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PLANAR LATTICES DO NOT RECOVER FROM FOREST FIRES
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Self-destructive percolation with parameters p, δ is obtained by taking
a site percolation configuration with parameter p, closing all sites belonging
to infinite clusters, then opening every closed site with probability δ, indepen-
dently of the rest. Call θ(p, δ) the probability that the origin is in an infinite
cluster in the configuration thus obtained.

For two-dimensional lattices, we show the existence of δ > 0 such that,
for any p > pc, θ(p, δ) = 0. This proves the conjecture of van den Berg
and Brouwer [Random Structures Algorithms 24 (2004) 480–501], who in-
troduced the model. Our results combined with those of van den Berg and
Brouwer [Random Structures Algorithms 24 (2004) 480–501] imply the
nonexistence of the infinite parameter forest-fire model. The methods herein
apply to site and bond percolation on any two-dimensional planar lattice with
sufficient symmetry.

1. Introduction. Self-destructive percolation was introduced in 2004 by van
den Berg and Brouwer [17]. It may be formulated for both bond and site percola-
tion; we choose to consider the latter. Fix some infinite connected graph G.

For δ,p ≥ 0 consider a regular site percolation configuration with intensity p.
Close all sites contained in the, possibly many, infinite clusters; we say infinite
clusters are “burned.” Finally, open every closed site in the above configuration
with probability δ, independently of all previous choices. Call Pp,δ the measure
governing the configuration thus obtained and θ(p, δ) the Pp,δ-probability that
a given site (called the origin) is in an infinite cluster. Formal and extended defini-
tions will be given in Section 2.

Let δc(p) = inf{δ : θ(p, δ) > 0}, and let pc = pc(G) denote the critical point for
regular site percolation. For p < pc and δ ≥ 0, Pp,δ is just a regular percolation
measure with parameter p + (1 − p)δ. In particular δc(p) = pc−p

1−p
when p < pc.

Consequently, self-destructive percolation is only interesting for p ≥ pc. In their
original paper [17], van den Berg and Brouwer conjectured that, for planar lattices,
δc is uniformly bounded away from 0 when p > pc.
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The conjecture is somewhat surprising. Recall that on planar lattices there is
no infinite cluster at p = pc. Hence, when p is only slightly larger than pc, the
infinite percolation cluster is very thin, and it may be expected that, after burning
it, opening only few sites suffices to obtain a new infinite cluster.

Recently Ahlberg, Sidoravicius and Tykesson [2] proved that, for nonamenable
graphs G, the conclusion of the conjecture is false, that is, δc(p) → 0 as p → pc.
The same has been shown by Ahlberg et al. [1] for high-dimensional lattices (more
precisely for bond percolation on Zd with d large enough).

In two dimensions it has been proved in [17], Proposition 3.1, that δc(p) > 0
for any given p > pc. This was later strengthened by van den Berg and de Lima
[20] to the linear lower bound δc(p) ≥ (p − pc)/p, but a bound which is nonzero
and uniform in p could not be obtained. In the present paper we prove the afore-
mentioned conjecture. For illustration we will consider site percolation on the two-
dimensional lattice Z2; see Section 2 for precise definitions. Fix G = Z2 from now
on.

THEOREM 1. There exists δ > 0 such that, for all p > pc, θ(p, δ) = 0.

REMARK 2. Theorem 1 also holds for site and bond self-destructive per-
colation on any planar graph which is invariant under a translation (by some
u ∈R2 \{0}), a rotation [of an angle ϕ ∈ (0, π)] and reflection with respect to some
line. These symmetry conditions are needed for the RSW result of Proposition 3.
Indeed Proposition 3 may be adapted to lattices with the symmetry conditions
above.

In particular, an analogue of Theorem 1 also holds for site percolation on the
triangular lattice and bond percolation on the square lattice.

Let us discuss some implications of Theorem 1. Let δc be the limit of δc(p)

as p ↘ pc. Theorem 1 together with the results in [19] shows that the function
(p, δ) → θ(p, δ) is continuous on the set [0,1]2 \ {pc}× (0, δc], while it is discon-
tinuous on {pc} × (0, δc].

Our result has important consequences for forest fires, a class of model in-
troduced in [5]. Intuitively, an infinite-parameter forest fire is a process indexed
by t ≥ 0 defined as follows. At time t = 0, all sites are closed. As t increases,
sites open independently at rate 1. When an infinite cluster appears it is immedi-
ately burned (i.e., all its sites are closed). Then sites become open again at rate 1,
etcetera.

It is not clear whether such a model actually exists. We show in Section 3 that
our results combined with those in [17] imply that infinite-parameter forest fires
cannot be defined on two-dimensional lattices.

To avoid the problems of definition, one can investigate the N -parameter for-
est fire models with N < ∞. That is, we modify the dynamics above by burning
clusters as soon as their “size” reaches N . Our results with those of [18] provide
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some insight to the behavior of these processes. We find a behavior which is quite
different compared to that of a mean field version of the forest fire model; cf. [13].
See Section 3 for a more detailed discussion.

Organization of the paper. In Section 2 we introduce the formal definitions
and notation used throughout the paper. Once the notation is in place, in Section 3
we state a result on certain box-crossing probabilities (Theorem 4) and show how
Theorem 1 can be deduced from it. We also discuss in more detail its implications
for forest fire models. Theorem 4 is our main contribution.

Section 4 contains a review of the notion of arm events essential, to the proofs
of the next section. In Section 5 we provide a delicate counting argument which
proves Theorem 4.

2. Definitions and notation.

2.1. The model. Let Z2 denote the square lattice with vertices V (Z2) (also
called sites) and edges E(Z2). For sites x, y ∈ V (Z2) we write x ∼ y, alternatively
(x, y) ∈ E(Z2), when ‖x − y‖2 = 1. Set � = {0,1}V (Z2). We call an element ω ∈
� a configuration and write {ω(x) :x ∈ V (Z2)} for its coordinates. A site x with
ω(x) = 1 is called open (or ω-open when the configuration needs to be specified),
while one with ω(x) = 0 is called closed.

A path on Z2 is a sequence of sites γ = (u0, . . . , un) with ui ∼ ui+1 for i =
0, . . . , n− 1. Moreover we ask all paths to be self-avoiding, that is, for the vertices
u0, . . . , un to be pairwise distinct. A path is called ω-open (resp., ω-closed) for
a configuration ω if all its vertices are ω-open (resp., ω-closed).

For a configuration ω and x, y ∈ V (Z2), we say x is connected to y in ω, and
write x

ω↔ y, if there exists an ω-open path with endpoints x and y. We write
x

ω↔ ∞ and say that x is connected to infinity if there exists an infinite ω-open
path starting at x. Finally we write x

ω
� y and x

ω
� ∞ for the negations of the

above events. A cluster is a connected component of the graph induced by the
open sites of Z2.

