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CENTRAL LIMIT THEOREM FOR LINEAR GROUPS

BY YVES BENOIST AND JEAN-FRANÇOIS QUINT

CNRS—Université Paris-Sud and CNRS—Université Bordeaux I

We prove a central limit theorem for random walks with finite variance
on linear groups.

1. Introduction.

1.1. Central limit theorem for linear groups. Let V = Rd , G = GL(V ) and
μ be a Borel probability measure on G. We fix a norm ‖ · ‖ on V . For n ≥ 1,
we denote by μ∗n the nth-convolution power μ ∗ · · · ∗ μ. We assume that the first
moment

∫
G logN(g)dμ(g) is finite, where N(g) = max(‖g‖,‖g−1‖). We denote

by λ1 the first Lyapunov exponent of μ, that is,

λ1 := lim
n→∞

1

n

∫
G

log‖g‖dμ∗n(g).(1.1)

Let g1, . . . , gn, . . . be random elements of G chosen independently with law μ. The
Furstenberg law of large numbers describes the behavior of the random variables
log‖gn · · ·g1‖. It states that, almost surely,

lim
n→∞

1

n
log‖gn · · ·g1‖ = λ1.(1.2)

In this paper, we will prove that, under suitable conditions, the variables
log‖gn · · ·g1‖ satisfy a central limit theorem (CLT), that is, the renormalized vari-
ables log‖gn···g1‖−nλ1√

n
converge in law to a nondegenerate Gaussian variable.

Let �μ be the semigroup spanned by the support of μ. We say that �μ acts
strongly irreducibly on V if no proper finite union of vector subspaces of V is
�μ-invariant.

THEOREM 1.1. Let V = Rd , G = GL(V ) and μ be a Borel probability mea-
sure on G such that �μ has unbounded image in PGL(V ), �μ acts strongly irre-
ducibly on V , and the second moment

∫
G(logN(g))2 dμ(g) is finite. Let λ1 be the

first Lyapunov exponent of μ. Then there exists � > 0 such that, for any bounded
continuous function F on R, one has

lim
n→∞

∫
G

F

(
log‖g‖ − nλ1√

n

)
dμ∗n(g) =

∫
R

F(s)
e−s2/(2�)

√
2π�

ds.(1.3)
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REMARKS 1.2. We will see that under the same assumptions the variables
log‖gn · · ·g1‖ also satisfy a law of the iterated logarithm (LIL), that is, almost
surely, the set of cluster points of the sequence log‖gn···g1‖−nλ1√

2�n log logn
is equal to the in-

terval [−1,1].
According to a result of Furstenberg, when moreover �μ is included in the group

SL(V ), the first Lyapunov exponent is positive: λ1 > 0.
For every nonzero v in V and f in V ∗, the variables log‖gn · · ·g1v‖ and

log |f (gn · · ·g1v)| also satisfy the CLT and the LIL.
Such a central limit theorem is not always true when the action of �μ is only

assumed to be irreducible: in this case the variables log‖gn···g1‖−nλ1√
n

still converge
in law but the limit is not always a Gaussian variable (see Example 4.15).

We will deduce easily a multidimensional version of this CLT (Theorem 4.11)
and interpret it as a CLT for real semisimple groups (Theorem 4.16), generalizing
Goldsheid and Guivarc’h CLT in [22]. Most of our results are true over any local
field K with no changes in the proofs.

1.2. Previous results. Let us give a historical perspective about this theorem.
The existence of such a “noncommutative CLT” was first guessed by Bellman
in [3]. Such a theorem has first been proved by Furstenberg and Kesten in [19]
for semigroups of positive matrices under an L2+ε assumption for some ε > 0.
It was then extended by Le Page in [36] for more general semigroups when the
law has a finite exponential moment, that is, when there exists α > 0 such that∫
G N(g)α dμ(g) < ∞. Thanks to later works of Guivarc’h and Raugi in [28] and

Gol’dsheı̆d and Margulis in [21], the assumptions in the Le Page theorem were
clarified: the sole remaining but still unwanted assumption was that μ had a finite
exponential moment.

Hence, the purpose of our Theorem 1.1 is to replace this finite exponential mo-
ment assumption by a finite second moment assumption. Such a finite second mo-
ment assumption is optimal.

Partial results have been obtained recently in this direction. Tutubalin in [41]
has proved Theorem 1.1 when the law μ is assumed to have a density. Jan in his
thesis (see [33]) has extended the Le Page theorem under the assumption that all
the p-moments of μ are finite. Hennion in [31] has proved Theorem 1.1 in the case
of semigroups of positive matrices.

There exist a few books and surveys ([12], [18] or [7]) about this theory of
“products of random matrices.” This theory has had recently nice applications to
the study of discrete subgroups of Lie groups (as in [13, 26] or [6]). These appli-
cations motivated our interest in a better understanding of this CLT.

1.3. Other Central Limit Theorems. The method we introduce in this paper is
very flexible since it does not rely on a spectral gap property. In the forthcoming
paper [9], we will adapt this method to prove the CLT in other situations where the
CLT is only known under a finite exponential moment assumption:
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– The CLT for free groups due to Sawyer–Steger in [37] and Ledrappier in [34].
– The CLT for Gromov hyperbolic groups due to Bjorklund in [10].

1.4. Strategy. We explain now in few words the strategy of the proof of our
central limit Theorem 1.1. We want to prove the central limit theorem for the ran-
dom variables κ(gn · · ·g1) where the quantity

κ(g) := log‖g‖(1.4)

controls the size of the element g in G. Let X := P(V ) be the projective space
of the vector space V := Rd . Since this function κ on G is closely related to the
“norm cocycle” σ :G × X →R given by

σ(g, x) := log
‖gv‖
‖v‖ ,(1.5)

for g in G and x = Rv in P(V ), we are reduced to prove, for every x in X, a central
limit theorem for the random variables σ(gn · · ·g1, x).

We will follow Gordin’s method. This method has been introduced in [24] and
[23] and has been often used since then; see, for instance, [10, 35]. See also [16]
and [11], Appendix, for a survey of this method and [11], Section 2.4, for the use
of this method in order to prove a CLT and an invariance principle in the context
of products of independent random matrices.

Following Gordin’s method means that, we will replace, adding a suitable
coboundary, this cocycle σ by another cocycle σ0 for which the “expected in-
crease” is constant, that is, such that∫

G
σ0(g, x)dμ(g) = λ1

for all x in X. This will allow us to use the classical central limit theorem for
martingales due to Brown in [15]. In order to find this cocycle σ0, we have to
find a continuous function ψ ∈ C0(X) which satisfies the following cohomological
equation

ϕ = ψ − Pμψ + λ1,(1.6)

where Pμψ is the averaged function

Pμψ :x 	→
∫
G

ψ(gx)dμ(g)

and where ϕ ∈ C0(X) is the expected increase of the cocycle σ

ϕ :x 	→
∫
G

σ(g, x)dμ(g).(1.7)

The classical strategy to solve this cohomological equation relies on spectral
properties of this operator Pμ. These spectral properties might not be valid under a
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finite second moment assumption. This is where our strategy differs from the clas-
sical strategy: we solve this cohomological equation by giving an explicit formula
for the solution ψ in terms of the μ̌-stationary measure ν∗ on the dual projective
space P(V ∗), where μ̌ is the image of μ by g 	→ g−1. This formula is

ψ(x) =
∫
P(V ∗)

log δ(x, y)dν∗(y),(1.8)

where δ(x, y) = |f (v)|
‖f ‖‖v‖ , for x = Rv in P(V ) and y = Rf in P(V ∗) (Proposi-

tion 4.9).
The main issue is to check that this integral is finite, that is, the stationary mea-

sure ν∗ is log-regular, when the second moment of μ is finite (Proposition 4.5).
Let us recall the Hsu–Robbins theorem which seems at a first glance unrelated.

This theorem is a strengthening of the classical law of large numbers for cen-
tered square-integrable independent identically distributed random real variables
(ϕn)n≥1. This theorem tells us that the averages 1

n
(ϕ1 + · · · + ϕn) converge com-

pletely to 0, that is, for all ε > 0, the following series converge:

∑
n≥1

P

(
1

n
|ϕ1 + · · · + ϕn| > ε

)
< ∞.(1.9)

The key point to prove the log-regularity of the stationary measure ν∗ is to prove an
analogue of the Hsu–Robbins theorem for martingales under a suitable condition
of domination by a square-integrable function (Theorem 2.2) and to deduce from
it another analogue of the Hsu–Robbins theorem for the Furstenberg law of large
numbers (Proposition 4.1).

Another important ingredient in the proof of the log-regularity of ν∗ is the sim-
plicity of the first Lyapunov exponent due to Guivarc’h in [25] and [28].

1.5. Plan. In Section 2, we prove the complete convergence in the law of large
numbers for martingales with square-integrable increments and we recall the cen-
tral limit theorem for these martingales with square-integrable increments.

In Section 3, we prove a large deviations estimate in the Breiman law of large
numbers for functions over a Markov–Feller chain, we deduce the complete con-
vergence in the law of large numbers for square-integrable cocycles over random
walks and the central limit theorem when the cocycle is centerable.

In Section 4, we prove successively the complete convergence in the Fursten-
berg law of large numbers, the log-regularity of the corresponding stationary mea-
sure on the projective space, the centerability of the norm cocycle and the central
limit Theorem 1.1. We end this chapter by the multidimensional version of this
central limit theorem.

