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ROBUST DISCRETE COMPLEX ANALYSIS: A TOOLBOX1

BY DMITRY CHELKAK

St. Petersburg Department of Steklov Institute (PDMI RAS) and Chebyshev
Laboratory at St. Petersburg State University

We prove a number of double-sided estimates relating discrete counter-
parts of several classical conformal invariants of a quadrilateral: cross-ratios,
extremal lengths and random walk partition functions. The results hold true
for any simply connected discrete domain � with four marked boundary ver-
tices and are uniform with respect to �’s which can be very rough, having
many fiords and bottlenecks of various widths. Moreover, due to results from
[Boundaries of planar graphs, via circle packings (2013) Preprint], those es-
timates are fulfilled for domains drawn on any infinite “properly embedded”
planar graph � ⊂ C (e.g., any parabolic circle packing) whose vertices have
bounded degrees. This allows one to use classical methods of geometric com-
plex analysis for discrete domains “staying on the microscopic level.” Appli-
cations include a discrete version of the classical Ahlfors–Beurling–Carleman
estimate and some “surgery technique” developed for discrete quadrilaterals.

1. Introduction.

1.1. Motivation. This paper was originally motivated by the recent activity
devoted to the analysis of interfaces arising in the critical 2D lattice models on
regular grids (e.g., see [16, 17] and references therein), particularly the random
cluster representation of the Ising model [4, 5, 14]. The other contexts where tech-
niques developed in this paper could be applied are the analysis of random planar
graphs and their limits [3, 10, 11] or lattice models where some connection to dis-
crete harmonic measure can be established (or is already plugged into the model,
e.g., as in DLA-type processes). However, note that below we essentially use the
“uniformly bounded degrees” assumption, especially when proving a duality esti-
mate for (edge) extremal lengths. In particular, all results of this paper hold true for
discrete domains which are subsets of any given parabolic circle packing with uni-
formly bounded degrees; see [12]. Nevertheless, some important setups (notably,
circle packings of random planar maps) are not covered, requiring some additional
input (possibly, a kind of a “surgery” near high degree vertices; cf. [11]). At the
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same time, the paper has an independent interest, being devoted to one of the cen-
tral objects of discrete potential theory on a (weighted) graph � embedded into a
complex plane: partition functions of the random walk running in a discrete simply
connected domain � ⊂ �.

Dealing with some 2D lattice model and its scaling limit (an archetypical exam-
ple is the Brownian motion in �, which can be realized, e.g., as the limit of simple
random walks on refining square grids δZ2), one usually works in the context when
the lattice mesh δ tends to zero. Then it can be argued that a discrete lattice model
is sufficiently close to the continuous one, if δ is small enough: for example, ran-
dom walks hitting probabilities (discrete harmonic measures) converge to those
of the Brownian motion (continuous harmonic measure; cf. [13]) as δ → 0. After
rescaling the underlying grid by δ−1, statements of that sort provide an information
about properties of the random walk running in large discrete domains � ⊂ Z

2.
Unfortunately, this setup is not sufficient when we are interested in fine geo-

metric properties of 2D lattice models (e.g., full collection of interfaces in the ran-
dom cluster representation of the critical Ising model): sometimes it turns out that
one needs to consider not only macroscopic �’s but also their subdomains “on
all scales” (like δε or even several lattice steps) simultaneously in order to gain
some macroscopic information. Questions of that kind are still tractable by clas-
sical means if those microscopic parts of � are regular enough (e.g., rectangular-
type subsets of Z

2; cf. [8, 14]). Nevertheless, if no such regularity assumptions
can be made due to some monotonicity features of the particular lattice model, the
situation immediately becomes much more complicated; cf. [4, 5].

Having in mind the classical geometric complex analysis as a guideline, in this
paper we construct its discrete version “staying on the microscopic level” (i.e.,
without any passage to the scaling limit or any coupling arguments) which allows
one to handle discrete domains by more-or-less the same methods as continuous
ones. Namely, we prove a number of uniform estimates (a “toolbox”) which hold
true for any simply connected �, possibly having many fiords and bottlenecks of
various widths, including very thin (several lattice steps) ones.

Being interested in estimates rather than convergence, we do not need any nice
“complex structure” on the underlying weighted planar graph. Instead, we assume
that the (locally finite) embedding � ⊂ C satisfies the following mild assumptions:
neighboring edges have comparable lengths and angles between them are bounded
away from 0 and do not exceed π − η0 for some constant η0 > 0; see Section 2.1.
In the very recent paper [2] it is shown that these assumptions imply two crucial
properties of the corresponding random walk on �: (S) the probability of the event
that the random walk started at the center of a Euclidean disc exits this disc through
a given boundary arc of angle π −η0 is uniformly bounded from below and (T) the
expected time spent by the random walk in this disc is uniformly comparable to its
area; see Section 2.4 for details. For general properly embedded graphs �, we base
all the considerations on these estimates from [2], using them as a starting point
for the analysis of random walks in rough domains. On the other hand, our results
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seem to be new even if � = Z
2, so the reader not interested in full generality may

always think about this, probably the simplest possible case in which (S) and (T)
can be easily derived from standard properties of the simple random walk on the
square grid.

In order to shorten the presentation, below we widely use the following notation:
assuming that all “structural parameters” of a planar graph � listed in Section 2
are fixed once forever (or if we work with some concrete �):

• by “const” we denote positive constants (like 1
2π

or 7812) which do not depend
on geometric properties (the shape of �, positions of boundary points, etc.)
of the configuration under consideration or additional parameters we deal with
(thus “f ≤ const” means that there exists a positive constant C such that the
inequality f ≤ C holds true uniformly over all possible configurations);

• we write “f � g” if there exist two positive constants C1,2 such that one has
C1f ≤ g ≤ C2f uniformly over all possible configurations (in other words, f

and g are comparable up to some uniform constants which we do not specify);
• we write, for example, “if f ≥ const, then g1 � g2” if and only if, for any

given constant c > 0, the estimate f ≥ c implies C1g1 ≤ g2 ≤ C2g1, where
C1,2 = C1,2(c) > 0 may depend on c but are independent of all other parameters
involved.

1.2. Main results. The main objects of interest are (discrete) quadrilaterals,
that is, simply connected domains � with four marked boundary points a, b, c, d

listed counterclockwise. Focusing on quadrilaterals, we have two motivations.
First, in the classical theory this is the “minimal” configuration which has a
nontrivial conformal invariant (e.g., all simply connected �’s with three marked
boundary points are conformally equivalent due to the Riemann mapping theo-
rem). Second, this is an archetypical configuration in the 2D lattice models the-
ory, where one often needs to estimate probabilities of crossing-type events in
(�;a, b, c, d).

Note that even if � = Z
2, there is a crucial difference between discrete and

continuous theories. The latter is essentially based on conformal mappings and
conformal invariance of various quantities, notably the conformal invariance of
extremal lengths; see [1], Chapter 4 and [9], Chapter IV. Using conformal invari-
ance, one typically may rewrite the question originally formulated in � as the same
question for some canonical domain (unit circle, half-plane, rectangle, etc.), thus
simplifying the problem drastically; for example, see [9], Theorem IV.5.2. In par-
ticular, up to conformal equivalence, (�;a, b, c, d) can be described by a single
real parameter (modulus). Therefore, all conformal invariants of those �’s (cross-
ratios, extremal lengths, partition functions of the Brownian motion) are just some
concrete functions of each other.

This picture changes completely when coming down to the discrete level: for
discrete domains (subsets of a fixed graph �) we do not have any reasonable notion
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of conformal equivalence. Nevertheless, for a discrete quadrilateral, one can eas-
ily introduce natural analogues of all classical conformal invariants listed above.
Namely, let Z� = Z�([ab]�; [cd]�) denote the total partition function of random
walks running from the boundary arc [ab]� ⊂ � to another arc [cd]� ⊂ ∂� in-
side �. In the particular case of the simple random walk on � = Z

2, this means

Z�

([ab]�; [cd]�) = ∑
γ∈S�([ab]�;[cd]�)

1

4#γ
,

where S�([ab]�; [cd]�) denotes the set of all nearest-neighbor paths connect-
ing [ab]� and [cd]� inside �, and #γ is the length (number of steps) of γ ;
see Section 2.3 for further details. Then, we define the discrete cross-ratio Y� =
Y�(a, b; c, d) of boundary points a, b, c, d ∈ ∂� as

Y� :=
[

Z�(a;d)Z�(b; c)
Z�(a;b)Z�(c;d)

]1/2

,

where, for example, Z�(a;d) denotes the similar partition function of random
walks running from a to d in �; see Section 4 for further details. We also use the
classical definition of discrete extremal length (or, equivalently, effective resistance
of the corresponding electrical network) L� = L�([ab]�; [cd]�) between [ab]�
and [cd]� which goes back to Duffin [7]; see Section 6 for details.

Certainly, one cannot hope that Z�,Y� and L� are related by the same identities
as in the classical theory. Nevertheless, one may wonder if those can be replaced
by some double-sided estimates which do not depend on geometric properties of
(�;a, b, c, d). One of the main results of our paper, Theorem 7.1, gives the positive
answer to this question. Namely, it says that, provided L� ≥ const, one has

Z� � Y� and log
(
1 + Y−1

�

) � L�,

uniformly over all possible discrete quadrilaterals. Note that we use discrete cross-
ratio Y� as an intermediary that allows us to relate “analytic” partition function Z�

and “geometric” extremal length L� in a way which is very similar to the classical
setup.

In order to illustrate a potential of the toolbox developed in our paper, we in-
clude two applications of a different kind. The first, given in Section 5, is a “surgery
technique” for discrete quadrilaterals which is important for the fine analysis of in-
terfaces in the critical Ising model; see [4]. Namely, we show that it is always pos-
sible to cut � along some family of slits Lk into two parts �′

k and �′′
k (containing

[ab]� and [cd]�, resp.) so that, for any k, one has

Z� � Z�′
k

([ab]�;Lk

)
Z�′′

k

(
Lk; [cd]�)

and

Z�′
k

([ab]�;Lk

) � kZ�′′
k

(
Lk; [cd]�);

see Theorem 5.1 for details. Using discrete cross-ratios techniques, we prove this
result, which is quite natural from a geometric point of view, without any reference
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to the actual geometry of �. As always in our paper, double-sided estimates given
above are uniform with respect to (�;a, b, c, d) and k.

Another application, given in Section 7, allows one to control the discrete har-
monic measure ωdisc := ω�(u; [ab]�) of a “far” boundary arc [ab]� ⊂ ∂� via an
appropriate discrete extremal length Ldisc in �; see Section 7 and Theorem 7.8 for
details. This should be considered as an analogue of the famous Ahlfors–Beurling–
Carleman estimate; see [9], Theorem IV.5.2, and [9], page 150, for historical notes.
Again, we get a uniform double-sided bound which, as a byproduct, implies that

log
(
1 + ω−1

disc

) � Ldisc � Lcont � log
(
1 + ω−1

cont
)

uniformly over all possible configurations (�;u,a, b), where ωcont denotes the
classical harmonic measure of the boundary arc [ab] seen from u in the polygonal
representation of �; see Corollary 7.9 for details. Note that results of this sort seem
to be hardly available by any kind of coupling arguments. Indeed, dealing with thin
fiords we are mostly focused on exponentially rare events for both discrete random
walks and the (continuous) Brownian motion, which are highly sensitive to widths
of those fiords.

1.3. Organization of the paper. In Section 2 we formulate assumptions (a)–
(d) on the embedding � ⊂ C (Section 2.1), fix the notation for discrete domains
� (Section 2.2), introduce the partition functions Z� of the simple random walk
in � and discuss its relation to the standard notions of discrete harmonic measure
and discrete Green function (Section 2.3). Further, in Section 2.4 we formulate
two crucial properties (S) and (T) of the random walk on � (namely, uniform
estimates for hitting probabilities and expected exit times for discrete approxima-
tions of Euclidean discs). We also list several basic facts of the discrete potential
theory (elliptic Harnack inequality, weak Beurling-type estimates, some uniform
estimates for Green functions) in Section 2.5.

Section 3 is devoted to a uniform (up to multiplicative constants) factorization of
the three-point partition function Z�(a; [bc]�) via two-point functions Z�(a;b),
Z�(a; c) and Z�(b; c). Namely, we prove that (see Theorem 3.5)

Z�

(
a; [bc]�) � [

Z�(a;b)Z�(a; c)/Z�(b; c)]1/2

uniformly over all configurations (�;a, b, c). This is the cornerstone of our paper
and the only one place where we involve some geometric considerations in the
proofs.

In Section 4, we introduce discrete cross-ratios X�, Y� for a simply connected
domain � with four marked boundary points a, b, c, d (see Definition 4.3) and de-
duce from Theorem 3.5 several double-sided estimates relating X�, Y� and Z�.
In particular, we prove that X−1

� � 1 + Y−1
� (see Proposition 4.5), which is an ana-

logue of the well-known identity for classical cross-ratios, and Z� � log(1 + Y�)

(see Theorem 4.8), which is a precursor of the exponential-type estimate relating
Z� and L�.
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Section 5 is independent of the rest of the paper. It shows how one can use
Theorem 3.5 and discrete cross-ratios introduced in Section 4 in order to build a
sort of “surgery technique” which allows one to effectively “decouple” dependence
Z� of the boundary arcs [ab]� and [cd]� by finding nice discrete cross-cuts in �.

In Section 6, the notion of discrete extremal length L�([ab]; [cd]) comes into
play. We recall its definition and prove that L� is always uniformly comparable to
its continuous counterpart, extremal length of the family of curves connecting [ab]
and [cd] in the polygonal representation of �. In particular, this fact implies the
very important duality estimate for discrete extremal lengths; see Corollary 6.3.
We also prove some simple inequalities relating Z� and L−1

� ; see Proposition 6.6.
Section 7 summarizes all the estimates for Y�, Z� and L� obtained before

into single Theorem 7.1 which is the culmination of our paper. Then we show
how to fit a discrete harmonic measure ω�(u; [ab]�) into this context (as � \
{u} is not simply connected, a reduction similar to [9], page 144, is needed). The
result [double-sided estimate of ω�(u; [ab]�) via an appropriate extremal length]
is given by Theorem 7.8. As a simple byproduct, we prove Corollary 7.9, which
says that the logarithm of a discrete harmonic measure is uniformly comparable to
its continuous counterpart.

In order to make the whole presentation self-contained, in the Appendix we de-
rive all the basic facts of the discrete potential theory listed in Section 2.5 from
properties (S) and (T) of the underlying random walk. In some sense, our paper
uses these properties, formulated for the simplest possible discrete domains (ap-
proximations of Euclidean discs), as “black box assumptions” that turn out to be
enough to develop uniform estimates relating Z�, Y� and L� for all simply con-
nected �’s; see also Remark 2.7.

2. Notation, assumptions and preliminaries.

2.1. Graph notation and assumptions. Throughout this paper we work with an
infinite undirected weighted planar graph (�;E�) embedded into a complex plane
C so that all of its edges are straight segments (see Figure 1), which is assumed
to satisfy assumptions (a)–(d) given below. The notation � ⊂ C is fixed for the set
of vertices which are understood as points in the complex plane (so |u − v| means
the Euclidean distance between u, v ∈ �), and E� denotes the corresponding set
of edges. Each edge e ∈ E� is equipped with a positive weight we. Note that, in
general, these weights are not related to the way how � is embedded into C. We
assume that � satisfies:

(a) uniformly bounded degrees: there exists a constant �0 > 0 such that
we ≥ �0 for all edges e ∈ E� and μv := ∑

(vv′)∈E� wvv′ ≤ �−1
0 for all vertices

v ∈ �.

Clearly, this is equivalent to saying that all edge weights we are uniformly bounded
away from 0 and ∞, and all degrees of vertices of � are uniformly bounded as
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FIG. 1. An example of a graph � and a simply connected discrete domain � ⊂ �. The inner ver-
tices of � are colored black, the boundary ones are white. For two boundary edges (aaint) and
(bbint), the corresponding counterclockwise boundary arc [ab]� is marked. For an inner vertex
u ∈ Int�, the distance d�(u) = dist(u;�) from u to ∂� and the discrete disc B�(u) = B�

r (u) of
radius r = 1

3 d�(u) are shown.

well. We then denote random walk transition probabilities by

�vv′ := wvv′

μv

= wvv′∑
(vv′)∈E� wvv′

.(2.1)

Note that the probabilities �vv′ are uniformly bounded below by � 2
0 > 0. We now

describe the way that � is embedded into C. We assume that:

(b) there are no flat angles: there exists a constant η0 > 0 such that, for each
vertex v ∈ �, all angles between neighboring edges of � incident to v do not ex-
ceed π − η0;

(c) edge lengths are locally comparable: there exists a constant κ0 ≥ 1 such
that, for each vertex v ∈ �, one has

max
(vv′)∈E�

∣∣v′ − v
∣∣ ≤ κ0rv where rv := min

(vv′)∈E�

∣∣v′ − v
∣∣(2.2)

(below we sometimes call rv the local scale size);
(d) � is locally finite (i.e., it does not have accumulation points in C).
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It is worth noting that (b) and (c) also imply that all degrees of faces of � are uni-
formly bounded, and all angles between neighboring edges are uniformly bounded
away from 0. In particular, the radius of isolation minv′∈� |v′ −v| of a vertex v ∈ �

is always uniformly comparable to rv . Let us emphasize that we do not assume that
rv’s are comparable to each other: the local scale sizes can significantly vary from
place to place; see Figure 1. Also, we do not assume any quantitative bound in
condition (d).

