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MIXING TIME AND CUTOFF FOR THE ADJACENT
TRANSPOSITION SHUFFLE AND THE SIMPLE EXCLUSION

BY HUBERT LACOIN

IMPA—Instituto Nacional de Matemática Pura e Aplicada

In this paper, we investigate the mixing time of the adjacent transposition
shuffle for a deck of N cards. We prove that around time N2 logN/(2π2), the
total variation distance to equilibrium of the deck distribution drops abruptly
from 1 to 0, and that the separation distance has a similar behavior but with
a transition occurring at time (N2 logN)/π2. This solves a conjecture for-
mulated by David Wilson. We present also similar results for the exclusion
process on a segment of length N with k particles.
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1. Introduction.

1.1. A brief history of card shuffling. Let us consider the following way of
shuffling a deck of N cards: at each step, with probability 1/2 we interchange the
position of a pair of adjacent cards chosen uniformly at random (among the N − 1
possible choices), and with probability 1/2 we do nothing. How many steps do we
need to perform until the deck has been shuffled?

Even though this shuffling method may be of very little practical use for card
players (indeed the usual rifle-shuffles allow a much faster mixing of the deck
if executed properly; see [2]), this question has raised a considerable interest in
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the domain of Markov chains for a number of years, since Aldous [1], Section 4,
proved that O(N3 logN) steps were sufficient to mix the deck and that �(N3)

steps were necessary. This appears in [12], Chapter 23, in a short list of open
problem concerning Markov chains mixing times.

The first reason that can be given for this interest is that it is that allowing only
local moves (i.e., adjacent transpositions) adds a constraint which makes the prob-
lem more challenging than the usual transposition shuffle; see [5] for a computa-
tion of the mixing time by algebraic methods, [14] for a simpler probabilistic proof
and [3] for a recent paper on the subject with additional results on the evolution of
the cycle structure of the permutation.

The second reason is that shuffling with a geometrical constraint is a reasonable
toy-model to describe the relaxation of a low density gas. Consider N (labeled)
particles in a box with erratic moves and local interactions. We can now ask our-
selves a difficult question: how much time is needed for the system to forget all
the information about its initial configuration? Of course the adjacent transposi-
tion is an over-simplification of the problem because it is one dimensional, and the
only motion that particles (or cards) can make is by exchanging their position with
a neighbor, but a solution to the toy problem might give an idea of the qualitative
behavior of the system. This connection with particle systems becomes more obvi-
ous when the simple exclusion process (which corresponds to the case of unlabeled
particles) is introduced in the next section.

The last substantial progress toward a solution prior to the writing of this paper
was by Wilson [19], who proved that 1

π2 N3 logN steps where necessary and that
2
π2 N3 logN where sufficient, and conjectured that the first was the correct answer.
In this paper we solve this conjecture by showing that the pack is mixed after
1
π2 N3 logN(1 + o(1)) steps.

For notational convenience all our results are proved for the continuous time
version of the Markov chain and the mixing time presented in the theorems differs
by a factor 2N . We show how to prove the result in discrete time is the Appendix B.

1.2. The exclusion process. A significant part of the paper is devoted to the
study of the mixing of the exclusion process, which is a projection of the adjacent
transposition shuffle. The simplest way to describe it is the following: consider a
segment with N sites, and place k ∈ {1, . . . ,N − 1} particle on this segment, with
at most one particle per site.

We consider the following dynamics: each particle jumps independently with a
rate equal to the number of empty sites in its neighborhood, the site on which it
jumps being chosen uniformly at random between these sites (equivalently it jumps
with rate one on each of the empty neighbors; see Figure 1 and the next section
for a more normal description). We want to know how long we must wait to come
close to the equilibrium state of the particle system, for which all configurations
are equally likely.
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This model too has a long history and can be considered in a more general setup,
with an N ×N grid instead of a segment (or a higher dimensional cube, or a more
general graph), we refer to [13], Section VIII, for a classical introduction. The
problem of computing the mixing time of the exclusion process has also been well
developed in the case of the complete graph Z

d , grid, torus and of general graphs;
see [10, 15, 16] and references therein.

2. Models and results.

2.1. The AT shuffle and the total variation cutoff. Let us now introduce card
shuffles in a mathematical framework. The adjacent transposition shuffle (or AT
shuffle) is a continuous time Markov chain on the symmetric group SN . We con-
sider that we have a deck of N cards that are labeled from 1 to N . We number the
positions of the cards from top to bottom saying that the top card has position 1
and the bottom one N . To an array of cards, we associate a permutation σ saying
that σ(x) = y if the xth position in the pack is occupied by the card labeled y. Our
chain selects a card uniformly at random among those in position 1 to N − 1 and
exchanges its position with the one that is immediately below it.

More formally, we let (τx)1≤x≤N−1 denote the nearest neighbor transpositions
(x, x + 1) (note that the set {τx |1 ≤ x ≤ N − 1} is a generator SN in the group-
theoretical sense). The generator L of the AT shuffle is defined by its action on the
functions of R� as follows:

(Lf )(σ ) :=
N−1∑
x=1

f (σ ◦ τx) − f (σ).(2.1)

Let (σt )t≥0 denote trajectory of the Markov chain with initial condition σ0 = 1
(the identity) and Pt denote the law of distribution of the time marginal σt . Given
a probability distribution ν, we define P ν

t to be the marginal distribution of σν
t , the

Markov chain starting with initial distribution ν.
This is a simple example of dynamics where geometry plays a role (as opposed

to mean field models): a given card can only interact with its neighbors.
We write μ for the uniform measure on SN (we do not underline the dependence

in N in the notation when there is no risk of confusion). As the transpositions
(τx)

N−1
x=1 generate the group SN , this Markov chain is irreducible, and μ is the

unique invariant probability measure. Hence, for N fixed, when t tends to infinity
P ν

t converges to μ for any initial probability distribution, and for this reason we
refer to μ as the equilibrium measure.

We want to study properties of the relaxation to equilibrium of the Markov chain
or in other words the way in which Pt converges to μ when t → ∞, for large
values of N . We investigate the asymptotic behavior the total variation distance to
equilibrium which is perhaps the most natural metric for probability measures.
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If α and β are two probability measures on a common space �, it is defined by

‖α − β‖TV := 1

2

∑
ω∈�

∣∣α(ω)− β(ω)
∣∣= ∑

ω∈�

(
α(ω) − β(ω)

)
+,(2.2)

where x+ = max(x,0) is the positive part of x. An equivalent definition is

‖α − β‖TV = max
A⊂�

α(A) − β(A).(2.3)

We will also sometimes use the following alternative characterization of the dis-
tance: we say that π is a coupling of α and β if π is a probability law on � × �

for which the projected laws on the first and second marginal are respectively α

and β .

LEMMA 2.1 ([12], Proposition 4.7). We have

‖α − β‖TV := min
{
π(ω1 
= ω2)|π is a coupling of α and β

}
.(2.4)

We define the distance to equilibrium of the Markov chain

dN(t) := ‖Pt − μ‖TV.(2.5)

By symmetry of SN , the distance to equilibrium does not depend on the initial
condition. The reader can further check that

dN(t) = max{ν probability on SN }
∥∥P ν

t −μ
∥∥

TV.

For a given ε ∈ (0,1), we define the ε-mixing-time to be the time needed for
the system to be at distance ε from equilibrium

T N
mix(ε) := inf

{
t ≥ 0|dN(t) ≤ ε

}
.(2.6)

Our first result states that for the first order asymptotics of T N
mix(ε) for N large

does not depend on ε, meaning that on a certain time scale, the distance to equilib-
rium drops abruptly from 1 to 0 in a very short time. This phenomenon has been
conjectured or proved for a few types of dynamics and has been called cutoff; this
expression was coined in the seminal paper [5]; see also [12], Chapter 18, for more
on this notion. We further identify the exact location of the cutoff.

THEOREM 2.2. For the adjacent transposition shuffle we have for every
ε ∈ (0,1),

lim
N→∞

2π2T N
mix(ε)

N2 logN
= 1.(2.7)
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The mixing time for the AT shuffle has been the object of investigation since Al-
dous [1], Section 4, proved that one had to wait a time at least of order N2 (more
precisely of order N3 steps in the discrete setup he considered; see the Introduc-
tion) to reach equilibrium. The last significant progress was made by Wilson in
[19], where path coupling techniques developed in [4] were used to prove that the
mixing time was of order N2 logN .

He proved that for any given ε,

1

2π2 N2 logN
(
1 + o(1)

)≤ T N
mix(ε) ≤

1

π2 N2 logN
(
1 + o(1)

)
,

and predicted that the lower bound was sharp. Our result brings this prediction to
a rigorous ground and answers the original questions of Aldous [1].

2.2. The separation cutoff. Total variation is not the only kind of distance in
which one might be interested. Another commonly used distance in the study of
convergence to equilibrium is the separation distance (which is not a metric), de-
fined by

dS(α,β) := max
x∈�

(
1 − α(x)

β(x)

)
.

Another notion of distance to equilibrium can be derived from this distance. We
define

dN
S (t) := dS(Pt ,μ) = max{ν probability on SN }dS

(
P ν

t ,μ
)
.

For ε we define the separation mixing time as

T N
sep(ε) := inf

{
t ≥ 0|dN

S (t) ≤ ε
}
.(2.8)

We prove that cutoff also occurs for the separation distance, but at a time twice
as large.

THEOREM 2.3. For the adjacent transposition shuffle we have for every
ε ∈ (0,1),

lim
N→∞

π2T N
sep(ε)

N2 logN
= 1.(2.9)

This result solves another conjecture by Wilson (see [19], Table 1) and improves
both the best previous lower bound and upper bound by a factor 2.
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2.3. The simple exclusion process. The exclusion process is the simplest lat-
tice model for particles with hardcore interaction. Consider the segment [0,N] as
being divided in N intervals of unit size. We identify the interval [x − 1, x], with
x ∈ {1, . . . ,N}, and call each interval a site. Each of these sites has two possible
states: either it is empty or it contains a particle.

When considering the exclusion process with k particles, the state space is de-
fined by

�N,k =
{
γ ∈ {0,1}N

∣∣∣ N∑
x=1

γ (x) = k

}
.(2.10)

The simple exclusion process on the segment [0,N] is a the continuous-time
Markov chain on �N,k where each of the k particles jump to the left and to the
right neighboring site with rate one whenever these sites are empty. An equivalent
(but maybe less physical) description of the process is to say that the content of
each pair of neighboring sites gets exchanged with rate one. To be more formal,
note that SN naturally acts on �N,k . For σ ∈ SN , γ ∈ �N,k , one can define

σ · γ (x) := γ
(
σ(x)

)
.(2.11)

The generator of the simple exclusion on the segment can be written as follows:

(Lf )(γ ) :=
N−1∑
x=1

f (τx · γ ) − f (γ ),(2.12)

where τx denotes the adjacent transposition (x, x + 1). The equilibrium measure
of this chain process is the uniform measure on �N,k that we call μk or μ when
there is no possible confusion. We write (γ

ξ
t )t≥0 for the Markov chain starting

from ξ ∈ �N,k . We set also P
ξ
t to be the law of the time marginal γ

ξ
t . We define

the distance to equilibrium at time t , for total variation distance and separation
respectively to be equal to

dN,k(t) := max
ξ∈�N,k

∥∥P ξ
t −μ

∥∥
TV = max{ν probability on �N,k}

∥∥P ν
t − μ

∥∥
TV,

(2.13)
d

N,k
S (t) := max

ξ∈�N,k

dS

(
P

ξ
t ,μ

)= max{ν probability on �N,k}
dS

(
P ν

t ,μ
)
.

Note that contrary to what happens for the AT shuffle, the distance ‖P ξ
t − μ‖TV

depends on the initial condition ξ as there is no symmetry. The respective mixing
times are defined by

T
N,k
mix (ε) := inf

{
t ≥ 0|dN,k(t) ≤ ε

}
,

(2.14)
T N,k

sep (ε) := inf
{
t ≥ 0|dN,k(t) ≤ ε

}
.
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THEOREM 2.4. For any ε > 0, given a sequence k(N) which is such that both
k and N −k tend to infinity, we have the following asymptotics for the mixing time:

lim
N→∞

2π2T
N,k
mix (ε)

N2 log min(k,N − k)
= 1.(2.15)

If furthermore we have

lim
N→∞

log min(k,N − k)

log logN
=∞,(2.16)

then

lim
N→∞

π2T N,k
sep (ε)

N2 log min(k,N − k)
= 1.(2.17)

In this case also the lower bound for T
N,k
mix (ε)

T
N,k
mix (ε) ≥ 1

2π2 N2 log min(k,N − k)
(
1 + o(1)

)
,

corresponds to [19], Theorem 4.

REMARK 2.5. The assumption on k for the separation mixing time is purely
technical, and we do not believe it to be necessary. As exposed in the next section,
the upper bound

lim sup
N→∞

π2T N,k
sep (ε)

N2 log min(k,N − k)
≤ 1

is a consequence of (2.15) and thus is valid whenever both k and N − k tend to
infinity.

2.4. Connection between exclusion and AT shuffle and between separation and
total variation. There is a natural projection for the set of permutations onto the
set of particle configurations

SN → �N,k,
(2.18)

σ �→ γσ .

It gives to the card labeled from 1 to k the role of particles and to those labeled
from k + 1 to N the role of empty sites (see Figure 1) with

γσ (x) :=
{

1 if σ(x) ≤ k,
0 if σ(x) > k.

(2.19)
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FIG. 1. On the first line, a permutation with N = 15 is represented as with a possible composition
by an adjacent transposition (double arrow). The second line gives the image of the permutation by
the mapping (2.18) for k = 8, the adjacent transposition of the first line corresponds to a particle
jump. The third line gives the lattice paths version of the particle system: each particle corresponds
to an up step and each empty site to a down step. When a particle jumps, a local extremum of the
path is “flipped.” This lattice path correspondence is used in the construction of σ̃ [equation (3.1)]
and η [equation (6.1)].

With this mapping, the AT shuffle (σt )t≥0 is mapped on the exclusion process
[this is a simple consequence of (2.12)]. As the total variation distance shrinks with
projection, we have [recall (2.5) and (2.13)] for all k ∈ {1, . . . ,N − 1},

dN,k(t) ≤ dN(t) ∀t ≥ 0,
(2.20)

T
N,k
mix (ε) ≤ T N

mix(ε) ∀ε ∈ (0,1).

Similar inequalities are valid for the separation distance. For these reasons, the
lower bound asymptotics for the mixing time in Theorems 2.2 and 2.3 are implied
by the lower bound asymptotics in Theorem 2.4 for k = N/2, and the upper bound
in Theorem 2.4 for k = N/2 is implied by the upper bound in Theorem 2.2.

Furthermore, there exists a general comparison inequality for the total variation
distance and separation distance for reversible Markov chains (see, for instance,
[12], Lemma 19.3),

dS(2t) ≤ 4d(t).(2.21)

This implies

T N
sep(ε) ≤ 2T N

mix(ε/4) and T N
sep(ε) ≤ 2T N

mix(ε/4),

the analogous inequality being valid for the exclusion process. In view of this and
of the bounds proved in [19], to prove Theorems 2.2, 2.3 and 2.4 it is sufficient to
prove the following statements:
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• The sharp asymptotic upper bound on the mixing time of the AT shuffle

T N
mix(ε) ≤

1

2π2 N2 logN
(
1 + o(1)

)
.

• A sharp asymptotic lower bound on the mixing time for the separation distance
for the exclusion process

T N,k
sep (ε) ≥ 1

π2 N2 log min(k,N − k)
(
1 + o(1)

)
.

The case k = N/2 gives the lower bound for the AT shuffle.
• A sharp asymptotic upper bound on the mixing time of the exclusion process

T
N,k

mix (ε) ≤ 1

2π2 N2 log min(k,N − k)
(
1 + o(1)

)
.

For the sake of completeness, we will also provide a short proof for the lower
bound on the mixing time of the exclusion process

T
N,k
mix (ε) ≥ 1

2π2 N2 log min(k,N − k)
(
1 + o(1)

)
.

2.5. Open questions.

2.5.1. The cutoff window. Our results only identify the main asymptotic term
for the mixing time, and a natural question would be how to obtain a more com-
plete asymptotic. In particular, one would like to know on what time scale around
Tmix(1/2) the total variation distance drops from 1 to zero [i.e., e.g., the asymp-
totic behavior of Tmix(3/4) − Tmix(1/4)]. This time scale is usually referred to
as the cutoff window, and from heuristics of Wilson [19], Section 10, the natural
conjecture would be that it is of order N2.

