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SMOLUCHOWSKI–KRAMERS APPROXIMATION AND LARGE
DEVIATIONS FOR INFINITE-DIMENSIONAL NONGRADIENT
SYSTEMS WITH APPLICATIONS TO THE EXIT PROBLEM1

BY SANDRA CERRAI AND MICHAEL SALINS

University of Maryland

In this paper, we study the quasi-potential for a general class of damped
semilinear stochastic wave equations. We show that as the density of the mass
converges to zero, the infimum of the quasi-potential with respect to all possi-
ble velocities converges to the quasi-potential of the corresponding stochastic
heat equation, that one obtains from the zero mass limit. This shows in par-
ticular that the Smoluchowski–Kramers approximation is not only valid for
small time, but in the zero noise limit regime, can be used to approximate
long-time behaviors such as exit time and exit place from a basin of attrac-
tion.

1. Introduction. In the present paper, we are dealing with the following
stochastic wave equation in a bounded regular domain D ⊂ R

d , with d ≥ 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∂2u

μ
ε

∂t2 (t, ξ) = �uμ
ε (t, ξ) − ∂u

μ
ε

∂t
(t, ξ) + B

(
uμ

ε (t)
)
(ξ) + √

ε
∂wQ

∂t
(t, ξ),

ξ ∈ D,

uμ
ε (0, ξ) = u0(ξ),

∂u
μ
ε

∂t
(0, ξ) = v0(ξ),

ξ ∈ D,u
μ
ε (t, ξ) = 0, ξ ∈ ∂D.

(1.1)

Here B is a Lipschitz continuous mapping, whose Lipschitz norm is dominated by
the first eigenvalue of the Laplacian. This means in particular that the identically
zero solution is globally asymptotically stable in the absence of noise. ∂wQ/∂t

is a cylindrical Wiener process, white in time and colored in space, with covari-
ance Q2, and μ and ε are small positive constants.

As a consequence of the Newton law, we may interpret the solution u
μ
ε (t, ξ) of

equation (1.1) as the displacement field of the particles of a material continuum
in the domain D, subject to a random external force field

√
ε ∂wQ/∂t (t, ξ) and

a damping force proportional to the velocity field ∂u
μ
ε /∂t (t, ξ). The Laplacian

describes interaction forces between neighboring particles, in the presence of a
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nonlinear reaction described by B . The constant μ represents the constant density
of the particles.

In [2] and [3], it has been proven that, for fixed ε > 0, as the density μ converges
to 0, the solution u

μ
ε (t) of problem (1.1) converges to the solution uε(t) of the

stochastic first-order equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂uε

∂t
(t, ξ) = �uε(t, ξ) + B

(
uε(t)

)
(ξ) + √

ε
∂wQ

∂t
(t, ξ),

ξ ∈ D,

uε(0, ξ) = u0(ξ),

ξ ∈ D,uε(t, ξ) = 0, ξ ∈ ∂D,

(1.2)

uniformly for t on fixed intervals. More precisely, we have shown that for any
η > 0 and T > 0,

lim
μ→0

P

(
sup

t∈[0,T ]
∣∣uμ

ε (t) − uε(t)
∣∣
H > η

)
= 0.(1.3)

Such an approximation is known as the Smoluchowski–Kramers approximation
and goes back to the seminal works by Smoluchowski [25] and Kramers [21]. In
physical and chemical applications, it is important to be able to replace the second-
order system (1.1), with the first-order system (1.2), which is considered to be sim-
pler to treat. This is what is usually done, when, under the assumption that the mass
is negligible, the damped Langevin equation is replaced by a standard stochastic
differential equation. In recent years, the validity of the Smoluchowski–Kramers
approximation has attracted considerable interest, especially for finite-dimensional
systems (see, e.g., [8, 15, 16, 19, 20, 24] and [22]), but also several results have
been obtained in infinite dimension; see [2, 3, 6]. Moreover, we would like to men-
tion that there exists a large literature where a similar type of approximation is used
in applications, when, instead of the small mass asymptotics, the large damping
asymptotics are considered; see the works by E. Vanden-Eijnden and coauthors.

Once one has proved the validity of (1.3), an important question arises: how
do some relevant asymptotic properties of the second and the first-order systems
compare, with respect to the small mass asymptotic? In [15] and [8], the case of
systems with a finite number of degrees of freedom have been studied, and the
large deviation estimates, with the exit problem from a domain, various averaging
procedures, the Wong–Zakai approximation and homogenization have been com-
pared. It has been proven that in some cases the two asymptotics do match together
properly, and in other cases they do not.

In [2], where the validity of the Smoluchowski–Kramers approximation for
SPDEs has been approached for the first time, the long time behavior of equa-
tions (1.1) and (1.2) has been compared, under the assumption that the two sys-
tems are of gradient type. Actually, in the case of white noise in space and
time (i.e., Q = I ) and dimension d = 1, an explicit expression for the Boltz-
man distribution of the process z

μ
ε (t) := (u

μ
ε (t), ∂u

μ
ε /∂t (t)) in the phase space
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H := L2(0,1) × H−1(0,1) has been given. Of course, since in the functional
space H there is no analogous of the Lebesgue measure, an auxiliary Gaussian
measure has been introduced, with respect to which the density of the Boltzman
distribution has been written down. This auxiliary Gaussian measure is the station-
ary measure of the linear wave equation related to problem (1.1). In particular, it
has been shown that the first marginal of the invariant measure associated with the
process z

μ
ε (t) does not depend on μ and coincides with the invariant measure of

the process uε(t), defined as the unique solution of the heat equation (1.2).
In the present paper, we are interested in comparing the small noise asymp-

totics, as ε ↓ 0, for system (1.1) and system (1.2). Actually, we want to show that
the Smoluchowski–Kramers approximation, that works on finite time intervals, is
good also in the large deviations regime.

Large deviation principles and exit problems have been studied for a variety
of SPDEs in the small noise regime (see [1, 9, 11, 18, 23] and [26]). We want
to compare the quasi-potential V μ(x, y) associated with (1.1), with the quasi-
potential V (x) associated with (1.2), and we want to show that for any closed
set N ⊂ L2(D), it holds that

lim
μ→0

inf
x∈N

V̄μ(x) := lim
μ→0

inf
x∈N

inf
y∈H−1(D)

V μ(x, y) = inf
x∈N

V (x).(1.4)

In the above formulas, x and y are functions of ξ , and the quasi-potential V μ(x, y)

denotes the infimum value of the large-deviation rate function over all L2(D)-
valued paths satisfying appropriate boundary conditions; for details, see page 4
and Section 5.

This means that taking first the limit as ε ↓ 0 (large deviation) and then taking
the limit as μ ↓ 0 (Smoluchowski–Kramers approximation) is the same as first tak-
ing the limit as μ ↓ 0 and then as ε ↓ 0. In particular, this result provides a rigorous
mathematical justification of what is done in applications, when, in order to study
rare events and transitions between metastable states for the more complicated sys-
tem (1.1), as well as exit times from basins of attraction and the corresponding exit
places, the relevant quantities associated with the large deviations for system (1.2)
are considered.

In our previous paper [7], we addressed this problem in the particular case when
system (1.1) is of gradient type, that is,

B(x) = −Q2Fx(x), x ∈ L2(D),(1.5)

where Fx(x) denotes the Frechet derivative for some F :L2(D) → R, where Q2

is the covariance of the Gaussian random perturbation. This applies, for example,
to the linear case (i.e., B = 0) in any space dimension or to the case

B(x)(ξ) = b
(
ξ, x(ξ)

)
, ξ ∈ D,

when D = [0,L] and Q = I . In [7] we showed that if (1.5) holds, then for any
μ > 0,

V μ(x, y) = ∣∣(−�)1/2Q−1x
∣∣2
L2(D) + 2F(x) + μ

∣∣Q−1y
∣∣2
L2(D),(1.6)
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for any (x, y) ∈ Dom((−�)1/2Q−1) × Dom(Q−1). Therefore, as

V (x) = ∣∣(−�)1/2Q−1x
∣∣2
H + 2F(x), x ∈ Dom

(
(−�)1/2Q−1)

,

from (1.6) we have concluded that for any μ > 0,

V̄μ(x) := inf
y∈H−1(D)

V μ(x, y) = V μ(x,0) = V (x),

(1.7)
x ∈ Dom

(
(−�)1/2Q−1)

.

In particular, this means that V̄μ(x) does not just coincide with V (x) at the limit,
as in (1.4), but for any fixed μ > 0.

In the general nongradient case that we are considering in the present paper, the
situation is considerably more delicate, and we cannot expect anything explicit, as
in (1.6). The lack of an explicit expression for V μ(x, y) and V (x) makes the proof
of (1.4) much more difficult and requires the introduction of new arguments and
techniques.

The first key idea in order to prove (1.4) is to characterize V μ(x, y) as the min-
imum value for a suitable functional. We recall that the quasi-potential V μ(x, y)

is defined as the minimum energy required to the system to go from the asymptot-
ically stable equilibrium 0 to the point (x, y) ∈ H, in any time interval. Namely,

V μ(x, y) = inf
{
I

μ
0,T (z); z(0) = 0, z(T ) = (x, y), T > 0

}
,

where

I
μ
0,T (z) = 1

2 inf
{|ψ |2

L2((0,T );H)
: z = z

μ
ψ

}
,

is the large deviation action functional, and z
μ
ψ = (u

μ
ψ, ∂u

μ
ψ/∂t) is a mild solu-

tion of the skeleton equation associated with equation (1.1), with control ψ ∈
L2((0, T );H),

μ
∂2u

μ
ψ

∂t2 (t) = �u
μ
ψ(t) − ∂u

μ
ψ

∂t
(t) + B

(
u

μ
ψ(t)

) + Qψ(t), t ∈ [0, T ].(1.8)

By working thoroughly with the skeleton equation (1.8), we show that, for small
enough μ > 0,

V μ(x, y) = min
{
I

μ
−∞,0(z) : lim

t→−∞
∣∣z(t)∣∣H = 0, z(0) = (x, y)

}
,(1.9)

where the minimum is taken over all z ∈ C((−∞,0];H). In particular, we get that
the level sets of V μ and V̄μ are compact in H and L2(D), respectively. Moreover,
we show that both V μ and V̄μ are well defined and continuous in suitable Sobolev
spaces of functions. We would like to stress that in [5] a result analogous to (1.9)
has been proved for equation (1.2) and V (x), in terms of the corresponding func-
tional I−∞,0. In both cases, the proof is highly nontrivial, due to the degeneracy
of the associated control problems, and requires a detailed analysis of the optimal
regularity of the solution of the skeleton equation (1.8).
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The second key idea is based on the fact that as in [8], where the finite-
dimensional case is studied, for all functions z ∈ C((−∞,0];H) that are regular
enough,

I
μ
−∞(z) = I−∞(ϕ) + μ2

2

∫ 0

−∞

∣∣∣∣Q−1 ∂2ϕ

∂t2 (t)

∣∣∣∣
2

H

dt

+ μ

∫ 0

−∞

〈
Q−1 ∂2ϕ

∂t2 (t),Q−1
(

∂ϕ

∂t
(t) − Aϕ(t) − B

(
ϕ(t)

))〉
H

dt(1.10)

=: I−∞(ϕ) + J
μ
−∞(z),

where ϕ(t) = 	1z(t). Thus if z̄μ is the minimizer of V̄μ(x), whose existence is
guaranteed by (1.9), and if z̄μ has enough regularity to guarantee that all terms
in (1.10) are meaningful, we obtain

V̄μ(x) = I−∞(ϕ̄μ) + J
μ
−∞

(
z̄μ) ≥ V (x) + J

μ
−∞

(
z̄μ)

.(1.11)

In the same way, if ϕ̄ is a minimizer for V (x) and is regular enough, then

V̄μ(x) ≤ I
μ
−∞(ϕ̄, ∂ϕ̄/∂t) = V (x) + J

μ
−∞

(
(ϕ̄, ∂ϕ̄/∂t)

)
.(1.12)

If we could prove that

lim inf
μ→0

J
μ
−∞

(
z̄μ) = lim sup

μ→0
J

μ
−∞

(
(ϕ̄, ∂ϕ̄/∂t)

) = 0,(1.13)

from (1.11) and (1.12) we could conclude that (1.4) holds true. But unfortunately,
neither z̄μ nor ϕ̄ have the required regularity to justify (1.13). Thus we have to
proceed with suitable approximations, which among other things, require us to
prove the continuity of the mappings V̄μ : Dom((−�)1/2Q−1) → R, uniformly
with respect to μ ∈ (0,1].

In the second part of the paper we want to apply (1.4) to the study of the exit
time and of the exit place of u

μ
ε from a given domain in L2(D). For any open and

bounded domain G ⊂ L2(D), containing the asymptotically stable equilibrium 0,
and for any z0 ∈ G × H−1(D), we define the exit time

τμ,ε
z0

:= inf
{
t ≥ 0 :uμ

ε,z0
(t) ∈ ∂G

}
.

Our first goal is to show that for fixed μ > 0 and z0 ∈ G,

lim
ε→0

ε logEτμ,ε
z0

= inf
x∈∂G

V̄μ(x),(1.14)

and

lim
ε→0

ε log
(
τμ,ε
z0

) = inf
x∈∂G

V̄μ(x) in probability.(1.15)

We also want to prove that if N ⊂ ∂G has the property that infx∈N V̄μ(x) >

infx∈∂G V̄μ(x), then

lim
ε→0

P
(
uμ

ε,z0

(
τμ,ε
z0

) ∈ N
) = 0.(1.16)
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We would like to stress that the method we are using here in our infinite-
dimensional setting has several considerable differences compared to the classical
finite-dimensional argument developed in [17]; see also [13]. The most fundamen-
tal difference between the two settings is that unlike the finite-dimensional case, in
the infinite-dimensional case the quasi-potentials V̄μ are not continuous in L2(D).
Nevertheless, we show here that the lower-semi-continuity of V̄μ in L2(D), along
with a convex type regularity assumption for the domain G, are sufficient to prove
our results. Another important difference is that u

μ
ε is not a Markov process, but the

pair (u
μ
ε , ∂u

μ
ε /∂t) in the phase space H is. For this reason, the exit time problem

should be considered as the exit from the cylinder G × H−1 ⊂ H. Unfortunately,
this is an unbounded domain, and as we show in Section 3, the unperturbed trajec-
tories are not uniformly attracted to zero from this cylinder. The methods we use
to prove the exit time and exit place results should be applicable to most stochastic
equations with second-order time derivatives.

In a similar manner, one can show that if

τ ε
u0

= inf
{
t > 0 :uε(t) /∈ G

}
is the exit time from G for the solution of (1.2), and V (x) is the quasi-potential
associated with this system, the exit time and exit place results for the first-order
system are analogous to (1.14), (1.15) and (1.16).

As a consequence of (1.7), in the gradient case, (1.14) and (1.15) imply that
for any fixed μ > 0, the exit time and exit place asymptotics of (1.1) match those
of (1.2). In particular, for any μ > 0,

lim
ε→0

ε logEτμ,ε
z0

= inf
x∈∂G

V (x) = lim
ε→0

ε logEτ ε
u0

,(1.17)

and

lim
ε→0

ε log τμ,ε
z0

= inf
x∈∂G

V (x) = lim
ε→0

ε log τ ε
u0

in probability.(1.18)

Additionally, if there exists a unique x∗ ∈ ∂G such that V (x∗) = infx∈∂G V (x),
(1.16) implies that

lim
ε→0

uμ
ε

(
τμ,ε) = x∗ = lim

ε→0
uε

(
τ ε) in probability.