REMARK 2.1. It is easy to see that for some constant ν0 = ν0(η0,κ0) ≥ 1 and
all u, v ∈ �, there exists a nearest-neighbor path Luv = (u0u1 · · ·un), (usus+1) ∈
E� , between u = u0 and v = un such that

Length(Luv) =
n−1∑
s=0

|us+1 − us | ≤ ν0|v − u|.(2.3)

In particular, one can use the following construction (see [2] for details). Let
[u;v] ⊂ C denote a straight segment between u and v in the plane, f1, . . . , fm be
consecutive faces of � that are intersected by [u;v] and let [zs−1; zs] := [u;v]∩fs .
It follows from (b) and (c) that one can replace each of the subsegments [zs−1; zs]
by a path 
s running along the boundary of fs so that the length of 
s is bounded
by ν0|zs − zs−1|. Concatenating these 
s and erasing repetitions, if necessarily,
one gets a proper path Luv . It might happen that the result is not the shortest path
between u and v in �. Nevertheless, it has an important feature which will be used
below:

all vertices of Luv belong to faces crossed by the segment [u;v].(2.4)

In particular, this Luv does not cross the straight line passing through u and v

outside of [u;v] (note that the shortest path joining u and v along edges of �

could do so).

REMARK 2.2. Let u �= v be two vertices of �. It immediately follows
from (2.3) that rv ≤ ν0|v − u|. Moreover, for all edges (vv′) ∈ E� , one has
|v′ − v| ≤ κ0rv ≤ κ0ν0|v − u|. In particular, it cannot happen that |v′ − u| >

(κ0ν0 + 1) · |v − u|.
2.2. Bounded discrete domains and discrete discs. We start with a definition

of a (bounded) discrete domain �; see Figure 1. Let (V �;E�
int) be a bounded con-

nected subgraph of (�;E�). In order to make the presentation simpler and not to
overload the notation, we always assume that (vv′) ∈ E�

int for any two neighboring
(in �) vertices v, v′ ∈ V � (one can easily remove this assumption, if necessary).
Denote by E�

bd the set of all oriented edges (ainta) /∈ E�
int such that aint ∈ V � (and

a /∈ V �). We set � := Int� ∪ ∂�, where

Int� := V �, ∂� := {(
a; (ainta)

)
: (ainta) ∈ E�

bd
}
.
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Formally, the boundary ∂� of a discrete domain � should be treated as the set
of oriented edges (ainta), but we usually identify it with the set of corresponding
vertices a, and think about Int� and ∂� as subsets of �, if no confusion arises.

We say that a discrete domain � is simply connected if, for any cycle in
E�

int, all edges of � surrounded by this cycle also belong to E�
int. If � is sim-

ply connected, then its boundary vertices (or, more precisely, boundary edges)
are naturally cyclically ordered, exactly as in the continuous setting. For two
boundary vertices a, b ∈ ∂� of a simply connected �, we denote a boundary
arc [ab]� ⊂ ∂� as the set of all boundary vertices lying between a and b (in-
cluding those two) when one goes along ∂� in the counterclockwise direction (so
[ab]� ∪ [ba]� = ∂� and [ab]� ∩ [ba]� = {a, b}); see Figure 1. We also use the
notation [ab)� := [ab]� \ {b}, (ab]� := [ab]� \ {a}, etc.

For a given vertex u ∈ � and r > 0, we denote by B�
r (u) the discrete disc of

radius r around u. Namely, Int B�
r (u) is the set of all vertices v ∈ � lying in the

connected component of � ∩ {v : |v −u| < r} containing u (e.g., Int B�
ru

(u) = {u}),
and ∂B�

r (u) is the set of their neighbors; see Figure 1.

REMARK 2.3. Let u ∈ � and r > 0. The following fact immediately follows
from (2.3):

if v ∈ � is such that |v − u| < ν−1
0 r , then v ∈ Int B�

r (u).

Combining this with Remark 2.2, one easily concludes that, for all u ∈ � and
r ≥ ru, ∑

v∈Int B�
r (u)

r2
v � r2,(2.5)

where constants in � depend on η0,κ0 and ν0 only.

Below we also need a stronger version of (2.5). Given an interval I ⊂R/(2πZ)

of length π − η0, let Int[I ] B�
r (u) denote the set of all vertices v ∈ � that can be

connected to u by a nearest-neighbor path (u0u1 · · ·un) such that all us (includ-
ing v = un) satisfy |us − u| < r and arg(us − u) ∈ I . In other words, we restrict
ourselves to those v ∈ B�

r (u) that are connected to u by nearest-neighbor paths
running in a given sector

S(u, r, I ) := {
z ∈ C : |z − u| < r, arg (z − u) ∈ I

}
.

LEMMA 2.4. For all u ∈ �, r ≥ ru and intervals I ⊂ R/(2πZ) of length π −
η0, one has ∑

v∈Int[I ] B�
r (u)

r2
v � r2,(2.6)

where constants in � depend on η0,κ0 and ν0 only.
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PROOF. The upper bound follows from (2.5). To prove the lower bound, note
that if rv is comparable to r for at least one vertex v ∈ Int[I ] B�

r (u), then we are
done as the corresponding term r2

v of the sum is comparable to r2. On the other
hand, if rv 
 r for all v ∈ Int[I ] B�

r (u), then one can use assumption (b) step by
step in order to find a path running from u in the bulk of the sector S(u, r, I ). In par-
ticular, in this case there exists a vertex u′ ∈ � such that Int B�

r ′(u′) ⊂ Int[I ] B�
r (u),

where r ′ := r · sin(1
2(π −η0))/2. Then the lower bound in (2.6) follows from (2.5)

applied to the disc B�
r ′(u′). �

2.3. Green’s function, exit probabilities and partition functions of the random
walk in a discrete domain. Let � be a (simply connected) discrete domain. For a
real function H :� →R, we define its discrete Laplacian by

[�H ](v) := ∑
(vv′)∈E�

�vv′
(
H

(
v′) − H(v)

)
, v ∈ Int�,

where the sum is taken over all neighbors of v, and �vv′ are given by (2.1). We
say that H is discrete harmonic in � if [�H ](v) = 0 for all v ∈ Int�.

Below we often use two basic notions of discrete potential theory. The first is
the discrete harmonic measure ω�(u;E) of a boundary set E ⊂ ∂� seen from an
(inner) vertex u ∈ �. It can be defined as the unique function which is discrete har-
monic in � and coincides with 1E(·) on ∂�. At the same time, ω�(u;E) admits a
simple probabilistic interpretation: it is the probability of the event that the random
walk (2.1) on � started at u first hits ∂� on E. The second notion is the (positive)
Green function G�(v;u). It is the unique function which is discrete harmonic ev-
erywhere in � except at u, vanishes on the boundary ∂� and such that[

�G�(·;u)
]
(u) = −μ−1

u .

From the probabilistic point of view, G�(v;u) is the expected number of visits at u

(divided by μu) of random walk (2.1) started at v and stopped when reaching ∂�.
Note that G� is symmetric, that is, G�(u;v) ≡ G�(v;u); for example, see Re-
mark 2.6(ii). The following notation generalizes both discrete harmonic measure
and Green’s function.

DEFINITION 2.5. Let � ⊂ � be a bounded discrete domain and x, y ∈ �.
We denote by Z�(x;y) the partition function of the random walk joining x and y

inside �. Namely,

Z�(x;y) := ∑
γ∈S�(x;y)

w(γ ),(2.7)

where

w(γ ) :=
∏n(γ )−1

s=0 wusus+1∏n(γ )
s=0 μus

= μ−1
y

n(γ )−1∏
s=0

�usus+1
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and S�(x;y) = {γ = (u0 ∼ u1 ∼ · · · ∼ un(γ )) :u0 = x;u1, . . . , un(γ )−1 ∈
Int�;un(γ ) = y} is the set of all nearest-neighbor paths connecting x and y in-
side �. Further, for A,B ⊂ �, we define

Z�(A;B) := ∑
x∈A,y∈B

Z�(x;y),

and by RW�(A;B) we denote a random nearest-neighbor path γ chosen from the
set S�(A;B) := ⋃

x∈A,y∈B S�(x;y) with probabilities proportional to the weights
w(γ ).

REMARK 2.6. It is easy to see that:

(i) if u ∈ Int� and b ∈ ∂�, then Z�(u;b) = μ−1
b ω�(u;b);

(ii) if both u, v ∈ Int�, then Z�(v;u) = G�(v;u).

PROOF. (i) Focusing on the first step of γ ∈ S�(u;b) in (2.7), one immedi-
ately concludes that the function

H(u) :=
{ Z�(u;b), u ∈ Int�,

μ−1
b 1[u = b], u ∈ ∂�,

is discrete harmonic in � and coincides with μ−1
b ω�(·;b) on the boundary ∂�.

Thus, Z�(u;b) = H(u) = μ−1
b ω�(u;b) for all u ∈ Int�.

(ii) As above, it immediately follows from (2.7) that the function

H(v) :=
{

Z�(v;u), v ∈ Int�,
0, v ∈ ∂�,

is discrete harmonic everywhere in �, except at u and

H(u) = μ−1
u + ∑

(uu′)∈E�

�uu′H
(
u′),

where the first term μ−1
u corresponds to the trivial trajectory consisting of a single

point u. Thus [�H ](u) = −μ−1
u and Z�(v;u) = H(v) = G�(v;u) for all v ∈

Int�. �

2.4. Properties (S) and (T) of the random walk on �. Our paper is based on
two crucial properties, (S), (T), of random walk (2.1) on � that are formulated
below.

PROPERTY (S) (“Space”; see [2], Theorem 1.4). There exists a constant c0 =
c0(�0, η0,κ0) > 0 such that, uniformly over all vertices u ∈ �, radii r > 0 and
intervals I ⊂R/(2πZ) of length π − η0, the following is fulfilled:

ωB�
r (u)

(
u; {

a ∈ ∂B�
r (u) : arg(a − u) ∈ I

}) ≥ c0.
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In other words, the random walk started at the center of any discrete disc B�
r (u)

can exit this disc through any given boundary arc of the angle π − η0 with proba-
bility uniformly bounded away from 0. Note that, if r ≤ ru, then Int B�

r (u) = {u},
and the claim rephrases assumption (b).

PROPERTY (T) (“Time”; see [2], Theorem 1.5). There exists a constant C0 =
C0(�0, η0,κ0) > 1 such that, uniformly over all vertices u ∈ � and radii r ≥ ru,
the following is fulfilled:

C−1
0 r2 ≤ ∑

v∈Int B�
r (u)

r2
vGB�

r (u)(v;u) ≤ C0r
2.(2.8)

Despite the fact that (T) is formulated in terms of discrete harmonic functions
only (which do not depend on a particular time parametrization of the underlying
random walk), it is natural to mention the following interpretation: let us consider
some time parametrization such that the (expected) time spent by the walk at a
vertex v before it jumps is of order r2

v (recall that local scales rv can be quite
different for different v’s). Then we ask the expected time spent in a discrete disc
Br (u) by the random walk started at u before it hits ∂B�

r (u) to be of order r2,
uniformly over all possible discrete discs.

REMARK 2.7. In the first version of this paper, (S) and (T) were presented as
additional “black box assumptions” and the following question was posed: do they
hold true for any embedding satisfying (a)–(d) [with some “quantitative” version
of (d) which the author, at the time, thought to be necessary] or not? Very recently,
the positive answer to this question was given in [2],

(a)–(d) always imply (S) and (T).

The proofs in [2] are based on heat kernel estimates and the parabolic Harnack
inequality; see also a useful discussion in [15], Section 2.1. We are grateful to the
authors of [2] for helpful conversations on the subject. Also, it is worth noting that
in some “integrable” cases (e.g., for simple random walks on regular lattices or
special random walks on isoradial graphs [6]) (S) and (T) can be easily obtained
due to nice “local approximation properties” of the random walk (2.1). In those
cases, all the results of our paper can be obtained without any further references. In
some sense, we consider (S) and (T) as a “pointe de la jonction”: being formulated
for simplest possible discrete domains (approximations of Euclidean discs), they
provide a starting point for our toolbox which is more adapted for very rough �’s.

2.5. Basic facts: Elliptic Harnack inequality, Green’s function estimates and
Beurling-type estimates. In this section we collect several basic facts about dis-
crete harmonic functions. These statements can be obtained using heat kernel esti-
mates à la [2], though to keep the whole presentation self-contained we also pro-
vide direct proofs based on (S) and (T) in the Appendix.
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PROPOSITION 2.8 (Elliptic Harnack inequality). For each ρ > 1, there exists
a constant c(ρ) = c(ρ,�0, η0,κ0) > 0 such that, for any u ∈ �, r > 0 and any
nonnegative harmonic function H : B�

ρr(u) →R+, one has

min
v∈Int B�

r (u)
H(v) ≥ c(ρ) max

v∈Int B�
r (u)

H(v).

PROOF. This result appears in [2]. In order to keep the presentation self-
contained, we also give a simple proof based on (S) in the Appendix. �

LEMMA 2.9 (Green’s function estimates). For each ρ > 1, there exist con-
stants c1,2(ρ) = c1,2(ρ,�0, η0,κ0) > 0 such that, for any u ∈ � and r > 0, the
following holds:

GB�
ρr (u)(v;u) ≥ c1(ρ) for all v ∈ Int B�

r (u);
GB�

ρr (u)(v;u) ≤ c2(ρ) for all v ∈ B�
ρr(u) \ Int B�

r (u).

PROOF. See the Appendix. �

LEMMA 2.10 (Crossings of annuli). There exist two constants ρ0 = ρ0(�0,

η0,κ0) > 1 and δ0 = δ0(�0, η0,κ0) > 0 such that the following is fulfilled: for
any u ∈ �, r > 0 and any nearest-neighbor path γ ⊂ � crossing the annulus

A
(
u,ρ−1

0 r, r
) = {

z ∈ C :ρ−1
0 r < |z − u| < r

}
,

the probability of the event that the random walk (2.1) crosses A(u,ρ−1
0 r, r) with-

out hitting the path γ is bounded from above by 1 − δ0.

PROOF. This easily follows from successive applications of (S); see the Ap-
pendix for details. �

LEMMA 2.11 (Weak Beurling-type estimate). Let β0 := − log(1−δ0)
logρ0

. Then, for
any simply connected discrete domain �, an inner vertex u ∈ Int� and a set E ⊂
∂�, the following is fulfilled:

ω�(u;E) ≤
[
ρ0 · dist(u; ∂�)

dist�(u;E)

]β0

and ω�(u;E) ≤
[
ρ0 · diamE

dist�(u;E)

]β0

,

where dist�(u;E) := inf{r :u and E are connected in � ∩ B�
r (u)}. Above we set

diamE := rx if E = {x} consists of a single boundary vertex.

PROOF. This immediately follows from Lemma 2.10; see the Appendix for
details. �
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For u ∈ � and r > 0, we denote by B�
r (u) the r-neighborhood of u in �. More

rigorously, we set Int B�
r (u) to be the connected component of Int� ∩ Int B�

r (u)

containing u if u ∈ Int�, and containing xint if u = x ∈ ∂�. In particular, we set
B�

r (x) = Int B�
r (x) = ∅ if x ∈ ∂� and r ≤ |xint − x|. The next lemma allows us to

control the behavior of positive harmonic functions near a part of ∂� where they
satisfy Dirichlet boundary conditions.

LEMMA 2.12 (Boundary behavior). Let � be a simply connected discrete do-
main, u ∈ Int�, r := dist(u; ∂�) and x ∈ ∂� be the closest boundary vertex to u

(so that r = |u − x|) and Lux denote the path running from u to x constructed
in Remark 2.1. Let a vertex u′ ∈ Lux be such that |u′ − x| ≤ r ′ := ρ−1

0 r and

Luu′
ux ⊂ Int�, where Luu′

ux denotes the portion of Lux from u to u′. Then, for any
nonnegative harmonic function H : B�

r (x) →R+ vanishing on ∂� ∩ ∂B�
r (x), one

has

H
(
v′) ≤ δ−1

0 ρ
2β0
0 · [∣∣v′ − x

∣∣/r
]β0 · max

v∈Luu′
ux

H(v) for all v′ ∈ B�
r ′ (x).

PROOF. This follows from (a version of) Lemma 2.10; see the Appendix for
details. �

The last fact that we use below is the following uniform bound for the Green
function G� in an arbitrary � in terms of Green’s functions in the appropriate
discs.

LEMMA 2.13. Let an integer n0 be chosen so that (1 − δ0)
n0 ≤ 1

3 , � be a

simply connected discrete domain, u ∈ Int�, r := dist(u; ∂�) and R := ρ
2n0
0 r .

Then

GB�
r (u)(v;u) ≤ G�(v;u) ≤ 2GB�

R(u)(v;u) for all v ∈ Int B�
r (u).

