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A CURIE–WEISS MODEL OF SELF-ORGANIZED CRITICALITY

BY RAPHAËL CERF AND MATTHIAS GORNY

Université Paris-Sud

We try to design a simple model exhibiting self-organized criticality,
which is amenable to a rigorous mathematical analysis. To this end, we mod-
ify the generalized Ising Curie–Weiss model by implementing an automatic
control of the inverse temperature. For a class of symmetric distributions
whose density satisfies some integrability conditions, we prove that the sum
Sn of the random variables behaves as in the typical critical generalized Ising
Curie–Weiss model. The fluctuations are of order n3/4, and the limiting law
is C exp(−λx4) dx where C and λ are suitable positive constants.

1. Introduction. In their famous article [4], Bak, Tang and Wiesenfeld
showed that certain complex systems are naturally attracted by critical points,
without any external intervention. The amplification of small internal fluctuations
can lead to a critical state and cause a chain reaction leading to a radical change
of the system behavior. These systems exhibit the phenomenon of self-organized
criticality (SOC). Although there is no universal SOC theory, it can be well under-
stood with the archetype of SOC: the sandpile model, first introduced in [4]. We
consider a pile of sand and the constant drop of new sand grains, which randomly
slide down the slope of sand. We observe local avalanches with different and un-
predictable sizes which are not proportional to the input. Such phenomenon can
be observed in nature (e.g., forest fires, earthquakes, species evolution).

In general SOC can be observed empirically or simulated on a computer in
various models. However, the mathematical analysis of these models turns out to
be extremely difficult, even for the sandpile model whose definition is yet simple.
Self-organized criticality has been reviewed in recent works [2, 3, 9, 17, 21]. Other
challenging models are the models for forest fires [18], which are built with the
help of percolation process. Some simple models of evolutions also lead to critical
behaviors [8].

Our goal here is to design a model exhibiting self-organized criticality, which
is as simple as possible, and which is amenable to a rigorous mathematical analy-
sis. The simplest models exhibiting SOC are obtained by forcing standard critical
transitions into a self-organized state; see Section 15.4.2 of [20]. The idea is to
start with a model presenting a phase transition and to create a feedback from
the configuration to the control parameters in order to converge toward a critical
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point. The most widely studied model in statistical mechanics, which exhibits a
phase transition and presents critical states, is the Ising model. Its mean field ver-
sion is called the Ising Curie–Weiss model; see Sections IV.4 and V.9 of [11]. It
has been extended to real-valued spins by Ellis and Newman [12], in the so called
generalized Ising Curie–Weiss model. This model is our starting point, and we will
modify it in order to build a system of interacting random variables, which exhibits
a phenomenon of SOC.

Let us first recall the definition and some results on the generalized Ising Curie–
Weiss model. Let ρ be a symmetric probability measure on R with positive vari-
ance σ 2 and such that

∀t ≥ 0
∫
R

exp
(
tx2)

dρ(x) < ∞.

The generalized Ising Curie–Weiss model associated to ρ and the inverse temper-
ature β > 0 is defined through an infinite triangular array of real-valued random
variables (Xk

n)1≤k≤n such that, for all n ≥ 1, (X1
n, . . . ,X

n
n) has the distribution

dμn,ρ,β(x1, . . . , xn) = 1

Zn(β)
exp

(
β

2

(x1 + · · · + xn)
2

n

) n∏
i=1

dρ(xi),

where Zn(β) is a normalization. For any n ≥ 1, we set Sn = X1
n + · · · + Xn

n . When
ρ = (δ−1 + δ1)/2, we recover the classical Ising Curie–Weiss model.

We denote by L the log-Laplace of ρ (see Appendix A). Ellis and Eisele have
shown in [10] that, if L(3)(t) ≤ 0 for any t ≥ 0, then there exists a map m which is
null on ]0,1/σ 2], real analytic and positive on ]1/σ 2,+∞[ and such that

Sn

n

L−→
n→∞

{
δ0, if β ≤ 1/σ 2,
1
2(δ−m(β) + δm(β)), if β > 1/σ 2.

The point 1/σ 2 is a critical value, and the function m cannot be extended an-
alytically around 1/σ 2. The main result of [12] states that, if β < 1/σ 2, then,
under μn,ρ,β ,

Sn√
n

L−→
n→∞N

(
0,

σ 2

1 − βσ 2

)
.

If β = 1/σ 2, then there exists k ∈N \ {0,1} and λ > 0 such that, under μn,ρ,β ,

Sn

n1−1/2k

L−→
n→∞Ck,λ exp

(
−λ

s2k

(2k)!
)

ds,

where Ck,λ is a normalization. This is a consequence of Theorem 2.1 of [12] and
some properties of m explained in [10] implying that the function s 	−→ L(s

√
β)−

s2/2 has a unique maximum at 0 whenever β ≤ 1/σ 2; see Section V.2 of [14] for
the details.
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We will transform the previous probability distribution in order to obtain a
model which presents a phenomenon of self-organized criticality, that is, a model
which evolves toward the critical state β = 1/σ 2 of the previous model. More
precisely, the critical generalized Ising Curie–Weiss model is the model where
(X1

n, . . . ,X
n
n) has the distribution

1

Zn

exp
(

(x1 + · · · + xn)
2

2nσ 2

) n∏
i=1

dρ(xi).

We wish to build a model which converges to a critical state for every distribution ρ

and which does not rely on any specific a priori information on ρ. We search an
automatic control of the inverse temperature β , which would be a function of the
random variables in the model, so that when n goes to +∞, β converges toward
the critical value of the model. We start with the following observation: if (Yn)n≥1
is a sequence of independent random variables with identical distribution ρ, then,
by the law of large numbers,

Y 2
1 + · · · + Y 2

n

n
−→
n→∞σ 2 a.s.

This convergence provides us with an estimator of 1/σ 2. If we believe that a sim-
ilar convergence holds in the generalized Ising Curie–Weiss model, then we are
tempted to replace β by n(x2

1 + · · · + x2
n)−1 in the distribution

1

Zn

exp
(

β

2

(x1 + · · · + xn)
2

n

) n∏
i=1

dρ(xi).

Hence the model we consider in this paper is given by the distribution

1

Zn

exp
(

1

2

(x1 + · · · + xn)
2

x2
1 + · · · + x2

n

) n∏
i=1

dρ(xi).

The previous considerations suggest that this model should evolve spontaneously
toward a critical state. We will prove rigorously that our model indeed exhibits
a phenomenon of self-organized criticality. However, our model is a toy model
which is certainly much less complex than other famous fundamental models of
SOC like the sandpile model.

Our main result (Theorem 2) states that if ρ has an even density satisfying some
integrability condition, then, asymptotically, the sum Sn of the random variables
behaves as in the typical critical generalized Ising Curie–Weiss model: if μ4 de-
notes the fourth moment of ρ, then

μ
1/4
4 Sn

σ 2n3/4
L−→

n→∞

(
4

3

)1/4

�

(
1

4

)−1

exp
(
− s4

12

)
ds.

This fluctuation result shows that our model is a self-organized model exhibit-
ing critical behavior. Indeed it has the same behavior as the critical generalized
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Ising Curie–Weiss model, and by construction, it does not depend on any exter-
nal parameter. In this sense, we can conclude that this is a Curie–Weiss model of
self-organized criticality.

Our result presents an unexpected universal feature. For any distribution ρ,
which has an even density satisfying some integrability hypothesis, the fluctua-
tions of Sn are of order n3/4. This is in contrast to the situation in the critical
generalized Ising Curie–Weiss model: at the critical point, the fluctuations are of
order n1−1/2k , where k depends on the distribution ρ. We stress also that our in-
tegrability conditions on ρ are weaker than those of [12]. For instance, our result
holds for any centered Gaussian measure on R. The Gaussian case of our model
can be handled with the help of an explicit computation [15].

The main new technical ingredient of the proof is the following inequality. Let
Z be a random variable with distribution ρ, and let I denote the Cramér transform
of (Z,Z2), given by

∀(x, y) ∈ R2 I (x, y) = sup
(u,v)∈R2

{
xu + yv − ln

∫
R

euz+vz2
dρ(z)

}
.

If ρ is symmetric and there exists v > 0 such that E(exp(vZ2)) < +∞, then

∀(x, y) ∈R2 I (x, y) ≥ x2

2y
,

and the equality holds only at (0, σ 2). We explain in the heuristics at the end of
Section 3 why this inequality is crucial to the proof of our main results.

In Section 2 we properly define our model. We state our main results and the
strategy for proving them in Section 3. Next we split the proofs in the remaining
Sections 4–7. In the Appendix, we recall some generalities on the Cramér trans-
form and large deviations.

2. The model. Let ρ be a probability measure on R, which is not the Dirac
mass at 0. We consider an infinite triangular array of real-valued random variables
(Xk

n)1≤k≤n such that for all n ≥ 1, (X1
n, . . . ,X

n
n) has the distribution μ̃n,ρ , where

dμ̃n,ρ(x1, . . . , xn) = 1

Zn

exp
(

1

2

(x1 + · · · + xn)
2

x2
1 + · · · + x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi),

with

Zn =
∫
Rn

exp
(

1

2

(x1 + · · · + xn)
2

x2
1 + · · · + x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi).

We define Sn = X1
n + · · · + Xn

n and Tn = (X1
n)

2 + · · · + (Xn
n)2.

The indicator function in the density of the distribution μ̃n,ρ helps to avoid any
problem of definition if ρ({0}) is positive, since, if ρ({0}) > 0, the event {x2

1 +· · ·+
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x2
n = 0} may occur with positive probability. We notice that, unlike the generalized

Ising Curie–Weiss model, our model is defined for any probability measure. Indeed
x 	−→ x2 is a convex function, and therefore

∀(x1, . . . , xn) ∈ Rn

(
n∑

i=1

xi

)2

= n2

(
n∑

i=1

xi

n

)2

≤ n

n∑
i=1

x2
i .

Thus for any n ≥ 1, 1 ≤ Zn ≤ en/2 < +∞.
If we choose ρ = (δ−1 +δ1)/2, we obtain the classical Ising Curie–Weiss model

at the critical value.