2. Limit theorems for martingales. We collect in this chapter the limit the-
orems for martingales that we will need in Chapter 3.
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2.1. Complete convergence for martingales. In this section, we prove the
complete convergence in the law of large numbers for martingales.

Let (�,B,P) be a probability space. We first recall that a sequence Xn of ran-
dom variables converges completely to X∞, if, for all ε > 0,

∑
n≥1 P(|Xn −X∞| ≥

ε) < ∞. By the Borel–Cantelli lemma, complete convergence implies almost sure
convergence. We recall now the following classical result due to Baum and Katz
in [2].

FACT 2.1. Let p ≥ 1, let (ϕn)n≥1 be independent identically distributed real
random variables and Sn = ϕ1 +· · ·+ϕn. The following statements are equivalent:

(i) E|ϕ1|p < ∞ and E(ϕ1) = 0,
(ii)

∑
n≥1 np−2P(|Sn| ≥ nε) < ∞, for all ε > 0.

When p = 2 the implication (i) ⇒ (ii) is due to Hsu–Robbins [32] and the con-
verse is due to Erdős [17]. In this case, condition (ii) means that the sequence 1

n
Sn

converges completely toward 0.
When p = 1, this fact is due to Spitzer [38].
Our aim is to prove the following generalization of Baum–Katz theorem to mar-

tingales. Let B0 ⊂ · · · ⊂ Bn ⊂ · · · be sub-σ -algebras of B. We recall that a mar-
tingale difference is a sequence (ϕn)n≥1 of integrable random variables on � such
that E(ϕn|Bn−1) = 0 for all n ≥ 1.

THEOREM 2.2. Let p > 1, let (ϕn)n≥1 be a martingale difference and Sn :=
ϕ1 +· · ·+ϕn the corresponding martingale. We assume that there exists a positive
function ϕ in Lp(�) such that, for n ≥ 1, t > 0,

E(1{|ϕn|>t}|Bn−1) ≤ P
({ϕ > t}) almost surely.(2.1)

Then there exist constants Cn = Cn(p, ε,ϕ) such that, for n ≥ 1, ε > 0,

P
(|Sn| > nε

) ≤ Cn and
∑
n≥1

np−2Cn < ∞.(2.2)

The fact that the constants Cn are controlled by the dominating function ϕ will
be important in our applications. A related theorem was stated in [40] for p > 2.
The extension to the case p = 2 is crucial for our applications. We stated our result
for p > 1 since the proof is not very different when p = 2.

PROOF OF THEOREM 2.2. Our proof combines the original proof of the
Baum–Katz theorem with Burkholder inequality. Since p > 1, we pick γ < 1 such
that γ >

p+1
2p

. We set, for k ≤ n,

ϕn,k := ϕk1{|ϕk |≤nγ } and Tn := ∑
1≤k≤n

ϕn,k.(2.3)
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In order to lighten the calculations, we also set

ϕn,k := ϕn,k −E(ϕn,k|Bk−1) and T n := ∑
1≤k≤n

ϕn,k(2.4)

so that, for all n ≥ 1, the finite sequence (ϕn,k)1≤k≤n is also a difference martin-
gale. We can assume ε = 3. We will decompose the event An := {|Sn| > 3n} into
four pieces

An ⊂ A1,n ∪ A2,n ∪ A3,n ∪ A4,n.(2.5)

The events Ai,n are given by

A1,n := {
there exists k ≤ n such that |ϕk| > n

}
,

A2,n := {
there exist k1 < k2 ≤ n such that |ϕk1 | > nγ , |ϕk2 | > nγ }

,

A3,n := {|Tn − T n| > n
}
,

A4,n := {|T n| > n
}
.

The inclusion (2.5) is satisfied since, when none of the four events Ai,n is satisfied,
one has |Sn| ≤ 3n. We will find, for each piece Ai,n, a constant Ci,n = Ci,n(p, ε,ϕ)

such that P(Ai,n) ≤ Ci,n and
∑

n≥1 np−2Ci,n < ∞.

First piece. One computes, using the domination (2.1),

P(A1,n) ≤ C1,n := nP(ϕ > n)

and ∑
n≥1

np−2C1,n = ∑
n≥1

np−1P(ϕ > n) ≤ 1

p
E

(
(ϕ + 1)p

)

which is finite since the dominating function ϕ is Lp-integrable.
Second piece. One computes, using the domination (2.1),

P(A2,n) ≤ C2,n := n2P
(
ϕ > nγ )2

and, using Chebyshev’s inequality,∑
n≥1

np−2C2,n ≤ ∑
n≥1

np−2γp(
E

(
ϕp))2

which is finite since γ >
p+1
2p

.
Third piece. One bounds, remembering that the variables ϕk are martingale dif-

ferences and using the domination (2.1),∣∣E(ϕn,k|Bk−1)
∣∣ = ∣∣E(ϕk − ϕn,k|Bk−1)

∣∣
≤

∫ ∞
nγ

P
(|ϕk| > t |Bk−1

)
dt + nγP

(|ϕk| > nγ |Bk−1
)

≤
∫ ∞
nγ

P(ϕ > t)dt + nγP
(
ϕ > nγ ) = E(ϕ 1{ϕ>nγ }),
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and this right-hand side converges to 0 when n goes to infinity since the dominating
function ϕ is integrable. One deduces the bounds

1

n
|Tn − T n| ≤ E(ϕ1{ϕ>nγ }),

with a right-hand side also converging to 0. Hence, one can find an integer n0 =
n0(p, ε,ϕ) such that, for n ≥ n0, the event A3,n is empty. We just set C3,n = 0
when n ≥ n0 and C3,n = 1 otherwise.

Fourth piece. We set Qn := ∑
1≤k≤n ϕ2

n,k , p0 := min(p,2), and M ≥ 1 to be
the smallest integer such that M ≥ p

2(1−γ )
. According to the Burkholder inequality

(see [29]), since (ϕn,k)1≤k≤n is a martingale difference, there exists a constant DM ,
which depends only on M , such that

D−1
M E

(
Q

M

n

) ≤ E
(
T

2M

n

) ≤ DME
(
Q

M

n

)
.

One computes then, using Chebyshev’s inequality,

P(A4,n) ≤ n−2ME
(
T

2M

n

) ≤ DMn−2ME
(
Q

M

n

)
.(2.6)

We expand now E(Q
M

n ) as a sum of terms of the form E(ϕ
2q1
n,k1

· · ·ϕ2q�

n,k�
) with

1 ≤ � ≤ M , q1, . . . , q� ≥ 1, q1 + · · · + q� = M and 1 ≤ k1 < · · · < k� ≤ n. Using
the bounds, for 1 ≤ k ≤ n and q ≥ 1,

ϕ
2q
n,k ≤ (

2nγ )2q−p0 |ϕn,k|p0,

and, using the domination (2.1), one bounds each term in the sum

E
(
ϕ

2q1
n,k1

· · ·ϕ2q�

n,k�

) ≤ 4Mn2Mγ−�p0γE
(
ϕp0

)�
.

For each value of � ≤ M , the number of such terms is bounded by M�n�. Summing
all these bounds, one gets, since γp0 > min(

p+1
2 ,

p+1
p

) > 1,

E
(
Q

M

n

) ≤ ∑
1≤�≤M

(4M)ME
(
ϕp0

)�
n2Mγ−�p0γ+�

≤ cp,ϕn2Mγ ,

where cp,ϕ = 4MMM+1 max(1,E(ϕp0)M). Plugging this inside (2.6), one gets

P(A4,n) ≤ C4,n := cp,ϕDMn−2(1−γ )M

and ∑
n≥1

np−2C4,n = cp,ϕDM

∑
n≥1

np−2−2(1−γ )M,

which is finite since M ≥ p
2(1−γ )

. �
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REMARK 2.3. As we have seen in this proof, assumption (2.1) in Theorem 2.2
implies that there exists a constant C := E|ϕ|p such that, for all n ≥ 1,

E
(|ϕn|p|Bn−1

) ≤ C.(2.7)

However, the conclusion of Theorem 2.2 is no more true if we replace assump-
tion (2.1) by (2.7). Here is a counterexample. Choose ϕn to be symmetric inde-
pendent random variables such that, for 3i−1 < n ≤ 3i , ϕn takes values in the
set {−3i ,0,3i} and P(ϕn = ±3i ) = 3−pi . For these variables, the conclusion of
Theorem 2.2 does not hold. This is essentially due to the fact that the series∑

n≥1 np−2P(∃k ≤ n||ϕk| ≥ n) diverge (the details are left to the reader since we
will not use this example).

When the martingale difference is uniformly bounded, one has a much better
large deviation estimate than (2.2) due to Azuma in [1].

FACT 2.4 (Azuma). Let (ϕn)n≥1 be a martingale difference and Sn := ϕ1 +
· · ·+ϕn the corresponding martingale. If |ϕn| ≤ a < ∞ for all n ≥ 1, then one has
for all n ≥ 1, ε > 0,

P(Sn ≥ nε) ≤ e−(nε2)/(2a2).(2.8)

PROOF. We recall Azuma’s proof since it is very short. Assume a = 1. Us-
ing the convexity of the exponential function, one bounds, for all x in [−1,1],
eεx ≤ cosh(ε) + x sinh(ε) ≤ eε2/2 + x sinh(ε). Hence, for all k ≥ 1, one has
E(eεϕk |Bk−1) ≤ eε2/2, and, by Chebyshev’s inequality,

P(Sn ≥ nε) ≤ e−nε2
E

(
eεSn

) ≤ e−nε2(
eε2/2)n = e−(nε2)/2. �

2.2. Central limit theorem for martingales. In this section, we briefly recall
the martingale central limit theorem, which is due to Brown.