PROOF. This also follows from Lemma 2.10; see the Appendix for details.
�

REMARK 2.14. From now on, we think about the constants �0, η0,κ0 used
in assumptions (a)–(c) and all other constants that appeared in this section [like
c0 = c0(�0, η0,κ0) and C0 = C0(�0, η0,κ0) in Properties (S), (T), etc.] as fixed
once forever. Thus, below we say, for example, “with some uniform constants
const1 and const2,” meaning that const1,2 may, in general, depend on �0, η0,κ0,
but are independent of all other parameters involved (like domain shape, location
of boundary points or particular graph structure).
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3. Factorization theorem for the function Z�(a;[bc]�). The main result of
this section is Theorem 3.5. It deals with a simply connected discrete domain �

and three marked boundary points a, b, c ∈ ∂� [no assumptions about actual ge-
ometry of (�;a, b, c) are used] and provides a uniform up-to-constant factoriza-
tion of the three-point function Z�(a; [bc]�) via Z�(a;b), Z�(a; c) and Z�(b; c).
Actually, our proof is based on a factorization of the latter two-point functions via
some inner point u ∈ Int� which is “not too close” to any of the boundary arcs
[ab]�, [bc]� and [ca]�. Thus our strategy to prove Theorem 3.5 can be described
as follows:

• prove that the ratio Z�(a;u)Z�(u;b)/Z�(a;b) is uniformly comparable with
the probability of the event that RW�(a;b) passes “not very far” from u

[namely, at distance less than 1
3 dist(u; ∂�)]; see Proposition 3.1;

• prove that this probability is bounded below if u is “not too close” to any of the
boundary arcs [ab]� and [ba]�; see Lemma 3.2 and Proposition 3.3;

• find an inner vertex u which is “not too close” to any of [ab]�, [bc]� and [ca]�
(see Lemma 3.4) and factorize all Z�’s using this u.

Below we use the following notation. For a discrete domain � and u ∈ Int�, let

d�(u) := dist(u; ∂�) = min
x∈∂�

|u − x|, B�(u) := B�
d�(u)/3(u).(3.1)

Recall that (3.1) means Int B�(u) = {v ∈ � : |v − u| < 1
3 dist(u; ∂�)} (or, more

accurately, a connected component of this set; see Figure 1), and ∂B�(u) ⊂ � is
the set of all vertices neighboring to Int B�(u). We also generalize notation (2.7)
in the following way: for a given subdomain U ⊂ � and a random walk path
γ = (u0 ∼ u1 ∼ · · · ∼ un(γ )), let

TU(γ ) :=
n(γ )∑
s=0

r2
us

1[us ∈ IntU ].

Then, for A,B ⊂ �, we define

Z�[TU ](A;B) := ∑
γ∈S�(A;B)

w(γ )TU(γ ).

Note that
Z�[TU ](A;B)

Z�(A;B)
= E

[
TU

(
RW�(A;B)

)]
is the expected time spent in U by a (properly parameterized) random walk
RW�(A;B).

PROPOSITION 3.1. Let � be a simply connected discrete domain, a, b ∈ ∂�,
and u ∈ Int�. Then the following double-sided estimate is fulfilled:

Z�(u;a)Z�(u;b)

Z�(a;b)
� P

[
RW�(a;b) ∩ Int B�(u) �= ∅

]
,(3.2)
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with some uniform (i.e., independent of �,a, b,u) constants.

PROOF. Recall that both functions Z�(·;a) and Z�(·;b) are discrete harmonic
and positive inside �. Therefore, Harnack’s principle (see Proposition 2.8) gives

Z�(u;a)Z�(u;b) �
∑

v∈Int B�(u) r
2
v Z�(v;a)Z�(v;b)∑

v∈Int B�(u) r
2
v

.(3.3)

Recall that
∑

v∈Int B�(u) r
2
v � (d�(u))2 due to (2.5).

Joining two random walk paths γav (from a to v) and γvb (from v to b), and
taking into account w(γavγvb) = μv · w(γav)w(γvb) � w(γav)w(γvb), it is easy to
see that ∑

v∈Int B�(u)

r2
v Z�(v;a)Z�(v;b) � Z�[TB�(u)](a;b)(3.4)

[indeed, each of the vertices us ∈ RW�(a;b) contributing to TB�(u) can be chosen
as v in order to split RW�(a;b) into two halves γav and γvb].

Further, let w denote the first vertex us ∈ Int B�(u) of RW�(a;b), if such a
vertex exists. Since on the right-hand side of (3.4) we do not count those paths
which do not intersect B�(u), by splitting RW�(a;b) into two halves at w, it can
be rewritten as

Z�[TB�(u)](a;b) � ∑
w∈Int B�(u)

Z�\B�(u)(a;w)Z�[TB�(u)](w;b),(3.5)

where a (generally, doubly connected) discrete domain �′ := � \ B�(u) should be
understood so that Int�′ = Int� \ Int B�(u). It immediately follows from our def-
inition of Z[T] and Harnack’s principle applied to the discrete harmonic function
Z�(·;b) that

Z�[TB�(u)](w;b) � ∑
v∈Int B�(u)

r2
v Z�(w;v)Z�(v;b)

(3.6)
� ∑

v∈Int B�(u)

r2
v Z�(w;v) · Z�(w;b)

(indeed, for each us contributing to TB�(u) = ∑n(γ )
s=0 r2

us
1[us ∈ Int B�(u)], split the

random path RW�(w;b) into two halves γwv, γvb at the point v = us and use
the up-to-constant multiplicativity w(γwvγvb) � w(γwv)w(γvb) once more). More-
over, it is easy to conclude that∑

v∈Int B�(u)

r2
v Z�(w;v) = ∑

v∈Int B�(u)

r2
vG�(v;w) � (

d�(u)
)2(3.7)

for any w ∈ Int B�(u). Indeed, the upper bound follows from the estimates
2
3d�(u) ≤ d�(w) ≤ 4

3d�(u), the inclusion B�(u) ⊂ B�
d�(w)(w), the upper bound

in Lemma 2.13 and the upper bound in (2.8). The lower bound is trivial if rw is
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comparable to d�(u), and is guaranteed by Lemma 2.4 and the lower bounds in
Lemmas 2.9 and 2.13 if rw 
 d�(u). Combining (3.7) with (3.3)–(3.6), one ob-
tains

Z�(u;a)Z�(u;b)

Z�(a;b)
� (

d�(u)
)−2 Z�[TB�(u)](a;b)

Z�(a;b)
(3.8)

�
∑

w∈Int B�(u) Z�\B�(u)(a;w)Z�(w;b)

Z�(a;b)
.

Finally, the numerator can be rewritten as∑
w∈Int B�(u)

Z�\B�(u)(a;w)Z�(w;b) � ∑
γ∈S�(a;b) : γ∩Int B�(u) �=∅

w(γ )

[as above, denote by w the first vertex us ∈ Int B�(u) of γ , if it exists]. Thus (3.8)
is comparable to the probability of the event γ ∩ B�(u) �= ∅. �

Let u ∈ Int� be an inner vertex, x ∈ ∂� be the closest boundary vertex to u

and Lux be the nearest-neighbor path from u to x constructed in Remark 2.1. For
v ∈ Lux , let Lvx

ux denote the portion of Lux from v to x, and let Length(Lvx
ux) be the

Euclidean length of Lvx
ux . It is easy to see that

Length
(
Lvx

ux

) ≤ const ·d�(v) for al v ∈ Lux ∩ Int�.(3.9)

Indeed, let v belong to a face f and [z; z′] := [u;x] ∩ f �= ∅; see Remark 2.1.
Then

Length
(
Lvx

ux

) ≤ const · |z − x| = const · dist(z; ∂�),

dist(z; ∂�) ≤ |z − v| + d�(v) and |z − v| ≤ const · rv ≤ const ·d�(v).

We denote by L�(u) ⊂ Int� the portion of Lux from u to the first hit of ∂�;
see the top-left picture in Figure 2. Below we also use the notation

P
a,b
�

[
L�(u)

] := P
[
RW�(a;b) ∩ L�(u) �= ∅

]
and the similar notation

P
a,b
�

[
B�(u)

] := P
[
RW�(a;b) ∩ Int B�(u) �= ∅

]
for the right-hand side of (3.2).

LEMMA 3.2. Let � be a simply connected discrete domain, u ∈ Int�, x ∈ ∂�

be the closest boundary vertex to u [so that d�(u) = |u − x|] and a, b ∈ ∂� be
such that a, b /∈ B�

d�(u)(x). Then, for a path L�(u) defined above, one has

P
a,b
�

[
L�(u)

] ≤ const ·Pa,b
�

[
B�(u)

]
.
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PROOF. Let a sequence of vertices u = v0, v1, . . . , vn ∈ Int� be defined in-
ductively by the following rule: vk+1 ∈ L�(u) is the first vertex on L�(u) af-
ter vk (when going toward ∂�) which does not belong to Int B�(vk). Thus each
vk+1 ∈ ∂B�(vk) and

L�(u) ⊂
n⋃

k=0

Int B�(vk)

[note that the local finiteness assumption (d) guarantees n < ∞, but we do not have
any quantitative bound for this number]. Further, let u′ := vm be the first of those
vertices such that |vk −x| ≤ ρ−1

0 d�(u) for all k ≥ m, where ρ0 is the constant used
in Lemma 2.12 [we set m := n, if |vn − x| > ρ−1

0 d�(u)]. It immediately follows
from (3.9) that Length(Lvkx

ux ) decays exponentially as k grows. In particular, this
implies a uniform estimate m ≤ const.

Let H = Z�(·;a) or H = Z�(·;b). The Harnack principle (Proposition 2.8)
gives

H(u) = H(v0) � H(v1) � · · · � H(vm).

Moreover, by our assumption a, b /∈ B�
d�(u)(x). Thus Lemma 2.12 yields

H(vk) ≤ const · (|vk − x|/d�(u)
)β0 · H(u), k ≥ m.

Then Proposition 3.1 applied to each of the balls B�(vk) allows us to conclude that

P
a,b
�

[
L�(u)

] ≤
n∑

k=0

P
a,b
�

[
B�(vk)

] �
n∑

k=0

Z�(vk;a)Z�(vk;b)

Z�(a;b)

≤ const · Z�(u;a)Z�(u;b)

Z�(a;b)
·
[
m +

n∑
k=m

( |vk − x|
d�(u)

)2β0
]

(3.10)

≤ const · Z�(u;a)Z�(u;b)

Z�(a;b)
� P

a,b
�

[
B�(u)

]

[recall that the distances |vk − x| ≤ Length(Lvkx
ux ) decay exponentially for k ≥ m,

so the final bound does not depend on n]. �

PROPOSITION 3.3. Let � be a simply connected discrete domain, a, b ∈ ∂�,
u ∈ Int�, and σ > 0 be such that both ω�(u; [ab]�),ω�(u; [ba]�) ≥ σ . Then the
uniform estimate

P
a,b
�

[
B�(u)

] ≥ const(σ )(3.11)

holds true, with some const(σ ) > 0 independent of �,a, b,u.
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FIG. 2. The notation from the proof of Proposition 3.3: a simply connected domain � and its
subdomains �R,r ⊂ �R ⊂ �. The boundary arc [ba]� ⊂ ∂� and a uniformly bounded number of
discrete discs B�(uk) that cover a path L′ running from u to [ba]� in �′ ⊂ �R,r are shown. The
top-left picture: a vertex ul , the closest to ul boundary vertex x, the path L�(ul) ⊂ Lulx running
from ul to ∂� and the sequence of discrete discs B�(vk) with exponentially decaying radii that
cover L�(ul).

PROOF. For simplicity, let us rescale the underlying graph � so that
d�(u) = 1. We begin the proof with the following claim that is a corollary of
the weak Beurling estimates (Lemma 2.11) and our assumption on the harmonic
measures of [ab]� and [ba]�: there exist two constants R = R(σ) > 0 and
r = r(σ ) > 0 such that u remains connected to [ba]� in a “truncated” domain
�R,r defined as

Int�R,r := Int B�
R(u)

∖ ⋃
x∈[ab]�

Int B�
r (x)

(more rigorously, Int�R,r is a connected component of this set containing u; see
Figure 2) and vice versa with [ba]� and [ab]� interchanged. Let us emphasize that
R(σ) and r(σ ) can be chosen uniformly for all �,a, b and u.
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Indeed, the first estimate in Lemma 2.11 implies that one can find a constant
R′ = R′(σ ) > 0 (independently of �,a, b and u) so that

ω�R′
(
u; ∂B�

R′(u) ∩ ∂�R′
) ≤ 1

2σ where �R′ := B�
R′(u)

[note that, by definition, ∂�R′ ⊂ ∂� ∪ ∂B�
R′(u)]. Let a′, b′ ∈ ∂� be chosen so that

[b′a′]� ⊂ [ba]� is the minimal boundary arc of � satisfying[
b′a′]

� ∩ ∂�R′ = [ba]� ∩ ∂�R′ ;
see Figure 2. Then, we set R := const · (R′ + r ′), where r ′ ≤ 1 will be fixed later
and the (uniform) multiplicative constant is chosen according to Remark 2.2 so that
no face of � crosses both boundaries of the annulus A(u,R′ + r ′,R). As above,
denote �R := B�

R(u). It is easy to see that a′, b′ ∈ ∂�R and

ω�R

(
u; [

b′a′]
�R

) ≥ ω�R

(
u; [

b′a′]
� ∩ ∂�R

) ≥ ω�R′
(
u; [ba]� ∩ ∂�R′

)
≥ ω�

(
u; [ba]�) − ω�R′

(
u; ∂B�

R′(u) ∩ ∂�R′
) ≥ 1

2σ.

In particular, u is connected to the boundary arc [b′a′]�R
in �R .

The next step is to remove a thin neighborhood of the complementary arc
[a′b′]�R

from �R so as to keep u connected to [b′a′]�R
in the remaining domain.

Let

Int�′ := Int�R

∖ ⋃
x∈[a′b′]�R

Int B�R

r ′ (x)

(more rigorously, Int�′ is the connected component of this set containing u; see
Figure 2). Assume that [b′a′]�R

∩ ∂�′ = ∅. Then there exist two vertices x1, x2 ∈
[a′b′]�R

such that the set

E := Int B�R

r ′ (x1) ∪ Int B�R

r ′ (x2)

separates u from [b′a′]�R
in �R (here we use the fact that [b′a′]�R

is a bound-
ary arc of a simply connected domain �R and not just a subset of ∂�R ; see also
Figure 2). Then Int B�R

r ′ (x1) and Int B�R

r ′ (x2) have to share a face which implies
diamE ≤ const · r ′. Provided that r ′ = r ′(σ ) > 0 is chosen small enough (indepen-
dently of �,a, b and u), we arrive at the contradiction between the lower bound
ω�R

(u; [b′a′]�R
) ≥ 1

2σ and the second estimate in Lemma 2.11 [recall that we
have rescaled � so that d�(u) = 1].

Further, if we set r := 1
2r ′, then

Int�′ ⊂ Int�R,r .

Since [b′a′]�R
∩ ∂�′ �= ∅ and all faces of � intersecting ∂B�

R(u) are at distance at
least R′+r ′ from u, we conclude that [b′a′]�∩∂�′ �= ∅: indeed, once reaching the
set [b′a′]�R

\ [b′a′]� ⊂ ∂B�
R (this is the upper boundary arc on Figure 2) inside of

�′, one can continue walking along faces touching ∂B�
R and reach the arc [b′a′]�
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staying inside �′. Thus u remains connected to the arc [ba]� ⊃ [b′a′]� in the
truncated domain �R,r ⊃ �′.

Now let L be a discrete path running from u to [ba]� inside �′. We define a
sequence of vertices u = u0, u1, . . . , un ∈ L ∩ Int�′ inductively by the following
rule: uk+1 ∈ Int�′ is the first vertex on L after uk (when going toward [ba]�)
which does not belong to

⋃
s≤k Int B�(us). Let ul be the first of those uk satisfying

d�(ul) < ν−1
0 · r (if such a vertex ul exists, otherwise we set l := n), and let L′

denote the portion of L from u to ul .
It follows from Remark 2.1 that |uk − us | ≥ ν−1

0 · 1
3d�(us) ≥ 1

3ν−2
0 r for all

0 ≤ s < k ≤ l. As all uk lie inside B�
R(u), this implies that l is uniformly bounded.

Applying Harnack’s principle and Proposition 3.1 similarly to (3.10), we arrive at

l∑
k=0

P
a,b
�

[
B�(uk)

] ≤ const ·Pa,b
�

[
B�(u)

]
.

If l = n [which means L = L′ ⊂ ⋃l
k=0 Int B�(uk)], this immediately gives the

estimate P[RW�(a;b) ∩ L �= ∅] ≤ const ·Pa,b
� [B�(u)]. Otherwise, our definition

of �R,r guarantees that if x is the closest boundary vertex to ul , then x ∈ (ba)�
and a, b /∈ B�

d�(ul)
(x). Together with Lemma 3.2, this yields

P
[
RW�(a;b) ∩ [

L′ ∪ L�(ul)
] �= ∅

] ≤
l∑

k=0

P
a,b
�

[
B�(uk)

] + P
a,b
�

[
L�(ul)

]

≤ const ·Pa,b
�

[
B�(u)

]
.

Clearly, one can repeat the same arguments for the other boundary arc [ab]�. We
complete the proof by saying that, due to topological reasons, RW�(a;b) should
cross at least one of those two paths (connecting u to [ba]� and [ab]�, resp.). �

The last ingredient of the proof of Theorem 3.5 is the following simple lemma:

LEMMA 3.4. There exists a constant σ0 > 0 such that, for any simply con-
nected discrete domain � and three boundary points a, b, c ∈ ∂� listed counter-
clockwise, one can find a vertex u ∈ Int� so that all ω�(u; [ab]�), ω�(u; [bc]�),
ω�(u; [ca]�) ≥ σ0.

