
The Annals of Probability
2015, Vol. 43, No. 5, 2545–2610
DOI: 10.1214/14-AOP944
© Institute of Mathematical Statistics, 2015

SPINES, SKELETONS AND THE STRONG LAW OF LARGE
NUMBERS FOR SUPERDIFFUSIONS
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Consider a supercritical superdiffusion (Xt )t≥0 on a domain D ⊆ Rd

with branching mechanism

(x, z) �→ −β(x)z+ α(x)z2 +
∫
(0,∞)

(
e−zy − 1 + zy

)
�(x,dy).

The skeleton decomposition provides a pathwise description of the process
in terms of immigration along a branching particle diffusion. We use this
decomposition to derive the strong law of large numbers (SLLN) for a wide
class of superdiffusions from the corresponding result for branching particle
diffusions. That is, we show that for suitable test functions f and starting
measures μ,

〈f,Xt 〉
Pμ[〈f,Xt 〉] →W∞ Pμ-almost surely as t → ∞,

where W∞ is a finite, non-deterministic random variable characterized as a
martingale limit. Our method is based on skeleton and spine techniques and
offers structural insights into the driving force behind the SLLN for superdif-
fusions. The result covers many of the key examples of interest and, in par-
ticular, proves a conjecture by Fleischmann and Swart [Stochastic Process.
Appl. 106 (2003) 141–165] for the super-Wright–Fisher diffusion.

1. Introduction. The asymptotic behavior of the total mass assigned to a
compact set by a superprocess was first characterized by Pinsky [51] at the level of
the first moment. Motivated by this study, Engländer and Turaev [21] proved weak
convergence of the ratio of the total mass in a compact set and its expectation. Oth-
ers have further improved the mode of convergence; specifically, several authors
conjectured an almost sure convergence result for a wide class of superprocesses
[15, 22, 30, 46]. However, up to now it has not been possible to deal with many of
the classical examples of interest. In the existing literature, for almost sure conver-
gence, either motion and branching mechanism have to obey restrictive conditions
[7], or the domain is assumed to be of finite Lebesgue measure [46]. In this article,
we make a significant step toward closing the gap and establish the strong law of
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large numbers (SLLN) for a large class of superdiffusions on arbitrary domains. In
particular, we prove a conjecture by Fleischmann and Swart for the super-Wright–
Fisher diffusion.

Methodologically, previous articles concerned with almost sure limit behavior
of superprocesses relied on Fourier analysis, functional analytic arguments or used
the martingale formulation for superprocesses combined with stochastic analysis.
We take a different approach. The core of our proof is the skeleton decomposi-
tion that represents the superprocess as an immigration process along a branching
particle process, called the skeleton, where immigration occurs in a Poissonian
way along the space–time trajectories and at the branch points of the skeleton. The
skeleton may be interpreted as immortal particles that determine the long-term
behavior of the process. We exploit this fact and carry the SLLN from the skele-
ton over to the superprocess. Apart from the result itself, this approach provides
insights into the driving force behind the law of large numbers for superprocesses.

A more detailed literature review and discussion of the ideas of proof is deferred
to Sections 1.4 and 1.5. Before we introduce the model in Section 1.1, our assump-
tions are stated in Section 1.2, and the main results are collected in Section 1.3.

1.1. Model and notation. Let d ∈ N, and let D ⊆ Rd be a non-empty domain.
For k ∈ N0, η > 0, we write Ck,η(D) for the space of real-valued functions on D,
whose kth order partial derivatives are locally η-Hölder continuous, Cη(D) :=
C0,η(D). We denote by B(D) the Borel σ -algebra on D. The notation B ⊂⊂ D

means that B ∈ B(D) is bounded, and there is an open set B1 such that B ⊆ B1 ⊆
�B1 ⊆ D. The Lebesgue measure on B(D) is denoted by �; the set of finite (and
compactly supported) measures on B(D) is denoted by Mf (D) [and Mc(D),
resp.]. When μ is a measure on B(D) and f :D → R measurable, let 〈f,μ〉 :=∫
D f (x)μ(dx), whenever the right-hand side makes sense. If μ has a density ρ

with respect to �, we write 〈f,ρ〉 = 〈f,μ〉. For any metric space E, we denote by
p(E) and b(E) the sets of Borel measurable and, respectively, nonnegative and
bounded functions on E, and let bp(E)= b(E)∩ p(E).

Let (ξ = (ξt )t≥0; (Px)x∈D) be a diffusion process on D with generator

L(x)= 1
2∇ · a(x)∇ + b(x) · ∇ on D.

The diffusion matrix a :D → Rd×d takes values in the set of symmetric, pos-
itive definite matrices. Moreover, all components of a and b :D → Rd belong
to C1,η(D) for some η ∈ (0,1] (the parameter η remains fixed throughout the ar-
ticle). In other words, ξ denotes the unique solution to the generalized martingale
problem associated with L on D ∪ {†}, the one-point compactification of D with
cemetery state †; cf. Chapter I in [50]. We write τD = inf{t ≥ 0 : ξt /∈D}.

Let β ∈ Cη(D) be bounded and

ψ0(x, z) := α(x)z2 +
∫
(0,∞)

(
e−zy − 1 + zy

)
�(x,dy),(1.1)
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where α ∈ bp(D), and � is a kernel from D to (0,∞) such that x �→ ∫
(0,∞)(y ∧

y2)�(x, dy) belongs to bp(D). The function ψβ(x, z) := −β(x)z + ψ0(x, z) is
called the branching mechanism. If �≡ 0, we say that the branching mechanism
is quadratic. In Section 4.2, we explain that our results carry over to a class of
quadratic branching mechanisms with unbounded α and β .

The main process of interest in this article is the (L,ψβ;D)-superdiffusion,
which we denote by X = (Xt)t≥0. Its distribution is denoted by Pμ if the process
is started in μ ∈ Mf (D). That is, X is an Mf (D)-valued time-homogeneous
Markov process such that for all μ ∈ Mf (D), f ∈ bp(D) and t ≥ 0,

Pμ
[
e−〈f,Xt 〉] = e−〈uf (·,t),μ〉,(1.2)

where uf is the unique nonnegative solution to the mild equation

u(x, t)= Stf (x)−
∫ t

0
Ss

[
ψ0

(·, u(·, t − s)
)]
(x) ds(1.3)

for all (x, t) ∈D × [0,∞). Here Stg(x) := Px[e
∫ t

0 β(ξs) dsg(ξt )1{t<τD}] for all g ∈
p(D); that is, (St )t≥0 denotes the semigroup of the differential operator L + β .
Every function g on D is automatically extended to D ∪ {†} by g(†) := 0. Hence

Stg(x)= Px
[
e

∫ t
0 β(ξs) dsg(ξt )

]
.

We refer to ξ as the underlying motion or just the motion in the space D. Infor-
mally, the Mf (D)-valued process X = (Xt)t≥0 describes a cloud of infinitesi-
mal particles independently evolving according to the motion ξ and branching in
a spatially dependent way according to the branching mechanism ψβ . The exis-
tence of the superprocess X is guaranteed by [11, 28], and it satisfies the branch-
ing property; see (1.1) in [28] for a definition. By Theorem 3.1 in [10] or The-
orem 2.11 in [28], there is a version of X such that t �→ 〈f,Xt 〉 is almost surely
right-continuous for all continuous f ∈ bp(D). We will always work with this ver-
sion. In most texts, the mild equation (1.3) is written in a slightly different form:
instead of (St )t≥0, the semigroup of L is used, and ψ0 is replaced by ψβ . Us-
ing Feynman–Kac arguments [see Lemma A.1(i) in the Appendix] and Gronwall’s
lemma, one easily checks that (for bounded β) the two equations are equivalent.

The main goal of this article is to determine the large-time behavior of

〈f,Xt 〉
Pμ[〈f,Xt 〉](1.4)

for suitable test functions f and starting measures μ. We say that X satisfies the
strong law of large numbers (SLLN) if, for all test functions f ∈ C+

c (D), f �= 0,
the ratio in (1.4) converges to a finite, non-deterministic random variable which
is independent of f . Here C+

c (D) denotes the space of nonnegative, continuous
functions of compact support, and 0 is the constant function with value 0.
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1.2. Statement of assumptions. A probabilistic view on supercritical superpro-
cesses is offered by the skeleton decomposition. This, by now classical (cf. [3, 5, 9,
19, 27, 43]) decomposition has been studied under a variety of names. It provides
a pathwise representation of the superprocess as an immigration process along a
supercritical branching particle process, that we call the skeleton. The skeleton
captures the global behavior of the superprocess, and its discrete nature makes it
much more tractable than the superprocess itself. We exploit these facts to estab-
lish the SLLN for superdiffusions. Specifically, our fundamental aim it to show
that the SLLN for superdiffusions follows as soon as an appropriate SLLN holds
for its skeleton. Given the existing knowledge for branching particle processes, this
will lead us to a large class of superprocesses for which the SLLN can be stated.

Classically, the skeleton was constructed using the event Efin = {∃t ≥ 0 :
Xt(D) = 0} of extinction after finite time to guide the branching particle process
into regions where extinction of the superprocess is unlikely. The key property
of Efin exploited in the skeleton decomposition is that the function x �→ w(x) =
− logPδx (Efin) gives rise to the multiplicative martingale ((e−〈w,Xt 〉)t≥0;Pμ). In
the more general setup of the present article, we assume only the existence of such
a martingale function w.

ASSUMPTION 1 (Skeleton assumption). There exists a function w ∈ p(D)

with w(x) > 0 for all x ∈D,

sup
x∈B

w(x) <∞ for all B ⊂⊂D,(1.5)

Pμ
[
e−〈w,Xt 〉] = e−〈w,μ〉 for all μ ∈ Mc(D), t ≥ 0.(1.6)

The martingale function w allows us to define the skeleton as a branching parti-
cle diffusion Z, where the spatial movement of each particle is equal in distribution
to (ξ = (ξt )t≥0; (Pwx )x∈D) with

dPwx
dPx

∣∣∣∣
σ(ξs : s∈[0,t])

= w(ξt )

w(x)
exp

(
−

∫ t

0

ψβ(ξs,w(ξs))

w(ξs)
ds

)
(1.7)

on {t < τD} for all t ≥ 0.

We will see in Lemma 2.2 that Pwx is well-defined. Each particle dies at spatially
dependent rate q ∈ p(D) and is replaced by a random number of offspring with
distribution (pk(x))k≥2, where x is the location of its death. The branching rate q
and the offspring distribution (pk)k≥2 are uniquely identified by

G(x, s) := q(x)

∞∑
k=2

pk(x)
(
sk − s

)
(1.8)

= 1

w(x)

(
ψ0

(
x,w(x)(1 − s)

) − (1 − s)ψ0
(
x,w(x)

))
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for all s ∈ [0,1] and x ∈D. The fact that q and (pk)k≥2 are well-defined by (1.8) is
contained in Theorem 2.3 below. In Section 2.1.1, we define Z on a rich probability
space with probability measures Pμ, μ ∈ Mf (D), where the initial configuration
of Z under Pμ is given by a Poisson random measure with intensity w(x)μ(dx).

As noted earlier, we are interested in the situation where the skeleton itself sat-
isfies a SLLN. There is a substantial body of literature available that analyzes the
long-term behavior of branching particle diffusions. To delimit the regime we want
to study, we make two regularity assumptions. A detailed discussion of all assump-
tions can be found in Section 2.1.

The first condition ensures that the semigroup (St )t≥0 of L+β grows precisely
exponentially on compactly supported, continuous functions.

ASSUMPTION 2 (Criticality assumption). The second order differential oper-
ator L+ β has positive generalized principal eigenvalue

λc := λc(L+ β)
(1.9)

:= inf
{
λ ∈R :∃u ∈ C2,η(D),u > 0, (L+ β − λ)u= 0

}
> 0.

Moreover, we assume that the operator L+ β − λc is critical; that is, it does not
possess a Green’s function, but there exists φ ∈ C2,η(D), φ > 0, such that (L+β−
λc)φ = 0. In this case, φ is unique up to constant multiples and is called the ground
state. With L+ β − λc, its formal adjoint is also critical (cf. Pinsky [50]), and the
corresponding ground state is denoted by φ̃. We further assume that L+ β − λc is
product L1-critical, that is, 〈φ, φ̃〉<∞, and we normalize to obtain 〈φ, φ̃〉 = 1.

Corollary 2.7 below shows that under Assumptions 1 and 2 the process

W
φ/w
t (Z)= e−λct 〈φ/w,Zt 〉, t ≥ 0,

is a nonnegative Pμ-martingale for all μ ∈ Mφ
f (D) := {μ ∈ Mf (D) : 〈φ,μ〉 <

∞}, and (Wφ/w
t (Z))t≥0 has an almost sure limit. To have the notation everywhere,

we define Wφ/w∞ (Z) := lim inft→∞W
φ/w
t (Z).

Our second regularity assumption consists essentially of moment conditions.

ASSUMPTION 3 (Moment assumption). There exists p ∈ (1,2] such that

sup
x∈D

φ(x)α(x) <∞,(1.10)

sup
x∈D

φ(x)

∫
(0,1]

y2�(x,dy) <∞,(1.11)

sup
x∈D

φ(x)p−1
∫
(1,∞)

yp�(x, dy) <∞,(1.12)

〈
φp−1, φφ̃

〉
<∞,(1.13)
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(1,∞)

y2e−w(·)y�(·, dy),φφ̃
〉
<∞.(1.14)

The parameter p remains fixed throughout the article. Assumption 3 is satisfied,
for example, when φ is bounded and supx∈D

∫
(1,∞) y

2�(x,dy) < ∞. These sec-
ond moment conditions appeared in the literature (cf. Section 2.1.3), and we will
see several examples in Section 4. However, our results are valid under the weaker
conditions of Assumption 3. In Sections 2.1.3 and 4.2, we explain that in the case
of a quadratic branching mechanism, only (1.10) is needed.

The SLLN has been proved for a large class of branching particle diffusions.
Where it has not been established, yet, we assume a SLLN for the skeleton Z. It
will be sufficient to assume convergence along lattice times.

ASSUMPTION 4 (Strong law assumption). For all μ ∈ Mc(D), δ > 0 and con-
tinuous f ∈ p(D) with fw/φ bounded,

lim
n→∞ e−λcnδ〈f,Znδ〉 = 〈f,wφ̃〉Wφ/w∞ (Z) Pμ-almost surely.

At first, Assumption 4 may look like a strong assumption. However, given As-
sumptions 1–3, the SLLN for the skeleton has been proved under two additional
conditions. The first condition controls the spread of the support of the skeleton
when started from a single particle; the second condition is a uniformity assump-
tion on the convergence of an associated ergodic motion (the “spine”) to its station-
ary distribution. See Theorem 2.13 for details. These conditions hold for a wide
class of processes, and we demonstrate this for several key examples in Section 4.

1.3. Statement of the main results. Before stating the SLLN for superdiffu-
sion X, we relate the limiting random variable of (1.4) to the limit that appears
in Assumption 4. In Corollary 2.7 below we show that under Assumption 2, the
process

W
φ
t (X)= e−λct 〈φ,Xt 〉, t ≥ 0,

is a nonnegative Pμ-martingale for all μ ∈ Mφ
f (D) = {μ ∈ Mf (D) : 〈φ,μ〉 <

∞}, and (W
φ
t (X))t≥0 has an almost sure limit. To have the notation everywhere,

we define Wφ∞(X) := lim inft→∞W
φ
t (X).

PROPOSITION 1.1. Suppose Assumptions 1, 2, (1.10)–(1.12) hold. For all
μ ∈ Mφ

f (D), the martingales (W
φ
t (X))t≥0 and (W

φ/w
t (Z))t≥0 are bounded in

Lp(Pμ) and

Wφ∞(X)=Wφ/w∞ (Z) Pμ-almost surely.(1.15)
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Recall that � denotes the Lebesgue measure on the domainD. Our main theorem
is the following.

THEOREM 1.2. Suppose Assumptions 1–4 hold. For every μ ∈ Mφ
f (D), there

exists a measurable set �0 such that Pμ(�0) = 1 and, on �0, for all �-almost
everywhere continuous functions f ∈ p(D) with f/φ bounded,

lim
t→∞ e−λct 〈f,Xt 〉 = 〈f, φ̃〉Wφ∞(X).(1.16)

The convergence in (1.16) also holds in L1(Pμ). In particular, Pμ[Wφ∞(X)] =
〈φ,μ〉.

Even though our main interest is almost sure convergence, Theorem 1.2 also
implies new results for convergence in probability; see the examples in Section 4.
We record the following corollary of Theorem 1.2 to present the result in possibly
more familiar terms.

COROLLARY 1.3. Suppose Assumptions 1–4 hold. In the vague topology,
e−λctXt → W

φ∞(X)φ̃� Pμ-almost surely as t → ∞. If, in addition, φ is bounded
away from zero, then the convergence holds in the weak topology Pμ-almost surely.

Finally, we present the SLLN as announced in (1.4). This makes the comparison
between 〈f,Xt 〉 and its mean explicit.

COROLLARY 1.4. Suppose that Assumptions 1–4 hold. For all μ ∈ Mφ
f (D),

μ �≡ 0, f ∈ C+
c (D), f �= 0,

lim
t→∞

〈f,Xt 〉
Pμ[〈f,Xt 〉] = 1

〈φ,μ〉W
φ∞(X) Pμ-almost surely and in L1(Pμ).

The weak law of large numbers (WLLN), and even the L1-convergence
in (1.16), can be obtained without assuming the SLLN for the skeleton as the
next theorem reveals.

THEOREM 1.5. Suppose Assumptions 1, 2, (1.10)–(1.13) hold. For all
μ ∈ Mφ

f (D) and f ∈ p(D) with f/φ bounded, the convergence in (1.16) holds

in L1(Pμ).