With some tedious effort, an upper bound on the cutoff window could be derived
from our proof, but there are some serious reasons why we cannot push this up to
the optimal order N2.

Our proofs rely very much on the graph structure which is considered, that is,
the segment {1, . . . ,N}, and in particular on the fact that it is totally ordered. Hence
a natural challenge is to try to generalize the method for the

√
N × √

N grid (or
higher dimensional ones) for which most of the monotonicity tool cannot be used,
or at least, not in the manner it is used in the present paper. In fact, even the case
of the circle Z/NZ is a challenging one.

REMARK 2.6. Since the competition of this work, we have developed an alter-
native approach to tackle the problem of the mixing time for the exclusion process
on the circle [9]. While the method is slightly more robust and, in particular, does
not depend on monotonicity consideration, it does not permit us to treat the case
of the adjacent transposition shuffle. On the positive side, it gives a sharp result on
the cutoff window [which is shown to be indeed O(N2)].
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2.6. Organization of the paper. A key ingredient in the proof of all our results
is the use of mononicity: we introduce a natural order on our state space which is
preserved by the dynamics, and then use order-preservation to get extra informa-
tion about the convergence to equilibrium.

Hence an important part of the paper, Section 3, is dedicated in introducing
the order, and various properties of order preservation on the symmetric group.
In Section 4, we introduce further important technical tools: we show how our
processes are related to the heat equation and exhibit a weaker upper bound on the
mixing time, which is used in the proof as an input. These two preliminary sections
are absolutely crucial to understanding the rest of the paper, though the proof of
the results presented in them might be skipped on a first reading. Some of the more
technical proofs of these sections are postponed to Appendix A.

In Section 5 we prove an upper bound for the mixing time of the AT shuffle
(which together with the lower bound of [19] implies Theorem 2.2). In Section 7
we prove the lower bound result on the separation mixing time and total variation
mixing time for the exclusion process, from which we deduce Theorem 2.3 and
half of Theorem 2.4. In Section 8, we prove an upper bound for the mixing time of
the exclusion process for an arbitrary number of particles to complete the proof of
Theorem 2.4.

2.7. Notation. Let us introduce some notation that we will repeatedly use in
the paper.

We use := to define new quantities (and in a few cases, =: when the quantity
which is defined is on the right-hand side).

If ν is a probability distribution on SN (or �N,k) and σ ∈ SN , we write ν(σ ) for
ν({σ }).

We write ν(f ) or ν(f (σ )) for the expected value of f (σ),

ν(f ) := ∑
σ∈SN

f (σ )ν(σ ).

Expectations are denoted by E when the probability is denoted by P.
We write ν

μ
for the probability density

σ �→ ν(σ )

μ(σ)
.

Finally, we say that an event or rather a family of events (AN)N≥0 holds with
high probability (and write w.h.p.) if

lim
N→∞P(AN) = 0.
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3. A tool box to take advantage of monotonicity. Putting an order on the set
of permutations might seem a strange idea at first glance because of the complete
symmetry of SN . What we do to break that symmetry is we choose to give a special
role to the identity which we fix to be the maximal element. Then the idea is to say
that σ is larger than σ ′ if it is “closer to the identity” in a certain sense.

However, in order to give a simple definition of our order on SN , we must first
introduce a mapping that transforms permutations into discrete surfaces.

3.1. Mapping permutations onto discrete surfaces. The following mapping
is inspired by [19], Figure 3. We associate with each σ ∈ SN a function
σ̃ : {0, . . . ,N}2 →R, defined as follows:

σ̃ (x, y) :=
x∑

z=1

1{σ(z)≤y} − xy

N
.(3.1)

The term xy/N is subtracted so that σ̃ (x, y) has zero mean under the equilibrium
measure. The map is injective. Indeed,

σ̃ (x, y)− σ̃ (x, y − 1) − σ̃ (x − 1, y)+ σ̃ (x − 1, y − 1) + 1

N
= 1{σ(x)=y}.

We identify the image set {σ̃ |σ ∈ SN } with SN as it brings no confusion. This
mapping induces a natural (partial) order relation on SN defined by

σ ≤ σ ′ ⇔ ∀x, y, σ̃ (x, y) ≥ σ̃ ′(x, y).

The identity (which we denote by 1) is the maximal element of (SN,≥), and
the permutation σmin defined by

∀x ∈ {1, . . . ,N}, σmin(x) = N + 1 − x(3.2)

is the minimal one.

3.2. The graphical construction. We present now a construction of the dy-
namics which allows us to construct all the trajectories σ

ξ
t starting from all initial

conditions ξ ∈ SN simultaneously (a grand coupling and has the property of con-
serving the order).

We associate with each x ∈ {1, . . . ,N − 1} an independent Poisson processes
(T x) = (T x

n )n≥0 which has intensity two. In other words T x
0 = 0 for every x and(

T x
n − T x

n−1
)
x∈{1,...,N−1},n≥1

is a field of i.i.d. exponential variables with mean 1/2. We refer to T =
(T x)1≤x≤N−1 as the clock process. Note that the set of values taken by the clock
processes is almost surely a discrete subset of R.

Let (Ux
n )x∈{1,...,N−1},n≥1, be a field of i.i.d. Bernoulli random variables (Ux

n ∈
{0,1}) with parameter one half, which is independent of T .
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Now given T and U , we construct, in a deterministic fashion (σ
ξ
t )t≥0, the tra-

jectory of the Markov chain starting from ξ ∈ SN . The trajectory (σ
ξ
t )t≥0 is càdlàg

and is constant on the intervals where the clock process is silent.
When a clock rings, that is, at time t = T x

n (n ≥ 1), σ
ξ
t is constructed by updat-

ing σ
ξ

t− as follows:

• if either Ux
n = 1 and σt−(x + 1) ≤ σt−(x), or Ux

N = 0 and σt−(x + 1) ≥
σt−(x + 1), we exchange the values of σt−(x) and σt−(x + 1);

• in the other cases, we do nothing.

In other words, when the clock process associated to x rings, we sort the cards
in position x and x + 1 if Un

x = 1, and we reverse sort them if Ux
i = 0. It is

straightforward to check that this construction gives a Markov chain with generator
L described in (2.1).

The effect of the update on σ̃ is the following: for each y ∈ {1, . . . ,N − 1}, if
(σ̃t−(z, y))z∈{1,...,N−1} presents a local minimum at z = x and Ux

n = 1, then it is
turned into a local maximum [σ̃t (x, y) = σ̃t−(x, y) + 1]. On the contrary if it has
a local minimum at z = x and Ux

n = 0, then σ̃t (x, y) = σ̃t−(x, y) − 1. We call this
operation an update of σ at coordinate x.

The fact that the order is conserved by this construction is not a new result (see,
for instance, [19]), but we choose to include a short proof here for the sake of
completeness.

PROPOSITION 3.1. Let ξ ≥ ξ ′ be two elements of SN . With the graphical con-
struction above, we have

σ
ξ
t ≥ σ

ξ ′
t .(3.3)

PROOF. The only thing to check is that the order is conserved each time a the
clock process rings; that is, for every (n, x) and t = T x

n ,

σ
ξ

t− ≥ σ
ξ ′
t− ⇒ σ

ξ
t ≥ σ

ξ ′
t .

The right-hand side in the above relation is satisfied if we have

∀y ∈ {1, . . . ,N − 1}, σ̃
ξ
t (x, y) ≥ σ

ξ ′
t (x, y)

because the other coordinates are not changed at time t .

Let us fix y. Note that when σ̃
ξ

t−(x, y) > σ̃
ξ ′
t−(x, y), there is nothing to prove

because it is not possible for σ̃ ξ to jump down while σ̃ ξ ′
jumps up. For this reason,

we might assume that

σ̃
ξ

t−(x, y) = σ̃
ξ ′
t−(x, y).
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If Ux
n = 1, we just have to check that if σ̃

ξ ′
t (x, y) jumps up, so does σ̃

ξ
t (x, y).

This is easy because if σ̃
ξ ′
t−(·, y) presents a local minimum at x, then so does

σ̃
ξ

t−(·, y), which is situated above.

If Ux
n = 0, for the same reasons, if σ̃

ξ
t (x, y) jumps down so does σ̃

ξ
t (x, y), and

we are done. �

3.3. Stochastic ordering and its preservation. Let us recall in this section the
definition of stochastic dominance for probability measures.

Let α and β be two probability measures on a finite ordered set �. We say that
α stochastically dominates β and write α � β if one can find a coupling π , that is,
a probability on � × � such that the first marginal has law α and the second β ,
which satisfies

ω1 ≥ ω2, π almost surely.

We say that a function f on � is increasing if

∀ω,ω′ ∈ �, ω ≥ ω′ ⇒ f (ω) ≥ f
(
ω′).

For an ordered set �, we say that a subset A is increasing if the function 1A is
increasing or equivalently if

∀ω ∈ A, ω′ ≥ ω ⇒ ω ∈ A.(3.4)

Recall the notation α(f ) for the expectation of f (ω) with respect to α. The
Kantorovic duality lemma (see, e.g., [18], Theorem 5.10, item (i)) provides the
following equivalent characterization of stochastic domination:

LEMMA 3.2. Consider α and β two probability measures on a finite ordered
set �. The following statements are equivalent:

• α dominates β;
• for all increasing functions f defined on �,

α(f ) ≥ β(f ).

A consequence of Proposition 3.1 is that if ν and ν′ are two probability measures
on SN , then

ν � ν′ ⇒ ∀t ≥ 0, P ν
t � P ν′

t .(3.5)

Let us now mention a simple tool to produce stochastic couplings.

LEMMA 3.3. Let � be a finite set and (ω1
t )t≥0 and (ω2

t )t≥0 be two stochastic
processes on �. Assume that the distribution of ω1

t and ω2
t respectively converge

toward two probability measures α and β when t tends to infinity.
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If one can find a coupling of the processes such that almost surely

∀t ≥ 0, ω1
t ≥ ω2

t ,

then

α � β.

PROOF. Let πt be the law of (ω1
t , ω

2
t ) under the coupling given by the assump-

tion of the lemma. For all t ≥ 0, πt is supported by

D = {(ω1,ω2) ∈ �2|ω1 ≥ ω2}.
As πt lives on a compact space (for the topology induced by the total variation

distance), it has a least one limit point which we call π and is supported on D. The
measure π provides a coupling proving α � β . �

3.4. Correlation inequalities and the FKG inequality. The preservation of
monotonicity by the dynamics will be used in various ways over the course of
our proof. One of the important tools we will use are the correlation inequalities,
which roughly means that conditioning μ on an increasing event makes all the
other increasing events more likely. First let us recall a classical result for proba-
bility laws on R.

LEMMA 3.4. Let f and g be two increasing real functions of a real variable
and X be a real random variable of law P . We have

E
[
f (X)g(X)

]≥ E
[
f (X)

]
E
[
g(X)

]
.(3.6)

PROOF. Consider X′ an independent copy of X, and expand the inequality
E[(f (X) − f (X′))(g(X) − g(X′))] ≥ 0. �

Inequality (3.6) is not true in general for all the notions of partial order,
but a generalization of it exists for “distributive lattices,” the so called Fortuin–
Kasteleyn–Ginibre or FKG inequality, introduced and proved in [7].

Unfortunately, SN is not a distributive lattice. More precisely, if one defines for
σ and σ ′ in SN , min(σ̃ , σ̃ ′) and max(σ̃ , σ̃ ′) by

min
(
σ̃ , σ̃ ′)(x, y) := min

(
σ̃ (x, y), σ̃ ′(x, y)

)
,

(3.7)
max

(
σ̃ , σ̃ ′)(x, y) := max

(
σ̃ (x, y), σ̃ ′(x, y)

)
,

then min(σ̃ , σ̃ ′) and max(σ̃ , σ̃ ′) are not necessarily images of elements in SN .
However, the proof of [8] can be adapted to our case.

PROPOSITION 3.5 (The FKG inequality for permutations). For any pair of
increasing functions f and g defined on SN ,

μ
(
f (σ)g(σ )

)≥ μ
(
f (σ)

)
μ
(
g(σ)

)
.(3.8)

The proof is postponed to Section A.1.
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3.5. The censoring inequality. The censoring inequality in a result established
by Peres and Winkler [17], Theorem 1.1, for “monotone systems” is a notion which
is a slight generalization of Glauber dynamics for spin systems with totally a or-
dered spin space.

What the inequality says is that canceling some of the spins updates has the
effect of delaying the mixing. Unfortunately, the AT shuffle is NOT a monotone
system in the Peres/Winkler sense. However, we can adapt the proof of the result to
our setup. Before stating the result, we introduce some terminology and notation.
A censoring scheme is a càdlàg function

C :R+ → P
({1, . . . ,N − 1}),

where P(�) is the set of subsets of �.
The censored dynamics with scheme C is the dynamics obtained from the graph-

ical construction of Section 3.2, except that if T x rings at time t , the update is
performed if and only if x ∈ C(t).

It is quite natural to think that each time a clock rings, it brings σt “closer to
equilibrium” and hence that censoring will only make convergence to the equilib-
rium slower. The censoring inequality establishes that this is true if one starts from
a measure whose density is an increasing function.

Given censoring scheme C and ν a probability distribution on SN , let P
ν,C
t de-

note the distribution of σt , which has performed the censored dynamics up to time
t starting with initial distribution ν. We say that a probability law ν on SN is in-
creasing if σ �→ ν(σ ) is an increasing function of σ .

PROPOSITION 3.6 (From [17], Theorem 1.1). If ν is increasing, then for all
t ≥ 0, ∥∥P ν,C

t −μ
∥∥≥ ∥∥P ν

t − μ
∥∥.(3.9)

The proof is postponed to Section A.2
The censoring inequality has been used in a variety of contexts to bound the

mixing times of Markov chains. The strategy is usually to cook up a censoring
scheme which allows one to have better control over where the dynamics goes
without slowing it down to much. We refer to the introduction of [17] for numerous
applications of this tool.

3.6. Projection and monotonicity. In our proof we sometimes have to work
with projections of σ̃ on one or a few coordinates. In this section we show that if
ν is an increasing probability measure on SN , then its projections have increasing
densities with respect to the projections of the equilibrium measure.

For i ∈ {0, . . . ,K}, we set

xi := �iN/K�.(3.10)
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We define σ̂ , the semi-skeleton of σ ∈ SN defined on {0, . . . ,N} × {0, . . . ,K}, by

σ̂ (x, j) := σ̃ (x, xj ).(3.11)

We call ŜN the set of admissible semi-skeletons (the image of SN by this transfor-
mation). We define the skeleton σ̄ ∈R

{0,...,K}2
of a permutation σ ∈ SN to be(

σ̄ (i, j)
)
0≤i,j≤K := (σ̃ (xi, xj )

)
0≤i,j≤K.(3.12)

We call

S̄N := {σ̄ |σ ∈ SN }
the set of admissible skeletons. We equip S̄N with the natural order

σ̄ ≥ σ̄ ′ ⇔ (∀i, j ∈ {0, . . . ,K}, σ̄ (i, j) ≥ σ̄ ′(i, j)
)
,

and do the same for ŜN . Given ν, a probability measure on SN , we write ν̄ for the
image measure on S̄N of ν by the skeleton projection and ν̂ for the image measure
of the semi-skeleton. We write ν̄i,j for the image measure of ν by the projection
σ �→ σ̄ (i, j). In particular μ̄ and μ̄i,j denote the projections of the equilibrium
measure.

REMARK 3.7. For N = 52 and K = 2, the semi-skeleton encodes the posi-
tions of the red cards in the decks, while the skeleton (which is one dimensional)
indicates the number of red cards in the first half of the pack. Note that while
(σ̂t )t≥0 is a Markov chain, (σ̄t )t≥0 is not.

PROPOSITION 3.8 (Preservation of monotonicity by projection).

(i) Consider σ̄ 1, σ̄ 2 ∈ S̄N . If σ̄ 1 ≥ σ̄ 2, then

μ
(·|σ̄ = σ̄ 1)� μ

(·|σ̄ = σ̄ 2).(3.13)

(ii) Given (i, j) ∈ {0, . . . ,K}2 and z1 ≤ z2, two admissible values for σ̄ (i, j), we
have

μ
(·|σ̄ (i, j) = z1

)� μ
(·|σ̄ (i, j) = z2

)
.(3.14)

(iii) If ν an increasing probability measure on SN , then the density ν̄/μ̄ is an
increasing function on S̄N .