For p ∈ [0,1], let Pp be the site percolation measure on Z2 with intensity p.
That is, Pp is the product measure on � with Pp(ω(x) = 1) = p for all x ∈ V (Z2).

Finally let pc = sup{p ≥ 0 :Pp(0
ω↔ ∞) = 0}. For p > pc it is well known that

there exists Pp-a.s. a unique infinite cluster. For this and further details on perco-
lation we direct the reader to [6].

Let p ∈ [0,1], and consider a configuration ω chosen according to Pp . We de-
fine a modification of ω, called ω, as follows. For x ∈ V (Z2),

ω(x) =
{

1, if ω(x) = 1 and x
ω
� ∞,

0, otherwise.

Let δ ≥ 0 and σ be a configuration chosen according to Pδ , independently of ω.
The enhancement of ω with intensity δ is ωσ (x) = ω(x) ∨ σ(x).
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Let Pp,δ denote the probability measure governing ω, σ and thus ω and ωσ . To
avoid confusion, when working with Pp,δ , we will usually state to which configu-
ration we refer. When writing simply Pp,δ(A) we mean Pp,δ(ω

σ ∈ A). Let

θ(p, δ) = Pp,δ

(
0

ωσ←→ ∞)
.

Note that Pp,δ is increasing in δ, hence so is θ .

2.2. Further notation. Let dist(·, ·) denote the L∞ distance on Z2. That is,

dist(x, y) = max
(|x1 − y1|, |x2 − y2|) for x = (x1, x2), y = (y1, y2) ∈ Z2.

For u ∈ V (Z2) and n ≥ 0, denote by 
n(u) the ball of radius n around u for the L∞
distance. Hence 
n(u) = ([−n,n]2 + u) ∩ Z2. When u is omitted, it is assumed
equal to the origin. We will usually identify regions of the plane with the set of
vertices they contain.

For A ⊂ V (Z2), we call the (outer) boundary of A the set

∂A = {
y ∈ V

(
Z2) \ A :y ∼ x for some x ∈ A

};
the internal boundary of A is the set ∂iA = ∂(Ac). The diameter of the set A is
diam(A) = sup{dist(x, y) :x, y ∈ A}.

For a configuration ω and x, y ∈ A ⊂ V (Z2), we say x is ω-connected to y in A,

and write x
ω,A←→ y, if there exists an ω-open path with endpoints x and y, fully

contained in A.
The matching graph of Z2, written (Z2)∗, has the same vertex set as Z2 and

an edge between any two vertices of the same face of Z2. We say that x and y

are ∗-connected, and write x
ω↔∗ y, if there exists ω-closed path in (Z2)∗ with end-

points x and y. The notion of matching graph is proper to site percolation, so when
working with bond percolation it should be replaced by the dual graph. For more
details on matching and dual graphs consult [6].

For m,n ∈ N, we define the rectangular box B(m,n) = [0,m]×[0, n]. The sides
of B(m,n) are the sets [0,m] × {0}, [0,m] × {n}, {0} × [0, n] and {m} × [0, n],
and they are called the bottom, top, left-hand and right-hand side, respectively.
Given a configuration ω, we say B(m,n) is crossed horizontally if there exists an
ω-open path γ contained in B(m,n), with one endpoint on the left-hand side and
one on the right-hand side of B(m,n). We say it is crossed vertically if an ω-open
path contained in B(m,n) connects the top and the bottom. We write Ch(m,n) and
Cv(m,n) for the events that B(m,n) is crossed horizontally, respectively, vertically.
If R is a translate of the box B(m,n), we write Ch(R) and Cv(R) for the appropriate
translations of Ch(m,n) and Cv(m,n).

Finally, we mention a well-known result for standard percolation that is essential
to our analysis. This type of result was initially proved separately by Russo [15]
and Seymour and Welsh [16], hence the name of Russo–Seymour–Welsh (RSW)
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result. For reference we direct the reader to [6], Theorem 11.70. Extensions to
percolation models on general graphs with the symmetries mentioned in Remark 2
are discussed in detail in [7], Section 6.

PROPOSITION 3 (RSW). There exists a constant α > 0 such that, for all n ≥ 1,

Ppc

(
Ch(2n,n)

) ≥ α.(1)

The analogue holds for *-crossings on the matching graph.

3. Box-crossing estimates and consequences for forest fires.

3.1. Crossing boxes after the burn. The proof of Theorem 1 is based on
a crossing-probability estimate. Some additional notation is needed.

Let Rn = [−2n,2n] × [0, n] and Sn = [−3n,3n] × [0, n]. For a configuration
ω let χ be the set of sites x ∈ Sn which are connected to both the left-hand and
right-hand sides of Sn by open paths contained in Sn. Define a configuration ω̃ by
setting, for x ∈ Sn,

ω̃(x) =
{

0, if x ∈ χ ∪ ∂χ ,
1, otherwise.

(2)

In other words, the ω-open clusters containing horizontal crossings of Sn are de-
clared closed in ω̃, as are their boundaries. All other sites are opened. The value
of ω̃ outside of Sn is irrelevant for our purposes; for concreteness we take ω̃ = 0
there. Finally we enhance the vertices inside Rn by setting

ω̃σ (x) =
{

ω̃(x) ∨ σ(x), if x ∈ Rn,
ω̃(x), otherwise.

(3)

THEOREM 4. There exist constants δ, λ, c > 0 such that, for all n ≥ 1,

Ppc,δ

[
ω ∈ Ch(Sn) and ω̃σ ∈ Cv(Rn)

] ≤ cn−λ.(4)

Similar statements to (4) have been shown to imply Theorem 1, but none has
been proved. See, for instance, [17], Conjecture 3.2, and [18], Conjecture 2.1.
Our criterion was inspired by the previous; the slightly different formulation is
particularly adapted to our proof.

Theorem 4 will be proved in Section 5. For completeness we give a proof of
Theorem 1 from Theorem 4 that follows the steps of [17]. We start with a corollary
which requires some additional notation.

Recall the definition of 
n from Section 2.2. Consider some n ∈ N, and define
the annulus A(n,2n) = 
2n \ 
n−1. A circuit in A(n,2n) is a path contained in
A(n,2n) that separates the origin from infinity. For a configuration ω, define a new
modification ω̌ of ω, by closing all sites that are connected by an ω-open path in
A(n,2n) to an ω-open circuit in A(n,2n). As above, for a second configuration σ ,
set ω̌σ = ω̌ ∨ σ .
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COROLLARY 5. There exists a constant ρ > 0 such that, with δ as in Theo-
rem 4,

Ppc,δ

(
∂
n−1

ω̌σ←→ ∂
2n

) ≤ 1 − ρ

for all n ≥ 1.