In the general nongradient case, we cannot have (1.17) and (1.18). Nevertheless,
in view of (1.4), the exit time and exit place asymptotics of (1.1) can be approxi-
mated by V . Namely,

lim
μ→0

lim
ε→0

ε logEτμ,ε
z0

= inf
x∈∂G

V (x) = lim
ε→0

ε logEτ ε
u0

,

and

lim
μ→0

lim
ε→0

ε log τμ,ε
z0

= inf
x∈∂G

V (x) = lim
ε→0

ε log τ ε
u0

in probability.
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Furthermore, if there exists a unique x∗ ∈ ∂G such that V (x∗) = infx∈∂G V (x),
then

lim
μ→0

lim
ε→0

uμ
ε

(
τμ,ε) = x∗ = lim

ε→0
uε

(
τ ε) in probability.

The paper is organized as follows. In Section 2, we introduce the main notation
and assumptions. In Section 3, we prove results about the equation in the absence
of random forcing. In Section 4, we consider the skeleton equation, where the
random forcing has been replaced by a deterministic control. In Section 5, we in-
troduce the functionals I

μ
−∞,0 and I−∞,0, which act on trajectories on the negative

half-line, and we show that the level sets of these functionals are compact. We then
characterize the quasi-potentials V μ and V in terms of I

μ
−∞,0 and I−∞,0. The com-

pactness results of Section 5 are essential for the proofs in the remaining sections.
In Section 6, we prove that the quasi-potentials are continuous on certain Sobolev
spaces. Sections 7 and 8 contain the proofs of the convergence of V μ → V as
μ → 0. In Section 9, we prove that the limit of the exit place and the exponential
rate of divergence for exit time from a region in L2(D) are characterized by the
quasi-potentials.

In what follows we shall denote by c (without any index) any positive constant
appearing in inequalities, whose dependence on some parameters is not important.
Such a constant may change, even in the same chain of inequalities. When we want
to emphasize the dependence of the constant c on some parameters p1, . . . , pn, we
will denote it by cp1,...,pn .

2. Preliminaries and assumptions. Let D be an open, bounded, regular do-
main in R

d , with d ≥ 1, and let H denote the Hilbert space L2(D). In what
follows, we shall denote by A the realization in H of the Laplace operator, en-
dowed with Dirichlet boundary conditions, and we shall denote by {ek}k∈N and
{−αk}k∈N the corresponding sequence of eigenfunctions and eigenvalues, with
0 < α1 ≤ · · · ≤ αk ≤ · · · , for any k ∈ N. Here, we assume that the domain D is
regular enough so that

αk ∼ k2/d , k ∈ N.(2.1)

This happens, for example, in the case of the Laplace operator � in strongly
regular open sets, both with Dirichlet and with Neumann boundary conditions;
see [10], Theorem 1.9.6.

For any δ ∈ R, we shall define the fractional Sobolev space Hδ as the comple-
tion of C∞

0 (D) with respect to the norm

|x|2
Hδ =

+∞∑
k=1

αδ
k〈x, ek〉2

H =
∞∑

k=1

αδ
kx

2
i .
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Hδ is a Hilbert space, endowed with the scalar product

〈x, y〉Hδ =
+∞∑
k=1

αδ
kxkyk, x, y ∈ Hδ(D).

Finally, we shall denote by Hδ the Hilbert space Hδ ×Hδ−1, and in the case δ = 0
we shall set H =H0. Moreover, we shall denote the projections

	1 :Hδ → Hδ, (u, v) �→ u, 	2 :Hδ → Hδ−1, (u, v) �→ v.

Sometimes, for the sake of simplicity, we will denote for any μ > 0 and δ ∈ R, the
scaling

Iμ(u, v) = (u,
√

μv), (u, v) ∈ Hδ.(2.2)

The stochastic perturbation is given by a cylindrical Wiener process wQ(t, ξ),
for t ≥ 0 and ξ ∈ O, which is assumed to be white in time and colored in space, in
the case of space dimension d > 1. Formally, it is defined as the infinite sum

wQ(t, ξ) =
+∞∑
k=1

Qek(ξ)βk(t),(2.3)

where {ek}k∈N is the complete orthonormal basis in L2(D) which diagonalizes A

and {βk(t)}k∈N is a sequence of mutually independent standard Brownian motions
defined on the same complete stochastic basis (�,F,Ft ,P).

HYPOTHESIS 1. The linear operator Q is bounded in H and diagonal with
respect to the basis {ek}k∈N which diagonalizes A. Moreover, if {λk}k∈N is the
corresponding sequence of eigenvalues, we have

1

c
α

−β
k ≤ λk ≤ cα

−β
k , k ∈ N,(2.4)

for some c > 0 and β > (d − 2)/4.

REMARK 2.1. (1) If d = 1, according to Hypothesis 1 we can consider space–
time white noise (Q = I ).

(2) Thanks to (2.1), condition (2.4) implies that if d ≥ 2, then there exists γ <

2d/(d − 2) such that
∞∑

k=1

λ
γ
k < ∞.

Moreover,
∞∑

k=1

λ2
k

αk

< ∞.



SMOLUCHOWSKI–KRAMERS APPROXIMATION AND LARGE DEVIATIONS 2599

(3) As a consequence of (2.4), for any δ ∈ R,

Dom
(
(−A)δ/2Q−1) = Hδ+2β,

and there exists cδ > 0 such that for any x ∈ Hδ+2β ,

1

cδ

∣∣(−A)δ/2Q−1x
∣∣
H ≤ |x|δ+2β ≤ cδ

∣∣(−A)δ/2Q−1x
∣∣
H .

Concerning the nonlinearity B , we shall assume the following conditions:

HYPOTHESIS 2. For any δ ∈ [0,1 + 2β], the mapping B :Hδ → Hδ is Lips-
chitz continuous, with

[B]Lip(Hδ) =: γδ < α1.

Moreover, B(0) = 0. We also assume that B is differentiable in the space H 2β ,
with

sup
z∈H

∥∥Bz(z)
∥∥
L(H 2β) = γ2β.

REMARK 2.2. (1) The assumption that B is differentiable is made for con-
venience to simplify the proof of lower bounds in Theorem 8.2. We believe that
by approximating the Lipschitz continuous B with a sequence of differentiable
functions whose C1 semi-norm is controlled by the Lipschitz semi-norm of B , the
results proved in Theorem 8.2 should remain true.

(2) If we define for any x ∈ H ,

B(x)(ξ) = b
(
ξ, x(ξ)

)
, ξ ∈ D,

and we assume that b(ξ, ·) ∈ C2k(R), for k ∈ [β + δ/2 − 5/4, β + δ/2 − 1/4], and

∂jb

∂σ j
(ξ, σ )

∣∣∣∣
σ=0

= 0, ξ ∈ D̄,

then B maps Hδ into itself, for any δ ∈ [0,1 + 2β]. The Lipschitz continuity of B

in Hδ and the bound on the Lipschitz norm are satisfied if the derivatives of b(ξ, ·)
are small enough.

With this notation, equation (1.2) can be written as the following abstract evo-
lution equation in H :

duε(t) = [
Auε(t) + B

(
uε(t)

)]
dt + √

ε dwQ(t), u(0) = u0.(2.5)

DEFINITION 2.3. A predictable process uε ∈ L2(�;C([0, T ];H)) is a mild
solution to equation (2.5) if

uε(t) = etAu0 +
∫ t

0
e(t−s)AB

(
uε(s)

)
ds + √

ε

∫ t

0
e(t−s)A dwQ(s).
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Now, for each μ > 0 and δ ∈ R, we define Aμ : Dom(Aμ) ⊂ Hδ → Hδ by set-
ting

Aμ(u, v) =
(
v,

1

μ
Au − 1

μ
v

)
, (u, v) ∈ Dom(Aμ) = H1+δ,(2.6)

and we denote by Sμ(t) the semigroup on Hδ generated by Aμ. In [2], Propo-
sition 2.4, it is proved that for each μ > 0 there exist ωμ > 0 and Mμ > 0 such
that ∥∥Sμ(t)

∥∥
L(H) ≤ Mμe−ωμt , t ≥ 0.(2.7)

Notice that since for any δ ∈R and (u, v) ∈ Hδ ,(
(−A)δ	1Sμ(t)(u, v), (−A)δ	2Sμ(t)(u, v)

) = Sμ(t)
(
(−A)δu, (−A)δv

)
,

t ≥ 0,

(2.7) implies that for any δ ∈ R,∥∥Sμ(t)
∥∥
L(Hδ)

≤ Mμe−ωμt , t ≥ 0.(2.8)

Next, for any μ > 0 we denote

Bμ(u, v) = 1

μ

(
0,B(u)

)
, (u, v) ∈ H,

and

Qμu = 1

μ
(0,Qu), u ∈ H.

With this notation, equation (1.1) can be written as the following abstract evolution
equation in the space H:

dz(t) = [
Aμz(t) + Bμ

(
z(t)

)]
dt + √

εQμ dw(t), z(0) = (u0, v0).(2.9)

DEFINITION 2.4. A predictable process u
μ
ε is a mild solution of (2.9) if

uμ
ε ∈ L2(

�;C([0, T ];H ))
, vμ

ε =: ∂u
μ
ε

∂t
∈ L2(

�;C([0, T ];H−1))
,

for any T > 0, and

zμ
ε (t) = Sμ(t)z(0) +

∫ t

0
Sμ(t − s)Bμ

(
zμ
ε (s)

)
ds

(2.10)

+ √
ε

∫ t

0
Sμ(t − s)Qμ dw(s),

where z(0) = (u0, v0) and z
μ
ε = (u

μ
ε , v

μ
ε ).
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In view of Hypothesis 1 and of the fact that B :H → H is Lipschitz continuous,
for any μ > 0 and any initial condition z0 = (u0, v0) ∈ H, there exists a unique
mild solution u

μ
ε for equation (1.1); for a proof, see, for example, [2]. In [2],

Theorem 4.6, we proved that for any fixed ε > 0 and T > 0, the solution u
μ
ε of

equation (1.1) converges in C([0, T ];H), in probability sense, to the solution uε

of equation (1.2), as μ ↓ 0. Namely, for any η > 0,

lim
μ→0

P

(
sup

t∈[0,T ]
∣∣uμ

ε (t) − uε(t)
∣∣
H > η

)
= 0.

3. The unperturbed equation. We consider here equation (2.9) with ε = 0.
Namely,

dz

dt
(t) = Aμz(t) + Bμ

(
z(t)

)
, z(0) = z0 = (u0, v0).(3.1)

The solution to (3.1) will be denoted by z
μ
z0(t). We recall here that γ0 denotes the

Lipschitz constant of B in H ; see Hypothesis 2.

LEMMA 3.1. If μ < (α1 −γ0)γ
−2
0 , there exists a constant c1(μ) > 0 such that

sup
t≥0

∣∣zμ
z0

(t)
∣∣
H + ∣∣zμ

z0

∣∣
L2((0,+∞);H) ≤ c1(μ)|z0|H, z0 ∈ H.(3.2)

PROOF. If ϕ(t) = 	1z
μ
z0(t), then

μ
∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) = Aϕ(t) + B

(
ϕ(t)

)
.(3.3)

By taking the inner product of (3.3) with ∂ϕ
∂t

in H−1, and by using the Lipschitz
continuity of B in H , we see that

μ
d

dt

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
+ 2

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
(3.4)

≤ − d

dt

∣∣ϕ(t)
∣∣2
H +

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
+ γ 2

0

α1

∣∣ϕ(t)
∣∣2
H .

By integrating this expression in time, we see that

μ

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
+ ∣∣ϕ(t)

∣∣2
H +

∫ t

0

∣∣∣∣∂ϕ

∂s
(s)

∣∣∣∣
2

H−1
ds

(3.5)

≤ μ|v0|2H−1 + |u0|2H + γ 2
0

α1

∫ t

0

∣∣ϕ(s)
∣∣2
H ds.

Next, by taking the inner product of (3.3) with ϕ(t) in H−1, since〈
∂2ϕ

∂t2 (t), ϕ(t)

〉
H−1

= 1

2

d2

dt2

∣∣ϕ(t)
∣∣2
H−1 −

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
,
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we have

μ
d2

dt2

∣∣ϕ(t)
∣∣2
H−1 + d

dt

∣∣ϕ(t)
∣∣2
H−1 ≤ −2

∣∣ϕ(t)
∣∣2
H + 2γ0

α1

∣∣ϕ(t)
∣∣2
H + 2μ

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
.

By (3.4), this yields

μ
d2

dt2

∣∣ϕ(t)
∣∣2
H−1 + d

dt

∣∣ϕ(t)
∣∣2
H−1

≤ −2
∣∣ϕ(t)

∣∣2
H + 2γ0

α1

∣∣ϕ(t)
∣∣2
H − 2μ2 d

dt

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
− 2μ

d

dt

∣∣ϕ(t)
∣∣2
H(3.6)

+ 2γ 2
0 μ

α1

∣∣ϕ(t)
∣∣2
H .

Now, if μ < (α1 − γ0)γ
−2
0 , it follows

ρμ := 2 − 2γ0

α1
− 2μγ 2

0

α1
> 0.

Then, by integrating both sides in (3.6), we see

μ
d

dt

∣∣ϕ(t)
∣∣2
H−1 + ∣∣ϕ(t)

∣∣2
H−1 + ρμ

∫ t

0

∣∣ϕ(s)
∣∣2
H ds

(3.7)
≤ 2μ〈v0, u0〉H−1 + |u0|2H−1 + 2μ2|v0|2H−1 + 2μ|u0|2H ,

and this implies that∫ ∞
0

∣∣ϕ(t)
∣∣2
H ds

(3.8)

≤ 1

ρμ

(
2μ〈v0, u0〉H−1 + |u0|2H−1 + 2μ2|v0|2H−1 + 2μ|u0|2H

)
.

Actually, if there exists t0 > 0 and δ > 0 such that∫ t0

0

∣∣ϕ(t)
∣∣2
H ds >

1

ρμ

(
2μ〈v0, u0〉H−1 + |u0|2H−1 + 2μ2|v0|2H−1 + 2μ|u0|2H

) + δ,

then, in view of (3.7), for any t > t0,

μ
d

dt

∣∣ϕ(t)
∣∣2
H−1 < −δ.

This would imply that for any t > t0,∣∣ϕ(t)
∣∣2
H−1 <

∣∣ϕ(t0)
∣∣2
H−1 − (t − t0)δ,

and in particular, that for large values of t ,∣∣ϕ(t)
∣∣2
H−1 < 0,
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which is impossible.
We conclude the proof by combining (3.5) and (3.8), to see that

μ

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
+ ∣∣ϕ(t)

∣∣2
H +

∫ t

0

∣∣∣∣∂ϕ

∂s
(s)

∣∣∣∣
2

H−1
ds +

∫ t

0

∣∣ϕ(s)
∣∣
H ds ≤ c|z0|2H. �

LEMMA 3.2. Assume μ < (α1 − γ0)γ
−2
0 . Then for any R > 0,

lim
t→+∞ sup

|z0|H≤R

∣∣zμ
z0

(t)
∣∣
H = 0.(3.9)

PROOF. Let us fix R,ρ > 0 and for any μ > 0 let us define

T = (c1(μ))4R2

ρ2 .

Let |z0|H ≤ R. Since ∣∣zμ
z0

∣∣
L2((0,T );H) ≥ √

T min
s≤T

∣∣zμ
z0

(s)
∣∣
H,

according to (3.2) there must exist t0 < T such that∣∣zμ
z0

(t0)
∣∣
H ≤ ρ

c1(μ)
.

By using again (3.2), this implies

sup
t≥T

∣∣zμ
z0

(t)
∣∣
H = sup

t≥T

∣∣zμ

z
μ
z0 (t0)

(t − t0)
∣∣
H ≤ ρ.

Notice that T is independent of our choice of z0, so we can conclude that

sup
t≥T

sup
|z0|H≤R

∣∣zμ
z0

(t)
∣∣
H ≤ ρ.

