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BOUNDARIES OF PLANAR GRAPHS, VIA CIRCLE PACKINGS1

BY OMER ANGEL∗,2, MARTIN T. BARLOW∗,
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University of British Columbia∗, Hebrew University† and Tel Aviv University‡

We provide a geometric representation of the Poisson and Martin bound-
aries of a transient, bounded degree triangulation of the plane in terms of its
circle packing in the unit disc. (This packing is unique up to Möbius trans-
formations.) More precisely, we show that any bounded harmonic function
on the graph is the harmonic extension of some measurable function on the
boundary of the disk, and that the space of extremal positive harmonic func-
tions, that is, the Martin boundary, is homeomorphic to the unit circle.

All our results hold more generally for any “good”-embedding of planar
graphs, that is, an embedding in the unit disc with straight lines such that an-
gles are bounded away from 0 and π uniformly, and lengths of adjacent edges
are comparable. Furthermore, we show that in a good embedding of a planar
graph the probability that a random walk exits a disc through a sufficiently
wide arc is at least a constant, and that Brownian motion on such graphs takes
time of order r2 to exit a disc of radius r . These answer a question recently
posed by Chelkak (2014).

1. Introduction. Given a Markov chain, it is natural to ask what is its “final”
behavior, that is, the behavior as the time tends to infinity. For example, consider
the lazy simple random walk on a rooted 3-regular tree—the path of the random
walk almost surely determines a unique infinite branch of the tree. This branch
is determined by the tail σ -field of the random walk and moreover, this σ -field
is characterized by the set of such infinite branches. In general, it is more useful
to consider the invariant σ -field I , that is, all the events that are invariant under
the time-shift operator. In the case of lazy Markov chains, these two σ -fields are
equivalent [10, 19].

To any invariant event A we can associate a harmonic function hA on the state
space by hA(x) = Px(A), that is, the probability that A occurs starting the chain
from x. (A function h is harmonic if its value at a state is the expected value of
h after one step of the chain.) In fact, there is a correspondence between bounded
invariant random variables and bounded harmonic functions on the state space
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(given such a random variable Y , the function is hY (x) = Ex(Y ), see [19, 22]).
Thus, the set of bounded harmonic functions on the state space characterizes all
the “final” behaviors of the Markov chain.

In this paper, we consider reversible Markov chains in discrete time and space
(i.e., weighted random walks on a graphs). It is not hard to see that if the chain
is recurrent, then there are no nonconstant bounded harmonic functions. On the
other hand, transience does not guarantee the existence of such functions, as can
be seen in the simple random walk on Z

3. However, in the planar case there is such
a dichotomy: Benjamini and Schramm [7] proved that if G is a transient, bounded
degree planar graph, then G exhibits nonconstant bounded harmonic functions.

The proof in [7] relies on the theory of circle packing. Recall that a circle pack-
ing P of a planar graph G is a set of circles with disjoint interiors {Cv}v∈G such
that two circles are tangent if and only if the corresponding vertices form an edge.
Koebe’s circle packing theorem [20] states that any planar graph has a circle pack-
ing, and that for triangulations (graphs where all faces are triangles) the circle
packing is essentially unique. Given a circle packing, we embed the graph in R

2,
with straight line segments between the corresponding centers of circles for edges.
The carrier of P , denoted carr(P ), is the union of all the closed polygons cor-
responding to the faces. He and Schramm [16] provided an insightful connection
between the probabilistic notion of recurrence or transience of G and the geometry
of carr(P ). Their theorem states that if G is a bounded degree one-ended triangu-
lation, then it can be circle packed so that the carrier is either the entire plane or
the open unit disc U according to whether G is recurrent or transient, respectively.
Since we are interested in nonconstant bounded harmonic functions, we consider
here only the latter case.

Consider a transient, bounded degree, one-ended triangulation G and its circle
packing P = {Cv}v∈V with carr(P ) = U . We identify each vertex v with the center
of Cv—it will always be clear from the context if the letter v represents a vertex
or a point in R

2. Let {Xn} be the simple random walk on G. A principal result
of Benjamini and Schramm [7] is that limn→∞ Xn exists and is a point X∞ ∈
∂U almost surely, and furthermore its distribution is nonatomic. This immediately
implies that any bounded measurable function g : ∂U → R can be extended to
a bounded harmonic function h : V → R by setting h(v) = Ev[g(X∞)], where
for a vertex x we write Ex for the expectation w.r.t. the random walk started at x.
Since the distribution of X∞ is nonatomic they deduce that a nonconstant bounded
harmonic function exists. Note that since each vertex v is in carr(P ), we cannot
have a vertex on the boundary of U .

The main result of this paper is that there are no other bounded harmonic func-
tions, that is, any bounded harmonic function can be represented this way. Recall
that a graph is one-ended if removal of any finite set of vertices leaves only one
infinite connected component.
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THEOREM 1.1. Let G = (V ,E) be a transient bounded degree, one-ended
triangulation and let P be a circle packing of G with carr(P ) = U . Then for any
bounded harmonic function h : V →R there exists a bounded measurable function
g : ∂U →R such that h(v) = Ev[g(X∞)].

For a vertex x, we write Px for the probability measure on GN of the Markov
chain started at x. The measure space (GN,I,Px) is often called the Poisson
boundary of the chain. The choice of x does not matter much because the measures
Px are absolutely continuous with respect to each other. As mentioned before, there
is a correspondence between bounded harmonic functions and L∞(GN,I,Px) and
for that reason the space of bounded harmonic functions is sometimes also referred
to as the Poisson boundary. Theorem 1.1 shows that if we circle pack G in U , then
∂U is a representation of the Poisson boundary. More precisely, let f : GN → ∂U

be the measurable function (defined Px -almost everywhere) f ({xn}) = limxn and
let B ⊂ I be the pull back σ -algebra on GN. Then B and I are in fact equivalent,
that is, for any A ∈ I there exists B ∈ B such that the measure of A � B is zero.

The Martin boundary [12, 23, 31] is another concept of a boundary of a Markov
chain, associated with the space of positive harmonic functions. While the Poisson
boundary is naturally defined as a measure space, the Martin boundary is a topo-
logical space. It is well known (see Chapter 24 of [31]) that the Poisson bound-
ary may be obtained by endowing the Martin boundary with a suitable measure.
Hence, in addition to its intrinsic interest, the Martin boundary studied here will
provide more information and will yield Theorem 1.1 rather abstractly.

An illustrative example of the difference between the boundaries is the follow-
ing. Let G be the graph obtained from Z

3 by connecting its root to a disjoint
one-sided infinite path. It is possible for a positive harmonic function to diverge
only along the path. Thus, the Martin boundary will consist of two points (cor-
responding to the two “infinities” of G), however, since the simple random walk
has probability 0 of staying in the infinite path forever, and Z

3 has no nonconstant
bounded harmonic functions, the Poisson boundary will have all its mass on one
of the points.

Let us formally define the Martin boundary. Let x0 be an arbitrary fixed root of
G and M(x,y) be the Martin kernel

M(x,y) = G(x,y)

G(x0, y)
,

where G(x,y) = Ex[# visits to y] is the Green function. For any fixed y, the func-
tion M(·, y) is a positive function that is harmonic everywhere except at y. Hence,
if for some sequence yn, such that the graph distance between x0 and yn tends
to infinity, the functions M(·, yn) converges pointwise, then the limit is a positive
harmonic function on G. The Martin boundary is defined to be the set M of all
such limit points, endowed with the pointwise convergence topology.
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A positive harmonic function h : V → R such that h(x0) = 1 is called minimal
if for any positive harmonic function g such that g(x) ≤ h(x) for all x, then g =
ch for some constant c > 0. The minimal functions are the extremal points of
the convex set of positive harmonic functions, normalized to have h(x0) = 1. By
Choquet’s theorem and [31], Theorem 24.8, it follows that any positive harmonic
function h can be written as h = ∫

g dμ(g) for some measure μ depending on h,
and supported on the set of minimal harmonic functions. If we normalize so that
h(x0) = 1, then μ is a probability measure.

THEOREM 1.2. Let G = (V ,E) be a transient bounded degree, one-ended
triangulation and let P be a circle packing of G with carr(P ) = U . Then:

(1) For a sequence yn ∈ V we have that M(·, yn) converges pointwise if and
only if yn converges in R

2 (in particular, the limit only depends on limyn).
(2) If yn → ξ ∈ ∂U , then limM(·, yn) is a minimal harmonic function.
(3) The map ξ 	→ limM(·, yn), where yn → ξ , is a homeomorphism.

In particular, the Martin boundary is homeomorphic to ∂U .