3. Convergence theorems. We state here our main results. By the classical
law of large numbers, if ρ is centered and has variance σ 2, then under ρ⊗n,
(Sn/n,Tn/n) converges in probability toward (0, σ 2). The next theorem shows
that under the law μ̃n,ρ , given certain conditions, (Sn/n,Tn/n) also converges in
probability to (0, σ 2).

THEOREM 1. Let ρ be a symmetric probability measure on R with positive
variance σ 2 and such that

∃v0 > 0
∫
R

ev0z
2
dρ(z) < +∞.

We suppose that one of the following conditions holds:

(a) ρ has a density.
(b) ρ is the sum of a finite number of Dirac masses.
(c) There exists c > 0 such that ρ(]0, c[) = 0.
(d) ρ({0}) < 1/

√
e.

Then, under μ̃n,ρ , (Sn/n,Tn/n) converges in probability toward (0, σ 2).

By the classical central limit theorem, under ρ⊗n, Sn/
√

n converges in distri-
bution to a normal distribution with mean zero and variance σ 2. The following
theorem shows that given certain conditions, under μ̃n,ρ , Sn/n3/4 converges to-
ward a specific distribution.

THEOREM 2. Let ρ be a probability measure on R having a density f which
satisfies:

(a) f is even.
(b) There exists v0 > 0 such that∫

R
ev0z

2
f (z) dz < +∞.
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(c) There exists p ∈]1,2] such that∫
R2

f p(x + y)f p(y)|x|1−p dx dy < +∞.

Let σ 2 be the variance of ρ, and let μ4 be the fourth moment of ρ. We have

μ
1/4
4 Sn

σ 2n3/4
L−→

n→∞

(
4

3

)1/4

�

(
1

4

)−1

exp
(
− s4

12

)
ds.

The convergence can equivalently be rewritten as

Sn

n3/4
L−→

n→∞

(
4μ4

3σ 8

)1/4

�

(
1

4

)−1

exp
(
− μ4

12σ 8 s4
)

ds.

We prove this convergence in Section 7. The following corollary is a version of
Theorem 2 with a hypothesis which is weaker but easier to check.

COROLLARY 3. Let ρ be a probability measure on R with an even and
bounded density f such that

∃v0 > 0
∫
R

ev0z
2
dρ(z) < +∞.

Let σ 2 be the variance of ρ, and let μ4 be the fourth moment of ρ. Then

μ
1/4
4 Sn

σ 2n3/4
L−→

n→∞

(
4

3

)1/4

�

(
1

4

)−1

exp
(
− s4

12

)
ds.

PROOF. We check that the hypotheses of the corollary imply the condition (c)
of Theorem 2. We have∫

R2
f 3/2(x + y)f 3/2(y)|x|−1/2 dx dy

=
∫
[−1,1]×R

f 3/2(x + y)f 3/2(y)

|x|1/2 dx dy

+
∫
[−1,1]c×R

f 3/2(x + y)f 3/2(y)

|x|1/2 dx dy

≤ ‖f ‖3/2∞
∫
[−1,1]×R

f 3/2(y)

|x|1/2 dx dy +
∫
[−1,1]c×R

f 3/2(x + y)f 3/2(y) dx dy

≤ ‖f ‖3/2∞
(∫

R

∣∣f (x)
∣∣3/2

dx

)(∫ 1

−1

dx

|x|1/2

)
+

(∫
R

∣∣f (x)
∣∣3/2

dx

)2

.

The second inequality is obtained by applying Fubini’s theorem. These terms are
finite since ∫

R

∣∣f (x)
∣∣3/2

dx ≤ ‖f ‖1/2∞
∫
R

f (x) dx = ‖f ‖1/2∞ < +∞.
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Thus, with p = 3/2 ∈]1,2], the function (x, y) 	−→ f p(x + y)f p(y)|x|1−p is
integrable. �

For instance, if ρ has a bounded support and a density which is even and con-
tinuous on it, then the hypotheses of the theorem are fulfilled.

We end this section by computing the law of (Sn/n,Tn/n) under μ̃n,ρ and
explaining the strategy for proving these results. We denote by ν̃n,ρ the law of
(Sn/n,Tn/n) under ρ⊗n. We have

∀(x1, . . . , xn) ∈ Rn (x1 + · · · + xn)
2

x2
1 + · · · + x2

n

= n
((x1 + · · · + xn)/n)2

(x2
1 + · · · + x2

n)/n
.

Hence, for any bounded measurable function f :R2 −→ R,

Eμ̃n,ρ

(
f

(
Sn

n
,
Tn

n

))
= 1

Zn

∫
R2

f (x, y) exp
(

nx2

2y

)
1{y>0} dν̃n,ρ(x, y).

By convexity of t 	−→ t2, we have S2
n ≤ nTn for any n ≥ 1. We define

	 = {
(x, y) ∈ R2 :x2 ≤ y

}
and 	∗ = 	 \ {

(0,0)
}
.

Thus ν̃n,ρ(	c) = 0. Therefore we have the following proposition:

PROPOSITION 4. Under μ̃n,ρ , the law of (Sn/n,Tn/n) is

exp((nx2)/(2y))1	∗(x, y) dν̃n,ρ(x, y)∫
	∗ exp((ns2)/(2t)) dν̃n,ρ(s, t)

.

We denote by νρ the law of (Z,Z2) where Z is a random variable with distri-
bution ρ. The log-Laplace 
 of νρ is the map defined on R2 by

∀(u, v) ∈ R2 
(u,v) = ln
∫
R2

eus+vt dνρ(s, t) = ln
∫
R

euz+vz2
dρ(z),

and the Cramér transform I of νρ is defined on R2 by

∀(x, y) ∈ R2 I (x, y) = sup
(u,v)∈R2

(
xu + yv − 
(u,v)

)
.

For n ≥ 1, under ρ⊗n, (Sn/n,Tn/n) is the sum of n independent and identically
distributed random variables with distribution νρ . We refer to Appendix B for some
definitions and results on large deviations, especially Cramér’s theorem (Theo-
rem B.4) which states that if 
 is finite in the neighborhood of (0,0), then I is
a good rate function, and (ν̃n,ρ)n≥1 satisfies the large deviations principle with
speed n, governed by I .

Here is a classical heuristic on large deviations, suggested by a consequence
of Varadhan’s lemma (see Theorem II.7.2 of [11]): as n goes to +∞, the law of
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(Sn/n,Tn/n) under μ̃n,ρ concentrates exponentially fast on the minima on 	∗ of
the function

G = I − F − inf
	∗ (I − F),

where F is the map defined by

∀(x, y) ∈ R×R \ {0} F(x, y) = x2

2y
.

If G has a unique minimum at (x0, y0) ∈ 	∗, then under μ̃n,ρ , (Sn/n,Tn/n) con-
verges in probability to (x0, y0). Moreover, the large deviations principle sug-
gests that for n large enough, ν̃n,ρ can roughly be approximated by the distribu-
tion Cn exp(−nI (x, y)) dx dy where Cn is a normalizing constant. Thus, for each
bounded continuous function h and α,β > 0,

Eμ̃n

(
h

(
Sn − nx0

n1−α

))
≈

∫
	∗ h((x − x0)n

α) exp(−nG(x, y)) dx dy∫
	∗ exp(−nG(x, y)) dx dy

≈
∫
	∗ h(x) exp(−nG(xn−α + x0, yn−β + y0)) dx dy∫

	∗ exp(−nG(xn−α + x0, yn−β + y0)) dx dy
.

We use then Laplace’s method. The key point is the study of the function G in the
neighborhood of its minimum (x0, y0). We find four positive values A, B , a ∈ N

and b ∈ N such that, uniformly on a neighborhood of (x0, y0),

−nG
(
xn−1/a + x0, yn−1/b + y0

) −→
n→∞−Axa − Byb.

We prove that I − F has a unique minimum at (0, σ 2) on 	∗ in Section 4.
Next we give the proof of Theorem 1 in Section 5, with the help of a variant of
Varadhan’s lemma. Finally we compute the expansion of I − F around (0, σ 2) in
Section 6, and we prove Theorem 2 with Laplace’s method in Section 7. Through-
out these proofs we use some general results on the Cramér transform, stated in
Appendix A.

4. Minimum of I − F on �∗. Let ρ be a symmetric probability measure
on R. In this section, we will use Proposition A.4 in the Appendix to show an
inequality between I and F .

We denote by νρ the distribution of (Z,Z2) when Z is a random variable with
law ρ. If the support of ρ contains at least three points, then νρ is a nondegenerate
measure on R2; see the first paragraphs of Appendix A. We denote by C the convex
hull of the set {(x, x2) :x is in the support of ρ}. The function


 : (u, v) ∈ R2 	−→ ln
∫
R

euz+vz2
dρ(z)

is the log-Laplace of νρ , and its domain of definition D
 contains R×]−∞,0[;
thus its interior is nonempty. Let I be the Cramér transform of νρ . We denote
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by DI its domain of definition and by AI = ∇
(
◦
D
) its admissible domain; see

Definition A.3 in the Appendix.
Using Jensen’s inequality, we get that I (0, σ 2) = 0. Moreover the infimum of

I − F on 	∗ belongs to [−1/2,0]. The function I is even in the first variable.
Indeed, if (x, y) ∈ R2, then

I (−x, y) = sup
(u,v)∈R2

(
−xu + yv − ln

∫
R

euz+vz2
dρ(z)

)

= sup
(u,v)∈R2

(
xu + yv − ln

∫
R

e−uz+vz2
dρ(z)

)
= I (x, y).

Assume that I − F has a unique minimum (x0, y0) on 	∗. Then (−x0, y0) is also
a minimum of I − F . The uniqueness of the minimum implies that x0 = 0 so that
I − F is nonnegative on 	∗. Finally, since I (0, σ 2) = 0, we have y0 = σ 2.

Consider first the case of a Bernoulli distribution for which νρ is degenerate.
Let c > 0. Suppose that ρ = (δ−c + δc)/2. The law ρ is centered, and its variance
is c2. We can compute 
 and I explicitly in the following way:

∀(u, v) ∈ R2 
(u,v) = vc2 + ln cosh(uc).

For any (x, y) /∈ [−c, c] × {c2}, I (x, y) = +∞ and

∀x ∈]−c, c[ I
(
x, c2) = 1

2c

(
(c + x) ln(c + x) + (c − x) ln(c − x)

) − ln c.