PROOF. Recall that the “no flat angles” assumption (see Section 2.1) guaran-
tees that all degrees of faces of � are uniformly bounded. Let

Int�σ[ab] := {
u ∈ Int� :ω�

(
u; [ab]�) ≥ σ

}
.

If σ is chosen small enough (independently of �,a, b and c), then �σ[ab] contains
all the vertices of faces touching [ab]� and hence is connected (which means that
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FIG. 3. An example of a simply connected discrete domain � and its polygonal representation
(see Section 6) with four boundary points a, b, c, d listed counterclockwise. Along the boundary arcs
[ab]� and [cd]�, the midpoints xmid of edges (xintx) are marked by small rhombii. In the left part
of �, the notation from the proof of Lemma 3.4 is shown: a subdomain �σ[ab] ⊂ �, the path Lσ[ba] and

the vertices b+, y, a− on this path. In the right part of �, the notation from the proof of Proposition
6.2 is shown: the neighborhoods �e , �f of an edge e and a face f , respectively.

Int�σ[ab] is a connected subgraph of �). Moreover �σ[ab] is always simply con-
nected due to the maximum principle. Let

Lσ[ba] := ∂�σ[ab] \ [ab]� = (ba)�σ[ab] = [
b+a−]

�σ[ab]
,

where b+ ∈ Lσ[ba] denotes the next vertex on ∂�σ[ab] after b, and a− ∈ Lσ[ba] is
the vertex just before a when going along ∂�σ[ab] counterclockwise; see Figure 3.
For y ∈ Lσ[ba], let yint ∈ Int�σ[ab] be the corresponding inner vertex. Then, for all
y ∈ Lσ[ba], one has

ω�

(
yint; [bc]�) + ω�

(
yint; [ca]�) ≥ ω�

(
yint; (ba)�

) ≥ const ·ω�

(
y; (ba)�

)
= const · (1 − ω�

(
y; [ab]�)) ≥ const · (1 − σ)

since, by definition, y /∈ Int�σ[ab] implies ω�(y; [ab]�) < σ . Further, for any two
consecutive vertices y, y′ ∈ Lσ[ba], the corresponding vertices yint and y′

int share a
face of �. This implies

ω�

(
y′

int; [bc]�) � ω�

(
yint; [bc]�)

and ω�

(
y′

int; [ca]�) � ω�

(
yint; [ca]�)

.

On the other hand, ω�(b+
int; [bc]�) ≥ const and ω�(a−

int; [ca]�) ≥ const due to the
same argument (e.g., b+

int shares a face with bint). Therefore, observing Lσ[ba] step
by step, one can find y ∈ Lσ[ba] such that both ω�(yint; [bc]�) and ω�(yint; [ca]�)



650 D. CHELKAK

are bounded below by some constant independent of �,a, b and c. Let u := yint.
To complete the proof, note that ω�(u; [ab]�) ≥ σ as u ∈ Int�σ[ab]. �

THEOREM 3.5. Let � be a simply connected discrete domain and boundary
points a, b, c ∈ ∂� be listed counterclockwise. Then, the following double-sided
estimate is fulfilled:

Z�

(
a; [bc]�) �

[
Z�(a;b)Z�(a; c)

Z�(b; c)
]1/2

,(3.12)

with some uniform (i.e., independent of �,a, b, c) constants.

PROOF. Due to Lemma 3.4, one can find an inner vertex u ∈ Int� such that
all ω�(u; [ab]�),ω�(u; [bc]�),ω�(u; [ca]�) ≥ σ0, where the constant σ0 > 0 is
independent of �,a, b and c. Note that, for any x ∈ [bc]�, one has

ω�

(
u; [ax]�) ≥ ω�

(
u; [ab]�) ≥ σ0 and ω�

(
u; [xa]�) ≥ ω�

(
u; [ca]�) ≥ σ0.

Therefore, Propositions 3.1 and 3.3 imply

Z�

(
a; [bc]�) = ∑

x∈[bc]�
Z�(a;x) � ∑

x∈[bc]�
Z�(u;a)Z�(u;x)

= Z�(u;a)Z�

(
u; [bc]�) � Z�(u;a),

where we have used Z�(u; [bc]�) � ω�(u; [bc]�) � 1. Similarly,
[

Z�(a;b)Z�(a; c)
Z�(b; c)

]1/2

�
[

Z�(u;a)Z�(u;b) · Z�(u;a)Z�(u; c)
Z�(u;b)Z�(u; c)

]1/2

= Z�(u;a).

Thus, both parts of (3.12) are uniformly comparable to Z�(u;a). �

4. Discrete cross-ratios. The main purpose of this section is to obtain a uni-
form double-sided estimate (4.4) relating discrete analogues of two conformal
invariants defined for a simply connected discrete domain � with four marked
boundary points a, b, c, d: discrete cross-ratio Y�(a, b; c, d) (see Definition 4.3)
and the total partition function Z�([ab]�; [cd]�) of random walks connecting two
opposite boundary arcs. Note that the cross-ratio Y� changes to its reciprocal when
replacing boundary arcs [ab]� and [cd]� by “dual” ones ([bc]� and [da]�), while
the corresponding change of Z� is more sophisticated; see (4.4).

Let two points a, b (or, more generally, two disjoint arcs A = [a1a2]�, B =
[b1b2]�) on the boundary of a simply connected discrete domain � be fixed. Then
one can use the ratio Z�(x;a)/Z�(x;b) in order to “track” the position of x with
respect to a, b. Being considered on ∂�, this ratio has a monotonicity property



ROBUST DISCRETE COMPLEX ANALYSIS: A TOOLBOX 651

(see Lemma 4.1 below), which allows one to use it as a “parametrization” of ∂�

between A and B . Namely, for x ∈ ∂�, denote

R�(x;A,B) := Z�(x;A)

Z�(x;B)
.

LEMMA 4.1. Let � be a simply connected discrete domain and A = [a1a2]�,
B = [b1b2]� denote two disjoint boundary arcs of �. Then the ratio R�(·;A,B)

decreases along the boundary arc [a2b1]� and increases along the boundary arc
[b2a1]�.

REMARK 4.2. In particular, if A = {a} and B = {b} are just single boundary
points, then R�(·;a, b) attains its maximal and minimal values on ∂� at a and b,
respectively, being monotone on both boundary arcs [ab]� and [ba]�.

PROOF. Similar to the proof of Remark 2.6(i), for any given t > 0, we define
a discrete harmonic (in �) function

Ht(u) :=
{

Z�(u;A) − tZ�(u;B), u ∈ Int�,
μ−1

u

(
1A(u) − t1B(u)

)
, u ∈ ∂�.

Note that, for any x ∈ ∂�, one has

Z�(x;A) − tZ�(x;B) = Ht(x) + �xxintHt(xint).

For a given boundary point x ∈ (a2b1]�, let tx > 0 be chosen so that
Htx (xint) = 0 [if x ∈ (a2b1)�, this means R�(x;A,B) = tx as Htx (x) = 0, while
R�(b1;A,B) < tb1 ].

The function Htx is discrete harmonic in �, vanishes on ∂�\ (A∪B), is strictly
positive on A and strictly negative on B . Therefore, there exists a nearest-neighbor
path γxA running from xint to A such that Htx ≥ 0 along γxA. Due to the max-
imum principle, this implies Htx (yint) ≥ 0 for all intermediate boundary points
y ∈ [a2x)�. In other words,

Z�(y;A) − txZ�(y;B) = μ−1
a2

1[y = a2] + �yyintHtx (yint) ≥ 0

for all y ∈ [a2x)�.

Thus R�(y;A,B) ≥ tx ≥ R�(x;A,B) for all y ∈ [a2x)�, which means that
R�(·;A,B) decreases along [a2b1]�. The proof for the other boundary arc [b2a1]�
is similar. �

DEFINITION 4.3. Let � be a simply connected discrete domain and boundary
points a, b, c, d ∈ ∂� be listed counterclockwise. We define their discrete cross-
ratios by

X�(a, b; c, d) :=
[

Z�(a; c) · Z�(b;d)

Z�(a;b) · Z�(c;d)

]1/2

;

Y�(a, b; c, d) :=
[

Z�(a;d) · Z�(b; c)
Z�(a;b) · Z�(c;d)

]1/2

.
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REMARK 4.4. Since a, b, c, d are listed counterclockwise, Lemma 4.1 im-
plies

X�(a, b; c, d) =
[

R�(a; c, b)

R�(d; c, b)

]1/2

≤ 1 and

X�(a, b; c, d)

Y�(a, b; c, d)
=

[
R�(a; c, d)

R�(b; c, d)

]1/2

≤ 1.

Note that the cross-ratio X�(a, b; c, d) admits the following probabilistic interpre-
tation: (

X�(a, b; c, d)
)2 = P

[
RW�(a;d) ∩ RW�(b; c) �=∅

]
.

Indeed, any random walks running from a to c and from b to d in � have to inter-
sect for topological reasons. Rearranging the tails of those walks after they meet,
it is easy to see that Z�(a; c) · Z�(b;d) can be rewritten as a partition function of
pairs of random walks running from a to d and from b to c in � that intersect each
other.

We include the exponent 1
2 in Definition 4.3 for two (clearly related) reasons:

first, it simplifies several double-sided estimates given below, and second, it makes
the notation closer to the standard continuous setup. Indeed, the continuous ana-
logue of the partition function Z�(a;b) for the upper half-plane H (up to a multi-
plicative constant) is given by (b − a)−2, so the quantities X� and Y� introduced
above are “discrete versions in �” of the usual cross-ratios

xH(a, b; c, d) := (b − a)(d − c)

(c − a)(d − b)
and yH(a, b; c, d) := (b − a)(d − c)

(d − a)(c − b)
.

In the continuous setup, the following is fulfilled: (xH(a, b; c, d))−1 ≡ 1 +
(yH(a, b; c, d))−1. One clearly cannot hope that the same identity remains valid
on the discrete level for all �’s (even, say, if � is the standard square grid). Never-
theless, below we prove that the similar uniform double-sided estimate holds true
for the discrete cross-ratios, with constants, in general, depending on parameters
fixed in assumptions (a)–(d) but not on the configuration (�;a, b, c, d) or the un-
derlying graph � structure.

PROPOSITION 4.5. Let � be a simply connected discrete domain and
a, b, c, d ∈ ∂� be listed counterclockwise. Then, the following double-sided es-
timate holds true: (

X�(a, b; c, d)
)−1 � 1 + (

Y�(a, b; c, d)
)−1

,(4.1)

with some uniform (i.e., independent of �,a, b, c, d) constants.
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PROOF. We apply factorization (3.12) to both sides of the trivial estimate

Z�

(
a; [bd]�) � Z�

(
a; [bc]�) + Z�

(
a; [cd]�)

,

which is almost an identity besides the term Z�(a; c), counted once on the left-
hand side and twice on the right-hand side. It is easy to check that, dividing by
[Z�(a;b)Z�(a; c)Z�(a;d)]1/2, one obtains the following double-sided estimate:

[
1

Z�(a; c)Z�(b;d)

]1/2

(4.2)

�
[

1

Z�(a;d)Z�(b; c)
]1/2

+
[

1

Z�(a;b)Z�(c;d)

]1/2

,

which is equivalent to (4.1). �

REMARK 4.6. It immediately follows from (4.1) that X�(a, b; c, d) �
Y�(a, b; c, d), if Y� ≤ const (which means that arcs [ab]� and [cd]� are
“not too close” in �). Moreover, the next Proposition shows that, in this case,
Z�([ab]�; [cd]�) � Y�(a, b; c, d) as well, since Z� is always squeezed (up to
multiplicative constants) by X� and Y�.

PROPOSITION 4.7. Let � be a simply connected discrete domain and bound-
ary points a, b, c, d ∈ ∂� be listed counterclockwise. Then the following estimates
are fulfilled:

const ·X�(a, b; c, d) ≤ Z�

([ab]�; [cd]�) ≤ const ·Y�(a, b; c, d),(4.3)

with some uniform (i.e., independent of �,a, b, c, d) constants.

PROOF. Due to Theorem 3.5, one has

Z�

([ab]�; [cd]�) = ∑
x∈[ab]�

Z�

(
x; [cd]�)

� 1

(Z�(c;d))1/2

∑
x∈[ab]�

(
Z�(x; c))1/2(

Z�(x;d)
)1/2

.

It follows from Lemma 4.1 that, for any x ∈ [ab]�,

(
Z�(x; c))1/2(

Z�(x;d)
)1/2 = (Z�(x; c))1/2

(Z�(x;d))1/2 · Z�(x;d)

≥ (Z�(a; c))1/2

(Z�(a;d))1/2 · Z�(x;d).
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Therefore, summing and applying Theorem 3.5 once more, one obtains

Z�

([ab]�; [cd]�) ≥ const · (Z�(a; c))1/2

(Z�(c;d))1/2(Z�(a;d))1/2 · Z�

([ab]�;d)

� (Z�(a; c))1/2(Z�(b;d))1/2

(Z�(c;d))1/2(Z�(a;b))1/2 = X�(a, b; c, d).

On the other hand, Cauchy’s inequality (and Theorem 3.5 again) gives

(
Z�

([ab]�; [cd]�))2 ≤ const · Z�([ab]�; c)Z�([ab]�;d)

Z�(c;d)

� (Z�(a; c)Z�(b; c)Z�(a;d)Z�(b;d))1/2

Z�(c;d)Z�(a;b)

= X�(a, b; c, d)Y�(a, b; c, d) ≤ (
Y�(a, b; c, d)

)2
. �

THEOREM 4.8. Let � be a simply connected discrete domain and boundary
points a, b, c, d ∈ ∂� be listed counterclockwise. Then the following double-sided
estimate holds true:

Z�

([ab]�; [cd]�) � log
(
1 + Y�(a, b; c, d)

)
,(4.4)

with some uniform (i.e., independent of �,a, b, c, d) constants.

PROOF. Denote Y� := Y�(a, b; c, d), X� := X�(a, b; c, d), and let a con-
stant M be chosen big enough [independently of (�;a, b, c, d)]. If Y� ≤ M ,
Propositions 4.5, 4.7 imply

Z�

([ab]; [cd]) ≥ const ·X� � (1 + Y�)−1Y� ≥ (1 + M)−1 · log(1 + Y�),
(4.5)

Z�

([ab]; [cd]) ≤ const ·Y� ≤ const ·M[
log(1 + M)

]−1 · log(1 + Y�)

(with constants independent of M). Thus, without loss of generality, we can as-
sume that Y� ≥ M (i.e., [ab]� and [cd]� are “very close” to each other in �).
Let

R�(x) := R�(x; c, d) = Z�(x; c)
Z�(x;d)

, x ∈ [ab]�.

Due to Lemma 4.1, R� increases on [ab]�. Moreover, it follows from Proposi-
tion 4.5 [or directly from (4.2)] that

[
R�(b)

R�(a)

]1/2

=
[

Z�(b; c)Z�(a;d)

Z�(b;d)Z�(a; c)
]1/2

� 1 +
[

Z�(b; c)Z�(a;d)

Z�(a;b)Z�(c;d)

]1/2

= 1 + Y� � Y�.



ROBUST DISCRETE COMPLEX ANALYSIS: A TOOLBOX 655

As any two consecutive boundary vertices x, x′ ∈ [ab]� belong to the same face
of �, one has Z�(x; c) � Z�(x′; c), Z�(x;d) � Z�(x′;d) and

1 ≤ R�(x′)
R�(x)

≤ const.

Therefore, provided that Y� ≥ M is big enough, one can find a number n � log Y�

and a sequence of boundary points a = a0, a1, . . . , an = b such that

4 ≤ R�(ak+1)

R�(ak)
≤ const

for all k = 0, . . . , n − 1. This can be easily rewritten as

const ≤
[

R�(ak)

R�(ak+1)

]1/2

= X�(ak, ak+1; c, d) ≤ 1

2
,

or, due to Proposition 4.5, as Y�(ak, ak+1; c, d) � 1. Hence if the constant M was
chosen big enough, estimate (4.5) implies

Z�

([akak+1]�; [cd]�) � 1

for all k = 0, . . . , n − 1. This easily gives

Z�

([ab]�; [cd]�) �
n−1∑
k=0

Z�

([akak+1]�; [cd]�) � n � log Y�.(4.6)

Combining estimate (4.5) with Y� ≤ M and (4.6) with Y� ≥ M , one arrives
at (4.4). �

5. Surgery technique. The main purpose of this section is to illustrate how
the tools developed above can be used to construct cross-cuts of a simply connected
discrete domain � having some nice “separation” properties, without any refer-
ence to the actual geometry of �. The main result is Theorem 5.1 which claims
the existence of these “separators.” In Proposition 5.2, we also give some simple
monotonicity properties of such cross-cuts.

More precisely, let A = [a1a2]� and B = [b1b2]� be two disjoint boundary arcs
of a simply connected �. We are interested in the following question: is it possible
to cut � along some cross-cut L into two simply connected parts �A,�B , one
containing A and the other containing B , so that

Z�(A;B) � Z�A
(A;L)Z�B

(L;B)?(5.1)

Moreover, we are interested not only in a single cross-cut L, but rather in a family
Lk = LB

A[k] such that, in addition to factorization (5.1), one has

Z�A
(A;Lk)/Z�B

(Lk;B) � k.(5.2)

Note that both Z�A
(A;Lk),Z�B

(Lk;B) ≥ Z�(A;B). Thus (5.1) certainly fails
if Z�(A;B) � 1. For a similar reason, one cannot hope for (5.2) if k 
 Z�(A;B)
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or k � (Z�(A;B))−1. However, being motivated by the continuous setup, one
certainly hopes for the positive answer in all other situations, and indeed, Theo-
rem 5.1 given below claims the existence of a “separator” LB

A[k] and provides a
natural construction of this slit for any given �,A,B and k.