The limit limy→ξ M(·, y) is denoted by Mξ . Thus, for any positive harmonic
function h there is some measure μ on ∂U , so that h = ∫

∂U Mξ dμ(ξ).
A similar characterization of the Poisson boundary of planar graphs in terms

of their square tiling was recently obtained by Georgakopoulos [15]. His results
allow him to characterize the Poisson boundary for a somewhat more general set of
graphs, namely, of bounded degree uniquely absorbing planar graphs. The analysis
in this paper of random walk via circle packings and other embeddings requires a
completely different set of tools and in return allows us to characterize the Martin
boundary with no additional cost.

1.1. Good embeddings of planar graphs. Recall that a proper embedding of
a planar graph is a map sending the vertices to points in the plane and edges to
continuous curves connecting the corresponding vertices such that no two edges
cross. If each edge is mapped to a straight line we call it an embedding with straight
lines. Given a circle packing of a graph G, we may obtain such an embedding by
mapping vertices to the corresponding circle’s center and edges to straight lines
between the corresponding vertices.

We will prove our results for more general embeddings than the one obtained
from circle packing. The setting below has risen in the study of critical 2D lattice
models and was formalized by Chelkak [8]. Let G = (V ,E) be an infinite, con-
nected, simple planar graph together with an embedding with straight lines. As
before, we identify a vertex v with its image in the embedding. We write |u − v|
for the Euclidean distance between points in the plane. For constants D ∈ (1,∞)

and η > 0, we say that the embedding is (D,η)-good if it satisfies:
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(a) No flat angles. For any face, all the inner angles are at most π − η. In par-
ticular, all faces are convex, there is no outer face and the number of edges in a
face is at most 2π/η.

(b) Adjacent edges have comparable lengths. For any two adjacent edges e1 =
(u, v) and e2 = (u,w), we have that |u − w|/|u − v| ∈ [D−1,D].

We say that an embedding is good if it has straight lines and it is (D,η)-good
for some D,η. A classical lemma of Rodin and Sullivan [24] (known as the Ring
lemma) asserts that the ratio between radii of tangent circles in a circle packing of a
bounded degree triangulation is bounded above and away from 0. We immediately
get the following.

PROPOSITION 1.3. Any circle packing of a bounded degree triangulation is
(D,η)-good for some D and η that only depend on the maximum degree.

In a similar fashion to the circle packing setting, we define the carrier of the
embedding of G, denoted by carr(G), to be the union of all the (closed) faces
of the embedding. Note that if G is a one-ended triangulation, then carr(G) is
always an open simply connected set in the plane. Lastly, suppose that the edges
of the graph are equipped with positive weights {we}e∈E and consider the weighted
random walk {Xn} defined by P(X1 = u|X0 = v) = w(v,u)/wv for any edge (u, v),
where wv = ∑

u:u∼v w(u,v). A function h : V → R is harmonic with respect to the
weighted graph when

h(v) = ∑
u:u∼v

w(u,v)

wv

h(u),(1.1)

or in other words, when h(Xn) is a martingale. The general version of Theo-
rems 1.1 and 1.2 is now stated in a straightforward manner.

THEOREMS 1.1′ AND 1.2′ . Let G = (V ,E) be a bounded degree planar
graph with a good embedding with straight lines such that carr(G) = U . Assume
that G is equipped with positive edge weights bounded above and away from 0.
Then the conclusions of Theorems 1.1 and 1.2 hold verbatim.

Theorems 1.1 and 1.2 are immediate corollaries of this statement together with
Proposition 1.3.

1.2. Harmonic measure and exit time of discrete balls. In the following, let
G = (V ,E) be a planar graph with a good embedding. A discrete domain S is a
subset of V along with the induced edges E(S) = (S × S) ∩ E. The boundary of
S, denoted ∂S is the external vertex boundary, that is, all vertices not in S with a
neighbor in S. For u ∈ R

2 we denote by Beuc(u, r) the Euclidean ball {y ∈ R
2 :
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|u − y| ≤ r} of radius r centred at u, and the discrete Euclidean ball Veuc(u, r) is
the vertex set

Veuc(u, r) = V ∩ Beuc(u, r).

As before, assume that the edges are equipped with positive weights and con-
sider the weighted random walk {Xn}. For A ⊂ V let τA be the first hitting time
of A, that is, τA = min{n : Xn ∈ A} or ∞ if A is never hit. The following two
theorems answer a question recently posed by Chelkak ([8], page 9).

THEOREM 1.4. For any positive constants D,η there exists c = c(D,η) >

0 with the following. Assume that G is a graph with a (D,η)-good embedding,
and all edges weights in [D−1,D]. Then for any vertex u, any r ≥ 0 such that
Beuc(u, r) ⊂ carr(G) and any closed interval I ⊂ R/(2πZ) of length π − η we
have

Pu

(
arg(XTr − u) ∈ I

) ≥ c,

where Tr = τ∂Veuc(u,r) is the first exit time from Veuc(u, r).

Note that for smaller intervals of arguments the statement above may be false;
for example, the left-hand side is 0 if ∂Veuc(u, r) contains no vertex in these direc-
tions.

For a vertex u ∈ V , we denote its radius of isolation by ru = minV \{u}{|u − v|}.
We use f � g when there is some C = C(D,η) so that C−1g ≤ f ≤ Cg.

THEOREM 1.5. For any positive constants D,η there exists C = C(D,η) ≥ 1
with the following. Assume that G is a graph with a (D,η)-good embedding and
all edges weights are in [D−1,D]. Then for any vertex u and any r ≥ ru with
Beuc(u,Cr) ⊂ carr(G) we have

Eu

Tr∑
t=0

r2
Xt

� r2,

where Tr = τ∂Veuc(u,r) is the first exit time from Veuc(u, r).

The reader may wonder why we require Beuc(x0,Cr) ⊂ carr(G), while the the-
orem only talks about the time to exit the smaller Beuc(x0, r). This is an artifact
of our proof, and the stronger requirement can indeed be removed. This requires
showing that it is possible to “extend” the embedding to a good embedding of a
larger graph with carrier R2. This is indeed possible, and we plan to address this
in a future paper.
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1.3. About the proofs and the organization of the paper. We would like to
compare the random walk on a well-embedded graph to Brownian motion, and
certainly our results above justify such a comparison. However, the simple ran-
dom walk on a good embedding can behave rather irregularly. For example, its
Euclidean trajectory is not a martingale and can have a local drift. The random
walk is also much slower when traversing areas of short edges compared to areas
of longer edges. To fix the second problem, we could study the variable speed ran-
dom walk which waits at each vertex an amount of time comparable to r2

x , or to the
area of one of the faces containing the vertex (a good embedding guarantees that
all faces sharing a vertex have comparable area). Instead, we use the cable process
on the graph, which can be thought of as Brownian motion on the embedding (see
Section 3). The vertex trajectory of this process has the same distribution as the
simple random walk, so the harmonic measures do not change.

A central step in this work is showing that well-embedded graphs satisfy volume
doubling and a Poincaré inequality with respect to the Euclidean metric (rather
than the graph metric). This is done in Section 3. The work of Sturm [28] (which
applies in the very general setting of local Dirichlet spaces) then enables us to
obtain various corollaries: an elliptic Harnack inequality (Theorem 5.4) and heat
kernel estimates (see Theorem 3.6). These already give us enough control to prove
Theorems 1.4 and 1.5 in Section 4.

To prove Theorems 1.1 and 1.2, we require a boundary Harnack inequality (see
Theorem 5.5). Roughly speaking, this states that two positive harmonic functions
that vanish on most of the boundary of the domain do so in a uniform way. In our
setting, the boundary Harnack inequality is a consequence of the volume doubling
and Poincaré inequality, as shown in [21], following an argument of Aikawa [1]
that originates in the work of Bass and Burdzy [6]. Given the boundary Harnack
inequality, it is possible to prove Theorem 1.1 by constructing an explicit coupling
between two random walks starting at two different points conditioned to converge
to some ξ ∈ ∂U (by conditioning that the random walk is swallowed in a small
neighborhood and taking a weak limit) so that with probability 1 their traces coin-
cides after a finite number of steps. This coupling is constructed by showing that
for any annulus of constant aspect ratio around ξ the conditioned random walks
have a positive chance to meet.

We do not use this proof approach and instead use the more succinct approach
of Aikawa [1]. His argument (following Jerison and Kenig [18]) shows how the
characterization of the Martin boundary of Brownian motion on a uniform domain
follows from the boundary Harnack principle. Our argument in Section 5 is very
similar to [1] except for the complication that our process is not a martingale. Thus,
a separate argument is necessary to show the convergence of the random walk to
the boundary and that the distribution of the limit is nonatomic.