Before we dive in the proofs of Corollary 5 from Theorem 4 and of Theorem 1
from Corollary 5, let us turn to some other implications of Theorem 4 and Corol-
lary 5.

3.2. Consequences for forest fires. The following was stated as a conditional
result in [17]. Our results imply it.

THEOREM 6 (Theorem 4.1 of [17]). The infinite-parameter forest fire process
does not exist on Z2.

In [17] the above was stated conditionally on [17], Conjecture 3.2. While the lat-
ter is not obviously implied by our results, its main consequence, [17], Lemma 3.4,
is equivalent to Corollary 5 above. The proof of the theorem in [17] is based solely
on [17], Lemma 3.4.

The intuition behind Theorem 6 is the following. Suppose an infinite-parameter
forest fire process is defined, and let tc (defined by 1−e−tc = pc) be the time when
fires start to appear. No fires ignite on [0, tc] since no infinite cluster is produced.
But for any t > tc at least one infinite cluster was produced and burned before t .
Thus an infinity of burning times have to accumulate after tc. But Theorem 1 sug-
gests that there exists a universal τ > 0 such that, after one fire, the process needs
at least time τ to recover and recreate a new infinite cluster. This leads to a contra-
diction, hence the nonexistence of the process.

In [18] van den Berg and Brouwer stated several results for finite-parameter
forest fires conditionally on [18], Conjecture 2.1. Our Theorem 4 implies this con-
jecture, and hence their results. We will state two of them. In the following η[N]
denotes the N -parameter forest fire process. We say η[N] has a fire in 
m when a
cluster intersecting 
m reaches size N and is burned.

THEOREM 7 (Theorem 4.2 and Proposition 4.3 of [18]). There exists t > tc
such that for all m ≥ 0,

lim inf
N→∞ P

(
η[N] has a fire in 
m before time t

) ≤ 1/2,

lim
N→∞P

(
η[N] has at least 2 fires in 
m before time t

) = 0.

The interested reader is referred to [17] and [18] for precise definitions of forest
fires and more details. We conclude the section with the proofs of Corollary 5 and
Theorem 1 given Theorem 4.
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FIG. 1. A situation with ω ∈ Cn and ∂
n−1
ω↔ ∞ (the bold paths are open in ω) and such that

there exists an ωσ -open crossing of the annulus A(n,2n) (dashed path). Then ωσ ≤ ω̌σ , and there
exists an ω̌σ -open crossing in the easy direction of one of the four rectangles forming A(n,2n). Note
that any site of a ω-open horizontal crossing of a gray rectangle is closed in ω̌.

3.3. Proofs. Figure 1 sums up the proofs of both Corollary 5 and Theorem 1.

PROOF OF COROLLARY 5 FROM THEOREM 4. For n ≥ 1 denote the four
6n × n rectangles surrounding 
n by

SB = [−3n,3n] × [−2n,−n], ST = [−3n,3n] × [n,2n],
SL = [−2n,−n] × [−3n,3n], SR = [n,2n] × [−3n,3n].

Let RB = [−2n,2n] × [−2n,−n], and define similarly RT ,RL and RR . Also let
Cn = Ch(SB)∩Ch(ST )∩Cv(SL)∩Cv(SR) and note that, if ω ∈ Cn, then ω contains
an open circuit in A(n,2n). By Proposition 3 and the FKG inequality for regular
percolation, there exists ρ > 0 such that Ppc(Cn) ≥ 2ρ for all n ≥ 1.

Fix δ as in Theorem 4. Let ω ∈ Cn and σ be such that ω̌σ contains an open path
γ between ∂
n−1 and ∂i
2n. Then it is easy to see that γ contains a crossing in
the easy direction of one of the rectangles RB,RT ,RL and RR . In other words,

ω̌σ ∈ Cv(RB) ∪ Cv(RT ) ∪ Ch(RL) ∪ Ch(RR).(5)

Suppose, for instance, that ω̌σ ∈ Cv(RB). Since ω ∈ Cn, all sites connected to a
horizontal crossings of SB are closed in ω̌, and (4) implies that

Ppc,δ

[
ω ∈ Cn and ω̌σ ∈ Cv(RB)

] ≤ cn−α.
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This combined with by (5), and the bound Ppc(Cn) ≥ 2ρ gives

Ppc,δ

(
∂
n−1

ω̌σ←→ ∂
2n

)
≤ Ppc,δ

(
ω ∈ Cn and ∂
n−1

ω̌σ←→ ∂
2n

) + Ppc,δ(ω /∈ Cn)

≤ 4cn−α + 1 − 2ρ.

Taking n large enough in the above completes the proof of Corollary 5. �

PROOF OF THEOREM 1 FROM COROLLARY 5. Corollary 5 gives crossing
probability estimates for measures Ppc,δ . We start by extending these to measures
Pp,δ′ , with p > pc. Let δ > 0 be given by Theorem 4. Fix some p > pc, and let
δ′ > 0 be such that p + (1 − p)δ′ ≤ pc + (1 − pc)δ.

It is easy to check (see, e.g., [17], Corollary 2.4) that the configuration ω̌σ ob-
tained from Ppc,δ stochastically dominates that obtained from Pp,δ′ . In particular,

Ppc,δ

(
∂
n−1

ω̌σ←→ ∂
2n

) ≥ Pp,δ′
(
∂
n−1

ω̌σ←→ ∂
2n

)
.

This together with Corollary 5 implies that

Pp,δ/2
(
∂
n−1

ω̌σ←→ ∂
2n

) ≤ 1 − ρ

for all p sufficiently close to pc and all sufficiently large n. We claim that the above
yields θ(p, δ/2) = 0.

Since p > pc, the probability that ∂
n−1 does not have an ω-open path to ∞ is
at most ρ/2 for n sufficiently large. Moreover, if ∂
n−1

ω↔ ∞, then ω ≤ ω̌. Hence,
for all sufficiently large n,

Pp,δ/2
(
∂
n−1

ωσ←→ ∞) ≤ Pp,δ/2
(
∂
n−1

ω̌σ←→ 
2n

) + Pp,δ/2
(
∂
n−1

ω
� ∞)

≤ 1 − ρ + ρ/2.

