.

A.3. More annealed estimations.

A.3.1. Proof of (3.6)–(3.9). We start with the proof of (3.6).

P
z(XTM+V

∈ �(1), TM+V ∈ I (1))
= P

z(XTM+V
∈ �(1), TM+V ∈ I (1),XTM

∈ �,TM ∈ I
)

+ P
z(XTM+V

∈ �(1), TM+V ∈ I (1), (XTM
∈ �,TM ∈ I )c

)
≤ P

z(XTM
∈ �,TM ∈ I ) + P

z(XTM+V
∈ �(1),XTM

/∈ �
)

+ P
z(TM+V ∈ I (1), TM /∈ I

)
.

Thus, it is enough to show that P
z(XTM+V

∈ �(1),XTM
/∈ �) = N−ξ(1) and

P
z(TM+V ∈ I (1), TM /∈ I ) = N−ξ(1). Since by Lemma 3.4 P

z(XTM
/∈ P(0,N)) =

P
z(XTM

/∈ P(0,N), T∂P(0,N) �= T∂+P(0,N)) + N−ξ(1) = N−ξ(1), we have

P
z(XTM+V

∈ �(1),XTM
/∈ �

)
= ∑

y∈P(0,N)∩HM\�
P

z(XTM
= y,XTM+V

∈ �(1))+ N−ξ(1).
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However, using Lemma 3.4 once more, for every y ∈ P(0,N) ∩ HM \ � and ev-
ery w ∈ P̃(y,

√
V ) we have Pw(T∂P(y,

√
V ) = T∂+P(y,

√
V )) = 1− (

√
V )−ξ(1) = 1−

N−ξ(1). Since in addition dist(∂+P(y,
√

V ),�) > 1
2Nθ − 1

2 · 9
10Nθ −√

V R5(V ) ≥
1

20Nθ − cNθ ′
it follows that Pw(XTM+V

∈ �(1)) = N−ξ(1). To complete the argu-
ment, we note that we note that (by Corollary 2.10)

P
z(XTM

= y,XTM+V
∈ �(1)) = P

z(XTM
= y,XTM+V

∈ �(1),BN

)+ N−ξ(1)

and under BN there is a regeneration time at distance at most R(N) from y.
This gives a new point w ∈ Z

d [such that ‖w − y‖∞ ≤ R(N) and in particular
w ∈ P̃(0,N)] from which the probability to hit �(1) when hitting the hyperplane
HM+V (conditioned to start in a regeneration time). Since the last conditioning has
a positive probability this is bounded by CP

w(XTM+V
∈ �(1)) = N−ξ(1). Thus,

P
z(XTM+V

∈ �(1),XTM
/∈ �

)
= ∑

y∈P(0,N)∩HM\�
P

z(XTM
= y,XTM+V

∈ �(1))+ N−ξ(1)

≤ ∣∣P(0,N)
∣∣ · N−ξ(1) + N−ξ(1) = N−ξ(1).

A similar argument shows that Pz(TM+V ∈ I (1), TM /∈ I ) = N−ξ(1). Indeed, by
Lemma 3.4 up to an event of probability M−ξ(1) = N−ξ(1) the first hitting time
to the hyperplane HM is the same as the exit time of the box P(0,M). By the
same lemma, we also know that up to an event of probability N−ξ(1) this time is at
distance at most NR2(N) from the expectation of Ez[TM ]. Therefore,

P
z(TM+V ∈ I (1), TM /∈ I

)
= ∑

t :|t−Ez[TM ]|<NR2(N)

t /∈I

P
z(Tm = t, TM+V ∈ I (1))+ N−ξ(1).

In the case t < c(I ) − Nθ if TM+V ∈ I (1), then the random walk crossed the dis-
tance from HM to HM+V in more then V 1

〈v,e1〉 − 1
2 · 9

10Nθ +Nθ = V 1
〈v,e1〉 + 1

20Nθ

which happens with probability N−ξ(1) by Lemma 3.4. Similarly, if t > C(I)+Nθ

and TM+V ∈ I (1) then the random walk crossed the distance from HM to HM+V in
less than V 1

〈v,e1〉 + 1
2 · 9

10Nθ − 1
2Nθ = V 1

〈v,e1〉 − 1
20Nθ which also has probability

N−ξ(1) by Lemma 3.4.
Thus,

P
z(TM+V ∈ I (1), TM /∈ I

)
= ∑

t :|t−Ez[TM ]|<NR2(N)

t /∈I

P
z(Tm = t, TM+V ∈ I (1))+ N−ξ(1)