2. Preliminaries. We begin with some geometric consequences of having a
good embedding. In this section, we assume that we are given a (D,η)-good em-
bedding of a graph G.
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FIG. 1. No thin acute angles: In a good embedding, the angle α must be at least D−1 sin(η/2).

LEMMA 2.1 (No thin acute angles). The angle between any two adjacent
edges is at least D−1 sin(η/2).

PROOF. Let α be the angle between three consecutive vertices on a face
v1, v2, v3 such that the edge [v1, v2] is not longer than the edge [v2, v3]. By
convexity, the triangle v1, v2, v3 is contained in the face. Let β,γ be the angles
∠v2v1v3 and ∠v2v3v1, respectively. By our assumption, we learn that β ≥ γ ,
hence γ ≤ π/2. See Figure 1.

If α ≥ η/2, then we are done since η/2 ≥ D−1 sin(η/2). Otherwise, let v0 be
the vertex before v1 on the face (if the face is a triangle, then v0 = v3). Let β ′
be the angle ∠v0v1v2 so that β ′ ≥ β , and by (b) we have β ′ ≤ π − η. Let x ∈ R

2

be the meeting point of the ray emanating from v1 toward v0 and the ray emanating
from v2 toward v3 (since α + β ′ < π these rays must intersect and the intersection
point x must be on the same side of the infinite line through v1, v2 as v0 and v3).
Let δ be the angle ∠v1xv2. We have that δ = π −β ′ −α hence η/2 ≤ δ ≤ γ ≤ π/2.
Hence, by the law of sines

α ≥ sin(α) = |v1x| sin(δ)

|v1v2| ≥ |v1v0| sin(δ)

|v1v2| ≥ D−1 sin(η/2),

where |v1x| ≥ |v1v0| since by convexity v0 and v1 are on the same side of the
infinite line passing through v2 and v3. �

LEMMA 2.2 (Sausage lemma). There exists c = c(D,η) > 0 such that if e, f

are nonadjacent edges then d(e, f ) ≥ c|e|, where |e| and d(·, ·) are Euclidean
length and distance. In particular, any vertex u ∈ V \ e is of distance at least c|e|
from e.

PROOF. Write e = {v,w} and see Figure 2. Let v1, v2 be two consecutive
neighbors of v. Because the angle ∠v1vv2 is at most π − η, one of the angles
∠v1v2v or ∠v2v1v is at least η/2 and by (c) both |vv1| and |vv2| are at least
D−1|e|. Hence, the distance between v and the line through v1 and v2 is at least
D−1 sin(η/2)|e|. We conclude that there are no points of X inside a ball around
v of radius D−1 sin(η/2)|e| except for the edges emanating from v and the same
holds for w.



1964 ANGEL, BARLOW, GUREL-GUREVICH AND NACHMIAS

FIG. 2. The sausage lemma: no edge can intersect the marked “sausage” with width c|e|.

Next, consider one of the two faces containing e and let v1 be the neighbor of
v in the face that is not w and similarly w1 be the neighbor of w in the face that
is not v (if the face is a triangle, then w1 = v1). By Lemma 2.1 the angles ∠v1vw

and ∠vww1 are at least D−1 sin(η/2) and by condition (b) these angles are at most
π − η. Hence, by condition (c), the face contains a trapezoid in which e is a base
and the two sides are sub-intervals containing v and w of the edges (v, v1) and
(w,w1), respectively, and of height at least D−1|e| sin(D−1 sin(η/2)). �

COROLLARY 2.3. There exists c = c(D,η) > 0 such that for any edge e and
vertex u /∈ e and r > 0 we have that if e intersects Beuc(u, cr), then e is contained
in Beuc(u, r).

LEMMA 2.4. There exists a constant C = C(D,η) < ∞ such that if an edge
e is contained in a face f , then diam(f ) ≤ C|e|, and C−1 Leb(f ) ≤ |e|2 ≤
CLeb(f ), where Leb(f ) is the usual Lebesgue area measure in R

2.

PROOF. Since external angles in a polygon add up to 2π , the number of sides
of a face is at most 2π/η, and since consecutive sides have length ratio at most D,
any two sides of a face have ratio at most C, and the diameter of the face is at most
some constant times the shortest edge.

The relation to the area of f follows from Lemma 2.1 and that edges adjacent
to e have comparable lengths. �

Most of our arguments will take place in the metric space (X,d0) defined as
follows. For an edge (u, v) ∈ E, write [u, v] for the closed line segment in the
plane from u to v. We put

X = ⋃
(u,v)∈E

[u, v],

and let d0 be the shortest path distance in X. For x ∈ X and r > 0 we write
Bd0(x, r) for the ball {y ∈ X : d0(x, y) ≤ r}. An idea that we will use frequently
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is to take a curve in R
2 with some useful properties and modify it slightly to get a

curve in X with similar properties.

PROPOSITION 2.5. Assume that carr(G) = U . There exists a constant C1 =
C1(D,η) such that for any x, y ∈ X we have

|x − y| ≤ d0(x, y) ≤ C1|x − y|.(2.1)

PROOF. Since d0(x, y) is the Euclidean length of the shortest path in X be-
tween x and y the inequality |x − y| ≤ d0(x, y) is obvious.

To prove the other inequality, we first prove the assertion for x and y that are
on the same face. If x and y are on the same edge then d0(x, y) = |x − y|. If x

and y are on two different edges that share a vertex v, then since the angle at v

is bounded away from 0 (by Lemma 2.1) we deduce by the law of sines on the
triangle x, v, y that d0(x, y) ≤ |x − v| + |y − v| ≤ C|x − y|. Lastly, when x and
y are on two edges of the same face not sharing a vertex, Lemma 2.2 immediately
gives that |x − y| is at least c|e|, where e is some edge that contains x. Lemma 2.4
gives that |e| is at least a constant multiple times the diameter of the face and the
assertion follows.

Finally, when x and y are not on the same face let [x, y] be the straight segment
connecting x and y and let x = x0, x1, . . . , xk = y be the points on [x, y] where the
segment intersects X, so that xi and xi+1 are on the boundary of some face for all
i = 0, . . . , k − 1. Then d0(xi, xi + 1) ≤ C|xi − xi+1| and summing over i finishes
the proof of the lemma. �

Consequently, the completion of (X,d0) is X = X ∪ ∂U with the topology in-
duced from R

2, and (2.1) extends to the space X.

LEMMA 2.6 (X is inner uniform). Assume that G has a (D,η)-good em-
bedding and that carr(G) = U . There exist constants C = C(D,η) < ∞ and
c = c(D,η) > 0 such that for any ξ1, ξ2 ∈ ∂U with ξ1 �= ξ2 there exists a con-
tinuous curve � : [0,L] → X such that the following holds:

(1) � is parametrized by length, that is, length(�[0, t]) = t for all t ∈ [0,L].
(2) �(0) = ξ1 and �(L) = ξ2.
(3) L ≤ Cd0(ξ1, ξ2).
(4) For any t ∈ (0,L) we have

d0
(
�(t), ∂U

) ≥ c min(t,L − t).

PROOF. Consider a circle orthogonal to U through ξ1, ξ2, and the continuous
curve γ which is the arc from ξ1 to ξ2 in that circle. Let (. . . , x−2, x−1, x0, x1,

x2, . . .) be the set γ ∩ X with the order induced by γ . Two consecutive points xi

and xi+1 are on the same face, so write �i for a piecewise linear curve on the
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boundary of that face connecting xi to xi+1 in the shorter way according to d0.
Let � be the concatenation of (�i){−∞<i<∞}, parametrized by arc length (which
we shall see below is finite). Note that � might not be a simple curve, which does
not cause any difficulty. Thus, (1) holds. Let us show that � satisfies requirements
(2)–(4).

We first note that by Lemma 2.2 we have that there exists C > 0 such that for
any face f

max
z∈∂f

d0(z, ∂U) ≤ C min
z∈∂f

d0(z, ∂U),(2.2)

where by z ∈ ∂f we mean that z ∈ X is on one of the edges encompassing f . Now,
it is clear that xk → ξ1 when k → −∞ and xk → ξ2 when k → ∞, so by (2.2) we
get that � satisfies requirement (2).