Let (�,B,P) be a probability space, (pn)n≥1 be a sequence of positive integers
and, for n ≥ 1, let

Bn,0 ⊂ · · · ⊂ Bn,pn

be sub-σ -algebras of B.
Let E be a finite-dimensional normed real vector space. We want to define the

Gaussian laws N� on E. Such a law is completely determined by its covariance 2-
tensor �. If we fix a Euclidean structure on E, this covariance 2-tensor is nothing
but the covariance matrix of N�. Here are the precise definitions.

We denote by S2E the space of symmetric 2-tensors of E. Equivalently, S2E is
the space of quadratic forms on the dual space E∗. The linear span of a symmetric
2-tensor � is the smallest vector subspace E� ⊂ E such that � belongs to S2E�.
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A 2-tensor � ∈ S2E is nonnegative (which we write � ≥ 0) if it is nonnegative as
a quadratic form on the dual space E∗. For every v in E, we set v2 := v⊗v ∈ S2E,
and we denote by

B� := {
v ∈ E�|� − v2 is nonnegative

}
the unit ball of �. For any nonnegative symmetric 2-tensor � ∈ S2E, we let N�

be the centered Gaussian law on E with covariance 2-tensor �, that is, such that

� =
∫
E

v2 dN�(v).

For instance, N� is a Dirac mass at 0 if and only if � = 0 if and only if E� = {0}.
The following theorem is due to Brown in [15] (see also [29]).

FACT 2.5 (Brown martingale central limit theorem). For 1 ≤ k ≤ pn, let
ϕn,k :� → E be square-integrable random variables such that

E(ϕn,k|Bn,k−1) = 0.(2.9)

We assume that the S2E-valued random variables

Wn := ∑
1≤k≤pn

E
(
ϕ2

n,k|Bn,k−1
)

converge to � in probability,(2.10)

and that, for all ε > 0,

Wε,n := ∑
1≤k≤pn

E
(
ϕ2

n,k1{‖ϕn,k‖≥ε}|Bn,k−1
) −→
n→∞ 0 in probability.(2.11)

Then the sequence Sn := ∑
1≤k≤pn

ϕn,k converges in law toward N�.

Under the same assumptions, the sequence Sn also satisfies a law of the it-
erated logarithm, that is, almost surely, the set of cluster points of the sequence

Sn√
2�n log logn

is equal to the unit ball B� (indeed the sequence Sn satisfies an in-
variance principle; see [29], Chapter 4).

Assumption (2.11) is called Lindeberg’s condition.
We recall that a sequence Xn of random variables converges to X∞ in probabil-

ity, if, for all ε > 0, P(|Xn − X∞| ≥ ε)−→
n→∞0.

3. Limit theorems for cocycles. In this section, we state various limit theo-
rems for cocycles and we explain how to deduce them from the limit theorems for
martingales that we discussed in Chapter 2.
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3.1. Complete convergence for functions. In this section, we prove a large de-
viations estimate in the law of large numbers for functions over Markov–Feller
chains.

Let X be a compact metrizable space and C0(X) be the Banach space of contin-
uous functions on X. Let P :C0(X) → C0(X) be a Markov–Feller operator, that is,
a bounded operator such that ‖P‖ ≤ 1, P 1 = 1 and such that Pf ≥ 0 for all func-
tions f ≥ 0. Such a Markov–Feller operator can be seen alternatively as a weak-∗
continuous map x 	→ Px from X to the set of probability measures on X, where Px

is defined by Px(f ) = (Pf )(x) for all f in C0(X). We denote by X the compact
set X = XN of infinite sequences x = (x0, x1, x2, . . .). For x in X, we denote by
Px the Markov probability measure on X, that is, the law of the trajectories of the
Markov chain starting from x associated to P .

Given a continuous function ϕ on X, we define its upper average by

�+
ϕ = sup

ν

∫
G

ϕ(x)dν(x)

and lower average by

�−
ϕ := inf

ν

∫
G

ϕ(x)dν(x),

where the supremum and the infimum are taken over all the P -invariant probability
measures ν on X. We say ϕ has unique average if �+

ϕ = �−
ϕ .

According to the Breiman law of large numbers in [14] (see also [7]), for such
a ϕ, for any x in X, for Px-almost every x in X, the sequence 1

n

∑n
k=1 ϕ(xk) con-

verges to �+
ϕ = �−

ϕ . The following proposition is a large deviations estimate for the
Breiman law of large numbers.

PROPOSITION 3.1. Let X be a compact metrizable space, and P be a
Markov–Feller operator on X. Let ϕ be a continuous function on X with upper
average �+

ϕ and lower average �−
ϕ . Then, for all ε > 0, there exist constants A > 0,

α > 0 such that

Px

({
x ∈ X

∣∣∣1

n

n∑
k=1

ϕ(xk) /∈ [
�−
ϕ − ε, �+

ϕ + ε
]})

≤ Ae−αn,(3.1)

for all n ≥ 1 and all x in X.

Note that �−
ϕ = �+

ϕ as soon as P is uniquely ergodic, that is, as soon as there
exists only one P -invariant Borel probability measure ν on X.

PROOF OF PROPOSITION 3.1. We assume ‖ϕ‖∞ = 1
2 . We introduce, for 1 ≤

� ≤ n, the bounded functions �n and ��,n on X given, for x in X, by

�n(x) = ϕ(xn) and ��,n(x) = (
P �ϕ

)
(xn−�),
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so that, for x in X,

��,n = Ex(�n|Xn−�) Px-a.s.,

where Xn is the σ -algebra on X spanned by the functions x 	→ xk with k ≤ n. On
one hand, one has the uniform convergence

max

(
�+
ϕ ,

1

m

m∑
j=1

P jϕ

)
−→
m→∞�+

ϕ(3.2)

in C0(X). Hence, we can fix m such that, for all x ∈ X,

1

m

m∑
j=1

P jϕ(x) ≤ �+
ϕ + ε

4
.

Then, for all n ≥ 1 and x ∈ X, one has

1

nm

m+n∑
k=m+1

m∑
j=1

�j,k+j (x) ≤ �+
ϕ + ε

4
.

In particular, if n ≥ n0 := 4m
ε

, one also has

1

nm

m+n∑
k=m+1

m∑
j=1

�j,k(x) ≤ �+
ϕ + ε

2
.(3.3)

On the other hand, for all 1 ≤ j ≤ m, x ∈ X, by Azuma’s bound (2.8) and the
equalities, for k ≥ j , Ex(�j−1,k − �j,k|Xk−j ) = 0, one has

Px

({
x ∈ X

∣∣∣
∣∣∣∣∣1

n

m+n∑
k=m+1

(
�j−1,k(x) − �j,k(x)

)∣∣∣∣∣ ≥ ε

4m

})
≤ e−(nε2)/(32m2).

Adding these bounds, one gets, for all 1 ≤ j ≤ m, x ∈ X,

Px

({
x ∈ X

∣∣∣
∣∣∣∣∣1

n

m+n∑
k=m+1

(
�k(x) − �j,k(x)

)∣∣∣∣∣ ≥ ε

4

})
≤ me−(nε2)/(32m2),

and hence

Px

({
x ∈ X

∣∣∣
∣∣∣∣∣1

n

m+n∑
k=m+1

(
�k(x) − 1

m

m∑
j=1

�j,k(x)

)∣∣∣∣∣ ≥ ε

4

})
≤ m2e−(nε2)/(32m2).

Combining this formula with (3.3), one gets the desired bound,

Px

({
x ∈ X

∣∣∣1

n

n∑
k=1

�k(x) ≥ �+
ϕ + ε

})
≤ m2e−(nε2)/(32m2),

for all n ≥ n0 and x ∈ X. �
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3.2. Complete convergence for cocycles. In this section, we prove the com-
plete convergence in the law of large numbers for cocycles over G-spaces.

Let G be a second countable locally compact group acting continuously on
a compact second countable topological space X. Let μ be a Borel probability
measure on G.

We denote by (B,B, β) the associated one-sided Bernoulli space, that is,
B = GN∗

is the set of sequences b = (b1, . . . , bn, . . .) with bn in G, B is the
product σ -algebra of the Borel σ -algebras of G, and β is the product measure
μ⊗N∗

. For n ≥ 1, we denote by Bn the σ -algebra spanned by the n first coordi-
nates b1, . . . , bn.

We will apply the results of Section 3.1 to the averaging operator, that is, the
Markov–Feller operator P = Pμ :C0(X) → C0(X) whose transition probabilities
are given by Px = μ ∗ δx for all x in X. For every x in X, the Markov measure Px

is the image of β by the map

B → X; b 	→ (x, b1x, b2b1x, b3b2b1x, . . .).