1.4. Literature review. Terminology in the literature is not always consistent,
so let us clarify that we refer to branching particle processes and superprocesses
as branching diffusions and superdiffusions, respectively, if the underlying motion
is a diffusion. Similar wording is used for other classes of underlying motions.
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The limit theory of supercritical branching processes has been studied since
the 1960s when sharp statements were established for classical finite-type pro-
cesses [2, 38]. The first result for branching diffusions was due to Watanabe [60]
in 1967, who proved an almost sure convergence result for branching Brownian
motion and certain one-dimensional motions. The key ingredient to the proof was
Fourier analysis, a technique recently used by Wang [59] and Kouritzin and Ren
[40] to establish the SLLN for super-Brownian motion. Super-Brownian motion
on Rd with a spatially independent branching mechanism does not fall into the
framework of the current article since L+ β − λc is not product L1-critical in that
case. Rather, φ = φ̃ = 1, where 1 denotes the constant function with value 1, and
e−λctPμ[〈f,Xt 〉] converges to zero for all f ∈ C+

c (D). The missing scaling fac-
tor is td/2 and Pμ[〈f,Xt 〉] ∼ (2πt)−d/2eλct 〈f,1〉μ(Rd) for μ ∈ Mc(Rd). Wang’s
[59] SLLN for super-Brownian motion takes the form

lim
t→∞

〈f,Xt 〉
Pμ[〈f,Xt 〉] = W

φ∞(X)

μ(Rd)
Pμ-almost surely,

with martingale limit Wφ∞(X)= limt→∞ e−λct 〈1,Xt 〉, for all nontrivial nonnega-
tive continuous functions with compact support, and for μ = δx , x ∈ Rd . Watan-
abe’s argument is thought to be incomplete because the regularity for his argu-
ment is not proven; see [59]. Biggins [6] developed a method to show uniform
convergence of martingales for branching random walks. Wang combined these
arguments with the compact support property of super-Brownian motion started
from μ ∈ Mc(D). Kouritzin and Ren [40] proved the SLLN for super-stable pro-
cesses of index α ∈ (0,2] with spatially independent quadratic branching mecha-
nism. The correct scaling factor in this case is td/αe−λct . The authors allow any
finite starting measure with finite mean and a class of continuous test functions
that decrease sufficiently fast at infinity. Fourier-analytic methods were also used
by Grummt and Kolb [34] to prove the SLLN for the two-dimensional super-
Brownian motion with a single point source; see [29] for the definition and a proof
of existence of this process. Earlier, Engländer [16] established convergence in
probability for a class of superdiffusions that do not necessarily satisfy Assump-
tion 2 using a time-dependent h-transform developed in [22].

In the product L1-critical case, the dominant method to prove almost sure limit
theorems is due to Asmussen and Hering [1]; Kaplan and Asmussen use a similar
method in [37]. The main idea is as follows. For s, t ≥ 0, write Ft = σ(Xr : r ≤ t)

and

e−λc(s+t)〈f,Xs+t 〉 = e−λctPμ
[
e−λcs〈f,Xs+t 〉|Ft

]
+ (

e−λc(s+t)〈f,Xs+t 〉 − e−λctPμ
[
e−λcs〈f,Xs+t 〉|Ft

])
= CEf (s, t)+ Df (s, t).

Here CE stands for “conditional expectation” and D for “difference”. The first
step is to show Df (s, t)→ 0 as t → ∞. This is usually done via a Borel–Cantelli
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argument and therefore requires a restriction to lattice times t = nδ. The second
step is to show that CEf (s, t) behaves like the desired limit for s and t large. This
is the hardest part of the proof and usually causes most of the assumptions. The
third and last step is to extend the result from lattice to continuous time.

Asmussen and Hering control CEf (s, t) for branching particle processes by a
uniform Perron–Frobenius condition on the semigroup (St )t≥0. Passage to con-
tinuous time is obtained under additional continuity assumptions on process and
test functions. Recently, their method was generalized by Engländer et al. [17] to
show the SLLN for a class of branching diffusions on arbitrary domains. The au-
thors control CEf (s, t) by an assumption that restricts the speed at which particles
spread in space and a condition on the rate at which a certain ergodic motion (the
“spine”) converges to its stationary distribution.

While Asmussen and Hering’s idea for the proof of SLLNs along lattice times
is rather robust and (under certain assumptions) feasible also for superprocesses,
the argument used for the transition from lattice to continuous time relies heavily
on the finite number of particles in the branching diffusion.

A new approach to almost sure limit theorems for branching processes was in-
troduced by Chen and Shiozawa [8] in the setup of branching symmetric Hunt
processes. Amongst other assumptions, a spectral gap condition was used to ob-
tain a Poincaré inequality which constitutes the main ingredient in the proof along
lattice times. For the transition to continuous times, the argument from Asmussen
and Hering was adapted. Chen et al. [7] proved the first SLLN for superprocesses
and relied on the same Poincaré inequality and functional analytic methods for
the result along lattice times. For the transition to continuous time, Perkins’s Itô
formula for superprocesses [48] was used. Even though their proven SLLN holds
on the full domain Rd , the assumptions on motion and branching mechanism are
restrictive in the following way: the motion has to be symmetric (and in the dif-
fusive case must have a uniformly elliptic generator), and the coefficients of the
branching mechanism have to satisfy a strict Kato class condition.

The idea to use stochastic analysis was brought much further by Liu et al. [46].
The authors gave a proof which is based entirely on the martingale problem for su-
perprocesses and decomposed the process into three martingale measures. More-
over, they introduced a new technique for the transition from lattice to continuous
times based on the resolvent operator and estimates for the hitting probabilities
of diffusions. The proof by Liu et al. follows again the three steps of Asmussen
and Hering. To control the conditional expectation CEf (s, t), they assume that
the transition density of the underlying motion is intrinsically ultracontractive, and
that the domain D is of finite Lebesgue measure. This assumption excludes most
of the classical examples; see Section 4.

To complete our review, we mention that the first law of large numbers for
superdiffusions was proven by Engländer and Turaev [21] on the domain D = Rd .
The authors use analytic tools from the theory of dynamical systems, in particular
properties of invariant curves, to show the convergence in distribution. Besides
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classical superdiffusions, the 1-dimensional super-Brownian motion with a single
point source is studied.

1.5. Outline of the proof of Theorem 1.2. The key to our argument is the skele-
ton decomposition for the supercritical superprocess X. Intuitively, this represen-
tation result states that the superprocess is a cloud of subcritical superdiffusive
mass immigrating off a supercritical branching diffusion, the skeleton, which gov-
erns the large-time behavior of X. It is important to note that we use the skeleton
to make a connection between the asymptotic behavior of a branching diffusion
and of the superdiffusion, and we do not use any classical approximation of the
superprocess by branching particle systems in a high density limit regime.

Broadly speaking, our proof of Theorem 1.2 follows the three steps of As-
mussen and Hering outlined in Section 1.4. However, instead of the full process X
we consider only the immigration occurring after time t in the decomposition into
conditional expectation CEf and difference Df . This immigration is a subprocess
of X, and we show that the stated convergence for the full process follows when
the subprocess converges to the claimed limit.

Using the tree structure of the skeleton, we can split the immigration that occurs
after time t according to the different branches of the skeleton at time t . This fact
allows us to appeal to discrete techniques for the analysis of the immigration pro-
cess. To analyze the conditional expectation CEf for the immigration after time t ,
we use the SLLN for the skeleton. After exponential rescaling, the immigration
along different branches up to a fixed time s is of constant order and the SLLN
for the skeleton describes the asymptotic behavior for large t . Taking the observed
time frame s to infinity then adjusts only the constants. To replace the limiting ran-
dom variable Wφ/w∞ (Z), coming from the SLLN for the skeleton, by Wφ∞(X), we
can, as it turns out, reverse the order in which these limits are taken. Taking first the
observed time horizon s to infinity for test function φ, we recover the martingale
for the skeleton as a consequence of the same invariance property of φ that makes
(W

φ
t (X))t≥0 a martingale.
The analysis of Df for the immigration after time t is fairly standard, and for the

transition from lattice to continuous times we adapt the argument by Liu et al. [46],
relying again on the skeleton decomposition. The moment estimates needed for our
analysis are obtained using a spine decomposition for the superprocess.

1.6. Overview. The outline of the paper is as follows. We start in Section 2.1.1
with an analysis of the skeleton assumption (Assumption 1), and give a detailed de-
scription of the skeleton decomposition. In the remainder of Section 2.1 we discuss
further basic properties of superprocesses and our other three main assumptions,
and we compare them to conditions that appeared in the literature. Section 2.2
contains a spine decomposition for the superprocess X, and the proof that the mar-

tingale (Wφ
t (X))t≥0 is bounded in Lp .



SPINES, SKELETONS AND THE SLLN FOR SUPERDIFFUSIONS 2555

The proofs of the main results are collected in Section 3. First, in Section 3.1,
we reduce the SLLN to a statement that focuses on the main technical difficulty.
In Section 3.2 we show that the martingale limits for superprocess and skeleton
agree and, in Section 3.3 we prove the WLLN stated in Theorem 1.5. The asymp-
totic behavior of the immigration process is studied in Section 3.4, and the SLLN
along lattice times is established. The transition from lattice to continuous times is
performed in Section 3.5, and we conclude our main results.

In Section 4 we provide several examples to illustrate our results. Spa-
tially independent branching mechanisms are discussed in Section 4.1; quadratic
branching mechanisms are considered in Section 4.2. In Section 4.3 we study
the super-Wright–Fisher diffusion and prove a conjecture by Fleischmann and
Swart [30].

Some minor statements needed along the way are proved in the Appendix: Ap-
pendix A.1 contains Feynman–Kac-type arguments, and Appendix A.2 discusses
a generalized version of the mild equation (1.3) and monotonicity of its solution in
domain and test function.

2. Preliminaries. This section is split into two parts. In the first part, we dis-
cuss our four main assumptions, and in the second part, we prove that the martin-
gale (Wφ

t (X))t≥0 converges in Lp .

2.1. Basic properties.

2.1.1. Skeleton decomposition. In this section, we work under Assumption 1.
The skeleton decomposition for supercritical superprocesses offers a pathwise de-
scription of the superprocess in terms of a supercritical branching particle process
dressed with an immigration process. Heuristically, one can think of the skeleton
as the prolific individuals of the branching process, that is, individuals belonging
to infinite lines of descent. The function w assigns a small value to regions that
prolific individuals should avoid. If w(x) = − logPδx (E) for some event E , then
the skeleton particles avoid the behavior specified by E . Classical examples are the
event of extinction in finite time Efin = {∃t ≥ 0 : 〈1,Xt 〉 = 0} (cf. [19, 27]) and the
event of weak extinction Elim = {limt→∞〈1,Xt 〉 = 0}; cf. [3, 5].

For f ∈ p(D), we let f̃ (x, t)= f (x) for all (x, t) ∈D × [0,∞). Dynkin [11]
derives the superprocess X from exit measures that describe the evolution of mass
not only in time but also in space. He showed that for any domain B ⊆ D and
t ≥ 0, there exists a random, finite measure X̃B

t on D × [0,∞) such that for all
μ ∈ Mf (D) and f ∈ bp(D),

Pμ
[
e−〈f̃ ,X̃B

t 〉] = e
−〈ũBf (·,t),μ〉

,(2.1)

where ũBf is the unique, nonnegative solution to the integral equation

u(x, t)= Px
[
f (ξt∧τB )

] − Px

[∫ t∧τB
0

ψβ
(
ξs, u(ξs, t − s)

)
ds

]
(2.2)
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for all (x, t) ∈D×[0,∞), and τB = inf{t ≥ 0 : ξt /∈ B}. For f ∈ p(D), there exists
a sequence of functions fk ∈ bp(D) such that fk ↑ f pointwise. By (2.1), ũBfk (x, t)

is monotonically increasing in k, and we denote the limit by ũBf (x, t) ∈ [0,∞].
With this notation, the monotone convergence theorem implies that (2.1) is valid
for all f ∈ p(D). The same argument shows that (1.2) holds for all f ∈ p(D),
and (1.6) implies uw = w. Hence, (1.6) holds for all μ ∈ Mf (D). The super-
process Xt is obtained as a projection of X̃D

t restricted to D × {t}. Writing
w̃(x, t) = w(x) for (x, t) ∈ D × [0,∞), the Markov property (cf. Theorem I.1.3
[11]) and (1.6) yield for all μ ∈ Mf (D),

Pμ
[
e−〈w̃,X̃B

t 〉] = Pμ
[
e−〈w,Xt 〉] = e−〈w,μ〉,(2.3)

and comparing to (2.1), we deduce that ũBw = w̃. Now let B ⊂⊂D. If the support
of μ, supp(μ), is a subset of B , then X̃B

t is supported on the boundary of B ×
[0, t); if supp(μ)⊆D \B , then X̃B

t = μ almost surely; cf. Theorem I.1.2 in [11].
In particular, (1.5) implies that w̃ in 〈w̃, X̃B

t 〉 can be interpreted as a bounded
function, and we combine (2.3) and (2.2) to obtain

w(x)= Px
[
w(ξt∧τB )

] − Px

[∫ t∧τB
0

ψβ
(
ξs,w(ξs)

)
ds

]
(2.4)

for all (x, t) ∈ �B×[0,∞). Sincew is bounded on �B , the continuity of the diffusion
ξ yields that w is continuous on B; see the argument in the last paragraph of
page 708 in [19]. Because B was arbitrary, we conclude:

LEMMA 2.1. The martingale function w is continuous on D.

Lemma A.1(i) in the Appendix shows that (2.4) can be transformed into

w(x)= Px

[
w(ξt∧τB ) exp

(
−

∫ t∧τB
0

ψβ(ξs,w(ξs))

w(ξs)
ds

)]
for all (x, t) ∈ �B × [0,∞). Hence, for any domain B ⊂⊂D, x ∈ B ,

w(ξt∧τB ) exp
(
−

∫ t∧τB
0

ψβ(ξs,w(ξs))

w(ξs)
ds

)
, t ≥ 0, is a Px-martingale.

(2.5)

Since every nonnegative local martingale is a supermartingale, we conclude that
for all x ∈D,

w(ξt )

w(x)
exp

(
−

∫ t

0

ψβ(ξs,w(ξs))

w(ξs)
ds

)
, t ≥ 0, is a Px-supermartingale.

In particular, we deduce the following lemma.
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LEMMA 2.2. For every x ∈ D, Pwx is a well-defined (sub-)probability mea-
sure and (ξ = (ξt )t≥0; (Pwx )x∈D) is a (possibly non-conservative) Markov process,
which we consider as a Markov process in D ∪ {†}.

If w is bounded, the argument leading to (2.5) is valid for B =D, and (ξ ;Pw)
is conservative.

To give a description of the skeleton decomposition, we use the martingale func-
tion w to construct an auxiliary Mf (D)-valued Markov process. Let for all x ∈D,
z≥ 0 and f ∈ p(D), �∗(x, dy) := e−w(x)y�(x, dy),

β∗(x) := β(x)− 2α(x)w(x)−
∫
(0,∞)

(
1 − e−w(x)y

)
y�(x, dy),

ψ∗
0 (x, z) := α(x)z2 +

∫
(0,∞)

(
e−zy − 1 + zy

)
�∗(x, dy).

Since β∗(x) ≤ β(x) for all x ∈ D, β∗ is bounded from above. However, it is
not clear whether β∗ is bounded from below. Hence, the branching mechanism
ψ∗
β∗(x, z) = −β∗(x)z + ψ∗

0 (x, z) might not satisfy the assumptions from Sec-
tion 1.1. To overcome this problem, set β∗+ = max{β∗,0} and β∗− = max{−β∗,0}
so that β∗ = β∗+ − β∗− with β∗+ bounded and β∗− nonnegative. We write for
all f ∈ p(D),

S∗
t f (x) := Px

[
e−

∫ t
0 β

∗−(ξs) dse
∫ t

0 β
∗+(ξs) dsf (ξt )

] = Px
[
e

∫ t
0 β

∗(ξs) dsf (ξt )
]
,(2.6)

where (ξ, (Px)x∈D) is the original diffusion process on D with generator L defined
in Section 1.1. Dynkin [11], Theorem I.1.1, showed the existence and unique-
ness of the superprocess X∗ = (X∗

t )t≥0 whose motion is given by the diffusion
with generator L killed at spatially dependent rate β∗−, branching mechanism
ψ∗
β∗+(x, z)= −β∗+(x)z+ψ∗

0 (x, z) and domain D. Then X∗ is an Mf (D)-valued,
time-homogeneous Markov process such that for all μ ∈ Mf (D), f ∈ bp(D)

and t ≥ 0,

Pμ
[
e−〈f,X∗

t 〉] = e
−〈u∗

f (·,t),μ〉
,

where u∗
f is the unique nonnegative solution to

u(x, t)= S∗
t f (x)−

∫ t

0
S∗
s

[
ψ∗

0
(·, u(·, t − s)

)]
(x) ds(2.7)

for all (x, t) ∈ D × [0,∞). Comparing (2.7) and (1.3), we refer to X∗ as the
(L,ψ∗

β∗;D)-superprocess. In Appendix A.2, we show that, alternatively, X∗ can
be obtained as a monotone, distributional limit of superprocesses in the setup of
Section 1.1. If w(x)= − logPδx (E) for a tail event E with Pμ(E)= e−〈w,μ〉 for all
μ ∈ Mf (D), then X∗ can be obtained from X by conditioning on E ; that is, the
distribution of X∗

t is given by Pμ(Xt ∈ ·|E); cf. [3, 19, 27, 43]. For our analysis
it will be enough to know that on compactly supported, continuous functions, the
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semigroup (S∗
t )t≥0 grows more slowly than the semigroup (St )t≥0, and we prove

this fact in Lemma 3.5.
The following theorem is a concise version of the skeleton decomposition at the

level of detail that is useful to us. It is based on a result from Kyprianou et al. [43].
We denote by Mloc

a the set of locally finite integer-valued measures on B(D).

THEOREM 2.3 (Kyprianou et al. [43]). There exists a probability space with
probability measures Pμ,ν , μ ∈ Mf (D), ν ∈ Mloc

a (D), that carries the following
processes:

(i) (Z = (Zt )t≥0;Pμ,ν) is a branching diffusion with motion (ξ ;Pw) defined
in (1.7), and branching rate q and offspring distribution (pk)k≥2 defined by (1.8)
and Pμ,ν(Z0 = ν)= 1.