Next, we have that length(�i) = d0(xi, xi+1) since xi and xi+1 are on the same
face f , and since the shortest curve between two points on the boundary of a
convex face f that does not enter the face is along its boundary. Thus, we have
length(�) = ∑

i d0(xi, xi+1) ≤ C|ξ1 − ξ2| by Proposition 2.5, so requirement (3)
holds. Lastly, (4) holds immediately for the points xk , and by (2.2) we obtain this
for any point on �. �

3. The cable process. It will be convenient for us to obtain useful estimates
using results of Sturm [28]. For that, we need to introduce the cable process which
can be thought of as Brownian motion on the embedding of G. (See, e.g., [29].)
Recall that (we) are edge weights on G, which are bounded above and away
from 0. An intuitive description of the process is as follows: Let x be a vertex
and e1, . . . , ek the edges emanating from it, and let {Wt }t≥0 be standard Brow-
nian motion. It is well known that Wt can be decomposed into countably many
excursions in which Wt �= 0. For each such excursion, we choose the edge ei with
probability proportional to wei

|ei | for i = 1, . . . , k and embed the excursion on
the edge ei . We stop when we hit one of the neighbors x1, . . . , xk of x, and con-
tinue from this neighbor using the strong Markov property. Thus, this process is
a standard Brownian motion on the edges (or “cables”), and behaves like a Walsh
Brownian motion (see [30]) at the vertices.

Note that it is possible for this process to “explode”, or visit infinitely many
vertices in finite time, and indeed this does happen almost surely in the transient
setting.

Before defining the process formally, let us state two useful properties that will
make the connection to the discrete time weighted random walk evident. Denote
by Zt the process and let T be the hitting time of {x1, . . . , xk}. Then for 1 ≤ i ≤ k,
we have (see [13], Theorem 2.1)

Px(ZT = xi) = wei∑k
i=1 wei

,(3.1)
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that is, the process Zt observed on vertices has the same trace as the simple random
walk (we ignore the uncountably many times it visits each x before proceeding to
one of its neighbors). Also, in our setting, there exists a constant C = C(D,η) > 0
such that (see [13], Theorem 2.2)

C−1 ≤ ExT

r2
x

≤ C,(3.2)

where rx is the length of the shortest edge touching x (and so is comparable to the
length of any edge touching x). Intuitively, the process Zt behaves like the variable
speed random walk that waits roughly r2

x time at vertex x before proceeding.
The construction based on excursions can be made precise. However, it is eas-

ier to define the cable process via the methods of Dirichlet forms (see [14]). Let
(X,d0) be the compact metric space defined in Section 2. For an edge (u, v), write
dx for Lebesgue measure on [u, v], and define a measure m on X by taking

m(dx) = ∑
(u,v)∈E

|u − v|wuv dx.

LEMMA 3.1. We have m(X) < ∞.

PROOF. By Lemma 2.4, the measure of any edge e is less than CLeb(f1 ∪f2),
where f1, f2 are the two faces containing e. Since carr(G) = U , it follows that
m(X) ≤ 2C Leb(U). �

We say that a function f on X is piecewise differentiable if it is continuous
at each vertex, and is differentiable w.r.t. the length measure on every edge. (We
require that the one sided derivatives exist at the end of each edge.) The derivative
f ′ depends on the direction, and only makes sense if we fix a direction for every
edge. However, f ′g′ is well defined for differentiable f,g and does not depend on
choosing a direction on the edges. Let D0 be the space of differentiable functions f

on X such that f ′ is continuous on each edge, and |f ′| is bounded. For f,g ∈ D0,
let

d�(f, g)(dx) = ∑
(u,v)∈E

1[u,v](x)f ′(x)g′(x)|u − v|wuv dx,

E(f, g) = ∑
(u,v)

∫
[u,v]

f ′(x)g′(x)|u − v|wuv dx =
∫
X

d�(f,g).

Let D be the completion of D1 with respect to the norm

‖f ‖E1 =
(
E(f, f ) +

∫
X

f 2 dm

)1/2

.

It is straightforward to verify that the bilinear form (E,D0) is closed and Markov
(see [14], page 4 and [9], Section 2.2), so that (E,D) is a Dirichlet form. Since
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D0 is dense in C(X), the continuous functions on X, (E,D) has a core and is
thus a regular Dirichlet form. The associated strong Markov process Z is the cable
process on X. We remark that with this construction the functions f in the domain
D do not vanish on the boundary ∂U , so that the process Z is conservative and
will reflect from the boundary after its first hit.

The space (X,m,E) has an intrinsic metric associated with it (see [28]), where
the distance between x, y is given by

sup
{
f (x) − f (y) : f ∈ D and

∣∣f ′∣∣ ≤ 1
}
.

In our case, it is clear that this metric coincides with d0 defined above. We will
show that this space is doubling and has a weak Poincaré inequality.

3.1. Doubling.

LEMMA 3.2. Let X be a good embedding of some graph. There exists a
integer M = M(D,η) > 0 such that for any x ∈ X and any r > 0 there exists
x1, . . . , xM ∈ X such that

Bd0(x,2r) ⊂
M⋃
i=1

Bd0(xi, r).

PROOF. This is an easy consequence of the equivalence between d0 and the
Euclidean metric. We have that Bd0(x,2r) ⊂ Beuc(x,2r). Let C1 be the constant
from Proposition 2.5. The Euclidean ball can be covered by M Euclidean balls
Beuc(yi, r/2C1) of radius r/2C1 for some M � C2

1 . For each i, if Beuc(yi, r/2C1)

intersects X and xi is an arbitrary point in the intersection then Beuc(yi, r/2C1) ∩
X ⊂ Bd0(xi, r). Otherwise, we ignore this ball. So the collection of balls Bd0(xi, r)

covers Bd0(x,2r). �

Recall the radius of isolation ru defined for u ∈ V as the distance to the nearest
vertex v �= u. We extend this to x ∈ X by letting rx be the length of the edge
containing x when x ∈ X \ V , and setting rx = 0 if x ∈ ∂U . Note that if r ∈ (0,1)

and x ∈ X then we have Leb(Beuc(x, r)) ≥ cr2.

LEMMA 3.3. For any x ∈ X and r ∈ (0,1), we have

m
(
Bd0(x, r)

) � r · (r ∨ rx).(3.3)

In particular, there exists a constant C > 0 such that for r > 0

m
(
Bd0(x,2r)

) ≤ Cm
(
Bd0(x, r)

)
.
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PROOF. First, we assume that x is a vertex. When r ≤ rx , we have that
m(Bd0(x, r)) � rxr , because the degrees of G are bounded and adjacent edges
have comparable length. So it suffices to prove that m(Bd0(x, r)) � r2 when
r ≥ rx .

By Lemma 2.4, for an edge e we have m(e) � |e|2 ≤ CLeb(f ) where f is a face
containing e. Since each face has a bounded degree, and since faces intersecting
Bd0(x, r) are fully contained in Beuc(x,Cr) we find m(Bd0(x, r)) ≤ Cr2, where
C = C(D,η) < ∞. For the lower bound, if rx ≤ r ≤ Crx then m(Bd0(x, r)) ≥
r2
x ≥ C−2r2. If r > Crx by Corollary 2.3 and Proposition 2.5, the union of the set

of faces f adjacent to edges e contained in Bd0(x, cr) contains U ∩ Beuc(x, c2r),
giving the required lower bound.

If x ∈ X is not a vertex, then let y be a closest vertex to x, and let s = d0(x, y).
If r ≤ s then m(Bd0(x, r)) = 2rrx , which equals 2r(r ∨ rx) since rx ≥ s. Now
suppose that r > s. Then Bd0(x, r) ⊂ Bd0(y,2r), and since ry � rx , this gives the
upper bound in (3.3). If r ∈ [s,2s], then m(Bd0(x, r)) ≥ 1

2rrx , while if r > 2s then
Bd0(y, r/2) ⊂ Bd0(x, r), so in either case we have the lower bound.

Finally, if x ∈ ∂U and r > 0 then we can find a vertex y such that d0(x, y) < r/2
and ry < r/2, and use the bounds for m(Bd0(y, ·)). �

3.2. Poincaré inequality. The strong Poincaré inequality states that for any
differentiable f on B = Bd0(x, r) we have∫

B

∣∣f (x) − f̄
∣∣2m(dx) ≤ Cr2

∫
B

∣∣f ′(x)
∣∣2m(dx),(3.4)

where f̄ = 1
m(B)

∫
B f m(dx) is the mean of f . A well-known technique due to Jeri-

son (see [17], Section 5 and also [26], Section 5.3, for a simpler proof) shows that
for spaces satisfying the doubling property, this follows from the weak Poincaré
inequality which we now prove.

THEOREM 3.4 (Weak Poincaré inequality). There exist positive constants
C = C(D,η) and C′ = C′(D,η) such that for any x0 ∈ X and r ∈ (0,1) with
Beuc(x0,Cr) ⊂ carr(G), and all f piecewise differentiable on Bd0(x0,Cr) we have∫

Bd0 (x0,r)

∣∣f (x) − f̄
∣∣2m(dx) ≤ C ′r2

∫
Bd0 (x0,Cr)

∣∣f ′(x)
∣∣2m(dx).