The study of the function x 	−→ I (x, c2)−x2/(2c2) shows that, in the Bernoulli
case, I − F has a unique minimum at (0, σ 2). More generally we have the follow-
ing lemma:

LEMMA 5. Let c > 0. We define

φc :x ∈ R 	−→ sup
u∈R

(
ux − ln cosh(uc)

)
.

The function x 	−→ φc(x)−x2/(2c2) is increasing on [0, c], decreasing on [−c,0]
and null at 0.

Notice that the Bernoulli case is special since if X is a random variable with
distribution ρ = (δ−c + δc)/2, then X2 = c2 almost surely. Thus

1

Zn

exp
(

1

2

(x1 + · · · + xn)
2

x2
1 + · · · + x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi)

= 1

Zn(1/c2)
exp

(
(x1 + · · · + xn)

2

2nc2

) n∏
i=1

dρ(xi).
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This is exactly the classical Curie–Weiss model at the critical point.
In the following, we suppose that the support of νρ contains at least three

distinct points. We first show that if D
 is an open subset of R2, then I − F

has a unique minimum at (0, σ 2). To this end, we use Proposition A.4 in the
Appendix which states that I is differentiable on AI = ◦

DI = ◦
C. Moreover, if

(x, y) 	−→ (u(x, y), v(x, y)) is the inverse function of ∇
, then

∀(x, y) ∈ ◦
DI

∂I

∂x
(x, y) = u(x, y).

If we show that u(x, y) > x/y for any x, y > 0, then by integrating this inequality,

∀(x, y) ∈ ◦
DI 0 ≤ ε < x �⇒ I (x, y) − x2

2y
> I (ε, y) − ε2

2y
.

To obtain that I − F has a unique minimum at (0, σ 2), it is enough to extend this
inequality to the boundary points of DI (if they exist). We conclude by using the
fact that I is even in its first variable.

The following lemma is the key result to establish the uniqueness of the mini-
mum of I − F , when ρ is symmetric.

LEMMA 6. Let ρ be a symmetric probability measure whose support contains
at least three points. For (x, y) ∈ AI , we have u(x, y) = 0 if x = 0 and

u(x, y) >
x

y
if x > 0,

u(x, y) <
x

y
if x < 0.

PROOF. The vector (u, v) = (u(x, y), v(x, y)) verifies

(x, y) = ∇
(u,v) =
(∫

R zeuz+vz2
dρ(z)∫

R euz+vz2
dρ(z)

,

∫
R z2euz+vz2

dρ(z)∫
R euz+vz2

dρ(z)

)
.

The distribution ρ is symmetric, thus∫
R

zeuz+vz2
dρ(z) =

∫ +∞
0

2z sinh(uz)evz2
dρ(z).

This formula shows that u and x have the same sign. Moreover for any z ≥ 0,
tanh(z) ≤ z. Thus if x > 0, then sinh(uz) ≤ uz cosh(uz). The equality holds if and
only if uz = 0. Therefore, using the symmetry of ρ,

x < u

∫ +∞
0 2z2 cosh(uz)evz2

dρ(z)∫
R euz+vz2

dρ(z)
= u

∫
R z2euz+vz2

dρ(z)∫
R euz+vz2

dρ(z)
= uy.

Since x > 0, u > 0 and y > 0, we conclude that u > x/y. Similarly, we show that
if x < 0, then u < x/y. �

We can now prove the following inequality:
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PROPOSITION 7. If ρ is a symmetric probability measure on R with positive
variance σ 2 and such that D
 is an open subset of R2, then

∀(x, ε, y) ∈ R×R×R\{0} 0 ≤ ε < x �⇒ I (x, y)− x2

2y
≥ I (ε, y)− ε2

2y
.

This inequality is strict if (ε, y) ∈ ◦
DI .

The inequality is also true for x < ε ≤ 0 since I is even in its first variable. In
Corollary 12, we shall extend the inequality to any symmetric distribution on R.

PROOF OF PROPOSITION 7. We have already treated the Bernoulli case. We
assume next that the support of ρ contains at least three points. The Cramér trans-

form I is C∞ on
◦
DI and

∀(x, y) ∈ ◦
DI

∂I

∂x
(x, y) = u(x, y).

Let us examine the structure of the set DI . We put

∀y > 0 DI,y = {
x ∈ R : (x, y) ∈ DI

}
(see Figure 1). Let y > 0 be such that (x, y) ∈ ◦

DI for some x ∈ R. The set

DI,y is a convex subset of R. Moreover x 	−→ I (x, y) is even, therefore
◦
DI,y

(the interior of DI,y as a subset of R) is an open interval ]−a(y), a(y)[ with
a(y) ∈ [0,

√
y]. Lemma 6 implies that u(t, y) > t/y for any t ∈]0, a(y)[. Thus,

for any x ∈ ◦
DI,y ∩]0,+∞[,

∀ε ∈ [0, x[ I (x, y) − I (ε, y) =
∫ x

ε
u(t, y) dt >

∫ x

ε

t

y
dt = x2

2y
− ε2

2y
.

There is no problem of definition at y = 0 since
◦
DI ⊂ 	∗ does not contain R×{0}

and
◦
DI,0 = ∅. Moreover

x 	−→ I (x, y) − I (ε, y)

x − ε

is nondecreasing on DI,y \ {ε} since I is convex. Therefore, if −a(y) and a(y)

belong to DI,y , then the previous inequality extends to x = −a(y) and x = a(y).
We have shown that

∀(x, y) ∈ DI y > 0,0 ≤ ε < x �⇒ I (x, y) − I (ε, y) >
x2

2y
− ε2

2y
,

except for the points (x, y) of the superior and inferior borders of DI , if they exist.
More precisely, we set

K2 = inf
{
x2 :x is in the support of ρ

} ≥ 0
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FIG. 1. Case where ρ is symmetric discrete and charges 5 points.

and

L2 = sup
{
x2 :x is in the support of ρ

} ≤ +∞.

If K = 0 and L = +∞, then the inequality is already proven on the set DI \
{(0,0)}. Suppose that K2 > 0. Let y = K2 and x ∈R. We define

f : (u, v) ∈ R2 	−→ ux + vK2 − 
(u,v).

Denoting cK = ρ({K}), we have for all (u, v) ∈ R2,

f (u, v) = ux − ln
(
2cK cosh(uK)

) − ln
∫
R\[−K,K]

euz+v(z2−K2) dρ(z).

For any z ∈ R\ ]−K,K[, the function v 	−→ exp(v(z2 − K2)) is nondecreasing.
Therefore

sup
v∈R

f (u, v) − (
ux − ln

(
2cK cosh(uK)

))
= − ln

(
lim

v→−∞

∫
R\[−K,K]

euz+v(z2−K2) dρ(z)

)
= 0,

by the dominated convergence theorem. Indeed

∀z ∈ R \ [−K,K],∀v < −1
∣∣euz+v(z2−K2)

∣∣ ≤ euz−(z2−K2),

and the map z ∈ R\ [−K,K] 	−→ euz−(z2−K2) is integrable with respect to ρ since
it is bounded (it is continuous and goes to 0 when |z| goes to +∞). Hence

I
(
x,K2) = sup

u,v∈R
f (u, v) = sup

u∈R
{
ux − ln

(
2cK cosh(uK)

)}
.

In fact, we come back to the Bernoulli case. The reason is that, if we condition on
Tn = K2 in our model, then for any i, Xi

n = −K or K .
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If cK = 0, then I (x,K2) = +∞ for any x �= 0, so that the (large) inequality is
verified for y = K2. If cK > 0, then Lemma 5 implies that, for any ε, x in R such
that 0 ≤ ε < x ≤ K ,

I
(
x,K2) − I

(
ε,K2) = φK(x) − φK(ε) >

x2

2K2 − ε2

2K2 .

If L < +∞, then we show similarly the inequality for y = L2. Therefore

∀(x, y) ∈ DI \ {
(0,0)

}
0 ≤ ε < x �⇒ I (x, y) − x2

2y
≥ I (ε, y) − ε2

2y
,

and this inequality is strict if (ε, y) ∈ ◦
DI . Finally we notice that for any y ∈ R,

by the convexity and the symmetry of x 	−→ I (x, y), if I (ε, y) = +∞, then for
all x > ε, I (x, y) = +∞. Therefore the inequality extends to each subset of R2

which does not contain R× {0}. �

From the arguments in the previous proof, we notice that if we take x = 0 and
y = 0, then for any u ∈ R, the function v 	−→ 
(u,v) is nondecreasing on R.
Therefore

inf
v∈R
(u,v) = lim

v→−∞
(u,v) = lim
v→−∞

(
lnρ

({0}) + ln
∫
R\{0}

euz+vz2
dρ(z)

)
.

By the dominated convergence theorem, the last integral is equal to lnρ({0}).
Hence

inf
u,v∈R2


(u,v) = lnρ
({0}).

This is valid for any probability measure ρ on R. This yields the following lemma:

LEMMA 8. If ρ is a probability measure on R, then I (0,0) = − lnρ({0}).

A consequence of Proposition 7 and the fact that I is even in its first variable is
that if D
 is an open subset of R2, then the function I −F has a unique minimum
on 	∗ at (0, σ 2). Now we will extend this result to any symmetric probability mea-

sure such that (0,0) ∈ ◦
D
. For this we need Mosco’s theorem, which we restate

next.

DEFINITION 9. Let f and fn, n ∈ N, be convex functions from Rd to
[−∞,+∞]. The sequence (fn)n∈N is said to Mosco converge to f if for any
x ∈ Rd , we have:

� for each sequence (xn)n∈N in Rd converging to x,

lim inf
n→+∞fn(xn) ≥ f (x);
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� there exists a sequence (xn)n∈N in Rd converging to x and such that

lim sup
n→+∞

fn(xn) ≤ f (x).

If f is a convex function from Rd to [−∞,+∞], we denote by f ∗ its Fenchel–
Legendre transform f ∗. We have the following theorem (see [16] for a proof):

THEOREM 10 (Mosco). Let f and fn, n ∈ N, be functions from Rd to
[−∞,+∞] which are convex and lower semi-continuous. Then (fn)n∈N Mosco
converges to f if and only if (f ∗

n )n∈N Mosco converges to f ∗.