(iv) If ν an increasing probability measure on SN , then ν̄i,j /μ̄i,j is an increasing
function on the set of admissible value for σ̄ (i, j).

The proof is postponed to Section A.3.

4. Some additional tools. In this section we present a connection between
the evolution of σ̃ and the heat equation, which is an essential ingredient of the
proof, some nonoptimal estimates on the mixing time, which will use as an input
in the proof, and a technical result to decompose the total variation distance.
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4.1. Connection with the heat equation. If one follows the motion of one card
only, we see a nearest neighbor symmetric random walk on the set {1, . . . ,N}.
This indicates a connection between the AT shuffle and diffusions. We also find
this connection when looking at the evolution of the mean σ̃t (x, y).

As observed during the graphical construction, the height σ̃t (x, y) can only
jump down when σ̃t (·, y) presents a local maximum at x, and up when it presents
a local minimum. In each case, this happens with rate one. When computing the
expected drift of σ̃t (x, y), this gives

∂tE
[
σ̃t (x, y)(t)

]= E[1{σ̃t (x,y)>max(σt (x−1,y),σ̃t (x+1,y))}
− 1{σ̃t (x,y)<min(σt (x−1,y),σ̃t (x+1,y))}](4.1)

= E
[
σ̃t (x − 1, y)+ σ̃t (x + 1, y)− 2σ̃t (x, y)

]
,

where the last equality follows from the definition of σ̃ . Hence the function f

defined by { {0, . . . ,N}2 ×R+ →R,

(x, y, t) �→ E
[
σ̃t (x, y)

](4.2)

is the solution of the one-dimensional discrete heat equation⎧⎨⎩
∂tf = �xf on {1, . . . ,N − 1} ×R+,

f (0, t) = f (N, t) = 0,

f (x, y,0) = σ̃0(x, y),

(4.3)

where �x denotes the discrete Laplacian acting on the x coordinate

�xf (x, y, t) = f (x + 1, y, t)+ f (x − 1, y, t)− 2f (x, y, t).

LEMMA 4.1. For all σ0 ∈ SN and t ≥ 0 we have

max
x∈{0,...,N}E

[
σ̃t (x, y)

]≤ 4 min(y,N − y)e−λN t ,(4.4)

where

λN := 2
(

1 − cos
(

π

N

))
= π2

N2

(
1 + o(1)

)
.

In particular,

max
(x,y)∈{0,...,N}2

E
[
σ̃t (x, y)

]≤ 2Ne−λN t .(4.5)

For σ0 = 1 we have

E
[
σ̃t (x, y)

]≥ min(y,N − y)

π
sin
(

πx

N

)
e−λN t .(4.6)

The proof is postponed to Section A.4.
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4.2. Wilson’s upper bound on the mixing time. Several times, we will use
Wilson’s upper bound as an input in our proof. The result as it is cited is con-
tained the proof of [19], Theorem 10. For more details, see the proof of Proposi-
tion 6.5.

PROPOSITION 4.2. For all N sufficiently large, for all ε > 0

dN(t) ≤ 10N exp(−tλN),(4.7)

where

λN := 2
(
1 − cos(π/N)

)
.

4.3. Erasing the labels and decomposing the mixing procedure. Let us sup-
pose for one moment that we change the labels assigned to the cards in the fol-
lowing manner: each card whose label previously belonged to {xi−1 + 1, . . . , xi},
i = 1, . . . ,K receives the label i (for K = 4 and N = 52, we can think of this as
differentiating only clubs, spades, hearts and diamonds instead of looking at each
individual card). The pack of cards with the new labels is then described by the
semi-skeleton σ̂ described in (3.11).

It is quite intuitive that for σt to reach equilibrium we need:

(i) the semi-skeleton σ̂t to be close to its equilibrium distribution;
(ii) conditionally to each semi-skeleton, we need that the order of the card with

label i to be close to uniformly distributed.

The aim of this short section is to make this intuitive claim rigorous; see
Lemma 4.3.

We introduce a transformation of the measures which has the effect of making
the card whose labels belongs to {xi−1 + 1, . . . , xi} indistinguishable.

Define S̃N to be the largest subgroup of SN that leaves all the sets {xi−1 +
1, . . . , xi} invariant. It is isomorphic to

⊗K
i=1 S�xi

(recall that �xi := xi − xi−1).
Given ν a probability measure on SN , we define ν̃ as

ν̃(σ ) = 1∏K
i=1(�xi)!

∑
σ̃∈S̃N

ν(σ̃ ◦ σ).(4.8)

Note that the semi-skeleton of σ is left invariant by composition on the right by
an element of S̃N (in other words ŜN is in bijection with the set of right-cosets of
the subgroup S̃N ). Hence (recall that ν̂ denotes the image law of ν for the semi-
skeleton projection) we have

ν̃(σ ) := 1

|S̃N | ν̂(σ̂ ).(4.9)

This leads to the following result:
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LEMMA 4.3. For all probability laws ν on SN we have

‖ν̃ −μ‖TV = ‖ν̂ − μ̂‖TV,(4.10)

and as a consequence,

‖ν −μ‖TV ≤ ‖ν̂ − μ̂‖TV + ‖ν − ν̃‖TV.(4.11)

PROOF. We have

2‖ν̃ −μ‖TV = ∑
ξ∈ŜN

∑
{σ∈SN |σ̂=ξ}

∣∣̃ν(σ ) −μ(σ)
∣∣.(4.12)

Now from (4.9), ν̃ is constant on {σ |σ̂ = ξ} and thus

2‖ν̃ −μ‖TV = ∑
ξ∈ŜN

∣∣∣∣ ∑
{σ∈SN |σ̂=ξ}

ν̃(σ )− μ(σ)

∣∣∣∣
= ∑

ξ∈ŜN

∣∣∣∣ ∑
{σ∈SN |σ̂=ξ}

ν(σ )− μ(σ)

∣∣∣∣(4.13)

= ∑
ξ∈ŜN

∣∣̂ν(ξ) − μ̂(ξ)
∣∣= 2‖ν̂ − μ̂‖TV.

�

5. Proof of Theorem 2.2: Upper bound for the mixing time of the AT shufle.

5.1. Strategy. We are now ready to prove the asymptotics for the mixing time
for the AT shuffle. As the lower bound is already known ([19], Theorem 6; see also
Section 7 of the present paper), we only need to prove in this section that for every
ε > (0,1), δ > 0 for all N sufficiently large,

dN

(
(1 + δ)

N2

2π2 logN

)
≤ ε.(5.1)

Let us now explain how we plan to prove (5.1). We run a censored dynamics
with the following censoring scheme:

(i) During a time (δ/3) N2

2π2 logN we cancel the updates occurring at xi , i ∈
{1, . . . ,K − 1} with K chosen to be �1/δ�. According to Proposition 4.2 this
gives enough time to mix the order of the set of cards whose label belongs to
{xi−1 + 1, . . . , xi}.

(ii) Then, during a time N2

2π2 (1 + δ/3) logN , we run the dynamics with no cen-
soring. Using Lemma 4.1 and monotonicity, we prove that after such a time,
the distribution of the skeleton σ̄t comes close to equilibrium (this is the most
delicate part).
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(iii) Finally during a time (δ/3) N2

2π2 logN , we censor the updates of the xis again.
Using Proposition 4.2 and the fact that the skeleton is at equilibrium, we prove
that the dynamics puts the semi-skeleton σ̂ at equilibrium.

After all these steps, the distribution of the semi-skeleton is close to μ̂ and the
distribution of the order of the cards whose label belongs {xi−1+1, . . . , xi} is close
to uniform (for each i). Thus, using Lemma 4.3, we can conclude that σt has come
close to equilibrium. The censoring inequality (Proposition 3.6) guarantees that σt

is even closer to equilibrium for the noncensored dynamics, and this implies (5.1).

5.2. Decomposition of the proof. Now let us turn the strategy we have exposed
into mathematical statements. Set

t1 := N2

2π2 (δ/3) logN,

t2 := N2

2π2 (1 + 2δ/3) logN,(5.2)

t3 := N2

2π2 (1 + δ) logN

and

K := �1/δ�.
Recall the definition of xi (3.10), and consider a dynamic σt starting from the
identity and adhering to the following censoring scheme:

• in the time interval [0, t1], the updates at xi , i = 1, . . . ,K − 1 are canceled;
• in the time interval (t1, t2], there is no censoring;
• in the time interval [t2, t3], the updates at xi , i = 1, . . . ,K − 1 are censored.

What the dynamic does after time t3 is irrelevant since we are only interested in is
the distance to equilibrium at time t3.

Let us call νt = P C
t the distribution of σt for this censored dynamics. As the

identity is the maximal element, the initial distribution (i.e., a Dirac mass on the
identity) is an increasing probability, and thus from Proposition A.1, νt is increas-
ing for all t . This fact is one of the key points in the proof.

We decompose the proof of (5.1) in three statements. First we show that after
time t1 the distribution of νt is not too different from ν̃t defined in Section 4.3.

PROPOSITION 5.1. For any δ and ε > 0, for all N sufficiently large, we have,
for all t ≥ t1,

‖ν̃t − νt‖ ≤ ε/3.(5.3)

Second, we show that at time t2 the law of the skeleton σ̄t [recall (3.12)] is close
to equilibrium.
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PROPOSITION 5.2. For any δ and ε > 0, for all N sufficiently large,

‖ν̄t2 − μ̄‖ ≤ ε/3.(5.4)

The above statement is not directly used to prove the theorem, but it is the
starting point for the proof that at time t3, the semi-skeleton distribution [recall
(3.11)] is close to equilibrium.

PROPOSITION 5.3. For any δ and ε > 0, for all N sufficiently large,

‖ν̂t3 − μ̂‖ ≤ 2ε/3.(5.5)

PROOF OF THEOREM 2.2 FROM PROPOSITIONS 5.1 AND 5.3. From Propo-
sition 3.6 and Lemma 4.3, we have

dN(t3) := ‖Pt3 −μ‖ ≤ ‖νt3 −μ‖ ≤ ‖ν̂t3 − μ̂‖ + ‖ν̃t3 − νt3‖.(5.6)

When N is large enough, the right-hand side is smaller than ε according to Propo-
sitions 5.1 and 5.3. �

5.3. Proof of Proposition 5.1. Let us first prove (5.3) at time t1. Up to time t1,
because of the censoring, the dynamics is just the product of K independent dy-
namics on S�xi

, i ∈ {1, . . . ,K}.
Thus for all t ≤ t1, we have σt ∈ S̃N and

ν̃t = δ̃1

for all t ≤ t1 where δ̃1 is the uniform probability on S̃N (δ1 is the Dirac mass on
the identity).

For each i = 1, . . . ,K , let νi
t denote the law of σt restricted to {xi−1+1, . . . , xi},

and set μi to be the corresponding equilibrium measure (uniform on the permuta-
tion of {xi−1 + 1, . . . , xi}). Using Proposition 4.2 for each dynamics on S�xi

and
the fact that the total variation distance between product measures is smaller than
the sum of the total variation distances of the marginals, we have

‖νt − δ̃1‖ ≤
K∑

i=1

∥∥νi
t −μi

∥∥≤ K∑
i=1

10�xie
−tλ�xi

(5.7)

≤ K × 10
(

N

K
+ 1
)

exp
(
−2t

(
1 − cos

(
π

(N/K + 1)

)))
.

In the last inequality we used �xi ≤ N/K + 1.
For t = t1, the right-hand side is smaller than

11N exp
(−(10δ)−1 logN

)≤ ε/3,(5.8)

provided δ has been chosen small enough and that N is large enough. Now what
is left to show is that ‖νt − ν̃t‖ is decreasing. We remark that from the definition
(4.8), ν̃t is simply the law of σt for the dynamics started with initial distribution δ̃1,
and the result follows from a standard coupling argument.
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5.4. Proof of Proposition 5.2. This is, perhaps, the most delicate part of the
proof. In this section we temporarily forget that we have fixed K = �δ−1�, as the
result is valid for any finite K . Of course, here, N sufficiently large means N larger
than something which depends on K .

Let us first explain the idea in the case K = 2 for didactic purposes (say that N

is even). We want to show that starting with distribution νt1 after a time N2

2π2 (1 +
δ/3) logN , the height σ(N/2,N/2) = σ̄ (1,1) (we write simply σ̄ as it brings no
confusion) is close to its equilibrium distribution. The reader can check that at
equilibrium σ̄ ≈ (

√
N/4)N , where N is a standard Gaussian.

Using Lemma 4.1 we know that at time t2, we have

νt2(σ̄ ) ≤ 2Ne−λN(t2−t1) ≤ N1/2−δ/10.(5.9)

Hence the expected value of σ̄ at time t2 is much smaller than its equilibrium
fluctuation. This is, however, not sufficient to conclude that νt2 is close to equilib-
rium. The extra ingredient we use is that the density ν̄t2/μ̄ of the distribution of σ̄

is increasing: from Proposition A.1, νt2 has increasing density and from Proposi-
tion 3.8; this is also the case for the projection. Then the following lemma allows
us to conclude:

LEMMA 5.4. There exists a constant C such that for any N and for any mea-
sure ν such that ν̄/μ̄ is increasing, one has

‖ν̄ − μ̄‖TV ≤ Cν̄(σ̄ )

N1/2 .(5.10)

PROOF. Set

A := {x ∈ {−N/4,N/4 + 1, . . . ,−N/4}|ν̄(x) ≥ μ̄(x)
}
,

which is an increasing set by the assumption of ν.
Furthermore, from the definition of the total variation distance, we have

ν̄(A)− μ̄(A) = ‖ν̄ − μ̄‖TV.(5.11)

Now let us prove a lower bound for ν̄(σ̄ ) which is a function of ν̄(A)− μ̄(A). First
we split the expectation into two contributions by conditioning.

ν̄(σ̄ ) = ν̄(A)ν̄(σ̄ |A)+ ν̄
(
Ac)ν̄(σ̄ |Ac).(5.12)

Then using the correlation inequality (Lemma 3.4) for the two functions σ̄ �→ σ̄

and σ̄ �→ ν̄
μ̄
(σ̄ ) (which is increasing by Proposition 3.8), we have

ν̄(A)ν̄(σ̄ |A) = μ̄(A)μ̄

(
ν̄

μ̄
(σ̄ )σ̄

∣∣∣A)
(5.13)

≥ μ̄(A)μ̄

(
ν̄

μ̄
(σ̄ )
∣∣∣A)μ̄(σ̄ |A) = ν̄(A)μ̄(σ̄ |A).
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Similarly,

ν̄
(
Ac)ν̄(σ̄ |Ac)≥ ν̄

(
Ac)μ̄(σ̄ |Ac).(5.14)

Plugging these inequalities in the right-hand side of (5.12) and subtracting

0 = μ̄(σ̄ ) = μ̄(A)μ̄(σ̄ |A)+ μ̄
(
Ac)μ̄(σ̄ |Ac),

we obtain

ν̄(σ̄ ) ≥ (ν̄(A) − μ̄(A)
)
μ̄(σ̄ |σ̄ ≥ xA) + (ν̄(Ac)− μ̄

(
Ac))μ̄(σ̄ |σ̄ < xA)

(5.15)
≥ ‖ν̄ − μ̄‖TV

(
μ̄(σ̄ |σ̄ ≥ xA)− μ̄(σ̄ |σ̄ < xA)

)
,

where the last line is deduced from (5.11). Finally we use the fact that from the
Gaussian scaling

μ̄(σ̄ |σ̄ > 0) =−μ̄(σ̄ |σ̄ < 0) ≥ c
√

N,

and hence

ν̄(A) ≥ c
√

N‖ν̄ − μ̄‖TV.(5.16) �

When K ≥ 3, the idea is roughly the same, and the hope is that dealing with
finite dimensional marginals does not bring too many complications.

Set

v(σ̄ ) :=
K−1∑
i,j=1

σ̄ (i, j)

to be the volume below the graph of the skeleton. Similar to the proof of
Lemma 5.4 we want to show that if ν(v(σ̄ )) is small with respect to its equilibrium
fluctuations (which are of order

√
N ), and ν is increasing, then ν̄ and μ̄ are close

to each other.