We begin with the following lemma.

LEMMA 3.5. Let x have law m(dx)
m(B)

on some set B ⊂ X, and conditioned on
x let x̂ be uniform in the union of the two faces incident to the edge containing x.
Then there is some constant C = C(D,η) so that the law of x̂ is bounded by CLeb

m(B)
,

where Leb is the usual Lebesgue measure on R
2.
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PROOF. For an edge e of X, we have that P(x ∈ e) = m(e∩B)
m(B)

≤ |e|2
m(B)

(with
equality holding when e ⊂ B). If e is incident to some face f then the conditional
contribution to the density of x̂ in f is at most 1/Leb(f ), and so the density on

a face f surrounded by edges e1, . . . , ek is at most 1
m(B)

∑ |ei |2
Leb(f )

. The number of
edges surrounding a face is at most 2π/η, and the square of each is comparable to
the area of f , giving the claim. �

PROOF OF THEOREM 3.4. We let B = Bd0(x0, r). Let x, y be independent
points chosen in B with law m(dx)

m(B)
. We start with the simple identity

∫
B

|f (x) − f̄ |2m(dx) = m(B)

2
E

∣∣f (x) − f (y)
∣∣2,

that follows from expanding. Let γ = γxy be some (possibly random) path in X

between x and y, then f (y) − f (x) = ∫
γ f ′(z) dz, where dz is the length element

along γ . Applying Cauchy–Schwarz gives
∣∣f (x) − f (y)

∣∣2 ≤ |γ |
∫
γ

∣∣f ′(z)
∣∣2 dz,

where |γ | denotes the length of γ .
To construct the path, we need to consider two cases. If Bd0(x0, r) contains

a single vertex of the graph, then the graph in Bd0(x0, r) is a star, and there is an
obvious choice of path γxy . If there are at least two vertices, we proceed as follows.
Let x̂ (resp., ŷ) be uniformly chosen in the union of the two faces of X incident
to x (resp., to y). The straight line segment x̂ŷ begins at a face containing x, ends
at a face containing y, and possibly passes through some other faces in between.
As in the proof of Proposition 2.5, we can approximate this line segment by a path
γxy in X, which stays in the boundaries of faces crossed by the line segment.

We first observe that due to Lemma 2.2 we have that x̂, ŷ ∈ B0 := {u ∈ R
2 : |u−

x0| < C0r} for some C0 = C0(D,η) ≥ 1, and B0 ⊂ carr(G) by our assumptions.
By increasing C0, we can guarantee that γxy also does not leave B0, and as in
Proposition 2.5, we have |γxy | ≤ Cr . We shall see below that P(z ∈ γxy) ≤ Cρz

r
where ρz is the length of the edge containing z (we neglect the measure 0 set of
vertices). Given that we conclude the proof as follows:∫

B

∣∣f (x) − f̄
∣∣2m(dx) ≤ Cm(B)E

[
r

∫
γ

∣∣f ′(z)
∣∣2 dz

]

≤ Crm(B)

∫
z∈B0

Cρz

r

∣∣f ′(z)
∣∣2 dz

≤ Cr2
∫
B0

∣∣f ′(z)
∣∣2m(dz),

since ρz dz = m(dz), and m(B) ≤ Cr2.
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To bound the probability that z ∈ γxy , note that the faces incident to z are con-
tained in {u ∈ R

2 : |u − z| ≤ C1ρz}. Let A be the event that the segment x̂ŷ inter-
sects a face incident to z, and A′ the event that the segment passes within distance
C1ρz of z, so that A ⊂ A′. Let m̂ be the law of x̂ and ŷ. By Lemma 3.5, we have
that

m̂ ≤ C

m(B)
Leb ≤ C2

r2 Leb,

and supp m̂ ⊂ B0 ⊂ {|x̂ − z| ≤ 2C0r}. We have now

P(z ∈ γxy) ≤ E1A ≤ E1A′ =
∫∫

1A′ dm̂ × dm̂

≤
∫
|x̂−z|≤2C0r

∫
|ŷ−z|≤2C0r

1A′
(

C2

r2

)2

dx̂ dŷ.

By scaling and translating this is (C2/2C0)
2 times the probability that the segment

between two uniform points u, v ∈ U passes within C1ρz/r of the origin. For
such u, v, the distance between the segment and the origin is a continuous random
variable with finite density, so the distance is at most C1ρz/r with probability at
most Cρz/r . �

3.3. Heat kernel estimates. Finally, we are able to deduce estimates for the
heat kernel of the cable process on X. Let qt (x, y) denote the heat kernel for the
Markov process {Zt }t≥0 associated with (X,m,E), that is, qt (x, ·) is the density
(with respect to m) of Zt conditioned on Z0 = x. For a set A ⊂ X, we let qA

t (x, y)

denote the heat kernel for the process killed when it exits A. (If A = X, then qA is
just the unkilled heat kernel.)

THEOREM 3.6. There exists constants c,C depending only on D,η such that
for any x0 ∈ X and r > 0 we have that for any t ≤ r2 and x, y ∈ X ∩Beuc(x0,

√
t),

qA
t (x, y) ≥ c

m(Beuc(x0,
√

t))
,

where A = X ∩ Beuc(x0,Cr).

PROOF. This is obtained by combining Theorem 3.5 of [28] with (3.4) and
Lemma 3.3 (giving parabolic Harnack inequality), and then appealing to Theo-
rem 3.2 in [5] [the assertion that (c) implies (b) is what we use with the function
τ(t) = t2]. Finally, using Proposition 2.5 to move from balls in d0 to Euclidean
balls. �
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4. Harmonic measure and exit time of discrete discs. In this section, we
prove Theorems 1.4 and 1.5. Let G = (V ,E) be a planar graph with a (D,η)-good
embedding and let (X,d0) be the associated metric space. We consider the cable
process Z on G defined in Section 3. We slightly abuse notation, and use τA to
denote the hitting time of A by the cable process, that is, τA = inf{t : Zt ∈ A}.
Recall that the restriction of Zt to V is the simple random walk, and so when
A ⊂ V , the law of XτA

is the same for the cable process and for the simple random
walk.

For u ∈ R
2, radius r > 0 and an interval of angles I ⊂R/(2πZ) let Cone(u, r, I )

denote the intersection of X and the cone of radius r centered at u with opening
angles I , that is,

Cone(u, r, I ) = {
v ∈ X : |v − u| ≤ r and arg(v − u) ∈ I

}
.

A wide cone is a cone where |I | ≥ π − η. By definition, if u is a vertex in a good
embedding then there is an edge containing u entering every wide cone with tip
at u.

LEMMA 4.1. For any vertex u ∈ V and any wide cone A = Cone(u, r, I ) such
that Beuc(u, r) ⊂ carr(G), we have

m(A) � r(r ∨ ru).

PROOF. The case r ≤ ru is easy and we omit the details. Assume r ≥ ru and
write A′ for the Euclidean cone A′ = {x ∈ R

2 : |x − u| ≤ r and arg(x − u) ∈ I }.
For any face f , we will show that m(A ∩ ∂f ) ≥ cLeb(A′ ∩ f ) for some c(D,η).
This implies the lower bound, since summing over all faces gives m(A) ≥ cr2.

Let � = diam(A′ ∩ f ) ≤ diam(f ), and note that every edge of f has length
at least c� for some c. Consider the circle Cs = {z : |z − u| = s}. We have that
the length |Cs ∩ f ∩ A′| is at most C�, and is nonzero for s in some interval J .
Integrating over s gives

Leb
(
A′ ∩ f

) =
∫
J

∣∣Cs ∩ f ∩ A′∣∣ ≤ C�|J |.
We next argue that ∂f must cross inside A any circle Cs that intersects f ∩

A′. To see this, note that we can construct a path from u taking only edges with
directions in I until we exit A after finitely many steps [since A ⊂ carr(G)]. The
face f is restricted to one side of the path, and so ∂f intersects A ∩ Cs . It now
follows that the length of A ∩ ∂f is at least |J |, and since the length of edges of f

is at least c� we get m(A ∩ ∂f ) ≥ c�|J |, and the lower bound follows.
For the upper bound, we prove only the case r ≥ ru, as the other is immediate.

By Lemma 2.2 every edge intersecting A has length at most Cr , and all incident
faces are contained in Beuc(u,C′r). For any such edge e, taking all of m(e) still
gives at most the area of the faces containing e, and since each face is counted a
bounded number of times, the claim follows by summing over the edges. �
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COROLLARY 4.2. There exists a constant c = c(D,η) > 0 such that for any
vertex u ∈ V and any r ≥ ru with Beuc(u, r) ⊂ carr(G), and any wide cone A =
Cone(u, r, I ) we have

m
(
A \ Beuc(u, cr)

) ≥ cr2.