≤ CNR2(N) · N−ξ(1) + N−ξ(1) = N−ξ(1).
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Turning to (3.8), we have

E
[
P z

ω

(
XTM+V

∈ �(1), TM+V ∈ I (1))|G]
= E

[
P z

ω

(
XTM+V

∈ �(1), TM+V ∈ I (1),XTM
∈ �,TM ∈ I

)|G]
+ E

[
P z

ω

(
XTM+V

∈ �(1), TM+V ∈ I (1), (XTM
∈ �,TM ∈ I )c

)|G]
≤ E

[
P z

ω(XTM
∈ �,TM ∈ I )|G]+ E

[
P z

ω

(
XTM+V

∈ �(1),XTM
/∈ �

)|G]
+ E

[
P z

ω

(
TM+V ∈ I (1), TM /∈ I

)|G]
= P z

ω(XTM
∈ �,TM ∈ I ) + E

[
P z

ω

(
XTM+V

∈ �(1),XTM
/∈ �

)|G]
+ E

[
P z

ω

(
TM+V ∈ I (1), TM /∈ I

)|G].
Separating to the case when BN holds and when Bc

N (which has probabil-
ity N−ξ(1)) we can control the terms E[P z

ω(XTM+V
∈ �(1),XTM

/∈ �)|G] and
E[P z

ω(TM+V ∈ I (1), TM /∈ I )|G] by the annealed probability of the events
{XTM+V

∈ �(1),XTM
= w} and {TM+V ∈ I (1), Tm = t} with w and t the place

and time of the first regeneration time after hitting the hyerplane HM (outside of
�). Since by the first argument those events have probability N−ξ(1) the proof is
complete.

The proof of (3.7) and (3.9) is very similar and, therefore, is left to the reader.

A.3.2. Proof of (3.12)–(3.15). The proof of (3.12)–(3.15) follows the same
lines as the proof of (3.6)–(3.9). The only difference is that in (3.6)–(3.9) we took
boxes of side length 9

10Nθ and 11
10Nθ leaving a difference of wide 1

10Nθ from the
original box whose side length is Nθ . This together with the fact that the distance
between the hyperplanes was V = N2θ ′

for some θ ′ < θ made it impossible to
hit one box without hitting the other. Similarly in (3.12)–(3.15), we take boxes of
side length Nθ ± R3(N)

√
V . As in the previous case, we have R3(N)

√
V � √

V

and, therefore, the probability to hit one box without hitting the other is still of
magnitude N−ξ(1).

A.3.3. Proof of (4.3)–(4.4). We start with the proof of (4.3). Denoting by
At,s,w the event that the first regeneration time after time t is at time s and Xs = w

we have

P
z(XT

∂P(0,
√

L)
∈ �(1), T

∂P(0,
√

L)
∈ I (1),XN /∈ �

)
= ∑

y∈�(1)

t∈I (1)

P
z(XT

∂P(0,
√

L)
= y,T

∂P(0,
√

L)
= t,XN /∈ �,BN) + N−ξ(1)

= ∑
y∈�(1)

t∈I (1)

∑
w:‖w−y‖∞≤R(N)

s:|t−s|≤R(N)

P
z(XT

∂P(0,
√

L)
= y,
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T
∂P(0,

√
L)

= t,BN,At,s,w,XN /∈ �) + N−ξ(1)

≤ ∑
y∈�(1)

t∈I (1)

∑
w:‖w−y‖∞≤R(N)

s:|t−s|≤R(N)

P
z(XT

∂P(0,
√

L)
= y,T

∂P(0,
√

L)
= t,BN,At,s,w)

× P
z(XN /∈ �|XT

∂P(0,
√

L)
= y,T∂P(0,

√
L) = t,BN,At,s,w) + N−ξ(1)

≤ ∑
y∈�(1)

t∈I (1)

∑
w:‖w−y‖∞≤R(N)

s:|t−s|≤R(N)

P
z(XT

∂P(0,
√

L)
= y,T

∂P(0,
√

L)
= t,BN,At,s,w)

× P
w(XN−s /∈ �|0 is a regeneration time) + N−ξ(1)

≤ C · ∑
y∈�(1)

t∈I (1)

∑
w:‖w−y‖∞≤R(N)

s:|t−s|≤R(N)

P
z(XT

∂P(0,
√

L)
= y,T

∂P(0,
√

L)
= t,BN,At,s,w)

× P
w(XN−s /∈ �) + N−ξ(1)

≤ CR(N)d
∑

w:dist(w,�(1))≤R(N)

s:dist(s,I (1))≤R(N)

P
w(XN−s /∈ �) + N−ξ(1).