LEMMA 5.5. Let ν be a probability measure on SN whose density with respect
μ is increasing. For every ε, there exists η(K, ε) such that for N sufficiently large,
we have

‖μ̄ − ν̄‖ ≤ ε/3,(5.17)

whenever

ν
(
v(σ̄ )

)≤√
Nη.(5.18)

PROOF OF PROPOSITION 5.2 FROM LEMMA 5.5. From Lemma 4.1 we know
that at time t2, we have

νt2

[
v(σ̄ )

]≤ 2N(K − 1)2e−λN(t2−t1) ≤√
Nη,(5.19)
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where the last inequality is valid for any fixed η when N is large enough. As, by
Proposition A.1, νt2 is increasing, an thus Lemma 5.5 is sufficient to conclude. �

Before starting the proof of Lemma 5.5 we need to introduce some notation and
two technical results. Given A > 0 a positive constant, we define

Ai,j := {σ |σ̄ (i, j) ≥√
NA

}
,

A :=
K−1⋂
i,j=1

Ai,j = {σ |∀(i, j) ∈ {1, . . . ,K − 1}2, σ̄ (i, j) ≥√
NA

}
,(5.20)

B :=
(

K−1⋃
i,j=1

Ai,j

)c

= {σ |∀(i, j) ∈ {1, . . . ,K − 1}2, σ̄ (i, j) <
√

NA
}
.

LEMMA 5.6. When N tends to infinity,

σ̄ (i, j)√
N

⇒ Z(i, j),(5.21)

where the Z(i, j) is a Gaussian of variance

s2(i, j) := i

K

(
1 − i

K

)
j

K

(
1 − j

K

)
and of mean 0.

In particular, given δ ∈ (0,1/2) sufficiently small, there exist A(δ,K) and
δ′(δ,K) which satisfy (for any K > 0),

lim
δ→0

δ
(
δ′,K

)= 0,

which are such that

μ(A) ≥ δ(K−1)2 := δ1,
(5.22)

μ(B) ≥ 1 − (K − 1)2δ′ := 1 − δ2.

REMARK 5.7. It seems that in fact the process(
σ(�xN,yN�)√

N

)
x,y∈[0,1]2

should converge to a Brownian sheet conditioned to be zero on the boundary of
[0,1]2. However, even convergence of the finite dimensional marginals seems
tricky to prove, and we do not need this result.
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PROOF OF LEMMA 5.6. A simple way to prove (5.21) is to note that (see [6],
page 146)

μ

(
σ̄ (i, j) = k − xixj

N

)
=
(

xi

k

)(
N−xi

xj−k

)
(

N
xj

)
and use Stirling’s formula to obtain a local central limit theorem.

Now given δ < 1/2, we define A to be such that

P
[
K−1(1 −K−1)Z ≥ A

]= δ/2,

where Z is a standard Gaussian, and δ′ is such that

P[Z/4 ≥ A] = 2δ′.

With this definition it is obvious that when δ tends to zero, δ′ does as well.
Then from (5.21) [here it is important to note that the standard deviation of

Z(i, j) is always larger than K−1(1 −K−1) and smaller than 1/4] and our choice
of δ′ and A, we have that for all N large enough, for all (i, j),

δ ≤ μ(Ai,j ) ≤ δ′.(5.23)

Then (5.22) can be deduced from the FKG inequality (Proposition 3.5) for the first
line and a standard union bound for the second line. �

The next lemma is quite intuitive, but the proof is quite technical and is post-
poned to Section A.5.

LEMMA 5.8. We have

μ(·|A) � μ
(·|Bc).(5.24)

In particular, if ν is an increasing probability on SN , we have

ν(A)

μ(A)
≥ ν(Bc)

μ(Bc)
.(5.25)

PROOF OF LEMMA 5.5. Let us choose δ such that (with the notation of
Lemma 5.6) δ2 ≤ ε/6. We will prove two implications and deduce the result from
them. First we show that a lower bound on ν(A) gives a lower bound on ν(v(σ̄ ))

∀α > 0, ν(A) ≥ (1 + α)μ(A) ⇒ ν
(
v(σ̄ )

)≥ δ1αA
√

k.(5.26)

Then we show that if (ν − μ)(A) is small, then the law of the skeletons μ̄ and ν̄

must be close in total variation distance

ν(A) ≤ (1 + α)μ(A) ⇒ ‖ν̄ − μ̄‖ ≤ 2α + δ2.(5.27)
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Now (5.27) and (5.26) for α = ε/12 (or rather its contrapositive) combined implies
(5.17) with η := δ1αA.

To prove (5.26), we first show, similar to (5.15), using the correlation inequal-
ity (Lemma 3.4) and the fact that the density ν̄i,j /μ̄i,j is an increasing function
(Proposition 3.8), that

ν
(
σ̄ (i, j)

)≥ (ν −μ)(Ai,j )μ
(
σ̄ (i, j)|Ai,j

)
(5.28)

+ (ν −μ)
(
Ac

i,j

)
μ
(
σ̄ (i, j)|Ac

i,j

)
.

Then we remark that the second term in the right-hand side of (5.28) is positive,
and deduce using the definition of Ai,j ,

ν
(
σ̄ (i, j)

)≥ (ν −μ)(Ai,j )
√

NA.(5.29)

We consider now the increasing function

θ(σ ) :=
(

K−1∑
i,j=1

1Ai,j

)
− 1A.

Using the FKG inequality (Proposition 3.5) applied to the functions θ and
(ν/μ − 1) we obtain

K−1∑
i,j=1

(ν −μ)(Ai,j ) ≥ (ν − μ)(A).(5.30)

Hence summing inequality (5.29) over (i, j) ∈ {1, . . . ,K − 1}2, one obtains that

ν
(
v(σ̄ )

)≥√
NA(ν −μ)(A),(5.31)

which, together with (5.22), implies (5.26).
To prove (5.27) we need to show the following result.
Although it is quite an intuitive statement, the proof is a bit technical, and we

will perform it in Appendix A.
We go back to the proof of (5.27). Assume that ν is increasing and satisfies

ν(A) ≤ (1 + α)μ(A).(5.32)

Then from (5.25) we have

ν
(
Bc)≤ (1 + α)μ

(
Bc).(5.33)

Notice also that from the definition, if σ̄ ∈ B, σ̄ ′ ∈A (improperly one can consider
A and Bc as subsets of S̄N ), then σ̄ ≤ σ̄ ′, and thus from Proposition 3.8,

∀σ̄ ∈ B,∀σ̄ ′ ∈A,
ν̄

μ̄
(σ̄ ) ≤ ν̄

μ̄

(
σ̄ ′),(5.34)
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which, once averaged on σ ∈A, gives [using (5.32)]

∀σ̄ ∈ B,
ν̄(σ̄ )

μ̄(σ̄ )
≤ ν

μ
(A) ≤ 1 + α.(5.35)

Hence using (5.33), (5.35) and (5.22) we have

‖μ̄ − ν̄‖ ≤
∫
Bc

(
ν̄

μ̄
(σ̄ ) − 1

)
+
μ̄(dσ̄ ) +

∫
B

(
ν̄

μ̄
(σ̄ ) − 1

)
+
μ̄(dσ̄ )

(5.36)
≤ ν̄

(
Bc)+ αμ̄(B) ≤ (1 + α)δ2 + α ≤ 2α + δ2. �

5.5. Proof of Proposition 5.3. Between time t2 and t3, a consequence of the
censoring is that the values taken by the sets

σt

({xi−1 + 1, . . . , xi}), i ∈ {1, . . . ,K}
are constant in time. On this time interval, the dynamics can be considered as a
product of K independent AT shuffle, and the corresponding equilibrium measure
conditioned on the starting point σt2 is simply

μ
(·|σ ({xi−1 + 1, . . . , xi})= σt2

({xi−1 + 1, . . . , xi}), ∀i ∈ {1, . . . ,K})=: μσt2
.

Using Proposition 4.2 and with the same reasoning as in the proof of Proposi-
tion 5.1, we have, for any realization of σt2 ,∥∥P(σt3 ∈ ·|σt2)−μσt2

∥∥
TV

≤ K × 10
(

N

K
+ 1
)

exp
(
−2t

(
1 − cos

(
(t3 − t2)

π

(N/K + 1)

)))
(5.37)

≤ ε/3,

provided that N has been chosen small enough.
Considering the push-forward of the measures on semi-skeleton, and integrating

on the event {σ̄t2 = ξ}, we obtain that for every ξ ∈ S̄N ,∥∥ν̂t3(·|σ̄ = ξ) − μ̂(·|σ̄ = ξ)
∥∥

TV ≤ ε/3.(5.38)

Finally, to conclude we just need to remark that the distribution of σ̄t3 is the same
as the one of σ̄t2 (indeed, with the censoring we have σ̄t3 = σ̄t2 ) which is close to
equilibrium, according to Proposition 5.2, so that we can conclude. More formally
we have

2‖ν̂t3 − μ̂‖TV = ∑
ξ∈S̄N

∑
{σ̂∈ŜN |σ̄=ξ}

∣∣̂νt3(σ̂ )− μ̂(σ̂ )
∣∣

≤ ∑
ξ∈S̄N

∑
{σ̂∈ŜN |σ̄=ξ}

ν̄t3(ξ)
∣∣̂νt3(σ̂ |σ̄ = ξ) − μ̂(σ̂ |σ̄ = ξ)

∣∣
+ μ̂(σ̂ |σ̄ = ξ)

∣∣ν̄t3(ξ) − μ̄(ξ)
∣∣(5.39)
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= 2
(
‖ν̄t3 − μ̄‖TV + ∑

ξ∈S̄N

ν̄t3(ξ)
∥∥ν̂t3(·|σ̄ = ξ) − μ̂(·|σ = ξ)

∥∥
TV

)
≤ 4ε/3,

where the last inequality uses Proposition 5.2 and (5.38).

6. Technical tools for the exclusion process. To compute the mixing time of
the exclusion process, we need tools similar those developed in Sections 3 and 4.
In many cases, the proof is either a consequence of or exactly similar to the proof
performed for SN , and thus is left to the reader.

6.1. Ordering �N,k and monotonicity properties. To each γ ∈ �N,k we can
associate a lattice path η in the following manner:

η(x) :=
x∑

z=1

γ (z)− xk

N
.(6.1)

It is an injective mapping.
In what follows we describe the dynamics only in terms of η (and write �N,k

for the image set of γ �→ η as it brings no confusion).
We consider the natural order on �N,k given by

η ≥ η′ ⇔ ∀x ∈ {1, . . . ,N − 1}, η(x) ≥ η′(x).(6.2)

We call ∧ the maximal element of �N,k and ∨ its minimal element. These symbols
are used because they look like the graphs of the extremal paths. We have

∧(x) = N−1 min
(
(N − k)x, k(N − x)

)
,

(6.3)
∨(x) = N−1 max

(−kx, (N − k)(x −N)
)
.

Note that the mapping γ �→ η corresponds the kth line of the mapping σ �→ σ̃

[see (3.1)] introduced in Section 3, or more precisely if γ = γσ is the image of σ

by the mapping (2.18), then η(·) = σ̃ (·, k).
For ξ ∈ �N,k , we write (η

ξ
t )t≥0 for the dynamics with initial condition ξ and

P
ξ
t for the marginal law at time t . If ν is a probability on �N,k , we write P ν

t for
the law of ηt starting with an initial condition that has distribution ν.

The projection on �N,k of the graphical construction of Section 3.2 provides a
coupling of the different (η

ξ
t )t≥0 that preserves the order, that is, which is such that

ξ ≥ ξ ′ ⇒ ∀t ≥ 0, η
ξ
t ≥ η

ξ ′
t .(6.4)

In Section 8.1 we will present another construction that also preserves the order.



1454 H. LACOIN

6.2. FKG and censoring and monotonicity conservation. The statespace �N,k

is a distributive lattice when equipped with the two operations min and max de-
fined (for η, ξ ∈ �N,k) as follows:

∀x ∈ �N,k, min(η, ξ)(x) = min
(
η(x), ξ(x)

)
,

(6.5)
∀x ∈ �N,k, max(η, ξ)(x) = max

(
η(x), ξ(x)

)
.

This means that �N,k is stable by these operations and that each one is distributive
with respect to the other. For this reason the FKG inequality as proved in [7] is
valid. In the proof we also need a stronger result which is a consequence Holley’s
inequality.

PROPOSITION 6.1 ([7], Proposition 1, [8], Theorem 6). If f and g are two
increasing functions on �N,k , then

μ(fg) ≥ μ(f )μ(g).(6.6)

Furthermore if A and B are increasing subsets of �N,k such that A ⊂ B and
min(A,B) ⊂ B , where

min(A,B) := {min
(
η,η′)|η ∈ A,η′ ∈ B

}
,

then for any increasing function f ,

μ(f |A) ≥ μ(f |B).(6.7)

PROOF. A sufficient condition for the FKG inequality [7], Proposition 1, to
hold for μ is that

μ
(
min(η, ξ)

)
μ
(
max(η, ξ)

)≥ μ(η)μ(ξ),(6.8)

which is obviously satisfied for the uniform measure on �N,k . The second inequal-
ity is Holley’s inequality [8], Corollary 11, applied to μ(f |A) and μ(f |B). What
has to be checked is that

μ
(
max(η, ξ)|A)μ(min(η, ξ)|B)≥ μ(η|A)μ(ξ |B),(6.9)

which is obviously valid if either η /∈ A or ξ /∈ B . If η ∈ A and ξ ∈ B , then, as A

is increasing max(η, ξ) ∈ A and from the assumption min(A,B) ⊂ B , we have
min(η, ξ) ∈ B , and hence (6.9) holds in any case. �

Using the terminology of Section 3.2, we say that an update of ηt is performed
at the coordinate x when Tx rings. As in Section 3.5, we define P

ν,C
t to be the

law of ηt which has performed a censored dynamics with scheme C with initial
distribution ν.

The reader can check that Proposition 3.6 is also valid for the chain ηt , and there
are two different ways to do this, either by saying that it is just [17], Theorem 1.1,
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and checking that our Markov chain with its system of updates is a monotone
system for the definition given in [17], or by performing the necessary changes to
the proof of Proposition 3.6.

Finally we remark that Proposition A.1 also applies to the exclusion process. To
adapt the proof one needs to consider, instead of σ •

x , the sets

η•
x := {ξ ∈ �N,k|∀y 
= x, ξ(y) = η(y)

}
,

which, depending on the values of ξ and x can have either one or two elements.
We record these results here.

PROPOSITION 6.2. If ν is an increasing probability on �N,k , then for all
positive t and all censoring schemes C, P ν

t and P
ν,C
t are increasing.

Furthermore we have ∥∥P ν
t − μ

∥∥
TV ≤ ∥∥P ν,C

t −μ
∥∥

TV.

6.3. Stability for projection. The equivalent of Proposition 3.8 is valid for
�N,k and is in fact much easier to prove.

We define η̄ the skeleton of η as [recall (3.10)]

∀i ∈ {0, . . . ,K}, η̄(i) = η(xi)(6.10)

and equip the set of skeletons �̄N,k with the natural order. For ν probability law on
�N,k , define ν̄ to be the pushed forward law for the projection η �→ η̄. We define
in the same manner ν̄i for the projection on one coordinate.

PROPOSITION 6.3. If ν is an increasing probability on �N,k , then the density
of ν̄/μ̄ is an increasing function of �̄N,k .

The density μ̄i is also increasing.

The proof is identical to that of (A.10).

6.4. Limit of the mean height and rough upper bounds on the mixing time. As
ηt has the same law as σ̃t (·, k), Lemma 4.1 gives us the behavior of the mean value
E[ηξ

t (x)]. More precisely, we have the following:

LEMMA 6.4. For all k ≤ N/2 we have:

• for any ξ ∈ SN and t ≥ 0, we have

max
x∈{0,...,N}E

[
η

ξ
t (x)

]≤ 4ke−λN t ,(6.11)

where

λN := 2
(

1 − cos
(

π

N

))
= π2

N2

(
1 + o(1)

);
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• when ξ =∧,

E
[
η∧

t (x)
]≥ k

π
exp(−λNt) sin

(
πx

N

)
.(6.12)

Similar to Proposition 4.2 we have the following upper bound for the distance
to equilibrium.

PROPOSITION 6.5. For all N sufficiently large and k ∈ {0, . . . ,N}, for all
ε > 0,

dN,k(t) ≤ 10k exp(−tλN),(6.13)

where

λN := 2
(
1 − cos(π/N)

)
.

The idea of the proof essentially comes from [19], Section 8.1, with some mod-
ification performed to adapt to continuous time and the fact that we deal with the
exclusion process. The reader can check that taking k = N in the proof gives a
proof of Proposition 4.2.