PROPOSITION 11. Let ν be a probability measure on Rd . We denote by L

its log-Laplace. Let (Kn)n∈N be a nondecreasing sequence of compact sets whose
union is Rd . For all n ∈ N, we set νn = ν(·|Kn) the probability ν conditioned by
Kn, and we denote by Ln its log-Laplace. Then (Ln)n∈N Mosco converges to L.

PROOF. For n large enough, the compact set Kn meets the support of ν. Thus,
for n large enough and λ ∈ Rd , we have

Ln(λ) = ln
∫
Rd

e〈λ,z〉 dνn(z) = ln
∫
Kn

e〈λ,z〉 dν(z) − lnν(Kn).

By the monotone convergence theorem,

lim
n→+∞Ln(λ) = ln

∫
Rd

lim
n→+∞

(
1Kn(z)e

〈λ,z〉)dν(z) − lim
n→+∞ lnν(Kn) = L(λ).

Hence the second condition of Mosco convergence (with the lim sup) is satisfied
with the sequence (λn)n∈N constant equal to λ.

Let λ ∈ Rd and (λn)n∈N be any sequence converging to λ. Fatou’s lemma im-
plies that

expL(λ) =
∫
Rd

lim inf
n→+∞1Kn(z)e

〈λn,z〉 dν(z) ≤ lim inf
n→+∞

∫
Rd

1Kn(z)e
〈λn,z〉 dν(z).

Therefore

L(λ) ≤ lim inf
n→+∞

(
Ln(λn) + lnν(Kn)

) = lim inf
n→+∞Ln(λn).

Thus the first condition of Mosco convergence (with the lim inf) is verified, and
the proposition is proved. �

COROLLARY 12. If ρ is a symmetric and nondegenerate probability measure
on R, then

∀(x, y) ∈ 	∗,∀ε ∈ [
0, |x|[ I (x, y) − x2

2y
≥ I (ε, y) − ε2

2y
.
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PROOF. For any n ∈ N, we put Kn = [−n,n]2. For n large enough so that Kn

meets the support of νρ , we define νn = νρ(·|Kn), 
n its log-Laplace and In its
Fenchel–Legendre transform. For all (u, v) ∈ R2,


n(u, v) = ln
∫
Kn

eus+vt dνρ(s, t) − lnνρ(Kn) ≤ 
(u,v) − lnνρ(Kn).

Applying the Fenchel–Legendre transformation, we get

∀(ε, y) ∈R2 I (ε, y) ≤ In(ε, y) − lnνρ(Kn).

Moreover the measure νn has a bounded support, so Proposition 7 and the previous
inequality imply that for any (x, ε, y) ∈ R×R×]0,+∞[ such that 0 ≤ ε < x,

I (ε, y) − ε2

2y
+ x2

2y
≤ In(x, y) − lnνρ(Kn).

It follows from Proposition 11 that (
n)n∈N Mosco converges to 
. Hence, by
Mosco’s theorem, (In)n∈N Mosco converges to I . In particular, for (x, y) ∈ R2

such that y > 0 and x > ε, there exists a sequence (xn, yn) ∈ R2 converging to
(x, y) and such that

lim sup
n→+∞

In(xn, yn) ≤ I (x, y).

Since y > 0 and x > ε, there exists n0 ≥ 1 such that yn > 0 and xn > ε for all
n ≥ n0. Therefore

∀n ≥ n0 I (ε, yn) − ε2

2yn

+ x2
n

2yn

≤ In(xn, yn) − lnνρ(Kn).

Moreover νρ(Kn) goes to 1 when n goes to +∞. Hence

lim sup
n→+∞

I (ε, yn) − ε2

2y
+ x2

2y
≤ I (x, y).

Finally I is lower semi-continuous, thus

lim inf
n→+∞ I (ε, yn) ≥ I (ε, y).

This implies the announced inequality. �

We can now show that I − F has a unique minimum on 	∗ at (0, σ 2):

PROPOSITION 13. If ρ is a symmetric probability measure on R with variance
σ 2 > 0 and such that 
 is finite in a neighborhood of (0,0), then

(x, y) ∈ 	∗ 	−→ I (x, y) − x2

2y

has a unique minimum at (0, σ 2) where it is equal to 0.
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PROOF. Corollary 12 implies that

∀(x, y) ∈ 	∗ I (x, y) − x2

2y
≥ I (0, y).

Therefore I − F is a nonnegative function. Since (0,0) ∈ ◦
D
, the function

I (0, ·) has a unique minimum at σ 2; see Theorems 25.1 and 27.1 of [19]. As
a consequence, if I − F has a minimum on 	∗ at (x0, y0), then y0 = σ 2 and
I (x0, σ

2) = x2
0/(2σ 2).

Moreover (0, σ 2) ∈ AI , so there exists ε > 0 such that Bε , the open ball of
radius ε centered at (0, σ 2), is included in AI . If (x, y) realizes a minimum of
I − F on Bε , then(

u(x, y), v(x, y)
) = ∇I (x, y) = ∇F(x, y) = (

x/y,−x2/
(
2y2))

.

It follows from Lemma 6 that x = 0 and thus u(x, y) = v(x, y) = 0. Therefore
(x, y) = (0, σ 2). Hence

∀x ∈]−ε,0[∩ ]0, ε[ I
(
x,σ 2) − x2

2σ 2 > 0.

Applying Corollary 12 with ε/2, we see that the above inequality holds for any
x �= 0. It follows that x0 = 0. �

5. Proof of Theorem 1 with a variant of Varadhan’s lemma. Let ρ be
a symmetric probability measure on R with positive variance σ 2 and such that
(0,0) ∈ ◦

D
. The heuristics at the end of Section 3 and Proposition 13 suggest
that, as n goes to +∞, the law of (Sn/n,Tn/n) under μ̃n,ρ concentrates exponen-
tially fast on (0, σ 2), the minimum of I − F . Yet, in spite of the expression given
in Proposition 4, we cannot apply Varadhan’s lemma (Theorem II.7.2 of [11]) di-
rectly since 	∗ is not a closed set, and F is not continuous on 	.

In Section 5.5.1, we prove a variant of Varadhan’s lemma. We give the proof of
Theorem 1 in Section 5.5.2.

5.1. Around Varadhan’s lemma.

PROPOSITION 14. Let ρ be a probability measure on R. We denote by ν̃n,ρ

the distribution of (Sn/n,Tn/n) under ρ⊗n. We have

lim inf
n→+∞

1

n
ln

∫
	∗

exp
(

nx2

2y

)
dν̃n,ρ(x, y) ≥ 0.

Suppose that ρ is nondegenerate, symmetric and that (0,0) ∈ ◦
D
. We assume that

there exists r > 0 such that Mr + lnρ({0}) < 0 with

Mr = sup
{

x2

2y
: (x, y) ∈ C ∩ Br \ {

(0,0)
}}

,



460 R. CERF AND M. GORNY

where Br is the open ball of radius r centered at (0,0), and C is the closed convex
hull of {(x, x2) :x is in the support of ρ}. If A is a closed subset of R2 which does
not contain (0, σ 2), then

lim sup
n→+∞

1

n
ln

∫
	∗∩A

exp
(

nx2

2y

)
dν̃n,ρ(x, y) < 0.

Let us give first some sufficient conditions to fulfill the hypothesis of the propo-
sition. To ensure that there exists r > 0 such that Mr + lnρ({0}) < 0, it is enough
that one of the following conditions is satisfied:

(a) ρ has a density.
(b) ρ({0}) < 1/

√
e.

(c) There exists c > 0 such that ρ(]0, c[) = 0.
(d) ρ is the sum of a finite number of Dirac masses.

Indeed, the function F is bounded by 1/2 on C \ {(0,0)} ⊂ 	∗. Thus for any r > 0,
Mr ≤ 1/2. Therefore, if ρ has a density, or more generally if ρ({0}) < e−1/2, then
for all r > 0, Mr + lnρ({0}) < 0.

On the other hand, if there exists c > 0 such that ]0, c[ does not intersect the
support of ρ (especially if ρ is the sum of a finite number of Dirac masses), then

C ⊂ {
(x, y) ∈R2 : c|x| ≤ y

}
.

Therefore

∀(x, y) ∈ C ∩ Br \ {
(0,0)

} x2

2y
= c|x|2

2cy
≤ |x|

2c
≤ r

2c
.

Hence for any r > 0, Mr < r/2c. Since ρ is nondegenerate, ρ({0}) < 1. Thus there
exists r > 0 such that lnρ({0})+ r/2c < 0. Therefore conditions (c) and (d) imply
that Mr + lnρ({0}) < 0.

PROOF OF PROPOSITION 14. The large deviations principle satisfied by
(ν̃n,ρ)n≥1 implies that

lim inf
n→+∞

1

n
ln

∫
	∗

exp
(

nx2

2y

)
dν̃n,ρ(x, y)

≥ lim inf
n→+∞

1

n
ln ν̃n,ρ

(
	∗) ≥ − inf

{
I (x, y) : (x, y) ∈ ◦

	
} = 0.

We prove now the second inequality. Let α > 0. The function I is lower semi-
continuous on R2. Thus there exists a neighborhood U of (0,0) such that

∀(x, y) ∈ U I (x, y) ≥ (
I (0,0) − α

) ∧ 1

α
= (− lnρ

({0}) − α
) ∧ 1

α
.
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The above equality follows from Lemma 8. By hypothesis, there exists r > 0 such
that Mr + lnρ({0}) < 0. Thus by choosing α sufficiently small, we can assume
that

Mr + lnρ
({0}) + α < 0 and Mr − 1

α
< 0.

Since Mr decreases with r , we can take r small enough so that Br ⊂ U . Notice
next that (Sn/n,Tn/n) ∈ C almost surely. Therefore, setting C∗ = C \ {(0,0)},∫

	∗∩A
exp

(
nx2

2y

)
dν̃n,ρ(x, y) =

∫
C∗∩A

exp
(

nx2

2y

)
dν̃n,ρ(x, y).

Let us decompose

C∗ ∩ A ⊂ (
C∗ ∩ Br

) ∪ (
C ∩ Bc

r ∩ A
)
.