(ii) (X∗ = (X∗
t )t≥0;Pμ,ν) is an Mf (D)-valued time-homogeneous Markov

process such that for every μ ∈ Mf (D), f ∈ bp(D) and t ≥ 0,

Pμ,ν
[
e−〈f,X∗

t 〉] = e
−〈u∗

f (·,t),μ〉
,

where u∗
f is the unique solution to (2.7). Moreover, X∗ is independent of Z un-

der Pμ,ν .
(iii) (I = (It )t≥0;Pμ,ν) is an Mf (D)-valued process such that:

(a) Pμ,∑i δxi
[e−〈f,It 〉] = ∏

i Pμ,δxi [e−〈f,It 〉] for all μ ∈ Mf (D), xi ∈ D,f ∈
p(D). Moreover, Pμ,ν(I ∈ ·) does not depend on μ, Pμ,ν(I0 = 0) = 1, and,
under Pμ,ν , (Z, I ) is independent of X∗.

(b) ((X,Z) := (X∗ + I,Z);Pμ,ν) is a Markov process.
(c) (X = X∗ + I ;Pμ) is equal in distribution to (X;Pμ), where Pμ denotes the

measure Pμ,ν with ν replaced by a Poisson random measure with intensity
w(x)μ(dx).

(d) Under Pμ, conditionally given Xt , the measure Zt is a Poisson random mea-
sure with intensity w(x)Xt(dx).

We call the probability space from Theorem 2.3 the skeleton space. The pro-
cess I is called immigration process or simply immigration. As the processes
(X;Pμ) on the skeleton space and (X;Pμ) on the generic space have the same
distribution, we may, without loss of generality, work on the skeleton space when-
ever it is convenient. Since the distributions of X∗ and I under Pμ,ν do not depend
on ν and μ, respectively, we sometimes write Pμ,• or P•,ν .

Kyprianou et al. [43] identify the immigration process explicitly. We need only
the properties listed in Theorem 2.3 but, for definiteness, we now give a full char-
acterization of the immigration process.

Dynkin and Kuznetsov [13] showed that on the canonical space of measure-
valued càdlàg functions D([0,∞),Mf (D)) for every x ∈ D there is a unique
measure Nx such that for all f ∈ bp(D), t ≥ 0,

− logPδx
[
e−〈f,Xt 〉] = Nx

[
1 − e−〈f,Xt 〉].(2.8)
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The corresponding measures associated with the superprocess X∗ are denoted
by N∗

x , x ∈D.
To describe the immigration processes, we use the classical Ulam–Harris no-

tation to uniquely refer to individuals in the genealogical tree T of Z; see, for
example, page 290 in [35]. For each individual u ∈ T , we write bu and du for its
birth and death times, respectively, and {zu(r) : r ∈ [bu, du]} for its spatial trajec-
tory. The skeleton space carries the following processes:

(iii.1) (a;Pμ,ν) is a random measure, such that conditional on Z, a is a Poisson
random measure that issues, for every u ∈ T , Mf (D)-valued processes Xa,u,r =
(X

a,u,r
t )t≥0 along the space–time trajectory {(zu(r), r) : r ∈ (bu, du]} with rate

dr ×
(

2α
(
zu(r)

)
dN∗

zu(r)
+

∫
(0,∞)

�
(
zu(r), dy

)
ye−w(zu(r))y × dP ∗

yδzu(r)

)
,

where P ∗
μ denotes the distribution of X∗ started in μ. Since at most countable

many processes Xa,u,r are not equal to the constant zero measure, immigration at
time t that occurred in the form of processes Xa,u,r until time t can be written as

I at = ∑
u∈T

∑
bu<r≤du∧t

X
a,u,r
t−r .

The processes (Xa,u,r :u ∈ T , bu < r ≤ du) are independent given Z and indepen-
dent of X∗.

(iii.2) (b;Pμ,ν) is a random measure, such that conditional on Z, b issues, for
every u ∈ T , at space–time point (zu(du), du) process Xb,u with law P ∗

Yuδzu(du)
.

Given that u is replaced by k particles at its death time du, the independent random
variable Yu is distributed according to the measure

1

q(x)w(x)pk(x)

(
α(x)w(x)2δ0(dy)1{k=2} +w(x)k

yk

k! e
−w(x)y�(x, dy)

)∣∣∣∣
x=zu(du)

.

The immigration at time t that occurred in the form of processes Xb,u until time t
is denoted by

I bt = ∑
u∈T

1{du≤t}X
b,u
t−du.

The processes (Xb,u :u ∈ T ) are independent of X∗ and, given Z, are mutually
independent and independent of a.

The full immigration process is given by I = I a + I b.

PROOF OF THEOREM 2.3. Theorem 2.3 generalizes Corollary 6.2 in [43] in
three ways. First, the authors choose w(x) = − logPδx (Efin) but after defining Z

and X∗ this choice is not used anymore, and their argument goes through without
any changes for a general martingale function w satisfying Assumption 1. Second,
the authors assume that w is locally bounded away from zero. Since w is continu-
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ous by Lemma 2.1, this condition is automatically satisfied. Finally, Kyprianou et
al. enforce additional regularity conditions on the underlying motion to use a com-
parison principle from the literature in the proof of their Lemma 6.1; see also their
Footnote 1. The comparison principle allows them to conclude that the solution ũBf
to (2.2) is increasing in the domain B when the support of f is a subset of B . Lem-
mas A.1(i) and A.6 show that this monotonicity holds in the more general setup of
the present article, too. �

We introduce notation to refer to the different parts of the skeleton decomposi-
tion.

NOTATION 2.4 (Notation for Z). For t ≥ 0, we write Zt = ∑Nt

i=1 δξi(t), where
Nt denotes the number of skeleton particles at time t and (ξi(t) : i = 1, . . . ,Nt )

their (conveniently ordered) locations. Given Z0, (Zi,0 : i = 1, . . . ,N0) denote the
independent subtrees of the skeleton obtained by splitting Z according to the an-
cestor at time 0. The Markov property implies that Zi,0 follows the same distribu-
tion as (Z;P•,δξi (0) ), i = 1, . . . ,N0. Under Pμ with μ ∈Mc(D), N0 = 〈1,Z0〉 is a
Poisson random variable with mean 〈w,μ〉.

For t ≥ 0, let F t denote the σ -algebra generated by the processes X∗, Z and I
up to time t . Using the characterization of the immigration process from Theo-
rem 2.3, we obtain for all μ ∈Mf (D), ν ∈ Mloc

a (D), f ∈ p(D) and s, t ≥ 0,

Pμ,ν
[
e−〈f,Xs+t 〉|F t

] (b)= PXt ,Zt

[
e−〈f,Xs〉] = PXt ,Zt

[
e−〈f,X∗

s+Is〉]
(2.9)

(a)= PXt ,•
[
e−〈f,X∗

s 〉] Nt∏
i=1

P•,δξi (t)
[
e−〈f,Is〉]

Pμ,ν -almost surely. Since under Pμ and given Xt , Zt is a Poisson random measure
with intensity w(x)Xt(dx) by (d), (2.9) holds Pμ-almost surely when Pμ,ν on the
left-hand side is replace by Pμ. To make use of this identity, we split the immi-
gration process according to the immigration that occurred before time t and the
immigration that occurred along different branches of Z after time t .

NOTATION 2.5 (Notation for I ). For t ≥ 0, denote by I ∗,t
s the immigration

at time s + t that occurred along the skeleton before time t ; I ∗,t = (I ∗,t
s )s≥0. In

addition, for i ∈ {1, . . . ,Nt }, let I i,ts denote the immigration at time s + t that
occurred along the subtree of the skeleton rooted at the ith particle at time t with
location ξi(t); I i,t = (I i,ts )s≥0. We have

Xs+t =X∗
s+t + I ∗,t

s +
Nt∑
i=1

I i,ts for all s, t ≥ 0.(2.10)
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According to (2.9) and by the Markov property, given F t , (X∗
s+t + I ∗,t

s )s≥0 fol-
lows the same distribution as (X∗,PXt ), and I i,t follows the same distribution as
(I ;P•,δξi (t) ), i = 1, . . . ,Nt . Moreover, given F t , the processes (I i,t : i = 1, . . . ,Nt )

are independent and independent of I ∗,t .

We end this section with a note on terminology. Several different phrases have
been used in the literature to refer to the skeleton decomposition. Evans and
O’Connell [27] proved the first skeleton decomposition for supercritical super-
processes in the case of a conservative motion (not necessarily a diffusion) and
a quadratic, spatially independent branching mechanism with α,β ∈ (0,∞), and
call the result “representation theorem”. Their study was motivated by the “im-
mortal particle representation” derived by Evans [26] for critical superprocesses
conditioned on non-extinction. This representation is in terms of a single “immor-
tal particle” that throws off pieces of mass. Evans’s article is part of a cluster of
papers that study conditioned superprocesses. Salisbury and Verzani [55] condi-
tion the exit measure of a super-Brownian motion to hit n fixed, distinct points
on the boundary of a bounded smooth domain. The authors show that the resulting
process can be described as the sum of a tree with n leaves that throws off mass in a
Poissonian way and of a copy of the unconditioned process, and call this decompo-
sition “backbone representation”. In a follow-up article [56] they consider differ-
ent conditionings and derive an “immortal particle description” where the guiding
object is a tree with possibly infinitely many branches that they call “backbone”
or “branching backbone”. Salisbury and Sezer [54] describe the super-Brownian
motion conditioned on boundary statistics in terms of a “branching backbone”
or “branching backbone system”. Etheridge and Williams [24] represent a criti-
cal superprocess with infinite variance conditioned to survive until a fixed time
as immigration along a Poisson number of “immortal trees”. An overview of de-
compositions of conditioned superprocesses was offered by Etheridge [23] using
the names “skeleton” and “immortal skeleton”. Back in our setup of supercriti-
cal superprocesses, Engländer and Pinsky [19] speak about a “decomposition with
immigration” and Fleischmann and Swart [31] construct a “trimmed tree”. For
the analysis of continuous-state branching processes, Duquesne and Winkel [9]
find a “Galton–Watson forest”. In the corresponding superprocess setup, Beresty-
cki et al. [3] identify the “prolific backbone” and call the representation itself a
“backbone decomposition”. The latter phrase has been used several times since
[43, 44, 47, 52].

We decided to use the term “skeleton decomposition” for the following rea-
sons. Since the words “backbone” and “spine” are used interchangeably in spoken
English, using these two words to mean different things might cause confusion.
Furthermore, spine/backbone describes one key, supporting element of an object
and does not branch. In contrast, a skeleton carries the entire structure and deter-
mines the main features of an object. This is the correct intuition for the spine
decomposition and the skeleton decomposition of branching processes as well as
the distinction between them.
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2.1.2. Product L1-criticality. The first two moments of the superprocess can
be expressed in terms of the underlying motion and the branching mechanism.
That is (see, e.g., Proposition 2.7 in [28]), for all μ ∈ Mf (D) and f ∈ bp(D),

Pμ
[〈f,Xt 〉] = 〈Stf,μ〉,(2.11)

Varμ
(〈f,Xt 〉) =

∫ t

0

〈
Ss

[(
2α +

∫
(0,∞)

y2�(·, dy)
)
(St−sf )2

]
,μ

〉
ds.(2.12)

Here Varμ(〈f,Xt 〉) denotes the variance of 〈f,Xt 〉 under Pμ. By the monotone
convergence theorem, the boundedness of f in (2.11) is unnecessary, and (2.12)
holds for f ∈ p(D) as soon as 〈Stf,μ〉<∞. Similarly, under Assumption 1 and
for μ ∈ Mf (D), f ∈ bp(D), the first two moments of 〈f,X∗

t 〉 [see the discussion
around (2.6) for the definitions] can be expressed as

Pμ
[〈
f,X∗

t

〉] = 〈
S∗
t f,μ

〉
,(2.13)

Varμ
(〈
f,X∗

t

〉) =
∫ t

0

〈
S∗
s

[(
2α +

∫
(0,∞)

y2�∗(·, dy)
)(
S∗
t−sf

)2
]
,μ

〉
ds.(2.14)

The main purpose of this section is to discuss Assumption 2, that enforces con-
ditions on the operator L+ β and consequently on its semigroup (St )t≥0 which is
the expectation semigroup of X by (2.11). Throughout the section, we suppose that
Assumptions 1 and 2 hold. Key features of the local behavior of the superdiffusion
X are determined by the generalized principal eigenvalue λc = λc(L+β). If α and
� are sufficiently smooth and λc ≤ 0, then the superdiffusion exhibits weak local
extinction, that is, the total mass assigned to a compact set by the superprocess
tends to zero. For quadratic branching mechanisms this was shown by Pinsky [51],
Theorem 6; for general branching mechanisms the proof of Theorem 3(i) in [18]
gives the result. This is the reason to assume λc > 0.

The assumption of product L1-criticality restricts this article to the situation
where the expectation semigroup (St )t≥0 scales precisely exponentially on com-
pactly supported, continuous functions. In general, writing Stf (x)= eλctωf,x(t),
the limit ωf,x := limt→∞ωf,x(t) exists for all f ∈ C+

c (D), x ∈ D. Product
L1-criticality is equivalent to ωf,x > 0 for all f �= 0. The alternative is ωf,x = 0
for all f and x; cf. Theorem 7 in [51] and Appendix A in [22]. Some of the rele-
vant literature for this regime was discussed in Section 1.4. The notion of product
L1-criticality comes from the criticality theory of second order elliptic operators.
See Appendix B of [19] for a good summary and Chapter 4 in [50] for a compre-
hensive treatment.

By Theorem 4.8.6 in [50], criticality implies that the ground state φ is an in-
variant function of e−λctSt , that is, e−λctStφ = φ, and we define a conservative
diffusion (ξ = (ξt )t≥0; (Pφx )x∈D) by

dPφx
dPx

∣∣∣∣
σ(ξs : s≤t)

= φ(ξt )

φ(x)
e

∫ t
0 (β(ξs)−λc) ds on {t < τD},

(2.15)
Pφx

[
g(ξt )

] = φ(x)−1e−λctSt [φg](x),
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for all x ∈ D, t ≥ 0, g ∈ p(D). Product L1-criticality is equivalent to (ξ =
(ξt )t≥0; (Pφx )x∈D) being a positive recurrent diffusion with stationary distribution
φ(x)φ̃(x) dx, and we call it the ergodic motion or the spine (as we explain in Sec-
tion 2.2). In particular (see Theorems 4.3.3 and 4.8.6 in [50]),〈

Pφ·
[
g(ξt )

]
, φφ̃

〉 = 〈g,φφ̃〉 for all g ∈ p(D),(2.16)

and for every probability measure π on D and g ∈ bp(D),〈
Pφ·

[
g(ξt )

]
, π

〉 → 〈g,φφ̃〉 as t → ∞.(2.17)

If, in addition, the initial distribution π is of compact support, then (2.17) holds
for all g ∈ p(D) with 〈g,φφ̃〉 < ∞. Indeed, for g bounded, (2.17) follows from
Theorem 4.9.9 in [50] and the dominated convergence theorem. If the support
of π , supp(π), is compactly embedded in D, choose a domain B ⊂⊂ D with
supp(μ)⊆ B . There exists a constant C > 0 such that

pφ(x, y, t)≤ Cφ(y)φ̃(y) for all x ∈ B,y ∈D, t > 1,(2.18)

where pφ(x, y, t) denotes the transition density of (ξ,Pφ) and

lim
t→∞pφ(x, y, t)= φ(y)φ̃(y) for every x, y ∈D;

cf. (2.12) and Theorem 1.3(ii) of Pinchover [49]. Hence, (2.17) for π ∈ Mc(D)

and g ∈ p(D) with 〈g,φφ̃〉 < ∞ follows from the dominated convergence theo-
rem.

LEMMA 2.6 (Many-to-one lemma for X and Z). For all μ ∈ Mf (D), ν ∈
Mloc

a (D) and g ∈ p(D),

e−λctPμ
[〈φg,Xt 〉] = 〈

Pφ·
[
g(ξt )

]
, φμ

〉
,(2.19)

e−λctP•,ν
[〈
φ

w
g,Zt

〉]
=

〈
Pφ·

[
g(ξt )

]
,
φ

w
ν

〉
,(2.20)

e−λctPμ
[〈
φ

w
g,Zt

〉]
= 〈

Pφ·
[
g(ξt )

]
, φμ

〉
.(2.21)

PROOF. Identity (2.19) follows immediately from (2.11) and (2.15).
For (2.20), notice that by (1.8) the local growth rate of Z is given by

βZ(x) := q(x)

( ∞∑
k=2

kpk(x)− 1

)
= ∂sG(x, s)|s=1 = ψ0(x,w(x))

w(x)

for all x ∈D. Using the definition of Pwx in (1.7), we obtain for all x ∈D,

Pwx

[
e

∫ t
0 β

Z(ξs) ds
φ(ξt )

w(ξt )
g(ξt )

]
=w(x)−1Px

[
exp

(∫ t

0

(
βZ(ξs)− ψβ(ξs,w(ξs))

w(ξs)

)
ds

)
φ(ξt )g(ξt )

]
=w(x)−1St [φg](x) (2.15)= φ(x)

w(x)
eλctPφx

[
g(ξt )

]
.
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Hence, the first moment formula for branching diffusions (see, e.g., Theorem 8.5
in [35]) yields

e−λctP•,ν
[〈
φ

w
g,Zt

〉]
= e−λct

〈
Pw·

[
e

∫ t
0 β

Z(ξs) ds
φ(ξt )

w(ξt )
g(ξt )

]
, ν

〉
=

〈
Pφ·

[
g(ξt )

]
,
φ

w
ν

〉
.

Since under Pμ, initial configuration of Z is given by a Poisson random measure
with intensity w(x)μ(dx), (2.21) follows from (2.20). �

We record the following consequence of Lemma 2.6.

COROLLARY 2.7. For all μ ∈ Mφ
f (D), the processes ((Wφ

t (X))t≥0;Pμ) and

((W
φ/w
t (Z))t≥0;Pμ) are martingales with

Pμ
[
W

φ
t (X)

] = Pμ
[
W

φ/w
t (Z)

] = 〈φ,μ〉 for all t ≥ 0.