PROOF OF PROPOSITION 6.5. Using (8.2), it is sufficient to bound the dis-

tance ‖P ξ
t −P

ξ ′
t ‖TV uniformly in ξ , ξ ′. To this end, we construct a coupling of η

ξ
t

and η
ξ ′
t (which is not the one given by the graphical construction and is not even

Markovian) and prove that for this coupling,

P
[
η

ξ
t 
= η

ξ ′
t

]≤ 10k exp(−tλN).(6.14)

It is in fact more convenient to consider the AT shuffle and construct a coupling
for this larger process. Instead of proving (6.14), we prove that for all ξ , ξ ′ ∈ SN ,

P
[∀i ∈ {1, . . . , k}, (σ ξ

t

)−1
(i) = (σ ξ ′

t

)−1
(i)
]≤ 10k exp(−tλN),(6.15)

and then deduce (6.14) from (6.15) using that the mapping (2.18) projects the AT
shuffle on the exclusion process.

The coupling has the following rules:

• if σ
ξ
t (x) 
= σ

ξ ′
t (x) and σ

ξ
t (x + 1) 
= σ

ξ ′
t (x + 1), then the transition σ → σ ◦ τx

occurs independently with rate one for each of the two processes;

• if either σ
ξ
t (x) = σ

ξ ′
t (x) or σ

ξ
t (x + 1) = σ

ξ ′
t (x + 1) (or both), then the transition

σ → σ ◦ τx occurs simultaneously for the two processes (with rate one).

Let Xi
t := (σ

ξ
t )−1(i) and Y i

t (σ
ξ ′
t )−1(i) denote the trajectory of the particle la-

beled i for the two coupled permutations. The couple (Xi
t , Y

i
t ) is a Markov chain

with the following transition rules:
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• if x 
= y, then the transitions (x, y) → (x±1, y), (x, y) → (x, y±1) occur with
rate one, provided the two coordinates stay between 1 and n;

• if x = y, then the transitions (x, y) → (x+1, y+1) and (x, y) → (x−1, y−1)

occur with rate one, provided the two coordinates stay between 1 and n.

All the other transitions have rate 0. In particular, once Xi
t and Y i

t have merged,
they stay together.

By union bound, we have

P
[∃i ∈ {1, . . . , k}, (σ ξ

t

)−1
(i) 
= (σ ξ ′

t

)−1
(i)
]

(6.16)
≤ k max

(x,y)∈{1,×,N}2
Px,y[Xt 
= Yt ],

where (Xt , Yt ) is a Markov chain starting from (x, y) and whose transitions rules
are the same as those of (Xi

t , Y
i
t ).

We conclude by using the following lemma.

LEMMA 6.6. We have for all (x, y),

Px,y[Xt 
= Yt ] ≤ 10 exp(−tλN).(6.17)

PROOF. This result is proved in [19], Lemma 9 (to which we refer for the
computations), in the discrete case by diagonalization of the transition matrix of
the random-walk (X,Y ) killed when it hits the diagonal. We write G∗

t for the
semi-group of this process.

Let us explain briefly how it adapts to continuous time. By symmetry it is suf-
ficient to consider 1 ≤ x < y ≤ N [hence we have a killed Markov chain with
N(N − 1)/2 possible states]. For convenience we shift coordinates by 1/2 so that
x, y ∈ {1/2, . . . ,N − 1/2}.

We remark that the functions ui,j , 0 ≤ i < j < N , defined by

ui,j (x, y) := cos
(

iπx

n

)
cos
(

jπy

n

)
− cos

(
iπy

n

)
cos
(

jπx

n

)
,(6.18)

form an orthogonal basis of eigenfunctions for the generator of the killed random
walk (see [19]), with respective eigenvalues −λi,j,N where

λi,j,N := 2
[(

1 − cos(iπ/N)
)+ (1 − cos(jπ/N)

)]
≥ (i + j)2

(
1 − cos(π/N)

)
.

We furthermore have

‖ui,j‖2
2 = N2(1 + 1i=0)/4 ≥ N2/4.
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Hence by decomposition of G∗
t on the basis of eigenfunction, we have

Px0,y0[Xt 
= Yt ] =
∑

1≤x<y≤N−1/2

G∗
t

(
(x0, y0), (x, y)

)
= ∑

0≤i<j<N

∑
1/2≤x<y≤N−1/2

ui,j (x0, y0)ui,j (x0, y0)

‖ui,j‖2
2

e−λi,j,N t

(6.19)

≤ 8
∑

0≤i<j<N

e−(i+j)λN t ≤ 8
∞∑
i=0

∞∑
j=1

e−(i+j)λN t

= 8e−λN t

(1 − e−λN t )2 ,

where in the first inequality we used ‖ui,j‖∞ ≤ 2. Then (6.17) is trivial if e−λN t ≥
1/10 and is a consequence of the above inequality when e−λN t ≤ 1/10. � �

7. Lower bound for the mixing times for the exclusion process. In this
section we prove that if min(k(N),N − k(N)) → ∞, then for all ε ∈ (0,1) and
δ > 0, for N large enough,

dN,k

(
1

2π2 N2 log min(k,N − k)(1 − δ)

)
≥ ε,

(7.1)

d
N,k
S

(
1

π2 N2 log min(k,N − k)(1 − δ)

)
≥ ε.

We consider for simplicity that k ≤ N/2, the result for k > N/2 follows by sym-
metry. A proof of the first inequality is in fact already present in [19], but we
present an alternative short proof at the end of the section for the sake of com-
pleteness.

To prove the second inequality, we need the following assumption:

lim
N→∞

log logk

logN
=∞.

This is mainly for technical reasons, and we believe that the result holds with
greater generality.

7.1. For the separation distance. As we are looking for a lower bound on
d

N,k
S (t), it is sufficient to have a lower bound for dS(P∧

t ,μ), even though we can-
not prove that the separation distance is maximized when starting from an ex-
tremal condition. From Proposition 6.2, P∧

t is an increasing probability (because
the Dirac measure on ∧ is an increasing probability), and we have

dS

(
P∧

t ,μ
)= 1 − P∧

t (∨)

μ(∨)
.(7.2)



AT SHUFFLE AND EXCLUSION ON THE SEGMENT 1459

Hence what we have to prove is that for t = t1 := 1−δ
π2 N2 log k,

P∧
t1

(∨)

μ(∨)
≥ 1 − ε.(7.3)

By reversibility of the dynamics, one has for all η, η′ and all t ≥ 0,

P
η′
t (η) = P

η
t

(
η′).

Combining this with the semi-group property, we have

P∧
t (∨) = ∑

η∈�N,k

P∧
t/2(η)P∨

t/2(η).(7.4)

Now, we partition �N,k into two sets,

�1 := {η ∈ �N,k|η(�N/2�)≥ 0
}
,

(7.5)
�2 := {η ∈ �N,k|η(�N/2�)< 0

}
,

and bound from above the contribution of each in (7.4).
Note that both �1 and �2 are distributive lattices (both sets are stable under the

composition laws min and max), and thus the FKG inequality (6.6) is also valid
when μ is replaced by μ(·|�i). Hence we have∑

η∈�1

P∧
t/2(η)P∨

t/2(η) =
(

N

k

)
μ(�1)

∑
η∈�1

μ(η|�1)P
∧
t/2(η)P∨

t/2(η)

≤
(

N

k

)
μ(�1)

(∑
η∈�1

μ(η|�1)P
∧
t/2(η)

)
(7.6)

×
(∑

η∈�1

μ(η|�1)P
∧
t/2(η)P∨

t/2(η)

)

=
(

N

k

)−1
μ(�1)

−1P∧
t/2(�1)P

∨
t/2(�1).

Similarly, ∑
η∈�2

P∧
t/2(η)P∨

t/2(η) ≤
(

N

k

)−1
μ(�2)

−1P∧
t/2(�2)P

∨
t/2(�2).(7.7)

Thus from (7.4) we have

P∧
t (∨)

μ(∨)
≤ μ(�1)

−1P∧
t/2(�1)P

∨
t/2(�1)+μ(�2)

−1P∧
t/2(�2)P

∨
t/2(�2).(7.8)

As η�N/2� satisfies the central limit theorem, we have

lim
N→∞μ(�i) = 1/2, i = 1,2,



1460 H. LACOIN

and hence, for all N sufficiently large,

P∧
t (∨)

μ(∨)
≤ 3
(
P∨

t/2(�1) + P∧
t/2(�2)

)
.

Hence to prove (7.3), we just need to show that P∨
t/2(�1) and P∧

t/2(�2) are small.

LEMMA 7.1. Set

t0 := 1

2π2 N2 log k(1 − δ).

Then if

lim
N→∞

log k

log logN
=∞,

we have

lim
N→∞P∨

t0
(�1) = 0,

(7.9)
lim

N→∞P∧
t0

(�2) = 0.

We only prove the second limit, the first being exactly the same.

7.2. Proof of Lemma 7.1. We want to prove that when one starts the dynam-
ics from the maximal path ∧, w.h.p. ηt0(�N/2�) ≥ 0. To do so we compute the
expectation and variance of ηt0(�N/2�).

LEMMA 7.2. We can find a constant C such that for all N large enough,

P∧
t0

(
η
(�N/2�))≥ C−1k(1+δ)/2,

(7.10)
VarP∧

t0

(
η
(�N/2�))≤ Ck logN.

Then Lemma 7.1 is easily deduced by using Chebytchev’s inequality.

PROOF OF LEMMA 7.2. The inequality for the expectation is obtained by us-
ing (4.6) [recall that ηt has the same law that σ̃t (·, k)].

To control the variance, we use an idea similar to that in [11], Section 7, with
the use of martingale and Fourier coefficients. The Fourier decomposition of η

on the basis of eigenfunctions (ui)
N−1
i=1 given by (A.21), implies that for all y ∈

{0, . . . ,N},

η(y) = 2

N

N−1∑
i=1

N−1∑
x=1

η(x) sin
(

iπx

N

)
sin
(

iπy

N

)
.(7.11)
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The reader can check that

η �→
N−1∑
x=1

η(x) sin
(

iπx

N

)
are eigenfunctions of the generator of the Markov chain (2.12) with eigenvalue
−λN,i ; recall (A.22). For this reason, for each i, the process

eλN,i t
N∑

x=0

ηt (x) sin
(

iπx

N

)
= eλN,i t ai(ηt ),

where

ai(η) :=
N∑

x=0

η(x) sin
(

iπx

N

)
is a martingale (in t).

We consider the following martingale which is a linear combination of the
above:

Mt := 2

N

N−1∑
i=1

eλN,i (t−t0) sin
(
πi�N/2�/N)ai(ηt ).(7.12)

As a consequence of (7.11), it satisfies

Mt0 = ηt0

(�N/2�).
To control the variance of Mt0 , we prove a uniform upper bound on the martin-

gale bracket and use the fact that, as the initial variance is zero, we have

Var
[
M2

t0

]= E
[〈M〉2

t0

]
.(7.13)

It is easy to obtain an upper bound on the bracket of the martingale. As each
transition changes the value of M by at most

2

N

N∑
i=1

eλN,i (t−t0)

and the transitions occur with a rate at most 2k (there are k particles which can
perform at most two transitions, each with rate 1), we have

〈M〉2
t0
≤
∫ t0

0

8k

N2

(
N−1∑
i=1

eλN,i (t−t0)

)2

dt

(7.14)

≤
∫ 0

−∞
8k

N2

(
N−1∑
i=1

eλN,i t

)2

dt = 8k

N2

N−1∑
i,j=1

1

λN,i + λj,N

.
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One can find a constant C such that for all i and N ,

λN,i ≥ i2

CN2 .

We have

Var
[
M2

t0

]≤ 8Ck

N−1∑
i,j=1

1

i2 + j2 ≤ C′k logN.(7.15)
�

7.3. A lower bound on the total variation mixing time. Let us now give a short
proof for the first inequality of (7.1). Set

a1(η) :=
N∑

x=1

sin
(

x

πN

)
η(x).

As in the previous section, for any value of t ,

Ms := e(s−t)λN a1(ηt )

is a martingale. Note that

Mt = a1(ηt ).

If η0 =∧, there exists a constant c such that for all s ≥ 0, for all N and k,

E[Ms] = e−tλN a1(∧) ≥ ce−tλN Nk.(7.16)

We control the variance of Mt as follows:

Var
[
a
(
η∧

t

)]= Var
[
M2

t

]= E
[〈M〉2

t0

]≤ Ck

∫ t

0
e2(s−t)λN ds ≤ CkN2.(7.17)

Taking t =∞, we obtain that at equilibrium we have

Varμ
(
a1(η)

)≤ CkN2 and μ
(
a1(η)

)= 0.

These bounds on the variance and expectation show that at time t = 1
2π2 N2 ×

logk(1− δ), the expectation of a(η1) is much larger than its typical fluctuations so
that its distribution cannot be close to equilibrium.

More precisely, if P is a coupling of P∧
t (variable η1) and μ (variable η2), we

have (by Chebytchev’s inequality)

P
[
η1 = η2]≤ P

[
a1
(
η1)− a1

(
η2)≤ 0

]≤ VarP(a1(η
1)− a1(η

2))

(E[a1(η1)− a1(η2)])2

≤ 2
VarP∧t (a1(η))+ Varμ(a1(η))

(P∧
t [a1(η)])2(7.18)

≤ CkN2

e−2λN tN2k2 = Ck−1e2λN t .

Applying this inequality for t = 1
2π2 N2 log k(1− δ) we deduce that the first line

of (7.1) holds.
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8. The upper bound on the mixing time for the exclusion process. As
the exclusion process is obtained by projecting the AT shuffle; its mixing time
is smaller. Hence from Theorem 2.2 we already have, for any sequence k(N),

lim sup
N→∞

2π2T
N,k
mix (ε)

N2 logN
≤ 1.(8.1)

This is sufficient to prove the upper bound on the mixing time of Theorem 2.4
when k = N/2, but this is not the case when the number of particles is strictly
smaller than N1−o(1).

Contrary to the AT shuffle, the distance to equilibrium for the exclusion process
depends on the initial conditions, and there is a priori no reason for it to be max-
imized when the initial conditions are chosen to be either ∨ or ∧ (the extremal
elements). However, most of the arguments involving motonicity can be used only
for these two cases, and thus one must think of another strategy.

Assume that we have a coupling of the Markov chain trajectories η
ξ
t starting

from all initial possible conditions ξ ∈ �N,k , which preserves the order, or in other
words satisfies (6.4). The coupling derived from the graphical construction of Sec-
tion 3.2 is an example of such coupling, but we will use another one for our proof.
We call P the law of the coupling.

Using the triangular inequality, we have for any ξ ,∥∥P ξ
t − π

∥∥
TV = ∥∥P ξ

t − P π
t

∥∥
TV

(8.2)

≤ 1

|�N,k|
∑

ξ ′∈�N,k

∥∥P ξ
t − P

ξ ′
t

∥∥
TV ≤ max

ξ ′
∥∥P ξ

t − P
ξ ′
t

∥∥
TV.

As P provides a coupling between P
ξ
t and P

ξ ′
t , using the characterization of the

total variation distance given in Lemma 2.1, we have∥∥P ξ
t − P

ξ ′
t

∥∥≤ P
[
η

ξ
t 
= η

ξ ′
t

]≤ P
[
η∨

t 
= η∧
t

]
,(8.3)

where the last inequality is a consequence of (6.4): both η
ξ
t and η

ξ ′
t are squeezed

between η∨
t and η∧

t , and thus they must be equal once the dynamics starting from
the extremal initial conditions have coalesced.

This reasoning was used in [19] to obtain an upper bound on the mixing-time
using the coupling derived from the graphical construction of Section 3.2. To have
an improvement on Wilson’s bound, one must necessarily use another coupling.
Indeed the estimate he obtained for the merging time of η∨

t with η∧
t , for the cou-

pling obtained with the graphical construction, is tight; see [19], Table 1, coupling
column.
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8.1. An alternative graphical construction for the exclusion process. Let us
present an alternative coupling that can be constructed for the exclusion process.
The underlying idea is to find a construction that maximizes the fluctuation of the
area between η∨

t and η∧
t in order to make them coalesce faster. To maximize the

fluctuation, we want to make the corner-flips of both trajectories as independent as
possible.

The construction corresponds exactly to the graphical construction for the zero-
temperature Ising model in a k×(N−k) rectangle with mixed boundary condition;
see, for example, [11], Section 2.3 and Figure 3, for a description of the model.