We denote by μ∗n the nth-convolution power μ ∗ · · · ∗ μ.
Let E be a finite-dimensional normed real vector space and σ a continuous

function σ :G × X → E. This function σ is said to be a cocycle if one has

σ
(
gg′, x

) = σ
(
g,g′x

) + σ
(
g′, x

)
for any g,g′ ∈ G, x ∈ X.(3.4)

We introduce the sup-norm function σsup. It is given, for g in G, by

σsup(g) = sup
x∈X

∥∥σ(g, x)
∥∥.(3.5)

We assume that this function σsup is integrable∫
G

σsup(g)dμ(g) < ∞.(3.6)

Recall a Borel probability measure ν on X is said to be μ-stationary if μ ∗ ν = ν,
that is, if it is Pμ-invariant. When E =R, we define the upper average of σ by

σ+
μ = sup

ν

∫
G×X

σ(g, x)dμ(g)dν(x),

and the lower average

σ−
μ = inf

ν

∫
G×X

σ(g, x)dμ(g)dν(x),

where the supremum and the infimum are taken over all the μ-stationary probabil-
ity measures ν on X. We say that σ has unique average if the averages do not de-
pend on the choice of the μ-stationary probability measure ν, that is, if σ+

μ = σ−
μ .

In this case, these functions satisfy also a law of large numbers, that is, under as-
sumption (3.6) if σ has unique average, for any x in X, for β-almost every b in B ,
the sequence

∑n
k=1

σ(bk,bk−1···b1x)
n

converges to σμ (see [7], Chapter 2).



1320 Y. BENOIST AND J.-F. QUINT

Proposition 3.2 is an analog of the Baum–Katz theorem for these functions.
For p = 2, it says that, when σsup is square integrable, this sequence converges
completely.

PROPOSITION 3.2. Let G be a locally compact group, X a compact metriz-
able G-space, μ a Borel probability measure on G and p > 1. Let σ :G×X →R

be a continuous function such that σsup is Lp-integrable. Let σ+
μ and σ−

μ be its
upper and lower average. Then, for any ε > 0, there exist constants Dn such that∑

n≥1

np−2Dn < ∞,

and, for n ≥ 1, x ∈ X,

β

({
b ∈ B

∣∣∣ n∑
k=1

σ(bk, bk−1 · · ·b1x)

n
/∈ [

σ−
μ − ε, σ+

μ + ε
]})

≤ Dn.

In particular, when σ is a cocycle, one has, for n ≥ 1, x ∈ X,

μ∗n

({
g ∈ G

∣∣∣σ(g, x)

n
/∈ [

σ−
μ − ε, σ+

μ + ε
]})

≤ Dn.(3.7)

The fact that the constants Dn do not depend on x will be important for our
applications.

PROOF OF PROPOSITION 3.2. According to Proposition 3.1, the conclusion
of Proposition 3.2 is true when the function σ does not depend on the variable g.
Hence, it is enough to prove Proposition 3.2 for the continuous function σ ′ on
G × X given, for g in G and x in X, by

σ ′(g, x) = σ(g, x) −
∫
G

σ(g, x)dμ(g).

By construction, the sequence of functions ϕn on B given, for b in B , by

ϕn(b) = σ ′(bn, bn−1 · · ·b1x)

is a martingale difference. Hence, our claim follows from Theorem 2.2 since the
functions ϕn satisfy the domination (2.1): for n ≥ 1, t > 0,

E(1{|ϕn|>t}|Bn−1) ≤ μ
({

g ∈ G|σsup(g) + M > t
})

,

where M is the constant M := ∫
G σsup(g)dμ(g). �
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3.3. Central limit theorem for centerable cocycles. In this section, we explain
how to deduce the central limit theorem for centerable cocycles from the central
limit theorem for martingales.

Let σ :G × X → E be a continuous cocycle. When the function σsup is μ-
integrable, one defines the drift or expected increase of σ : it is the continuous
function X → E;x 	→ ∫

G σ(g, x)dμ(g). One says that σ has constant drift if the
drift is a constant function: ∫

G
σ(g, x)dμ(g) = σμ.(3.8)

One says that σ is centered if the drift is a null function.
A continuous cocycle σ :G × X → E is said to be centerable if it is the sum

σ(g, x) = σ0(g, x) + ψ(x) − ψ(gx)(3.9)

of a cocycle σ0(g, x) with constant drift σμ and of a coboundary ψ(x) − ψ(gx)

given by a continuous function ψ ∈ C0(X). A centerable cocycle always has a
unique average: for any μ-stationary probability ν on X, one has∫

G×X
σ(g, x)dμ(g)dν(x) = σμ.

Here is a trick to reduce the study of a cocycle with constant drift σμ to one
which is centered. Replace G by G′ := G×Z where Z acts trivially on X, replace
μ by μ′ := μ ⊗ δ1, so that any μ-stationary probability measure on X is also μ′-
stationary, and replace σ by the cocycle

σ ′ :G′ × X → E given by σ ′((g, n), x
) = σ(g, x) − nσμ.(3.10)

A centerable cocycle σ is said to have unique covariance �μ if

�μ :=
∫
G×X

(
σ0(g, x) − σμ

)2 dμ(g)dν(x)

(3.11)
does not depend on the choice of the μ-stationary probability measure ν,

where σ0 is as in (3.9). This covariance 2-tensor �μ ∈ S2E is nonnegative.

REMARK 3.3. This assumption does not depend on the choice of σ0. More
precisely, if σ0 and σ1 are cohomologous centered cocycles, for any μ-stationary
Borel probability measure ν on X, one has∫

G×X
σ0(g, x)2 dμ(g)dν(x) =

∫
G×X

σ1(g, x)2 dμ(g)dν(x).(3.12)

Indeed, since σ0 and σ1 are centered and cohomologous, we may write, for any
g, x, σ1(g, x) = σ0(g, x) + ψ(x) − ψ(gx) where ψ is a continuous function on X

and Pμψ = ψ . Now, the difference between the two sides of (3.12) reads as

2
∫
G×X

σ0(g, x)ψ(gx)dμ(g)dν(x).(3.13)



1322 Y. BENOIST AND J.-F. QUINT

By ergodic decomposition, to prove this is 0, one can assume ν is μ-ergodic. In
this case, since Pμψ = ψ , ψ is constant ν-almost everywhere and (3.13) is pro-
portional to

∫
G×X σ0(g, x)dμ(g)dν(x), which is 0 by assumption.

THEOREM 3.4 (Central limit theorem for centerable cocycles). Let G be a
locally compact group, X a compact metrizable G-space, E a finite-dimensional
real vector space, and μ a Borel probability measure on G. Let σ :G × X →
E be a continuous cocycle such that

∫
G σsup(g)2 dμ(g) < ∞. Assume that σ is

centerable with average σμ and has a unique covariance �μ, that is, σ satisfies
(3.9) and (3.11). Let Nμ be the Gaussian law on E whose covariance 2-tensor
is �μ.

Then, for any bounded continuous function ψ on E, uniformly for x in X, one
has ∫

G
ψ

(
σ(g, x) − nσμ√

n

)
dμ∗n(g) −→

n→∞

∫
E

ψ(v)dNμ(v).(3.14)

Note that hypothesis (3.11) is automatically satisfied when there exists a unique
μ-stationary Borel probability measure ν on X.

REMARKS 3.5. When E = Rd , the covariance 2-tensor �μ is nothing but the
covariance matrix of the random variable σ0 on (G × X,μ ⊗ ν).

The conclusion in Theorem 3.4 is not correct if one does not assume the cocycle
σ to be centerable.

PROOF OF THEOREM 3.4. We will deduce Theorem 3.4 from the central limit
Theorem 2.5 for martingales.

As in the previous sections, let (B,B, β) be the Bernoulli space with alphabet
(G,μ). We want to prove that, for any sequence xn on X, the laws of the random
variables Sn on B given, for b in B , by

Sn(b) := 1√
n

(
σ(bn · · ·b1, xn) − nσμ

)
converge to Nμ.

Since the cocycle σ is centerable, one can write σ as the sum of two cocy-
cles σ = σ0 + σ1 where σ0 has constant drift and where σ1 is a coboundary. In
particular, the cocycle σ1 is uniformly bounded and does not play any role in the
limit (3.14). Hence, we can assume σ = σ0. Using the trick (3.10), we can assume
that σμ = 0, that is, σ is a centered cocycle.

We want to apply the martingale central limit Theorem 2.5 to the sub-σ -algebras
Bn,k = Bk spanned by b1, . . . , bk and to the triangular array of random variables
ϕn,k on B given by, for b in B ,

ϕn,k(b) = 1√
n
σ(bk, bk−1 · · ·b1xn) for 1 ≤ k ≤ n.
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Since, by the cocycle property (3.4), one has

Sn = ∑
1≤k≤n

ϕn,k,

we just have to check that the three assumptions of Theorem 2.5 are satisfied with
� = �μ. We keep the notation Wn and Wε,n of this theorem.

First, since the function σsup is square integrable, the functions ϕn,k belong to
L2(B,β), and, by equation (3.8), assumption (2.9) is satisfied: for β-almost all b

in B ,

E(ϕn,k|Bk−1) =
∫
G

σ(g, bk−1 · · ·b1xn)dμ(g) = 0.

Second, we introduce the continuous function on X,

x 	→ M(x) =
∫
G

σ(g, x)2 dμ(g)

and we compute, for β-almost all b in B ,

Wn(b) = 1

n

∑
1≤k≤n

M(bk−1 · · ·b1xn).

According to Proposition 3.1, since σ has a unique covariance �μ, the sequence
Wn converges to �μ in probability, that is, assumption (2.10) is satisfied.