The event {ωσ contains an infinite cluster} is translation invariant; thus its proba-
bility is either 0 or 1. The above excludes the latter, hence θ(p, δ/2) = 0. �

4. Arm events. A color sequence of length k is a sequence ς ∈ {0,1}k .
Fix such a color sequence ς , a vertex u ∈ Z2 and integers n ≤ N . We write
Aς (u;n,N) for the event that there exist k pairwise disjoint paths γ1, . . . , γk such
that, for j = 1, . . . , k:

• if ςj = 1, then γj is a open path on Z2, and if ςj = 0, then γj is a closed path
on (Z2)∗;

• γj ⊂ 
N(u) \
n(u) and has one endpoint in ∂
n(u) and the other in ∂i
N(u);
• the endpoints of γ1, . . . , γk are placed in counter-clockwise order on ∂
n(u).
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The paths γj are called arms; and the event Aς (u;n,N) is called an arm event.
When u is omitted, it is assumed to be the origin. The probabilities of arm events
are denoted by πς(n,N) = Ppc(Aς (n,N)).

For very small values of n, Aς (n,N) could be empty because of geometric
constraints. It will be convenient to redefine Aς (n,N) as Aς (|ς |,N) when n ≤
|ς |. Let Aς (n) = Aς (0, n) and πς(n) = πς(0, n).

A related notion is that of half-plane arm events. Let H = R × [0,∞) be the
upper half-plane. Define Ahp

ς (n,N) as the event Aς (n,N), with the additional
restriction that the arms γ1, . . . , γk are all contained in H and that γ1 is the right-
most arm.

The notation for arm events extends to half-plane arm events, thus π
hp
ς (n,N) =

Ppc(A
hp
ς (n,N)), Ahp

ς (n) =Ahp
ς (0, n) and π

hp
ς (n) = π

hp
ς (0, n).

Here are two well-known properties of arm events.

PROPOSITION 8. Fix a color sequence ς . There exists a constant c = c(ς) > 0
such that, for 0 ≤ n ≤ m ≤ N ,

cπς(n,m)πς(m,N) ≤ πς(n,N) ≤ πς(n,m)πς(m,N),(6)

πς(n,2n) ≥ c.(7)

The above also holds for half-plane arm events.

The proposition is not specific to site percolation on Z2; the only thing needed
for the proof is the crossing estimate (1). The bound (6) first appeared in [9], com-
bination of Lemmas 4 and 6, while (7) is a simple consequence of (1). For a modern
treatment of Proposition 8 and for other proofs in this section, we refer the reader
to the survey [12].

We also need to introduce the notion of arms with defects. Let A∗
ς (n,N) be the

set of configurations ω such that there exists a point u and a configuration ω′ equal
to ω outside 
3(u) with ω′ ∈ Aς (n,N). All the notation defined above extends to
arm events with defects, with the attached asterisk.

PROPOSITION 9 (Proposition 18 of [12]). Fix a color sequence ς . There exists
a positive constant C = C(ς) such that, for all n ≤ N ,

Ppc

(
A∗

ς (n,N)
) ≤ C

(
1 + log(N/n)

)
πς(n,N) and

(8)
Ppc

(
Ahp∗

ς (n,N)
) ≤ C

(
1 + log(N/n)

)
πhp

ς (n,N).

REMARK 10. In [12] an arm event with a defect is defined as a modification
of the event Aς (n,N) where the arms are allowed to have at most one vertex of
the opposing color. Our definition is slightly different; nevertheless, Nolin’s proof
readily extends to our case.
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In the rest of the paper, the following types of arm events will play a special
role. Call A1, A5 and A6 the event Aς with ς = (1), ς = (1,0,0,1,0) and ς =
(0,1,0,0,1,0), respectively. In addition, write Ahp

3 and Ahp
4 for the event Ahp

ς

with ς = (1,0,1) and ς = (1,0,0,1), respectively. The same notation applies
to π .

The following is a well-known consequence of (1). See [12], Theorem 24,
and [6], Theorem 11.89.

PROPOSITION 11. There exist constants λ, c,C > 0 such that for all n ≤ N ,

π1(n,N) ≤ (N/n)−λ,(9)

c(N/n)−2 ≤ π5(n,N) ≤ C(N/n)−2,(10)

c(N/n)−2 ≤ π
hp
3 (n,N) ≤ C(N/n)−2.(11)

As a consequence of the above, we have the following estimates for the proba-
bilities of arm events of interest to us. The proof is a simple application of Reimer’s
inequality [14].

COROLLARY 12. There exist constants c, λ > 0 such that, for all n ≤ N ,

π6(n,N) ≤ c(N/n)−(2+λ) and π
hp
4 (n,N) ≤ c(N/n)−(2+λ).

Among the results of this section, only the following corollary will be used
explicitly in the rest of the paper.

COROLLARY 13. There exist constants c ≥ 1 and λ > 0 so that, for all n ≤ N ,

Ppc

(
A∗

6(n,N)
) ≤ c(N/n)−(2+λ) and

(12)
Ppc

(
Ahp∗

4 (n,N)
) ≤ c(N/n)−(2+λ).

PROOF. The statement above follows directly from Proposition 9 and Corol-
lary 12. �

5. Proof of Theorem 4.

5.1. Plan of proof. The proof of Theorem 4 is quite intricate; we start with
some notation and a brief description of the strategy.

Fix some δ > 0 and n ∈ N. Consider a pair of configurations ω,σ , and recall
the definition of χ , ω̃ and ω̃σ from the lines above (2), (2) and (3), respectively.
Call a point x is called enhanced if ω̃(x) = 0 but ω̃σ (x) = 1. We will bound
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FIG. 2. The set χ in black, surrounded by ∂χ . The gray path γ needs to use at least one pas-
sage point to cross χ (black square). Even if a site which is pivotal for {ω ∈ Ch(Sn)} is enhanced,
γ generally needs additional passage points to cross ∂χ (see the empty squares).

the probability Ppc,δ(ω ∈ Ch(Sn) and ω̃σ ∈ Cv(Sn)), which is obviously larger than
Ppc,δ(ω ∈ Ch(Sn) and ω̃σ ∈ Cv(Rn)).

If ω ∈ Ch(Sn), then χ contains a horizontal crossing of Sn. If in addition there
exists a ω̃σ -open vertical crossing of Sn, then it must cross χ , and hence it contains
at least one enhanced point; see Figure 2.

For ω ∈ Ch(Sn) and σ such that ω̃σ ∈ Cv(Sn), let γ be the left-most ω̃σ -open
vertical crossing of Sn containing the minimal number of enhanced points. (We
only take γ to be left-most for it to be uniquely defined.) Call the enhanced points
of γ passage points, and let X be the set of passage points. If ω̃σ /∈ Cv(Sn) or
ω /∈ Ch(Sn), then let X = ∅.