We have ∫
C∗∩Br

exp
(

nx2

2y

)
dν̃n,ρ(x, y) ≤ exp(nMr)ν̃n,ρ(U).

The large deviation principle satisfied by (ν̃n,ρ)n≥1 implies that

lim sup
n→+∞

1

n
ln

∫
C∗∩Br

exp
(

nx2

2y

)
dν̃n,ρ(x, y)

≤ Mr − inf
U

I ≤ (
Mr + lnρ

({0}) + α
) ∨

(
Mr − 1

α

)
.

Next, the set C ∩ Bc
r ∩A is closed and does not contain (0,0). Thus the function F

is continuous on this set. Moreover F is bounded on C∗. Hence Lemma B.3 in the
Appendix and Lemma 1.2.15 of [7] imply that

lim sup
n→+∞

1

n
ln

∫
C∗∩A

exp
(

nx2

2y

)
dν̃n,ρ(x, y)

≤ max
(
Mr + lnρ

({0}) + α,Mr − 1

α
, sup
C∩Bc

r∩A

(F − I )

)
.

Since ρ is symmetric and (0,0) ∈ ◦
D
, Proposition 13 implies that G = I −F has a

unique minimum at (0, σ 2) on 	∗. Suppose that the infimum of G over C∩Bc
r ∩A

is null. Then there exists a sequence (xk, yk)k∈N in C ∩ Bc
r ∩ A ⊂ 	∗ such that

lim
k→+∞G(xk, yk) = inf

C∩Bc
r∩A

G = 0.

For k large enough, G(xk, yk) ≤ 1/2. Thus I (xk, yk) ≤ 1l; that is, (xk, yk) belongs
to the compact set {(u, v) ∈ R2 : I (u, v) ≤ 1}. Up to the extraction of a subse-
quence, we suppose that (xk, yk)k∈N converges to some (x0, y0), which belongs to
the closed subset C ∩ Bc

r ∩ A. Moreover G is lower semi-continuous, and hence

0 = lim sup
k→+∞

G(xk, yk) ≥ G(x0, y0) ≥ 0.
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Therefore G(x0, y0) = 0, and thus (x0, y0) = (0, σ 2) ∈ C∩Bc
r ∩A, which is absurd

since A does not contain (0, σ 2). Thus the infimum of G over C∩Bc
r ∩A is positive.

Therefore

max
(
Mr + lnρ

({0}) + α,Mr − 1

α
, sup
C∩Bc

r∩A

(F − I )

)
< 0.

This proves the second inequality. �

5.2. Proof of Theorem 1. Let ρ be a symmetric probability measure on R with
positive variance σ 2 and such that

∃v0 > 0
∫
R

ev0z
2
dρ(z) < +∞.

This implies that R×]−∞, v0[⊂ D
 and thus (0,0) ∈ ◦
D
. We assume that one

of the four conditions given in the paragraph below Proposition 14 is satisfied.
We denote by θn,ρ the distribution of (Sn/n,Tn/n) under μ̃n,ρ . Let U be an

open neighborhood of (0, σ 2) in R2. Propositions 4 and 14 imply that

lim sup
n→+∞

1

n
ln θn,ρ

(
Uc) = lim sup

n→+∞
1

n
ln

∫
	∗∩Uc

exp
(

nx2

2y

)
dν̃n,ρ(x, y)

− lim inf
n→+∞

1

n
ln

∫
	∗

exp
(

nx2

2y

)
dν̃n,ρ(x, y) < 0.

Hence there exist ε > 0 and n0 ∈ N such that for any n > n0,

θn,ρ

(
Uc) ≤ e−nε −→

n→∞ 0.

Thus, for each open neighborhood U of (0, σ 2),

lim
n→+∞ μ̃n,ρ

((
Sn

n
,
Tn

n

)
∈ Uc

)
= 0.

This means that, under μ̃n,ρ , (Sn/n,Tn/n) converges in probability to (0, σ 2).
This completes the proof of Theorem 1.

6. Expansion of I − F around its minimum. In this section, which may
be omitted on a first reading, we compute the expansion of the function I − F

around (0, σ 2), its minimum over 	∗. These computations are crucial because
they explain why the fluctuations in Theorem 2 are of order n3/4, and they give us
the term in the exponential in the limiting law.

If ρ is a symmetric probability measure whose support contains at least three

points and if (0,0) ∈ ◦
DL, then (0, σ 2) = ∇
(0,0) ∈ ∇
(

◦
D
) = AI , the admis-

sible domain of I . Proposition A.4 in the Appendix implies that I is C∞ in the
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neighborhood of (0, σ 2) and that

∇I
(
0, σ 2) = (

u
(
0, σ 2)

, v
(
0, σ 2)) = (∇
)−1(

0, σ 2) = (0,0),

D2
(0,σ 2)

I = (
D2

(0,0)

)−1 =

(
σ 2 0
0 μ4 − σ 4

)−1

=
(

1/σ 2 0
0 1/

(
μ4 − σ 4))

,

since D2
(0,0)
 is the covariance matrix of νρ . Hence, up to the second order, the

expansion of I − F in the neighborhood of (0, σ 2) is

I (x, y) − F(x, y) = (y − σ 2)2

2(μ4 − σ 4)
+ o

(∥∥x, y − σ 2∥∥2)
.

We need to push further the expansion of I − F .
Consider the case of the Gaussian N (0, σ 2). We can explicitly compute I in the

following way:

∀(x, y) ∈ 	∗ I (x, y) = 1

2

(
y

σ 2 − 1 − ln
(

y − x2

σ 2

))
.

In the neighborhood of (0, σ 2), we have

I (x, y) − F(x, y) ∼ x4

4σ 4 + (y − σ 2)2

4σ 2 .

In fact, we have a similar expansion in a more general case:

PROPOSITION 15. If ρ is a symmetric probability measure on R whose sup-
port contains at least three points and such that (0,0) ∈ ◦

D
, then I is C∞ in the
neighborhood of (0, σ 2). If μ4 denotes the fourth moment of ρ, then when (x, y)

goes to (0, σ 2),

I (x, y) − x2

2y
∼ (y − σ 2)2

2(μ4 − σ 4)
+ μ4x

4

12σ 8 .

PROOF. If (0,0) ∈ ◦
D
, then (0, σ 2) = ∇
(0,0) ∈ ∇
(

◦
D
) = AI , and

Proposition A.4 in the Appendix implies that the function I is C∞ on AI . More-
over, if we denote the inverse function of ∇
 by (x, y) 	−→ (u(x, y), v(x, y)),
then, for all (x, y) ∈ AI ,

∇I (x, y) = (
u(x, y), v(x, y)

)
and D2

(x,y)I = (
D2

(u(x,y),v(x,y))

)−1

.

The hypothesis (0,0) ∈ ◦
D
 also implies that ρ has finite moments of all orders.

The expansion of F to the fourth order in the neighborhood of (0, σ 2) is

F(x, y) = x2

2σ 2 − x2(y − σ 2)

2σ 4 + x2(y − σ 2)2

2σ 6 + o
(∥∥x, y − σ 2∥∥4)

.
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Therefore, in the neighborhood of (0,0),

I
(
x,h + σ 2) − F

(
x,h + σ 2)

= h2

2(μ4 − σ 4)
+ a3,0x

3 + a2,1x
2h + a1,2xh2 + a0,3h

3

+ a4,0x
4 + a3,1x

3h + a2,2x
2h2 + a1,3xh3 + a0,4h

4 + o
(‖x,h‖4)

,

with, for any (i, j) ∈ N such that i + j ∈ {3,4},

ai,j = 1

i!j !
∂i+j I

∂xi ∂yj

(
0, σ 2)

,

except for

a2,1 = 1

2

(
∂3I

∂x2 ∂y

(
0, σ 2) + 1

σ 4

)
and a2,2 = 1

4

∂4I

∂x2 ∂y2

(
0, σ 2) − 1

2σ 6 .

If we prove that a4,0 > 0, then the terms xh2, h3, x3h, x2h2, xh3 and h4 are negli-
gible compared to a4,0x

4 + a0,2h
2 when (x,h) goes to (0,0). Next, the symmetry

of I − F in the first variable implies that a3,0 = 0. If we show that a2,1 = 0, then
when (x, y) goes to (0, σ 2),

I (x, y) − F(x, y) =
(

(y − σ 2)2

2(μ4 − σ 4)
+ a4,0x

4
)(

1 + o(1)
)
.

To conclude it is enough to show that a2,1 = 0 and a4,0 = μ4/(12σ 8), that is,

∂3I

∂x2 ∂y

(
0, σ 2) = − 1

σ 4 and
∂4I

∂x4

(
0, σ 8) = 2μ4

σ 2 .

For any j ∈ N, we introduce the function fj defined on
◦
D
 by

∀(u, v) ∈ ◦
D
 fj (u, v) =

∫
R

xj eux+vx2
dρ(x)

(∫
R

eux+vx2
dρ(x)

)−1

.

These functions are C∞ on
◦
D
, and they verify the following properties:

� f0 is the identity function on R2 and

f1 = ∂


∂u
and f2 = ∂


∂v
.

� For all j ∈ N, fj (0,0) = μj is the j th moment of ρ. It is null if j is odd,
since ρ is symmetric. Moreover, for any j ∈N,

∂fj

∂u
= fj+1 − fjf1 and

∂fj

∂v
= fj+2 − fjf2.
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Therefore, for all (x, y) ∈ AI ,

D2
(x,y)I = (

D2
(u(x,y),v(x,y))


)−1

=
(

f2 − f 2
1 f3 − f1f2

f3 − f1f2 f4 − f 2
2

)−1 (
u(x, y), v(x, y)

)
.

Denoting by g = (f2 − f 2
1 )(f4 − f 2

2 ) − (f3 − f1f2)
2, the determinant of the pos-

itive definite symmetric matrix D2
, we get that for any (x, y) ∈ AI ,

D2
(x,y)I = 1

g(u(x, y), v(x, y))

(
f4 − f 2

2 f1f2 − f3

f1f2 − f3 f2 − f 2
1

)(
u(x, y), v(x, y)

)
.