Third, we introduce, for λ > 0, the continuous function on X

x 	→ Mλ(x) =
∫
G

σ(g, x)21{‖σ(g,x)‖≥λ} dμ(g)

and the integral

Iλ :=
∫
G

σ 2
sup(g)1{σsup(g)≥λ} dμ(g),

we notice that

Mλ(x) ≤ Iλ −→
λ→∞ 0,

and we compute, for ε > 0 and β-almost all b in B ,

Wε,n(b) = 1

n

∑
1≤k≤n

Mε
√

n(bk−1 · · ·b1xn) ≤ Iε
√

n −→
n→∞ 0.

In particular, the sequence Wε,n converges to 0 in probability, that is, Lindeberg’s
condition (2.11) is satisfied.

Hence, by Fact 2.5, the laws of Sn converge to Nμ. �

4. Limit theorems for linear groups. In this section, we prove the central
limit theorem for linear groups (Theorem 1.1). Our main task will be to prove that
the norm cocycle (1.5) is centerable.
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4.1. Complete convergence for linear groups. In this section, we prove the
complete convergence in the Furstenberg law of large numbers.

Let K be a local field. The reader who is not familiar with local fields may
assume K =R. In general, a local field is a nondiscrete locally compact field. It is
a classical fact that such a field is a finite extension of either:

(i) the field R of real numbers (in this case, one has K= R or C), or
(ii) the field Qp of p-adic numbers, for some prime number p, or

(iii) the field Fp((t)) of Laurent series with coefficients in the finite field Fp of
cardinality p, for some prime number p.

Let V be a finite-dimensional K-vector space. We fix a basis e1, . . . , ed of V and
the following norm on V . For v = ∑

viei ∈ V , we set ‖v‖ = (
∑ |vi |2)1/2 when

K = R or C, and ‖v‖ = max(|vi |) in the other cases. We denote by e∗
1, . . . , e

∗
d the

dual basis of V ∗ and we use the same symbol ‖ · ‖ for the norms induced on the
dual space V ∗, on the space End(V ) of endomorphisms of V , or on the exterior
product ∧2V , etc. We equip the projective space P(V ) with the distance d given,
by

d
(
x, x′) = ‖v ∧ v′‖

‖v‖‖v′‖ for x = Kv, x′ = Kv′ in P(V ).

For g in GL(V ), we write N(g) := max(‖g‖,‖g−1‖).
Let μ be a Borel probability measure on G := GL(V ) with finite first moment:∫

G logN(g)dμ(g) < ∞. We denote by �μ the subsemigroup of G spanned by the
support of μ, and by λ1 the first Lyapunov exponent of μ,

λ1 := lim
n→∞

1

n

∫
G

log‖g‖dμ∗n(g).(4.1)

Let b1, . . . , bn, . . . be random elements of G chosen independently with law μ.
The Furstenberg law of large numbers describes the behavior of the random
variables log‖bn · · ·b1‖. It is a direct consequence of the Kingman subadditive
ergodic theorem (see, e.g., [39]). It states that, for μ⊗N∗

-almost any sequence
(b1, . . . , bn, . . .) in G, one has

lim
n→∞

1

n
log‖bn · · ·b1‖ = λ1.(4.2)

The following Proposition 4.1 is an analogue of the Baum–Katz theorem for the
Furstenberg law of large numbers. For p = 2, it says that when the second moment
of μ is finite, this sequence (4.2) converges completely.

PROPOSITION 4.1. Let p > 1 and V =Kd . Let μ be a Borel probability mea-
sure on the group G := GL(V ), such that the pth-moment

∫
G(logN(g))p dμ(g)



CLT FOR LINEAR GROUPS 1325

is finite. Then, for every ε > 0, there exist constants Cn = Cn(p, ε,μ) such that∑
n≥1 np−2Cn < ∞ and

μ∗n({
g ∈ G such that

∣∣log‖g‖ − nλ1
∣∣ ≥ εn

}) ≤ Cn.(4.3)

Moreover, if �μ acts irreducibly on V , for any v in V \ {0}, one has

μ∗n

({
g ∈ G such that

∣∣∣∣log
‖gv‖
‖v‖ − nλ1

∣∣∣∣ ≥ εn

})
≤ Cn.(4.4)

PROOF. We first prove the claim (4.3). We fix ε > 0. We will apply Proposi-
tion 3.2 to the group G = GL(V ) acting on the projective space X = P(V ) and to
the norm cocycle

σ :G × X →R; (g,Kv) 	→ log
‖gv‖
‖v‖

for which the function σsup is Lp-integrable. According to Furstenberg–Kifer and
Hennion theorem in [20], Theorem 3.9 and 3.10, and [30], Theorem 1 and Corol-
lary 2 (see also [7], Chapter 3), the Lyapunov exponent λ1 is the upper average
of σ , that is,

λ1 = sup
ν

∫
G×X

σ(g, x)dμ(g)dν(x),

and there exists a unique �μ-invariant vector subspace V ′ ⊂ V such that, on one
hand, the first Lyapunov exponent λ′

1 of the image μ′ of μ in GL(V ′) is strictly
smaller than λ1, and, on the other hand, the image μ′′ of μ in GL(V ′′) with V ′′ =
V/V ′ has exponent λ1 and the cocycle σ ′′ : GL(V ′′) × P(V ′′) → R; (g,Kv) 	→
log ‖gv‖

‖v‖ has unique average λ1.
Since λ1 is the upper average of σ , by Proposition 3.2, there exist constants

Cn = Cn(p, ε,μ) such that
∑

n≥1 np−2Cn < ∞ and, for all v in V \ {0} and n ≥ 1,

μ∗n

({
g ∈ G

∣∣∣ log
‖gv‖
‖v‖ − nλ1 ≥ εn

})
≤ Cn.(4.5)

Since λ1 is the unique average of σ ′′, using again Proposition 3.2, one can choose
Cn such that, for all v′′ in V ′′ \ {0} and n ≥ 1,

μ∗n

({
g ∈ G

∣∣∣ log
‖gv′′‖
‖v′′‖ − nλ1 /∈ [−εn, εn]

})
≤ Cn,(4.6)

where, as usual, the norm in the quotient space V ′′ is defined by the equality
‖v′′‖ = inf{‖v‖|v ∈ v′′ + V ′}.

The claim (4.3), with a different constant Cn, follows from a combination of the
claim (4.5) applied to a basis v1, . . . , vd of V and from the claim (4.6) applied to a
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nonzero vector v′′ in V ′′. One just has to notice that there exists a positive constant
M such that one has

log
‖gv′′‖
‖v′′‖ ≤ log‖g‖ ≤ max

1≤i≤d
log

‖gvi‖
‖vi‖ + M,

for all g in GL(V ) preserving V ′.
The claim (4.4) follows from (4.6), since when the action of �μ on V is irre-

ducible, one has V ′′ = V . �

We denote by λ2 the second Lyapunov exponent of μ, that is,

λ2 := lim
n→∞

1

n

∫
G

log
‖ ∧2 g‖

‖g‖ dμ∗n(g).(4.7)

COROLLARY 4.2. Assume the same assumptions as in Proposition 4.1. For
every ε > 0, there exist constants Cn such that

∑
n≥1 np−2Cn < ∞ and

μ∗n({
g ∈ G such that

∣∣log‖ ∧2 g‖ − n(λ1 + λ2)
∣∣ ≥ εn

}) ≤ Cn.(4.8)

PROOF. Our statement (4.8) is nothing but (4.3) applied to ∧2V . �

REMARKS 4.3. An endomorphism g of V is said to be proximal if it admits
an eigenvalue λ which has multiplicity one and if all other eigenvalues of g have
modulus <|λ|. The action of �μ on V is said to be proximal if �μ contains a
proximal endomorphism. The action of �μ on V is said to be strongly irreducible
if no proper finite union of vector subspaces of V is �μ-invariant.

According to a result of Furstenberg (see, e.g., [12]), when �μ is unbounded,
included in SL(V ) and strongly irreducible in V , the first Lyapunov exponent is
positive: λ1 > 0.

According to a result of Guivarc’h in [25], when the action of �μ is proximal
and strongly irreducible, the first Lyapunov exponent is simple, that is, one has
λ1 > λ2. We will use this fact in the next section.

4.2. Log-regularity in projective space. In this section, we prove the log-
regularity of the Furstenberg measure for proximal stronly irreducible represen-
tations when the second moment of μ is finite.

For any y = Kf in P(V ∗), we set y⊥ ⊂ P(V ) for the orthogonal projective
hyperplane: y⊥ = P(Kerf ). For x = Kv in P(V ) and y = Kf in P(V ∗), we set

δ(x, y) = |f (v)|
‖f ‖‖v‖ .

This quantity is also equal to the distance δ(x, y) = d(x, y⊥) in P(V ) and to the
distance d(y, x⊥) in P(V ∗).
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REMARK 4.4. Let μ be a Borel probability measure on GL(V ) such that �μ

is proximal and strongly irreducible on V . Then, due to a result of Furstenberg,
μ admits a unique μ-stationary Borel probability measure ν on P(V ). For β-almost
any b in B , the sequence of Borel probability measures (b1 · · ·bn)∗ν converges to
a Dirac measure (see [12], Section III.4, in the real case and [7], Chapter 3, in the
general case).