LEMMA 4.3. There exist constants c = c(D,η) > 0 such that for any inter-
val I with |I | = π − η, any vertex u ∈ V and any r ≥ ru satisfying Beuc(u, r) ⊂
carr(G) we have

Pu(τS < τV \Veuc(u,2r)) ≥ c,

where

S = V ∩ Cone(u, r, I ) \ Beuc(u, cr).

PROOF. Write C for the unbounded Euclidean cone {x ∈ R
2 : arg(x − u) ∈ I }

and construct an infinite simple path P from u that remains in C, as we did in the
previous lemma. The existence of P implies that any edge e that intersects C must
have at least one endpoint in C.

Write c < 1 for the smaller of the constants in Corollaries 2.3 and 4.2.
Let B ⊂ X ∩ C be constructed as follows: consider an edge e that intersects
C ∩ Beuc(u, cr) \ Beuc(u, c2r) and does not contain u; if e is entirely contained
in C, then we add e to B , otherwise e = (v1, v2) where only v1 is in C and we add
to B the straight line segment between v1 and (v1 + v2)/2 (i.e., half the edge e,
starting at v1). We have that m(B) ≥ 1

2m(X ∩C ∩Beuc(u, cr)\Beuc(u, c2r)) since
for any edge e that intersects C ∩ Beuc(u, cr) we added to B at least half of e ∩ C.
Hence, by Corollary 4.2 we get that m(B) ≥ c3r2/2.

We now appeal to Theorem 3.6 with x0 = u and t = r2 and integrate over y ∈ B

to get that

Pu(Zt ∈ B and t < τ∂Beuc(u,2r)) ≥ c′ > 0,

for some constant c′ = c′(D,η) > 0. By Corollary 2.3, we have that B ∩ V ⊂
X ∩ C ∩ Veuc(u, r) \ Veuc(u, c3r) and since we added either full edges or half
edges, it is clear that starting from any point in B , the probability that the first
vertex that we visit is in B ∩ V is at least 1/2. This completes our proof. �

LEMMA 4.4. For any ε > 0, there exists c = c(ε,D,η) > 0 such that for any
vertex u ∈ V and any r ≥ ru satisfying Beuc(u, r) ⊂ carr(G), and any interval I

with |I | = π − η we have

Pu(τS < τO) > c,

where

S = V ∩ Cone(u,∞, I ) \ Veuc(u, r)

and

O = {
v ∈ V : d(

v,Cone(u,∞, I )
) ≥ εr

}
.
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PROOF. We iterate 2(cε)−1 times Lemma 4.3 with a cone of radius r ′ = εr/2
and opening I . �

LEMMA 4.5. For any ε > 0, there exists c = c(ε,D,η) > 0 such that for any
vertex u ∈ V , any r ≥ ru satisfying Beuc(u, r) ⊂ carr(G), any interval I with |I | =
π − η, and any vertex v such that εr ≤ |u − v| ≤ (1 − ε)r , and arg(v − u) ∈ I we
have the following. Let

S = V ∩ Cone(u,∞, I ) \ Veuc(u, r)

and

Q = V \ (
Cone(u,∞, I ) ∪ Veuc(u, r)

)
,

then Pv(τS < τQ) ≥ c.

PROOF. Write C for the Euclidean cone {x ∈ R
2 : arg(x − u) ∈ I }. If the dis-

tance of v from R
2 \C is at least εr , then we apply Lemma 4.4 on the cone parallel

to C emanating from v and the assertion follows. Assume now the opposite, and
write R1,R2 for the two rays of the cone C so that R1 is before R2 clockwise and
assume without loss of generality that v is closer to R1. Let C′ be the cone

C′ = {
x ∈R

2 : arg(x − v) ∈ I − α
}
,

where α = α(ε) > 0 is the largest number so that d(u,C′ \C) ≥ (2c−1 +2)r where
c > 0 is the constant from Corollary 2.3 (see Figure 3). Define the set O ′ by

O ′ = {
v ∈ V : d(

v,V ∩ C′ ∩ Veuc(v,2r)
) ≥ ε′r

}
,

where ε′ = ε′(ε,α) > 0 is chosen so that (V \ O ′) \ Veuc(u, r) ⊂ C.
We now apply Lemma 4.4 with ε′, v and C′ to obtain that with probability

uniformly bounded below we visit (V ∩ C′) \ Veuc(v,2r) before visiting O ′. By
Corollary 2.3, when this event occurs the length of the last edge traversed has
length at most 2c−1r . Hence, by our choice of α in this last step we find ourselves
in S and by our choice of ε′ we have not stepped outside of C ∪ Veuc(u, r), as
required. �

PROOF OF THEOREM 1.4. Let ε = ε(D,η) > 0 be a fixed small number to
be chosen later. Let us consider several cases. Recall that by condition (a) there
always exist an edge (u, v) such that arg(v − u) ∈ I . First, if there exists such an
edge (u, v) with |u − v| > r , then with probability at least D−3 we take this edge
in the first step and we are done. Second, if there is such an edge so that (1− ε)r ≤
|u − v| ≤ r , then as long as ε is small with respect to D, then by condition (b) v

has a neighbor w such that arg(w − u) ∈ I and |w − u| > r , so with probability at
least D−6 we take two steps from u to w and we are done. Third, if there exists
such an edge so that εr ≤ |u− v| ≤ (1 − ε)r then Pu(XTr ∈ S) ≥ D−3

Pv(XTr ∈ S)
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FIG. 3. Illustration of Lemma 4.5. The probability from v of hitting S before Q cannot be too small.
Also shown: the possible locations for v, the rotated cone C′ and the set likely to be hit from v by
Lemma 4.4.

where S is defined in Lemma 4.5, and by that lemma the last quantity is uniformly
bounded below and we are done. Lastly, if all neighbors v of u satisfy |u−v| ≤ εr ,
then we apply Lemma 4.4 with radius εr and obtain that with probability uni-
formly bounded from below we visit V ∩ Cone(u, εr, I ) \ Veuc(u, εr) before vis-
iting O = {v ∈ V : d(v,Cone(u, εr, I )) ≥ ε2r}. When this occurs, the last edge
taken by the random walk has length at most c−1εr by Corollary 2.3, where c > 0
is the constant of that lemma. Hence, if ε is chosen so that ε ≤ (c−1 + 2)−1 we get
that at that hitting time we are at a vertex v such that εr ≤ |u − v| ≤ (1 − ε)r and
arg(v − u) ∈ I . The assertion of the theorem now follows by another application
of Lemma 4.5, completing the proof. �

PROOF OF THEOREM 1.5. Let T Z
r denote the exit time from Beuc(u, r) of the

cable process and Tr the exit time from Veuc(u, r) for the simple random walk.
Our first goal is to prove that EuT

Z
r � r2. We begin with the lower bound. To

that aim, let C3.6 be the constant from Theorem 3.6 and let A = Beuc(u,C3.6r)

and assume that A ⊂ carr(G). We apply Theorem 3.6 with t = r2 and integrate
over y ∈ Beuc(u, r) to get that P(T Z

C3.6r ≥ r2) ≥ c, hence EuT
Z
C3.6r ≥ cr2 and so

EuT
Z
r ≥ c′r2 for some constant c′ > 0.

To show the upper bound, Lemma 3.3 immediately implies that there exists
some constant C3.3 > 0 such that for any r ≥ ru and any x ∈ X ∩ Beuc(u, r) we
have

m
(
X ∩ Beuc(x,C3.3r) \ Beuc(u, r)

) ≥ r2.
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We prove the theorem with C = C3.3C3.6 + 1. We apply Theorem 3.6 with A =
Beuc(x,C3.3C3.6r) [so that A ⊂ carr(G)] and t = r2 and integrate over y ∈ X ∩
Beuc(x,C3.3r) \ Beuc(u, r) to get that for any x ∈ X ∩ Beuc(u, r) we have Px(Tr ≥
r2) ≤ 1 − c, for some constant c > 0. Hence, EuT

Z
r ≤ C′r2 for some C′ > 0.

We got that Eu(T
Z
r ) � r2. Recall that the trace of the cable process along the

vertices is distributed as the discrete weighted random walk. Hence, by writing T Z
r

as a the sum of possible random walks paths and the time it takes the cable process
to traverse between vertices we obtain using (3.2) that

Eu

(
T Z

r

) � E

Tr∑
t=0

r2
Xt

,

where {Xt } is the discrete weighted random walk. �

5. The Martin boundary. It will be convenient to approximate the graph G,
embedded in the plane with carrier U by finite subgraphs Gε . For ε > 0, consider
the subgraph Gε induced by the vertices Vε where

Vε = {
v ∈ V : |v| ≤ 1 − ε

}
.