Moreover (u(0, σ 2), v(0, σ 2)) = (0,0) thus

∂u

∂x

(
0, σ 2) = ∂2I

∂x2

(
0, σ 2) = f4 − f 2

2

g
(0,0) = μ4 − σ 4

σ 2(μ4 − σ 4)
= 1

σ 2 ,

∂v

∂y

(
0, σ 2) = ∂2I

∂y2

(
0, σ 2) = f2 − f 2

1

g
(0,0) = σ 2

σ 2(μ4 − σ 4)
= 1

μ4 − σ 4 ,

∂u

∂y

(
0, σ 2) = ∂v

∂x

(
0, σ 2) = ∂2I

∂x ∂y

(
0, σ 2) = f1f2 − f3

g
(0,0) = 0.

Differentiating with respect to y, we get

∂3I

∂y ∂x2 = ∂u

∂y
× ∂

∂u

(
f4 − f 2

2

g

)
(u, v) + ∂v

∂y
× ∂

∂v

(
f4 − f 2

2

g

)
(u, v).

The first term of the addition, taken at (0, σ 2), is null. For the second term, we
need to compute the partial derivative of (f4 − f 2

2 )/g with respect to v,

∂

∂v

(
f4 − f 2

2

g

)
= 1

g
× ∂

∂v

(
f4 − f 2

2
) − f4 − f 2

2

g2 × ∂g

∂v

= f6 − 3f2f4 + 2f 3
2

g
− f4 − f 2

2

g2 × ∂g

∂v
.

Let us differentiate with respect to v,

∂g

∂v
= f2(f6 − f4f2) + f4

(
f4 − f 2

2
) − f 2

1 (f6 − f4f2)

− 2f4f1(f3 − f1f2) − 3f 2
2
(
f4 − f 2

2
) − 2f3(f5 − f3f2)

+ 2f1f2(f5 − f3f2) + 2f2f3(f3 − f1f2) + 2f1f3
(
f4 − f 2

2
)
.

Taken at (0,0), each term with even subscript vanishes and we have

∂g

∂v
(0,0) = σ 2(

μ6 − μ4σ
2) + μ4

(
μ4 − σ 4) − 3σ 4(

μ4 − σ 4)
= σ 2μ6 − 3μ4σ

4 + 2σ 8 + (
μ4 − σ 4)2

.
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Finally
∂

∂v

(
f4 − f 2

2

g

)
(0,0)

= μ6 − 3σ 2μ4 + 2σ 6

σ 2(μ4 − σ 4)
− σ 2μ6 − 3μ4σ

4 + 2σ 8 + (μ4 − σ 4)2

σ 4(μ4 − σ 4)
,

which is equal to (σ 4 − μ4)/σ
4 after simplification. Therefore

∂3I

∂y ∂x2

(
0, σ 2) = 0 + ∂v

∂y

(
0, σ 2) ∂

∂v

(
f4 − f 2

2

g

)
(0,0)

= 1

μ4 − σ 4 × σ 4 − μ4

σ 4 = − 1

σ 4 .

This is what we wanted to prove. Let us compute now the fourth partial derivative
of I with respect to x. We have to obtain first an expression of the third partial
derivative of I with respect to x,

∂3I

∂x3 = ∂u

∂x
× ∂

∂u

(
f4 − f 2

2

g

)
(u, v) + ∂v

∂x
× ∂

∂v

(
f4 − f 2

2

g

)
(u, v).

The only term we do not know is the partial derivative with respect to u of (f4 −
f 2

2 )/g. We have

∂

∂u

(
f4 − f 2

2

g

)
= 1

g
× ∂

∂u

(
f4 − f 2

2
) − f4 − f 2

2

g2 × ∂g

∂u

= f5 − f4f1 − 2f2f3 + 2f 2
2 f1

g
− f4 − f 2

2

g2 × ∂g

∂u
,

with
∂g

∂u
= f2(f5 − f4f1) + f4(f3 − f2f1) − f 2

1 (f5 − f4f1)

− 2f4f1
(
f2 − f 2

1
) − 3f 2

2 (f3 − f2f1) − 2f3(f4 − f3f1)

+ 2f1f2(f4 − f3f1) + 2f2f3
(
f2 − f 2

1
) + 2f1f3(f3 − f2f1).

Notice that this quantity vanishes at (0,0). Therefore the partial derivative of
(f4 − f 2

2 )/g with respect to u, taken at (0,0), is null as well, and we get back
that the third partial derivative of I with respect to x, taken at (0, σ 2), is null.
Differentiating once more, we obtain

∂4I

∂x4 = ∂2u

∂x2 × ∂

∂u

(
f4 − f 2

2

g

)
(u, v) + ∂2v

∂x2 × ∂

∂v

(
f4 − f 2

2

g

)
(u, v)

+ ∂u

∂x
×

(
∂u

∂x
× ∂2

∂u2

(
f4 − f 2

2

g

)
(u, v) + ∂v

∂x
× ∂2

∂v ∂u

(
f4 − f 2

2

g

)
(u, v)

)

+ ∂v

∂x
×

(
∂u

∂x
× ∂2

∂u∂v

(
f4 − f 2

2

g

)
(u, v) + ∂v

∂x
× ∂2

∂v2

(
f4 − f 2

2

g

)
(u, v)

)
.
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Let us compute it at (0, σ 2),

∂4I

∂x4

(
0, σ 2) = 1

σ 2

(
1

σ 2

∂2

∂u2

(
f4 − f 2

2

g

)
(0,0) + 0

)

+ 0 + σ 4 − μ4

σ 4

∂2v

∂x2

(
0, σ 2) + 0,

with

∂2v

∂x2

(
0, σ 2) = ∂

∂x

(
∂2I

∂x ∂y

)(
0, σ 2) = ∂3I

∂x2 ∂y

(
0, σ 2) = − 1

σ 4

and

∂2

∂u2

(
f4 − f 2

2

g

)
= 1

g

∂2

∂u2

(
f4 − f 2

2
) − 2

g2

∂g

∂u

∂

∂u

(
f4 − f 2

2
)

− f4 − f 2
2

g2

∂2g

∂u2 + 2

g3

(
∂g

∂u

)2(
f4 − f 2

2
)
.

Hence

∂2

∂u2

(
f4 − f 2

2

g

)
(0,0) = 1

σ 4(μ4 − σ 4)

(
σ 2 ∂2

∂u2

(
f4 − f 2

2
)
(0,0) − ∂2g

∂u2 (0,0)

)
.

The two remaining terms are the derivatives of quantities which we have already
computed. In the following, we evaluate them directly at (0,0), which is straight-
forward since fj (0,0) = 0 when j is odd:

∂2

∂u2

(
f4 −f 2

2
)
(0,0) = ∂

∂u

(
f5 −f4f1 −2f2f3 +2f 2

2 f1
)
(0,0) = μ6 −3σ 2μ4 +2σ 6

and

∂2g

∂u2 (0,0) = ∂

∂u

(
∂g

∂u

)
(0,0) = σ 2(

μ6 − μ4σ
2) + μ4

(
μ4 − σ 4) − 0 − 2μ4σ

4

− 3σ 4(
μ4 − σ 4) − 2μ2

4 + 2σ 4μ4 + 2σ 4μ4 + 0.

This is equal to σ 2μ6 − μ2
4 + 3σ 8 − 3μ4σ

4 after simplification. Thus we have

∂2

∂u2

(
f4 − f 2

2

g

)
(0,0) = σ 2μ6 − 3σ 4μ4 + 2σ 8 − σ 2μ6 + μ2

4 − 3σ 8 + 3μ4σ
4

σ 4(μ4 − σ 4)

= μ2
4 − σ 8

σ 4(μ4 − σ 4)
= μ4 + σ 4

σ 4 .

Finally

∂2I

∂x4

(
0, σ 2) = μ4 + σ 4

σ 8 − σ 4 − μ4

σ 8 = 2μ4

σ 8 .

We obtain the announced term and the proof is complete. �
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7. Proof of Theorem 2. We first give conditions on the probability measure ρ

in order to apply Theorem A.5 (see Appendix A) to the distribution νρ . We will use
then Laplace’s method, as we announced in the heuristics of Section 3, to obtain
the fluctuations Theorem 2. The proof will rely on the expansion of I − F around
(0, σ 2) given in Proposition 15. We will also use the variant of Varadhan’s lemma,
stated in Proposition 14. We start with the following lemma:

LEMMA 16. If ρ has a probability density f with respect to the Lebesgue
measure on R, then ν∗2

ρ has the density

f2 : (x, y) 	−→ 1√
2y − x2

f

(x +
√

2y − x2

2

)
f

(x −
√

2y − x2

2

)
1x2<2y

with respect to the Lebesgue measure on R2.

PROOF. Let h be a bounded continuous function from R2 to R. We have∫
R2

h(x, y) dν∗2
ρ (x, y) =

∫
R2

h
((

z, z2) + (
t, t2))

dρ(z) dρ(t)

=
∫
D+

h
(
z + t, z2 + t2)

f (z)f (t) dz dt

+
∫
D−

h
(
z + t, z2 + t2)

f (z)f (t) dz dt,

with D+ = {(z, t) ∈ R2 : z > t} and D− = {(z, t) ∈ R2 : z < t}. Indeed, the
Lebesgue measure of the set {(z, t) ∈ R2 : z = t} is null. Let us denote, respec-
tively, by I+ and I− the two previous integrals.

We define φ : (z, t) ∈ R2 	−→ (u, v) = (z + t, z2 + t2). It is a one to one map
from D+ (resp., from D−) onto 	2 = {(u, v) ∈ R2 :u2 < 2v}. Moreover φ is C1

on D+ ∪ D−, and its Jacobian in (z, t) is 2|z − t | = 2
√

2v − u2 �= 0. The change
of variables given by φ yields

I+ =
∫
	2

h(u, v)
1

2
√

2v − u2
f

(
u + √

2v − u2

2

)
f

(
u − √

2v − u2

2

)
dudv,

and I− = I+. By adding theses two terms, we get the lemma. �

By Theorem A.5 in the Appendix, the expansion of gn holds as soon as there
exists q ∈ [1,+∞[ such that f̂2 ∈ Lq(Rd). However the computation of f̂2 is not
feasible in general. Proposition A.6 says that the previous condition is satisfied if
there exists p ∈]1,2] such that f2 ∈ Lp(Rd) so that the expansion is true. Let us
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take a look at this:∫
R2

∣∣f2(u, v)
∣∣p dudv

=
∫
R2

f p((u + √
2v − u2)/2)f p((u − √

2v − u2)/2)

(2v − u2)p/2 1u2<2v dudv.