�

Now that we have shown that the unperturbed system is uniformly attracted to 0
from any bounded set in H, we show that if the initial velocity is large enough,
	1z

μ
z0 will leave any bounded set.

LEMMA 3.3. For any μ > 0 and t > 0, there exists c2(μ, t) > 0 such that

sup
s≤t

∣∣	1Sμ(s)(0, v0)
∣∣
H ≥ c2(μ, t)|v0|H−1, v0 ∈ H−1.(3.10)

PROOF. Let ϕ(t) = 	1Sμ(t)(0, v0). Then

μ
∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) = Aϕ(t), ϕ(0) = 0,

∂ϕ

∂t
(0) = v0.

By taking the inner product of this equation with ∂ϕ
∂t

(t) in H−1, we see that

μ
d

dt

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
+ 2

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
= − d

dt

∣∣ϕ(t)
∣∣2
H .
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Therefore, by standard calculations,∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
= e−(2t)/μ|v|2

H−1 − 1

μ

∫ t

0
e−(2(t−s))/μ d

ds

∣∣ϕ(s)
∣∣2
H ds

= e−(2t)/μ|v0|2H−1 − 1

μ

∣∣ϕ(t)
∣∣2
H + 2

μ2

∫ t

0
e−(2(t−s))/μ

∣∣ϕ(s)
∣∣2
H ds,

so that ∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
≤ e−(2t)/μ|v0|2H−1 + 1

μ
sup
s≤t

∣∣ϕ(s)
∣∣2
H .(3.11)

Next, since

d

dt

∣∣∣∣ϕ(t) + μ
∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
= 2

〈
ϕ(t) + μ

∂ϕ

∂t
(t),

∂ϕ

∂t
(t) + μ

∂2ϕ

∂t2 (t)

〉
H−1

= 2
〈
ϕ(t) + μ

∂ϕ

∂t
(t),Aϕ(t)

〉
H−1

(3.12)

= −2
∣∣ϕ(t)

∣∣2
H − μ

d

dt

∣∣ϕ(t)
∣∣
H ,

if we integrate in time we get

μ2|v0|2H−1 =
∣∣∣∣ϕ(t) + μ

∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
+ 2

∫ t

0

∣∣ϕ(s)
∣∣2
H ds + μ

∣∣ϕ(t)
∣∣2
H .

For any a > 0 to be chosen later, we have∣∣∣∣ϕ(t) + μ
∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
≤ (

1 + a−1) 1

α1

∣∣ϕ(t)
∣∣2
H + μ2(1 + a)

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1

and therefore,

μ2|v0|2H−1 ≤
(
μ + 2t + (

1 + a−1) 1

α1

)
sup
s≤t

∣∣ϕ(s)
∣∣2
H + μ2(1 + a)

∣∣∣∣∂ϕ

∂t
(t)

∣∣∣∣
2

H−1
.

Thanks to (3.11), this yields

μ2(
1 − (1 + a)e−(2t)/μ)|v0|2H−1

≤
(
μ + 2t + (

1 + a−1) 1

αk

+ (1 + a)μ

)
sup
s≤t

∣∣ϕ(s)
∣∣2
H ,

and our conclusion follows if we pick a < e(2t)/μ − 1. �

As a consequence of the previous lemma, we can conclude that the following
lower bound estimate holds for the solution of (3.1):
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LEMMA 3.4. For any μ > 0 and t > 0, there exists c(μ, t) > 0 such that

sup
s≤t

∣∣	1z
μ
z0

(s)
∣∣
H ≥ c(μ, t)|	2z0|H−1, z0 ∈ H.(3.13)

PROOF. Let z0 = (u0, v0). Since

	1z
μ
z0

(t) = 	1Sμ(t)(u0,0) + 	1Sμ(t)(0, v0) + 	1

∫ t

0
Sμ(t − s)Bμ

(
zμ
z0

(s)
)
ds,

from the Hypothesis 2 and (2.7), for any s > 0,

∣∣	1Sμ(s)(0, v0)
∣∣
H ≤

(
2Mμ + γ0Mμ

ωμμ

)
sup
r≤s

∣∣	1z
μ
z0

(r)
∣∣
H .

According to (3.10), this implies that for any t > 0,

c2(μ, t)|v0|H−1 ≤ sup
s≤t

∣∣	1Sμ(t)(0, v0)
∣∣
H ≤

(
2Mμ + γ0Mμ

ωμμ

)
sup
s≤t

∣∣	1z
μ
z0

(s)
∣∣
H .

Therefore, the result follows with

c(μ, t) = c1(μ, t)

(
2Mμ + γ0Mμ

ωμμ

)−1

. �

4. The skeleton equation. For any μ > 0 and s < t and for any ψ ∈
L2((s, t);H), we define

L
μ
s,tψ =

∫ t

s
Sμ(t − r)Qμψ(r) dr.

Clearly L
μ
s,t is a continuous bounded linear operator from L2([s, t];H) into H. If

we define the pseudo-inverse of L
μ
s,t as(

L
μ
s,t

)−1
(x) = arg min

{∣∣(Lμ
s,t

)−1({x})∣∣L2([s,t];H)

}
, x ∈ Im

(
L

μ
s,t

)
,

we have the following bounds.

THEOREM 4.1. For any μ > 0 and s < t , it holds that∣∣(Lμ
s,t

)−1
z
∣∣
L2((s,t);H) = √

2
∣∣(Cμ − Sμ(t − s)CμS�

μ(t − s)
)−1/2

z
∣∣
H,

(4.1)
z ∈ Im

(
L

μ
s,t

)
,

where

Cμ(u, v) =
(
Q2(−A)−1u,

1

μ
Q2(−A)−1v

)
, (u, v) ∈ H.(4.2)

Moreover, for every μ > 0 there exists Tμ > 0 such that

Im
(
L

μ
s,t

) = Im
(
(Cμ)1/2) = H1+2β, t − s ≥ Tμ(4.3)
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and ∣∣(Lμ
s,t

)−1
z
∣∣
L2((s,t);H) ≤ c(μ, t − s)|z|H1+2β

, z ∈ H1+2β,(4.4)

for some constant c(μ, r) > 0, with r ≥ Tμ.

PROOF. It is immediate to check that for any z ∈ H,

∣∣(Lμ
s,t

)�
z
∣∣2
L2((s,t);H) = 1

μ2

∫ t−s

0

∣∣Q(−A)−1	2S
�
μ(r)z

∣∣2
H dr.(4.5)

Now, if we expand S�
μ(t)(u, v) in Fourier series, we have (see [2], Proposition 2.3)

S�
μ(t)(u, v) =

∞∑
k=1

(
f̂

μ
k (t)ek, ĝ

μ
k (t)ek

)
,

where f̂
μ
k and ĝ

μ
k solve the system{
μ

(
f̂

μ
k

)′
(t) = −ĝ

μ
k (t), f̂

μ
k (0) = uk,

μ
(
ĝ

μ
k

)′
(t) = μαkf̂

μ
k (t) − ĝ

μ
k (t), ĝ

μ
k (0) = vk.

(4.6)

In particular,

∣∣ĝμ
k (t)

∣∣2 = −μ2αk

2

d

dt

∣∣f̂ μ
k (t)

∣∣2 − μ

2

d

dt

∣∣ĝμ
k (t)

∣∣2.(4.7)

Due to (4.5), we get∣∣(Lμ
s,t

)�
z
∣∣2
L2([s,t];H)

= 1

2

∞∑
k=1

∫ t−s

0

(
−λ2

k

αk

d

dr

∣∣f̂ μ
k (r)

∣∣2 − λ2
k

μα2
k

d

dr

∣∣ĝμ
k (r)

∣∣2)
dr

= 1

2

∞∑
k=1

(
−λ2

k

αk

∣∣f̂ μ
k (t − s)

∣∣2 − λ2
k

α2
kμ

∣∣ĝμ
k (t − s)

∣∣2 + λ2
k

αk

|uk|2 + λ2
k

α2
kμ

|vk|2
)

(4.8)

= 1

2

(∣∣C1/2
μ z

∣∣2
H − ∣∣C1/2

μ S�
μ(t − s)z

∣∣2
H

)

= 1

2

〈(
Cμ − Sμ(t − s)CμS�

μ(t − s)
)
z, z

〉
H.

This implies that

Im
(
L

μ
s,t

) = Im
((

Cμ − Sμ(t − s)CμS�
μ(t − s)

)1/2)
,

and (4.1) follows.
Next, in order to prove (4.3), we notice that

C
1/2
1 S�

μ(t) = S�
μ(t)C

1/2
1 , t ≥ 0(4.9)
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and that

(1 ∧ √
μ)

∣∣C1/2
μ z

∣∣
H ≤ ∣∣C1/2

1 z
∣∣
H ≤ (1 + √

μ)
∣∣C1/2

μ z
∣∣
H

so that, due to (2.7), we have∣∣C1/2
μ S�

μ(t)z
∣∣
H ≤ cμMμe−ωμt

∣∣C1/2
μ z

∣∣
H, t ≥ 0.

According to (4.8), this implies∣∣(Lμ
s,t

)∗
z
∣∣2
H = 1

2

∣∣C1/2
μ z

∣∣2
H − 1

2

∣∣C1/2
μ Sμ(t − s)z

∣∣
H

≥ 1
2

(
1 − c2

μM2
μe−2ωμ(t−s))∣∣C1/2

μ z
∣∣2
H.

Therefore, if we pick Tμ > 0 large enough so that c2
μMμe−ωμTμ < 1, we obtain

that

Im
(
L

μ
s,t

) = Im
(
(Cμ)1/2)

,

and ∣∣(Lμ
s,t

)−1
z
∣∣
L2((s,t);H) ≤ √

2
(
1 − c2

μM2
μe−2ωμr)−1/2∣∣(Cμ)−1/2z

∣∣
H.

Now, for any μ > 0, we have Im((Cμ)1/2) = H1+2β , and

(1 ∧ μ)|z|H1+2β
≤ ∣∣(Cμ)−1/2z

∣∣
H ≤ (1 + μ)|z|H1+2β

,(4.10)

(4.3) and (4.4) follow immediately, with

c(μ, r) = (1 + μ)
√

2
(
1 − c2

μM2
μe−2ωμr)−1/2

. �

REMARK 4.2. (1) In fact, it is possible to show that Im(L
μ
s,t ) = Im((Cμ)1/2),

for all t − s > 0, by using the explicit representation of S�
μ(t).

(2) From (2.7) and (4.1), it easily follows that∣∣(Lμ
−∞,t

)−1
z
∣∣
L2((−∞,t);H) = √

2
∣∣C−1/2

μ z
∣∣
H, z ∈ Im

(
L

μ
−∞,t

)
.(4.11)

LEMMA 4.3. Let us fix ψ ∈ L2((−∞,0);H 2α), with α ∈ [0,1/2] and μ > 0,
and let z

μ
ψ ∈ C((−∞,0);H) solve the equation

z
μ
ψ(t) =

∫ t

−∞
Sμ(t − s)Bμ

(
z
μ
ψ(s)

)
ds +

∫ t

−∞
Sμ(t − s)Qμψ(s) ds,

(4.12)
t ∈ R.

Then if

lim
t→−∞

∣∣zμ
ψ(t)

∣∣
H = 0,(4.13)

we have z
μ
ψ ∈ C((−∞,0);H1+2(α+β)) and

lim
t→−∞

∣∣zμ
ψ(t)

∣∣
H1+2(α+β)

= 0.(4.14)
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PROOF. According to (2.8), for any δ > 0, we have∣∣∣∣
∫ t

−∞
Sμ(t − s)Bμ

(
z
μ
ψ(s)

)
ds

∣∣∣∣
Hδ

≤ Mμ

μ
sup
s≤t

∣∣B(
	1z

μ
ψ(s)

)∣∣
Hδ−1

∫ t

−∞
e−ωμ(t−s) ds

≤ Mμ

μωμ

sup
s≤t

∣∣B(
	1z

μ
ψ(s)

)∣∣
Hδ−1 .

Therefore, due to Hypothesis 2, if we take δ = 1,∣∣∣∣
∫ t

−∞
Sμ(t − s)Bμ

(
z
μ
ψ(s)

)
ds

∣∣∣∣
H1

≤ Mμγ0

μωμ

sup
s≤t

∣∣	1z
μ
ψ(s)

∣∣
H .(4.15)

For the second term in (4.12), if ψ ∈ L2(−∞,0;H 2α), then Qμψ ∈ L2((−∞,0);
H1+2(α+β)), with

|Qμψ |L2((−∞,t);H1+2(α+β))
≤ c

μ
|ψ |L2((−∞,t);H 2α), t ≤ 0.

Due to (2.8), this yields∣∣∣∣
∫ t

−∞
Sμ(t − s)Qμψ(s) ds

∣∣∣∣
H1+2(α+β)

(4.16)

≤ Mμ

μ

(∫ ∞
0

e−2ωμs ds

)1/2

|ψ |L2((−∞,t);H 2α).

Therefore, from (4.12), (4.15) and (4.16), we get
∣∣zμ

ψ(t)
∣∣
H1

≤ cμ

(
sup
s≤t

∣∣	1z
μ
ψ(s)

∣∣
H + |ψ |L2((−∞,t);H 2α)

)
.

In particular, we have z
μ
ψ ∈ L∞((−∞,0);H1) and

lim
t→−∞

∣∣zμ
ψ(t)

∣∣
H1

= 0.

Now, by repeating the same arguments, we can prove that for any n ∈ N, with
n ≤ [1 + 2β], if

z
μ
ψ ∈ L∞(

(−∞,0);Hn

)
and lim

t→−∞
∣∣zμ

ψ(t)
∣∣
Hn

= 0,

then

z
μ
ψ ∈ L∞(

(−∞,0);Hn+1
)

and lim
t→−∞

∣∣zμ
ψ(t)

∣∣
Hn+1

= 0.

Since there exists n̄ ∈ N such that H1+2(α+β) ⊃ Hn̄, we can conclude that z
μ
ψ

belongs to L∞((−∞,0);H1+2(α+β)), and (4.14) holds. Continuity follows easily
by standard arguments; for continuity of convolutions, see [12], Appendix A. �
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REMARK 4.4. (1) From the previous lemma, we have that if z
μ
ψ ∈ C((−∞,0);

H) solves equation (4.12) and limit (4.13) holds, then z
μ
ψ(t) ∈ H1+2β , for any

t ≤ 0. In particular z
μ
ψ(0) ∈ H1+2β .

(2) In [5], Lemma 3.5, it has been proven that the same holds for equation (2.5).
Actually, if ϕψ ∈ C((−∞,0);H) is the solution to

ϕψ(t) =
∫ t

−∞
e(t−s)AB

(
ϕψ(s)

)
ds +

∫ t

−∞
e(t−s)AQψ(s) ds,

for ψ ∈ L2((−∞,0);H), and

lim
t→−∞

∣∣ϕψ(t)
∣∣
H = 0,

then ϕψ ∈ C((−∞,0);H 1+2β), and there exists a constant such that for all t ≤ 0,∣∣ϕψ(t)
∣∣
H 1+2β ≤ c|ψ |L2((−∞,0;H).(4.17)

Moreover,

lim
t→−∞

∣∣ϕψ(t)
∣∣
H 1+2β = 0.(4.18)

LEMMA 4.5. Let α ∈ [0,1/2], and let ψ1,ψ2 ∈ L2((−∞,0);H 2α). In cor-
respondence of each ψi , let z

μ
ψi

∈ C((−∞,0);H1+2(α+β)) be a solution of equa-

tion (4.12), verifying (4.13). Then z
μ
ψi

∈ L2((−∞,0);H1+2(α+β)), for i = 1,2,
and there exist μ0 > 0 and c > 0 such that for any μ ≤ μ0 and τ ≤ 0,∣∣zμ

ψ1
− z

μ
ψ2

∣∣2
L2((−∞,τ );H1+2(α+β))

+ sup
t≤τ

∣∣Iμ

(
z
μ
ψ1

(t) − z
μ
ψ2

(t)
)∣∣2
H1+2(α+β)

(4.19)
≤ c|ψ1 − ψ2|2L2((−∞,τ );H 2α)

,

where Iμ is defined in (2.2).