PROOF. Since (ξ,Pφx ) is conservative, the formula for the expectations fol-
lows immediately from (2.19) and (2.21). The Markov property of X combined
with (2.19) gives the claim for X. The Markov property of Z and (2.20) imply
that (Wφ/w

t (Z))t≥0 is a P•,ν -martingale for all ν ∈ Mloc
a (D) with 〈φ/w,ν〉<∞.

Replacing ν by a Poisson random measure with intensity w(x)μ(dx) completes
the proof. �

Let μ ∈ Mφ
f (D), μ �≡ 0. After dividing the right-hand side of (2.19) by 〈φ,μ〉,

the expression can be interpreted as the expectation of g(ξt ), where ξ is the ergodic
motion with starting point randomized according to φμ

〈φ,μ〉 . With this motivation,
define for all measurable sets A,

Pφφμ(A) := 1

〈φ,μ〉
〈
Pφ· (A),φμ

〉
.(2.22)

We end this section with a remark for the case that the superprocess is deter-
ministic.

REMARK 2.8. If we have �({x ∈ D :α(x) + �(x, (0,∞)) > 0}) = 0, then
(2.11)–(2.12) imply that 〈f,Xt 〉 = 〈Stf,μ〉 for all t ≥ 0, Pμ-almost surely, for all
continuous f ∈ bp(D). Hence, Assumption 1 cannot be satisfied. However, under
Assumption 2, (2.15) and (2.17) imply that for continuous f ∈ bp(D) with f/φ

bounded, Pμ-almost surely, as t → ∞,

e−λct 〈f,Xt 〉 = e−λct 〈Stf,μ〉 = 〈
Pφ·

[
f (ξt )/φ(ξt )

]
, φμ

〉
→ 〈f/φ,φφ̃〉〈φ,μ〉 = 〈f, φ̃〉Wφ∞(X).

Now a standard approximation argument shows that the conclusion of Theorem 1.2
holds.
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2.1.3. Moment conditions. In this section, we discuss Assumption 3 and com-
pare it to the conditions used in the literature. We work under Assumptions 1 and 2.
While Assumption 3 seems to be the most useful set of conditions, we prove our
results under the following weaker moment assumption.

ASSUMPTION 3′ . There exists p ∈ (1,2], ϕ1, ϕ2 ∈ p(D), σ1, σ2, σ3 ∈ [p,2]
and j1, j2 ∈ {0,1} such that

sup
x∈D

φ(x)σ1−1α(x) <∞,(2.23)

sup
x∈D

φ(x)σ2−1
∫
(0,ϕ1(x)]

yσ2�(x,dy) <∞,(2.24)

sup
x∈D

φ(x)σ3−1
∫
(ϕ1(x),∞)

yσ3�(x,dy) <∞,(2.25)

〈
φp−1, φφ̃

〉
<∞,(2.26) 〈

φj1

∫
(0,ϕ2(·)]

y2e−w(·)y�(·, dy),φφ̃
〉
<∞,(2.27) 〈

φj2

∫
(ϕ2(·),∞)

y2e−w(·)y�(·, dy),φφ̃
〉
<∞.(2.28)

Assumption 3 is the special case ϕ1 = ϕ2 = 1, σ1 = σ2 = 2, σ3 = p and j1 =
j2 = 0 of Assumption 3′. Notice that with this choice, condition (2.27) trivially
holds since 〈φ, φ̃〉 < ∞ and x �→ ∫

(0,1] y2�(x,dy) is a bounded function by the
model assumptions in Section 1.1. Therefore, the following theorem generalizes
Proposition 1.1 and Theorems 1.2 and 1.5.

THEOREM 2.9. Suppose Assumptions 1, 2, (2.23)–(2.25) hold and μ ∈
Mφ

f (D).

(i) The martingales (Wφ
t (X))t≥0 and (Wφ/w

t (Z))t≥0 are bounded in Lp(Pμ)
and Wφ∞(X)=W

φ/w∞ (Z) Pμ-almost surely.
(ii) Suppose that, in addition, (2.26) holds. For all f ∈ p(D) with f/φ

bounded, we have in L1(Pμ)

lim
t→∞ e−λct 〈f,Xt 〉 = 〈f, φ̃〉Wφ∞(X).(2.29)

(iii) If, in addition, Assumptions 3′ and 4 hold, then there exists a measurable
set �0 with Pμ(�0)= 1 and, on �0, for all �-almost everywhere continuous func-
tions f ∈ p(D) with f/φ bounded, the convergence in (2.29) holds.

The first three moment conditions, (1.10)–(1.12) or (2.23)–(2.25), are used to
guarantee that the martingale (Wφ

t (X))t≥0 is bounded in Lp; see Theorem 2.15
below. To the best of our knowledge, even though these conditions may not be opti-
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mal, they are the best conditions obtained so far to guarantee Lp-boundedness, p ∈
(1,2), for general superprocesses. For the case of a super-Brownian motion, simi-
lar conditions were found in [42]. Condition (1.10) appeared as the main moment
assumption in [21] and [22] to establish the convergence (2.29) in distribution and
in probability, respectively. The two articles that study almost sure convergence in
the product L1-critical regime (i.e., under Assumption 2) are by Chen et al. [7] and
Liu et al. [46]. In both papers, α and φ are bounded; hence, (1.10) holds.

The article [7] is restricted to quadratic branching mechanisms; that is, �≡ 0,
and (1.11)–(1.12) are trivially satisfied. Liu et al. [46] do not require � to have a
pth moment. The authors show that under their assumptions [D of finite Lebesgue
measure and (St )t≥0 intrinsically ultracontractive], the martingale limit Wφ∞(X)

is nontrivial if and only if 〈∫(1,∞) y logy�(·, y/φ), φ̃〉 < ∞, and they establish
their result under this condition. In the alternative case, the martingale limit is zero
almost surely, and the stated convergence (1.16) holds trivially.

The fourth assumption, (1.13) or (2.26), is a technical condition. It is only used
in Proposition 3.11 to compare the immigration after a large time t ,

∑Nt

i=1〈f, I i,ts 〉,
to its expectation

∑Nt

i=1 Pμ[〈f, I i,ts 〉|F t ]. In the previous articles on the SLLN
[7, 46], Assumption (1.13) holds since φ is bounded.

The technical condition can be avoided using an h-transform. The h-transform
for measure-valued diffusions was introduced by Engländer and Pinsky in [19].
For h ∈ C2,η(D), h > 0, let

Lh0 = L+ a
∇h
h

· ∇, βh(x)= (L+ β)h(x)

h(x)
,

(2.30)

ψh
0 (x, z)= ψ0(x,h(x)z)

h(x)
.

If βh, αh and x �→ ∫
(0,∞)(y∧h(x)y2)�(x, dy) belong to b(D), then ψh

βh
(x, z) :=

−βh(x)z + ψh
0 (x, z) satisfies the assumptions from Section 1.1. We denote the

space of such functions h by H(ψβ). An (Lh0,ψ
h
βh

;D)-superprocess Xh started in
h(x)μ(dx) can be obtained from an (L,ψ;D)-superprocess X started in μ by set-
ting Xh

t (dx) := h(x)Xt(dx). This result follows immediately from a comparison
of the Laplace transforms using the mild equation (1.3) and Corollary 4.1.2 in [50];
see [19] for the computation in the quadratic case. In the following, we superscript
all quantities derived from Xh with an h. Clearly, the (L,ψ;D)-superprocess can
be recovered from the (Lh0,ψ

h
βh

;D)-superprocess by a transform with 1/h.

LEMMA 2.10. Let h ∈ H(ψβ) and μ ∈ Mφ
f (D).

(i) The operator Lh0 + βh satisfies Assumption 2 with φh = φ/h, φ̃h = φ̃h and

λhc = λc, and the process (Wφh

t (Xh)= e−λhc t 〈φh,Xh
t 〉 : t ≥ 0;Ph

hμ) is a martingale

with almost sure limit Wφh∞ (Xh).
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(ii) Suppose (2.29) holds Pμ-almost surely for some f ∈ p(D). Then

lim
t→∞ e−λhc t

〈
f/h,Xh

t

〉 = 〈
f/h, φ̃h

〉
Wφh∞

(
Xh) Ph

hμ-almost surely.(2.31)

If (2.29) holds in L1(Pμ) instead, then (2.31) holds in L1(P h
hμ).

PROOF. The first part of the claim was proved by Pinsky [50], Chapter 4.

Setting Xh := hX, we immediately obtain W
φh

t (Xh) = e−λhc t 〈φh,Xh
t 〉 = W

φ
t (X)

and, Pμ-almost surely [in L1(Pμ), resp.],

e−λhc t
〈
f/h,Xh

t

〉 = e−λct 〈f,Xt 〉 → 〈f, φ̃〉Wφ∞(X)= 〈
f/h, φ̃h

〉
Wφh∞

(
Xh)

as t → ∞. �

Lemma 2.10 states that Assumption 2 and our results are invariant under
h-transforms. The same is true for Assumptions 1 and 4.

LEMMA 2.11. Let h ∈ H(ψβ). The (Lh0,ψ
h
βh

;D)-superprocess Xh satisfies

Assumption 1 with martingale functionwh =w/h and the distribution of the skele-
ton Zh under Phhμ agrees with the distribution of Z under Pμ for all μ ∈ Mc(D).

In particular, if X satisfies Assumption 4, then Xh satisfies Assumption 4.

PROOF. The claim follows immediately from the definitions. �

Exploiting the invariance under h-transforms, we can prove our main results
under the following moment assumption.

ASSUMPTION 3′′ . There exists p ∈ (1,2] such that conditions (1.10)–(1.12)
and (2.28) for j2 = 1, ϕ2 = 1 hold and

sup
x∈D

∫
(1/φ(x),∞)

y�(x, dy) <∞.(2.32)

Crucially, Assumption 3′′ does not require 〈φp, φ̃〉 < ∞. In the case of a
quadratic branching mechanism, only boundedness of φα is needed. Condi-
tion (2.32) is needed to guarantee that φ ∈ H(ψβ).

THEOREM 2.12. Suppose Assumptions 1, 2, (1.10)–(1.12) and (2.32) hold,
and let μ ∈ Mφ

f (D).

(i) For all f ∈ p(D) with f/φ bounded, the convergence in (2.29) holds
in L1(Pμ).

(ii) If, in addition, Assumptions 3′′ and 4 hold, then there exists a measurable
set �0 with Pμ(�0)= 1 and, on �0, for all �-almost everywhere continuous func-
tions f ∈ p(D) with f/φ bounded, the convergence in (2.29) holds.
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Theorem 2.12 is a consequence of Theorem 2.9, and will not be used until Sec-
tion 4, after Theorem 2.9 has been proved.

PROOF OF THEOREM 2.12. Part (i): since we have βφ = λc, αφ = φα and
�φ(x, dy) = 1

φ(x)
�(x, dy/φ(x)), conditions (1.10), (1.11), (2.32) and the model

assumptions in Section 1.1 guarantee that φ ∈ H(ψβ). By Lemma 2.10(i), Xφ

satisfies Assumption 2 and φφ = 1. Thus (1.10)–(1.12) imply that Xφ satis-
fies (2.23)–(2.26) with ϕ1 = φ, σ2 = 2, σ3 = p and σ1 ∈ [p,2] arbitrary. Using
Lemma 2.11, we deduce that Theorem 2.9(ii) applies to Xφ , and the claim follows
from Lemma 2.10(ii).

Part (ii): Xφ satisfies (2.27)–(2.28) with ϕ2 = φ and arbitrary j1, j2 ∈ {0,1},
and Assumption 4 by Lemma 2.11. Hence, Theorem 2.9(iii) applies to Xφ and
Lemma 2.10(ii) completes the proof for fixed functions f . The existence of a com-
mon set �0 will be proved in Lemma 3.4 below. �

Engländer and Winter [22] proved the convergence (2.29) in probability under
the assumption of a quadratic branching mechanisms and (1.10). Their argument
can easily be extended to general branching mechanisms. Since the proof relies on
an h-transform with h= φ and second moment estimates, the additional conditions
needed for this generalization are (1.11), (1.12) with p = 2, and (2.32).

The freedom to choose p ∈ (1,2] allows us to analyze processes where
(W

φ
t (X))t≥0 is bounded in Lp for p ∈ (1,2) but not in L2. Examples of such

processes are given in Section 4. In these cases, not only our almost sure con-
vergence result is new but also the implied convergence in probability result. The
main tool to deal with non-integer moments is a spine decomposition presented in
Section 2.2, and we are not aware of any other way to obtain these conditions.

The final conditions (2.27)–(2.28) simplify to (1.14) in the case j1 = j2 = 0,
ϕ2 = 1. These assumptions guarantee that the processX∗ from the skeleton decom-
position has finite second moments (2.14), a fact which is only used in the transi-
tion from lattice to continuous times. In particular, the SLLN along lattice times in
Theorem 3.13 holds without it. If w is bounded away from zero, for instance when
the branching mechanism is spatially independent and the motion is conservative
(see Section 4.1), then (1.14) holds automatically. Since Chen et al. [7] consider a
quadratic branching mechanism, the conditions automatically hold in their article.
In contrast, Liu et al. [46] have no conditions of this type.

In summary, our moment conditions are weaker than those used in [7], but com-
pared to [46], we impose stricter assumptions on the Lévy measure �, yet allow a
much larger class of underlying motions ξ and domains D.

2.1.4. The strong law of large numbers for the skeleton. Throughout this sec-
tion, we suppose that Assumptions 1, 2 and 3′ hold. Assumption 4 may look like
a strong assumption on first glance. However, we argue that this is not so. The
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skeleton decomposition shows that the large-time behavior of the superprocess is
guided by the skeleton. This suggests that the total mass the superprocess assigns
to a compact ball, will be asymptotically well-behaved if and only if the skeleton
carrying the superprocess has asymptotically a well-behaved number of particles
in that ball. We write B0(D) := {B ∈ B(D) :�(∂B) = 0}. To show that Assump-
tion 4 holds, it suffices to prove that for all μ ∈ Mc(D), B ∈ B0(D),

lim inf
n→∞ e−λcnδ

〈
φ

w
1B,Znδ

〉
≥ 〈φ1B, φ̃〉Wφ/w∞ (Z) Pμ-almost surely

as we will see in Lemma 3.1(ii) below. Often it is a much easier task to prove the
convergence along lattice times than along continuous times.

There are good results in the literature proving SLLNs for branching diffusions.
Some of the relevant literature was reviewed in Section 1.4. A nice argument to ob-
tain almost sure asymptotics for spatial branching particle processes from related
asymptotic behavior of the spine was found recently by Harris and Roberts [36].
However, they assume a convergence for the spine which usually does not hold in
our setup. The theorem we use to verify several examples in Section 4 is based on
a result from Engländer et al. [17]. The authors prove the convergence for strictly
dyadic branching diffusions along continuous times. We require only convergence
along lattice times, but allow a more general branching generator. The following
theorem is a version of their result as our proof reveals.

THEOREM 2.13. Let μ ∈ Mc(D), and assume that for every x in the support
of μ the following conditions hold:

(i) There is a family of sets Dt ∈ B(D), t ≥ 0, such that for all δ > 0,

P•,δx
(∃n0 ∈ N : supp(Znδ)⊆Dnδ for all n≥ n0

) = 1.

(ii) For every B ⊂⊂D, there exists a constant K > 0 such that

sup
y∈Dt

∣∣Pφy [
1B(ξKt )

] − 〈φ1B, φ̃〉∣∣ → 0 as t → ∞.(2.33)

Then, for all δ > 0, f ∈ p(D) with fw/φ bounded,

lim
n→∞ e−λcnδ〈f,Znδ〉 = 〈f,wφ̃〉Wφ/w∞ (Z) Pμ-almost surely.

PROOF. Using Notation 2.4, we have Z = ∑N0
i=1Z

i,0, where given F0,
(Zi,0 : i = 1, . . . ,N0) are independent and (Zi,0;Pμ(·|F0)) is equal in distribution

to (Z;P•,δξi (0) ). In particular, Wφ/w∞ (Z)= ∑N0
i=1W

φ/w∞ (Zi,0) and

Pμ
(

lim
n→∞ e−λcnδ〈f,Znδ〉 = 〈f,wφ̃〉Wφ/w∞ (Z)

)
≥ Pμ

(
N0⋂
i=1

{
lim
n→∞ e−λcnδ

〈
f,Z

i,0
nδ

〉 = 〈f,wφ̃〉Wφ/w∞
(
Zi,0)})
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= Pμ

[
N0∏
i=1

P•,δξi (0)
(

lim
n→∞ e−λcnδ〈f,Znδ〉 = 〈f,wφ̃〉Wφ/w∞ (Z)

)]
.

It remains to argue that under the stated assumptions,

P•,δx
(

lim
n→∞ e−λcnδ〈f,Znδ〉 = 〈f,wφ̃〉Wφ/w∞ (Z)

)
equals 1 for every x in the support of μ. Engländer et al. [17] give a proof of
this result for strictly dyadic branching diffusions in two steps. The argument can
be generalized as follows. The first step is to show that with (sn)n≥0 nonnegative
and nondecreasing, and Un = e−λc(sn+δn)〈f,Zsn+δn〉, the sequence Df (sn, δn) =
|Un−P•,δx [Un|σ(Zr : r ≤ nδ)]| converges to zero. The key to this result is an upper
bound on the pth moment of Wφ/w

t (Z) and is obtained via a spine decomposition
of the branching diffusion. This would be possible even in our more general setup
but is not needed since the required bound follows easily from Theorem 2.9(i). The
second step is to show the convergence of CEf (sn, δn)= P•,δx [Un|σ(Zr : r ≤ nδ)]
for sn = Kδn to 〈f,wφ̃〉Wφ/w∞ (Z). Their assumptions for this convergence are
conditions (iii) and (iv) in their Definition 4. Condition (iii) is our condition (i)
in Theorem 2.13. From the proof in [17] it is easy to see that their condition (iv)
in Definition 4 can be relaxed to our condition (ii), a fact that has also been used in
the verification of some examples in [17]. �

The following lemma is useful in the verification of the conditions of Theo-
rem 2.13 and has been proved by Engländer et al. [17]. We give the main argument
for completeness. We denote by ‖ · ‖ the �2-norm on Rd .