Namely, let discrete domains �B
A[k] and �A

B(k−1) be defined by

Int�B
A[k] :=

{
u ∈ Int� :

Z�(u;A)

Z�(u;B)
≥ k

}
,

Int�A
B

(
k−1) :=

{
u ∈ Int� :

Z�(u;B)

Z�(u;A)
> k−1

}

(we use square and round brackets to abbreviate ≥ and > inequalities, resp.). Be-
low we always work with k’s which are not extremely big or extremely small,
so that Int�B

A[k] contains all vertices of faces touching A, while Int�A
B(k−1)

contains all vertices near B . Then both �B
A[k] and �A

B(k−1) are connected
and simply connected (due to the maximum principle applied to the function
Z�(·;A) − kZ�(·;B)). Further, we denote the set of edges

LB
A[k] = LA

B

(
k−1) := {

(uAuB) ∈ E�
int :uA ∈ Int�B

A[k], uB ∈ Int�A
B

(
k−1)};

see Figure 4(A). According to our conventions concerning the boundary of a dis-
crete domain, this set can be interpreted as a part of ∂�B

A[k], as well as a part of
∂�A

B(k−1).

THEOREM 5.1. Let � be a simply connected discrete domain, A,B ⊂ ∂�

be two disjoint boundary arcs, Z := Z�(A;B) and k > 0 be chosen so that both
�A := �B

A[k] and �B := �A
B(k−1) are connected (i.e., �A contains all inner ver-

tices around A while �B contains all inner vertices around B). Then:

(i) for any fixed (big) constant K ≥ 1, the following is fulfilled: if Z ≤ K and
K−1 ≤ k ≤ K , then the cross-cut Lk := LB

A[k] satisfies conditions (5.1), (5.2), with
constants depending on K but independent of �,A,B, k;

(ii) there exists a (small) constant κ0 > 0 such that the following is fulfilled: if
Z ≤ κ0 and κ−1

0 Z ≤ k ≤ κ0Z−1, then the cross-cut Lk satisfies conditions (5.1),
(5.2) with some uniform constants. Moreover, in this case, both �A and �B are
always connected.

PROOF. Since Z�(uA; ·) � Z�(uB; ·), it is clear that

Z�(uA;A)

Z�(uA;B)
� Z�(uB;A)

Z�(uB;B)
� k for all u = (uAuB) ∈ Lk.(5.3)

Let ∂�A ∩ ∂� = [yAxA]� and ∂�B ∩ ∂� = [xByB]� [see Figure 4(A)], and let

ZA := Z�

(
A; [xByB]�)

, ZB := Z�

(
B; [yAxA]�)

,(5.4)
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FIG. 4. (A) A simply connected discrete domain split into two parts, �B
A[k] and �A

B(k−1),
according to the ratio of harmonic measures of two marked boundary arcs, A = [a1a2]� and
B = [b1b2]�. All edges (uAuB) that cross the slit LB

A[k] are marked, as well as four boundary

edges (xint
A xA), (xint

B xB), (yint
B yB), (yint

A yA) ∈ ∂� neighboring LB
A[k]. (B) Notation used in Propo-

sition 5.2 and schematic drawing of the monotonicity property �C
A[x] ⊂ �B∪C

A [x] ⊂ �B
A[x] for

x ∈ (a2b1).

where these partition functions are considered in the original domain �. Then

Z�A
(A;Lk) = ∑

u∈Lk

Z�A
(A;uB) � ∑

u∈Lk

Z�A
(A;uB)Z�

(
uB; ∂�

)

= ∑
u∈Lk

Z�A
(A;uB) · (

Z�

(
uB; [xByB]�) + Z�

(
uB; [yAxA]�))

since Z�(uB; ∂�) � 1 for any uB ∈ Int�. Note that the sum of first terms can be
rewritten as∑

u∈Lk

Z�A
(A;uB)Z�

(
uB; [xByB]�) � Z�

(
A; [xByB]�) = ZA.

Indeed, each random walk path running from A to [xByB]� inside � should pass
through Lk for topological reasons, so denoting by u the first crossing, one obtains
the result. Similarly, the second sum is comparable to the total partition functions
of those random walks, which start from A, cross Lk (possibly many times) and
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finish back at [yAxA]�. Denoting by v the last crossing of Lk and using (5.3), one
obtains∑

u∈Lk

Z�A
(A;uB)Z�

(
uB; [yAxA]�) � ∑

v∈Lk

Z�(A;vB)Z�A

(
vB; [yAxA]�)

� k
∑
v∈Lk

Z�(B;vB)Z�A

(
vB; [yAxA]�)

� kZB,

since each random walk path running from B to [yAxA]� inside � should cross Lk .
Thus we arrive at the double-sided estimates

Z�A
(A;Lk) � ZA + kZB,

and similarly, Z�B
(Lk;B) � k−1ZA + ZB . Therefore, it is sufficient to prove that

ZA/ZB � k and ZAZB � Z.(5.5)

It directly follows from (5.3) that

Z�(x;A)

Z�(x;B)
� k � Z�(y;A)

Z�(y;B)
(5.6)

(here and below we omit subscripts of x and y, all the claims hold true for both
x = xA, xB and, similarly, y = yA, yB , since the values of Z�(xA; ·) and Z�(xB; ·)
are uniformly comparable). Let A = [a1a2]�, B = [b1b2]� and denote

YA := Y�(a1, a2;x, y), YB := Y�(b1, b2;y, x),

XA := X�(a1, a2;x, y), XB := X�(b1, b2;y, x),

where all discrete cross-ratios are considered in the original domain �. Using
Theorem 3.5 and (5.6), it is easy to check that

[
YAXA

YBXB

]1/2

�
[

Z�(x;A)Z�(y;A)

Z�(x;B)Z�(y;B)

]1/2

� k.(5.7)

The rest of the proof is divided into three steps:

• First, we prove (5.5) assuming that both ZA,ZB are bounded above by some
absolute constant (roughly speaking, this means that x and y are “not too close”
to both A,B). In some sense this is the most conceptual step, based on discrete
cross-ratios techniques from Section 4.

• Second, we use discrete cross-ratios once again to show that, indeed, one has
ZA,ZB ≤ const if k � 1 [in particular, this implies (i)].

• Finally, we analyze general case in (ii) by starting with k = 1 and then increasing
it until ZA becomes � 1, which, as we show, cannot happen before k � Z−1.
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Step (1) The proof of (5.5) under assumption ZA,ZB ≤ const. In this case The-
orem 4.8 guarantees that YA,YB ≤ const as well, and Remark 4.6 says that

ZA � [YAXA]1/2 and ZB � [YBXB]1/2.

Therefore, (5.7) immediately gives the first part of (5.5). Moreover, one has XA �
YA and XB � YB , which is equivalent to saying that

Z�(x;a1)

Z�(y;a1)
� Z�(x;a2)

Z�(y;a2)
and

Z�(x;b1)

Z�(y;b1)
� Z�(x;b2)

Z�(y;b2)
.(5.8)

In addition, Theorem 3.5 applied to (5.6) gives

Z�(x;a1)Z�(x;a2)

Z�(y;a1)Z�(y;a2)
� Z�(x;b1)Z�(x;b2)

Z�(y;b1)Z�(y;b2)
,

thus upgrading (5.8) to

Z�(x;a1)

Z�(y;a1)
� Z�(x;a2)

Z�(y;a2)
� Z�(x;b1)

Z�(y;b1)
� Z�(x;b2)

Z�(y;b2)
.(5.9)

As Z ≤ const, we also have Z � X�(a1, a2;b1, b2). Rearranging factors, one
obtains

ZAZB

Z
� [YAXAYBXB]1/2

X�(a1, a2;b1, b2)
� [R1R2]1/4,

where

Rj := Z�(aj ;x)Z�(x;bj )Z�(bj ;y)Z�(y;aj )

(Z�(aj ;bj )Z�(x;y))2 .

Finally, it follows from (5.9) that Y�(aj , x;bj , y) � 1. Due to Proposition 4.5, this
also implies X�(aj , x;bj , y) � 1 and, similarly, X�(x, bj ;y, aj ) � 1. Therefore,

Rj = [
X�(aj , x;bj , y)X�(x, bj ;y, aj )

]−1/2 � 1,

that is, ZAZB � Z [which is the second part of (5.5)], and we are done.
Step 2. Proof of ZA,ZB ≤ const, if k � 1. In this case, Proposition 4.5 and (5.7)

give

Y2
A(1 + YA)−1 � YAXA � YBXB � Y2

B(1 + YB)−1.

Thus if, say, YA ≤ const, then YB ≤ const as well, and ZA,ZB ≤ const due to
Theorem 4.8. Hence, without loss of generality, we may assume that both YA,YB

are bounded away from zero, which is equivalent to saying that both XA,XB � 1,
that is,

Z�(x;a1)Z�(y;a2) � Z�(a1;a2)Z�(x;y),

Z�(x;b2)Z�(y;b1) � Z�(b1;b2)Z�(x;y).
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Using Theorem 3.5 and (5.6), we obtain

Z�(x;a2)

Z�(y;a2)
� Z�(x;a2)Z�(x;a1)

Z�(a1;a2)Z�(x;y)
� (Z�(x;A))2

Z�(x;y)

� (Z�(x;B))2

Z�(x;y)
� Z�(x;b1)Z�(x;b2)

Z�(b1;b2)Z�(x;y)
� Z�(x;b1)

Z�(y;b1)
,

which means Y�(a2, x;b1, y) � 1. Then, Remark 4.6 applied to the quadrilat-
eral (�;a2, x;b1, y) gives 1 � X�(a2, x;b1, y) � Y�(a2, x;b1, y) which can be
rewritten as

Z�(x;a2)Z�(y;b1) � Z�(x;y)Z�(a2;b1) � Z�(x;b1)Z�(y;a2).

Similarly, one has

Z�(x;a1)Z�(y;b2) � Z�(x;y)Z�(a1;b2) � Z�(x;b2)Z�(y;a1).

Then, using XA,XB � 1 and rearranging factors, one arrives at

YAYB � YAXAYBXB � Z�(a1;b2)Z�(a2;b1)

Z�(a1;a2)Z�(b2;b1)
= Y�(a1, a2;b1, b2).

As Z is bounded above, Theorem 4.8 ensures that Y�(a1, a2;b1, b2) ≤ const. Tak-
ing into account YA,YB ≥ const, we get YA,YB � 1, and so ZA,ZB � 1.

Step 3. Proof of the general case in (ii). Let ZA(k) and ZB(k) be defined by (5.4)
for a given k. Note that ZA(k), ZB(k) are piecewise-constant left-continuous func-
tions of k which jump no more than by some constant factor �−2

0 > 1 [see as-
sumption (a) in Section 2.1], when domain �B

A[k] [and, simultaneously, �A
B(k−1)]

changes.
We will fix κ0 at the end of the proof, but in any case it will be less than 1.

Since Z ≤ 1, step 2 ensures that ZA(1),ZB(1) ≤ ζ0 for some absolute constant ζ0
[actually, ZA(1) and ZA(1) are much smaller, being of order Z1/2]. Now let us
start to increase the parameter k. Since �B

A[k′] ⊂ �B
A[k] for k′ > k, the partition

function ZA(k) increases, while ZB(k) decreases. Let

kmax := max
{
k ≥ 1 : ZA(k) ≤ ζ0

}
.

Due to step 1, there exists a positive constant c0 ≤ 1 such that the following is
fulfilled:

c0k ≤ ZA(k)/ZB(k) ≤ c−1
0 k and c0Z ≤ ZA(k)ZB(k) ≤ c−1

0 Z

for any k ∈ [1, kmax]. Moreover, one has ZA(kmax) ≥ � 2
0 ζ0, since the function

ZA(·) cannot jump too much at the point kmax. Therefore, we obtain the estimate

kmax ≥ c0 · ZA(kmax)

ZB(kmax)
≥ c2

0 · (ZA(kmax))
2

Z
≥ � 4

0 ζ 2
0 c2

0 · Z−1.
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Thus, if κ0 ≤ min{1,� 4
0 ζ 2

0 c2
0}, then (ii) holds true for all k ∈ [1;κ0Z−1] (and sim-

ilar arguments can be applied for k ∈ [κ−1
0 Z;1]).

Finally, for all vertices near A, one has

Z�(·;A) ≥ const and Z�(·;B) ≤ const ·Z.

Thus, choosing κ0 small enough (independently of �,A,B), one ensures that
�B

A[κ0Z−1] is connected (and so �B
A[k] is connected for all k ≥ κ0Z−1). �

Dealing with more involved configurations (e.g., simply connected discrete do-
mains with many marked boundary points), in addition to Theorem 5.1, it is useful
to have some information concerning mutual “topological” properties of cross-cuts
separating A and B , corresponding to different pairs A,B . In order to shorten the
notation below, for x ∈ ∂� \ (A ∪ B), we set

�B
A[x] := �B

A

[
R�(x;A,B)

] =
{
u ∈ � :

Z�(u;A)

Z�(u;B)
≥ Z�(x;A)

Z�(x;B)

}
.

Roughly speaking, �B
A[x] is the set of those u ∈ � which are “not further

in �” from A compared to B than a reference point x. Note that since the
function R�(·;A,B) is monotone on the boundary arcs (a2b1)� and (b2a1)�
(see Lemma 4.1), �B

A[x] also behaves in a monotone way when x runs along
∂� \ (A ∪ B).

PROPOSITION 5.2. Let � be a simply connected discrete domain, disjoint
boundary arcs A = [a1a2]�, B = [b1b2]� and C = [c1c2]� be listed counter-
clockwise, and B ∪ C = [b1c2]� [i.e., b2 and c1 are consecutive points of ∂�;
see Figure 4(B)]. Then

�C
A[x] ⊂ �B∪C

A [x] ⊂ �B
A[x] for any x ∈ (a2b1)�,

�B
A[y] ⊂ �B∪C

A [y] ⊂ �C
A[y] for any y ∈ (b2a1)�.

PROOF. Let x ∈ (a2b1)� (the second case is similar) and u ∈ Int�C
A[x] which,

by definition, means

Z�(u;A) · Z�(x;C) ≥ Z�(x;A) · Z�(u;C).(5.10)

We need to check that u ∈ Int�B∪C
A [x] which is equivalent to

Z�(u;A) · Z�(x;B ∪ C) ≥ Z�(x;A) · Z�(u;B ∪ C).(5.11)

Since Z�(·;B ∪ C) = Z�(·;B) + Z�(·;C), it is sufficient to prove that, for any
b ∈ B ,

Z�(x;b)

Z�(u;b)
= Z�(x;bint)

Z�(u;bint)
≥ Z�(x;A)

Z�(u;A)
.
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For v ∈ �, denote

H(v) :=
{

Z�(u;A) · Z�(x;v) − Z�(x;A) · Z�(u;v), v ∈ Int�,
μ−1

x 1[v = x], v ∈ ∂�.

Suppose that, on the contrary, H(bint) < 0 for some b ∈ B . Since the function H is
harmonic everywhere in � except u (where it is subharmonic), and vanishes on ∂�

everywhere except x (where it is strictly positive), there exists a nearest-neighbor
path γbu running from bint to u such that H < 0 along γbu. On the other hand,
H(cint) ≥ 0 for at least one c ∈ C [otherwise, summation along the arc C gives a
contradiction with (5.10)]. Hence, there exists a nearest-neighbor path γcx running
from cint to x such that H ≥ 0 along γcx . Since these two paths cannot cross each
other, and � is simply connected, γcx should separate u and A. Then the maximum
principle implies H(aint) > 0 for any a ∈ A. Summing along the arc A, one arrives
at the inequality

Z�(u;A) · Z�(x;A) > Z�(x;A) · Z�(u;A),(5.12)

which is a contradiction. Thus �C
A[x] ⊂ �B∪C

A [x].
Now let u ∈ �B∪C

A [x]. Arguing as above, in order to deduce u ∈ �B
A[x]

from (5.11), it is sufficient to prove that, for all c ∈ C,

Z�(x; c)
Z�(u; c) = Z�(x; cint)

Z�(u; cint)
≤ Z�(x;A)

Z�(u;A)
.

Suppose, on the contrary, that H(cint) > 0 for some c ∈ C. Then there exists a path
γcx running from cint to x such that H > 0 along γcx . Now there are two cases.
If γcx separates u and A, then the maximum principle implies H(aint) > 0 for all
a ∈ A, which leads to the same contradiction (5.12). But if γcx does not separate
u and A, then it separates u and B . Therefore, H(bint) > 0 for all b ∈ B , which
directly gives u ∈ �B

A[x] by summation along B . �

6. Extremal lengths. In this section we recall the notion of a discrete ex-
tremal length L�([ab]�; [cd]�) between two opposite boundary arcs of a discrete
simply connected domain � (which is nothing but the resistance of the corre-
sponding electrical network), first discussed by Duffin in [7]. Note that L� can
be defined in two equivalent ways: (a) via some extremal problem (see Defini-
tion 6.1) and (b) via solution to a Dirichlet–Neumann boundary value problem;
see Proposition 6.4 and Remark 6.5. The most important feature of (a) is that it
allows one to estimate L� “in geometric terms.” In particular, we show that L� is
uniformly comparable to its continuous counterpart, extremal length of the corre-
sponding polygonal quadrilateral; see Proposition 6.2 and Corollary 6.3 for details.
At the same time, approach (b) allows us to relate L� to the random walk parti-
tion function Z� discussed above; see Proposition 6.6. Note that this connection
is of crucial importance for the next section, which starts with the complete set of
uniform double-sided estimates relating Y�,Z� and L�; see Theorem 7.1.
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Let � be a discrete domain and E� = E�
int ∪ E�

bd be the set of edges of �. For
a given function (“discrete metric”) g :E� → [0;+∞), we define the “g-area” of
� by

Ag(�) := ∑
e∈E�

weg
2
e ,

where we denote weights of edges of �; see Section 2.1. Further, for a given subset
γ ⊂ E� (e.g., a nearest-neighbor path running in �), we define its “g-length” by

Lg(γ ) := ∑
e∈γ

ge.