For two vertices a, z in a finite weighted graph we write Reff(a, z) for the effective
electrical resistance between a and z (for a definition and introduction to electrical
resistance, see [22]). For disjoint sets A,Z of vertices, we write Reff(A,Z) for the
electrical resistance between A and Z in the graph obtained by contracting A and
Z to two vertices.

LEMMA 5.1. There exists c = c(D,η) > 0 such that for any r > 0 and ε ≤
r/10 and any ξ ∈ ∂U we have the resistance bound

R
(ε)
eff

(
Veuc(ξ, r),Veuc(ξ,2r)c

) ≥ c,

where R
(ε)
eff denote the resistance is in the graph Gε .

PROOF. We use the discrete Dirichlet principle for effective resistance; see
Exercise 2.13 of [22]. Define a function f : Vε →R by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if |x − ξ | ≤ r ,
|x − ξ | − r

r
, if |x − ξ | ∈ [r,2r],

1, if |x − ξ | ≥ 2r ,

and let us estimate the Dirichlet energy of the function. Note that f is r−1-
Lipschitz, so that for any edge (x, y) we have |f (x) − f (y)| ≤ |x − y|/r . All
edges (x, y) such that x, y ∈ Veuc(ξ, r) or x, y /∈ Veuc(ξ,2r) contribute 0 to the
energy. Any other edge (x, y) contributes at most |x − y|2/r2 to the energy. Since
|x −y|2 is proportional to the area of the faces adjacent to the edge (x, y), all these
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faces are contained in Veuc(ξ,Cr) for some C = C(D,η) < ∞, and each face has
degree at most C, we get that the energy is bounded by some constant and the
result follows. �

COROLLARY 5.2. There exist constants K = K(D,η) < ∞ and c = c(D,

η) > 0 such that for any R, r satisfying 0 < Kr ≤ R, any ε ≤ r/10 and any ξ ∈ ∂U

we have the resistance bound

R
(ε)
eff

(
Veuc(ξ, r),Vε \ Veuc(ξ,R)

) ≥ c log
R

r
,

where R
(ε)
eff denotes the resistance is in the graph Gε .

PROOF. Let K ≥ 2 be such that there are no edges (x, y) such that |x − ξ | ≤ r

and |y − ξ | ≥ Kr . Such a choice is possible by Lemma 2.2 and the fact that ξ is
an accumulation point of vertices.

Suppose first that R = K2m−1r for some integer m ≥ 1. Define sets A0 = {v :
|v − ξ | < r}, and Ai = {v : |v − ξ | ∈ [Ki−1r,Kir]}. By Lemma 2.2, there are
no edges connecting Ai to Aj for |i − j | > 1. By Lemma 5.1, we have that

R
(ε)
eff (Ai,Ai+2) ≥ c. Contracting all edges in A2i for each i (recall that by Thomp-

son’s principle [22], Chapter 2, this operation can only decrease the effective re-
sistance) and using the series law for resistance we find

R
(ε)
eff

(
Veuc(ξ, r),Vε \ Veuc(ξ,R)

) ≥ cm ≥ c′ log
R

r
.

For general R > Kr , the claim follows by monotonicity in R. �

PROPOSITION 5.3 (Random walk convergence). Let Xn be the simple random
walk on G, then Xn converges a.s. to a limit X∞ ∈ ∂U . Furthermore, the law of
X∞ has no atoms.

Consequently, for any starting point X0, we may define the harmonic measure
ω on ∂U to be the law of X∞.

PROOF OF PROPOSITION 5.3. By Lemma 2.4, for each edge e = (u, v) we
have that |v − u|2 is bounded by a constant times the area of either faces adjacent
to e. Since each face has degree at most 2π/η, this immediately gives that the
Dirichlet energy of the Euclidean location function, that is,

∑
e=(u,v) |u − v|2, is

bounded by some constant. By [4], Theorem 1.1, this implies that Xn converges
almost surely. (The theorem is stated for real valued functions, so we apply it to
each coordinate separately.) It is trivial that the limit cannot be a vertex of G, so
must be in ∂U .
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Let us now fix X0, and show that for any ξ ∈ ∂U we have P(X∞ = ξ) = 0.
We have that Reff(X0, ∂Vε) ≤ C for some C, since G is transient. By Corol-
lary 5.2 with R = |X0 − ξ |, for r small enough and any ε < r/10 we have
R

(ε)
eff (X0,Veuc(ξ, r)) ≥ c| log r| and, therefore,

P
({Xn} visits Veuc(ξ, r) before ∂Vε

) ≤ C

| log r| .
Since this estimate is uniform in ε, we learn that the probability that {Xn} ever
visits Veuc(ξ, r) is at most C| log r|−1. This bound is uniform in ε, and so holds
also for the random walk on G. Finally, X∞ = ξ implies that Veuc(ξ, r) is visited
for all r , and so P(X∞ = ξ) ≤ infr C| log r|−1 = 0. �

We now state two variations of the Harnack principle that apply to well embed-
ded graphs.

THEOREM 5.4 (Elliptic Harnack inequality). For any A > 1, there exists C =
C(D,η,A) > 0 such that for any x ∈ X and r > 0 such that d0(x, ∂U) > Ar , and
any positive, harmonic function h on Bd0(x,Ar) we have

max
y∈Bd0 (x,r)

h(y) ≤ C min
y∈Bd0 (x,r)

h(y).

THEOREM 5.5 (Boundary Harnack principle). There exists positive constants
A0,A1 and R, depending only on D and η, such that for any ξ ∈ ∂U , any r ∈
(0,R) and any two functions h1, h2 : X →R that are positive, harmonic, bounded
on Bd0(ξ,A0r), and almost surely hi(Xn) → 0 as n → ∞ for i = 1,2, we have

A−1
1 ≤ h1(x)/h2(x)

h1(y)/h2(y)
≤ A1 ∀x, y ∈ Bd0(ξ, r) ∩ X.

Theorem 5.4 follows from Theorem 3.5 of [28]. To obtain Theorem 5.5, we
use [21], Theorem 4.2. We take their Ê and E to be our E , their spaces X and Y to
be X, and their � to be X. Since in this case Ê = E Assumptions 1 and 2 of [21]
hold, and the conditions of volume doubling and the Poincaré inequality needed in
[21] are provided by Theorem 3.4 and Lemma 3.3. Finally, Lemma 2.6 shows that
� is inner uniform.

We now proceed to the proof of Theorem 1.2. It has been known since Ancona
[3] that a boundary Harnack principle such as Theorem 5.5 implies that the Martin
boundary is homeomorphic to the Euclidean boundary. The papers [1, 2, 21] all
contain results of this kind. In particular, the proof in [1] is quite robust, and trans-
lates to our setting with only minor changes. However, since the argument is both
reasonably short and illuminating, we include it for the sake of completeness.

For convenience, we consider the Martin kernels as a function of the first co-
ordinate, that is, we denote My(·) = G(·, y)/G(x0, y). Let H+ denote the set of
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positive harmonic functions h on X, normalized to have h(x0) = 1. Note that on
any locally finite connected graph, H+ is compact w.r.t. the product (pointwise)
topology. Of those, we let H+

0 denote the set of functions so that h(Xn)
a.s.→

n→∞ 0 for

any starting point X0. By the martingale convergence theorem [11], a.s. conver-
gence holds for any positive harmonic function; it is of course enough to assume
the limit is a.s. 0 for a single starting point. Finally, for ξ ∈ ∂U let us denote by Hξ

those functions h ∈ H+
0 which are bounded on X \ Bd0(ξ, r) for any r > 0. Our

immediate goal is the following.

PROPOSITION 5.6. For any ξ ∈ ∂U , the set Hξ is a singleton.

We first prove that Hξ is not empty.

LEMMA 5.7. Let yn be a sequence of vertices and suppose yn → ξ ∈ ∂U .
Then there exists a subsequence ynk

such that Mynk
converges pointwise to some

h ∈ Hξ .

PROOF. Since H+ is compact, there exist a subsequence ynk
such that Mynk

converges pointwise. For clarity, we pass to the subsequence. Let Mξ be the limit.
Let us now prove that Mξ ∈ Hξ . It is clear that Mξ is harmonic and Mξ(x0) =
1 since these are local constraints and are immediately satisfied by the limiting
procedure, so we need to show that Mξ(Xn)

a.s.→
n→∞ 0 and that Mξ is bounded outside

any neighborhood of ξ .
Recall that by the reversibility of the random walk we have

deg(x) · G(x,y) = deg(y) · G(y,x),(5.1)

and since degrees are bounded, G(x,y) and G(y,x) are equivalent up to constants.
We therefore have that

Myk
(x) � G(yk, x)

G(yk, x0)
.