Set

� := {(x, z)|x ∈ {1, . . . ,N − 1} and

z ∈ {max(0, x − N + k) − xk/N,min(x, k) − xk/N
}}

,

and set T ↑ and T ↓ to be two independent rate-one clock processes indexed by �

[T ↑
(x,z) and T ↓

(x,z) are two independent Poisson processes of intensity one of each
(x, z) ∈ �].

If T ↑
(x,z) rings at time t then:

• if η
ξ

t−(x) = z and η
ξ

t− has a local minimum at x, then η
ξ
t (x) = z + 1, and the

other coordinate remains unchanged;
• if these conditions are not satisfied, we do nothing.

If T ↑
(x,z) rings at time t , then:

• if η
ξ

t−(x) = z and η
ξ

t− has a local maximum at x, then η
ξ
t (x) = z − 1, and the

other coordinate remains unchanged;
• if these conditions are not satisfied, we do nothing.

The reader can check that the dynamics we obtain is the exclusion process and
that it provides a coupling satisfying (6.4). We call P the law of this construction.

We want to prove the following:

PROPOSITION 8.1. Given δ > 0, set

t1 := N2

2π2 log k(1 + δ).

Then for any ε > 0, we have

P
[
η∨

t 
= η∧
t

]≤ ε.

The upper bound on the mixing time can then be deduced from (8.3) and (8.2).
Our strategy to prove the result is the following: it follows from Lemma 4.1 that

after time t0 := N2

2π2 log k(1 + δ/2), we have

A(t) :=
N−1∑
x=1

(
η∧

t − η∨
t

)
(x) � k1/2N,
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or in other words, that the area between the two curves is much smaller than the
typical fluctuation of

∑N
x=1 η(x) under the equilibrium measure μ.

Then we want to use the extra time t1 − t0 = N2

2π2 logk(δ/2) to make the two
paths coalesce by comparing the evolution of the area A(t) (which is a super-
martingale) to a symmetric random walk with a time change.

To perform this last step, we need to know that both P∨
t0

and P∧
t0

are close to
equilibrium. This fact is proved following the ideas developed in Section 5. Then
we use the fact that typically, in the interval [t0, t1] both η∧

t and η∨
t present a lot of

flippable corners, and this allows us to produce enough fluctuation for the two to
coalesce with large probability.

8.2. Reaching equilibrium from the extremal conditions. As a preliminary
work we need to prove that η∨

t and η∧
t have reached their equilibrium distribu-

tion a bit before t1.

PROPOSITION 8.2. Set

t0 := N2

2π2 log k(1 + δ/2).

We have for all ε > 0, for all N large enough,

lim
N→∞

∥∥P∧
t0

− μ
∥∥

TV = 0,

(8.4)
lim

N→∞
∥∥P∨

t0
− μ

∥∥
TV = 0.

The proof of this statement has a structure similar to that of the proof of (5.1)
(the similar result for the AT shuffle) but is slightly simpler. One needs only two
steps instead of three to make ηt close to equilibrium. Note that by symmetry, we
only need to consider the initial condition ∧.

Let us quickly sketch the proof. We set K := �1/δ�.
We consider a dynamic ηt starting from the initial condition ∧ with the follow-

ing censoring scheme:

• up to time t2 := N2

2π2 log k(1 + δ/4), we run the dynamics without censoring;
• in the time interval [t2, t0], the updates at coordinate xi [recall (3.10)] are cen-

sored.

Let νt be the law of ηt under this dynamics. According to Proposition 3.6, we
have ∥∥P∧

t −μ
∥∥

TV ≤ ‖νt −μ‖TV,

and hence it is sufficient to prove that νt0 is close to equilibrium, or that for every
ε > 0 , if N is large enough,

‖νt0 −μ‖TV ≤ ε.(8.5)
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We prove that at time t2 the skeleton η̄ has come close to its equilibrium distri-
bution and use the time interval [t2, t0] to put all the segments between skeleton
points to equilibrium.

PROPOSITION 8.3. We have for all ε > 0, for all N large enough,

‖ν̄t2 − μ̄‖TV ≤ ε/2.(8.6)

We prove Proposition 8.3 in the next section. Let us now explain how we prove
Proposition 8.2.

PROOF OF PROPOSITION 8.2 USING PROPOSITION 8.3. Between time t2 and
t0, a consequence of the censoring is that the number of particles in the interval
(xi−1, xi] remains constant for every i ∈ {1, . . . ,K}. Hence on the time interval
[t2, t0], conditionally to ηt2 , (ηt )t≥t2 is a product dynamics of K independent ex-
clusion processes. We denote the corresponding equilibrium measure by μηt2

. We
have

μηt2
:= μ

(·|∀i ∈ {1, . . . ,K − 1}, η(xi) = ηt2(xi)
)
.(8.7)

We define ki(ηt2) to be the number of particles in the interval (xi−1, xi],

ki := ηt2(xi) − ηt2(xi−1)+ k

N
(xi − xi−1).

Using Proposition 6.5 and the fact that the total variation distance between
product measures is smaller than the sum of the total variation distances of the
marginals, we obtain, similar to (5.7), that

∥∥P[ηt0 ∈ ·|ηt2] −μηt2

∥∥
TV ≤

K∑
i=1

kie
−λ�xi

(t0−t2).(8.8)

Then we use that ki ≤ k for all i, and that if N is large enough,

λ�xi
= 2
(

1 − cos
(

π

�xi

))
≥ π2

2(�xi)2 ≥ π2

3δ2N2 ,

to conclude that∥∥P[ηt0 ∈ ·|ηt2] − μηt2

∥∥
TV ≤ kKe− log k/(24δ) ≤ ε/2.(8.9)

Even though the right-hand side above is a random variable, the inequality holds
not only with probability one, but also everywhere. Using Jensen’s inequality after
taking the average on the event {η̄t2 = ξ}, we obtain that for every ξ ∈ �̄N,k ,∥∥νt0(·|η̄ = ξ) −μ(·|η̄ = ξ)

∥∥
TV ≤ ε/2.(8.10)
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Then similar to (5.39) we have

‖νt0 −μ‖TV ≤ ‖ν̄t2 − μ̄‖TV
(8.11)

+ ∑
ξ∈�N,K

ν̄t0(ξ)
∥∥νt0(·|η̄ = ξ) −μ(·|η̄ = ξ)

∥∥
TV ≤ ε,

where in the last inequality we used (8.10) and Proposition 8.3. �

8.3. Proof of Proposition 8.3. The proof strongly relies on the fact that νt2 =
P∧

t2
is increasing and presents many similarities with the proof of Proposition 5.2.

Set

v(η̄) :=
K−1∑
i=1

η̄(i)

to be the volume below the skeleton of η. The idea is to show that once the expected
volume v(η̄t ) becomes much smaller than its equilibrium fluctuations (which are
of order K

√
k), then we must be close to equilibrium.

LEMMA 8.4. Let ν be a probability measure whose density with respect μ is
increasing. For every ε, there exists δ(K, ε) such that for N sufficiently large, we
have

ν
(
v(η̄)

)≤ (K − 1)
√

kδ ⇒ ‖ν̄ − μ̄‖ ≤ ε/2.(8.12)

PROOF OF PROPOSITION 8.3 FROM LEMMA 8.4. According to (6.11) for
t = t2, we have

ν̄t2

(
v(η̄)

)≤ 4ke−λN t2 = 4ke−(1+δ/2)(1+cos(π/N))N2π−2 log k ≤ 8k1/2−δ/4.(8.13)

Hence from Lemma 8.4, if N is large enough [so that the left-hand side of (8.12)
is satisfied], then

‖ν̄t − μ̄‖ ≤ ε/2. �

Now to prove Lemma 8.4, all we need to do is to introduce some notation. Given
A > 0, we set

Ai := {η|η̄i ≥
√

kA},

A :=
K−1⋂
i=1

Ai = {η|∀i ∈ {1, . . . ,K − 1}, η̄i ≥
√

kA
}
,(8.14)

B :=
(

K−1⋃
i=1

Ai

)c

= {η|∀i ∈ {1, . . . ,K − 1}, η̄i <
√

kA
}
.

Note that the Ais and A are increasing events while B is decreasing. With a slight
abuse of notation, we also consider these sets as subsets of �̄N,K .
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LEMMA 8.5. When N tends to infinity,(√
N

k(N − k)
ηxi

)
i∈[0,K]

⇒ (Yi)i∈[0,K],(8.15)

where the Y is a Gaussian process whose covariance function is given by

E[YiYj 1{i≤j}] := i

K

(
1 − j

K

)
1i≤j .(8.16)

Given δ ∈ (0,1/2), we choose A large enough, and δ′(δ) satisfying limδ→0 δ′ = 0,
such that for all N large enough,

μ(A) ≥ δK−1 := δ1,
(8.17)

μ(B) ≥ 1 − (K − 1)δ′ := 1 − δ2.

PROOF. This is just a simple consequence of the fact that (
√

N
k(N−k)

×
η�Nx�)x∈[0,1] converges in law to a Brownian bridge: the convergence of the finite
dimensional marginals can be proved by using Stirling’s formula (which gives a
local central limit theorem), while the proof of tightness (in the topology of the
uniform convergence) is essentially the same as that for the proof of convergence
of random walk to Brownian motion.

The inequalities of (8.17) are proved similarly to (5.22). �

PROOF OF LEMMA 8.4. We are going to prove that for N sufficiently large,
the two following implications hold:

ν(A) ≥ (1 + α)μ(A) ⇒ ν
(
v(η̄)

)≥ δ1αA
√

k(8.18)

and

ν(A) ≤ (1 + α)μ(A) ⇒ ‖ν̄ − μ̄‖ ≤ 2α + δ2.(8.19)

We start with (8.18). Similar to (5.15), for all i ∈ {1, . . . ,K − 1}, we can prove
using the correlation inequality (Lemma 3.4 and the fact that ν̄i/μ̄i is increasing;
cf. Proposition 6.3)

ν
(
η̄(i)

)≥ (ν −μ)(Ai )μ(η̄i |Ai )+ (ν −μ)
(
Ac

i

)
μ
(
η̄i |Ac

i

)
.(8.20)

As ν stochastically dominates μ, ν(Ai ) ≥ μ(Ai ). Furthermore μ(η̄i |Ai ) ≥
A
√

k and μ(η̄i |Ac
i ) ≤ 0, and hence (8.20) implies

ν(η̄i) ≥ (ν −μ)(Ai )A
√

k.(8.21)

Summing over i we get

ν
(
v(η̄)

)≥ K−1∑
i=1

(ν − μ)(Ai)A
√

k.(8.22)
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Then we remark that

� :η �→
K∑

i=1

1Ai
(η)− 1A(η)

is an increasing function, and FKG inequality (6.6) applied to � and ν/μ gives

K−1∑
i=1

(ν −μ)(Ai ) ≥ (ν −μ)(A).(8.23)

Combining (8.22) with (8.23) and (8.17), we obtain (8.18).
For (8.19) we note that, similar to (5.35), if ν̄(A) ≤ (1+α)μ̄(A) we can prove,

using the fact that ν̄
μ̄

is an increasing function,

∀η̄ ∈ B,
ν̄

μ̄
(η̄) ≤ ν̄(A)

μ̄(A)
≤ 1 + α.(8.24)

Now note that if η ∈ A and η′ ∈ Bc, then min(η, η′) ∈ Bc, and hence from (6.7)
we have

ν

μ

(
Bc)= μ

(
ν

μ

∣∣∣Bc

)
≤ μ

(
ν

μ

∣∣∣A)= ν

μ
(A) ≤ 1 + α.(8.25)

Then combining (8.24) and (8.25), we have

‖ν̄ − μ̄‖ =
∫
Bc

(
ν̄

μ̄
(η̄)− 1

)
+
μ̄(dη̄) +

∫
B

(
ν̄

μ̄
(η̄)− 1

)
+
μ̄(dη̄)

(8.26)
≤ ν

(
Bc)+ αν(B) ≤ α + (1 + α)δ2. �

8.4. Coupling the top and the bottom in a Markovian manner: Proof of
Lemma 8.1. The idea of the proof is to say that after time t0, the area between
the two curves shrinks to 0 in a time of order N2. This statement cannot be proved
only by computing the expectation of the area, and one must try to control its
fluctuations.

Recall that we denote by

A(t) :=
N∑

x=0

(
η∧

t− − η∨
t (x)

)
the area between the two curves.

Our strategy is to couple A(t) together with a symmetric random walk. To do
this we need to introduce some notation and an alternative way to build the dy-
namics. We say that x is an active coordinate [and write x ∈ C(t)] if

∃y ∈ {x − 1, x, x + 1}, η∧
t (y) > η∨

t (y)

and that (x, z) is an active point for η∧
t (or η∨) if x is active and η∧

t (x) = z (or η∨)
corresponds to a local extremum.
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FIG. 2. Graphical representation of the dynamics (η∧t , η∨t ). The path η∧t is represented in blue and
η∨t in red. The active points are represented by circles: full circles for points in U(t) and void circles
for points in D(t). Squares represent the fixed ends of the lattice paths. The area between the two
paths is made of three bubbles.

Among active points, in the following, we specify those that allow an increase
of the area and those that allow the area to decrease:

U(t) := {(x, z)|x ∈ C(t), η∧
t (x) = z is a local minimum

}
∪ {(x, z)|x ∈ C(t), η∨

t (x) = z is a local maximum
}
,

(8.27)
D(t) := {(x, z)|x ∈ C(t), η∨

t (x) = z is a local minimum
}

∪ {(x, z)|x ∈ C(t), η∧
t (x) = z is a local maximum

}
.

We refer to Figure 2 for a graphical representation of U(t) and D(t). We denote
by u(t) and d(t) the respective cardinals of U(t) and D(t). They are the rates at
which A(t) increase and decrease respectively. The reader can check that

(d − u)(t) ∈ {0,1,2},
and hence that A(t) is a supermartingale.

Given a sequence of i.i.d. exponentials (en)n≥0 and a Bernoulli sequence of
parameters 1/2, (Vn)n≥0, we can reconstruct the dynamics (η∧

t , η∨
t )t≥t0 (note that

we start from time t0 instead of 0) as follows:

• The updates of nonactive coordinates [for which (η∧, η∨) are moving together]
are performed with appropriate rate independently of e and V ; note that these
updates do not change the value of U and D.

• The updates of active coordinates are performed using e and V in the following
manner. After the (n − 1)th update of an active coordinate (which occurred say
at time t), we wait a time en/(u(t)+d(t)) [at time t0 we wait a time e1/(u(t0)+
v(t0))], and then:

(1) if Vn =−1, we choose an active point uniformly at random in D(t) and
flip the corresponding corner in either η∧ or η∨;

(2) if Vn = 1, then with probability d−u
d+u

(t) we choose a corner of D(t) uni-

formly at random and flip it, and with probability 2u
d+u

(t), we switch a corner of
U(t).
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Note that after finitely many updates of active coordinates, η∨(t) and η∧(t)

merge so that only a finite number of (Vn)n≥0 is used. We let N be the last one
which is used. We define Wn to be equal to −1 if the transition corresponding to
Vn decreases the area and +1 if it increases it. From our construction Wn ≤ Vn,
whenever Wn is defined.

Let (S̃(t))t≥0 be the random walk starting from A(t0) whose waiting times are
given by e, and increments are given by Wn, or in other words,

S̃t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A(t0)+

N∑
n=1

Wn if
N∑

n=1

en ≤ t <

N+1∑
n=1

en, n ≤N − 1,

0 if t ≥
N∑

n=1

en.

(8.28)

This process is just a time changed version of A(t + t0). We have

A(t + t0) = S

(∫ t

0

(
d(s)+ u(s)

)
ds

)
.(8.29)

We define also a set of stopping times for S̃ for i ≥ 2,

τi := min
{
t ≥ 0|S̃(t) ≤ k1/2−(i+1)εN

}
,

(8.30)
τ∞ := min

{
t ≥ 0|S̃(t) = 0

}
.

LEMMA 8.6. If ε ≤ δ/100, we have, w.h.p.:

(i) τ2 = 0;
(ii) for all i ∈ {2, . . . , �1/(2ε)�},

τi+1 − τi ≤ k1−(2i+1)εN2;
(iii) τ∞ − τ�1/(2ε)�+1 ≤ N2.