PROPOSITION 4.5. Let p > 1 and V = Kd . Let μ be a Borel probability mea-
sure on G = GL(V ) whose pth-moment is finite. Assume that �μ is proximal and
strongly irreducible on V . Let ν be the unique μ-stationary Borel probability mea-
sure on X = P(V ). Then, for all y in P(V ∗),∫

X

∣∣log δ(x, y)
∣∣p−1 dν(x) is finite,(4.9)

and is a continuous function of y.

REMARKS 4.6. By a theorem of Guivarc’h in [26], when μ is assumed to
have an exponential moment, the stationary measure ν is much more regular: there
exists t > 0 such that

sup
y∈P(V ∗)

∫
X

δ(x, y)−t dν(x) < ∞.(4.10)

The following proof of Proposition 4.5 is similar to our proof in [7] of Guivarc’h
theorem, which is inspired by [13].

Note that the integral (4.9) may be infinite when the action of �μ is assumed to
be “irreducible” instead of “strongly irreducible” (see Example 4.15).

Let K be the group of isometries of (V ,‖ · ‖) and A+ be the semigroup

A+ := {
diag(a1, . . . , ad)||a1| ≥ · · · ≥ |ad |}.

For every element g in GL(V ), we choose a decomposition

g = kgag�g with kg , �g in K and ag in A+.

We denote by xM
g ∈ P(V ) the density point of g and by ym

g ∈ P(V ∗) the density
point of t g, that is,

xM
g := Kkge1 and ym

g := Kt �ge
∗
1.

We denote by γ1(g) the first gap of g, that is, γ1(g) := ‖∧2g‖
‖g‖2 .

LEMMA 4.7. For every g in GL(V ), x = Kv in P(V ) and y = Kf in P(V ∗),
one has:

(i) δ(x, ym
g ) ≤ ‖gv‖

‖g‖‖v‖ ≤ δ(x, ym
g ) + γ1(g),
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(ii) δ(xM
g , y) ≤ ‖t gf ‖

‖g‖‖f ‖ ≤ δ(xM
g , y) + γ1(g),

(iii) d(gx, xM
g )δ(x, ym

g ) ≤ γ1(g).

PROOF. For all these inequalities, we can assume that g belongs to A+, that
is, g = diag(a1, . . . , ad) with |a1| ≥ · · · ≥ |ad |. We write v = v1 + v2 with v1 in
Ke1 and v2 in the Kernel of e∗

1. One has then

‖g‖ = |a1|, γ1(g) = |a2|
|a1| and δ

(
x, ym

g

) = ‖v1‖
‖v‖ ,

(i) follows from ‖g‖‖v1‖ ≤ ‖gv‖ ≤ ‖g‖‖v1‖ + |a2|‖v2‖,
(ii) follows from (i) by replacing V with V ∗ and g with t g,

(iii) follows from d(gx, xM
g )δ(x, ym

g ) = ‖gv2‖‖gv‖
‖v1‖‖v‖ ≤ |a2||a1| . �

LEMMA 4.8. Under the same assumptions as Proposition 4.5, there exist con-
stants c > 0, and Cn > 0 with

∑
n≥1 np−2Cn < ∞, and such that, for n ≥ 1, x in

P(V ) and y in P(V ∗), one has

μ∗n({
g ∈ G|d(

gx, xM
g

) ≥ e−cn}) ≤ Cn,(4.11)

μ∗n({
g ∈ G|δ(

xM
g , y

) ≤ e−cn}) ≤ Cn,(4.12)

μ∗n({
g ∈ G|δ(gx, y) ≤ e−cn}) ≤ Cn.(4.13)

PROOF. We set c = 1
2(λ1 − λ2) where λ1 and λ2 are the first two Lyapunov

exponents of μ (see Section 4.1). According to Guivarc’h theorem in [25], since
the action of �μ is proximal and strongly irreducible, one has λ1 > λ2. Accord-
ing to Proposition 4.1 and its Corollary 4.2, there exist constants Cn such that∑

n≥1 np−2Cn < ∞ and such that, for n ≥ 1, x = Kv in P(V ) and y = Kf in
P(V ∗) with ‖v‖ = ‖ϕ‖ = 1, there exist subsets Gn,x,y ⊂ G with μ∗n(Gn,x,y) ≥
1 − Cn, such that, for g in Gn,x,y , the four quantities∣∣∣∣λ1 − log‖g‖

n

∣∣∣∣,
∣∣∣∣λ1 − log‖gv‖

n

∣∣∣∣,∣∣∣∣λ1 − log‖t gϕ‖
n

∣∣∣∣,
∣∣∣∣λ1 − λ2 − logγ1(g)

n

∣∣∣∣
are bounded by ε(λ1 −λ2) with ε = 1

8 . We will choose n0 large enough, and prove
the bounds (4.11), (4.12) and (4.13) only for n ≥ n0. We have to check that, for
n ≥ n0 and g in Gn,x,y , one has

d
(
gx, xM

g

) ≤ e−cn, δ
(
xM
g , y

) ≥ e−cn and δ(gx, y) ≥ e−cn.
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We first notice that, according to Lemma 4.7(i), one has

δ
(
x, ym

g

) ≥ e−2ε(λ1−λ2)n − e−(1−ε)(λ1−λ2)n

hence, since n0 is arbitrarily large,

δ
(
x, ym

g

) ≥ e−3ε(λ1−λ2)n.(4.14)

But then, using Lemma 4.7(iii) one gets, for n0 large enough,

d
(
gx, xM

g

) ≤ e−(1−ε)(λ1−λ2)ne3ε(λ1−λ2)n = e−(1−4ε)(λ1−λ2)n.(4.15)

This proves (4.11).
Applying the same argument as above to t g acting on P(V ∗), the inequal-

ity (4.14) becomes

δ
(
xM
g , y

) ≥ e−3ε(λ1−λ2)n.(4.16)

This proves (4.12).
Hence, combining (4.16) with (4.15), one gets, for n0 large enough,

δ(gx, y) ≥ δ
(
xM
g , y

) − d
(
gx, xM

g

)
≥ e−3ε(λ1−λ2)n − e−(1−4ε)(λ1−λ2)n ≥ e−4ε(λ1−λ2)n.

This proves (4.13). �

PROOF OF PROPOSITION 4.5. We choose c, Cn as in Lemma 4.8. We first
check that, for n ≥ 1 and y in P(V ∗), one has

ν
({

x ∈ X|δ(x, y) ≤ e−cn}) ≤ Cn.(4.17)

Indeed, since ν = μ∗n ∗ ν, one computes using (4.13)

ν
({

x ∈ X|δ(x, y) ≤ e−cn}) =
∫
X

μ∗n({
g ∈ G|δ(gx, y) ≤ e−cn})

dν(x)

≤
∫
X

Cn dν(x) = Cn.

Then cutting the integral (4.10) along the subsets An−1,y \ An,y where

An,y := {
x ∈ X|δ(x, y) ≤ e−cn}

one gets the upperbound∫
X

∣∣log δ(x, y)
∣∣p−1 dν(x) ≤ ∑

n≥1

cp−1np−1(
ν(An−1,y) − ν(An,y)

)

≤ cp−1 + cp−1
∑
n≥1

(
(n + 1)p−1 − np−1)

Cn

≤ cp−1 + (p − 1)2pcp−1
∑
n≥1

np−2Cn,

which is finite. This proves (4.9).
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It remains to check the continuity of the function on P(V ∗)

ψ∗ :y 	→
∫
X

∣∣log δ(x, y)
∣∣p−1 dν(x).

The fact that the above constants Cn do not depend on y tells us that this function
ψ∗ is a uniform limit of continuous functions ψ∗

n given by

ψ∗
n :y 	→

∫
X

min
(∣∣log δ(x, y)

∣∣, cn)p−1 dν(x).

Hence the function ψ∗ is continuous. �

4.3. Solving the cohomological equation.

In this section, we prove that the norm cocycle is centerable.

We recall that the norm cocycle σ on X = P(V ) is the cocycle

σ : GL(V ) × P(V ) →R; (g,Kv) 	→ log
‖gv‖
‖v‖ .

PROPOSITION 4.9. Let μ be a Borel probability measure on G = GL(Kd)

whose second moment is finite. Assume that �μ is proximal and strongly irre-
ducible on V := Kd . Then the norm cocycle σ on P(V ) is centerable, that is,
satisfies (3.9).

PROOF. Let

ϕ :x 	→
∫
G

σ(g, x)dμ(g)(4.18)

be the expected increase of the cocycle σ . We want to find a continuous function
ψ on X such that

ϕ = ψ − Pμψ + λ1,(4.19)

where Pμψ(x) = ∫
G ψ(gx)dμ(g), for all x in X, and where λ1 is the first expo-

nent of μ on V .
Let μ̌ be the image of μ by g 	→ g−1. We will also denote by σ the norm cocycle

on P(V ∗), that is, the cocycle

σ : GL(V ) × P
(
V ∗) →R; (g,Kf ) 	→ log

‖f ◦ g−1‖
‖f ‖ .

Since the representation of �μ̌ in V ∗ is also proximal and strongly irreducible,
there exists a unique μ̌-stationary probability measure ν∗ on the dual projective
space P(V ∗).
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Since the second moment of μ is finite, according to Proposition 4.5, this mea-
sure ν∗ is log-regular. Hence, the following formula defines a continuous function
ψ on X:

ψ(x) =
∫
G

log δ(x, y)dν∗(y),(4.20)

where δ(x, y) = |f (v)|
‖f ‖‖v‖ , for x = Rv in P(V ) and y =Rf in P(V ∗).