Let us make the change of variables given by

(u, v) 	−→ (x, y) = 1
2

(
u +

√
2v − u2, u +

√
2v − u2

)
,

which is a C1-diffeomorphism from 	2 to D+ (see the proof of the previous
lemma) with Jacobian in (u, v), 2

√
2v − u2 = 2(y − x) > 0:∫

R2

∣∣f2(u, v)
∣∣p dudv =

∫
R2

f p(x)f p(y)

(y − x)p
2(y − x)1y>x dx dy.

By symmetry in x and y, we get∫
R2

∣∣f2(u, v)
∣∣p dudv =

∫
R2

f p(x)f p(y)|y − x|1−p dx dy.

Then we get the following proposition:

PROPOSITION 17. Suppose that ρ has a density f with respect to the
Lebesgue measure on R such that, for some p ∈]1,2],∫

R2
f p(x + y)f p(y)|x|1−p dx dy < +∞.

Then, for n large enough, ν̃n,ρ has a density gn with respect to the Lebesgue mea-
sure on R2 such that, for any compact subset KI of AI , when n goes to +∞,
uniformly over (x, y) ∈ KI .

gn(x, y) ∼ n

2π

(
det D2

(x,y)I
)1/2

e−nI (x,y).

Let us prove now Theorem 2. Suppose that ρ is a probability measure on R with
an even density f such that there exist v0 > 0 and p ∈]1,2] such that∫

R
ev0z

2
f (z) dz < +∞ and

∫
R2

f p(x + y)f p(y)|x|1−p dx dy < +∞.

The first inequality implies that R×]−∞, v0[⊂ D
 and thus (0,0) ∈ ◦
D
. More-

over ρ is symmetric (since f is even), and its support contains at least three points
(since ρ has a density). Proposition 15 implies that there exists δ > 0 such that

∀(x, y) ∈ Bδ G(x, y) = I (x, y) − x2

2y
≥ (y − σ 2)2

4(μ4 − σ 4)
+ μ4x

4

24σ 8 ,(*)
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where μ4 denotes the fourth moment of ρ and Bδ the open ball of radius δ centered
at (0, σ 2). We can reduce δ, in order to have Bδ ⊂ KI where KI is a compact subset
of AI . Moreover AI ⊂ ◦

DI ⊂ 	∗ thus Bδ ∩ 	∗ = Bδ .
Let n ∈ N, and let f :R−→ R be a bounded continuous function. We have

Eμ̃n,ρ

(
f

(
Sn

n3/4

))
= 1

Zn

∫
	∗

f
(
xn1/4)

exp
(

nx2

2y

)
dν̃n,ρ(x, y) = An + Bn

Zn

,

with

An =
∫

Bδ

f
(
xn1/4)

exp
(

nx2

2y

)
dν̃n,ρ(x, y),

Bn =
∫
	∗∩Bc

δ

f
(
xn1/4)

exp
(

nx2

2y

)
dν̃n,ρ(x, y).

In what follows, we introduce e−nI (x,y) in the expression of An, in order to use
Proposition 17:

An = n

∫
Bδ

f
(
xn1/4)

e−nG(x,y)Hn(x, y) dx dy,

where we set Hn(x, y) = enI (x,y)gn(x, y)/n. We define

Bδ,n = {
(x, y) ∈ R2 : x2/

√
n + y2/n ≤ δ2}

.

Let us make the change of variables given by (x, y) 	−→ (xn−1/4, yn−1/2 + σ 2),
with Jacobian n−3/4,

An = n1/4
∫

Bδ,n

f (x) exp
(
−nG

(
x

n1/4 ,
y√
n

+ σ 2
))

× Hn

(
x

n1/4 ,
y√
n

+ σ 2
)

dx dy.

We check now that we can apply the dominated convergence theorem to this inte-
gral. The uniform expansion of gn (see Proposition 17) means that for any α > 0,
there exists n0 ∈ N such that

∀(x, y) ∈ KI ,∀n ≥ n0
∣∣Hn(x, y)2π

(
det D2

(x,y)I
)−1/2 − 1

∣∣ ≤ α.

If (x, y) ∈ Bδ,n, then (xn, yn) = (xn−1/4, yn−1/2 + σ 2) ∈ Bδ ⊂ KI . Thus for all
n ≥ n0 and (x, y) ∈ Bδ,n,∣∣∣∣Hn

(
x

n1/4 ,
y√
n

+ σ 2
)

2π
(
det D2

(xn,yn)I
)−1/2 − 1

∣∣∣∣ ≤ α.

Moreover (xn, yn) goes to (0, σ 2). Thus by continuity,(
D2

(xn,yn)I
)−1/2 −→

n→+∞
(
D2

(0,σ 2)
I
)−1/2 = (

D2
(0,0)


)1/2
,
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whose determinant is equal to
√

σ 2(μ4 − σ 4). Therefore

1Bδ,n(x, y)Hn

(
x

n1/4 ,
y√
n

+ σ 2
)

−→
n→+∞

(
4π2σ 2(

μ4 − σ 4))−1/2
.

The expansion of G in the neighborhood of (0, σ 2) implies that

exp
(
−nG

(
x

n1/4 ,
y√
n

+ σ 2
))

−→
n→+∞ exp

(
− y2

2(μ4 − σ 4)
− μ4x

4

12σ 8

)
.

Let us check that the integrand is dominated by an integrable function, which is
independent of n. The function

(x, y) 	−→ (
D2

(x,y)I
)−1/2

is bounded on Bδ by some Mδ > 0. The uniform expansion of gn implies that for
all (x, y) ∈ Bδ , Hn(x, y) ≤ Cδ for some constant Cδ > 0. Finally, the inequality (*)
above yields

1Bδ,n(x, y)f (x) exp
(
−nG

(
x

n1/4 ,
y√
n

+ σ 2
))

Hn

(
x

n1/4 ,
y√
n

+ σ 2
)

≤ ‖f ‖∞Cδ exp
(
− y2

4(μ4 − σ 4)
− μ4x

4

24σ 8

)
.

The right term is an integrable function on R2; thus it follows from the dominated
convergence theorem that

An ∼+∞n1/4
∫
R2

f (x)√
2πσ 2

√
2π(μ4 − σ 4)

exp
(
− y2

2(μ4 − σ 4)
− μ4x

4

12σ 8

)
dx dy.

By Fubini’s theorem, we get

An ∼+∞
n1/4

√
2πσ 2

∫
R

f (x) exp
(
−μ4x

4

12σ 8

)
dx.

Let us focus now on Bn. The distribution ρ is symmetric, it has a density and (0,0)

belongs to the interior of D
; thus Proposition 14 implies that there exist ε > 0
and n0 ≥ 1 such that for any n ≥ n0,∫

	∗∩Bc
δ

exp
(

nx2

2y

)
dν̃n,ρ(x, y) ≤ e−nε,

and thus Bn ≤ ‖f ‖∞e−nε , so that Bn = o(n1/4). Therefore

An + Bn ∼+∞
n1/4

√
2πσ 2

∫
R

f (x) exp
(
−μ4x

4

12σ 8

)
dx.
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Applying this to f = 1, we get

Zn ∼+∞
2n1/4

√
2πσ 2

∫ +∞
0

exp
(
−μ4x

4

12σ 8

)
dx = n1/4

√
2πσ 2

1

2

(
12σ 8

μ4

)1/4

�

(
1

4

)
,

where we made the change of variables y = μ4x
4/(12σ 8). Finally

Eμ̃n,ρ

(
f

(
Sn

n3/4

))
∼+∞

(
4μ4

3σ 8

)1/4

�

(
1

4

)−1 ∫
R

f (x) exp
(
−μ4x

4

12σ 8

)
dx.

The ultimate change of variables s = μ
1/4
4 x/σ 2 gives us Theorem 2.

APPENDIX A: GENERAL RESULTS ON THE CRAMÉR TRANSFORM

We present here some general results on the Cramér transform of distributions
on Rd .

A probability measure R is said to be degenerate if it is a Dirac mass. The
following definition generalizes this notion for measures on Rd :

DEFINITION A.1. A probability measure ν on Rd , d ≥ 2, is said to be de-
generate if its support is included in a hyperplane of Rd ; that is, there exists a
hyperplane H of Rd such that ν(H) = 1.

A first consequence of the nondegeneracy of ν is that its covariance matrix is a
symmetric positive definite matrix; see Section III.5 of [13] for a proof.

From this point forward, we consider ν a nondegenerate probability measure on
Rd . The log-Laplace L of ν is defined in Rd by

∀λ ∈ Rd L(λ) = ln
∫
Rd

e〈λ,z〉 dν(z),

where 〈·, ·〉 denotes the inner product in Rd . It is a convex function on Rd which
takes its values in ]−∞,+∞]. The Fenchel–Legendre transform of L is called the
Cramér transform of ν and is defined on Rd by

∀x ∈ Rd J (x) = sup
λ∈Rd

(〈λ,x〉 − L(λ)
)
.

It is a nonnegative, convex and lower semi-continuous function. We denote by DL

and DJ the convex sets where L and J are finite. Noticethat if
◦
DL is nonempty,

then L is C∞ on
◦
DL. We refer to Section 2.2 of [7], Section VII.5 of [11] and

Sections 25 and 26 of [19] for the main results on L and J . Cramér’s theorem
(Theorem B.4 in the Appendix) links J and the large deviations of Sn/n where Sn

is the sum of n independent random variables with common distribution ν.
We are interested in the points λ realizing the supremum defining J (x), for

x ∈ DJ . We denote by C the closed convex hull of the support of ν.
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LEMMA A.2. Let ν be a nondegenerate probability measure on Rd . The in-
terior of C is not empty and

◦
C ⊂ DJ ⊂ C. Moreover for any x ∈ ◦

C, the supremum
defining J (x) is realized for some value λ(x) ∈ DL.