PROOF. If we define

u(t) = (−A)α+β	1
(
z
μ
ψ1

(t) − z
μ
ψ2

(t)
)
, t ≤ 0,

and

ψ(t) = (−A)α+βQ
(
ψ1(t) − ψ2(t)

)
, t ≤ 0,

we have

μ
∂2u

∂t2 (t) + ∂u

∂t
(t)

(4.20)
= Au(t) + (−A)α+β(

B
(
	1z

μ
ψ1

(t)
) − B

(
	1z

μ
ψ2

(t)
)) + ψ(t).
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According to Hypothesis 2, B :H 2(α+β) → H 2(α+β) is Lipschitz-continuous, and
then ∣∣(−A)α+β(

B
(
	1z

μ
ψ1

(t)
) − B

(
	1z

μ
ψ2

(t)
))∣∣

H

= ∣∣B(
	1z

μ
ψ1

(t)
) − B

(
	1z

μ
ψ2

(t)
)∣∣

H 2(α+β)

≤ γ2(α+β)

∣∣	1
(
z
μ
ψ1

(t)
) − z

μ
ψ2

(t))
∣∣
H 2(α+β) = γ2(α+β)

∣∣u(t)
∣∣
H .

Therefore, by taking the scalar product of both sides with ∂u/∂t , we get∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ μ

2

d

dt

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ 1

2

d

dt

∣∣(−A)1/2u(t)
∣∣2
H

(4.21)

≤ γ2(α+β)

∣∣u(t)
∣∣
H

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
H

+ ∣∣ψ(t)
∣∣
H

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
H

.

Now, since

γ2(α+β)

∣∣u(t)
∣∣
H

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
H

+ ∣∣ψ(t)
∣∣
H

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
H

≤ 1

2

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ γ 2
2(α+β)

∣∣u(t)
∣∣2
H + ∣∣ψ(t)

∣∣2
H ,

(4.21) implies ∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ μ
d

dt

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ d

dt

∣∣(−A)1/2u(t)
∣∣2
H

(4.22)
≤ 2γ 2

2(α+β)

∣∣u(t)
∣∣2
H + 2

∣∣ψ(t)
∣∣2
H .

Therefore, integrating this expression with respect to t ∈ (−∞, τ ), we obtain

∫ τ

−∞

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

dt + ∣∣u(τ)
∣∣2
H 1 + μ

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H
(4.23)

≤ 2γ 2
2(α+β)

∫ τ

−∞
∣∣u(t)

∣∣2
H dt + 2

∫ τ

−∞
∣∣ψ(t)

∣∣2
H dt,

since, due to Lemma 4.3,∫ τ

−∞
d

dt

(
μ

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ ∣∣(−A)1/2u(t)
∣∣2
H

)
dt

= μ

∣∣∣∣∂u

∂t
(τ )

∣∣∣∣
2

H

+ ∣∣u(τ)
∣∣2
H 1 − lim

T →−∞

(
μ

∣∣∣∣∂u

∂t
(T )

∣∣∣∣
2

H

+ ∣∣u(T )
∣∣2
H 1

)

= μ

∣∣∣∣∂u

∂t
(τ )

∣∣∣∣
2

H

+ ∣∣u(τ)
∣∣2
H 1 .
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Next we take the inner product of each side of (4.20) with u(t) and use the fact
that 〈

∂2u

∂t2 (t), u(t)

〉
H

= 1

2

d2

dt2

∣∣u(t)
∣∣2
H −

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

and again the Lipschitz-continuity of B in H 2(α+β) to get

μ

2

d2

dt2

∣∣u(t)
∣∣2
H + 1

2

d

dt

∣∣u(t)
∣∣2
H + γ̂

∣∣u(t)
∣∣2
H 1

≤ μ

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ 〈
ψ(t), u(t)

〉
H

≤ μ

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ γ̂

2

∣∣u(t)
∣∣2
H 1 + c

∣∣ψ(t)
∣∣2
H ,

where γ̂ := 1 − γ2(α+β))/α1 > 0. This yields

μ
d2

dt2

∣∣u(t)
∣∣2
H + d

dt

∣∣u(t)
∣∣2
H + γ̂

∣∣u(t)
∣∣2
H 1 ≤ 2μ

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ c
∣∣ψ(t)

∣∣2
H .(4.24)

Combining together (4.22) and (4.24), we get

μ
d2

dt2

∣∣u(t)
∣∣2
H + d

dt

∣∣u(t)
∣∣2
H + γ̂

∣∣u(t)
∣∣2
H 1 + 2μ2 d

dt

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ 2μ
d

dt

∣∣u(t)
∣∣2
H 1

≤ c1μ
∣∣u(t)

∣∣2
H + c2(1 + μ)

∣∣ψ(t)
∣∣2
H .

If we take

μ <
γ̂ α1

2c1
,

and integrate both sides with respect to t ∈ (−∞, τ ), as a consequence of (4.14),
we get

1

2

∫ τ

−∞
∣∣u(t)

∣∣2
H 1 dt ≤ −2μ

〈
u(τ),

∂u

∂t
(τ )

〉
H

+ c2(1 + μ)

∫ τ

−∞
∣∣ψ(t)

∣∣2
H dt.(4.25)

Substituting this back into (4.23), we have
∫ τ

−∞

(∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

H

+ ∣∣u(t)
∣∣2
H 1

)
dt + μ

∣∣∣∣∂u

∂t
(τ )

∣∣∣∣
2

H

+ ∣∣u(τ)
∣∣2
H 1 dt

≤ −cμ

〈
u(τ),

∂u

∂t
(τ )

〉
H

+ c

∫ τ

−∞
∣∣ψ(t)

∣∣2
H dt

≤ c
√

μ

(
μ

∣∣∣∣∂u

∂t
(τ )

∣∣∣∣
2

H

+ ∣∣u(τ)
∣∣2
H 1

)
+ c

∫ τ

−∞
∣∣ψ(t)

∣∣2
H dt.



2612 S. CERRAI AND M. SALINS

Therefore, since ∣∣ψ(t)
∣∣
H ≤ c

∣∣ψ1(t) − ψ2(t)
∣∣
H 2α ,

and

∣∣Iμ

(
z
μ
ψ1

(τ ) − z
μ
ψ2

(τ )
)∣∣
H1+2(α+β)

= μ

∣∣∣∣∂u

∂t
(τ )

∣∣∣∣
2

H

+ ∣∣u(τ)
∣∣2
H 1,

if we choose μ0 small enough, this yields (4.19). �

REMARK 4.6. (1) Notice that since B(0) = 0, we have z
μ
0 = 0, so that

from (4.19), we get∣∣zμ
ψ

∣∣2
L2((−∞,τ );H1+2(α+β))

+ sup
t≤τ

∣∣Iμz
μ
ψ(t)

∣∣2
H1+2(α+β)

≤ c|ψ |2
L2((−∞,τ );H 2α)

,(4.26)

for any μ ≤ μ0 and τ ≤ 0.
(2) By proceeding as in the proof of Lemma 4.5, we can prove that∣∣zμ

ψ1
− z

μ
ψ2

∣∣2
L2((−∞,τ );H2β) + sup

t≤τ

∣∣Iμ

(
z
μ
ψ1

(t) − z
μ
ψ2

(t)
)∣∣2
H2β

(4.27)
≤ c|ψ1 − ψ2|2L2((−∞,τ );H−1)

and ∣∣zμ
ψ

∣∣2
L2((−∞,τ );H2β) + sup

t≤τ

∣∣Iμz
μ
ψ(t)

∣∣2
H2β

≤ c|ψ |2
L2((−∞,τ );H−1)

.

5. A characterization of the quasi-potential. For any t1 < t2, μ > 0 and
z ∈ C((t1, t2);H), we define

I
μ
t1,t2

(z) = 1
2 inf

{|ψ |2
L2((t1,t2);H)

: z = z
μ
ψ,z0

}
,(5.1)

where z
μ
ψ,z0

is a mild solution of the skeleton equation associated with equa-

tion (2.9), with deterministic control ψ ∈ L2((t1, t2);H) and initial conditions z0,
namely

dz
μ
ψ,z0

dt
(t) = Aμz

μ
ψ,z0

(t) + Bμ

(
z
μ
ψ,z0

(t)
) + Qμψ(t), t1 ≤ t ≤ t2.(5.2)

As in Definition 2.4, for ε,μ > 0 and z0 ∈H, we denote by z
μ
ε,z0 ∈ L2(�;C([0, T ];

H)) the mild solution of equation (2.9). Since the mapping Bμ :H → H is
Lipschitz-continuous and the noisy perturbation in (2.9) is of additive type, as an
immediate consequence of the contraction lemma, for any fixed μ > 0, the fam-
ily {L(z

μ
ε,z0)}ε>0 satisfies a large deviation principle in C([t1, t2];H), with action

functional I
μ
t1,t2

. In particular, for any δ > 0 and T > 0,

lim inf
ε→0

ε log
(

inf
z0∈H

P
(∣∣zμ

ε,z0
− z

μ
ψ,z0

∣∣
C([0,T ];H) < δ

)) ≥ −1

2
|ψ |2

L2((0,T );H)
,(5.3)
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and if K
μ
0,T (r) = {z ∈ C([0, T ];H) : Iμ

0,T (z) ≤ r},
lim sup

ε→0
ε log

(
sup
z0∈H

P
(
distH

(
zμ
ε,z0

,K
μ
0,T (r)

)
> δ

)) ≤ −r.(5.4)

Analogously, if for any ε > 0, uε denotes the mild solution of equation (2.5),
the family {L(uε)}ε>0 satisfies a large deviation principle in C([t1, t2];H) with
action functional

It1,t2(ϕ) = inf
{1

2 |ψ |2
L2([t1,t2];H)

:ϕ = ϕψ

}
,(5.5)

where ϕψ is a mild solution of the skeleton equation associated with equation (2.5)

du

dt
(t) = Au(t) + B

(
u(t)

) + Qψ(t), t1 ≤ t ≤ t2.

In particular, the functionals I
μ
t1,t2

and It1,t2 are lower semi-continuous and have
compact level sets. Moreover, it is not difficult to show that for any compact sets
E ⊂ H and E ⊂ H, the level sets

KE,t1,t2(r) = {
ϕ ∈ C

([t1, t2];H ); It1,t2(ϕ) ≤ r, ϕ(t1) ∈ E
}

and

K
μ
E,t1,t2

(r) = {
z ∈ C

([t1, t2];H); Iμ
t1,t2

(z) ≤ r, z(t1) ∈ E
}

are compact.
In what follows, for the sake of brevity, for any μ > 0 and t ∈ (0,+∞], we shall

define I
μ
t := I

μ
0,t and I

μ
−t := I

μ
−t,0, and analogously, for any t ∈ (0,+∞], we shall

define It := I0,t and I−t := I−t,0. In particular, we shall set

I
μ
−∞(z) = sup

t>0
I

μ
−t (z), I−∞(ϕ) = sup

t>0
I−t (ϕ).

Moreover, for any r > 0 we shall set

K
μ
−∞(r) =

{
z ∈ C

(
(−∞,0];H); lim

t→−∞
∣∣z(t)∣∣H = 0, I

μ
−∞(z) ≤ r

}
and

K−∞(r) =
{
ϕ ∈ C

(
(−∞,0];H ); lim

t→−∞
∣∣ϕ(t)

∣∣
H = 0, I−∞(ϕ) ≤ r

}
.

Once we have introduced the action functionals I
μ
t1,t2

and It1,t2 , we can introduce
the corresponding quasi-potentials, by setting for any μ > 0 and (x, y) ∈ H,

V μ(x, y) = inf
{
I

μ
0,T (z); z(0) = 0, z(T ) = (x, y), T > 0

}
,

and for any x ∈ H ,

V (x) = inf
{
I0,T (ϕ);ϕ(0) = 0, ϕ(T ) = x,T ≥ 0

}
.
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Moreover, for any μ > 0 and x ∈ H , we shall define

V̄μ(x) = inf
y∈H−1

V μ(x, y).(5.6)

In [5], Proposition 5.1, it has been proved that the level set K−∞(r) is compact
in the space C((−∞,0];H), endowed with the uniform convergence on bounded
sets, and in [5], Proposition 5.4, it has been proven that

V (x) = min
{
I−∞(ϕ);ϕ ∈ C

(
(−∞,0];H )

, lim
t→−∞

∣∣ϕ(t)
∣∣
H = 0, ϕ(0) = x

}
.

In what follows we want to prove an analogous result for K
μ
−∞, V μ(x, y) and

V̄μ(x).

THEOREM 5.1. For small enough μ > 0, the level sets K
μ
−∞(r) are compact

in the topology of uniform convergence on bounded intervals.

PROOF. Suppose that zn is a sequence in K
μ
−∞(r) where μ ≤ μ0 and μ0 is

the constant introduced in Lemma 4.5. Let c be the constant from that lemma, and
let

E := {
z ∈ H :

∣∣C−1/2
μ z

∣∣
H ≤ √

2cr
}
.

By Lemma 4.5, zn ∈ K
μ
E,−N,0(r), for any N ∈ N. Since E is compact in H, in

view of what we have seen above, K
μ
E,−N,0(r) ⊂ C([−N,0];H) is compact, for

each N ∈ N. Then, by using a diagonalization procedure, we can find a subse-
quence of {zn} that converges uniformly to a limit zμ ∈ C((−∞,0];H), uni-
formly on [−N,0] for all N . This means that there exist controls ψN such that
for t ∈ [−N,0],

zμ(t) = Sμ(t + N)zμ(−N) +
∫ t

−N
Sμ(t − s)Bμ

(
zμ(s)

)
ds

+
∫ t

−N
Sμ(t − s)QμψN(s) ds

and

1
2 |ψN |2

L2([−N,0];H)
≤ r.

All of these ψN ’s coincide because if ϕ = 	1z
μ satisfies the above equation,

ψN(t) = Q−1
(
μ

∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) − Aϕ(t) − B

(
ϕ(t)

))

weakly. Therefore, we can let ψ = ψN and notice that

1
2 |ψ |2

L2((−∞,0);H)
≤ r.
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This implies that for each N0 ∈N,

zμ(t) = Sμ(t + N0)z
μ(−N0) +

∫ t

−N0

Sμ(t − s)Bμ

(
zμ(s)

)
ds

+
∫ t

−N0

Sμ(t − s)Qμψ(s) ds.

Thus, by taking the limit as N0 → +∞, we conclude that

zμ(t) =
∫ t

−∞
Sμ(t − s)Bμ

(
zμ(s)

)
ds +

∫ t

−∞
Sμ(t − s)Qμψ(s) ds, t ≤ 0.

Finally, we need to show that

lim
t→−∞

∣∣zμ(t)
∣∣
H = 0.

By (4.26), each zn has the property that

|zn|L2((−∞,0);H) ≤ c
√

r.

Since zn → zμ uniformly in C((−N,0);H) for each N ,∣∣zμ
∣∣
L2((−∞,0);H) = lim

N→+∞
∣∣zμ

∣∣
L2((−N,0);H) ≤ c

√
r.

Next, by (4.16) and Hypothesis 2,

∣∣zμ(t)
∣∣
H1

=
∣∣∣∣
∫ t

−∞
Sμ(t − s)

(
Bμ

(
zμ(s)

) + Qμψ(s)
)
ds

∣∣∣∣
H1

≤ c
∣∣zμ

∣∣
L2((−∞,t);H) + c|ψ |L2((−∞,t);H−2β).