LEMMA 2.14. Suppose that for x ∈ D there are a continuous function a :
[0,∞)→ [0,∞) and some ε > 0 such that

Pφx
[
1{‖ξt‖≥a(t)}w(ξt )/φ(ξt )

] ≤ e−(λc+ε)t for all t sufficiently large.(2.34)

Then condition (i) in Theorem 2.13 holds with Dt = {y ∈ D :‖y‖ < a(t)}. If, in
addition, for every B ⊂⊂D, there is K > 0 such that

sup
‖y1‖<a(t),y2∈B

∣∣∣∣pφ(y1, y2,Kt)

φ(y2)φ̃(y2)
− 1

∣∣∣∣ → 0 as t → ∞,(2.35)

where pφ denotes the transition density of (ξ ;Pφ), then condition (ii) in Theo-
rem 2.13 is satisfied.

PROOF. Markov’s inequality and (2.20) yield for all t ≥ 0

P•,δx
(
supp(Zt )�Dt

) ≤ P•,δx
[〈1Dc

t
,Zt 〉]

= eλct
φ(x)

w(x)
Pφx

[
1{‖ξt‖≥a(t)}w(ξt )/φ(ξt )

]
.
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The Borel–Cantelli lemma yields the first part of the lemma. The second part fol-
lows immediately from the definitions and from 〈φ, φ̃〉<∞. �

We will see in Section 4 that for many of the main examples of superdiffusions
the SLLN for the skeleton already follows from Theorem 2.13. For those processes
where Assumption 4 has not been proved yet, we believe that the particle nature of
the skeleton will make it easier to obtain the SLLN for the skeleton than to derive
further convergence statements in the superprocess setup. This article will then
allow us to carry results for the branching diffusion over to the superdiffusion. We
emphasize that the SLLN for the skeleton is only needed along lattice times and
for compactly supported starting measures.

2.2. Spine decomposition. In this section, we use a spine decomposition of X
to identify (W

φ
t (X))t≥0 as an Lp-bounded martingale, where p ∈ (1,2] is deter-

mined by Assumption 3′. A similar decomposition has been used for other pur-
poses by Engländer and Kyprianou [18] on bounded subdomains for quadratic
branching mechanisms and by Liu et al. [45] in the case α = 0. For the one-
dimensional super-Brownian motion the spine decomposition was used by Kypri-
anou et al. [41, 42] to establish Lp-boundedness of martingales closely related to
(W

φ
t (X))t≥0. Similar arguments have been used in the setup of branching diffu-

sions in [17, 35]. See [18] for an overview of the history of spine decompositions
for branching processes. Throughout this section, we suppose that Assumption 2
holds. Further conditions used are stated explicitly. Recall that Mφ

f (D) = {μ ∈
Mf (D) : 〈φ,μ〉<∞}.

THEOREM 2.15. Suppose assumptions (2.23)–(2.25) hold. For all μ ∈
Mφ

f (D), ((W
φ
t (X))t≥0;Pμ) is an Lp-bounded martingale. In particular,

((W
φ
t (X))t≥0;Pμ) converges in Lp(Pμ).

Let μ ∈ Mφ
f (D), μ �≡ 0. We already showed in Corollary 2.7 that (Wφ

t (X))t≥0
is a martingale. Hence, it suffices to prove Lp-boundedness, and we can define a
new probability measure Qμ by

dQμ

dPμ

∣∣∣∣
σ(Xs : s∈[0,t])

= W
φ
t (X)

〈φ,μ〉 for all t ≥ 0.

Recall from (2.22) that (ξ = (ξt )t≥0;Pφφμ) is the ergodic motion with randomized
starting point and use (2.15) to obtain

Pφφμ(A)= e−λct

〈φ,μ〉
〈
P·

[
e

∫ t
0 β(ξs) dsφ(ξt )1A

]
,μ

〉
(2.36)

for all A ∈ σ(ξs : 0 ≤ s ≤ t).
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LEMMA 2.16. For all μ ∈ Mφ
f (D), μ �≡ 0, f,g ∈ bp(D), t ≥ 0,

Qμ

[
e−〈f,Xt 〉 〈φg,Xt 〉

〈φ,Xt 〉
]

(2.37)

= Pμ
[
e−〈f,Xt 〉]Pφφμ[

g(ξt ) exp
(
−

∫ t

0
∂zψ0

(
ξs, uf (ξs, t − s)

)
ds

)]
.

Notice that by definition, 〈φ,Xt 〉> 0, Qμ-almost surely.

PROOF OF LEMMA 2.16. We prove (2.37) only for g compactly supported
since the general case then follows from the monotone convergence theorem. The
continuity of φ implies that f + θφg ∈ bp(D) for all θ ≥ 0. We use the defini-
tion of Qμ and interchange differentiation and integration using the dominated
convergence theorem to obtain

Qμ

[
e−〈f,Xt 〉 〈φg,Xt 〉

〈φ,Xt 〉
]

= − e−λct

〈φ,μ〉Pμ
[
∂θ |θ=0e

−〈f+θφg,Xt 〉]
= e−λct

〈φ,μ〉e
−〈uf (·,t),μ〉∂θ |θ=0

〈
uf+θφg(·, t),μ〉

.

By (1.2), the definition of ψβ , and (2.36) the claim follows when we have shown
that

hf,g(x, t) := ∂θ |θ=0uf+θφg(x, t)
(2.38)

= Px

[
φ(ξt )g(ξt ) exp

(
−

∫ t

0
∂zψβ

(
ξs, uf (ξs, t − s)

)
ds

)]
since integration with respect to μ and differentiation can be interchanged using
the dominated convergence theorem. By (1.3), for any θ > 0,

uf+θφg(x, t)− uf (x, t)

θ

= St [φg](x)−
∫ t

0
Ss

[
ψ0(·, uf+θφg(·, t − s))−ψ0(·, uf (·, t − s))

θ

]
(x) ds.

The Laplace exponent θ �→ v(θ) := uf+θφg(x, t)= − logPδx [e−〈f+θφg,Xt 〉] is in-
creasing, concave and nonnegative. In particular, v(θ)−v(0)

θ
is decreasing in θ .

Moreover, z �→ ψ0(x, z) is increasing, convex and nonnegative. Hence, for all
(x, t) ∈D × [0,∞),

0 ≤ v(θ)− v(0)

θ
= uf+θφg(x, t)− uf (x, t)

θ
≤ St [φg](x)≤ ‖φg‖∞eβ̄t ,
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where β̄ = supx∈D β(x) and ‖ · ‖∞ denotes the supremum norm. A Taylor expan-
sion of ψ0 yields for every (x, t) ∈D × [0,∞) some θ̃ ∈ (0, θ) such that

ψ0(x, v(θ))−ψ0(x, v(0))

θ

= ∂zψ0
(
x, v(0)

)v(θ)− v(0)

θ

+ (
∂zψ0

(
x, v(θ̃)

) − ∂zψ0
(
x, v(0)

))v(θ)− v(0)

θ
.

The first term on the right-hand side is nonnegative and increases as θ ↓ 0; the
second term is dominated and tends to zero. Hence

hf,g(x, t)= St [φg](x)
(2.39)

−
∫ t

0
Ss

[
∂zψ0

(·, uf (·, t − s)
)
hf,g(·, t − s)

]
(x) ds.

Lemma A.1(ii) below applied to the functions g1(x, t) = −∂zψβ(x,uf (x, t)),
g2(x, t) = ∂zψ0(x, uf (x, t)), f1 = φg and f2(x, t) = −∂zψ0(x, uf (x, t)) ×
hf,g(x, t) shows that the unique solution to (2.39) is given by the right-hand side
of (2.38). �

Recall the definition of Dynkin and Kuznetsov’s Nx-measures from (2.8), and
let μ ∈ Mφ

f (D), μ �≡ 0. On a suitable probability space with measure Pμ,φ , we
define the following processes:

(i) (ξ = (ξt )t≥0;Pμ,φ) is equal in distribution to (ξt : t ≥ 0;Pφφμ), that is an
ergodic diffusion. We refer to this process as the spine.

(ii) Continuous immigration: (n;Pμ,φ) a random measure such that, given ξ ,
n is a Poisson random measure which issues Mf (D)-valued processes Xn,t =
(Xn,t

s )s≥0 at space–time point (ξt , t) with rate 2α(ξt ) dt × dNξt . The almost surely
countable set of immigration times is denoted by Dn; Dn

t := Dn ∩ (0, t]. Given ξ ,
the processes (Xn,t : t ∈ Dn) are independent.

(iii) Discontinuous immigration: (m;Pμ,φ) a random measure such that,
given ξ , m is a Poisson random measure which issues Mf (D)-valued pro-
cesses Xm,t at space–time point (ξt , t) with rate dt × ∫

(0,∞) �(ξt , dy)y × dPyδξt .
The almost surely countable set of immigration times is denoted by Dm; Dm

t =
Dm ∩ (0, t]. Given ξ , the processes (Xm,t : t ∈ Dm) are independent and indepen-
dent of n and (Xn,t : t ∈ Dn).

(iv) (X = (Xt)t≥0;Pμ,φ) is equal in distribution to (X = (Xt)t≥0;Pμ), that is,
it is a copy of the original process. Moreover, X is independent of ξ,n,m and all
immigration processes.
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We denote by

Xn
t = ∑

s∈Dn
t

X
n,s
t−s and Xm

t = ∑
s∈Dm

t

X
m,s
t−s

the continuous and discontinuous immigration processes, respectively. We write

�t :=Xt +Xn
t +Xm

t for all t ≥ 0, and d= denotes distributional equality.

PROPOSITION 2.17 (Spine decomposition). For all μ ∈ Mφ
f (D), μ �≡ 0,

(Xt : t ≥ 0;Qμ)
d= (
�t =Xt +Xn

t +Xm
t : t ≥ 0;Pμ,φ)

.

The proof of Proposition 2.17 is very similar to the proof of Theorem 5.2 in [41],
and we omit long computations.

PROOF OF PROPOSITION 2.17. Using the definitions and Campbell’s formula
for Poisson random measures, one easily checks that the marginal distributions
agree. By definition, ((�t , ξt )t≥0;Pμ,φ) is a time-homogeneous Markov process,
and when we show that

Pμ,φ(ξt ∈ dx|�t)= 1

〈φ,�t 〉φ(x)�t (dx) for all t ≥ 0,

then ((�t )t≥0;Pμ,φ) is a time-homogeneous Markov process (by the argument

given on page 21 of [41]). Using the definition, (�t ;Pμ,φ) d= (Xt ;Qμ) and
Lemma 2.16, we find that for all f,g ∈ bp(D),

Pμ,φ
[
e−〈f,�t 〉Pμ,φ

[
g(ξt )|�t ]] = Pμ,φ

[
e−〈f,�t 〉 〈φg,�t 〉

〈φ,�t 〉
]
,

and the claim follows. �

For all t ≥ 0, let Gt be the σ -algebra generated by ξ up to time t and by n and m
restricted in the time component to [0, t].

LEMMA 2.18. For all μ ∈ Mφ
f (D), μ �≡ 0 and t ≥ 0, Pμ,φ-almost surely,

Pμ,φ
[
e−λct 〈φ,�t 〉|Gt ] = 〈φ,μ〉 + ∑

s∈Dn
t

e−λcsφ(ξs)+ ∑
s∈Dm

t

e−λcsIm
s φ(ξs),

where (Im
t := 〈1,Xm,t

0 〉 : t ≥ 0;Pμ,φ) is, given ξ , a Poisson point process with
intensity measure dt × ∫

(0,∞) �(ξt , dy)y.

PROOF. Proposition 1.1 of [13] states that, for all test functions f ∈ p(D)

with Pδx [〈f,Xt 〉]<∞,

Nx

[〈f,Xt 〉] = Pδx
[〈f,Xt 〉].(2.40)
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Using first the definition of �t , and then (2.40) and the branching property of X,
we obtain

Pμ,φ
[
e−λct 〈φ,�t 〉|Gt ]
= Pμ

[
W

φ
t (X)

] + ∑
s∈Dn

t

e−λctNξs

[〈φ,Xt−s〉] + ∑
s∈Dm

t

e−λctPIm
s δξs

[〈φ,Xt−s〉]
= Pμ

[
W

φ
t (X)

] + ∑
s∈Dn

t

e−λctPδξs
[〈φ,Xt−s〉] + ∑

s∈Dm
t

e−λctIm
s Pδξs

[〈φ,Xt−s〉].
Since Wφ

t (X)= e−λct 〈φ,Xt 〉, t ≥ 0, is a Pμ- and Pδx -martingale for all x ∈D, the
claim follows. �

Finally, everything is prepared for the proof of Theorem 2.15. Throughout the
article, we use the letters c and C for generic constants in (0,∞), and their value
can change from line to line. Important constants are marked by an index indicating
the order in which they occur.

PROOF OF THEOREM 2.15. The martingale property was proved in Corol-
lary 2.7. We have to show the Lp-boundedness. If μ ≡ 0, then Xt(D) = 0 for
all t ≥ 0, and the statement is trivially true. Let μ ∈ Mφ

f (D), μ �≡ 0. We write

W
φ
t (�) = e−λct 〈φ,�t 〉 and p̄ = p − 1 ∈ (0,1]. Then x �→ xp̄ is concave and

(x + y)p̄ ≤ xp̄ + yp̄ for x, y ≥ 0. Hence, the definition of Qμ, Proposition 2.17,
Jensen’s inequality and Lemma 2.18, yield

Pμ[Wφ
t (X)

p]
〈φ,μ〉 =Qμ

[
W

φ
t (X)

p̄] = Pμ,φ
[
Pμ,φ

[
W

φ
t (�)

p̄|Gt ]]
≤ Pμ,φ

[
Pμ,φ

[
W

φ
t (�)|Gt

]p̄]
≤ Pμ,φ

[
〈φ,μ〉p̄ +

( ∑
s∈Dn

t

e−λcsφ(ξs)
)p̄]

+ Pμ,φ

[( ∑
s∈Dm

t ,Im
s ≤ϕ1(ξs)

e−λcsIm
s φ(ξs)

)p̄

+
( ∑
s∈Dm

t ,Im
s >ϕ1(ξs)

e−λcsIm
s φ(ξs)

)p̄]
,

where ϕ1 is determined by Assumption 3′. The first term is deterministic. For the
remaining three terms we first use that xp̄ ≤ 1 + xσ̄ for all σ̄ ≥ p̄, then (x+ y)σ̄ ≤
xσ̄ + yσ̄ for all σ̄ ∈ [0,1], and finally apply Campbell’s formula to obtain

Pμ,φ

[( ∑
s∈Dn

t

e−λcsφ(ξs)
)p̄]

≤ 1 +
∫ t

0
2e−λcσ̄1sPφφμ

[
φ(ξs)

σ̄1α(ξs)
]
ds,
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Pμ,φ

[( ∑
s∈Dm

t ,Im
s ≤ϕ1(ξs)

e−λcsIm
s φ(ξs)

)p̄]

≤ 1 +
∫ t

0
e−λcσ̄2sPφφμ

[∫
(0,ϕ1(ξs)]

φ(ξs)
σ̄2yσ̄2+1�(ξs, dy)

]
ds,

Pμ,φ

[( ∑
s∈Dm

t ,Im
s >ϕ1(ξs)

e−λcsIm
s φ(ξs)

)p̄]

≤ 1 +
∫ t

0
e−λcσ̄3sPφφμ

[∫
(ϕ1(ξs),∞)

φ(ξs)
σ̄3yσ̄3+1�(ξs, dy)

]
ds,

where σ̄i = σi − 1 ∈ [p̄,1] with σi defined in Assumption 3′, i ∈ {1,2,3}. We
conclude that if assumptions (2.23)–(2.25) hold, then there exists a constant C1 ∈
(0,∞) independent of μ and t such that

Pμ[Wφ
t (X)

p]
〈φ,μ〉 ≤ 〈φ,μ〉p̄ +C1 for all t ≥ 0,(2.41)

and ((Wφ
t (X))t≥0;Pμ) is an Lp-bounded martingale. Doob’s inequality yields the

stated Lp-convergence. �

In Section 3.3 the following lemma will be used in the comparison between
immigration process and its conditional expectation.

LEMMA 2.19. Suppose assumptions (2.23)–(2.26) hold. For every μ ∈
Mc(D), μ �≡ 0, there exists a time T > 0 and a constant C2 ∈ (0,∞) such that

Pφφμ
[
φ(ξt )

−1Pδξt

[
Wφ
s (X)

p]] ≤ C2 for all s ≥ 0, t ≥ T .

PROOF. According to (2.41), for all s, t ≥ 0,

Pφφμ
[
φ(ξt )

−1Pδξt

[
Wφ
s (X)

p]] ≤ Pφφμ
[
φ(ξt )

p−1] +C1.

Since μ ∈Mc(D) and 〈φp−1, φφ̃〉<∞ by assumption (2.26), (2.17) implies that
Pφφμ[φ(ξt )p−1] converges to 〈φp−1, φφ̃〉, and the claim follows. �

3. Proofs of the main results.

3.1. Reduction to a core statement. In this section, we work under Assump-
tion 2. We first show that it suffices to consider test functions f = φ1B =: φ|B for
Borel sets B ∈ B0(D) = {B ∈ B(D) :�(∂B) = 0} and that we only have to prove
that lim inft→∞ e−λct 〈f,Xt 〉 ≥ 〈f, φ̃〉Wφ∞(X) instead of the full convergence. The
proof is based on standard approximation theory combined with an idea that ap-
peared in Lemma 9 of [1]. We denote by C+

� (D) the space of nonnegative, mea-
surable, �-almost everywhere continuous functions on D.
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LEMMA 3.1. Let μ ∈ Mφ
f (D) and either T = [0,∞) or T = δN for some

δ > 0. In addition, let either A = B0(D) and Aφ = {f ∈C+
� (D) :f/φ ∈ b(D)}, or

A = B(D) and Aφ = {f ∈ p(D) :f/φ ∈ b(D)}. We define Aφ/w like Aφ where φ
is replaced by φ/w.