PROOF. The nondegeneracy of ν means that its support is not included in
a hyperplane of Rd . Therefore the support of ν contains d linearly independent
vectors, and the interior of the convex hull of these vectors is nonempty. Thus

◦
C is

nonempty.
Suppose that C �= Rd (otherwise it is immediate that DJ ⊂ C). Let x /∈ C. By the

Hahn–Banach theorem, there exists λ ∈ Rd and a ∈ R such that

∀y ∈ C 〈λ,y〉 ≤ a < 〈λ,x〉.
Since ν(C) = 1, Jensen’s inequality implies that

∀t > 0 J (x) ≥ − ln
∫
C

exp
(
t〈λ,y〉 − t〈λ,x〉)dν(y) ≥ t

(〈λ,x〉 − a
)
.

Sending t to +∞, we conclude that J (x) = +∞. Thus DJ ⊂ C.

Let x ∈ ◦
C, and let (λn)n∈N be a sequence in Rd such that

J (x) = lim
n→+∞

(
〈λn, x〉 − ln

∫
Rd

exp
(〈λn, z〉)dν(z)

)
= − ln lim

n→+∞

∫
Rd

exp
(〈λn, z − x〉)dν(z).

We suppose that |λn| goes to +∞, and we show that it leads to a contradiction. For
all n ∈ N, we set un = λn|λn|−1. Then (un)n∈N is a bounded sequence. Thus, up to
the extraction of a subsequence, we might assume that it converges to some vector
u ∈ Rd whose norm is 1. Let v belong to the support of ν, and let U be an open
subset of Rd containing v. We have then ν(U) > 0. Suppose that for any z ∈ U ,
〈u, z − x〉 > 0. Then, by Fatou’s lemma,

+∞ =
∫
U

lim inf
n→+∞ exp

(|λn|〈un, z − x〉)dν(z)

≤ lim inf
n→+∞

∫
U

exp
(|λn|〈un, z − x〉)dν(z).

Hence

exp
(−J (x)

) = lim
n→+∞

∫
Rd

exp
(|λn|〈un, z − x〉)dν(z) = +∞.

Thus J (x) = −∞, which is absurd since J is a nonnegative function. We conclude
that for all v in the support of ν and for any open subset U of Rd containing v,
there exists z ∈ U such that 〈u, z − x〉 ≤ 0. It follows that, for any v in the support
of ν, 〈u, v〉 ≤ 〈u,x〉. This inequality is stable by convex combinations, thus

∀y ∈ C 〈u,y〉 ≤ 〈u,x〉.
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Since x ∈ ◦
C, there exists a ball Bx centered at x and contained in C. Thus there

exists y0 ∈ Bx such that 〈u,y0〉 > 〈u,x〉, which is absurd. Therefore (λn)n∈N is a
bounded sequence. Hence there exists a subsequence (λφ(n))n∈N and λ(x) ∈ Rd

such that λφ(n) goes to λ(x). By Fatou’s lemma,

J (x) = 〈
λ(x), x

〉 − ln lim
n→+∞

∫
Rd

exp
(〈λn, z〉)dν(z)

≤ 〈
λ(x), x

〉 − ln
∫
Rd

lim inf
n→+∞ exp

(〈λn, z〉)dν(z)

= 〈
λ(x), x

〉 − ln
∫
Rd

exp
(〈
λ(x), z

〉)
dν(z) ≤ J (x).

Thus J (x) = 〈λ(x), x〉−L(λ(x)). Since L(λ(x)) �= −∞, this formula implies that
J (x) < +∞ and thus that

◦
C ⊂ DJ . Moreover if L(λ(x)) = +∞, then J (x) = −∞,

which is absurd. Therefore L(λ(x)) < ∞. This shows that the supremum defining
J (x) is realized at a point λ(x) with 
(λ(x)) < +∞. �

If DL is an open subset of Rd , then for all (x, y) ∈ ◦
DJ = ◦

C, the supremum
defining J (x) is realized at some λ(x) ∈ ◦

DL. This is the case when the support of
ν is bounded, and also for the distribution νρ when ρ is the Gaussian N (0, σ 2),
where we have then DL =R×]−∞,1/(2σ 2)[.

Now we study the smoothness of J .

NOTATION. If f is a differentiable function on an open subset U of Rd , we
denote by Dxf the differential of f at x ∈ U . If f is real-valued, we denote:

� D2
xf its second differential at x ∈ U (considered as a matrix of size d × d).

� ∇f the function U −→ Rd such that

∀x ∈ U,∀y ∈ Rd 〈∇f (x), y
〉 = Dxf (y).

We define the admissible domain of J :

DEFINITION A.3. Let ν be a nondegenerate probability measure on Rd such
that the interior of DL is nonempty. The admissible domain of J is the set AJ =
∇L(

◦
DL).

The following proposition states that AJ , the admissible domain of J , is an
open subset of Rd , and that J is C∞ on AJ .

PROPOSITION A.4. Let ν be a nondegenerate probability measure on Rd such
that the interior of DL is nonempty. Let AJ be the admissible domain of J . We
have:
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(a) The function ∇L is a C∞-diffeomorphism from
◦
DL to AJ . Moreover

AJ ⊂ DJ = {
x ∈ Rd :J (x) < +∞}

.

(b) Denote by λ the inverse C∞-diffeomorphism of ∇L. Then the function J

is C∞ on AJ and for any x ∈ AJ ,

J (x) = 〈
x,λ(x)

〉 − L
(
λ(x)

)
,

∇J (x) = (∇L)−1(x) = λ(x) and D2
xJ = (

D2
λ(x)L

)−1
.

(c) If DL is an open subset of Rd , then AJ = ◦
DJ = ◦

C where C denotes the
convex hull of the support of ν.

PROOF. The points (a) and (b) are proved in Section 2 of [1], Section 1.5
of [6] and Section 26 of [19]; see also Section VIII.4 of [11] in the case where
DL = Rd . Let us prove point (c). If DL is an open subset of Rd , then Lemma A.2

implies that for x ∈ ◦
C = ◦

DJ , the supremum defining J (x) is realized at some point
λ(x) ∈ DL = ◦

DL. The function L is differentiable at λ(x), and point (b) yields that

x = ∇L
(
λ(x)

) ∈ 
(
◦
DL) = AJ .

Thus
◦
DJ ⊂ AJ . Finally AJ ⊂ DJ , and AJ is open; thus AJ = ◦

DJ = ◦
C. This

proves (c). �

Let ν be a probability distribution on Rd having a density with respect to the
Lebesgue measure, and let Sn be the sum of n independent and identically dis-
tributed random variables with distribution ν. The following theorem states that,
under some hypothesis allowing the Fourier inversion, the density of the distribu-
tion of Sn/n is asymptotically a function of J , the Cramér transform of ν. We refer
to Section 3 of the article of Andriani and Baldi [1] for a proof.

THEOREM A.5. Let ν be a nondegenerate probability measure on Rd . We
denote by L its log-Laplace and by J its Cramér transform. Suppose that

◦
DL �= ∅

and that there exists n0 ≥ 1 such that

ν̂∗n0 ∈ L1(
Rd)

.

We denote by AJ the admissible domain of J . Let (Xn)n≥1 be a sequence of inde-
pendent and identically distributed random variables with distribution ν. For any
n ≥ n0, the random variable Xn = (X1 +· · ·+Xn)/n has a density gn with respect
to the Lebesgue measure on Rd . If KJ is a compact subset of AJ , then uniformly
over x ∈ KJ , when n goes to +∞,

gn(x) ∼
(

n

2π

)d/2(
det D2

xJ
)1/2

e−nJ (x).
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PROPOSITION A.6. Let ν be a nondegenerate probability measure on Rd such
that

◦
DL �= ∅. If there exists m ∈ N and p ∈]1,2] such that ν∗m has a density

fm ∈ Lp(Rd), then the hypotheses of Theorem A.5 are verified.

PROOF. The Hausdorff–Young inequality (see Theorem 1.2.1 of [5]) implies
that f̂m ∈ Lr (Rd), with r = p/(p − 1). Moreover f̂m is bounded, so f̂m ∈ Lq(Rd),
where q is a positive integer larger than r . Therefore

ν̂∗mq = (
ν̂∗m

)q = (f̂m)q ∈ L1(
Rd)

.

Hence the hypotheses of the theorem are verified with n0 = mq . �

APPENDIX B: SOME RESULTS ON LARGE DEVIATIONS

Let (X ,B) be a topological space. We refer to the Section 1.2 of [7] for the two
following definitions:

DEFINITION B.1. A rate function on X is a nonnegative map J defined on X
and which is lower semi-continuous; that is, for any α > 0, the level set {x ∈
X :J (x) ≤ α} is a closed subset of X . A good rate function is a rate function for
which all these level sets are compact sets of X .

DEFINITION B.2. A sequence (μn)n≥1 of probability measures on X satis-
fies a large deviation principle with speed n and which is governed by the rate
function J if, for any A ∈ B,

− inf
{
J (x) :x ∈ ◦

A
} ≤ lim inf

n→+∞
1

n
lnμn(A)

≤ lim sup
n→+∞

1

n
lnμn(A) ≤ − inf

{
J (x) :x ∈ A

}
.

The following lemma is a variant of the upper bound of Varadhan’s lemma; see
Lemma 4.3.6 of [7].

LEMMA B.3. Let X be a regular topological space endowed with its Borel
σ -field B. Let (νn)n≥1 be a sequence of probability measures defined on (X ,B)

which satisfies a large deviation principle with speed n, governed by the good rate
function J . For any bounded continuous function f :X −→ R, we have for any
closed subset A of X ,

lim sup
n→+∞

1

n
ln

∫
A

enf (x) dνn(x) ≤ sup
x∈A

(
f (x) − J (x)

)
.
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We end this Appendix with the Cramér theorem in Rd (see Theorem 2.2.30
of [7]):

THEOREM B.4 (Cramér). Let ν be a probability measure on Rd , d ≥ 1. We
denote by L its log-Laplace and by J its Cramér transform. Let (Xn)n≥1 be a
sequence of independent random variables with common law ν. We define

∀n ≥ 1 Sn = X1 + · · · + Xn.

If L is finite in the neighborhood of 0, then J is a good rate function, and the
sequence of the laws of Sn/n, n ≥ 1 satisfies the large deviation principle with
speed n and governed by J .
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