Because zμ ∈ L2((−∞,0);H), and ψ ∈ L2((−∞,0);H),

lim
t→−∞

∣∣zμ(t)
∣∣
H1

= 0. �

COROLLARY 5.2. There exists μ0 > 0 such that for any ψ ∈ L2((−∞,0);H)

and μ ≤ μ0 there exists z
μ
ψ ∈ C((−∞,0];H) such that

z
μ
ψ(t) =

∫ t

−∞
Sμ(t − s)Bμ

(
z
μ
ψ(s)

)
ds +

∫ t

−∞
Sμ(t − s)Qμψ(s) ds,

(5.7)
t ≤ 0.

Moreover,

lim
t→−∞

∣∣zμ
ψ(t)

∣∣
H = 0.
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PROOF. A standard fixed point argument shows that for any μ > 0 and N ∈ N,
there exists z

μ
N ∈ C([−N,0];H) satisfying

z
μ
N(t) =

∫ t

−N
Sμ(t − s)Bμ

(
z
μ
N(s)

)
ds +

∫ t

−N
Sμ(t − s)Qμψ(s) ds.

Each z
μ
N can be seen as an element of C((−∞,0];H), just by extending it to

z
μ
N(t) = 0, for all t < −N . According to Theorem 5.1, there exists a subsequence

{zμ
Nk

} converging to some zμ ∈ K
μ
−∞(1

2 |ψ |2
L2((−∞,0);H)

), uniformly on compact
sets. We notice that for any fixed N0 ∈ N and t ≥ −N0,

z
μ
N(t) = Sμ(t + N0)z

μ
N(−N0) +

∫ t

−N0

Sμ(t − s)Bμ

(
z
μ
N(s)

)
ds

+
∫ t

−N0

Sμ(t − s)Qμψ(s) ds.

Therefore, by taking the limit as N → +∞, we obtain

zμ(t) = Sμ(t + N0)z
μ(−N0) +

∫ t

−N0

Sμ(t − s)Bμ

(
zμ(s)

)
ds

+
∫ t

−N0

Sμ(t − s)Qμψ(s) ds.

Finally, if we let N0 → +∞, we see that zμ solves equation (5.7). �

As K−∞(r) is compact in C((−∞,0];H) with respect to the uniform conver-
gence on bounded intervals, we have analogously that for any ϕ ∈ L2((−∞,0),
there exists ϕψ ∈ C((−∞,0];H) such that

ϕψ(t) =
∫ t

−∞
e(t−s)AB

(
ϕ(s)

)
ds +

∫ t

−∞
e(t−s)AQψ(s) ds,

and

lim
t→−∞

∣∣ϕψ(t)
∣∣
H = 0.

In [5], it has been proved that the V (x) can be characterized as

V (x) = inf
{
I−∞(ϕ) : lim

t→−∞ϕ(t) = 0, ϕ(0) = x
}
.

Here, we want to prove that an analogous result holds for V μ(x, y) and V̄μ(x), at
least for μ sufficiently small.

THEOREM 5.3. For small enough μ > 0, we have the following representation
for the quasi-potentials V μ(x, y):

V μ(x, y) = min
{
I

μ
−∞(z) : lim

t→−∞
∣∣z(t)∣∣H = 0, z(0) = (x, y)

}
,(5.8)
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and for V̄μ(x),

V̄μ(x) = min
{
I

μ
−∞(z) : lim

t→−∞
∣∣z(t)∣∣H = 0,	1z(0) = x

}
,(5.9)

whenever these quantities are finite.

PROOF. From the definitions of I
μ
t1,t2

, it is clear that

V μ(x, y) = inf
{
I

μ
t1,0

(z) : z(t1) = 0, z(0) = (x, y), t1 ≤ 0
}
.

Now, if we define

Mμ(x, y) = inf
{
I

μ
−∞(ϕ) : lim

t→−∞
∣∣z(t)∣∣H = 0, z(0) = (x, y)

}
,(5.10)

it is immediate to check that Mμ(x, y) ≤ V μ(x, y), for any (x, y) ∈ H. To see this,
we observe that if z ∈ C([t1,0];H), with z(t1) = 0 and z(0) = (x, y), then

ẑ(t) =
{

0, t ≤ t1,

z(t), t1 < t ≤ 0
(5.11)

has the property that ẑ(0) = (x, y), and |ẑ(t)|H → 0, as t → −∞. Moreover,

I
μ
−∞(ẑ) = I

μ
t1,0

(z).

Therefore, we need to show that V μ(x, y) ≤ Mμ(x, y), for all (x, y) ∈ H.
If Mμ(x, y) = +∞, there is nothing to prove. So, assume that Mμ(x, y) <

+∞. In view of Theorem 5.1, there is a minimizer zμ ∈ C((−∞,0];H1+2β), with
zμ(0) = (x, y) such that

Mμ(x, y) = I
μ
−∞

(
zμ)

.

Moreover, thanks to (4.14),

lim
t→−∞

∣∣zμ(t)
∣∣
H1+2β

= 0.

This means that for ε > 0 fixed, there exists tε < 0 such that∣∣zμ(t)
∣∣
H1+2β

< ε, t ≤ tε.

Now, let us denote zε = zμ(tε), and let us define

ψε = (
L

μ
tε−Tμ,tε

)−1
zε,

where Tμ > 0 is the time introduced in Theorem 4.1. Then, by Theorem 4.1,

|ψε|L2((tε−Tμ,tε);H) ≤ c(μ,Tμ)|zε|H1+2β
≤ εc(μ,Tμ).(5.12)

Next, for t ∈ [tε − Tμ, tε], we define

ζμ
ε (t) =

∫ t

tε−Tμ

Sμ(t − s)Qμψε(s) ds.
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Clearly we have ζ
μ
ε (tε − Tμ) = 0 and ζ

μ
ε (tε) = zε . Moreover, thanks to (2.8), we

have ∣∣ζμ
ε (t)

∣∣
H1+2β

≤ Mμ

μ

∫ t

tε−Tμ

e−ωμ(t−s)
∣∣Qψε(s)

∣∣
H 2β ds

≤ cMμ

μ

∫ t

tε−Tμ

e−ωμ(t−s)
∣∣ψε(s)

∣∣
H ds,

so that, due to (5.12),∫ tε

tε−Tμ

∣∣ζμ
ε (t)

∣∣2
H1+2β

dt

≤
(

cMμ

μ

)2 ∫ tε

tε−Tμ

(∫ t

tε−Tμ

Mμe−ωμ(t−s)
∣∣ψε(s)

∣∣
H ds

)2

dt(5.13)

≤
(

Mμ

ωμμ

)2

|ψε|2L2((tε−Tμ,tε);H)
≤

(
Mμ

ωμμ

)2

c(μ,Tμ)2ε2.

Since

ζμ
ε (t) =

∫ t

tε−Tμ

Sμ(t − s)Bμ

(
zμ
ε (s)

)
ds

+
∫ t

tε−Tμ

Sμ(t − s)Qμ

(
ψε(s) − Q−1B

(
	1z

μ
ε (s)

))
ds,

we have

I
μ
tε−Tμ,tε

(
ζμ
ε

) ≤ 2|ψε|2L2((tε−Tμ,tε);H)
+ 2

∣∣Q−1B
(
	1z

μ
ε

)∣∣2
L2((tε−Tμ,tε);H).

Then, due to Hypothesis 2,∣∣Q−1B
(
	1ζ

μ
ε (s)

)∣∣
H ≤ c

∣∣B(
	1ζ

μ
ε (s)

)∣∣
H 2β ≤ cγ2β

∣∣	1ζ
μ
ε (s)

∣∣
H 2β

≤ cγ2β

∣∣ζμ
ε (s)

∣∣
H2β

,

and thanks to (5.12) and (5.13), we can conclude

I
μ
tε−Tμ,tε

(
ζμ
ε

) ≤ cμε2.(5.14)

Finally, we define

ζ̂ μ
ε (t) =

{
ζ

μ
ε (t), tε − Tμ ≤ t ≤ tε,

zμ(t), t > tε.
(5.15)

It is immediate to check that ζ̂
μ
ε ∈ C([tε − Tμ,0];H), ζ̂

μ
ε = 0 and ζ̂

μ
ε (0) = (x, y).

Moreover, thanks to (5.14),

I
μ
tε−Tμ,0

(
ζ̂ μ
ε

) ≤ I
μ
−∞

(
zμ) + I

μ
tε−Tμ,tε

(
ζμ
ε

)
(5.16)

= Mμ(x, y) + I
μ
tε−T ,tε

(
ζμ
ε

) ≤ Mμ(x, y) + cμε2.
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Due to the arbitrariness of ε > 0, this implies

V μ(x, y) ≤ Mμ(x, y),

and then (5.8) follows.
Finally, in order to prove (5.9), we just notice that there exists {yn} ⊂ H−1 such

that

V̄μ(x) = lim
n→∞V μ(x, yn)

and

V μ(x, yn) = I
μ
−∞(zn),

for some {zn} ⊂ C((−∞,0];H) such that zn(0) = (x, yn) and

lim
t→−∞

∣∣zn(t)
∣∣
H = 0.

As

sup
n∈N

I
μ
−∞(zn) < ∞,

due to Theorem 5.1, we have that there exists a subsequence {znk
} which is uni-

formly convergent on bounded sets to some z ∈ C((−∞,0];H). In particular,
	1z(0) = x and |z(t)|H → 0, as t → −∞. Since I

μ
−∞ is lower semi-continuous,

we have

I
μ
−∞(z) ≤ lim inf

k→∞ I
μ
−∞(znk

) = V̄μ(x),

and then V̄μ(x) = I
μ
−∞(z), so that (5.9) holds true. �

The characterization of V μ(x, y) and V̄μ(x) given in Theorem 5.3, implies that
V μ and V̄μ have compact level sets.

THEOREM 5.4. For any μ > 0 and r ≥ 0, the level sets

Kμ(r) = {
(x, y) ∈H :V μ(x, y) ≤ r

}
and

Kμ(r) = {
x ∈ H : V̄μ(x) ≤ r

}
are compact, in H and H , respectively.

PROOF. We prove this result for V μ and Kμ, as the proof for V̄μ and Kμ

is completely analogous. Let {(xn, yn)}n∈N ⊂ Kμ(r). In view of Theorem 5.3,
for each n ∈ N there exists zn ∈ C((−∞,0];H), with zn(0) = (xn, yn), and
|zn(t)|H → 0, as t ↓ −∞, such that V μ(xn, yn) = I

μ
−∞(zn). As I

μ
−∞(zn) ≤ r , and

the level sets of I
μ
−∞ are compact in C((−∞,0];H), as shown in Theorem 5.1,
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there exists a subsequence {znk } ⊆ {zn} converging to some ẑ ∈ C((−∞,0];H),
with I

μ
−∞(ẑ) ≤ r . Since

lim
k→∞(xnk

, ynk
) = lim

k→∞ znk (0) = ẑ(0) =: (x̂, ŷ) in H,

due to Theorem 5.3, we have

V μ(x̂, ŷ) ≤ I
μ
−∞(ẑ) ≤ r,

so that (x̂, ŷ) ∈ Kμ(r). �

6. Continuity of V μ and V̄μ. As a consequence of Theorem 5.4, the map-
pings V μ :H → [0,+∞] and V̄μ :H → [0,+∞] are lower semicontinuous. Our
purpose here is to prove that the mappings

V μ :H1+2β → [0,+∞), V̄μ :H 1+2β → [0,+∞)

are well defined and continuous, uniformly in 0 < μ < 1.

LEMMA 6.1. Let us fix (x, y) ∈ H1+2β and μ > 0, and let z(t) = Sμ(−t)(x,

−y), t ≤ 0. Then if we denote ϕ(t) = 	1z(t), we have that ϕ is a weak solution to⎧⎪⎪⎨
⎪⎪⎩

μ
∂2ϕ

∂t2 (t) = Aϕ(t) + ∂ϕ

∂t
(t), t ≤ 0,

ϕ(0) = x,
∂ϕ

∂t
(0) = y

(6.1)

and

1

2

∫ 0

−∞

∣∣∣∣Q−1
(
μ

∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) − Aϕ(t)

)∣∣∣∣2
H

dt

(6.2)
= ∣∣(−A)1/2Q−1x

∣∣2
H + μ

∣∣Q−1y
∣∣2
H .

Moreover, ϕ ∈ L2((−∞,0);H 1+2β) and∫ 0

−∞
∣∣ϕ(t)

∣∣2
H 1+2β dt ≤ c

(
1 + μ + μ2)∣∣(x, y)

∣∣2
H1+2β

.(6.3)

PROOF. The weak formulation (6.1) is clear because for t < 0,

∂z

∂t
(t) = −AμSμ(−t)(x,−y) =

(
−	2z(t),− 1

μ
Aϕ(t) + 1

μ
	2z(t)

)
,

so that

μ
∂2ϕ

∂t2 (t) = Aϕ(t) + ∂ϕ

∂t
(t).

Moreover,

∂ϕ

∂t
(0) = −	2z(0) = y.
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Now, property (6.2) can be proven by noticing that

1

2

∫ 0

−∞

∣∣∣∣Q−1
(
μ

∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) − Aϕ(t)

)∣∣∣∣
2

H

dt

= 1

2

∫ 0

−∞

∣∣∣∣Q−1
(
μ

∂2ϕ

∂t2 (t) − ∂ϕ

∂t
(t) − Aϕ(t)

)∣∣∣∣
2

H

dt

+ 2
∫ 0

−∞

〈
Q−1 ∂ϕ

∂t
(t),Q−1

(
μ

∂2ϕ

∂t2 (t) − Aϕ(t)

)〉
H

dt

= ∣∣Q−1(−A)1/2x
∣∣2
H + μ

∣∣Q−1y
∣∣2
H − lim

t→−∞
∣∣C−1/2

μ z(t)
∣∣2
H .

Then (6.2) follows from (2.8), as∣∣C−1/2
μ z(t)

∣∣
H ≤ ∣∣z(t)∣∣H1+2β

≤ Mμe−ωμt
∣∣(x, y)

∣∣
H1+2β

→ 0 as t ↓ −∞.

Finally, to obtain estimate (6.3), we notice that if

ϕ(t) = 	1Sμ(−t)(x,−y),

then by (3.12),

∣∣ϕ(t)
∣∣2
H 1+2β = 1

2

d

dt

∣∣∣∣ϕ(t) − μ
∂ϕ

∂t
(t)

∣∣∣∣
2

H 2β
+ μ

2

d

dt

∣∣ϕ(t)
∣∣2
H 1+2β .

Integrating, we obtain∫ 0

−∞
∣∣ϕ(t)

∣∣2
H 1+2β dt = 1

2
|x + μy|2

H 2β + μ

2
|x|2

H 1+2β ,

which yields (6.3). �

As a consequence of the previous lemma, we obtain the following bounds for
V μ(x, y) and V̄μ(x):

COROLLARY 6.2. There exists c > 0 such that for any μ > 0 and (x, y) ∈
H1+2β , we have

V μ(x, y) ≤ c
(
1 + μ + μ2)∣∣(x, y)

∣∣2
H1+2β

(6.4)

and

V̄μ(x) ≤ c(1 + μ)|x|2
H 1+2β .(6.5)

PROOF. The proof is based on the fact that

V μ(x, y) ≤ I
μ
−∞

(
	1Sμ(−·)(x,−y)

)
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and

V̄μ(x) ≤ I
μ
−∞

(
	1Sμ(−·)(x,0)

)
.