(i) If for all B ∈ A,

lim inf
T�t→∞ e−λct 〈φ|B,Xt 〉 ≥ 〈φ|B, φ̃〉Wφ∞(X) Pμ-almost surely,(3.1)

then limT�t→∞ e−λct 〈f,Xt 〉 = 〈f, φ̃〉Wφ∞(X) Pμ-almost surely for all f ∈Aφ .

(ii) If for all B ∈ A, lim infT�t→∞ e−λct 〈 φ
w

1B,Zt 〉 ≥ 〈φ|B, φ̃〉Wφ/w∞ (Z) Pμ-al-

most surely, then, for all f ∈ Aφ/w , limT�t→∞ e−λct 〈f,Zt 〉 = 〈f,wφ̃〉Wφ/w∞ (Z)

Pμ-almost surely.

PROOF. We show only part (i); the proof of part (ii) is similar. Let S =
{∑k

i=1 ciφ|Bi :k ∈ N, ci ∈ [0,∞),Bi ∈ A} and f ∈ Aφ . There exists a sequence
of functions fk ∈ S such that 0 ≤ fk ≤ f and fk ↑ f pointwise. Using (3.1) and
the monotone convergence theorem, we deduce that Pμ-almost surely,

lim inf
T�t→∞ e−λct 〈f,Xt 〉 ≥ sup

k∈N
lim inf
T�t→∞ e−λct 〈fk,Xt 〉

≥ sup
k∈N

〈fk, φ̃〉Wφ∞(X)

= 〈f, φ̃〉Wφ∞(X).

Let c = supx∈D f (x)/φ(x). Since 0 ≤ cφ − f ≤ cφ, the same argument can be
applied to cφ − f , and we conclude that Pμ-almost surely

lim sup
T�t→∞

e−λct 〈f,Xt 〉 = lim sup
T�t→∞

(
cW

φ
t (X)− e−λct 〈cφ − f,Xt 〉)

≤ cWφ∞(X)− lim inf
T�t→∞ e−λct 〈cφ − f,Xt 〉

≤ c〈φ, φ̃〉Wφ∞(X)− 〈cφ − f, φ̃〉Wφ∞(X)

= 〈f, φ̃〉Wφ∞(X). �

In the next step, we use the branching property of the superprocess to restrict
ourselves to compactly supported starting measures.

LEMMA 3.2. Let T = [0,∞) or T = δN0 for some δ > 0, and let Aφ = {f ∈
C+
� (D) :f/φ ∈ b(D)} or Aφ = {f ∈ p(D) :f/φ ∈ b(D)}.

(i) If for all μ ∈Mc(D) and f ∈Aφ ,

lim
T�t→∞ e−λct 〈f,Xt 〉 = 〈f, φ̃〉Wφ∞(X) Pμ-almost surely,(3.2)
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then (3.2) holds for all μ ∈ Mφ
f (D).

(ii) If convergence (3.2) holds in L1(Pμ) for all μ ∈ Mc(D), then it holds for

all μ ∈ Mφ
f (D).

PROOF. Let μ ∈ Mφ
f (D), and take a sequence of domains Bk ⊂⊂ D, Bk ⊆

Bk+1, with D = ⋃∞
k=1Bk ; B̂k := Bk \ Bk−1, where B0 := ∅. On a suitable

probability space, let XB̂k , k ∈ N, be independent (L,ψβ;D)-superprocesses,

where XB̂k is started in 1B̂kμ. By the branching property, XBk := ∑k
l=1X

B̂l ,

XD\Bk := ∑∞
l=k+1X

B̂l and X := XBk + XD\Bk are (L,ψβ;D)-superprocesses
with starting measures 1Bkμ, 1D\Bkμ and μ, respectively. In particular,

W
φ
t (X)= e−λct

〈
φ,X

Bk
t +X

D\Bk
t

〉 =W
φ
t

(
XBk

) +W
φ
t

(
XD\Bk ),

and the martingale limits Wφ∞(XD\Bk) := lim inft→∞W
φ
t (X

D\Bk ), k ∈ N, are de-
creasing in k. Fatou’s lemma yields

Pμ
[
Wφ∞

(
XD\Bk )] = Pμ

[
lim
t→∞W

φ
t

(
XD\Bk )]

≤ lim inf
t→∞ Pμ

[
W

φ
t

(
XD\Bk )]

= 〈φ,1D\Bkμ〉.
In particular, 〈φ,μ〉<∞ implies that (Wφ∞(XD\Bk) :k ∈ N) converges to zero in
L1(Pμ) as k → ∞, and since the sequence is monotonically decreasing, almost

sure convergence follows. We conclude that limk→∞W
φ∞(XBk)=W

φ∞(X) almost
surely and in L1(Pμ).

By Lemma 3.1(i), for part (i) it suffices to show that for all f ∈ Aφ ,

lim inf
T�t→∞ e−λct 〈f,Xt 〉 ≥ 〈f, φ̃〉Wφ∞(X) Pμ-almost surely.

Since 1Bkμ ∈ Mc(D), the assumption implies that for all k ∈ N,

lim inf
t→∞ e−λct 〈f,Xt 〉 ≥ lim inf

t→∞ e−λct
〈
f,X

Bk
t

〉 ≥ 〈f, φ̃〉Wφ∞
(
XBk

)
Pμ-almost surely, and taking k → ∞ yields the claim.

To show part (ii), let c= supx∈D f (x)/φ(x) and estimate for fixed k ∈ N,

Pμ
[∣∣e−λct 〈f,Xt 〉 − 〈f, φ̃〉Wφ∞(X)

∣∣]
≤ cPμ

[
e−λct

〈
φ,X

D\Bk
t

〉] + Pμ
[∣∣e−λct 〈f,XBk

t

〉 − 〈f, φ̃〉Wφ∞
(
XBk

)∣∣]
+ 〈f, φ̃〉Pμ[

Wφ∞
(
XD\Bk )].

The second term on the right-hand side tends to zero as t → ∞ by assumption.
The first term is equal to c〈φ,1D\Dk

μ〉 and, therefore, tends to zero as k → ∞,
and so does the third term. �
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Let M(D) be the set of all σ -finite measures on D.

REMARK 3.3. The superprocess X can be defined for starting measures μ ∈
M(D) via the branching property; see also Section 1.4.4.1 in [12]. The proof of
Lemma 3.2 then shows that (3.2) for all μ ∈ Mc(D) implies (3.2) for all μ ∈
M(D) with 〈φ,μ〉<∞.

Finally, we show that it suffices to consider fixed test functions. The argument
is borrowed from Chen and Shiozawa [8], Theorem 3.7.

LEMMA 3.4 (Chen and Shiozawa [8]). Let μ ∈ Mφ
f (D). If for every B ∈

B0(D), Pμ-almost surely, limt→∞ e−λct 〈φ|B,Xt 〉 = 〈φ|B, φ̃〉Wφ∞(X), then there
exists a measurable set �0 such that Pμ(�0) = 1 and, on �0, the convergence
in (1.16) holds for all f ∈C+

� (D) with f/φ bounded.

PROOF. Take a countable base (Bk)k∈N of B0(D) which is closed under finite
unions, and let

�0 =
{

lim
t→∞ e−λct 〈φ|Bk ,Xt 〉 = 〈φ|Bk , φ̃〉Wφ∞(X) for all k ∈ N

}
.

Then Pμ(�0)= 1 by assumption. On {Wφ∞(X)= 0}, convergence (1.16) trivially

holds for all f ∈ p(D) with f/φ bounded. On {Wφ∞(X) > 0} ∩�0, we define

χt(A) := e−λct 〈φ|A,Xt 〉
W

φ∞(X)
and χ(A)= 〈φ|A, φ̃〉 for all A ∈ B(D).

Then χt converges vaguely to χ as t → ∞ and, since limt→∞ χt(D)= χ(D)= 1,
the convergence holds also in the weak sense; cf. Theorem 13.35 in [39]. For every
f ∈ C+

� (D) with f/φ bounded, g := f/φ ∈ bp(D) is �-almost everywhere con-
tinuous and, since χ is absolutely continuous with respect to �, limt→∞〈g,χt 〉 =
〈g,χ〉, which is equivalent to

lim
t→∞ e−λct 〈f,Xt 〉 =Wφ∞(X)〈f, φ̃〉 on �0 ∩ {

Wφ∞(X) > 0
}
. �

3.2. Martingale limits. In this section, we prove Proposition 1.1; that is, we
show that the martingale limits for the superprocess and its skeleton agree al-
most surely. We assume only Assumptions 1 and 2 throughout this section. Recall
from (2.13) that (S∗

t )t≥0 denotes the expectation semigroup of X∗.

LEMMA 3.5. Let f ∈ p(D) with f/φ bounded. For all x ∈D,

θ∗
t (x) := e−λctS∗

t f (x)/φ(x)→ 0 as t → ∞,

and for t > 0, the function x �→ θ∗
t (x) is continuous. Moreover, θ∗

t (x) is uniformly
bounded in t and x, and if f = φ, θ∗

t (x) is nonincreasing in t .
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PROOF. Let c = supx∈D f (x)/φ(x). By (2.6) and (2.15), for all (x, t) ∈D ×
[0,∞),

0 ≤ θ∗
t (x)= Pφx

[
e

∫ t
0 [β∗(ξs)−β(ξs)]dsf (ξt )/φ(ξt )

] ≤ ce−λctS∗
t φ(x)/φ(x).

Since β∗ − β ≤ 0, e−λctS∗
t φ(x)/φ(x) is nonincreasing in t , and Theorem 7.2.4

in [58] (see also Theorem 4.9.7 in [50]) implies that θ∗
t (x) is continuous in x for

t > 0. The dominated convergence theorem yields

lim
t→∞ e−λctS∗

t φ(x)/φ(x)= Pφx

[
exp

(∫ ∞
0

[
β∗(ξs)− β(ξs)

]
ds

)]
.

By Assumption 2, the diffusion (ξ = (ξt )t≥0;Pφx ) is positive recurrent, and Theo-
rem 4.9.5(ii) in [50] yields Pφx -almost surely

lim
t→∞

1

t

∫ t

0
min

{
β(ξs)− β∗(ξs),1

}
ds = 〈

min
{
β − β∗,1

}
, φφ̃

〉
> 0,

where the limit is positive since �({x ∈D :α(x)+�(x, (0,∞)) > 0}) > 0 by Re-
mark 2.8. Hence

∫ ∞
0 [β∗(ξs) − β(ξs)]ds = −∞ holds Pφx -almost surely, and the

claim is established. �

The following lemma gives a useful bound for the p̂th moment of 〈f, It 〉. We
will apply the bound to p̂ = 1 and to p̂ = p with p from Assumption 3′.

LEMMA 3.6. For p̂ ≥ 1, f ∈ p(D), x ∈D and t ≥ 0,

P•,δx
[〈f, It 〉p̂] ≤w(x)−1Pδx

[〈f, It 〉p̂]
,

where the inequality is an equality in the case p̂ = 1.

PROOF. Using Notation 2.5, It = ∑N0
i=1 I

i,0
t , where under Pδx , N0 is Poisson

distributed with mean w(x) and F0-measurable, and (I i,0t ;Pδx (·|F0)) is equal in
distribution to (It ;P•,δx ). Using the monotonicity of the �p̂-norm, we derive

Pδx
[〈f, It 〉p̂] = Pδx

[(
N0∑
i=1

〈
f, I

i,0
t

〉)p̂]
≥ Pδx

[
N0∑
i=1

〈
f, I

i,0
t

〉p̂]

= Pδx
[
N0P•,δx

[〈f, It 〉p̂]] =w(x)P•,δx
[〈f, It 〉p̂]

.

For p̂ = 1 the inequality is an equality. Rearranging terms completes the proof.
�

We now come to the main part of this section. First, we employ the skeleton
decomposition to compute the conditional expectation of 〈f,Xs+t 〉.
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PROPOSITION 3.7. For all μ ∈ Mφ
f (D), f ∈ p(D) with f/φ bounded, and

s, t ≥ 0,

Pμ
[〈f,Xs+t 〉|F t

] = 〈
S∗
s f,Xt

〉 + 〈
Ssf

w
,Zt

〉
−

〈
S∗
s f

w
,Zt

〉
Pμ-almost surely.

PROOF. By Notation 2.5, 〈f,Xs+t 〉 = 〈f,X∗
s+t + I ∗,t

s 〉+∑Nt

i=1〈f, I i,ts 〉, where
(X∗

s+t + I ∗,t
s ;Pμ(·|F t )) is equal in distribution to (X∗

s ;PXt ) and (I i,ts ;Pμ(·|F t ))

to (Is;P•,δξi (t) ), i = 1, . . . ,Nt . Hence, Pμ-almost surely,

Pμ
[〈f,Xs+t 〉|F t

] = Pμ

[〈
f,X∗

s+t + I ∗,t
s

〉 + Nt∑
i=1

〈
f, I i,ts

〉∣∣∣F t

]
(3.3)

= PXt

[〈
f,X∗

s

〉] +
Nt∑
i=1

P•,δξi (t)
[〈f, Is〉].

The first term on the right can be rewritten using (2.13) to obtain PXt [〈f,X∗
s 〉] =

〈S∗
s f,Xt 〉. For the second term, we use Lemma 3.6 and Theorem 2.3 to derive

Nt∑
i=1

P•,δξi (t)
[〈f, Is〉] =

Nt∑
i=1

w
(
ξi(t)

)−1Pδξi (t)
[〈
f,Xs −X∗

s

〉]
.(3.4)

Since f/φ is bounded and μ ∈ Mφ
f (D), Pδξi (t)[〈f,Xs〉] is finite, and (3.3), (3.4),

(2.11) and (2.13) yield Pμ-almost surely

Pμ

[
Nt∑
i=1

〈
f, I i,ts

〉∣∣∣F t

]
=

Nt∑
i=1

P•,δξi (t)
[〈f, Is〉] =

〈
Ssf

w
,Zt

〉
−

〈
S∗
s f

w
,Zt

〉
(3.5)

as required. �

PROOF OF PROPOSITION 1.1 AND THEOREM 2.9(i). Proposition 3.7 yields,
Pμ-almost surely,

Pμ
[
W

φ
s+t (X)|F t

] = e−λct
〈
e−λcsS∗

s φ,Xt

〉 + e−λct
〈
e−λcs Ssφ

w
,Zt

〉
(3.6)

− e−λct
〈
e−λcs S

∗
s φ

w
,Zt

〉
,

and we are interested in the limit as s → ∞. The first and last term tend to zero
Pμ-almost surely by Lemma 3.5 and the dominated convergence theorem. The
second term is independent of s since e−λcsSsφ = φ. Hence, the right-hand side
of (3.6) converges to Wφ/w

t (Z). According to Theorem 2.15, ((Wφ
t (X))t≥0;Pμ) is
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an Lp-bounded martingale, and we can interchange on the left-hand side of (3.6)
the limit s → ∞ with the integration to obtain Pμ-almost surely,

Pμ
[
Wφ∞(X)|F t

] = lim
s→∞ Pμ

[
W

φ
s+t (X)|F t

] =W
φ/w
t (Z).(3.7)

Since W
φ∞(X) is measurable with respect to F∞ = σ(

⋃
t≥0 F t ), (1.15) fol-

lows by taking t → ∞ in (3.7). Moreover, (3.7) shows that (Wφ/w
t (Z))t≥0 is

a uniformly integrable martingale and since W
φ∞(X) = W

φ/w∞ (Z) is in Lp(Pμ),
Lp-boundedness of (Wφ/w

t (Z))t≥0 follows by Jensen’s inequality. �

3.3. Convergence in L1(Pμ). In this section, we prove the WLLN in the form
of Theorem 1.5. We suppose that Assumptions 1, 2 and (2.23)–(2.26) hold and
begin with an Lp-estimate for the immigration that occurred after a large time t .
Recall Notations 2.4 and 2.5.

PROPOSITION 3.8. For every μ ∈ Mc(D) and f ∈ p(D) with f/φ bounded,
there exists a time T > 0 and a constant C3 ∈ (0,∞) such that for all s ≥ 0, t ≥ T ,

e−λcp(s+t)Pμ
[∣∣∣∣∣

Nt∑
i=1

(〈
f, I i,ts

〉 − P•,δξi (t)
[〈f, Is〉])

∣∣∣∣∣
p]

≤ C3e
−λc(p−1)t .

PROOF. For μ ≡ 0 the claim is trivial. Let μ �≡ 0. It was noted in [6],
Lemma 1, that for p ∈ [1,2], n ∈ N and (Yi : i ∈ {1, . . . , n}) independent, centered
random variables (or martingale differences)

P

[∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p]

≤ 2p
n∑
i=1

P
[|Yi |p]

.

For s, t ≥ 0, we first apply this inequality to Pμ[·|F t ], n=Nt and Yi = 〈f, I i,ts 〉 −
P•,δξi (t)[〈f, Is〉], and then use |x − y|p ≤ xp + yp for x, y ≥ 0, (I i,ts ;Pμ(·|F t ))

d=
(Is;P•,δξi (t) ) and Jensen’s inequality to obtain

Pμ

[∣∣∣∣∣
Nt∑
i=1

(〈
f, I i,ts

〉 − P•,δξi (t)
[〈f, Is〉])

∣∣∣∣∣
p∣∣∣∣F t

]

≤ 2p
Nt∑
i=1

Pμ
[∣∣〈f, I i,ts 〉 − P•,δξi (t)

[〈f, Is〉]∣∣p|F t

]

≤ 2p
Nt∑
i=1

(
P•,δξi (t)

[〈f, Is〉p] + P•,δξi (t)
[〈f, Is〉]p)

≤ 2p+1
Nt∑
i=1

P•,δξi (t)
[〈f, Is〉p]

.
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Lemma 3.6, the identity Xs = X∗
s + Is under Pδξi (t) and the monotonicity of

x �→ xp on [0,∞) yield

Pμ

[∣∣∣∣∣
Nt∑
i=1

(〈
f, I i,ts

〉 − P•,δξi (t)
[〈f, Is〉])

∣∣∣∣∣
p∣∣∣∣F t

]

≤ 2p+1
Nt∑
i=1

Pδξi (t)[〈f,Xs〉p]
w(ξi(t))

= 2p+1
〈
Pδ· [〈f,Xs〉p]

w
,Zt

〉
.