We check the equality,

σ(g, x) = log δ
(
x,g−1y

) − log δ(gx, y) + σ
(
g−1, y

)
(4.21)

by computing each side,

log
‖gv‖
‖v‖ = log

|f (gv)|
‖f ◦ g‖‖v‖ − log

|f (gv)|
‖f ‖‖gv‖ + log

‖f ◦ g‖
‖f ‖ .

Integrating equation (4.21) on G×P(V ∗) for the measure dμ(g)dν∗(y) and using
the μ̌-stationarity of ν∗, one gets (4.19) since λ1 is also the first exponent of μ̌

in V ∗. �

4.4. Central limit theorem for linear groups. The tools we have developed so
far allow us to prove not only our central limit Theorem 1.1 but also a multidimen-
sional version of this theorem.

For i = 1, . . . ,m, let Ki be a local field and Vi be a finite-dimensional normed
Ki-vector space, and let μ be a Borel probability measure on the locally compact
group G := GL(V1)× · · ·× GL(Vm). We assume that �μ acts strongly irreducibly
in each Vi . We consider the compact space X = P(V1) × · · · × P(Vm).

We denote by σ :G × X → Rm the multinorm cocycle, that is, the continuous
cocycle given, for g = (g1, . . . , gm) in G and x = (K1v1, . . . ,Kmvm) in X, by

σ(g, x) :=
(

log
‖g1v1‖
‖v1‖ , . . . , log

‖gmvm‖
‖vm‖

)
.

We introduce also the function κ :G →Rm given, for g in G, by

κ(g) := (
log‖g1‖, . . . , log‖gm‖)

and the function � :G →Rm given by

�(g) := lim
n→∞

1

n
κ
(
gn)

,

so that, the ith coefficient of �(g) is the logarithm of the spectral radius of gi . For
g in G, we set N(g) = ∑m

i=1 N(gi).

REMARK 4.10. Let μ be a Borel probability measure on the group GL(V1)×
· · ·×GL(Vm) such that, for any 1 ≤ i ≤ m, �μ is proximal and strongly irreducible
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in Vi . By Remark 4.4, μ admits a unique μ-stationary Borel probability measure
νi on P(Vi) and, for β-almost any b in B , (b1 · · ·bn)∗νi converges toward a Dirac
mass δξi(b) as n → ∞. One easily shows that this implies that the image ν of β by
the map

B → X; b 	→ (
ξ1(b), . . . , ξm(b)

)
is the unique μ-stationary Borel probability measure on X (see, e.g., [7], Chap-
ter 1).

Here is the multidimensional version of Theorem 1.1.

THEOREM 4.11. Let μ be a Borel probability measure on the group G :=
GL(V1) × · · · × GL(Vm) such that �μ acts strongly irreducibly on each Vi , and
such that

∫
G(logN(g))2 dμ(g) < ∞.

(a) There exist an element λ in Rm, and a Gaussian law Nμ on Rm such that,
for any bounded continuous function F on Rm, one has∫

G
F

(
σ(g, x) − nλ√

n

)
dμ∗n(g) −→

n→∞

∫
Rm

F (t)dNμ(t),(4.22)

uniformly for x in X, and∫
G

F

(
κ(g) − nλ√

n

)
dμ∗n(g) −→

n→∞

∫
Rm

F (t)dNμ(t).(4.23)

(b) When the local fields Ki are equal to R and when μ is supported by
SL(V1) × · · · × SL(Vm), the support of this Gaussian law Nμ is the vector sub-
space Eμ of Rm spanned by �(Gμ) where Gμ is the Zariski closure of �μ.

(c) When m = 1, K1 = R and �μ has unbounded image in PGL(V1), the Gaus-
sian law Nμ is nondegenerate.

REMARK 4.12. Point (b) gives a very practical way to determine the support
of the limit Gaussian law Nμ. We recall that the Zariski closure Gμ of �μ in G is
the smallest subset of G containing �μ which is defined by polynomial equations.
We recall also that the Zariski closure of a sub-semigroup of G is always a group.

PROOF OF THEOREM 4.11. (a) We first notice that equations (4.22) and (4.23)
are equivalent since, for all ε > 0, there exists c > 0 such that, for all nonzero
vector vi in Vi , all n ≥ 1,

μ∗n({
g ∈ G|c‖gi‖ ≤ ‖givi‖/‖vi‖ ≤ ‖gi‖}) ≥ 1 − ε

(see, e.g., [8], Lemma 3.2).
First, assume that, for 1 ≤ i ≤ m, �μ is proximal in Vi . In this case, by Propo-

sition 4.9, in each Vi , the norm cocycle is centerable. Hence, our cocycle σ is also
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centerable. Besides, since by Remark 4.10 μ admits a unique stationary probabil-
ity measure on X, σ has a unique covariance. Equation (4.22) then directly follows
from the central limit Theorem 3.4.

In general, by Lemma 4.13 below, for any 1 ≤ i ≤ m, there exists a positive
integer ri , a number Ci ≥ 1 and a finite-dimensional Ki-vector space Wi equipped
with a strongly irreducible and proximal representation of �μ such that, for any g

in �μ, one has

C−1
i ‖gi‖ri

Vi
≤ ‖gi‖Wi

≤ ‖gi‖ri
Vi

.

Thus, (a) follows from the proximal case applied to the representations W1,

. . . ,Wm.
(b) We assume now that all the local fields Ki are equal to R and that det(gi) = 1

for all g in �μ. We want to describe the support of the limit Gaussian law Nμ.
Again, by Lemma 4.13, we can assume that all Vi ’s are proximal.

According to [4], Section 4.6, the set κ(�μ) remains at bounded distance from
the vector space spanned by �(�μ). Hence, the support of Nμ is included in Eμ.

Conversely, since σ is centerable, by (3.11), the covariance 2-tensor of Nμ is
given by the formula, for all n ≥ 1,

�μ = 1

n

∫
G×X

(
σ(g, x) − ψ(x) + ψ(gx) − nλ

)2 dμ∗n(g)dν(x),(4.24)

where ψ is the continuous function in equation (3.9) and ν is the unique μ-
stationary probability measure on X. Let E�μ ⊂ Rm be the linear span of �μ.
For all g in the support of μ∗n and all x in the support of ν, the element

σ(g, x) − ψ(x) + ψ(gx) − nλ belongs to E�μ.(4.25)

In particular, let g be an element of �μ which acts in each Vi as a proximal
endomorphism and let

x+ = (
x+

1 , . . . , x+
m

)
,

where, for any i, x+
i is the attractive fixed point of g in P(Vi). Since x+

i is an
eigenline for gi whose eigenvalue has modulus equal to the spectral radius of gi ,
we have

σ
(
g, x+) = �(g).

Since �μ is strongly irreducible in each Vi , for any x = (x1, . . . , xm) in X, there
exists h in �μ with gnhx −→

n→∞x+. In particular, the support of ν contains x+, so

that, applying (4.25) to the point x+, we get

�(g) ∈ Zλ + E�μ.(4.26)

Now, since the actions on Vi are strongly irreducible, proximal and volume pre-
serving, the Zariski closure Gμ is semisimple. Hence, by [5], there exists a subset
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�1 of �μ such that, for any i, the elements of �1 act as proximal endomorphisms
in Vi and that the closed subgroup of Rm spanned by the set �(�1) in Rm is equal
to the vector space Eμ spanned by �(Gμ). Hence, by (4.26) this space Eμ has to
be included in E�μ and we are done.

(c) The main difference with point (b) is that the Zariski closure Gμ may not be
semisimple. The same argument as in (b) tells us that �([Gμ,Gμ]) is included in
E�μ and, since the image of �μ in PGL(V1) is unbounded, the group [Gμ,Gμ] is
also unbounded and one must have E�μ = R. �

To deduce the general case in Theorem 4.11(a) from the one where all the Vi

are �μ-proximal, we used the following purely algebraic lemma.

LEMMA 4.13. Let K be a local field, V be a finite-dimensional normed K-
vector space and � be a strongly irreducible sub-semigroup of GL(V ). Let r ≥ 1
be the proximal dimension of � in V , that is, the least rank of a nonzero element
π of the closure

K� :=
{
π ∈ End(V )

∣∣π = lim
n→∞λngn with λn ∈ K, gn ∈ �

}
and let W ⊂ ∧rV be the subspace spanned by the lines ∧rπ(V ), where π is a rank
r element of K�. Then:

(a) W admits a largest proper �-invariant subspace U .
(b) The action of � in the quotient W ′ := W/U is proximal and strongly irre-

ducible.
(c) Moreover, there exists C ≥ 1 such that, for any g in �, one has

C−1‖g‖r ≤ ‖ ∧r g‖W ′ ≤ ‖g‖r .(4.27)

REMARK 4.14. In case K has characteristic 0, the action of � in ∧rV is
semisimple and W ′ = W .

PROOF OF LEMMA 4.13. (a) We will prove that W contains a largest proper
�-invariant subspace and that this space is equal to

U := ⋂
π

KerW
(
�rπ

)
where π runs among all rank r elements of K�.

This space U is clearly �-invariant. We have to check that the only �-invariant
subspace U1 of W which is not included in U is U1 = W . Let π be a rank r

element of K� such that U1 is not included in Ker(∧rπ). The endomorphism ∧rπ

is proximal and one has

∧rπ(U1) ⊂ U1.