Now, if we set z(t) = Sμ(−t)(x,−y) and ϕ(t) = 	1z(t), due to Hypothesis 2, we
have

I
μ
−∞(z) = 1

2

∫ 0

−∞

∣∣∣∣Q−1
(
μ

∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) − Aϕ(t) − B

(
ϕ(t)

))∣∣∣∣
2

H

dt

≤
∫ 0

−∞

∣∣∣∣Q−1
(

∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) − Aϕ(t)

)∣∣∣∣
2

H

dt + cγ 2
2β

∫ 0

−∞
∣∣ϕ(t)

∣∣2
H 2β dt.

From (6.2) and (6.3), this gives (6.4). Finally, (6.5) is a consequence of (6.4) and
because of the way V̄μ(x) has been defined. �

Now, we can prove the continuity of V μ and V̄μ.

THEOREM 6.3. For each μ > 0, the mappings V μ :H1+2β → [0,+∞) and
V̄μ :H 1+2β → [0,+∞) are well defined and continuous. Moreover,

lim
n→∞

∣∣(x, y) − (xn, yn)
∣∣
H1+2β

= 0
(6.6)

�⇒ lim
n→∞ sup

0<μ<1

∣∣V μ(x, y) − V μ(xn, yn)
∣∣ = 0

and

lim
n→∞|x − xn|H 1+2β = 0 �⇒ lim

n→∞ sup
0<μ<1

∣∣V̄μ(x) − V̄μ(xn)
∣∣ = 0.(6.7)

PROOF. In view of Corollary 6.2, if (x, y) ∈ H1+2β , then V μ(x, y) < +∞,
and if x ∈ H 1+2β , then V̄μ(x) < +∞. On the other hand, if V μ(x, y) < +∞,
thanks to Theorem 5.3, there exists zμ ∈ C((−∞,0];H) such that

V μ(x, y) = I
μ
−∞

(
zμ)

, zμ(0) = (x, y).

According to Lemma 4.3, this implies that zμ ∈ C((−∞,0];H1+2β), so that
(x, y) = zμ(0) ∈ H1+2β . Analogously, if V̄μ(x) < +∞, we can prove that x ∈
H 1+2β , so that we can conclude that the mappings V μ and V̄μ are well defined in
H1+2β and H 1+2β , respectively.

Now, in order to prove (6.6), by using again Theorem 5.3, for each n ∈ N we
can find z

μ
n ∈ C((−∞,0];H) such that

V μ(xn, yn) = I
μ
−∞

(
zμ
n

)
, zμ

n (0) = (xn, yn).

Then if we define

ẑμ
n (t) = Sμ(−t)(x − xn, y − yn)
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and

ϕμ
n (t) = 	1z

μ
n (t), ϕ̂μ

n (t) = 	1ẑ
μ
n (t), t ≤ 0,

we have ẑ
μ
n (0) = (x − xn, y − yn), and for any ε > 0,

V μ(x, y) ≤ I
μ
−∞

(
zμ
n + ẑμ

n

)
≤ 1

2

∫ 0

−∞

∣∣∣∣Q−1
(
μ

∂2ϕ
μ
n

∂t2 (t) + ∂ϕ
μ
n

∂t
(t) − Aϕμ

n (t) + B
(
	1ϕ

μ
n (t)

))

+ Q−1
(
μ

∂2ϕ̂
μ
n

∂t2 (t) + ∂ϕ̂
μ
n

∂t
(t) − Aϕ̂μ

n (t)

)

+ Q−1(
B

(
ϕμ

n + ϕ̂μ
n (t)

) − B
(
ϕμ

n (t)
))∣∣∣∣

2

H

dt

≤ (1 + ε)I
μ
−∞

(
zμ
n

)
+

(
1 + 1

ε

)∫ 0

−∞

∣∣∣∣Q−1
(

∂2ϕ̂
μ
n

∂t2 (t) + ∂ϕ̂
μ
n

∂t
(t) − Aϕ̂μ

n (t)

)∣∣∣∣
2

H

dt

+ c

(
1 + 1

ε

)∫ 0

−∞
∣∣ϕ̂μ

n (t)
∣∣2
H 2β dt.

Now, by (6.2) and (6.3), we see that for 0 < μ < 1,

V μ(x, y) ≤ (1 + ε)V μ(xn, yn)

+ c

(
1 + 1

ε

)∣∣(x − xn, y − yn)
∣∣2
H1+2β

+ c2
(

1 + 1

ε

)∣∣(x − xn, y − yn)
∣∣
H2β

.

If we follow the same procedure with zμ as the minimizer of V μ(x, y) and

ẑμ
n (t) = Sμ(−t)(xn − x, y − yn),

we see that for 0 < μ < 1,

V μ(xn, yn) ≤ (1 + ε)V μ(x, y)

+ c
(
1 + ε−1)∣∣(x − xn, y − yn)

∣∣2
H1+2β

+ c
(
1 + ε−1)∣∣(x − xn, y − yn)

∣∣
H2β

.

From these two estimates and Corollary 6.2, we see that

sup
0<μ<1

∣∣V μ(x, y) − V μ(xn, yn)
∣∣

≤ cε
∣∣(x, y)

∣∣2
H1+2β

+ c
(
1 + ε−1)∣∣(x − xn, y − yn)

∣∣2
H1+2β

,
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so that

lim sup
n→∞

sup
0<μ<1

∣∣V μ(x, y) − V μ(xn, yn)
∣∣ ≤ cε

∣∣(x, y)
∣∣2
H1+2β

.

Due to the arbitrariness of ε > 0, (6.6) follows. The proof of (6.7) is completely
analogous to the proof of (6.6), and for this reason we omit it. �

7. Upper bound. In this section we show that for any closed set N ⊂ H ,

lim sup
μ↓0

inf
x∈N

V̄μ(x) ≤ inf
x∈N

V (x).(7.1)

First of all, we notice that if I−∞(ϕ) < ∞, then

ϕ ∈ L2(
(−∞,0);H 2(1+β)), ∂ϕ

∂t
∈ L2(

(−∞,0);H 2β)
,(7.2)

and

I−∞(ϕ) = 1

2

∫ 0

−∞

∣∣∣∣Q−1
(

∂ϕ

∂t
(t) − Aϕ(t) − B

(
ϕ(t)

))∣∣∣∣
2

H

dt.(7.3)

Actually, if ϕ solves

ϕ(t) =
∫ t

−∞
e(t−s)AB

(
ϕ(s)

)
ds +

∫ t

−∞
e(t−s)AQψ(s) ds,

then we can check that (7.2) holds and

ψ(t) = Q−1
(

∂

∂t
ϕ(t) − Aϕ(t) − B

(
ϕ(t)

))
,

so that (7.3) follows. Moreover, if

ϕ ∈ L2(
(−∞,0);H 2(1+β)), ∂ϕ

∂t
,
∂2ϕ

∂t2 ∈ L2(
(−∞,0);H 2β)

,

then

I
μ
−∞(z) = 1

2

∫ 0

−∞

∣∣∣∣Q−1
(
μ

∂2ϕ

∂t2 ϕ(t) + ∂

∂t
ϕ(t) − Aϕ(t) − B

(
ϕ(t)

))∣∣∣∣
2

H

dt,

where

z(t) =
(
ϕ(t),

∂ϕ

∂t
(t)

)
.

Actually, if I
μ
−∞(z) < ∞, then z solves

z(t) =
∫ t

−∞
Sμ(t − s)Bμ

(
z(s)

)
ds +

∫ t

−∞
Sμ(t − s)Qμψ(s) ds
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so that

ψ(t) = Q−1
(
μ

∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) − Aϕ(t) − B

(
ϕ(t)

))

weakly.
In particular, as in [8], where the finite-dimensional case is studied, this means

I
μ
−∞(z) = I−∞(ϕ) + μ2

2

∫ 0

−∞

∣∣∣∣Q−1 ∂2ϕ

∂t2 (t)

∣∣∣∣
2

H

dt

(7.4)

+ μ

∫ 0

−∞

〈
Q−1 ∂2ϕ

∂t2 (t),Q−1
(

∂ϕ

∂t
(t) − Aϕ(t) − B

(
ϕ(t)

))〉
H

dt,

where ϕ(t) = 	1z(t), as long as all of these terms are finite.
Now, for any μ > 0, let us define

ρμ(t) = 1

μα
ρ

(
t

μα

)
, t ∈ R,(7.5)

for some α > 0 to be chosen later, where ρ ∈ C∞(R) is the usual mollifier function
such that

supp(ρ) ⊂⊂ [0,2],
∫
R

ρ(s) ds = 1, 0 ≤ ρ ≤ 1.

This scaling ensures that ∫
R

ρμ(s) ds = 1.

Next, we define ϕμ as the convolution

ϕμ(t) =
∫ 0

−∞
ρμ(t − s)ϕ(s) ds.(7.6)

LEMMA 7.1. Assume that

ϕ ∈ L2(
(−∞,0);H 2(1+β)) ∩ C

(
(−∞,0];H 1+2β)

,
∂ϕ

∂t
∈ L2(

(−∞,0);H 2β)
with

ϕ(0) = x ∈ H 1+2β, lim
t→−∞

∣∣ϕ(t)
∣∣
H 1+2β = 0.

Then

ϕμ ∈ L2(
(−∞,0);H 2(1+β)) ∩ C

(
(−∞,0];H 1+2β)

,
(7.7)

∂ϕμ

∂t
∈ L2(

(−∞,0);H 2β)
,
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and

lim
t→−∞ sup

μ>0

∣∣ϕμ(t)
∣∣
H 1+2β = 0.(7.8)

Moreover,

∂2ϕμ

∂t2 ∈ L2(
(−∞,0);H 2β)

,

and for all μ > 0,∣∣∣∣∂
2ϕμ

∂t2

∣∣∣∣
L2((−∞,0);H 2β)

≤ c

μα

∣∣∣∣∂ϕμ

∂t

∣∣∣∣
L2((−∞,0);H 2β)

.(7.9)

PROOF. Recall that supp(ρ) ⊂⊂ [0,2]. Therefore,

ϕμ(t) =
∫ t

t−2μα
ρμ(t − s)ϕ(s) ds,

and it follows by Cauchy–Schwarz that∫ 0

−∞

∣∣∣∣
∫ t

t−2μα
ρμ(t − s)ϕ(s) ds

∣∣∣∣
2

H 2(1+β)
dt

≤
∫ 0

−∞

(∫ 2μα

0
ρ2

μ(s) ds

)(∫ t

t−2μα

∣∣ϕ(s)
∣∣2
H 2(1+β) ds

)
dt.

Therefore, as ∫ 2μα

0
ρ2

μ(s) ds ≤ 2

μα
,

we get

|ϕμ|2
L2((−∞,0);H 2(1+β))

dt ≤ 2

μα

∫ 0

−∞

∫ t

t−2μα

∣∣ϕ(s)
∣∣2
H 2(1+β) ds dt

≤ 2μα

μα

∫ 0

−∞
∣∣ϕ(s)

∣∣2
H 2(1+β) ds(7.10)

= 2|ϕ|2
L2((−∞,0);H 2(1+β))

.

Next, since

lim
t→−∞

∣∣ϕ(t)
∣∣
H 1+2β = 0,

we have that ϕ : (−∞,0] → H 1+2β is uniformly continuous. Therefore, as∣∣∣∣
∫ t1

−∞
ρμ(t1 − s)ϕ(s) ds −

∫ t2

−∞
ρμ(t2 − s)ϕ(s) ds

∣∣∣∣
H 1+2β

=
∣∣∣∣
∫ ∞

0
ρμ(s)

(
ϕ(t1 − s) − ϕ(t2 − s)

)
ds

∣∣∣∣
H 1+2β

,
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we can conclude that ϕμ is uniformly continuous too, with values in H 1+2β . Fi-
nally, since

∂ϕμ

∂t
(t) =

∫ ∞
0

ρμ(s)
∂ϕ

∂t
(t − s) ds,

by proceeding as above we get

∂ϕμ

∂t
∈ L2(

(−∞,0);H 2β)
,

so that, thanks to (7.10), we can conclude that (7.7) holds true.
Concerning (7.8), let us fix ε > 0. Then there exists Tε > 0 such that∣∣ϕ(t)

∣∣
H 1+2β < ε, t < −Tε.

Then, for t < −Tε , we have∣∣∣∣
∫ t

−∞
ρμ(t − s)ϕ(s) ds

∣∣∣∣
H 1+2β

≤
∫ t

−∞
ρμ(t − s)

∣∣ϕ(s)
∣∣
H 1+2β ds

≤ ε

∫ ∞
0

ρμ(s) ds = ε,

and this yields (7.8).
Finally, let us prove (7.9). As

∂ϕμ

∂t
(t) =

∫ 0

−∞
ρμ(t − s)

∂ϕ

∂s
(s) ds,

we have

∂2ϕμ

∂t2 (t) =
∫ 0

−∞
d

dt
ρμ(t − s)

∂ϕ

∂s
(s) ds = 1

μ2α

∫ 0

−∞
ρ′

(
t − s

μα

)
∂ϕ

∂s
(s) ds.

This yields

∫ 0

−∞

∣∣∣∣∂
2ϕμ

∂t2 (t)

∣∣∣∣
2

H 2β
dt

= 1

μ4α

∫ 0

−∞

∣∣∣∣
∫ t

t−2μα
ρ′

(
t − s

μα

)
∂

∂s
ϕ(s) ds

∣∣∣∣
2

H 2β
dt

≤ 1

μ4α

∫ 0

−∞

(∫ t

t−2μα

(
ρ′

(
t − s

μα

))2

ds

)(∫ t

t−2μα

∣∣∣∣∂ϕ

∂s
(s) ds

∣∣∣∣
2

H 2β
ds

)
dt

≤ 2|ρ′|2∞
μ3α

∫ 0

−∞

∫ t

t−2μα

∣∣∣∣∂ϕ

∂s
(s)

∣∣∣∣
2

H 2β
ds dt ≤ c

μ2α

∫ 0

−∞

∣∣∣∣∂ϕ

∂s
(s)

∣∣∣∣
2

H 2β
ds. �

The following approximation results hold:
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LEMMA 7.2. Under the same assumptions of Lemma 7.1, we have

lim
μ→0

∣∣x − ϕμ(0)
∣∣
H 1+2β = 0(7.11)

and

lim
μ→0

sup
t≤0

∣∣ϕμ(t) − ϕ(t)
∣∣
H 1+2β = 0.(7.12)

Moreover,

lim
μ→0

|ϕμ − ϕ|L2((−∞,0);H 2(1+β)) = 0,(7.13)

and

lim
μ→0

∣∣∣∣∂ϕμ

∂t
− ∂ϕ

∂t

∣∣∣∣
L2((−∞,0);H 2β)

= 0.(7.14)

PROOF. We have

ϕμ(0) − x =
∫ 0

−∞
ρμ(−s)

(
ϕ(s) − ϕ(0)

)
ds,

so that, by the continuity of ϕ in H 1+2β , (7.11) follows.
In order to prove (7.12), we have

∣∣ϕμ(t) − ϕ(t)
∣∣
H 1+2β ≤

∫ t

−∞
ρμ(t − s)

∣∣ϕ(s) − ϕ(t)
∣∣
H 1+2β ds.

Now, as ϕ : (−∞,0] → H 1+2β is uniformly continuous, for any fixed ε > 0, there
exists δε > 0 such that

|t − s| < δε �⇒ ∣∣ϕ(s) − ϕ(t)
∣∣
H 1+2β <

ε

2
.