PROOF. Item (i) is a consequence of Proposition 4.1 applied to t = t0. The two
other items follow from the fact that for each i, (S̃t+τi

− S̃τi
)t≥0 is dominated by

a simple random walk: the coupling is obtained by replacing W with V in (8.28).
Then we just have to use the fact that for a simple random walk Xt on Z starting
from the origin and with jump rate 1,

lim
N→∞P

[
inf
{
t |Xt ≤ Nk1/2−(i+1)ε}≥ N2k1−(2i+1)ε]= 0. �

Now we define

τ ′
i := min

{
t ≥ 0|A(t + t0) ≤ k1/2−(i+1)εN

}
,

(8.31)
τ ′∞ := min

{
t ≥ 0|A(t + t0) = 0

}
.
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We have from (8.29),

τi+1 − τi =
∫ τ ′

i+1

τ ′
i

(d + u)(t)dt.

We want to use this fact and Lemma 8.6 to show that w.h.p. τ ′∞ is not too large.
In fact we already have from the last item of Lemma 8.6 and (8.29) that w.h.p.

τ ′∞ − τ ′�1/(2ε)�+1 ≤ N2(8.32)

and τ0 = 0. Hence we only have to consider the increments τ ′
i+1 − τ ′

i , 0 ≤ i ≤
�1/(2ε)�.

LEMMA 8.7. We have

lim
N→∞P

[∃i ∈ {2, . . . ,
⌈
1/(2ε)

⌉}
, τ ′

i+1 − τ ′
i ≥ N2]= 0.(8.33)

PROOF OF PROPOSITION 8.1. By definition, for any t ≥ 0 we have

P
[
η∧

t+t0

= η∨

t+t0

]= P
[
τ ′∞ > t

]
.(8.34)

From Lemma 8.7 and (8.32) we have

lim
N→∞P

[
τ ′∞ ≥ ⌈1/(2ε)

⌉
N2]= 0.(8.35)

From this and (8.3), we can deduce that for any ε ≤ δ/100, if N is large enough
and such that

t1 ≤ t0 + ⌈1/(2ε)
⌉
N2,

then we have

dN,k(t1) ≤ dN,k(t0 + ⌈1/(2ε)
⌉
N2)< ε. �

To prove Lemma 8.7, we need a reasonable lower bound on (d + u)(t) in the
interval [τ ′

i − τ ′
i+1). To this end, we define a good set of paths, for which there are

sufficiently many active points.
We define H to be the set of bad paths that we wish to avoid

H = H(k,N)

:=
{
η ∈ �N,k

∣∣ max
x∈[0,N]

∣∣η(x)
∣∣≥√

k logk
}

(8.36)

∪
{
η ∈ �N,k

∣∣∣∃x ∈
[
0,N − 2

N

k
(logk)2

]
,

η|[x,x+2(N/k)(logk)2] is affine
}
.

We show first that most of the time, after t0, both η∧
t and η∨

t stay out of H.
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LEMMA 8.8. We have

lim
N→∞μ(H) = 0,

and as a consequence,

lim
N→∞P

[(∫ t0+�1/(2ε)�N2

t0

1
{
η∧

t ∈H or η∨
t ∈H

}
dt

)
≥ N2/2

]
= 0.(8.37)

PROOF. The fact that

lim
N→∞μ

(
max

x∈[0,N]
∣∣η(x)

∣∣≥√
k log k

)
= 0(8.38)

follows from the convergence of (
√

N
k(N−k)

η�Nx�)x∈[0,1] to the Brownian bridge;
see the proof Lemma 8.5. For the second point it is sufficient to prove that w.h.p.,
each segment[

(i − 1)
N

k
(logk)2; i N

k
(log k)2

]
, i ∈ {0, . . . ,

⌊
k(log k)−2⌋}

contains at least one particle and one empty site.
The probability for a segment of with l sites (l ≤ N − k) to contain no particle

is equal to

(N − k)!(N − l)!
(N − l − k)!N ! ≤

(
1 − k

N

)l

.

Here l ≥ Nk(log k)2/2, and hence the probability is smaller than e−(log k)2/2. As
k ≤ N/2 the probability of having a segment with no empty sites is smaller than
having a segment with no particle, and we can conclude. Hence by union bound,
after summing the probability of the two events over all the segments, we obtain

P

[
∃x ∈

[
0,N − 2

N

k
(log k)2

]
, η|[x,x+2(N/k)(logk)2] is affine

]
(8.39)

≤ k(log k)−2e−(log k)2/2.

Now let us deduce (8.37). Of course by symmetry it is sufficient to prove that

lim
N→∞P

[(∫ t0+�1/(2ε)�N2

t0

1
{
η∧

t ∈H
}

dt

)
≥ N2/4

]
= 0.(8.40)

First, note that as μ is stable for the dynamics, we have

μ

(
E

[∫ �1/(2ε)�N2

0
1
{
η

ξ
t ∈H

}
dt

])
= μ(H)

⌈
1/(2ε)

⌉
N2,(8.41)
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where μ is the law of ξ . Hence from the first point and the Markov inequality, we
have

lim
N→∞μ

(
P

[(∫ �1/(2ε)�N2

0
1
{
η

ξ
t ∈H

}
dt

)
≥ N2/4

])
= 0.(8.42)

The quantity we want to estimate is equal (by the Markov property) to

P∧
t0

(
P

[(∫ �1/(2ε)�N2

0
1
{
η

ξ
t ∈H

}
dt

)
≥ N2/4

])
and hence ∣∣∣∣μ(P[(∫ �1/(2ε)�N2

0
1
{
η

ξ
t ∈H

}
dt

)
≥ N2/4

])

− P

[(∫ t0+�1/(2ε)�N2

t0

1
{
η∧

t ∈H
}

dt

)
≥ N2/4

]∣∣∣∣(8.43)

≤ ∥∥μ− P∧
t0

∥∥
TV.

By Proposition 8.2 the right-hand side above converges to zero, and hence (8.40)
is a consequence of (8.42) and (8.43). �

The following result shows that indeed if both η∧
t and η∨

t lie outside of H, then
there are many active sites.

LEMMA 8.9. For all i ∈ {2, . . . , �1/(2ε)�}, if t < τ ′
i+1, η∧

t /∈H and η∨
t /∈H,

(d + u)(t) ≥ k1−(i+2)ε

8(log k)2 .(8.44)

PROOF. If η∧
t /∈H and η∨

t /∈H, then

max
x∈[0,N]

(
η∧

t − η∨
t

)≤ 2
√

k log k.

If t < τ ′
i+1, we also have

A(t) ≥ k1/2−(i+2)εN.

Combining these two inequalities we have

#
{
x ∈ {1, . . . ,N − 1}|η∧(x) > η∨

t (x)
}≥ Nk−(i+2)ε(2 log k)−1.(8.45)

Now the set of coordinates where η∧
t and η∨

t differ can be decomposed into max-
imal connected components (for the usual graph structure on Z), each component
corresponding to a “bubble” between η∧

t and η∨
t ; see Figure 2.

If {x1, . . . , x2} corresponds to a bubble, then all the corners of η∧
t and η∨

t in
the interval {x1, . . . , x2} are active points. In particular we have at least two active
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points per bubble. We also need to show that long bubbles (i.e., those associated to
long intervals) have a lot of active points.

Note that the interval {x1, . . . , x2} can be split into⌊
(x1 − x2)k

2N log k

⌋
intervals of length 2N log k

k
or longer (not that it might be zero). If η∧

t /∈H, then each
of these intervals will contain at least one active coordinate. Hence if η∧

t /∈H, the
number of active points in a bubble in the interval {x1, . . . , x2} is always larger
than

(x1 − x2)k

4N log k
.

Note that the number has been chosen so that the statement is also valid when
� (x1−x2)k

2N log k
 = 0.

Summing over all bubbles and using (8.45), we obtain the following lower
bound for the total number of active sites:

(d − u)(t) ≥ k1−(i+2)ε

8(log k)2 . �

PROOF OF LEMMA 8.7. It is sufficient that to prove that for each i ∈
{2, . . . , �1/(2ε)�}, the probability of the event

Ai := {τ ′
i+1 − τ ′

i ≥ N2}∩ {∀j < i, τ ′
i+1 − τ ′

i < N2}
is vanishing. Note that if the event Ai occurs, we have

τi+1 − τi ≥
∫ τ ′

i+N2

τ ′
i

(d + u)(t)dt

≥ k1−(i+2)ε

8(log k)2

∫ τ ′
i+N2

τ ′
i

1{η∧
t /∈H and η∨

t /∈H} dt(8.46)

≥ k1−(i+2)ε

8(log k)2

(
N2 −

∫ �1/(2ε)�N2

0
1{η∧

t ∈H or η∨
t ∈H} dt

)
.

According to Lemma 8.8, w.h.p., the last factor on the right-hand side is larger
than N2/2, and hence w.h.p.,

(τi+1 − τi)1Ai
≥ N2k1−(i+2)ε

16(log k)2 .(8.47)

Hence Ai has to occur with vanishing probability, or else we would have a
contradiction to Lemma 8.6. �
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APPENDIX A: PROOF OF TECHNICAL RESULTS

A.1. Proof of the FKG inequality for permutations. We prove that for any
pair (A,B) of increasing sets, we have

μ(A ∩B) ≥ μ(A)μ(B).(A.1)

Then we can deduce the inequality for functions as follows. Given f and g two
increasing positive functions (there is no loss of generality in assuming positivity
as adding a constant to f or g leaves the inequality unchanged) and x, y ∈ R, we
define the increasing sets

As = {f (σ) ≥ s
}

and Bt := {g(σ) ≥ t
}
.

As f = ∫
R+ Ax dx, we can deduce from (A.1) that

μ
(
f (σ)g(σ )

)= μ

(∫
R

2+
1As 1Bt ds dt

)
≥
∫
R

2+
μ(As)μ(Bt)dx dy

(A.2)
= μ

(
f (σ)

)
μ
(
g(σ)

)
.

Let us now prove (A.1). Let A and B be two increasing subsets of SN . Let us
start from the identity and run two coupled dynamics σt and σA

t defined as follows:
σt is a normal AT shuffle, and σA

t has the same transition rule, except that all the
transitions going out of A are canceled (this is called the reflected Markov chain).
We couple the two dynamics using the graphical construction of Section 3.2, with
both dynamics using the same clock processes T and update variables U , the only
difference being that σA

t cancels the transition that makes it go out of A.
The Markov chain σA

t is irreducible: the reason for this is that for each
(σ, σ ′) ∈ A2 one can always find a sequence of up transitions (corresponding to
sorting neighbors) from σ leading to 1 (the identity) and a sequence of down tran-
sitions going from 1 to σ ′. The concatenation of these two sequences provides
a path of transitions from σ to σ ′ whose steps are all in A (they are ≥ σ in the
first half and ≥ σ ′ in the second half). The reader can check that μ(·|A) (i.e., the
uniform measure on A) is reversible for σA (this in fact a general statement for
reflected Markov chain) and hence that the distribution of σA

t converges to it.
As the only transitions which are canceled for σA are those transitions “going

down” (corresponding to reverse-sorting of an adjacent pair), we have (as a conse-
quence of the proof of Proposition 3.1)

∀t ≥ 0, σA
t ≥ σt .

Using Lemma 3.3 we obtain that

μ(·|A) � μ,(A.3)

and we conclude by taking expectation over B for these two measures.
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A.2. Proof of the censoring inequality for permutations. To use the cen-
soring inequality, and also to prove it, we have to work with increasing probability
measures. A key result is that those measures are conserved by the dynamics (cen-
sored and uncensored) in the following sense:

PROPOSITION A.1. Let ν be an increasing probability measure on SN . Then
for every t ≥ 0, P ν

t is also increasing and for any censoring scheme, P
ν,C
t is in-

creasing.

The strategy to prove such a statement is to show first that each individual update
does not alter monotonicity, and then to average on the different possibilities for
the chain of updates given by the clock process.

Given x ∈ {1, . . . ,N − 1}, σ ∈ SN , we set

σ •
x := {ξ ∈ SN |∀y /∈ {x, x + 1}, ξ(y) = σ(y)

}
.

The set σ •
x contains two elements (one of which is σ ) σ+

x ≥ σ−
x , which are ob-

tained respectively by sorting and reverse sorting σ(x) and σ(x + 1). Given ν

a probability measure on SN , one defines θx(ν), the measure “updated at x” as
follows:

θx(ν)(σ ) := ν
(
σ •

x

)
/2.(A.4)

The operator θx describes how the law of σt is changed when the clock-process
rings at x.

LEMMA A.2. If ν is increasing, so is θx(ν) and furthermore ν � θx(ν
x).

PROOF. If σ ≥ ξ , the reader can check that σ+
x ≥ ξ+

x and σ−
x ≥ ξ−

x . Hence

ν
(
σ •

x

)= ν
(
σ+

x

)+ ν
(
σ−

x

)≥ ν
(
ξ+
x

)+ ν
(
ξ−
x

)= ν
(
ξ•
x

)
,(A.5)

and thus θx(ν) is increasing if ν is increasing.
Let g be an increasing function. If ν is increasing, then we have ν(σ+

x ) ≥ ν(σ−
x )

and hence

g
(
σ+

x

)
ν
(
σ+

x

)+ g
(
σ−

x

)
ν
(
σ−

x

) ≥ (g(σ+
x

)+ g
(
σ−

x

))νx(σ+
x ) + νx(σ−

x )

2
(A.6)

= g
(
σ+

x

)
θx(ν)

(
σ+

x

)+ g
(
σ−

x

)
θx(ν)

(
σ−

x

)
.

Summing over all σ ∈ SN and dividing by two, one obtains

ν(g) ≥ θx(ν)(g).

As g is arbitrary, this implies

ν � θx(ν). �
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PROOF OF PROPOSITION A.1. Let ν be an increasing probability and σν
t be

the Markov chain trajectory obtained with the graphical construction. By definition
we have

P ν
t = P

[
σν

t ∈ ·].(A.7)

Let N denote the number of updates which have occurred before time t and
X1, . . . ,XN denote the sequence of vertices that have rung for the clock process
(with repetitions). Then the probability law P[σν

t ∈ ·|T ], knowing the clock pro-
cess is given by

θXN ◦ · · · ◦ θX1(ν),

is increasing according to Lemma A.2. The monotonicity is then conserved when
averaging with respect to T . The reasoning remains valid for the censored dynam-
ics. �

We end the preparation of the proof with two additional lemmas on monotonic-
ity. The first is simply a consequence of the graphical construction of Section 3.2.

LEMMA A.3. Updates preserve stochastic domination in the sense that if
ν1 � ν2, then

θx(ν1) � θx(ν2).

LEMMA A.4. If ν1 has an increasing density and ν1 # ν2, then

‖ν1 −μ‖TV ≤ ‖ν2 −μ‖TV.

PROOF. Set

A := {σ |ν1(σ ) ≥ μ(σ) = (n!)−1}.
As ν1 has an increasing density, A is an increasing event and

‖ν1 −μ‖TV = ν1(A) − μ(A) ≤ ν2(A) − μ(A) = ‖ν2 −μ‖TV.(A.8) �

Let us first prove Proposition 3.6 for a fixed sequence of updates.

PROPOSITION A.5. Let ν0 be an increasing probability on SN and k ∈N.
Given (x1, . . . , xk) ∈ {1, . . . ,N − 1}k (repetitions are allowed) and j ∈ {1, . . . ,

k}. Let ν1 denote the measure obtained by performing successive updates at site
x1, . . . , xk and ν2 denote the measure being obtained by performing the same se-
quence of updates, omitting the one at xj (i.e., x1, . . . , xj−1, xj+1, xj+2, . . . , xk).

Then

‖ν1 −μ‖TV ≥ ‖ν2 −μ‖TV.

The result remains valid if several updates are omitted instead of one.
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PROOF. Without loss of generality we can consider that j = 1 as the law
obtained after the performing j − 1 first update has an increasing density; cf.
Lemma A.2. Let ν′

0 be the measure obtained after updating x1. From Lemma A.2,
we have

ν′
0 # ν0.

As monotonicity is preserved by the updates at (x2, . . . , xk) (cf. Lemma A.3),
we have

ν2 # ν1.

Furthermore from Lemma A.2, both have increasing densities, and one can con-
clude using Lemma A.4.

The case of several omissions can be proved using a straightforward induction.
�

PROOF OF THE CENSORING INEQUALITY. In our dynamics, at time t , the set
of updates that have been performed is random and is given by the clock process T
restricted to [0, t] (recall the graphical construction of Section 3.2) so that Proposi-
tion A.5 cannot apply directly. However, for a fixed realization of T , we can apply
Proposition A.5 conditioned to T .