Writing c = supx∈D f (x)/φ(x) < ∞, the many-to-one lemma for Z, that is,
(2.21), yields

e−λcp(s+t)Pμ
[∣∣∣∣∣

Nt∑
i=1

(〈
f, I i,ts

〉 − P•,δξi (t)
[〈f, Is〉])

∣∣∣∣∣
p]

≤ 2p+1cpe−λcptPμ
[〈

Pδ· [Wφ
s (X)

p]
w

,Zt

〉]
= 2p+1cpe−λc(p−1)t 〈φ,μ〉Pφφμ

[
φ(ξt )

−1Pδξt
[
Wφ
s (X)

p]]
.

Since μ ∈ Mc(D), Lemma 2.19 yields a time T > 0 and a constant C2 ∈ (0,∞)

such that the right-hand side is bounded by 2p+1cp〈φ,μ〉C2e
−λc(p−1)t for all

t ≥ T , and the proof is complete. �

We are now in the position to prove Theorems 1.5 and 2.9(ii).

PROOF OF THEOREMS 1.5 AND 2.9(ii). By Lemma 3.2(ii) it suffices to con-
sider μ ∈ Mc(D), and without loss of generality, we work on the skeleton space.
Using the skeleton decomposition in the form of (2.10), we write for s, t ≥ 0,

e−λc(s+t)〈f,Xs+t 〉 − 〈f, φ̃〉Wφ∞(X)

= e−λc(s+t)
〈
f,X∗

s+t + I ∗,t
s

〉 + e−λc(s+t)
Nt∑
i=1

(〈
f, I i,ts

〉 − P•,δξi (t)
[〈f, Is〉])

+
(
e−λc(s+t)

Nt∑
i=1

P•,δξi (t)
[〈f, Is〉] − 〈f, φ̃〉Wφ/w

t (Z)

)

+ (〈f, φ̃〉Wφ/w
t (Z)− 〈f, φ̃〉Wφ∞(X)

)
=:�1(s, t)+�2(s, t)+�3(s, t)+�4(s, t).

It suffices to show that

lim sup
s→∞

lim sup
t→∞

Pμ
[∣∣�i(s, t)

∣∣] = 0 for all i ∈ {1, . . . ,4}.(3.8)
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We begin with �1: since (X∗
s+t + I ∗,t

s ;Pμ(·|F t ))
d= (X∗

s ;PXt ), the first moment
formulas (2.13), (2.11) and (2.15) yield

Pμ
[∣∣�1(s, t)

∣∣] = e−λc(s+t)Pμ
[
PXt

[〈
f,X∗

s

〉]] = e−λc(s+t)
〈
StS

∗
s f,μ

〉
= 〈

Pφ·
[
θ∗
s (ξt )

]
, φμ

〉
,

where θ∗
s (x) = e−λcsS∗

s f (x)/φ(x). By Lemma 3.5, θ∗
s (x) is uniformly bounded

in s, and x, and converges to zero as s → ∞. Using the ergodicity of (ξ ;Pφ)
[cf. (2.17)] and the dominated convergence theorem, we conclude

lim
s→∞ lim

t→∞ Pμ
[∣∣�1(s, t)

∣∣] = lim
s→∞

〈
θ∗
s , φφ̃

〉〈φ,μ〉 = 0.

Proposition 3.8 implies that �2(s, t) converges to zero in Lp(Pμ) as t → ∞ for
every fixed s > 0. By monotonicity of norms, (3.8) for i = 2 follows.

For �3, we use (3.5) and (2.15) to rewrite

e−λc(s+t)
Nt∑
i=1

P•,δξi (t)
[〈f, Is〉] = e−λc(s+t)

〈
Ssf − S∗

s f

w
,Zt

〉

= e−λct
〈
Pφ·

[
f (ξs)/φ(ξs)

] − θ∗
s ,

φ

w
Zt

〉
.

Let ϒs(x) := Pφx [f (ξs)/φ(ξs)] − θ∗
s (x). Since f/φ is bounded, ϒ is uniformly

bounded in s and x, and by (2.17) and Lemma 3.5, lims→∞ϒs(x)= 〈f, φ̃〉. More-
over,�3(s, t)= e−λct 〈ϒs−〈f, φ̃〉, φ

w
Zt 〉 by the definition ofWφ/w

t (Z). The many-
to-one lemma for Z, that is, (2.21), yields

Pμ
[∣∣�3(s, t)

∣∣] ≤ e−λctPμ
[〈∣∣ϒs − 〈f, φ̃〉∣∣, φ

w
Zt

〉]
= 〈

Pφ·
[∣∣ϒs(ξt )− 〈f, φ̃〉∣∣], φμ〉

.

Since ϒs is bounded and φ(x)μ(dx) is a finite measure, (2.17) implies that the
right-hand side converges to 〈|ϒs − 〈f, φ̃〉|, φφ̃〉〈φ,μ〉 as t → ∞ and this expres-
sion converges to zero as s → ∞ by the dominated convergence theorem.

Finally, since (W
φ/w
t (Z))t≥0 is an Lp(Pμ)-bounded martingale by Theo-

rem 2.9(i), it converges to Wφ/w∞ (Z)=W
φ∞(X) in L1(Pμ). Hence, (3.8) for i = 4

holds, and the proof is complete. �

3.4. Asymptotics for the immigration process and the SLLN along lattice times.
In this section, we analyze the asymptotic behavior of the immigration process I .
According to Lemma 3.1(i), the process X in e−λct 〈f,Xt 〉 can be replaced by the
immigration process when e−λct 〈f, It 〉 converges to the correct limit. To show this,
we begin with the conditional expectation of the immigration after a large time t
studied in (3.5). We now work under Assumptions 1, 2, 3′ and 4.
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LEMMA 3.9. For all μ ∈ Mc(D), s, δ > 0 and all f ∈ p(D) with f/φ

bounded, Pμ-almost surely,

lim
δN�t→∞ e−λct

Nt∑
i=1

P•,δξi (t)
[〈f, Is〉] = eλcs

(〈f, φ̃〉 − 〈
e−λcsS∗

s f, φ̃
〉)
Wφ∞(X).

PROOF. We apply the SLLN for the skeleton (Assumption 4) to the functions
f1, f2 given by

f1(x) := Ssf (x)

w(x)
= eλcsPφx

[
f (ξs)/φ(ξs)

]φ(x)
w(x)

,

f2(x) := S∗
s f (x)

w(x)
= eλcsθ∗

s (x)
φ(x)

w(x)
.

By Lemmas 2.1 and 3.5 and Theorem 4.9.7 in [50], f1 and f2 are continuous.
Hence, (3.5) and Assumption 4 yield Pμ-almost surely,

lim
δN�t→∞ e−λct

Nt∑
i=1

P•,δξi (t)
[〈f, Is〉]

=
〈
Ssf

w
,wφ̃

〉
Wφ/w∞ (Z)−

〈
S∗
s f

w
,wφ̃

〉
Wφ/w∞ (Z).

By (2.15) and (2.16), 〈Ssf, φ̃〉 = eλcs〈f, φ̃〉 and Theorem 2.9(i) completes the
proof. �

PROPOSITION 3.10. For all μ ∈ Mc(D), δ > 0 and all f ∈ p(D) with f/φ
bounded, Pμ-almost surely,

lim
δN�s→∞ lim

δN�t→∞ e−λc(s+t)
Nt∑
i=1

P•,δξi (t)
[〈f, Is〉] = 〈f, φ̃〉Wφ∞(X).

PROOF. The claim follows immediately from Lemmas 3.9 and 3.5 and the
dominated convergence theorem. �

Recall from Notation 2.5 that, given F t , I i,t denotes the immigration occurring
along the skeleton descending from particle i at time t .

PROPOSITION 3.11. For all μ ∈ Mc(D), s, δ > 0 and all f ∈ p(D) with f/φ
bounded,

lim
δN�t→∞ e−λc(s+t)

∣∣∣∣∣
Nt∑
i=1

(〈
f, I i,ts

〉 − P•,δξi (t)
[〈f, Is〉])

∣∣∣∣∣ = 0 Pμ-almost surely.
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PROOF. By the Borel–Cantelli lemma, it is sufficient to show that for all ε > 0,
there is a n0 ∈ N such that

∞∑
n=n0

Pμ

(
e−λc(s+nδ)

∣∣∣∣∣
Nnδ∑
i=1

(〈
f, I i,nδs

〉 − P•,δξi (nδ)
[〈f, Is〉])

∣∣∣∣∣> ε

)
<∞.(3.9)

Proposition 3.8 yields a time T > 0 and a constant C3 ∈ (0,∞) such that for
n0 ≥ T , the left-hand side in (3.9) is bounded by

ε−p
∞∑

n=n0

e−λcp(s+nδ)Pμ
[∣∣∣∣∣
Nnδ∑
i=1

(〈
f, I i,nδs

〉 − P•,δξi (nδ)
[〈f, Is〉])

∣∣∣∣∣
p]

≤ ε−pC3

∞∑
n=n0

e−λc(p−1)nδ <∞,

where we used Markov’s inequality in the first estimate. �

Combining Propositions 3.10 and 3.11, we conclude that the immigration pro-
cess alone has the asymptotic behavior which we expect from the superprocess.

COROLLARY 3.12. For all μ ∈ Mc(D), δ > 0 and all f ∈ p(D) with f/φ

bounded,

lim
δN�s→∞ lim

δN�t→∞ e−λc(s+t)
Nt∑
i=1

〈
f, I i,ts

〉 = 〈f, φ̃〉Wφ∞(X) Pμ-almost surely.

Now we are in the position to prove the SLLN along lattice times.

THEOREM 3.13. For all μ ∈ Mφ
f (D), δ > 0 and all f ∈ p(D) with f/φ

bounded,

lim
n→∞ e−λcnδ〈f,Xnδ〉 = 〈f, φ̃〉Wφ∞(X) Pμ-almost surely.

PROOF. By Lemma 3.2(i), it suffices to consider μ ∈ Mc(D). Moreover,
without loss of generality, we work on the skeleton space from Theorem 2.3.
Corollary 3.12 yields Pμ-almost everywhere

lim inf
δN�t→∞ e−λct 〈f,Xt 〉 = lim inf

δN�s→∞ lim inf
δN�t→∞ e−λc(s+t)〈f,Xs+t 〉

≥ lim inf
δN�s→∞ lim inf

δN�t→∞ e−λc(s+t)
Nt∑
i=1

〈
f, I i,ts

〉
= 〈f, φ̃〉Wφ∞(X).

Lemma 3.1(i) yields the claim. �
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3.5. Transition from lattice to continuous times. In this section, we extend the
convergence along lattice times in Theorem 3.13 to convergence along continuous
times and conclude our main results. We work under Assumptions 1, 2, 3′ and 4.
For κ > 0, let Uκ be the resolvent operator in integral form, that is,

Uκf (x) :=
∫ ∞

0
e−κtPφx

[
f (ξt )

]
dt for all f ∈ bp(D), x ∈D.

The argument for the transition from lattice to continuous times proceeds in two
steps. First we use the resolvent operator to bring the semigroup of (ξ ; (Pφx )x∈D)
into the argument. The semigroup property gives us a martingale which, combined
with Doob’s Lp-inequality, enables us to control the behavior between time nδ and
(n+1)δ. Second, we remove the resolvent operator by taking κ → ∞ in κUκf (x).
It is an analysis of hitting times for diffusion processes which allows us to control
the convergences in this step. The main idea for the proof is borrowed from [46],
but we employ the skeleton decomposition to replace the stochastic analysis and
the martingale measures used there.

PROPOSITION 3.14. For all μ ∈ Mc(D), κ > 0 and f ∈ bp(D),

lim
t→∞ e−λct

〈
φκUκf,Xt

〉 = 〈φf, φ̃〉Wφ∞(X) Pμ-almost surely.

PROOF. Without loss of generality, we assume that μ �≡ 0 and work on the
skeleton space. Since κUκ is linear with κUκ1 = 1 the same argument that led to
Lemma 3.1 shows that it suffices to prove that for all f ∈ bp(D),

lim inf
t→∞ e−λct

〈
φκUκf,Xt

〉 ≥ 〈φf, φ̃〉Wφ∞(X) Pμ-almost surely.(3.10)

Let f,g ∈ bp(D) with κUκf ≥ g, δ, t > 0, and let n be such that nδ ≤ t <

(n+ 1)δ. Then

e−λct
〈
φκUκf,Xt

〉
≥ (

e−λct
〈
φκUκf,Xt

〉 − e−λct
〈
φPφ·

[
κUκf (ξ(n+1)δ−t )

]
,Xt

〉)
+ (

e−λct
〈
φPφ·

[
g(ξ(n+1)δ−t )

]
,Xt

〉 − e−λcnδ
〈
φPφ·

[
g(ξδ)

]
,Xnδ

〉)
(3.11)

+ (
e−λcnδ

〈
φPφ·

[
g(ξδ)

]
,Xnδ

〉 − 〈φg, φ̃〉Wφ∞(X)
) + 〈φg, φ̃〉Wφ∞(X)

=:�1,κUκf (n, δ, t)+�2,g(n, δ, t)+�3,g(n, δ)+ 〈φg, φ̃〉Wφ∞(X).

If we show, for all f,g ∈ bp(D), g of compact support, that Pμ-almost surely,

lim sup
δ→0

lim sup
n→∞

sup
t∈[nδ,(n+1)δ]

∣∣�1,κUκf (n, δ, t)
∣∣ = 0,(3.12)

lim sup
n→∞

sup
t∈[nδ,(n+1)δ]

∣∣�2,g(n, δ, t)
∣∣ = 0 for all δ > 0,(3.13)

lim sup
n→∞

∣∣�3,g(n, δ)
∣∣ = 0 for all δ > 0,(3.14)
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then we can choose g = 1BκUκf for B ⊂⊂D in (3.11) to obtain

lim inf
t→∞ e−λct

〈
φκUκf,Xt

〉 ≥ 〈
φ1BκU

κf, φ̃
〉
Wφ∞(X) Pμ-almost surely.

Choosing a sequence Bj ⊂⊂ D, Bj ⊆ Bj+1, D = ⋃∞
j=1Bj , the factor

〈φ1Bj κU
κf, φ̃〉 increases, as j → ∞, to〈

φκUκf, φ̃
〉 =

∫ ∞
0

κe−κt
〈
φPφ·

[
f (ξt )

]
, φ̃

〉
dt

(2.16)=
∫ ∞

0
κe−κt 〈φf, φ̃〉dt

= 〈φf, φ̃〉,
and (3.10) follows. We begin with the proof of (3.12). Fubini’s theorem and the
Markov property of (ξ ;Pφ) yield for all x ∈D and s > 0,∣∣κUκf (x)− Pφx

[
κUκf (ξs)

]∣∣
=

∣∣∣∣∫ ∞
0

κe−κtPφx
[
f (ξt )

]
dt −

∫ ∞
0

κe−κtPφx
[
f (ξt+s)

]
dt

∣∣∣∣
≤ 2

(
1 − e−κs

)‖f ‖∞.

Using the linearity of integration and the definition of Wφ
t (X), we obtain

sup
t∈[nδ,(n+1)δ]

�1,κUκf (n, δ, t)≤ 2
(
1 − e−κδ

)‖f ‖∞ sup
t∈[nδ,(n+1)δ]

W
φ
t (X).

Since the martingale (Wφ
t (X))t≥0 has a finite limit, (3.12) is established. For the

proof of (3.13), let g ∈ bp(D) be compactly supported. By (2.15),

�2,g(n, δ, t)= e−λc(n+1)δ(〈S(n+1)δ−t [φg],Xt

〉 − 〈
Sδ[φg],Xnδ

〉)
for all t ∈ [0, (n + 1)δ], and the Markov property of X and (2.11) imply that
(�2,g(n, δ, t) : t ∈ [nδ, (n+ 1)δ];Pμ) is a martingale. Hence, (3.13) follows from
the Borel–Cantelli lemma, Doob’s Lp-inequality (cf. Theorem II.1.7 in [53])
and Pμ[〈φg,X(n+1)δ〉|Fnδ] = 〈Sδ[φg],Xnδ〉 when we prove that for sufficiently
large n0,

∞∑
n=n0

e−λcp(n+1)δPμ
[∣∣〈φg,X(n+1)δ〉 − Pμ

[〈φg,X(n+1)δ〉|Fnδ

]∣∣p]
<∞.(3.15)

By (2.10) and (3.3), we can use the skeleton decomposition to obtain, for all
s, t > 0, Pμ-almost surely,

〈φg,Xs+t 〉 − Pμ
[〈φg,Xs+t 〉|F t

]
= 〈

φg,X∗
s+t + I ∗,t

s

〉 − PXt

[〈
φg,X∗

s

〉]
(3.16)

+
Nt∑
i=1

(〈
φg, I i,ts

〉 − P•,δξi (t)
[〈φg, Is〉]).
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The monotonicity of Lp-norms and (X∗
s+t + I ∗,t

s ;Pμ(·|F t ))
d= (X∗

s ;PXt ) imply

Pμ
[∣∣〈φg,X∗

s+t + I ∗,t
s

〉 − PXt

[〈
φg,X∗

s

〉]∣∣p] ≤ Pμ
[
VarXt

(〈
φg,X∗

s

〉)]p/2
.(3.17)

Denote

c∗1(x)= 2α(x), c∗2 =
∫
(0,ϕ2(x)]

y2�∗(x, dy),

c∗3(x)=
∫
(ϕ2(x),∞)

y2�∗(x, dy), c∗(x)=
3∑
i=1

c∗i (x)

for all x ∈ D, where ϕ2 is determined by Assumption 3′. We notice that β∗ ≤ β

implies that S∗
t f ≤ Stf for all f ∈ p(D). Using (2.14), (2.11), and the semigroup

property of S, we obtain

Pμ
[
VarXt

(〈
φg,X∗

s

〉)]
≤

∫ s

0

〈
StS

∗
r

[
c∗

(
S∗
s−r [φg]

)2]
,μ

〉
dr ≤

∫ s

0

〈
St+r

[
c∗

(
Ss−r [φg])2]

,μ
〉
dr.