Finally, for a family E of lattice paths in �, we set Lg(E) := infγ∈E Lg(γ ).

DEFINITION 6.1. The discrete extremal length of the family E is given by

L[E] := sup
g : E�→[0;+∞)

[Lg(E)]2

Ag(�)
,(6.1)

where the supremum is taken over all g’s such that 0 < Ag(�) < +∞. In par-
ticular, if � is simply connected, a, b, c, d ∈ ∂� are listed counterclockwise, and
b �= c, d �= a, then we define L�([ab]�; [cd]�) as the extremal length of the family
(�; [ab]� ↔ [cd]�) of all lattice paths connecting the boundary arcs [ab]� and
[cd]� inside �.

Note that the discrete extremal metric gmax [that provides a maximal value in
the right-hand side of (6.1)] always exists and is unique up to a multiplicative con-
stant. Indeed, by homogeneity, it is enough to consider only those g that satisfy the
additional assumption Ag(�) = 1 and the set of all such discrete metrics is com-
pact in the natural topology (as E� is finite). Moreover, if g,g′ are two extremal
metrics such that Ag(�) = Ag′(�) = 1, then the metric g′′ := 1

2(g + g′) satisfies
Lg′′(E) ≥ Lg(E) = Lg′(E) and we have Ag′′(�) < 1 unless g = g′. Thus if g �= g′,
then g′′ provides a larger value in (6.1).

Definition 6.1 easily allows one to estimate L�([ab]�; [cd]�) from below, since
for this purpose it is sufficient to take any “discrete metric” g in � and estimate
Ag(�) and Lg(�; [ab]� ↔ [cd]�) for this particular g. Note that the most natural
way to give an upper bound is to use (some form of) the duality between the ex-
tremal lengths L�([ab]�; [cd]�) and L�([bc]�; [da]�); see Corollary 6.3 below.

For a (simply connected) discrete domain � ⊂ �, we denote its polygonal
representation as the open (simply connected) set �C ⊂ C bounded by the poly-
line x0

midx
1
mid · · ·xn

midx
0
mid passing through all middle points xk

mid := 1
2(xk + xk

int) of
boundary edges (xk

intx
k) ∈ ∂� in their natural order (counterclockwise with respect

to �); see Figure 3. For a, b ∈ ∂�, a �= b, we denote by [ab]C� ⊂ ∂�C the part of
this polyline from amid to bmid, viewed as a boundary arc of �C. In case a = b,
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we slightly modify this definition, setting, say, [aa]C� := [1
2(a−

mid + amid);amid] ∪
[amid; 1

2(a+
mid + amid)], where a∓ denote the boundary points of � just before and

next to a.
Let LC

� := LC
�([ab]C�; [cd]C�) denote the classical extremal distance between the

opposite arcs of a topological quadrilateral (�C;amid, bmid, cmid, dmid) in the com-
plex plane; for example, see [1], Chapter 4, or [9], Chapter IV. Note that our Defi-
nition 6.1 replicates the classical one, which says

LC
�

([ab]C�; [cd]C�
) = sup

g:�C→[0;+∞)

[infγ :[ab]C�↔[cd]C�
∫
γ g ds]2∫∫

� g2 dx dy
,(6.2)

where the supremum is taken over all g such that 0 <
∫∫

� g2 dx dy < +∞, and the
infimum is over all curves connecting [ab]C� and [cd]C� inside �C; see [1, 9]. It is
well known that the extremal metric gmax [providing a maximal value in the right-
hand side of (6.2)] exists, is unique up to a multiplicative constant and is given by
gmax(z) ≡ |φ′(z)| where φ conformally maps �C onto the rectangle

φ :�C → {
z : 0 < Re z < 1,0 < Imx < L−1

cont
}
,

(6.3)
a �→ iL−1

cont, b �→ 0, c �→ 1, d �→ 1 + iL−1
cont.

PROPOSITION 6.2. Let � be a simply connected discrete domain and
a, b, c, d ∈ ∂�, b �= c, d �= a, be listed in the counterclockwise order. Then

L�

([ab]�; [cd]�) � LC
�

([ab]C�; [cd]C�
)

(6.4)

with some uniform (i.e., independent of �,a, b, c, d) constants.

PROOF. Let Ldisc := L�([ab]�; [cd]�) and Lcont := LC
�([ab]C�; [cd]C�). We

prove two one-sided estimates separately, taking a solution to either discrete (6.1)
or continuous (6.2) extremal problem, and constructing some related metric for
the other one, thus obtaining a lower bound for the other (continuous or discrete)
extremal length.

(i) Lcont ≥ const ·Ldisc. Let gmax
e , e ∈ E�, be the extremal metric in (6.1). For

a face f of � (considered as a convex polygon in C), let �f ⊂ � be defined by
saying that Int�f consists of all vertices incident to f , and �C

f be the polygonal

representation of �f . Further, for an edge e ∈ E� separating two faces f and f ′,
let Int�e := Int�f ∪ Int�f ′ and �C

e be the polygonal representation of �e; see
Figure 3. We set

g(z) := ∑
e∈E�

gmax
e r−1

e 1�C
e
(z), z ∈ �C,
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where re denotes the length of e. Since each point in �C belongs to a uniformly
bounded number of edge neighborhoods �C

e (recall that degrees of faces and ver-
tices of � are uniformly bounded), one has∫ ∫

�
g2 dx dy � ∑

e∈E�

(
gmax

e

)2
r−2
e Area

(
�C

e ∩ �C
) � ∑

e∈E�

we

(
gmax

e

)2
,(6.5)

as r−2
e Area(�C

e ∩ �C) � 1 � we; see our assumptions on � listed in Section 2.1.
Now let γ be any continuous curve crossing �C from [ab]C� to [cd]C�, Fγ be

the set of all (closed) faces touched by γ , and Eγ ⊂ E� be the set of all edges of
� incident to those faces. It is clear that Eγ contains a discrete nearest-neighbor
path running from [ab]� to [cd]�. Thus it is sufficient to estimate

∫
γ g ds (from

below) via
∑

e∈Eγ gmax
e . Note that, for any f ∈ Fγ ,

γ should cross the annulus type polygon �C
f \ f at least once.

Let γf denote this crossing (there is one exceptional situation: if, say, b and c are
two consecutive boundary points, and f is a boundary face between them, then γ

may not cross the annulus �C
f \ f , so we denote by γf the corresponding crossing

of �C
f itself). As degrees of vertices and faces of � are uniformly bounded, each

piece of γ belongs to a bounded number of γf . Since Length(γf ) ≥ const · re for
any e ∼ f (all those re are comparable to each other due to our assumptions), we
arrive at∫

γ
g ds ≥ const · ∑

f ∈Fγ

∫
γf

g ds

≥ const · ∑
e∼f ∈Fγ

Length(γf )gmax
e r−1

e ≥ const · ∑
e∈Eγ

gmax
e .

Together with (6.5), this allows us to conclude that

Lcont ≥ [infγ
∫
γ g ds]2∫∫

� g2 dx dy
≥ const · [infγ Lgmax(Eγ )]2

Agmax(�)
≥ const ·Ldisc.

(ii) Ldisc ≥ const ·Lcont. Let gmax :�C → R
+ be the extremal metric in (6.2).

Recall that gmax(z) ≡ |φ′(z)|, where the conformal mapping φ is given by (6.3).
We set

ge :=
∫
�C∩e

gmax ds, e ∈ E�.

Since we have
∑

e∈γ ge = ∫
γ gmax ds for each nearest-neighbor path γ in �, it is

sufficient to estimate
∑

e∈�e
weg

2
e (from above) via

∫∫
(gmax)2 dx dy.

Let ze denote the mid-point of an inner edge e. As φ is a univalent holomorphic
function (in �C

e ∩ �C), all values |φ′(z)| for z ∈ e are uniformly comparable to
each other (and comparable to all other values |φ′(z)| for z near ze); for example,
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see [1], Chapter 5, Theorem 5-3, or [9], Chapter 1, Theorem 4.5. In particular, this
implies

g2
e � r2

e

∣∣φ′(ze)
∣∣2 ≤ const ·

∫ ∫
�C

e ∩�C

∣∣φ′∣∣2 dx dy.

It is easy to see that the same holds true for boundary edges: if �C has an inner
angle θx ∈ (η0;2π ] at the boundary point xmid ∈ ∂�, then φ behaves like (z −
xmid)

π/θx near x [or (z−xmid)
π/2θx , if x is one of the corners a, b, c, d]. Hence |φ′|

blows up not faster than |z−xmid|−1/2 (or |z−xmid|−3/4, resp.) when z approaches
xmid, which means ge � re|φ′(xint)|.

As each point in �C belongs to a uniformly bounded number of �C
e , we obtain∑

e∈E�

weg
2
e ≤ const ·

∫ ∫
�C

∣∣φ′∣∣2 dx dy.

Therefore,

Ldisc ≥ [infγ
∑

e∈γ ge]2∑
e∈E� weg2

e

≥ const · [infγ
∫
γ gmax ds]2∫∫

�C(gmax)2 dx dy
≥ const ·Lcont. �

COROLLARY 6.3. Let � be a simply connected discrete domain and four dis-
tinct boundary points a, b, c, d ∈ ∂� be listed counterclockwise. Then

L�

([ab]�; [cd]�) · L�

([bc]�; [da]�) � 1(6.6)

with some uniform (i.e., independent of �,a, b, c, d) constants.

PROOF. The proof directly follows from (6.4) applied to both factors and the
exact duality

LC
�

([ab]C�; [cd]C�
) · LC

�

([bc]C�; [da]C�
) = 1

of continuous extremal lengths. �

We now move on to the second approach, the notion of extremal length via
solution to the following Dirichlet–Neumann boundary value problem [which cor-
responds to the real part Reφ of the uniformization map (6.3)].

Let � be simply connected and a, b, c, d ∈ ∂�, b �= c, d �= a, be listed counter-
clockwise. Denote by V = V(�;[ab]�,[cd]�) :� → [0;1] the unique discrete har-
monic in � function (electric potential) such that V ≡ 0 on [ab]�, V ≡ 1 on
[cd]�, and V satisfies Neumann boundary conditions [i.e., V (xint) = V (x)] for
x ∈ ∂� \ ([ab]� ∪ [cd]�). We also set

I (V ) := ∑
x∈[ab]�

wxxintV (xint) = ∑
x∈[cd]�

wxxint

(
1 − V (xint)

)

[note that
∑

x∈∂� wxxint(V (x) − V (xint)) = ∑
u∈Int� μu[�V ](u) = 0].
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The next proposition rephrases L�([ab]�; [cd]�) via I (V ) (which is nothing
but the electric current in the corresponding network). Note that contrary to the
classical setup, this identity does not allow to replace double-sided estimate (6.6)
by an equality. Indeed, mimicking the continuous case, one can pass from V to its
harmonic conjugate function V ∗ that solves the similar boundary value problem
for dual arcs, but this V ∗ is defined on a dual graph �∗, leading to the extremal
length of some other discrete quadrilateral (drawn on �∗) rather than � ⊂ � itself;
see also Remark 6.5.

PROPOSITION 6.4. For any simply connected discrete domain � and any
a, b, c, d ∈ ∂�, b �= c, d �= a, listed counterclockwise, the following is fulfilled:

L�

([ab]�; [cd]�) = [
I (V(�;[ab]�,[cd]�))

]−1
.(6.7)

PROOF. See [7]. The core idea is to construct the function V explicitly in
terms of the extremal discrete metric gmax of the family (�; [ab]� ↔ [cd]�).
Namely, let (�;u ↔ [ab]�) denote the family of all discrete paths running from
u ∈ � to the boundary arc [ab]� inside �, and

V (u) := Lgmax
(
�;u ↔ [ab]�)

.

Then V is constant on [cd]� and satisfies Neumann boundary conditions on both
(bc)� and (da)� [if one of these properties fails, then one can improve gmax on
the corresponding boundary edge so that Lg(E) does not change while Ag(�)

decreases]. In particular, one can normalize gmax so that V ≡ 1 on [cd]�.
Moreover, V is discrete harmonic in �. Indeed, note that V (u′) − V (u) =

±gmax
uu′ for any (uu′) ∈ E� (otherwise, one can improve gmax

uu′ ). Then, for a
given u ∈ Int�, replacing gmax

uu′ by gmax
uu′ + ε on all edges (uu′) ∈ E� such that

V (u′) > V (u) and, simultaneously, replacing gmax
uu′ by gmax

uu′ − ε on all (uu′) ∈ E�

such that V (u′) < V (u), one does not change global distances [and, in particular,
does not change Lg(E)], while the area Ag(�) changes by εμu[�V ](u) + O(ε2).

Finally, using discrete integration by parts and [�V ](u) ≡ 0, one concludes that

L−1
� = Agmax(�) = ∑

e=(uu′)∈E�

we

(
V

(
u′) − V (u)

)2

= − ∑
u∈Int�

μu[�V ](u)V (u) − ∑
x∈∂�

wxxint

(
V (xint) − V (x)

)
V (x)

= ∑
x∈[cd]�

wxxint

(
1 − V (xint)

) = I (V ).
�

Note that, for any discrete harmonic in � function V , one can construct a dis-
crete harmonic conjugate function V ∗ which is uniquely defined (up to an additive
constant) on faces of � (including boundary ones) by saying

H
(
f left

vv′
) − H

(
f

right
vv′

) := wvv′ · (
H

(
v′) − H(v)

)
(6.8)
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for any oriented edge (vv′) ∈ E�, where f left
vv′ and f

right
vv′ denote faces to the left

and to the right of (vv′), respectively. The function V ∗ is well defined locally (if
and only if �V = 0), and hence well defined globally, as � is simply connected.
Moreover, for any inner face f in �, it satisfies a discrete harmonicity condition∑

f ′∼f

wff ′
(
V ∗(

f ′) − V ∗(f )
) = 0,(6.9)

where wff ′ := w−1
vv′ for any couple of dual edges (ff ′) = (vv′)∗.

REMARK 6.5. If one takes V = V(�;[ab]�,[cd]�), then the harmonic conjugate
function V ∗ is constant along boundary arcs (bc)� and (da)� (since V satisfies
Neumann boundary conditions on these arcs). Fixing an additive constant so that
V ∗ ≡ 0 on (bc)� and tracking the increment of V ∗ along [ab]�, one obtains V ∗ ≡
I (V ) on (da)�. Further, Dirichlet boundary conditions for V on [ab]� and [cd]�
can be directly translated into Neumann conditions for V ∗ (one can easily see that
V ∗ satisfies (6.9) with a smaller number of terms at all faces touching [ab]� or
[cd]�). Thus [I (V )]−1 · V ∗ solves the same Dirichlet–Neumann boundary value
problem for the dual quadrilateral drawn on �∗. Moreover,∑

(ff ′)∗∈E�

wff ′
(
V ∗(

f ′) − V ∗(f )
)2 = ∑

(vv′)∈E�

wvv′
(
V

(
v′) − V (v)

)2 = L−1
� ,

and hence the dual extremal length L∗
� is equal to [I (V )−2L−1

� ]−1 = L−1
� .

The last proposition in this section gives an estimate for the partition function
Z�([ab]�; [cd]�) of random walks joining [ab]� and [cd]� in � via the extremal
length L�([ab]�; [cd]�) [note that the latter can be thought about as the (recipro-
cal of) similar partition function for random walks reflecting from the dual bound-
ary arcs].

PROPOSITION 6.6. Let � be a simply connected discrete domain, and
a, b, c, d ∈ ∂�, b �= c, d �= a, be listed counterclockwise. Then

Z�

([ab]�; [cd]�) ≤ const · (L�

([ab]�; [cd]�))−1
,

where the constant does not depend on �,a, b, c, d . Moreover, if we additionally
assume that L�([ab]�; [cd]�) ≤ const, then

Z�

([ab]�; [cd]�) � (
L�

([ab]�; [cd]�))−1

(with constants in � depending on the upper bound for L� but independent of
�,a, b, c, d).
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PROOF. It is easy to see that, for any u ∈ Int�, V (u) is equal to the probability
of the event that the random walk started at u and reflecting from complementary
arcs (bc)�,(da)� exists � through [cd]� (indeed, this probability is a discrete
harmonic function which satisfies the same boundary conditions as V ). Hence, for
any x ∈ [ab]�,

V (xint) ≥ const ·Z�

(
xint; [cd]�) � Z�

(
x; [cd]�)

,

since the right-hand side is (up to a constant) the same probability for the random
walk with absorbing boundary conditions on (bc)� and (da)�. Thus (6.7) gives(

L�

([ab]�; [cd]�))−1 = ∑
x∈[ab]�

wxxintV (xint) ≥ const ·Z�

([ab]�; [cd]�)
.