Recall from the definition of ω̃σ that all enhanced points are contained in Rn.
Thus, under Ppc,δ , X is a random set of vertices of Rn, nonempty when ω ∈
Ch(Sn) and ω̃σ ∈ Cv(Sn).

We will prove (4) by estimating the probability for X to take specific values.
More precisely we will use the equality

Ppc,δ

(
ω ∈ Ch(Sn) and ω̃σ ∈ Cv(Sn)

) = ∑
X �=∅

Ppc,δ(X = X).(13)

The computation used to estimate Ppc,δ(X = X) is quite delicate. Here are the
main ideas; the actual proof is given in the following sections.

Fix a nonempty set of vertices X with |X| = k+1, and let ω,σ be configurations
such that X = X. Since the passage points act as passages between the clusters of
ω̃, they have, in ω, a (local) six arm structure around them (see Figure 3), and we
may control the probabilities of such configurations by π6.

Imagine the following dynamics. Around each point x ∈ X we grow a ball at
unit speed, 
t(x) : t ≥ 0. For a given time t , we call blobs the connected compo-
nents of

⋃
x 
t(x).

For small times, the blobs are just balls centered at the points of X. As
time increases two blobs may merge to create a bigger blob. For a point x ∈ X

set t (x) to be the first time of merger for the blob containing x. Thus t (x) =
1
2 inf{dist(x, y) :y ∈ X,y �= x}. Then ω contains six arms from x to ∂
t(x)(x), an
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FIG. 3. The crossing γ is drawn in bold and the passage points are marked. The set χ of sites open
in ω but closed in ω̃ is drawn in gray. Its boundary is closed in ω. The blobs at the times of merger
are outlined. Observe the six-arm structure between the boundaries of the blobs.

event which has probability bounded by π6(t (x)). Moreover the regions 
t(x)(x)

for x ∈ X are disjoint. Finally, in order to be a passage point, x has to be enhanced.
This happens with probability δ, independently of ω, thus

Ppc,δ(X = X) ≤ ∏
x∈X

π6
(
t (x)

)
δ.(14)

Unfortunately, this bound is not sufficient to obtain Theorem 4. If points are
grouped in small bunches, then all values t (x) are small, and the right-hand side
of (14) is not significantly smaller than δk+1.

In order to improve (14), we will also study the blobs after their first mergers.
Consider a blob at the time of formation (e.g., by the merger of two smaller blobs),
and the same blob at the first time it merges with another blob. Let B1 denote the
blob at the initial time, and B2 at the latter time. Then we also observe six arms
between ∂B1 and ∂B2. This will add terms to the bound in (14), thus improving it.

If we denote by di the times of merger of blobs (counted with multiplicity
when more than two blobs merge at the same time), then we obtain a bound on
Ppc,δ(X = X) as a function of d1, . . . , dk ; see Proposition 14.

In order to compute (13), we also need to estimate the number of sets X that
yield a given set of merger times d1, . . . , dk . This is done in Proposition 15.

In the above analysis we have omitted certain technical complications. One is
the influence of the boundary of Sn. As blobs expand, they may touch the top and
bottom of Sn, and special situations arise. Another has to do with defects in arm
events around passage points.

Before diving into the actual proof, we mention that a simplified one-arm ver-
sion of this argument already appeared in [3, 8] for the study of the moments of
the volume of the largest critical percolation cluster in 
n. It was shown there that
the kth moment of this quantity is bounded above by k!(Cn2π1(n))k for a constant
C > 0. Contrary to the argument presented here, in [3, 8] blobs only need to be
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studied up to their first time of merger, and the resulting bound (14) (with π6 re-
placed by π1) suffices. The fundamental reason for which (14) suffices in that case
is that the one-arm exponent is smaller than 2, hence

∑n
k=1 kπ1(k) = O(n2π1(n)).

The six-arm exponent, however, is larger than 2, and the series
∑∞

k=1 kπ6(k) con-
verges, thus requiring a more sophisticated analysis.

In [10], the first author applies the refined counting arguments presented here to
the one-arm case in order to derive an improved upper bound of (Cn2π1(n/

√
k))k

for the kth moment of the volume of the largest critical cluster in 
n. These argu-
ments lead to large deviation bounds for the volumes of large critical percolation
clusters.

5.2. Two propositions. Fix some nonempty set X ⊂ Rn. We associate to X

a tree T = T (X) as described below. Although this is not important for our proof,
let us mention that T is a minimal spanning tree of X and that the algorithm by
which we construct it is Kruskal’s algorithm [11].

The vertices of T are the points of X, and the edges are added successively as
follows.

Let T0 be the graph with no edges and vertex-set X. For j ∈ N define Tj by
adding to Tj−1 a maximal set of edges (x, y) with dist(x, y) = j , which does not
create cycles in Tj . Since diam(X) ≤ 4n, Tj = Tj+1 for j ≥ 4n, and we define
T = T4n. The graph T thus obtained is indeed a tree: by construction it does not
contain cycles and it is easy to check that it is connected.

Note that there is some ambiguity in the definition of T since there may be
multiple choices for the set of edges added to Tj−1 to create Tj . To settle this,
when multiple choices are available, we choose the minimal one with respect to
the lexicographical order of Z2 ×Z2. Let the root of T be the smallest element of
V (T ) = X for the lexicographical order of Z2.

Let E(T ) denote the edge-set of T . Then #E(T ) = k. For e = (x, y) ∈ E(T ),
let de = �1

2 dist(x, y)� + 1. The multiset D(X) = [de : e ∈ T ] is called the set of
merger times of X.

The terminology of merger times is inspired by the dynamics described in Sec-
tion 5.1. Indeed, each edge e of T corresponds to the merger of two blobs and de

is their (approximate) time of merger.

PROPOSITION 14. There exist constants c, λ > 0 such that, for all δ > 0, n ∈
N, and X ⊂ Rn with |X| = k + 1, we have

Ppc,δ(X = X) ≤ (cδ)k+1n−(2+λ)
∏

e∈E(T )

d−(2+λ)
e .(15)

Since the above offers a bound on Ppc,δ(X = X) as a function of the set D(X),
it is natural to group the sum in (13) by the value of D(X).
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PROPOSITION 15. There exists a constant K > 0 such that, for any given mul-
tiset of values D = [d1, . . . , dk], the number of sets X with D(X) = D is bounded
as follows:

#
{
X ⊂ Rn :D(X) = D

} ≤ Q(D)Kk+1n2
k∏

i=1

di,(16)

where Q(D) is the number of different ways of ordering d1, . . . , dk .

Theorem 4 follows easily from the two propositions.