Then if we pick μ small enough so that μα < δε/2,

∣∣ϕμ(t) − ϕ(t)
∣∣
H 1+2β ≤

∫ t

−∞
ρμ(t − s)

∣∣ϕ(s) − ϕ(t)
∣∣
H 1+2β ds ≤

∫ t

t−2μα

1

μα

ε

2
= ε,

uniformly in t . This proves (7.12).
Limit (7.13) can be proved using the fact that

|ϕμ − ϕ|L2((−∞,0);H 2(1+β))

= sup
|h|

L2((−∞,0);H)
≤1

∫ 0

−∞
〈
(−A)1+β(

(ϕμ)(t) − ϕ(t)
)
, h(t)

〉
H dt

= sup
|h|

L2((−∞,0);H)
≤1

∫ 0

−∞

∫ 2μα

0
ρμ(s)

〈
(−A)1+β(

ϕ(t − s) − ϕ(t)
)
, h(t)

〉
H ds dt

≤
∫ 2μα

0
ρμ(s)

∣∣ϕ(· − s) − ϕ(·)∣∣L2((−∞,0);H 2(1+β)) ds.
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Because translation is continuous in L2, this converges to 0 as μ ↓ 0. The same
argument will show that (7.14) holds true. �

Using these estimates we can prove the main result of this section.

THEOREM 7.3. For any x ∈ H 1+2β , we have

lim sup
μ↓0

V̄μ(x) ≤ V (x).(7.15)

PROOF. Let ϕ be the minimizer of V (x). This means ϕ(0) = x, (7.3) holds
and I−∞(ϕ) = V (x). For each μ > 0, let ϕμ be the convolution given by (7.6),
and let xμ = ϕμ(0).

It is clear that

V̄μ(xμ) ≤ I
μ
−∞(zμ),(7.16)

where

zμ(t) =
(
ϕμ(t),

∂ϕμ

∂t
(t)

)
, t ≤ 0.

According to Lemma 7.1, we can apply (7.4), and we have

I
μ
−∞(zμ) ≤ cμ2

2

∫ 0

−∞

∣∣∣∣∂
2ϕμ

∂t2 (t)

∣∣∣∣
2

H 2β
dt + I−∞(ϕμ)

+ μ

∫ 0

−∞

〈
Q−1 ∂2ϕμ

∂t2 (t),Q−1
(

∂ϕμ

∂t
(t) − Aϕμ(t) − B

(
ϕμ(t)

))〉
H

dt

≤ μ2

2

∫ 0

−∞

∣∣∣∣∂
2ϕμ

∂t2 (t)

∣∣∣∣
2

H 2β
+ I−∞(ϕμ)

+ μ

(∫ 0

−∞

∣∣∣∣∂
2ϕμ

∂t2 (t)

∣∣∣∣
2

H 2β
dt

)1/2(
I−∞(ϕμ)

)1/2
.

By (7.9), this implies

I
μ
−∞(zμ) ≤ I−∞(ϕμ) + cμ2−2α

∣∣∣∣∂ϕ

∂t

∣∣∣∣
2

L2((−∞,0);H 2β)

+ cμ1−α

∣∣∣∣∂ϕ

∂t

∣∣∣∣
L2((−∞,0);H 2β)

(
I−∞(ϕμ)

)1/2
,

and by (7.13) and (7.14),

lim
μ↓0

I−∞(ϕμ) = I−∞(ϕ) = V (x).

Therefore, if we pick α < 1 in (7.5), we get

lim sup
μ↓0

V̄μ(xμ) ≤ lim sup
μ↓0

I
μ
−∞(zμ) ≤ V (x).(7.17)
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Since, in view of (7.11) and Theorem 6.3,

lim sup
μ↓0

V̄μ(xμ) = lim sup
μ↓0

V̄μ(x),

we can conclude that (7.15) holds. �

COROLLARY 7.4. For any closed set N ⊂ H ,

lim sup
μ→0

inf
x∈N

V̄μ(x) ≤ inf
x∈N

V (x).(7.18)

PROOF. If infx∈N V (x) = +∞, then the theorem is trivially true, so we as-
sume that this is not the case. Then by the compactness of the level sets of V and
the closedness of N , there exists x0 ∈ N such that V (x0) = infx∈N V (x). By (7.15),
we can conclude, as

lim sup
μ→0

inf
x∈N

V̄μ(x) ≤ lim sup
μ↓0

V̄μ(x0) ≤ V (x0) = inf
x∈N

V (x). �

8. Lower bound. Let N ⊂ H be a closed set with N ∩H 1+2β �= ∅. In partic-
ular, by Theorem 6.3 we have infx∈N V̄μ(x) < +∞. Due to (5.9) and Theorem 5.1,
there exists zμ ∈ C((−∞,0];H) such that

xμ := 	1z
μ(0) ∈ N, I

μ
−∞

(
zμ) = V̄μ

(
xμ) = inf

x∈N
V̄μ(x).

Now, let ψμ ∈ L2((−∞,0);H) be the minimal control such that

zμ(t) =
∫ t

−∞
Sμ(t − s)Bμ

(
zμ(s)

)
ds +

∫ t

−∞
Sμ(t − s)Qμψμ(s) ds,

and

inf
x∈N

V̄μ(x) = V̄μ

(
xμ) = 1

2

∣∣ψμ
∣∣2
L2((−∞,0);H).(8.1)

In what follows, we shall denote yμ = 	2z
μ(0). For any δ > 0, we define the

approximate control

ψμ,δ(t) = (I − δA)−1/2ψμ(t), t ≤ 0,

and in view of Corollary 5.2 we can define zμ,δ to be the solution to the corre-
sponding control problem

zμ,δ(t) =
∫ t

−∞
Sμ(t − s)Bμ

(
zμ,δ(s)

)
ds +

∫ t

−∞
Sμ(t − s)Qμψμ,δ(s) ds.

Notice that, according to (4.14),

lim
t→−∞

∣∣zμ,δ
∣∣
H1+2β

= 0.
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Moreover, as ψμ,δ ∈ L2((−∞,0);H 1), thanks to (4.14) we have

lim
t→−∞

∣∣zμ,δ
∣∣
H2(1+β)

= 0.

In what follows, we shall denote (xμ,δ, yμ,δ) = zμ,δ(0).

LEMMA 8.1. There exists μ0 > 0 such that

lim
δ→0

sup
μ≤μ0

∣∣xμ − xμ,δ
∣∣2
H 2β = 0.(8.2)

PROOF. By (4.27), there exists μ0 > 0 such that for μ < μ0,∣∣xμ − xμ,δ
∣∣
H 2β ≤ c

∣∣ψμ − ψμ,δ
∣∣
L2((−∞,0);H−1).

Now, since for any h ∈ H ,

∣∣(−A)−1/2(I − δA)−1/2h − (−A)−1/2h
∣∣2
H =

∞∑
k=1

1

αk

(
1 − 1

(1 + δαk)1/2

)2

h2
k,

and (
1 − 1

(1 + δαk)1/2

)2

≤ αkδ,

we have ∣∣(−A)−1/2(I − δA)−1/2h − (−A)−1/2h
∣∣2
H ≤ δ|h|2H .

This implies

∣∣xμ − xμ,δ
∣∣2
H 2β ≤ cδ

∫ 0

−∞
∣∣ψμ(s)

∣∣2
H ds = cδ inf

x∈N
V̄μ(x).

In Corollary 7.4 we have proved

lim sup
μ↓0

inf
x∈N

V̄μ(x) ≤ inf
x∈N

V (x),

and then we obtain

sup
μ≤μ0

∣∣xμ − xμ,δ
∣∣
H 2β ≤ c

√
δ,(8.3)

which implies (8.2). �

Now we can prove the main result of this section.

THEOREM 8.2. For any closed N ⊂ H , we have

inf
x∈N

V (x) ≤ lim inf
μ↓0

inf
x∈N

V̄μ(x).(8.4)
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PROOF. If the right-hand side of (8.4) is infinite, the theorem is trivially true.
Therefore, in what follows we can assume that

lim inf
μ→0

inf
x∈N

V̄μ(x) < +∞.(8.5)

We first observe that if we define

ϕμ,δ(t) = 	1z
μ,δ(t), t ≤ 0,

in view of (7.4),

V
(
xμ,δ) ≤ I−∞

(
ϕμ,δ) = I

μ
−∞

(
zμ,δ) − μ2

2

∫ 0

−∞

∣∣∣∣Q−1 ∂2ϕμ,δ

∂t2 (t)

∣∣∣∣
2

H

dt

− μ

∫ 0

−∞

〈
Q−1 ∂2ϕμ,δ

∂t2 (t),(8.6)

Q−1 ∂ϕμ,δ

∂t
(t) − Q−1Aϕμ,δ(t) − Q−1B

(
ϕμ,δ(t)

)〉
H

dt.

Since ∣∣ψμ,δ(t)
∣∣
H = ∣∣(I − δA)−1/2ψμ(t)

∣∣
H ≤ ∣∣ψμ(t)

∣∣
H , t ≤ 0,(8.7)

we have

I
μ
−∞

(
zμ,δ) ≤ I

μ
−∞

(
zμ) = inf

x∈N
V̄μ(x),

so that

V
(
xμ,δ) ≤ inf

x∈N
V̄μ(x)

− μ

∫ 0

−∞

〈
Q−1 ∂2ϕμ,δ

∂t2 (t),

Q−1 ∂ϕμ,δ

∂t
(t) − Q−1Aϕμ,δ(t) − Q−1B

(
ϕμ,δ(t)

)〉
H

dt.

Thanks to (4.14) and Hypothesis 2, by integrating by parts,

V
(
xμ,δ) ≤ inf

x∈N
V̄μ(x)

− μ

2

∣∣Q−1yμ,δ
∣∣2
H − μ

〈
(−A)Q−1xμ,δ,Q−1yμ,δ 〉

H

+ μ
〈
Q−1B

(
xμ,δ),Q−1yμ,δ 〉

H(8.8)

+ cμ

∫ 0

−∞

∣∣∣∣∂ϕμ,δ

∂t
(t)

∣∣∣∣
2

H 1+2β
dt + cγ2βμ

∫ 0

−∞

∣∣∣∣∂ϕμ,δ

∂t
(t)

∣∣∣∣
2

H 2β
dt

= inf
x∈N

V̄μ(x) +
5∑

i=1

I
μ,δ
i .
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First, we note that

I
μ,δ
1 ≤ 0.(8.9)

Next, by (4.26) we see that

I
μ,δ
2 + I

μ,δ
4 ≤ c

√
μ

(∣∣xμ,δ
∣∣2
H 2β+2 + μ

∣∣yμ,δ
∣∣2
H 2β+1

) + cμ

∫ 0

−∞
∣∣zμ,δ(t)

∣∣2
H2+2β dt

≤ c(μ + √
μ)

∫ 0

−∞
∣∣ψμ,δ(t)

∣∣2
H 1 dt.

Since for any h ∈ H , we have (I − δA)−1/2h ∈ Dom(−A)1/2 and∣∣(−A)1/2(I − δA)−1/2h
∣∣
H ≤ δ−1/2|h|H ,

we have ∣∣ψμ,δ(t)
∣∣
H 1 ≤ δ−1/2∣∣ψμ(t)

∣∣
H , t ≤ 0.

Therefore, by (8.1),

I
μ,δ
2 + I

μ,δ
4 ≤ cδ−1/2(μ + √

μ)

∫ t

0

∣∣ψμ(t)
∣∣2
H

(8.10)
= 2cδ−1/2(μ + √

μ) inf
x∈N

V̄μ(x).

By the same arguments, (4.26) and (8.7) give

I
μ,δ
3 + I

μ,δ
5 ≤ c(μ + √

μ) inf
x∈N

V̄μ(x).(8.11)

Combining together (8.9), (8.10) and (8.11) with (8.8), we obtain

V
(
xμ,δ) ≤ inf

x∈N
V̄μ(x) + c(μ + √

μ)
(
1 + δ−1/2)

inf
x∈N

V̄μ(x).(8.12)

From this, choosing δ = √
μ, and due to (8.5), we see that

lim inf
μ→0

V
(
xμ,

√
μ) ≤ lim inf

μ→0
inf
x∈N

V̄μ(x).

Since we are assuming (8.5), and since by [5], Proposition 5.1, the level sets of V

are compact, there is a sequence μn → 0 and x0 ∈ H such that

lim
n→∞

∣∣xμn,
√

μn − x0∣∣
H = 0, V

(
x0) ≤ lim inf

μ→0
V

(
xμ,

√
μ)

.

By (8.2), we have that xμn converges to x0 in H , so that x0 ∈ N . This means that
we can conclude, as

inf
x∈N

V (x) ≤ V
(
x0) ≤ lim inf

μ→0
V

(
xμ,

√
μ) ≤ lim inf

μ→0
inf
x∈N

V̄μ(x). �
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9. Application to the exit problem. In this section we study the problem
of the exit of the solution u

μ
ε of equation (1.1) from a domain G ⊂ H , for any

μ > 0 fixed. Then we apply the limiting results proved in Theorems 7.3 and 8.2 to
show that, when μ is small, the relevant quantities in the exit problem from G for
the solution u

μ
ε of equation (1.1) can be approximated by the corresponding ones

arising for equation (1.2).
First, let us give some assumptions on the set G.

HYPOTHESIS 3. The domain G ⊂ H is an open, bounded, connected set, such
that 0 ∈ G. Moreover, for any x ∈ ∂G ∩ H 1+2β , there exists a sequence {xn}n∈N ⊂
Ḡc ∩ H 1+2β such that

lim
n→+∞|xn − x|H1+2β

= 0.(9.1)

Assume now that G is an open, bounded and connected set such that, for any
x ∈ ∂G ∩ H 1+2β , there exists a y ∈ Ḡc ∩ H 1+2β such that{

ty + (1 − t)x : 0 < t ≤ 1
} ⊂ Ḡc.(9.2)

Then it is immediate to check that (9.1) is satisfied. Condition (9.2) is true, for
example, if G is convex, because of the Hahn–Banach separation theorem and the
density of H 1+2β in H .

LEMMA 9.1. Under Hypothesis 3,

V̄μ(∂G) := inf
x∈∂G

V̄μ(x) = V̄μ(xG,μ) < ∞,(9.3)

for some xG,μ ∈ ∂G ∩H1+2β .

PROOF. Since Ḡc is an open set, there exists x̃ ∈ Ḡc ∩H 1+2β . Because 0 ∈ G,
and the path t �→ t x̃ is continuous, there must exist 0 < t0 < 1 such that t0x̃ ∈ ∂G.
Clearly, t0x̃ ∈ H 1+2β , so that, as ∂G ∩ H 1+2β �= ∅, according to Theorem 6.3,

inf
x∈∂G

V̄μ(x) < ∞.

Moreover, thanks to Theorem 5.4, the first equality in (9.3) implies that there exists
xG,μ ∈ ∂G ∩H1+2β such that

V̄μ(xG,μ) = V̄μ(∂G).(9.4) �

Now, if we denote by z
μ
ε,z0 = (u

μ
ε,z0, v

μ
ε,z0) the mild solution of (2.9), with initial

position and velocity z0 = (u0, v0) ∈ H, we define the exit time

τμ,ε
z0

= inf
{
t > 0 :uμ

ε,z0
(t) /∈ G

}
.(9.5)

Here is the main result of this section:
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THEOREM 9.2. There exists μ0 > 0 such that for μ < μ0, the following con-
ditions are verified. For any z0 = (u0, v0) ∈ H such that u0 ∈ G and u

μ
0,z0

(t) ∈ G,
for t ≥ 0:

(1) The exit time has the following asymptotic growth:

lim
ε→0

ε logE
(
τμ,ε
z0

) = inf
x∈∂G

V̄μ(x),(9.6)

and for any η > 0,

lim
ε→0

P

(
exp

(
1

ε

(
V̄μ(∂G) − η

)) ≤ τμ,ε
z0

≤ exp
(

1

ε

(
V̄μ(∂G) + η

)))
= 1.(9.7)

(2) For any closed N ⊂ ∂G such that infx∈N V̄μ(x) > infx∈∂G V̄μ(x), it holds
that

lim
ε→0

P
(
uμ

ε,z0

(
τμ,ε
z0

) ∈ N
) = 0.(9.8)

REMARK 9.3. The requirement that u
μ
0,z0

(t) ∈ G for all t ≥ 0 is necessary be-

cause in Lemma 3.4, we show that there exist z0 ∈ G×H−1 such that u
μ
0,z0

leaves
G in finite time. Of course, for these initial conditions, the stochastic processes
u

μ
ε,z0 will also exit in finite time for small ε.