Further, let L� := L�([ab]�; [cd]�) ≤ const. Due to Corollary 6.3, it is
equivalent to L�([bc]�; [da]�) ≥ const. We have seen above that this implies
Z�([bc]�; [da]�) ≤ const which is equivalent to Y�(b, c;d, a) ≤ const due to
Theorem 4.8. Therefore,

Z� := Z�

([ab]; [cd]) � log
(
1 + Y�(a, b; c, d)

)
= log

(
1 + (

Y�(b, c;d, a)
)−1) ≥ const .

Since Z� ≤ const ·L−1
� in any case, this implies Z� � 1, if L� � 1.

Thus we are mostly interested in the situation when L� is very small (i.e.,
boundary arcs [ab]� and [cd]� are “very close” to each other in �). Our strat-
egy in this case is similar to the proof of Theorem 4.8: we split [ab]� into several
smaller pieces [akak+1]� such that L�([akak+1]�; [cd]�) � 1 and apply the result
obtained above to each of these smaller arcs. Recall that

L−1
� = ∑

x∈[ab]�
wxxintV (xint).

We construct boundary points a = a0, a1, . . . , an+1 = b ∈ ∂� inductively by the
following procedure: if ak is already chosen, we move ak+1 further along the
boundary arc [ab]� step by step until the first vertex ak+1 such that(

L�

([akak+1]�; [cd]�))−1 = ∑
x∈[akak+1]

wxxintV(�;[akak+1]�,[cd]�)(xint) ≥ 1

(or ak+1 = b). Note that this sum cannot increase by more than some uniform
constant on each step (as we increase the absorbing boundary [akak+1]�, all terms
decreases, while the new (last) term is no greater than wxxint ≤ const). Therefore,
L�([akak+1]�; [cd]�) � 1 for all k, possibly except the last one (when we are
forced to choose an+1 = b before the sum becomes large). As we have seen above,
this implies

Z�

([akak+1]�; [cd]�) � 1 for all k = 0,1, . . . , n − 1.
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Note that V = V(�;[ab]�,[cd]�) ≤ V(�;[akak+1]�,[cd]�) due to monotonicity of bound-
ary conditions (the absorbing boundary is larger in the first case). This gives∑

x∈[akak+1]
wxxintV (xint) ≤ ∑

x∈[akak+1]
wxxintV(�;[akak+1]�,[cd]�)(xint) ≤ const

for all k = 0,1, . . . , n, thus L−1 ≤ const · (n + 1) � n, which implies the inverse
estimate

Z� �
n∑

k=0

Z�

([akak+1]�; [cd]�) ≥ const ·n � L−1
� .

�

7. Double-sided estimates of harmonic measure. We start this section
with Theorem 7.1 which combines uniform estimates obtained above for cross-
ratios Y�, partition functions Z� and extremal lengths L� of discrete quadrilater-
als (�;a, b, c, d). Then we show how tools developed in our paper can be used to
obtain exponential double-sided estimates in terms of appropriate extremal lengths
for the discrete harmonic measure ω�(u; [ab]�) of a “far” boundary arc (similar
to the classical ones due to Ahlfors, Beurling and going back to Carleman; see [1],
Sections 4-5 and 4-14, and [9], Sections IV.5, IV.6). The main result is given by
Theorem 7.8. In particular, it allows us to obtain a uniform double-sided estimate of
logω�(u; [ab]�) via logω�C(u; [ab]C�), where ω�C denotes the continuous har-
monic measure in a polygonal representation of �; see Corollary 7.9. Note that
one cannot hope to prove the similar estimate for ω�(u; [ab]�) itself: dealing with
thin fiords, one is faced with exponentially small harmonic measures which are
highly sensitive to the widths of those fiords.

THEOREM 7.1. Let � be a simply connected discrete domain and distinct
boundary points a, b, c, d ∈ ∂� be listed counterclockwise. Denote

Y := Y�(a, b; c, d), Z := Z�

([ab]�; [cd]�)
, L := L�

([ab]�; [cd]�)
,

Y′ := Y�(b, c;d, a), Z′ := Z�

([bc]�; [da]�)
, L′ := L�

([bc]�; [da]�)
.

(i) If at least one of the estimates

Y ≤ const, Z ≤ const, L ≥ const,
(7.1)

Y′ ≥ const, Z′ ≥ const, L′ ≤ const

holds true, then all these estimates hold true (with constants depending on the
initial bound but independent of �,a, b, c, d). Moreover, if at least one of Y, Y′,
Z, Z′, L, L′ is of order 1 (i.e., admits the double-sided estimate � 1), then they all
are of order 1.

(ii) If (7.1) holds true, then the following double-sided estimates are fulfilled:

Z � Y and log
(
1 + Y−1) � L.
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In particular, there exist some constants β1,2,C1,2 > 0 such that the uniform esti-
mate

C1 · exp[−β1L] ≤ Z ≤ C2 · exp[−β2L](7.2)

holds true for any discrete quadrilateral (�;a, b, c, d) satisfying (7.1).

PROOF. (i) It follows from Theorem 4.8 and Proposition 6.6 that

log(1 + Y) � Z ≤ const ·L−1 and log
(
1 + Y′) � Z′ ≤ const · (L′)−1

.

Moreover, YY′ = 1 by definition, and LL′ � 1 due to Corollary 6.3. Therefore,
one has

Y ≤ const ⇔ Z ≤ const ⇐ L ≥ const
� �

Y′ ≥ const ⇔ Z′ ≥ const ⇒ L′ ≤ const,

which gives the equivalence of all six bounds. Interchanging Y, Z, L and Y′, Z′,
L′, one obtains the same equivalence of inverse estimates. Thus, if at least one of
these quantities is � 1, then all others are � 1 as well.

(ii) Since Y ≤ const, Remark 4.6 guarantees that Z � Y. Further, since L′ ≤
const, Proposition 6.6 gives Z′ � (L′)−1, and hence

log
(
1 + Y−1) = log

(
1 + Y′) � Z′ � (

L′)−1 � L.

Thus, we have exp[β2L] ≤ 1 + Y−1 ≤ exp[β1L] for some β1,2 > 0, and we also
know that 1 + Y−1 � Y−1 � Z−1. �

Now let u ∈ Int� and [ab]� ⊂ � be some boundary arc of � which should
be thought about as lying “very far” from u [so that the harmonic measure
ω�(u; [ab]�) is small]. In order to be able to apply exponential estimate (7.2)
to this harmonic measure, one should first compare the partition function of ran-
dom walks running from u to [ab]� in � with a partition function of random walks
running between opposite sides of some quadrilateral.

Recall that we denote by d�(u) the (Euclidean) distance from u to ∂� and let a
discrete domain A� = A�(u) be defined by

Int A�(u) := Int� \ Int B�
�0d�(u)(u),

where �0 = �0(�0, η0,κ0) > 0 is a fixed constant. If �0 is chosen small enough,
Remark 2.2 implies that for any � and u ∈ Int�:

• either u belongs to a face touching ∂�;
• or A�(u) is doubly connected [in other words, Int A�(u) contains a cycle sur-

rounding u].
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REMARK 7.2. Throughout most of this section (until Theorem 7.8) we as-
sume that A�(u) is doubly connected. Otherwise, one can apply an appropriate
version of Lemma 7.3, which relates ω�(u; [ab]�) to the partition function of ran-
dom walks running in A�(u), and directly estimate the latter partition function
by the corresponding discrete extremal length using (7.2); see the proof of Corol-
lary 7.9.

Below we rely upon the following property of the Green function G�(·;u),
which is guaranteed by Lemmas 2.13 and 2.9:

G�(v;u) � 1 for all v ∈ C� = C�(u) := ∂A�(u) \ ∂�,(7.3)

where the constants in � are independent of �, u and v. Note that C�(u) can be
naturally identified with ∂B�

�0d�(u)(u) if A�(u) is doubly connected.

LEMMA 7.3. Let a simply connected discrete domain � and u ∈ Int� be such
that A�(u) is doubly connected, and [ab]� ⊂ ∂�. Then,

ω�

(
u; [ab]�) � ZA�(u)

(
C�(u); [ab]�)

.(7.4)

PROOF. For a random walk running from u to [ab]� in �, let v denote its last
vertex on C� (such a vertex exists due to topological reasons). Splitting this path
into two halves (before v and after v, resp.), one concludes that

ω�

(
u; [ab]�) � Z�

(
u; [ab]�) � ∑

v∈C�

Z�(u;v)ZA�

(
v; [ab]�)

.

As Z�(u;v) = G�(u;v) � 1 for any v ∈ C�(u), this gives (7.4). �

In order to relate the partition function (7.4) of random walks in the annulus
A�(u) to a partition function of random walks in some simply connected domain,
below we cut A�(u) along the appropriate nearest-neighbor paths γ = (cint ∼
· · · ∼ dint) such that c ∈ C� and d ∈ ∂� \ [ab]�. For a given γ (which is always
assumed to be a nonself-intersecting path on the universal cover A�

� of A�), we
define a simply connected domain Aγ

� [see Figure 5(A)] as follows:

if γ left, γ right are two copies of γ lying on consecutive sheets of A�
�, then

Int Aγ
� := γ left ∪ [(Int A�) \ γ ] ∪ γ right ⊂ Int A�

�.

In other words, we cut A� along γ , accounting both sides of the slit as interior
parts of a discrete domain Aγ

� (which is, in particular, always connected and simply

connected). We then denote by γ left
bd and γ

right
bd the corresponding parts of ∂Aγ

�, thus

∂Aγ
� = (

d leftdright)
A�

�
∪ γ left

bd ∪ (
crightcleft)

A�
�

∪ γ
right
bd ,

where disjoint parts of ∂Aγ
� are listed counterclockwise with respect to Aγ

�. We
also use simpler notation (d leftdright)A�

�
= ∂� and (crightcleft)A�

�
= C�, if no con-

fusion arises.
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FIG. 5. (A) In order to analyze the discrete extremal length between C� and [ab]�, we cut a dou-
bly connected domain A� along some nearest-neighbor path γ running from c ∈ C� to d ∈ (ba)�,
so that two identical copies of γ are included into a simply connected domain Aγ

� (which is drawn on

the universal cover of A�). Thus the boundary ∂Aγ
� is formed by the outer part (drightd left) = ∂�,

the inner part (cleftcright) = C� and two paths γ left and γ right consisting of vertices neighboring
to γ . (B) If a vertex u is close to ∂�, it might happen that A� is simply connected or even discon-
nected. Then we denote by A′

� the proper connected component of A�, and by C′
� the corresponding

part of ∂A′
�.

COROLLARY 7.4. Let a simply connected discrete domain � and u ∈ Int�
be such that A�(u) is doubly connected, and [ab]� ⊂ ∂�. Then, for any nearest-
neighbor path γ running from C�(u) to (ba)�, the following is fulfilled:

const ·ZAγ
�

(
C�; [ab]�) ≤ ω�

(
u; [ab]�) ≤ const ·ZAγ

�

(
γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�)

.

PROOF. Indeed,

ZAγ
�

(
C�; [ab]�) ≤ ZA�

(
C�; [ab]�) ≤ ZAγ

�

(
γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�)

due to simple monotonicity properties of the random walk partition function Z�

with respect to domain �; for example, for the left bound, one forbids the random
walks running from C� to [ab]� to cross γ (still allowing them to touch γ or to
run along it). �

Theorem 7.1 [namely, (7.2)] allows one to estimate both partition functions
ZAγ

�
(C�; [ab]�) and ZAγ

�
(γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�) via corresponding discrete

extremal lengths. We now prove that one can choose γ so that both those extremal
lengths are comparable to the extremal length of nearest-neighbor paths connect-
ing C� and [ab]� in the annulus A�.
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REMARK 7.5. Below we apply Propositions 6.2 and 6.4 to a doubly con-
nected discrete domain A� and its inner boundary C� instead of a boundary arc
[cd]� of a simply connected domain �. It is worth noting that we did not use any
“topological” arguments in the proofs of those statements.

PROPOSITION 7.6. Let a simply connected discrete domain � and u ∈ Int�
be such that A�(u) is doubly connected, and [ab]� ⊂ ∂�. Then:

(i) there exists a nearest-neighbor path γ running from C� to (ba)� such that

LAγ
�

(
C�; [ab]�) ≤ 2LA�

(
C�; [ab]�);

(ii) for any given q > 1, either LA�(C�; [ab]�) < q2LA�(C�; ∂�) (i.e., the
arc [ab]� is not so far from u), or there exists a nearest-neighbor path γ running
from C� to (ba)� such that

LAγ
�

(
γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�) ≥ (

1 − q−1)2LA�

(
C�; [ab]�)

.

REMARK 7.7. (i) The constant 2 in the first estimate is a big overkill: as can
be seen from the proof, both sides are almost equal to each other for a proper slit γ .

(ii) Since discrete and continuous extremal lengths are uniformly comparable to
each other, for any � and u, one has

LA�(C�; ∂�) � LAC
�

(
CC

�; ∂�C
) � 1.

PROOF. Let V = V(A�;[ab]�,C�) : A� → [0;1] be the unique discrete harmonic
function such that V ≡ 0 on [ab]�, V ≡ 1 on C�, and V satisfies Neumann bound-
ary conditions on ∂� \ [ab]�. Recall that Proposition 6.4 (see also Remark 7.5)
says (

LA�

(
C�; [ab]�))−1 = I (V ) = ∑

x∈[ab]�
wxxintV (xint)

= ∑
(vv′) in Aγ

�

wvv′
(
V

(
v′) − V (v)

)2
.

(i) Let V ∗ denote a harmonic conjugate function to V [see (6.8), (6.9) and Re-
mark 6.5] which is defined on the universal cover A�

� of A�. Tracking its incre-
ment along [ab]�, one easily concludes that V ∗ has an additive monodromy I (V )

when passing around C� counterclockwise. Moreover, as V ∈ [0;1] everywhere
in A�, the boundary values of V ∗ increases when going counterclockwise along
C�, as well as along ∂� (recall that V ∗ satisfies Neumann boundary conditions on
C� and [ab]�).

Let an additive constant in definition of V ∗ be chosen so that V ∗ ≡ 0 on
∂� \ [ab]� (on some sheet of A�

�). Then, there exists a nonself-intersecting
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nearest-neighbor path γ running from C� to ∂� \ [ab]� in A�
� which separates

nonnegative (to the left of γ ) and nonpositive (to the right of γ ) values of V ∗. We
cut A� along γ and choose a branch of V ∗ in Aγ

� so that

V ∗ ≤ 0 at faces touching γ
right
bd , V ∗ ≥ I (V ) at faces touching γ left

bd ,

V ∗ ≡ 0 at faces touching [da]�, V ∗ ≡ I (V ) at faces touching [bd]�
(recall that V ∗ satisfies Neumann boundary conditions on [ab]�). Putting on dual
edges (ff ′) = (vv′)∗ of Aγ

� a discrete metric

gff ′ := ∣∣V ∗(
f ′) − V ∗(f )

∣∣ = wvv′
∣∣V (

v′) − V (v)
∣∣,

one obtains the following estimate for the dual discrete length L∗ (see Remark 6.5)
between opposite sides γ right ∪ [da]� and [bd]� ∪ γ left of Aγ

�:

L∗ ≥ [I (V )]2∑
(vv′) in Aγ

�
wvv′ |V (v′) − V (v)|2 ≥ [I (V )]2

2I (V )
= 1

2
I (V )

(the constant 2 is a big overkill, since each edge of A� except γ is counted once
in Aγ

�, and only those constituting γ are counted twice). Therefore,

LAγ
�

(
C�; [ab]�) = (

L∗)−1 ≤ 2
[
I (V )

]−1 = 2LA�

(
C�; [ab]�)

.

(ii) Let d ∈ ∂� \ [ab]� be a boundary vertex where V attains its maxi-
mum on ∂� (recall that V ≡ 0 on [ab]�). If V (d) < 1 − q−1, then the metric
gvv′ := |V (v′) − V (v)| [which is extremal for the family (A�;C� ↔ [ab]�); see
Proposition 6.4] provides an estimate

LA�(C�; ∂�) >
q−2

I (V )
= q−2LA�

(
C�; [ab]�)

.

If V (d) ≥ 1 − q−1, let γ denote a nearest-neighbor path running from d to C�

such that V ≥ 1 − q−1 along this path (γ exists due to the maximum principle).
Then the same metric as above (we assign zero weights to all edges constituting
γ left, γ right and corresponding boundary ones) gives

LAγ
�

(
γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�) ≥ (1 − q−1)2

I (V )

= (
1 − q−1)2LA�

(
C�; [ab]�)

. �

Combining estimates given above, we are now able to prove a uniform
double-sided estimate relating the logarithm of the discrete harmonic measure
ω�(u; [ab]�) in a simply connected domain � and the discrete extremal length
LA�(C�; [ab]�) in the annulus-type domain A�(u).
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THEOREM 7.8. Let a simply connected discrete domain � and u ∈ Int� be
such that A�(u) is doubly connected, and [ab]� ⊂ ∂�. Then

log
(
1 + (

ω�

(
u; [ab]�))−1) � LA�(u)

(
C�(u); [ab]�)

,(7.5)

with constants independent of �, u and [ab]�.