PROOF OF THEOREM 4 FROM PROPOSITIONS 14 AND 15. Let c, λ and K be
the constants provided by Propositions 14 and 15. Choose δ > 0 small enough
to have cKδ

∑
d≥1 d−(1+λ) ≤ 1/2. It is essential here that λ > 0, so that the sum

above converges. Then, by Propositions 14 and 15, for n ∈ N,

Ppc,δ

(
ω ∈ Ch(Sn) and ω̃σ ∈ Cv(Sn)

)
= ∑

k≥0

∑
dk≥···≥d1≥1

∑
X⊆Rn

D(X)=[d1,...,dk]

Ppc,δ(X = X)

≤ ∑
k≥0

(cKδ)k+1n−λ
∑

dk≥···≥d1≥1

Q
([d1, . . . , dk]) k∏

i=1

d
−(1+λ)
i

= cKδn−λ
∑
k≥0

(
cKδ

∑
d≥1

d−(1+λ)

)k

≤ 2cKδn−λ. �

5.3. Proof of Proposition 14. The following lemma formalizes the fact that
passage points have six arms around them, possibly with a defect.

LEMMA 16. Fix n ∈ N:

(i) Let u ∈ Sn and r ≤ R such that 
R(u) ⊂ Sn. If ω and σ are configurations
such that, when ω̃σ is defined as in (3):
(a) 
r(u) contains at least one passage point,
(b) 
R(u) \ 
r(u) contains no passage points.
Then ω ∈A∗

6(u; r,R).
(ii) Let u ∈ Z× {0, n} and r ≤ R ≤ n/2. If ω,σ are configurations with the prop-

erties (a) and (b) above, then ω ∈ Ahp∗
4 (u; r,R).

REMARK 17. In point (ii) above, when u ∈ Z × {n}, we write Ahp∗
4 (u; r,R)

for the event that there exist four arms from ∂
r(u) to ∂
R(u) in the half plane
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FIG. 4. Two concentric balls A ⊂ B with two passage points in A but no passage points in B \ A.
Note the three arms on either side of γ . The gray square marks the defect on one of the open arms.

below R × {n}. This is a slight abuse of notation that we will ask the reader to
accept.

PROOF OF LEMMA 16. We start by giving a full proof of point (i); we will
then sketch the proof of (ii), marking the differences with the previous point.

Let u, r,R be as in (i). For simplicity of notation we will write A = 
r(u),
B = 
R(u) and H = B \ A. Then A ⊂ B ⊂ Sn and A contains passage points, but
H does not.

Since A contains passage points, γ intersects A. Thus we may find two disjoint
sub-paths, γ1 and γ2, of γ , both contained in H , each connecting ∂A to ∂iB and
such that γ contains at least one passage point between γ1 and γ2. Let γ = γ1 ∪γ2.
Then γ splits H into two disjoint regions, HL and HR ; see Figure 4.

Since A contains passage points, there exists an ω-open path contained in χ ,
connecting ∂A to the left-hand side of Sn. This must contain a sub-path τ1 ⊂ H ,
connecting ∂A to ∂iB . Since τ1 is ω-open and ω̃-closed, it can only intersect γ at
passage points. But, as part of H , τ1 does not contain passage points, thus is fully
contained in either HL or HR .

Assume τ1 ⊂ HR . Then τ1 separates HR into two regions HR+ and HR−. Let

χR = {x ∈ H :x
ω,H←→ τ1} be the ω-open cluster of τ1 in H . The points of χR and

those of ∂χR ∩H are closed in ω̃ and are not passage points. Thus they are not part
of γ . Hence ∂χR ∩ H provides two paths τ0 and τ2 in (Z2)∗, contained in HR−
and HR+, respectively, both closed in ω and connecting ∂A to ∂iB .

We have found up to now three arms τ0, τ1, τ2 in HR , with states closed, open
and closed, respectively, in ω. It is natural to expect the same structure in HL.
Some complications may arise though, hence the defect in the arm event.

Let χL = {x ∈ χ ∩ HL :x
ω,H←→ ∂A}. Also denote the ∗-cluster of ∂A in HL in

the configuration ω̃ by � = {x ∈ HL :x
ω̃;HL←→∗ ∂A}. Then χL ⊂ �. First we claim

that � must intersect ∂iB .
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Indeed, if it does not, consider the set ∂(�∪A)∩HL. All sites of this set are ω̃-
open. Moreover, this set contains an ω̃σ -open path γ ′ joining γ1 with γ2. Then γ ′
contains no passage points, and this contradicts the choice of γ as having minimal
number of passage points.

Let ρ be a path in �, connecting ∂A to ∂iB . Let x be the last point of ρ (when
going from ∂A toward ∂iB) contained in χL ∪ ∂χL. If x ∈ ∂iB , then there exists
a path τ4 connecting ∂A to ∂iB , contained in χ (hence ω-open), except possibly
for its endpoint x. Two additional ω-closed arms τ3 and τ5 may be found in HL as
previously done in HR .

Suppose x /∈ ∂iB . Then x ∈ ∂χL, and let y be the next point visited by ρ. Since
y ∈ �, there exists z ∼ y (or z = y) which is open in ω but closed in ω̃. In particu-
lar, z is connected to the left side of Sn by a ω-open path τ (part of χ ). By choice
of x, z /∈ χL, thus τ does not intersect A. It does not intersect γ either, since the
latter contains no passage points. Thus τ contains a sub-path in HL, linking z to
∂iB .

In conclusion there exists a path τ4 linking ∂A to ∂iB , contained in HL and open
in ω, with the possible exception of the sites x and y. With a possible modification
of the configuration in 
3(x), two ω-closed *-arms τ3 and τ5 may be found by
inspecting the boundary of the ω-open cluster of τ4 in HL.

Since the arms τ0, τ1, τ2 are contained in HR and τ3, τ4, τ5 are contained in HL,
they are necessarily disjoint. This completes the proof of (i).

For (ii) consider u ∈ [−3n,3n]× {0} and r ≤ R ≤ n/2 such that 
R(u) \
r(u)

does not contain passage points, but 
r(u) contains at least one. In particular

R(u) intersects Rn, and since R ≤ n/2, 
R(u) ∩H⊂ Sn.

As before, write A = 
r(u), B = 
R(u) and H = (B \ A) ∩ H. In this case
there exists a single sub-path γ of γ connecting ∂A to ∂iB . Still γ splits H into
disjoint regions HL and HR .