Since the number of pairs (w, s) satisfying the above inequalities is at most
(NθR(N))d , it is enough to show that for every w ∈ Z

d such that dist(w,�(1)) ≤
R(N) and every s ∈ N such that dist(s, I (1)) ≤ R(N) we have P

w(XN−s /∈ �) =
N−ξ(1). To this end, fix w and s as above, and note that

P
w(XN−s /∈ �)

= P
w(XN−s /∈ �,T

∂P(w,
√

Nθ )
= T

∂+P(w,
√

Nθ )
,

T
∂P(w,

√
(1/2)Nθ )

= T
∂+P(w,

√
(1/2)Nθ )

) + N−ξ(1)

= P
w(XN−s /∈ �,T

∂P(w,
√

(3/2)Nθ )
= T

∂+P(w,
√

(3/2)Nθ )
,

T
∂P(w,

√
(1/2)Nθ )

= T
∂+P(w,

√
(1/2)Nθ )

,

T
∂P(w,

√
(1/2)Nθ )

≤ N − s ≤ T
∂P(w,

√
(3/2)Nθ )

)

+ P
w(XN−s /∈ �,T

∂P(w,
√

(3/2)Nθ )
= T

∂+P(w,
√

(3/2)Nθ )
,

N − s > T
∂P(w,

√
(3/2)Nθ )

)

+ P
w(XN−s /∈ �,T

∂P(w,
√

(1/2)Nθ )
= T

∂+P(w,
√

(1/2)Nθ )
,

N − s < T
∂P(w,

√
(1/2)Nθ )

) + N−ξ(1).
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Note, however, that if T
∂P(w,

√
(3/2)Nθ )

= T
∂+P(w,

√
(3/2)Nθ )

, T
∂P(w,

√
(1/2)Nθ )

=
T

∂+P(w,
√

(1/2)Nθ )
and T

∂P(w,
√

(1/2)Nθ )
≤ N − s ≤ T

∂P(w,
√

(3/2)Nθ )
then XN−s ∈

� and, therefore,

P
w(XN−s /∈ �)

≤ P
w(T

∂P(w,
√

(3/2)Nθ )
= T

∂+P(w,
√

(3/2)Nθ )
,N − s > T

∂P(w,
√

(3/2)Nθ )
)

+ P
w(T

∂P(w,
√

(1/2)Nθ )
= T

∂+P(w,
√

(1/2)Nθ )
,N − s ≤ T

∂P(w,
√

(1/2)Nθ )
)

+ N−ξ(1).

Since N − s ∈ [ Nθ

〈v,e1〉 − 1
2(Nθ − R5(N)Nθ/2), Nθ

〈v,e1〉 + 1
2(Nθ − R5(N)Nθ/2)] it

follows that

P
w(T

∂P(w,
√

(3/2)Nθ )
= T

∂+P(w,
√

(3/2)Nθ )
,N − s > T

∂P(w,
√

(3/2)Nθ )
)

= P
0(T

∂P(0,
√

(3/2)Nθ )
= T

∂+P(0,
√

(3/2)Nθ )
,N − s > T

∂P(0,
√

(3/2)Nθ )
)

≤ P
0
(
T(3/2)Nθ <

Nθ

〈v, e1〉 + 1

2

(
Nθ − R5(N)Nθ/2))

≤ P
0
(
T(3/2)Nθ <

(3/2)Nθ

〈v, e1〉 − 1

2
R5(N)Nθ/2

)
= N−ξ(1)

and similarly

P
w(XN−s /∈ �,T

∂P(w,
√

(1/2)Nθ )
= T

∂+P(w,
√

(1/2)Nθ )
,N − s ≤ T

∂P(w,
√

(1/2)Nθ )
)

= P
0(T

∂P(0,
√

(1/2)Nθ )
= T

∂+P(0,
√

(1/2)Nθ )
,N − s < T

∂P(0,
√

(1/2)Nθ )
)

≤ P
0
(
T(1/2)Nθ >

Nθ

〈v, e1〉 − 1

2

(
Nθ − R5(N)Nθ/2))

≤ P
0
(
T(1/2)Nθ >

(1/2)Nθ

〈v, e1〉 + 1

2
R5(N)Nθ/2

)
= N−ξ(1).
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