PROOF. Let L := LA�(C�; [ab]�) and ω := ω�(u; [ab]�). Corollary 7.4,
Theorem 7.1 and Proposition 7.6 provide us the following diagram (for some
proper discrete cross-cuts γ which can be different for lower and upper bounds):

const ·ZAγ
�

(
C�; [ab]�) ≤ ω ≤ ZAγ

�

(
γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�)

� �
2L ≥ LAγ

�

(
C�; [ab]�)

LAγ
�

(
γ left

bd ∪ C� ∪ γ
right
bd ; [ab]�) ≥ 1

2L

[the last inequality holds true if L ≥ λ0, where λ0 is some absolute constant: recall
that LA�(C�; ∂�) � 1 for all � and u]. Above, the arrows “�” mean double-sided
estimates of ZAγ

�
via LAγ

�
given by Theorem 7.1. Recall that it is inverse monotone:

an upper bound for LAγ
�

gives a lower bound for ZAγ
�

and vice versa.
In particular, if L ≥ λ0, condition (7.1) holds for both (right, and therefore,

left) columns. Thus, in this case, one can replace both “�” by (7.2), arriving
at logω � −L. If L < λ0, then the left column gives ω ≥ const, and both sides
of (7.5) are uniformly comparable to 1 [note that L is uniformly bounded below
by LA�(C�; ∂�) � 1]. �

COROLLARY 7.9. Let � be a simply connected domain, u ∈ Int� and
[ab]� ∈ ∂�. Denote ωdisc := ω�(u; [ab]�) and ωcont := ωC

�(u; [ab]C�). Then

log
(
1 + ω−1

disc

) � log
(
1 + ω−1

cont
)

with some uniform (i.e., independent of �,u,a, b) constants.

PROOF. First, let us assume that A�(u) is doubly connected, so � and u fit the
setup of Theorem 7.8. Let Ldisc := LA�(C�; [ab]�) and Lcont := LAC

�
(CC

�; [ab]C�)

be its continuous counterpart. Recall that Ldisc � Lcont due to Proposition 6.2 (and
Remark 7.5). Then

log
(
1 + ω−1

disc

) � Ldiscr � Lcont � log
(
1 + ω−1

cont
)
,

where the last estimate is an easy corollary of the classical estimates for harmonic
measure via extremal lengths; for example, see [9], Theorem 5.2.

If A�(u) is not doubly connected, then u belongs to a face touching ∂�. If u

shares a face with [ab]�, then ωdisc ≥ const and ωcont ≥ const as well.
Thus, without loss of generality, we may assume that both ωdisc and ωcont are

uniformly bounded away from 1, and there exists a connected (and simply con-
nected) component of Int A�(u) whose boundary contains the whole arc [ab]�.
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Let A′
� denote this component of A� and C′

� ⊂ ∂A′
� be the corresponding part

of C� slightly enlarged so that it includes two nearby boundary points of ∂�; see
Figure 5(B). Further, let L′

disc := LA′
�
(C′

�; [ab]�) and L′
cont := LA′C

�
(C′C

� ; [ab]C�)

denote its continuous counterpart. It is easy to see that one still has

ωdiscr � Z�

(
u; [ab]�) � ZA′

�

(
C� ∩ ∂A′

�; [ab]�) � ZA′
�

(
C′

�; [ab]�)
the proof of Lemma 7.3 works well without any changes, and replacing C� ∩ ∂A′

�

by C′
� costs no more than an absolute multiplicative constant). Applying (7.2) and

Proposition 6.2, one obtains

logωdisc � −L′
discr � −L′

cont � logωcont,

[to prove the last estimate, e.g., draw a circle cu ⊂ �C of radius 1
2ru � d�(u)

around u, then − logωcont � L�C(cu; [ab]C�) � L′
cont]. �

APPENDIX

In order to make the presentation self-contained, in this appendix we provide
proofs of all the statements from Section 2.5 based on properties (S), (T) of the
random walk (2.1) on �. We begin with a slightly weaker version of Lemma 2.10,
then prove Lemma 2.10 itself and deduce all the other statements from these lem-
mas.

LEMMA A.1. There exist constants τ0 = τ0(�0, η0,κ0) > 1 and ε0 =
ε0(�0, η0,κ0) > 0 such that, for any two vertices v,w ∈ �, v �= w, the prob-
ability of the event that the random walk (2.1) started at v makes a full
turn around w in a given direction (clockwise or counterclockwise) staying in
A(w, τ−1

0 |v − w|, τ0|v − w|) is at least ε0.

PROOF. Denote v0 := v. We intend to “drive” the trajectory of the random
walk using a finite sequence of the following “moves” based on Property (S) [see
also Figure 6(A)]:

• if vk is the current position of the random walk, apply (S) to a disc of radius
(κ0ν0 + 1)−1|vk − w| centered at vk and the interval of directions

I := [
arg(vk − w) + 1

2η0; arg(vk − w) + π − 1
2η0

]
,

and denote by vk+1 ∈ ∂B�
(κ0ν0+1)−1|vk−w| the corresponding terminal vertex.

Using Remark 2.2, one can find two constants θ0 = θ0(�0, η0,κ0) > 0 and α0 =
α0(�0, η0,κ0) > 1 such that, for all k, arg(vk+1 − w) − arg(vk − w) ≥ θ0 and the
random walk does not leave the annulus A(w,α−1

0 |vk − w|, α0|vk − w|) during

the kth “move” described above. Thus the claim holds true with τ0 := α
N0
0 and
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FIG. 6. (A) A schematic drawing of a sequence of “moves” used in the proofs of Lemma A.1 and
Lemma 2.12. For each vertex vk , the corresponding disc around vk and the interval of directions
are shown. Applying property (S) to these discs step by step, one can “drive” a trajectory of the
random walk around w, uniformly with respect to the local sizes rvk (e.g., v4 is a neighboring vertex

to v3 on the picture). For the proof of Lemma 2.12, the paths Luu′
ux , γ and a part of ∂� are shown:

the random walk trajectory constructed in this way must hit γ before ∂�. (B) A schematic drawing
of an additional sequence of “moves” used in the proof of Lemma 2.10. It may happen that the
random walk trajectory constructed in this way does not disconnect two boundary components of
A(u,ρ−1

0 r, r) and does not intersect a path γ that crosses A(u,ρ−1
0 r, r). Nonetheless, the union of

such a “counterclockwise” trajectory and a similar “clockwise” one must intersect γ .

ε0 := c
N0
0 , where N0 := �2π/θ0� + 1 is the maximal number of moves needed to

perform the full turn. �

PROOF OF LEMMA 2.10. Let ρ0 := (κ0ν0 + 1)τ 2
0 . If r ′ := ρ−1

0 r ≤ ru, then
there is nothing to prove as γ should start at u which is the unique vertex inside
of A(u, r ′, r). Thus it is sufficient to consider the case r ′ > ru. In this case, Re-
mark 2.2 implies that there is no edge of � crossing the annulus A(u, τ0r

′, (κ0ν0 +
1)τ0r

′). Let v denote the first vertex visited of the random walk (2.1) traveling
across the annulus A(u, r ′, r). Thus it is sufficient to prove that, being re-started
at v, the random walk (2.1) hits a cross-cut γ before exiting A(u, r ′, r) with a prob-
ability uniformly bounded below. Similar to the proof of Lemma A.1, we intend
to “drive” the trajectory of the random walk using a finite sequence of “moves”
provided by (S) so that it necessarily intersects γ :
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• first, we follow the proof of Lemma A.1 (with w := u) and perform n ≤ N0
moves around u in the counterclockwise direction so that the random walk re-
mains in A(u, r ′, r), and its terminal vertex vn satisfies

arg(vn − u) − arg(v0 − u) ≥ 2π;
• second, we continue the trajectory by performing yet another finite sequence of

similar moves in the fixed range of directions

I := [
arg(v0 − u) − 1

2(π − η0); arg(v0 − u) + 1
2(π − η0)

]
until the trajectory hits the outer boundary of (A, r ′, r); see Figure 6(B).

Note that the number of moves needed to perform the second part is uniformly
bounded by some constant M0: the distance from the line passing through v0 and
u becomes comparable to r after the first move of the second part and then grows
exponentially. In principle, it might happen that a “counterclockwise” trajectory
constructed above does not hit the cross-cut γ ; see Figure 6(B). Nonetheless, if
this happens (for some trajectory), then all the similar “clockwise” trajectories
must hit γ for topological reasons. Thus the result follows with δ0 := c

N0+M0
0 . �

PROOF OF PROPOSITION 2.8. Denote by vmax and vmin the vertices in
Int B�

r (u) where H attains its maximal and minimal values, respectively. First,
let ρ ≥ ρ0, where ρ0 = ρ0(�0, η0,κ0) is the constant from Lemma 2.10. Since
H is a discrete harmonic function, there exists a path γ running from vmax to
∂B�

ρ0r
(u) such that H(·) ≥ H(vmax) along this path. Applying Lemma 2.10, one

easily obtains

H(vmin) ≥ δ0 · H(vmax),

which gives the desired estimate for all ρ ≥ ρ0 with c(ρ) = c(ρ0) = δ0. To obtain
the result for ρ < ρ0, note that the path joining vmax and vmin in Int B�

r (u) can be
covered by a uniformly bounded number N = N(ρ) of discrete discs Int B�

r ′(vk)

with vk ∈ Int B�
r (u) and r ′ := ρ−1

0 (ρ − 1)r . Since B�
ρ0r

′(vk) ⊂ B�
ρr(u) and the val-

ues of H at neighboring vertices belonging to consecutive discs are uniformly
comparable with the constant � 2

0 , one can apply the already proven estimate in
each of these discs and arrive at the inequality H(vmin) ≥ c(ρ)H(vmax) with the
constant c(ρ) = (� 2

0 δ0)
N(ρ). �

PROOF OF LEMMA 2.9. For u ∈ � and R > r > 0, let

M(u, r,R) := max
v∈∂B�

r (u)
GB�

R(u)(v;u).

It is easy to see that

GB�
ρr (u)

(
v′;u) ≥ δ0M(u, r, ρr) for all v′ ∈ Int B�

r ′(u), r ′ := ρ−1
0 r.(A.1)
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Indeed, the maximum principle implies that GB�
ρr (u)(·;u) ≥ M(u, r, ρr) along

some nearest-neighbor path γ starting at some v ∈ ∂B�
r (u) and going to u. As γ

crosses the annulus A(u, r ′, r), estimate (A.1) follows from Lemma 2.10. It is easy
to see that the uniform upper bound M(u, r, ρr) ≤ c2(ρ) now follows from (A.1),
estimate (2.5) and the upper bound in (2.8).

The next step is to prove that M(u, (2C0)
−1R,R) is uniformly bounded from

below for u ∈ � and R > ru, where C0 is the constant from (2.8). If r :=
(2C0)

−1R ≤ ru, then there is nothing to prove as GB�
R(u)(v;u) ≥ μ−1

v wvuμ
−1
u ≥

� 3
0 for all vertices v ∼ u lying on ∂B�

r (u) ∩ Int B�
R(u) �= ∅. For r > ru, the maxi-

mum principle implies

GB�
R(u)(v;u) ≤

{
M(u, r,R), v ∈ Int B�

R(u) \ Int B�
r (u);

M(u, r,R) + GB�
r (u)(v;u), v ∈ Int B�

r (u).

Therefore,

C−1
0 R2 ≤ ∑

v∈Int B�
R(u)

r2
vGB�

R(u)(v;u) ≤ M(u, r,R) · ∑
v∈Int B�

R(u)

r2
v + C0r

2,

which can be rewritten as M(u, r,R) ≥ 3
4C−1

0 R2 · [∑v∈Int B�
R(u) r

2
v ]−1. Due to (2.5),

the latter quantity is uniformly bounded away from 0. Taking into account (A.1),
we arrive at the uniform estimate

GB�
R(u)

(
v′;u) ≥ c

(0)
1 for all v′ ∈ Int B�

r ′(u), r ′ := (2C0ρ0)
−1R

with some constant c
(0)
1 > 0 (note that this estimate remains true if R ≤ ru). Thus

we have shown that GB�
ρr

(v′;u) ≥ c
(0)
1 for all v′ ∈ Int B�

r (u) provided that ρ ≥
2C0ρ0.

The case ρ < 2C0ρ0 can now be handled similarly to the proof of Proposi-
tion 2.8. For v ∈ Int B�

r (u), let γ be a nearest-neighbor path connecting v to u in-
side of B�

r (u), and let v′ denote the first vertex of γ belonging to Int B�
r ′(u), where

r ′ := (2C0ρ0)
−1 ·ρr . The portion of γ joining v and the vertex just before v′ can be

covered by a uniformly bounded number N = N(ρ) of discrete discs Int B�
r ′′(vk),

where r ′′ := min{(2C0ρ0)
−1, (1 − ρ−1)} · r . Since Int B�

ρr ′′(vk) ⊂ Int B�
ρr(u) \ {u},

Proposition 2.8 applied to each of these discs yields

GB�
ρr

(v;u) ≥ (
� 2

0 c(ρ)
)N(ρ) · GB�

ρr

(
v′;u) ≥ c1(ρ)

:= (
� 2

0 c(ρ)
)N(ρ) · c(0)

1 . �

PROOF OF LEMMA 2.11. To derive the first estimate, set r := dist(u; ∂�), and
note that the probability of the event that the random walk started at u crosses an
annulus A(u,ρs−1

0 r, ρs
0r), s = 1, . . . , �log(r−1 dist�(u;E))/ logρ0�, is bounded



ROBUST DISCRETE COMPLEX ANALYSIS: A TOOLBOX 681

from above by 1 − δ0. To prove the second estimate, set r := diamE, and consider
crossings of the annuli A(x,ρs−1

0 r, ρs
0r) centered at a fixed vertex x ∈ E. �

PROOF OF LEMMA 2.12. Recall that r ′ = ρ−1
0 r . The proof is divided into two

steps. First, it follows from Lemma A.1 that all values of H in the r ′-neighborhood
of x in � are bounded from above by δ−1

0 max
v∈Luu′

ux
H(v). Indeed, let vmax ∈

∂B�
r ′ (x) be the vertex where H attains its maximal value in B�

r ′ (x). Then H(·) ≥
H(vmax) along some path γ running from vmax to ∂B�

r \ ∂�. If γ intersects Luu′
ux ,

then there is nothing to prove. Otherwise, there are three mutually disjoint paths
crossing the annulus A(x, r ′, r): Luu′

ux , γ and the corresponding part of ∂� which
has to cross A(x, r ′, r) since � is simply connected. Let us assume that these paths
are ordered counterclockwise (the other case is similar). Due to Remark 2.2, there
exists a vertex u′′ ∈ Luu′

ux such that τ0r
′ ≤ |u′′−x| ≤ τ−1

0 r , where τ0 = (ρ0/(κ0ν0 +
1))1/2. For topological reasons, each of the random walk trajectories constructed
in Lemma A.1, started at v = u′′ and running in A(x, τ−1

0 |u′′ − x|, τ0|u′′ − x|) ⊂
A(x, r ′, r) in the counterclockwise direction, must hit γ before ∂� [which must
happen before it makes the full turn and reaches the path Luu′

ux ⊂ Int� again; see
Figure 6(A)]. Note also that those trajectories cannot hit ∂� during first “moves”
due to (3.9). Therefore, Lemma A.1 gives

max
v∈Luu′

ux

H(v) ≥ H
(
u′′) ≥ δ0H(vmax) = δ0 max

v∈∂B�
r′ (x)

H(v).

Second, similar to the proof of Lemma 2.11, one can easily derive from
Lemma 2.10 the following uniform estimate:

H
(
v′) ≤ [

ρ0 · ∣∣v′ − x
∣∣/r ′]β0 · max

v∈∂B�
r′ (x)

H(v)

for all v′ ∈ B�
r ′ (x). Being combined, these two inequalities yield the claim. �

PROOF OF LEMMA 2.13. The lower bound is trivial, as B�
r (u) ⊂ � and the

Green function G� is monotone with respect to �. To prove the upper bound,
recall that R = ρ

2n0
0 r , and denote by �′ the minimal simply connected domain

�′ ⊃ � such that

Int�′ ⊃ Int� ∪ Int B�
R′(u), where R′ = ρ

n0
0 r.

Note that ∂�′ ∩ ∂B�
R′(u) �= ∅ since � is simply connected and dist(u; ∂�) = r <

R′. It follows from Lemma 2.10 that

G�′(v;u) ≤ GB�
R(u)(v;u) + (1 − δ0)

n0 · max
v′∈∂B�

R′ (u)

G�′
(
v′;u)

for any v ∈ Int B�
r (u). Indeed, if the random walk started at v reaches ∂B�

R(u)

before hitting ∂�′, then it has the chance (1 − δ0)
n0 to hit ∂�′ before coming
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back to ∂B�
R′(u). Moreover, since G(·;u) ≥ maxv′∈∂B�

R(u) G�′(v′;u) along some

path γ running from ∂B�
R′(u) to u (this follows from the maximum principle),

Lemma 2.10 also implies

G�′(v;u) ≥ (
1 − (1 − δ0)

n0
) · max

v′∈∂B�
R′ (u)

G�′
(
v′;u)

[indeed, the probability of the event that the random walk started at v hits γ before
exiting B�

R′(u) ⊂ �′ is at least 1 − (1 − δ0)
n0 ]. Therefore,

G�′(v;u) ≤
[
1 − (1 − δ0)

n0

1 − (1 − δ0)n0

]−1

GB�
R(u)(v;u) ≤ 2GB�

R(u)(v;u),

and we complete the proof by noting that G�(v;u) ≤ G�′(v, u) since � ⊂ �′. �
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