Set

pT
t := P

[
σν

t ∈ ·|T ]
to be the law of σ obtained after doing the updates corresponding to T , and

p
T ,C
t := P

C[σν
t ∈ ·|T ]

the one obtained after performing only the updates allowed the censoring scheme.
Both probability measures are increasing, and from Proposition A.5,

pT � pT ,C .

These two properties are conserved when averaging with respect to T so that

P ν
t � P

ν,C
t ,

and Lemma A.4 allows us to conclude. �

A.3. Proof of Proposition 3.8. First of all, we notice that items (iii) and (iv)
can be obtained simply by integrating the increasing function ν/μ against inequal-
ities (3.13) and (3.14).

We will only prove (3.13). The reader can check then that the proof also works
if the grid (xi, xj )

K−1
i,j=1 is replaced by an asymmetric one (xi, yj )

K−1
i,j=1 and that in

any case the particular values of the xi do not play any role. Thus (3.14) simply
corresponds to the case K = 2.
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We prove the result in two steps. First, we prove that if σ̂ 1, σ̂ 2 ∈ ŜN and
σ̂ 1 ≥ σ̂ 2, then

μ
(·|σ̂ = σ̂ 1)� μ

(·|σ̂ = σ̂ 2).(A.9)

Then we show that if σ̄ 1, σ̄ 2 ∈ S̄N and σ̄ 1 ≥ σ̄ 2, we have

μ̂
(·|ξ̄ = σ̄ 1)� μ̂

(·|ξ̄ = σ̄ 2),(A.10)

where, in the above equation ξ̄ denotes projection of ξ ∈ ŜN on S̄N .
Before going to the core of the proof, let us show that the combination of (A.9)

and (A.10) yields (3.13). Let f be an increasing function on SN , and we define f̂

on ŜN by

f̂ (ξ) = μ
(
f (σ)|σ̂ = ξ

)
.(A.11)

Relation (A.9) implies that f̂ is an increasing function on ŜN . Finally, if σ̄1 ≥ σ̄2,

μ
(
f (σ)|σ̄ = σ̄1

)= μ̂
(
f̂ (ξ)|ξ̄ = σ̄1

)
(A.12)

≥ μ̂
(
f̂ (ξ)|ξ̄ = σ̄2

)= μ
(
f (σ)|σ̄ = σ̄1

)
,

where the inequality uses (A.10) and the fact that f̂ is increasing. This is enough
to conclude by using Lemma 3.2.

Let us prove (A.9). First, we notice that the information given by σ̂ is exactly
the value of the sets

σ−1({xi−1 + 1, . . . , xi}), i ∈ {1, . . . ,K}.
For each i, this set is given by{

x ∈ {0, . . . ,N}|
(A.13)

σ̂ (x, i + 1) − σ̂ (x − 1, i + 1) − σ̂ (x, i)+ σ̂ (x − 1, i) > 0
}
.

The missing information is in what order the cards, whose labels belong to {xi−1 +
1, . . . , xi}, appear in the pack. Hence for each ξ ∈ ŜN , there is a natural bijection

K⊗
i=1

S�xi
→{σ ∈ SN |σ̂ = ξ},

(A.14)
(σ1, . . . , σK) �→ σ

(σ1,...,σK)
ξ ,

where �xi := xi − xi−1. The permutation σ
(σ1,...,σK)
ξ , is defined to be the one

in {σ ∈ SN |σ̂ = ξ} for which, for all i ∈ {1, . . . ,K}, the card with the label
{xi−1, . . . , xi} appears in the deck in the order specified by σi ,

∀a, b ∈ {xi−1 + 1, . . . , xi}
(A.15)

σ−1(a) ≤ σ−1(b) ⇔ σ−1
i (a − xi−1) ≤ σ−1

i (b − xi−1).
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FIG. 3. The transformation σ → σ ′, obtained by sorting the cards in each interval (N = 15,
K = 4).

The reader can check that given (σ1, . . . , σK) and ξ , there is a unique permutation
satisfying σ̂ = ξ and (A.15).

Mapping (A.14) has the following expression in terms on surfaces: for all y ∈
{xi−1, . . . , xi}

σ̃
(σ 1,...,σK)
ξ (x, y) = y − xi−1

�xi

ξ(x, i)+ xi − y

�xi

ξ(x, i − 1)

(A.16)

+ σ̃i

(
ξ(x, i)− ξ(x, i − 1) + x�xi

N
,y − xi−1

)
.

If ξ ≥ ξ ′ are two admissible semi-skeletons, it is tedious but straightforward to
check with the above expression that for any (σ 1, . . . , σK),

σ̃
(σ 1,...,σK)
ξ ≥ σ̃

(σ 1,...,σK)
ξ ′ .

Hence the uniform measure on
∏K

i=1 S�xi
induces a monotonous coupling proving

(A.9).
Let us now prove (A.10). Given σ̄1 ≥ σ̄2, we consider Ŝ1 and Ŝ2 defined by

Ŝi := {ξ ∈ ŜN |ξ̄ = σ̄i}.
Let us prove that each Ŝi possesses a maximal element ξ i

max and that they satisfy

ξ1
max ≥ ξ2

max.(A.17)

To obtain the maximal element of Ŝ1, we start by taking σ ∈ SN such that
σ̂ ∈ Ŝ1. Then we consider σ ′, the permutation obtained by sorting the elements
in each interval {xi−1 + 1, . . . , xi}, for all i ∈ {1, . . . ,K} (see Figure 3), that is, the
unique permutation which satisfies

∀i ∈ {1, . . . ,K}, σ ′({xi−1 + 1, . . . , xi})= σ
({xi−1 + 1, . . . , xi}),(A.18)

and

∀i ∈ {1, . . . ,K},∀(y, z) ∈ {xi−1 + 1, . . . , xi},
(A.19)

y ≤ z ⇒ σ ′(y) ≤ σ ′(z).
Then for all i ∈ {1, . . . ,K}, j ∈ {0, . . . ,K} and x ∈ {xi−1, . . . , xi}, we have

σ̂ ′(x, j) := min
(

N − xj

N
(x−xi−1)+ σ̄ (i−1, j),

xj

N
(xi −x)+ σ̄ (i, j)

)
.(A.20)
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This guarantees that σ̂ ′ is maximal in Ŝ1 (and hence the existence of a maximal
element). The expression of the maximum implies (A.17).

Let ξ1
t and ξ2

t be the Markov chain on Ŝi constructed with the graphical con-
struction from U and T but ignoring the update at xi , i = 1, . . . ,K − 1, starting
from ξ1

max and ξ2
max, respectively. This censoring corresponds to canceling updates

that take ξ i
t out of Ŝi .

The Markov chains ξ1
t and ξ2

t are irreducible: indeed given ξ ∈ Ŝ1, we can find
σ such that σ̂ = ξ . Then from σ it is possible to construct a path of transition
leading to σ ′ [the maximal element described in (A.20)] that does not use any of
the τxi

, and projecting this path with the semi-skeleton projection gives us a path
of allowed transition from ξ to ξ1

max.
As the ξ i

t are reflected Markov chains, their respective equilibrium measures are
μ̂(·|ξ̄ = σ̄ i), i = 1,2 (which is the uniform measure on Ŝi ). The ordering of the
initial condition and the order preservation induced by the graphical construction
(see the proof of Proposition 3.1) implies

∀t ≥ 0, ξ1
t ≥ ξ2

t .

Having this monotone coupling between the two processes, we use Lemma 3.3
to conclude.

A.4. Proof of Lemma 4.1. For any fixed y, the solution of (4.3) can be com-
puted by Fourier decomposition on the basis of eigenfunctions (ui)

N−1
i=1 of �x

given by

ui :x �→
√

2

N
sin
(

xiπ

N

)
.(A.21)

The eigenvalue associated to ui is −λN,i where

λN,i := 2
(

1 − cos
(

iπ

N

))
.(A.22)

Hence

f (x, y, t) = 2

N

N−1∑
i=1

ai

(
σ̃0(·, y)

)
e−λN,i t sin

(
xiπ

L

)
,(A.23)

where the Fourier coefficient ai is given by

ai

(
σ̃0(·, y)

) := N−1∑
x=1

σ̃0(x, y) sin
(

xiπ

N

)
.(A.24)

We have, by definition of σ̃ ,∣∣σ̃0(x, y)
∣∣≤ min(y,N − y) ∀x ∈ {0, . . . ,N}
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(in the remainder of the proof we assume y ≤ N/2 for simplicity), and hence the
Fourier coefficients satisfy

|ai | ≤ yN ∀i ∈ {1, . . . ,N − 1}.
Moreover, the reader can check that λi,N ≥ iλN , for all i ∈ {1, . . . ,N − 1}, and
hence we deduce from (A.23) that

∣∣f (x, t)
∣∣≤ 2y

N−1∑
i=1

e−iλN t = 2ye−λN t

1 − e−λN t
.(A.25)

When e−λN t ≤ 1/2, this implies (4.4), and when e−λN t ≥ 1/2 we have that
|f (x, t)| ≤ y because |σ̃ (x, y, t)| ≤ y, and hence (4.4) is also valid in this case
too.

For (4.6), note that when y ≤ N/2,

min
(
x

(
1 − y

N

)
, (N − x)

y

N

)
≥ min

(
x

y

N
, (N − x)

y

N

)
(A.26)

= y

π
min

(
xπ

N
,π − xπ

N

)
.

Hence using the identity sinu ≤ min(u,π − u) valid for u ∈ [0, π], we obtain

∀x ∈ {1, . . . ,N − 1}, σ̃0(x, y) ≥ y

π
sin
(

xπ

N

)
.(A.27)

Because of monotonicity of the solution of the heat equation in the initial condi-
tion, one can deduce (4.6) by considering the solution of (4.3) at time t for both
sides of (A.27).

A.5. Proof of Lemma 5.8. Inequality (5.25) is obtained by integrating ν/μ

against the inequality (5.24). We prove first (5.24) for the conditioned law of the
semi-skeleton σ̂ [recall (3.11)]

μ̂(·|c).(A.28)

Starting from the identity, we define σ 1
t and σ 2

t to be two AT shuffle dynamics
for which the transitions going out of A (resp., out of Bc) are canceled. We cou-
ple the two dynamics using the graphical construction. Note that the two Markov
chains we have introduced are irreducible and hence that their respective equilib-
rium measures are μ̂(·|A) and μ̂(·|Bc). We want to show that σ̂ 1

t ≥ σ̂ 2
t for all times

and then deduce (A.28) from Lemma 3.3.
What there is to show is that the order is preserved each time that an update is

performed for either dynamics. When an update is not censored by either dynam-
ics, it preserves the order as a consequence of the proof of Proposition 3.1. Note
also that as both events A and Bc are increasing; only updates going down might
be canceled.
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It follows that the only thing to check is that if a down update is censored for
σ̂ 2 but not for σ̂ 1, it cannot break monotonicity. Let zmin(i, j) denote the smallest
admissible value of σ̄ (i, j) which is larger or equal to A

√
k. If the transition at xi

is canceled for σ̂ 2, say at time at time t , it implies that

∀j ∈ {1, . . . ,K − 1}, σ̂ 2
t (xi, j) ≤ zmin(i, j),

and if not, a single jump would not be sufficient to exit Bc. By the definition of A,

∀j ∈ {1, . . . ,K − 1}, σ̂ 1
t (xi, j) ≥ zmin(i, j).

As the σ(x, y), x 
= xi are not affected by the transition, we have σ̂ 1
t ≥ σ̂ 2

t

provided σ̂ 1
t− ≥ σ̂ 2

t− . This completes the proof of (A.28).
To prove the same stochastic domination with μ̂ replaced by μ, we recall (from

the proof of Proposition 3.8) that if f is increasing, f̂ is increasing, defined by
(A.11), and thus for all increasing f s,

μ(f |A) = μ̂
(
f̂ (σ̂ )|A)≥ μ̂

(
f̂ (σ̂ )|Bc)= μ

(
f (σ)|Bc),(A.29)

which, according to Lemma 3.2, proves stochastic domination.

APPENDIX B: BACK TO THE ORIGINAL CARD SHUFFLE

As we wish to give the full answer to the question given in the Introduction, we
explain in this appendix how to obtain the result in discrete time.

We can use the tools we have developed in Section 3 to compare the mixing
time in discrete and continuous times. We consider (σn)n≥0 the trajectory dis-
crete Markov chains described in the Introduction, and which can be described
as follows: we start from the identity at each step, we chose a x at random in
{1, . . . ,N − 1} and perform an update at x. Let Pn denote the law of σn.

The continuous time chain can be described in the following manner. We con-
sider T a Poisson point process with rate 2(N − 1) (T0 = 0 and Tn − Tn−1, n ≥ 1
are i.i.d. exponential variables with mean 1/[2(N −1)]) which is independent, and
set

∀n ≥ 0 ∀t ∈ [Tn,Tn+1), σ ′
t = σn.(B.1)

Then σ ′
t is the continuous Markov chain with generator (2.1).

Hence

Pt =
∞∑

k=0

(2t (N − 1))ne−2(N−1)t

k! Pn.(B.2)

From this we can prove the following result.

PROPOSITION B.1. We have for all t and n,

‖Pn −μ‖ ≤ ‖Pt −μ‖∑n
k=0((2t (N − 1))ke−2(N−1)t )/k! ,(B.3)
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and

‖Pn −μ‖ ≥ ‖Pt −μ‖ −∑n−1
k=0((2t (N − 1))ke−2(N−1)t )/k!∑∞

k=n((2t (N − 1))ke−2(N−1)t )/k! .(B.4)

PROOF. Let us fix t > 0 and n ∈ N. From Proposition A.1 (which proof can
easily adapt for discrete time), note also that Pn is an increasing probability for all
n (as is Pt ) so that the events

A1 := {σ |Pn(σ ) ≥ μ(σ)
}
,

(B.5)
A2 := {σ |Pt(σ ) ≥ μ(σ)

}
,

are increasing events. Recall that from the definition of the total variation distance,

Pn(A1) −μ(A1) = ‖Pn −μ‖TV and

Pt(A2) −μ(A2) = ‖Pt −μ‖TV.

Now from Lemma A.2 (plus an average over the coordinate which is updated),
for any increasing event A, (Pk(A))k≥0 is a nonincreasing sequence tending to
μ(A). Hence we have

‖Pt −μ‖TV ≥ (
Pt(A1)−μ(A1)

)
(B.2)=

∞∑
k=0

(2t (N − 1))ne−2(N−1)t

k!
(
Pn(A1)− μ(A1)

)

≥
(

n∑
k=0

(2t (N − 1))ke−2(N−1)t

k!
)(

Pn(A1) −μ(A1)
)

(B.6)

+
∞∑

k=n+1

(2t (N − 1))ke−2(N−1)t

k!
(
Pk(A1)− μ(A1)

)

≥
(

n∑
k=0

(2t (N − 1))ke−2(N−1)t

k!
)∥∥Pn(A) −μ

∥∥
TV,

and

‖Pt −μ‖TV = (
Pt(A2)−μ(A2)

)
(B.2)=

∞∑
k=0

(2t (N − 1))ne−2(N−1)t

k! Pn(A2) −μ(A2)

≤
n−1∑
k=0

(2t (N − 1))ke−2(N−1)t

k!
(
Pk(A2)− μ(A2)

)
(B.7)
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+
( ∞∑

k=n

(2t (N − 1))ke−2(N−1)t

k!
)(

Pn(A2)−μ(A2)
)

≤
(

n−1∑
k=0

(2t (N − 1))ke−2(N−1)t

k!
)

+
(

n∑
k=0

(2t (N − 1))ke−2(N−1)t

k!
)∥∥Pn(A) − μ

∥∥
TV,

which completes the proof. �

Now if we set

TN
mix(ε) := inf

{
n|‖Pn −μ‖TV ≤ ε

}
,

Theorem 2.2 is equivalent to the following result.

THEOREM B.2. For the adjacent transposition shuffle, we have for every ε ∈
(0,1),

lim
N→∞

π2TN
mix(ε)

N3 logN
= 1.(B.8)

PROOF. We use the previous proposition for t = n±n1/3

2(N−1)
, and we have

‖P(n+n1/3)/(2(N−1)) −μ‖TV + o(1) ≤ ‖Pn − μ‖
(B.9)

≤ ‖P(n−n1/3)/(2(N−1)) −μ‖TV + o(1).

It is then easy to conclude. �
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