Let A0 be the constant from Theorem 5.5, let r > 0 be arbitrary small such
that x0 /∈ Bd0(ξ,A0r) and let x be an arbitrary vertex satisfying x /∈ Bd0(ξ,A0r).
Define the functions h0 = G(·, x0) and h1 = G(·, x). The functions h0, h1 are pos-
itive, harmonic on X ∩ Bd0(ξ, r) and bounded above by G(x,x) and G(x0, x0),
respectively. Furthermore, both tend to 0 almost surely over the random walk since
G is a transient graph. Hence, we may apply Theorem 5.5 to them and deduce that

G(z, x)

G(z, x0)
� G(vr, x)

G(vr, x0)
,

where vr, z are any two vertices in Bd0(ξ, r) and the constants in the � do not
depend on the choice of x. Let k0 be a number so that for all k ≥ k0 we have
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yk ∈ Bd0(ξ, r) so by the previous approximate equality we get that for any k ≥ k0
we have

Myk
(x) � G(vr, x)

G(vr, x0)
� G(x, vr)

G(x0, vr)
,(5.2)

for all x /∈ Bd0(ξ,A0r) and vr a fixed vertex (its choice may depend on r). Since
G(x, vr) ≤ G(vr, vr), we learn that Myk

is bounded outside of Bd0(ξ, r) for any
r > 0 and k > k0, and we deduce the same for Mξ immediately.

Next, by Proposition 5.3 the probability that limXt = ξ is 0. We learn that
almost surely there exists r > 0 such that Xt /∈ Bd0(ξ,A0r) for all t ≥ 0. Let k0 be
as above. By (5.2), we get that almost surely for any t ≥ 0

Myk
(Xt) � G(vr,Xt)

G(vr, x0)
,

and by taking a limit k → ∞ we have that almost surely

Mξ(Xt) ≤ A
G(vr,Xt)

G(vr, x0)
,

for all t ≥ 0 where A = A(D,η) < ∞. Since G(vr,Xt) → 0 as t → ∞ almost
surely, we deduce that limMξ(Xn) = 0 almost surely, concluding the proof. �

PROOF OF PROPOSITION 5.6. We first prove that there exists A = A(D,η) <

∞ such that for any h1, h2 ∈ Hξ we have

A−1 ≤ h1(x)

h2(x)
≤ A for all x ∈ X.(5.3)

Let r > 0 be an arbitrary small number and let ξ1, ξ2 ∈ ∂U be the two boundary
points so that |ξ − ξ1| = |ξ − ξ2| = r . We appeal to Lemma 2.6 and get a curve
� : (0,L) → X satisfying the conditions of the lemma. We now use the curve to
construct balls B0, . . . ,BN for some N = N(D,η) < ∞ such that for some small
c ∈ (0,1/2) the following holds:

(1) B0 = Bd0(ξ1, r/(2A0)) and BN = Bd0(ξ2, r/(2A0)),
(2) for i = 1, . . . ,N − 1 we have Bi = Bd0(xi, cr) where xi ∈ γ and

d0(xi, ∂U) > 2cr ,
(3) Bi ∩ Bi+1 �= ∅ for i = 0, . . . ,N − 1.

We apply Theorems 5.5 and 5.4 to obtain that there exists A = A(D,η) < ∞ such
that

A−1 ≤ h1(x)/h2(x)

h1(x′)/h2(x′)
≤ A ∀x, x′ ∈

N⋃
i=1

Bi.

Indeed, the assertion for x, x′ ∈ B0 and x, x′ ∪BN is precisely Theorem 5.5. More-
over, Theorem 5.4 gives that the values of h1, h2 within B1 ∪ · · · ∪ BN−1 change
by at most a multiplicative constant.
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Fix x′ ∈ γ and note that h1(x)/h2(x) ≤ q for all x ∈ γ where q = Ah1(x
′)/

h2(x
′). Then g(x) = h1(x) − qh2(x) is harmonic and nonpositive on γ . The mar-

tingale g(Xn) stopped when hitting γ is bounded, converges to 0 if γ is not hit,
and is stopped at a negative value if γ is hit. By L1-convergence for bounded
martingales g(x) ≤ 0 everywhere, and so

A−1 ≤ h1(x)/h2(x)

h1(x′)/h2(x′)
≤ A ∀x ∈ X \ Bd0(ξ, r).

In particular, h1(x
′)/h2(x

′) ≤ Ah1(x0)/h2(x0) = A and similarly h1(x
′)/

h2(x
′) ≥ A−1. Hence, A−2 ≤ h1(x)/h2(x) ≤ A2 for all x ∈ X \ Veuc(ξ, r). Since

r > 0 was arbitrary, this gives (5.3).
Next, we show that in fact A = 1; the following argument is due to Ancona [3].

Indeed, write

c = sup
h1,h2∈Hξ ,x∈X

h1(x)

h2(x)
,

so that c ∈ [1,∞). Assume by contradiction that c > 1 and let h1, h2 ∈ Hξ . Then
h3 = (ch1 −h2)/(c − 1) is a function in Hξ so h2 ≤ ch3 which simplifies to (2c −
1)h2 ≤ c2h1. Since c2/(2c − 1) < c, we have reached a contradiction. �

PROOF OF THEOREM 1.2′ . Minimality of Mξ follows easily from Proposi-
tion 5.6, since if 0 ≤ h ≤ Mξ then h(·)/h(x0) is easily seen to be in Hξ , and so it
must equal Mξ .

Suppose yn → ξ ∈ ∂U then Proposition 5.6 and Lemma 5.7 together show that
limyn→ξ Myn(·) exists and is the unique function in Hξ . Thus, convergence of yn

implies convergence of Myn .
Next, note that if ξ �= ξ ′ are two points on ∂U , then Mξ �= Mξ ′ . Indeed,

Mξ is an unbounded function, since otherwise, by the bounded martingale con-
vergence theorem we would get that E limMξ(Xn) = Mξ(x0) = 1, contradict-
ing the fact that Mξ(Xn) → 0 almost surely. However, Mξ is bounded away
from ξ and so must be unbounded in any neighborhood of ξ . It follows that
Mξ �= Mξ ′ .

Now, suppose we have a convergent sequence Myn → M∞ for some sequence
yn. Since U is compact, there is a convergent subsequence ynk

→ ξ . If ξ is not
in ∂U then eventually ynk

= ξ . Otherwise, Mynk
→ Mξ , and in either case M∞ =

Mξ . Since ξ is determined by Mξ , we have that yn → ξ , completing the proof
of (1).

Finally, we show that the map ξ 	→ Mξ(·) is a homeomorphism. It is invertible,
so we need continuity of the map and its inverse. Suppose ξn → ξ are points in
∂U . For an arbitrary x, we may find yn so that d(yn, ξn) < 1

n
, and also |Myn(x) −

Mξn(x)| ≤ 1
n

. We have that yn → ξ and, therefore, Myn(x) → Mξ(x), and so also
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Mξn(x) → Mξ(x). Similarly, if Mξn → Mξ we can diagonalize to find yn with
d(yn, ξn) < 1

n
so that Myn → Mξ . By (1), we have yn → ξ and, therefore, ξn → ξ .

�

PROOF OF THEOREM 1.1′ . We appeal to general properties of the Martin
boundary; see Chapter 24 of [31] for a concise introduction. This theory implies
that any positive harmonic function h can be represented as an integral on the Mar-
tin boundary M with respect to some measure. When h is bounded, this measure
is absolutely continuous with respect to the exit measure on the Martin boundary,
hence it can be written as

h(x) =
∫
M

M(x)f (M)dνx0(M),(5.4)

where νx0 is the law of limn MXn(·) starting from x0 and f : M → R is some
bounded measurable function; see Theorem 24.12 in [31]. Theorem 24.10 in [31]
states that the Radon–Nikodym derivative of νx with respect to νx0 is the func-
tion from M to R mapping each M ∈ M to M(x). Hence, we may rewrite (5.4)
as

h(x) =
∫
M

f (M)dνx(M).

Now, apply Theorem 1.2 and let ι : ∂U → M be the homeomorphism ξ 	→ Mξ .
Theorem 1.2 implies that the image under ι of the random walk’s exit measure on
∂U coincides with νx , completing our proof. �

Acknowledgement. We are grateful to Dmitry Chelkak for useful discussions.
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