We may proceed as before in defining τ1 and χR . The key difference with part (i)
is that only one part of the boundary of χR is guaranteed to contain an ω-closed
arm. Indeed, the part of the boundary above τ1 contains a path τ2, contained in HR ,
closed in ω, and connecting ∂A to ∂iB . The part below τ1, however, can intersect
the bottom of Sn very close to ∂A. The same type of phenomenon takes place
in HL. In conclusion we obtain four arms in the half plane with one possible
defect. See also Figure 5. �

We now turn to a consequence of Lemma 16 that will be used in the proof of
Proposition 15. To state it we need some additional notation. Let n ∈ N and A ⊂ B

be two sets intersecting Rn. Let r = �diam(A)/2�. Then there exists a vertex u

such that A ⊂ 
r(u). If several such vertices exist, let u be the minimal one for
the lexicographical order of Z2. If dist(u,R × {0}) ≤ n/2, let v be the projection
of u onto R× {0}. Otherwise let v be the projection of u onto R× {n}.
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FIG. 5. The intersection of 
r(u) with H contains passage points, but 
R(u) \ 
r(u) does not.
Then there are two open arms on either sides of γ between ∂
r(u) and ∂i
R(u). Above each open
arm (but not necessarily also below) there is a closed arm.

We define the following additional quantities:

R = sup
{
s ∈N :
s(u) ⊂ B ∩ Sn

} ∨ r,

r ′ = inf
{
s ∈ N :
R(u) ⊂ 
s(v)

} ∧ n/2,

R′ = (
sup

{
s ∈ N :
s(v) ⊂ B

} ∧ n/2
) ∨ r ′.

See Figure 6 for the meaning of u, v, r,R, r ′ and R′. Define the event

E(A,B) =A∗
6(u; r,R) ∩Ahp∗

4

(
v; r ′,R′).

When v ∈ R×{n}, we use the notation Ahp∗
4 (v; r ′,R′) as described in Remark 17.

REMARK 18. Henceforth we will write, for n ≤ N , π(n,N) = π(N/n) =
c(N/n)−(2+λ), where c and λ are given by Corollary 13. This is to emphasize that
the computations may be carried through with different types of arm events with

FIG. 6. Two sets A ⊂ B intersecting Rn. The six arms between ∂
r(u) and ∂i
R(u) and the four
arms in H between ∂
r ′(u) and ∂i
R′(u) ensure that E(A,B) occurs.
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power-law behavior. The quasi-multiplicativity property of probabilities of such
events is essential. For π it states that there exist constants c1, c2 > 0 such that, for
all n ≤ m ≤ N ,

π(n,N) ≤ π(n,m)π(m,N) ≤ c1π(n,N),(17)

π(n,N) ≤ c2π(n,2N).(18)

LEMMA 19. (i) Let A ⊂ B be two sets of vertices of Z2. If ω,σ are such that
A contains at least one passage point and B \A contains none, then ω ∈ E(A,B).

(ii) There exists a constant c > 0 such that, for all n ∈ N and all sets A ⊂ B

intersecting Rn with diam(B) ≤ 6n,

Ppc

(
E(A,B)

) ≤ cπ
(
diam(A),diam(A) + dist

(
A,Bc)),(19)

with π(·, ·) as in Remark 18.

PROOF. (i) Let A ⊂ B and ω,σ be as in the lemma. With the notation in
the definition of E(A,B), if r < R, then A ⊂ 
r(u) ⊂ 
R(u) ⊂ B ∩ Sn. By
Lemma 16(i), ω ∈ A∗

6(u; r,R). If r = R, then A∗
6(u; r,R) is trivial.

As in the previous paragraph, if r ′ = R′, then Ahp∗
4 (v; r ′,R′) is trivial. Suppose

that r ′ < R′. Without loss of generality we may assume v ∈ Z× {0}. Then

A ∩H⊂ 
r ′(v) ∩H⊂ 
R′(v) ∩H⊂ B ∩ Sn.

By Lemma 16(ii), ω ∈ Ahp∗
4 (v; r ′,R′). In conclusion ω ∈ E(A,B).

(ii) If R ≥ n/4, we have diam(B) ≤ 6n ≤ 24R. Then the first inequality of
Corollary 13, the fact that A∗

6(u; r,R) ⊂ E(A,B) and (17) yield (19) after some
simple arithmetic manipulations. Thus we may restrict ourselves to R < n/4.

We distinguish two cases. First consider that 
R+1(u) intersects Bc. Then R =
dist(u,Bc) − 1, and the first inequality of Corollary 13 yields (19) as above.

Suppose now that 
R+1(u) does not intersect Bc. Then 
R(u) necessarily in-
tersects R × {0, n}. It follows that r ′ = 2R < n/2 and v ∈ B . By considering the
cases R′ < n/2 and R′ ≥ n/2 separately, we find

R′ ≥ 1

12
dist

(
v,Bc) ≥ 1

12

(
dist

(
A,Bc) − r ′).

The second inequality of Corollary 13, equations (17) and (18) and the above imply

Ppc

(
Ahp∗

4

(
v; r ′,R′)) ≤ c′π

(
R,dist

(
A,Bc)),

for some c′ > 0. In addition, by the first inequality of Corollary 13, we have

Ppc

(
A∗

6(u; r,R)
) ≤ c′′π

(
diam(A),R

)
,
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for some c′′ > 0. Finally note that A∗
6(u; r,R) and Ahp∗

4 (v; r ′,R′) depend on dis-
joint regions of the plane, hence

Ppc

(
E(A,B)

) ≤ c′c′′π
(
diam(A),R

)
π

(
R,dist

(
A,Bc))

≤ cπ
(
diam(A),diam(A) + dist

(
A,Bc)),

where c > 0 is obtained using again equations (17) and (18). �

Finally we are ready for the proof of Proposition 14.

PROOF OF PROPOSITION 14. Fix some nonempty set X ⊂ Rn with #X =
k + 1. Let e1, . . . , ek be an ordering of the edges of T such that the sequence dei

is
increasing.

For an edge ei of T , let Ci be the set of vertices of T connected to ei via
edges ej with j ≤ i. Let C = {Ci : i = 1, . . . , k} and C := C ∪ {{x} :x ∈ X}. Inclu-
sion provides a natural partial order of the elements of C. The singletons are the
lowest elements; the maximal element is X.

For each i = 1, . . . , k, Ci is the union of two smaller disjoint elements of C,
which we will call the offspring of Ci . If we write ei = (x, y), the offspring of Ci

are the connected components of x and y, respectively, in the graph with vertices X

and edges {e1, . . . , ei−1}.
Thus the elements of C form a binary tree with the singletons of X as leaves.

We will sometimes refer to C itself as a tree. In the vision given in Section 5.1,
C is the coalescence tree of the blobs (at least when blobs merge only two at a
time). Indeed, at time dei

two blobs merge and form a larger one, that contains the
vertices of Ci . The two offspring of Ci correspond to the two merging blobs. If
more than two blobs merge at the same time, we split this into sequential pairwise
mergers.