In [4] it has been proven that an analogous result to Theorem 9.2 holds for
equation (2.5). If we denote by uε,u0 the mild solutions of equation (2.5), with
initial condition u0 ∈ H , we define the exit time

τ ε
u0

= inf
{
t > 0 :uε,u0(t) /∈ G

}
.

In [4] it has been proven that for any u0 ∈ G such that u0,u0(t) ∈ G, for any t ≥ 0,
it holds that

lim
ε→0

ε logE
(
τ ε
u0

) = inf
x∈∂G

V (x).

Similarly, as we would expect, it also holds that

lim
ε→0

ε log τ ε
u0

= inf
x∈∂G

V (x) in probability,

and if N ⊂ ∂G is closed and infx∈N V (x) > infx∈∂G V (x),

lim
ε→0

P
(
uε

u0

(
τ ε
u0

) ∈ N
) = 0.

The proof of these facts is analogous to the proof of Theorem 9.2.
In view of what we have proven in Sections 7 and 8 and of Theorem 9.2, this

implies that the following Smoluchowski–Kramers approximations holds for the
exit time:
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THEOREM 9.4. (1) For any initial conditions z0 = (u0, v0),

lim
μ→0

lim
ε→0

ε logE
(
τμ,ε
z0

) = lim
ε→0

ε logE
(
τ ε
u0

) = inf
x∈∂G

V (x).(9.9)

(2) For any η > 0, there exists μ0 > 0 such that for μ < μ0,

lim
ε→0

P
(
e1/ε(V̄ −η) ≤ τμ,ε

z0
≤ e1/ε(V̄ +η)) = 1.(9.10)

(3) For any N ⊂ ∂G such that infx∈N V (x) < infx∈∂G V (x), there exits μ0 > 0
such that for all μ < μ0,

lim
ε→0

Pz0

(
uμ

ε

(
τμ,ε) ∈ N

) = 0.

We recall that in [7] we have proved that, in the case of gradient systems, for
any μ > 0,

V̄μ(x) = V (x), x ∈ H.

This means that in this case for any z0 = (u0, v0) ∈ H and μ > 0,

lim
ε→0

ε logE
(
τμ,ε
z0

) = lim
ε→0

ε logE
(
τ ε
u0

) = inf
x∈∂G

V (x),

and (9.10) holds for any μ > 0.

9.1. Proof to Theorem 9.2. In order to prove Theorem 9.2, we will need some
preliminary lemmas, whose proofs are postponed to the next subsection.

LEMMA 9.5. For μ < (α1 − γ0)γ
−2
0 , there exists a constant c(μ) > 0 such

that z1, z2 ∈ H
sup

ψ∈L2((0,+∞);H)

sup
t≥0

∣∣zμ
ψ,z1

(t) − z
μ
ψ,z2

(t)
∣∣
H ≤ c(μ)|z1 − z2|H.(9.11)

LEMMA 9.6. For any closed set N ⊂ H , and any A < V̄μ(N), there exists
ρ0 > 0 such that if z ∈ C((0, T );H), with |z(0)|H < ρ0 and I

μ
0,T (z) < A, then it

holds

inf
t≤T

distH
(
	1z(t),N

)
>

∣∣z(0)
∣∣
H.

LEMMA 9.7. For any μ,ε > 0 and z0 ∈ H, let

τμ,ε
z0,ρ

:= inf
{
t > 0 :	1z

μ
ε,z0

(t) /∈ G or
∣∣zμ

ε,z0

∣∣
H < ρ

}
,

where ρ > 0 is small enough so that BH(ρ) ⊂ G × H−1. Then

lim
t→+∞ lim sup

ε→0
ε log

(
sup

z0∈G×H−1
P

(
τμ,ε
z0,ρ

≥ t
)) = −∞.(9.12)
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LEMMA 9.8. Let τ
μ,ε
z0,ρ be the exit time from Lemma 9.7, and let N ⊂ ∂G be a

closed set. Then

lim
ρ→0

lim sup
ε→0

ε log
(

sup
z0∈BH((1+Mμ)ρ)

P
(
	1z

μ
ε,z0

(
τμ,ε
z0,ρ

) ∈ N
)) ≤ −V̄μ(N),(9.13)

where V̄μ(N) = infx∈N V̄μ(x).

LEMMA 9.9. For fixed ρ > 0,

lim
t→0

lim sup
ε→0

ε log
(

sup
z0∈BH(ρ)

P

(
sup
s≤t

∣∣zμ
ε,z0

(s)
∣∣
H ≥ (1 + Mμ)ρ

))
= −∞.

PROOF OF THEOREM 9.2. As G ⊂ H is a bounded set, there exists R > 0
such that G ⊂ BH(R − 1). If c(μ,1) is the constant from Lemma 3.4, for any
z0 = (u0, v0) ∈ H such that

u0 ∈ G, |v0|H−1 > Rc(μ,1)−1 =: κ,

we have that 	1z
μ
z0 leaves BR (and therefore G) before time t = 1. Since for any

T > 0,

lim
ε→0

sup
z0∈H

E
∣∣zμ

ε,z0
− zμ

z0

∣∣
C([0,T ];H) = 0,(9.14)

this yields

lim
ε→0

inf
u0∈G

|v0|H−1>κ

P
(
τμ,ε
z0

< 1
) ≥ lim

ε→0
inf

u0∈G

|v0|H−1>κ

P
(∣∣zμ

ε,z0
− zμ

z0

∣∣
C([0,T ];H) ≤ 1

)
(9.15)

= 1.

Now, fix η > 0. According to (9.4), there exists xG,μ ∈ ∂G ∩ H 1+2β such that
V̄μ(xG,μ) = V̄μ(∂G). Now, if {xn} ⊂ Ḡc ∩ H 1+2β is a sequence from (9.1) such
that xn → xG,μ in H 1+2β , as n → ∞, due to Theorem 6.3 we have that V̄μ(xn) →
V̄μ(xG,μ). This means that there exists n̄ such that

V̄μ(xn̄) < V̄μ(xG,μ) + η

4
= V̄μ(∂G) + η

4
.

In particular, there exists T1 > 0 and z
μ
ψ,0 ∈ C([0, T1];H) such that z

μ
ψ,0(0) = 0

and 	1z
μ
ψ,0(T1) = xn̄ ∈ Ḡc with

I
μ
0,T1

(
z
μ
ψ,0

)
< V̄μ(xn̄) + η

4
< V̄μ(∂G) + η

2
.

According to (9.11), the mapping z0 ∈ H �→ z
μ
ψ,z0

∈ C([0, T1];H) is continu-
ous, and therefore, we can find ρ > 0 such that

|z0|H < ρ

�⇒ dist
(
z
μ
ψ,z0

(T1),
(
G × H−1))

> 1
2 dist

(
z
μ
ψ,0(T1),

(
G × H−1)) =: α > 0.
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In view of (5.3), we can see that there exists ε1 > 0 such that for all ε < ε1, and all
|z0|H < ρ,

P
(
τμ,ε
z0

< T1
) ≥ P

(∣∣zμ
ε,z0

− z
μ
ψ,z0

∣∣
C([0,T1];H) < α

) ≥ e−1/ε(V̄μ(G)+η).(9.16)

Now, by Lemma 3.2 we can find T2 > 0 such that

sup
u0∈G

|v0|H−1≤κ

∣∣zμ
z0

(T2)
∣∣
H <

ρ

2
.

Therefore, thanks to (9.14), there exists 0 < ε2 ≤ ε1 such that u0 ∈ G, and
|v0|H−1 ≤ κ ,

P
(∣∣zμ

ε,z0
(T2)

∣∣
H < ρ

)
> 1

2 , ε ≤ ε2.

Thanks to (9.16), by the Markov property, this implies that for u0 ∈ G and
|v0|H−1 ≤ κ ,

P
(
τμ,ε
z0

< T1 + T2
) ≥ 1

2e−1/ε(V̄μ(G)+η), ε < ε2.

Hence, if we combine this with (9.15), we see that there exists 0 < ε0 ≤ ε2 such
that for all ε < ε0,

inf
z0∈G×H−1

P
(
τμ,ε
z0

< 1 + T1 + T2
) ≥ 1

2
e−1/ε(V̄μ(G)+η).(9.17)

By using again the Markov property, for any k ∈ N and z0 ∈ G × H−1, this
gives

P
(
τμ,ε
z0

≥ k(1 + T1 + T2)
) ≤

(
sup

z0∈G×H−1
P

(
τμ,ε
z0

≥ (1 + T1 + T2)
))k

≤
(

1 − 1

2
e−1/ε(V̄μ(G)+η)

)k

,

so that

E
(
τμ,ε
z

) ≤ (1 + T1 + T2)

∞∑
k=0

P
(
τμ,ε
z ≥ k(1 + T1 + T2)

)

≤ 2(1 + T1 + T2)e
1/ε(V̄μ(G)+η).

Thus the upper bound of (9.6) follows as η was chosen arbitrarily small, and the
upper bound of (9.7), follows from this by using the Chebyshev inequality. �

The proofs of the lower bound for the exit time and of the exit place follow from
Lemmas 9.5 to 9.9, by using the same arguments used in the finite-dimensional
case; see [13] and [17]. For this reason, we omit them.
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9.2. Proofs of Lemmas 9.5–9.9.

PROOF OF LEMMA 9.5. If we let ϕ(t) = 	1(z
μ
ψ,z1

(t) − z
μ
ψ,z2

(t)), then it is a
weak solution to

μ
∂2ϕ

∂t2 (t) + ∂ϕ

∂t
(t) = Aϕ(t) + B

(
	1z

μ
z1,ψ

(t)
) − B

(
	1z

μ
z2,ψ

(t)
)
.(9.18)

Therefore, we can conclude as in Lemma 3.1. �

PROOF OF LEMMA 9.6. Fix A < V̄μ(N). Suppose by contradiction that there
exist {zn} ⊂ H, {Tn} ⊂ (0,+∞) and {ψn} ⊂ L2((0, Tn);H) such that

lim
n→∞|zn|H = 0,

1

2
|ψn|2L2((0,Tn);H)

< A,

and

distH
(
	1z

μ
ψn,zn

(Tn),N
) ≤ |zn|H.

Now, if we set xn := 	1z
μ
ψn,0(Tn), for any n ∈N we have, by (9.11),∣∣xn − 	1z

μ
ψn,zn

(Tn)
∣∣
H ≤ c(μ)|zn|H,

so that

distH(xn,N) ≤ c(μ)|zn|H + |zn|H, n ∈ N.(9.19)

Recalling how V̄μ is defined, we have

V̄μ(xn) ≤ 1
2 |ψn|2L2((0,Tn);H)

< A.

Now, as proven in Theorem 5.4, V̄μ has compact level sets. Therefore, there is a
sequence {xnk

}k ⊂ H such that xnk
→ x, so that V̄μ(x) < A. However, by (9.19),

x ∈ N , and then V̄μ(N) ≤ V̄μ(x) < V̄μ(N), a contradiction. �

PROOF OF LEMMA 9.7. Fix R > supx∈G |x|H + ρ, and by Lemma 3.4, let us
take κ > 0 such that if v0 ∈ BH−1(κ), then z

μ
z0 leaves BR ×H−1 before time t = 1.

By Lemma 3.2, we can find T1 > 0 such that

sup
u0∈G

|v0|H−1≤κ

∣∣zμ
z0

(T1)
∣∣
H <

ρ

2
,

and then for any z0 ∈ G × H−1, z
μ
z0(t) leaves (G × H−1) \ BH(ρ/2) in less than

time T = T1 + 1. This means that

inf
{
I

μ
0,T (z) : z(t) ∈ (

BH(R) × H−1) \ BH(ρ/2) for t ∈ [0, T ]} = a > 0(9.20)
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because the set above contains no unperturbed trajectories. By (5.4)

lim sup
ε→0

ε log
(

sup
z0∈G×H−1

P(τ0 ≥ T )
)

≤ lim sup
ε→0

ε log
(

sup
z0∈G×H−1

P

(
distC([0,T ];H)

(
zμ
ε,z0

,K
μ
0,T (a)

)
>

ρ

2

))
≤ −a.

By the Markov property, for any k ∈ N,

sup
z0∈G×H−1

P(τ0 ≥ kT ) ≤
(

sup
z0∈G×H−1

P(τ0 ≥ T )
)k

and therefore,

lim
ε→0

ε log
(

sup
z0∈G×H−1

P(τ1 ≥ T k)
)

≤ −ka.
�

PROOF OF LEMMA 9.8. Let �ρ := BH((1 + Mμ)ρ). For any T > 0, we have

sup
z0∈�ρ

P
(
	1z

μ
ε,z0

(
τμ,ε
z0,ρ

) ∈ N
)

(9.21)
≤ sup

z0∈�ρ

P
(
τμ,ε
z0,ρ

> T
) + sup

z0∈�ρ

P
(
	1z

μ
ε,z0

(t) ∈ N for some t ≤ T
)
.

Next, thanks to Lemma 9.6, for any A < V̄μ(N) fixed, we can find ρ0 > 0 such
that for ρ < ρ0 and any T > 0, the set{

z : z(0) ∈ �ρ,distC([0,T ];H)

(
z,K

μ
0,T (A)

) ≤ (1 + Mμ)ρ
}

contains no trajectories that reach N by time T . Then by (5.4), for any η > 0, for
small enough ε > 0,

sup
z0∈�ρ

P
(
	1z

μ
ε,z0

(t) ∈ N for some t ≤ T
)

≤ sup
z0∈�ρ

P
(
distC([0,T ];H)

(
zμ
ε,z0

,K
μ
0,T (A)

)
> (1 + Mμ)ρ

) ≤ e−1/ε(A−η).

Now, according to (9.12), we pick T > 0 so that, for small enough ε > 0,

sup
z0∈�ρ

P
(
τμ,ε
z0,ρ

> T
) ≤ e−(1/ε)(A).

Due to (9.21), this implies our result, as A < V̄μ(N) and η > 0 were arbitrary. �

PROOF OF LEMMA 9.9. If z(t) = z
μ
ψ,z0

(t), then

z(t) = Sμ(t)z0 +
∫ t

0
Sμ(t − s)Bμ

(
z(s)

)
ds +

∫ t

0
Sμ(t − s)Qμψ(s) ds,
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so that, if z0 ∈ BH(ρ),

sup
s≤t

∣∣z(s)∣∣H ≤ Mμρ + γ0tMμ

μ
√

α1
sup
s≤t

∣∣z(s)∣∣H + Mμ‖Q‖L(H)

μ
√

α1

√
t |ψ |L2((0,t);H).

Therefore, if sups≤t |z(s)| ≥ (Mμ + 1/2)ρ, then we get

Eμ(t) := ρ

(
1

2
− γ0tMμ√

α1μ

)
μ

√
α1

Mμ

√
t

≤ |ψ |L2((0,t);H).

This means that

lim sup
ε→0

ε log
(

sup
z0∈BH(ρ)

P

(
sup
s≤t

∣∣zμ
ε,z0

(s)
∣∣
H ≥ (1 + Mμ)ρ

))

≤ lim sup
ε→0

ε log
(

sup
z0∈BH(ρ)

P

(
distC([0,t];H)

(
zμ
ε,z0

,K
μ
0,t

(
1

2

(
Eμ(t)

)2
))

>
ρ

2

))

≤ −(Eμ(t))2

2
,

and our result follows as

lim
t→0

Eμ(t) = +∞. �
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