As ∧rπ has rank one, one has

Im
(∧rπ

) ⊂ U1.
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Let π ′ be any rank r element of K�. Since � is irreducible in V , there exists f in
� such that π ′f π �= 0. As π ′f π also belongs to K�, we get rk(π ′f π) = r and,
since ∧r (π ′f ) preserves U1, one has

Im
(∧rπ ′) = Im

(∧r(π ′f π
)) ⊂ U1.

Since this holds for any π ′, by definition of W , we get U1 = W , which should be
proved.

(b) The above argument proves also that, for any rank r element π of K�, one
has

Im
(
�rπ

) = �rπ(W) and Im
(
�rπ

) �⊂ U.(4.28)

In particular, the action of � in the quotient space W ′ := W/U is proximal.
Let us prove now that the action of � in W ′ is strongly irreducible. Let

U1, . . . ,Ur be subspaces of W , all of them containing U , such that � preserves
U1 ∪· · ·∪Ur . Since W ′ is �-irreducible, the spaces U1, . . . ,Ur span W . Let � ⊂ �

be the sub-semigroup

� := {g ∈ �|gUi = Ui for all 1 ≤ i ≤ r}.
There exists a finite subset F ⊂ � such that

� = �F = F�.

In particular, since � is strongly irreducible in V , so is �. Besides, � also has
proximal dimension r and, since K� = K�F , W is also spanned by the lines
Im(�rπ) for rank r elements π of K�. By applying the first part of the proof
to �, since the �-invariant subspaces Ui span W , one of them is equal to W .
Therefore, W ′ is strongly irreducible.

(c) We want to prove the bounds (4.27). First, for g in GL(V ), one has ‖∧r g‖ ≤
‖g‖r . As for g in �, we have (∧rg)W = W and (∧rg)U = U , we get

‖ ∧r g‖W ′ ≤ ‖g‖r .

Assume now there exists a sequence (gn) in � with

‖gn‖−r‖ ∧r gn‖W ′ → 0

and let us reach a contradiction. If K is R, set λn = ‖gn‖−1. In general, pick λn

in K such that supn | log(|λn|‖gn‖)| < ∞. After extracting a subsequence, we may
assume λngn → π , where π is a nonzero element of K�. In particular, π has
rank ≥ r and we have λr

n ∧r gn → ∧rπ . Thus, since ‖λr
n ∧r gn‖W ′ → 0, we get

‖ ∧r π‖W ′ = 0, that is,
∧rπ(W) ⊂ U.

We argue now as in (a). Let π ′ be a rank r element of K�. Since � is irreducible
in V , there exists f in � such that π ′f π �= 0. Since π ′f π has rank at least r , it
has rank exactly r , and since ∧r (π ′f ) preserves U , one has

Im
(∧rπ ′) = Im

(∧r(π ′f π
)) ⊂ U.

Since this holds for any π ′, by definition of W , we get U = W . This contradiction
ends our proof. �
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EXAMPLE 4.15. There exists a finitely supported probability measure μ on
SL(Rd) such that �μ is unbounded and acts irreducibly on Rd , and such that, if

we denote by λ1 its Lyapunov first exponent, the random variables log‖gn···g1‖−nλ1√
n

converge in law to a variable which is not Gaussian.

Note that, according to Theorem 1.1, the action of �μ on Rd cannot be
strongly irreducible. In our example, the limit law is the law of a random vari-
able sup(α1(Z), . . . , αm(Z)) where Z is a D-dimensional Gaussian vector and αi

are linear forms on RD . One can prove that this is a general phenomenon.

PROOF OF EXAMPLE 4.15. Set d = 2 and σ := (0 −1
1 0

)
. We just choose gi =

σεi
( exi 0

0 e−xi

)
where εi , xi are independent random variables, εi takes equiprobable

values in {0,1} and xi are symmetric and real-valued with the same law ν �= δ0.

One can write gn · · ·g1 = σηn
( eSn 0

0 e−Sn

)
with ηn = ε1 + · · · + εn and

Sn = x1 + (−1)ε1x2 + · · · + (−1)ε1+···+εn−1xn.

By the classical CLT, the sequence Sn√
n

converges in law to a nondegenerate Gaus-

sian law. Hence, the sequence 1√
n

log‖gn · · ·g1‖ = |Sn|√
n

converges in law to a non-
Gaussian law. �

4.5. Central limit theorem for semisimple groups. In this section, we prove
the central limit theorem for random walks on semisimple Lie groups for a law μ

whose second moment is finite and such that �μ is Zariski dense.
This central limit Theorem 4.16 will only be an intrinsic reformulation of The-

orem 4.11. Its main interest is that it describes more clearly the support of the limit
Gaussian law.

We first recall the standard notation for semisimple real Lie groups. Let G be
a semisimple connected linear real Lie group, g its Lie algebra, K a maximal
compact subgroup of G, k its Lie algebra, a a Cartan subspace of g orthogonal
to k for the Killing form, and A the subgroup of G, A := ea. Let a+ be a closed
Weyl chamber in a, a++ the interior of a+, A+ = ea

+
. Let N be the corresponding

maximal nilpotent connected subgroup

N :=
{
n ∈ G

∣∣∀H ∈ a++, lim
t→∞ e−tH netH = 1

}
.

Let P be the corresponding minimal parabolic subgroup of G, that is, P is the
normalizer of N . Let X = G/P be the flag variety of G.

Using the Iwasawa decomposition G = KAN one defines the Iwasawa cocycle
σ :G×X → a: for g in G and x in X, σ(g, x) is the unique element of a such that

gk ∈ Keσ(g,x)N for x = kP with k in K.
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Using the Cartan decomposition G = KA+K , one defines the Cartan projec-
tion κ :G → a+: for g in G, κ(g) is the unique element of a+ such that

g ∈ Keκ(g)K.

We also define the Jordan projection � :G → a by

�(g) := lim
n→∞

1

n
κ
(
gn)

.

EXAMPLE. Before stating the main theorem, let us describe briefly these no-
tions for G = SL(d,R). We endow Rd with the standard Euclidean inner product.
In this case, one has:

– G = {g ∈ End(Rd)|det(g) = 1}, g= {H ∈ End(Rd)| tr(H) = 0},
– K = SO(d,R) = {g ∈ G|t gg = e}, k = {H ∈ g|tH + H = 0},
– a= {H = diag(H1, . . . ,Hd) ∈ g}, a+ = {H ∈ a/H1 ≥ · · · ≥ Hd},
– A = {a = diag(a1, . . . , ad) ∈ G|ai > 0}, A+ = {a ∈ A|a1 ≥ · · · ≥ ad},
– N is the group of upper triangular matrices with 1’s on the diagonal,
– P is the group of all upper triangular matrices in G,
– X is the set of flags x = (Vi)0≤i≤d of Rd , that is, of increasing sequences of

vector subspaces Vi with dimVi = i.
– The ith coordinate σi(g, x) of the Iwasawa cocycle σ(g, x) is the logarithm

of the norm of the transformation induced by g between the Euclidean lines
Vi/Vi−1 	→ gVi/gVi−1.

– The coordinates κi(g) of the Cartan projection κ(g) are the logarithms of the
eigenvalues of (tgg)1/2 in decreasing order.

– The coordinates �i(g) of the Jordan projection �(g) are the logarithms of the
moduli of the eigenvalues of g in decreasing order.

THEOREM 4.16. Let μ be a probability measure on the semisimple connected
linear real Lie group G. Assume that �μ is Zariski dense in G, and that the second
moment

∫
G ‖κ(g)‖2 dμ(g) is finite. Then:

(a) The Iwasawa cocycle is centerable.
(b) There exist λ in a++ and a nondegenerate Gaussian law Nμ on a such that,

for any bounded continuous function F on a, one has∫
G

F

(
σ(g, x) − nλ√

n

)
dμ∗n(g) −→

n→∞

∫
a
F(t)dNμ(t),(4.29)

uniformly for x in X, and∫
G

F

(
κ(g) − nλ√

n

)
dμ∗n(g) −→

n→∞

∫
a
F(t)dNμ(t).(4.30)
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We recall that this theorem is due to Goldsheid and Guivarc’h in [22] and to
Guivarc’h in [27] when μ has a finite exponential moment.

We recall also that the assumption “�μ is Zariski dense in G” means that, “every
polynomial function on G which is identically zero on �μ is identically zero on G.”

PROOF OF THEOREM 4.16. (a) We use the same method as in [4]. There exists
a basis χ1, . . . , χm of a∗ and finitely many irreducible proximal representations
(V1, ρ1), . . . , (Vm,ρm) of G endowed with K-invariant norms such that, for all g

in G, and x = hP in X,

χi

(
κ(g)

) = log‖ρi(g)‖ and χi

(
σ(g, x)

) = log
‖ρi(g)vi‖

‖vi‖ ,

where Rvi is the hPh−1-invariant line in Vi . It follows then from Theorem 4.9
that, for all i ≤ m, the cocycle χi ◦ σ is centerable. Hence, the Iwasawa cocycle σ

is also centerable.
(b) Using the same argument as in (a), the convergences to a normal law Nμ

in (4.29) and (4.30) follow from Theorem 4.11. Theorem 4.11 tells us also that
the support of Nμ is the vector subspace of a spanned by the set �(G). Since it
contains a+ = �(A+), this vector subspace is equal to a. �
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