For U ∈ C let

dU =
⌊

1

2
max

{
dist(x, y) :x, y ∈ U and (x, y) ∈ E(T )

}⌋
,

�U =
⌊

1

2
diam(U)

⌋
,


r(U) = ⋃
u∈U


r(u),

for r ≥ 0. For U = {x} a singleton, set dU = �U = 0 and 
r(U) = 
r(x).
Consider ω and σ such that X = X. For U ∈ C, let V = V (U) and W = W(U)

denote its offspring. The two regions 
dU
(V ) \ 
dV

(V ) and 
dU
(W) \ 
dW

(W)

are disjoint and do not contain passage points. On the other hand both 
dV
(V ) and


dW
(W) contain passage points. Thus, by Lemma 19(i), the event

EU = E
(

dV

(V ),
dU
(V )

) ∩ E
(

dW

(W),
dU
(W)

)
,



PLANAR LATTICES DO NOT RECOVER FROM FOREST FIRES 3235

must occur in ω. By Lemma 19(ii) there exists some constant c > 0 such that

Pp(EU) ≤ cπ(�V + dV ,�V + dU)π(�W + dW,�W + dU).(20)

To extend the definition of EU to U ∈ C, define it as the full event (i.e., equal to �)
when U is a singleton.

Since there are no passage points outside of 
dX
(X), we also have ω ∈ Eout :=

E(
dX
(X),
dX∨n(X)). Finally all passage points need to be enhanced, hence

σ(x) = 1 for all x ∈ X. Thus

{X = X} ⊂
( ⋂

U∈C
{ω ∈ EU }

)
∩ {ω ∈ Eout} ∩

( ⋂
x∈X

{
σ(x) = 1

})
.

Note that the events EU :U ∈ C and the event Eout are defined on disjoint parts of
the plane. Hence, by (20),

Ppc,δ(X = X) ≤
( ∏

U∈C
Ppc,δ(ω ∈ EU)

)
× Ppc,δ(ω ∈ Eout)

×
( ∏

x∈X

Ppc,δ

(
σ(x) = 1

))
(21)

≤ (cδ)k+1π(�X + dX,�X + dX + n)

× ∏
U∈C

π(�V + dV ,�V + dU)π(�W + dW,�W + dU).

In estimating the product above, we will use an induction on the binary tree C.
For Y ∈ C let

�(Y) = ∏
U∈C;U⊆Y

π(�V + dV ,�V + dU)π(�W + dW,�W + dU),

and set �(Y) = 1 when Y is a singleton.
Let us prove by induction on the tree that there exists c0 > 0 such that, for all

Y ∈ C,

�(Y) ≤ π(�Y + dY )
∏

U∈C;U⊆Y

c0π(dU).(22)

When Y is a leaf of C, that is, a singleton of X, then �(Y) = 1, and (22) is trivially
true for any c0 ≥ 1. Assume Y is an element of C with offspring Z1,Z2. We have

�Y ≤ �Z1 + �Z2 + dY .

Thus for at least one i ∈ {1,2}, �Y + dY ≤ 2(�Zi
+ dY ). Assume it is the case for

i = 1. Then

�(Y) = �(Z1)�(Z2)π(�Z1 + dZ1,�Z1 + dY )π(�Z2 + dZ2,�Z2 + dY )

≤ π(�Z1 + dZ1)π(�Z1 + dZ1,�Z1 + dY )
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× π(�Z2 + dZ2)π(�Z2 + dZ2,�Z2 + dY )
∏

U∈C;U�Y

c0π(dU)

≤ c2
1π(�Z1 + dY )π(�Z2 + dY )

∏
U∈C;U�Y

c0π(dU)(23)

≤ c2
1c2

c0
π(�Y + dY )

∏
U∈C;U⊆Y

c0π(dU).(24)

In (23) we have used the quasi-multiplicativity property of π (17), hence the
constant c1. In (24) we have used that π(�Z1 + dY ) ≤ c2π(2(�Z1 + dY )) ≤
c2π(�Y + dY ), and π(�Z2 + dY ) ≤ π(dY ). The constant c2 is given by (18). In
conclusion, the recurrence holds, provided that c0 ≥ c2

1c2.
Let us get back to bound (21). Using (22), we have

Ppc,δ(X = X) ≤ (cδ)k+1π(�X + dX,�X + dX + n)π(�X + dX)
∏
U∈C

c0π(dU)

≤ c1(cc0δ)
k+1π(n)

∏
U∈C

π(dU) by (17).

This proves Proposition 14. �

5.4. Proof of Proposition 15. We begin with a lemma. The number of rooted
trees with n vertices is less than that of rooted plane trees with n vertices (since
these are rooted trees along with an ordering of the offspring of each vertex). Since
the latter is well known to be the nth Catalan number (see, e.g., Theorem 3.2
of [4]), we find the following.

LEMMA 20. The number of rooted trees on n vertices is less than

cn = 1

n + 1

(
2n

n

)
< 4n,

where cn is the nth Catalan number.

We turn to the proof of Proposition 15.

PROOF OF PROPOSITION 15. Fix n ∈ N, k ≥ 0, and let D be a multiset of k

not necessarily distinct natural numbers.
Consider a rooted tree T with k edges. Let v0 denote the root of T , and let

v0, . . . , vk denote a fixed depth-first ordering of the vertices of T when we start
at v0. For i ≥ 1, let ei be the edge linking vi to {v0, . . . , vi−1}. In addition, associate
to each edge ei a number di such that [d1, . . . , dk] = D. Thus T is a rooted tree
with decorated edges.

Let us bound the number of sets X ⊂ Rn for which T (X) is isomorphic to T in
the sense of rooted trees with decorated edges. [The decorations of E(T (X)) are
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the merger times de defined in the beginning of Section 5.2.] We will do this by
placing the points of X sequentially in Rn, and counting at every stage the number
of possibilities.

Since X ⊂ Rn, there are at most 4n2 choices for the position of v0, which we de-
note by x0. Once x0 is fixed, there are at most 8d1 choices for x1, the position of v1.
We continue in this fashion. For every choice of x0, . . . , xi−1, there are at most 8di

choices for xi , the position of vi . In conclusion there are at most 4n2 ∏k
i=1 8di sets

of points X ⊂ Rn with T (X) isomorphic to T in the sense of rooted decorated
trees.

To compute the number of sets X ⊂ Rn with D(X) = D, we need to consider
all possible values of T and all the different ways of assigning the decorations di

to its edges. By Lemma 20 there are at most 4k choices for T . The number of ways
to assign the decorations is obviously bounded by Q(D). Proposition 15 follows
with K = 8 · 4. �
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