Recall the definition of Pφφμ from (2.22), and use (2.15) to deduce

Pμ
[
VarXt

(〈
φg,X∗

s

〉)]
(3.18)

≤ 〈φ,μ〉‖g‖∞
∫ s

0
eλc(s+t)Pφφμ

[
c∗(ξt+r )Ss−r [φg](ξt+r )]dr.

Writing β̄ = supx∈D β(x), we notice that Ss−r [φg](x) ≤ eβ̄s‖φg‖∞. Further,
(2.15) implies Ss−r [φg](x)≤ eλcs‖g‖∞φ(x). Hence, for all i ∈ {1,2,3},

Pφφμ
[
c∗i (ξt+r )Ss−r [φg](ξt+r )

]
(3.19)

≤ min
{
eβ̄s‖φg‖∞Pφφμ

[
c∗i (ξt+r )

]
, eλcs‖g‖∞Pφφμ

[
c∗i (ξt+r )φ(ξt+r )

]}
.

Since α is bounded, c∗
1 is bounded. For c∗2 and c∗3, the right-hand side of (3.19) is

bounded for large t according to (2.17) and conditions (2.27) and (2.28), respec-
tively. Combining (3.17), (3.18) and (3.19), we obtain a time T > 0 and a constant
C ∈ (0,∞), which may depend on s, g and μ, such that for all t ≥ T ,

e−λcp(s+t)Pμ
[∣∣〈φg,X∗

s+t + I ∗,t
s

〉 − PXt

[〈
φg,X∗

s

〉]∣∣p] ≤ Ce−λcpt/2.(3.20)

Since |x+y|p ≤ 2p(|x|p+|y|p) for all x, y ∈ R, (3.16), (3.20) and Proposition 3.8
yield (3.15).

It remains to prove (3.14). Since, 〈φPφ· [g(ξδ)], φ̃〉 = 〈φg, φ̃〉 by (2.16), (3.14)
follows from Theorem 3.13. �

In the second step we remove the resolvent operator from Proposition 3.14.
The proof is essentially borrowed from the lower bound in Theorem 2.2 in [46].
We present the argument here for completeness. Recall that B0(D) = {B ∈
B(D) :�(∂B)= 0} and φ|B = φ1B .
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PROPOSITION 3.15. For all μ ∈Mc(D) and B ∈ B0(D),

lim inf
t→∞ e−λct 〈φ|B,Xt 〉 ≥ 〈φ|B, φ̃〉Wφ∞(X) Pμ-almost surely.(3.21)

PROOF. The claim is trivial when �(B) = 0. When (3.21) is proved for B ∈
B0(D) with B ⊂⊂D, then, for arbitrary B ∈ B0(D), we choose a sequence of sets
Bk ∈ B0(D), with Bk ⊂⊂ D, Bk ⊆ Bk+1 and B = ⋃

k∈NBk , and the monotone
convergence theorem yields Pμ-almost surely,

lim inf
t→∞ e−λct 〈φ|B,Xt 〉 ≥ sup

k∈N
lim inf
t→∞ e−λct 〈φ|Bk ,Xt 〉 ≥ 〈φ|B, φ̃〉Wφ∞(X).

Hence, let B ∈ B0(D), B ⊂⊂D, contain a non-empty, open ball. For small ε > 0,
let Bε = {x ∈ B : dist(x, ∂B) ≥ ε} �= ∅ and denote by σBε = inf{t > 0 : ξt ∈ Bε}
the hitting time of Bε . We write Uκ(x,A) = Uκ1A(x) for all A ∈ B(D). Since
{ξt ∈ Bε} ⊆ {σBε ≤ t}, for all x ∈D,

κUκ(x,Bε)≤
∫ ∞

0
κe−κtPφx (σBε ≤ t) dt = Pφx

[
e−κσBε

]
≤ 1B(x)+ 1Bc(x)Pφx

[
e−κσBε

]
,

where Bc :=D \B . In particular,

e−λct 〈φ|B,Xt 〉 ≥ e−λct
〈
φκUκ1Bε ,Xt

〉 − e−λct
〈
φ|BcPφ·

[
e−κσBε

]
,Xt

〉
,

and Proposition 3.14 yields, Pμ-almost surely,

lim inf
t→∞ e−λct 〈φ|B,Xt 〉

(3.22)
≥ 〈φ|Bε , φ̃〉Wφ∞(X)− lim sup

t→∞
e−λct

〈
φ|BcPφ·

[
e−κσBε

]
,Xt

〉
.

The first term on the right converges to 〈φ|B, φ̃〉Wφ∞(X) as ε → 0. Thus we have
to show that the second term vanishes as ε → 0. Heuristically, if the SLLN holds,
then the lim sup is a limit with value〈

φ|BcPφ·
[
e−κσBε

]
, φ̃

〉
Wφ∞(X).

Since Bε has positive distance to Bc, this value converges to zero as κ → ∞.
Hence, we first take κ → ∞ and then ε → 0. Of course, we do not know the
SLLN, yet. Thus, we artificially reintroduce the resolvent operator in order to apply
Proposition 3.14.

Continuing rigorously, let B ′
ε := {x ∈ B : dist(x, ∂Bε) ≤ ε/2}. The situation is

sketched in Figure 1.
When ξ starts outside B , then ξσBε ∈ ∂Bε , and we obtain for all x ∈ Bc

Pφx
[
e−κσBε

] = Pφx

[
e−κσBε

Uκ(ξσBε ,B
′
ε)

Uκ(ξσBε ,B
′
ε)

]
(3.23)

≤ 1

infy∈∂Bε Uκ(y,B ′
ε)
Pφx

[
e−κσBεUκ(ξσBε ,B ′

ε

)]
.
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FIG. 1. The big ball with thick boundary is B , the small, hatched ball is Bε and the shaded area
denotes B ′

ε . The diffusion is started in x ∈ Bc .

For t ≥ 0, let Ht := σ(ξs : 0 ≤ s ≤ t). By the Markov property of ξ , the second
factor on the right-hand side of (3.23) can be estimated by

Pφx
[
e−κσBεUκ(ξσBε ,B ′

ε

)]
= Pφx

[
e−κσBεPφx

[∫ ∞
0

e−κt1
{
ξt+σBε ∈ B ′

ε

}
dt

∣∣∣HσBε

]]
(3.24)

= Pφx

[∫ ∞
σBε

e−κt1
{
ξt ∈ B ′

ε

}
dt

]
≤Uκ(x,B ′

ε

)
.

Writing �(κ, ε) := infy∈∂Bε κUκ(y,B ′
ε), (3.23) and (3.24) yield

1Bc(x)Pφx [e−κσBε ] ≤ κUκ(x,B ′
ε

)
/�(κ, ε),

and Proposition 3.14 entails, Pμ-almost surely,

lim sup
t→∞

e−λct
〈
φ|BcPφ·

[
e−κσBε

]
,Xt

〉 ≤ 1

�(κ, ε)
〈φ|B ′

ε
, φ̃〉Wφ∞(X).(3.25)

Clearly, 〈φ|B ′
ε
, φ̃〉Wφ∞(X) converges to zero as ε → 0. Thus, it remains to bound

κUκ(y,B ′
ε) for y ∈ ∂Bε , and therefore �(κ, ε), away from zero. We write b0(x)

for the vector whose j th component is given by bj (x) + ∑d
i=1 ∂xi ai,j (x), j ∈

{1, . . . , d}, x ∈D. Since B ⊂⊂D,

c(B,φ) := infx∈B φ(x)
supx∈B φ(x)

, β̃ := sup
x∈B

∣∣β(x)∣∣,
b̃0 := sup

x∈B
∣∣b0(x)

∣∣, ã := sup
x∈B

sup
|v|=1

〈
v, a(x)v

〉
,

satisfy c(B,φ), ã ∈ (0,∞) and β̃, b̃0 ∈ [0,∞). For all T > 0, we have

κUκ(y,B ′
ε

) =
∫ ∞

0
κe−κtPφy

(
ξt ∈ B ′

ε

)
dt

=
∫ ∞

0
e−tPφy

(
ξt/κ ∈ B ′

ε

)
dt(3.26)

≥
∫ T

0
e−tPφy

(
ξt/κ ∈ B ′

ε

)
dt,



2592 M. ECKHOFF, A. E. KYPRIANOU AND M. WINKEL

and for y ∈ ∂Bε , we use the definition of B ′
ε and (2.15) to estimate

Pφy
(
ξt/κ ∈ B ′

ε

) ≥ Pφy
(

sup
0≤s≤t/κ

|ξs − y| ≤ ε/2
)

(3.27)
≥ c(B,φ)e−(λc+β̃)t/κPy

(
sup

0≤s≤t/κ
|ξs − y| ≤ ε/2

)
.

To estimate the probability on the right-hand side, we use Theorem 2.2.2 in [50].
Since this theorem is stated for a diffusion generator in non-divergence form, we
introduced the function b0. In particular, for κ so large that t b̃0/κ ≤ ε/4 and for
all y ∈ ∂Bε , we deduce

Py
(

sup
0≤s≤t/κ

|ξs − y| ≤ ε/2
)

≥ 1 − 2d exp
(
− ε2κ

32ãtd

)
.(3.28)

Combining (3.26)–(3.28), we obtain for all ε > 0

lim inf
κ→∞ �(κ, ε)≥

∫ T

0
e−t c(B,φ)dt > 0.

Since the right-hand side does not depend on ε, taking first κ → ∞ and then ε → 0
in (3.25) and (3.22) completes the proof. �

We are now in the position to conclude our main results.

PROOF OF THEOREM 2.9(iii). The Pμ-almost sure convergence in (2.29) for
every given �-almost everywhere continuous f ∈ p(D) with f/φ bounded follows
from Proposition 3.15 and Lemmas 3.1(i) and 3.2(i). The existence of a common
set �0 for all such test functions follows from Lemma 3.4. �

PROOF OF THEOREM 1.2. The L1(Pμ)-convergence in (1.16) was proved in
Theorem 1.5, the remainder follows from Theorem 2.9(iii). �

PROOF OF COROLLARY 1.4. The claim follows immediately from Theo-
rem 1.2, (2.19) and (2.17). �

4. Examples. In this section, we explore our assumptions by verifying them
for many classical examples of superdiffusions from the literature. Moreover, we
give several examples to illustrate the implications and boundaries of the SLLN.
For all examples considered, this article proves the SLLN, and for some even the
WLLN, for the first time.
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4.1. Spatially independent branching mechanisms. In this section, we con-
sider superdiffusions with a conservative motion and a spatially independent
branching mechanism and writeψ(z)=ψβ(x, z) to simplify notation. Under these
conditions, the total mass process (〈1,Xt 〉 : t ≥ 0) is a continuous state branching
process (CSBP) with branching mechanism ψ ; cf. [3, 57]. We exclude the trivial
case of a linear branching mechanism ψ(z) = −βz; see Remark 2.8 for the re-
sult in this situation. Since ψ is strictly convex, ψ(∞) := limz→∞ψ(z) exists in
[−∞,0) ∪ {∞}. Writing z∗ = sup{z ≥ 0 :ψ(z) ≤ 0}, we have z∗ ∈ (0,∞) if and
only if β > 0 and ψ(∞)= ∞, and in this case (cf. Proposition 1.1 in [57])

Pμ
[
e−z∗〈1,Xt 〉] = e−z∗〈1,μ〉 for all μ ∈ Mf (D), t ≥ 0.

In particular, Assumption 1 is satisfied with w(x) = z∗ for all x ∈ D. In this
CSBP context, the skeleton decomposition was proved by Berestycki et al. in [3]
a few years before [43]. The martingale function z∗ is related to the event of
weak extinction Elim = {limt→∞〈1,Xt 〉 = 0} by the identity Pδx (Elim) = e−z∗

which holds even if β ≤ 0 or ψ(∞) < 0. To compare the martingale function
w(x) = − logPδx (Elim) to the classical choice w(x) = − logPδx (Efin), where Efin
denotes the event of extinction after finite time, notice that Efin ⊆ Elim, and for all
μ ∈ Mf (D),

Pμ(Efin)= Pμ(Elim)= e−z∗〈1,μ〉 > 0
(4.1)

if ψ(∞)= ∞ and
∫ ∞ 1

ψ(z)
dz <∞.

Otherwise, Pμ(Efin)= 0 and on Elim the total mass of X drifts to zero while staying
positive at all finite times; cf. [33, 57].

From now on, assume β > 0, ψ(∞)= ∞ and w(x)= z∗. In this case, Assump-
tion 3 simplifies to

φ bounded and
∫
(1,∞)

yp�(dy) <∞ for some p ∈ (1,2].
In the following, we present two families of superprocesses for which the

SLLN is proved by Theorem 1.2. As far as we know, these results are new. Apart
from the intrinsic interest, the results are very useful since the analyzed processes
are frequently employed to obtain further examples of superprocesses with in-
teresting properties via h-transform. For those examples the SLLN follows from
Lemma 2.10.

We begin with the inward Ornstein–Uhlenbeck process (OU-process) which has
attracted a wide interest in the literature. Specifically, its asymptotic behavior is the
subject of recent research articles [47, 52].

EXAMPLE 4.1 (Inward OU-process). Let d ≥ 1, D = Rd , L= 1
2�− γ x · ∇

with γ > 0, ψ spatially independent with β ∈ (0,∞), ψ(∞) = ∞ and
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(1,∞) y

p�(dy) <∞ for some p ∈ (1,2]. Then Theorem 1.2 applies with φ = 1,

φ̃(x)= (γ /π)d/2e−γ ‖x‖2
and λc = β .

The generator L corresponds to the positive recurrent inward OU-process with
transition density

pin-OU(x, y, t)=
(

γ

π(1 − e−2γ t )

)d/2

exp
(
− γ

1 − e−2γ t

∥∥y − e−γ tx
∥∥2

)
(4.2)

for all x, y ∈ Rd , t > 0. Hence, λc = λc(L+ β)= β > 0, L is product L1-critical,
φ = 1 and φ̃(x) = (γ /π)d/2e−γ ‖x‖2

; cf. Chapter 4 in [50] or Example 3 in [51].
Thus Assumptions 1–3 are satisfied. Using the estimate for pφ = pin-OU in (2.18),
we obtain that condition (2.34) holds for a(t) = √

(λc/γ + δ)t with δ > 0 (cf.
Example 10 in [17]) and using (4.2), we deduce that (2.35) holds with K = 1.
Hence, Theorem 2.13 applies and Assumption 4 is satisfied.

EXAMPLE 4.2 (Outward OU-process). Let d ≥ 1, D = Rd , L= 1
2�+ γ x · ∇

with γ > 0, ψ spatially independent with β ∈ (γ d,∞), ψ(∞) = ∞ and∫
(1,∞) y

p�(dy) <∞ for some p ∈ (1,2]. Then Theorem 1.2 applies with φ(x)=
(γ /π)d/2e−γ ‖x‖2

, φ̃ = 1 and λc = β − γ d .
The generator L corresponds to the conservative, transient outward OU-process.

The operator L1 := L+ γ d is the formal adjoint of the inward OU-process with
parameter γ . Hence, L1 is critical with ground states φ1(x) = (γ /π)d/2e−γ ‖x‖2

and φ̃1 = 1 by Example 4.1; see Theorem 4.3.3 in [50] or Example 2 in [51].
Writing L1 =L+ β − (β − γ d), we deduce that Assumptions 1–3 hold and φ, φ̃,
and λc have been correctly identified. The corresponding ergodic motion is the
inward OU-process with parameter γ . Thus conditions (2.34) and (2.35) can be
verified using (4.2), (2.18), a(t) = eγ (1+δ)t for some δ > 0 and K > 1 + δ, and
Theorem 2.13 implies that Assumption 4 holds.

The SLLN describes the asymptotic behavior of the mass in compact sets.
In general one cannot draw conclusions for the scaling of the total mass from
the local behavior; cf. [18, 20]. Example 4.2 illustrates this fact. Since the to-
tal mass process is a CSBP with branching mechanism ψ , Yt = e−βt 〈1,Xt 〉 con-
verges to a finite random variable Y∞ with Pμ(Y∞ = 0)= Pμ(Elim) if β > 0 and∫
(1,∞) y logy�(dy) <∞; cf. [33]. In particular, in Example 4.2, the local growth

rate λc = β − γ d is strictly smaller than the global growth rate β . The reason is
the transient nature of the underlying diffusion which allows mass to leave com-
pact sets permanently and is reflected in the decay of φ at infinity. In particular,
the function 1 is not an allowed test function in Theorem 1.2, but the focus is on
functions of the form 1B for B a compact set.

We call the diffusion corresponding to the generator L= 1
2∇ · a∇ + b · ∇ sym-

metric if b= a∇Q for some Q ∈ C2,η(D). The inward and outward OU-processes
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constitute examples of symmetric diffusions with Q(x) = −γ
2 ‖x‖2 and Q(x) =

γ
2 ‖x‖2, respectively. Chen et al. [7] studied superdiffusions with a symmetric
motion but insisted that Q is bounded. Hence, their results are not applicable to
Examples 4.1 and 4.2. The result from Liu et al. [46] is not applicable since the
domain is not of finite Lebesgue measure.

Engländer and Winter [22] proved convergence in probability in (1.16) for the
situation of a quadratic branching mechanism. It is straightforward to extend their
argument to general branching mechanisms but the method requires second mo-
ments. Hence, if

∫
(1,∞) y

p�(dy) <∞ for some p ∈ (1,2) but not for p = 2, then
even the convergence in probability in Examples 4.1 and 4.2 is new.

4.2. Quadratic branching mechanisms. In this section, we consider the clas-
sical situation of a quadratic branching mechanism studied by Engländer, Pin-
sky and Winter [19, 22] and Chen, Ren and Wang [7]. Our assumptions on the
branching mechanism in this section are α,β ∈ Cη(D), α(x) > 0 for all x ∈ D,
λc := λc(L+ β) <∞ and �≡ 0. We write ψ(x, z)= −β(x)z+ α(x)z2 and call
ψ a generalised quadratic branching mechanism (GQBM). In Section 1.1 we in-
sisted that α and β are bounded. This assumption can be relaxed as follows. First
suppose that β is bounded from above but not necessarily from below. Engländer
and Pinsky [19] showed that there is a unique Mf (D)-valued Markov process
X = (Xt)t≥0 such that for all continuous f ∈ bp(D) and all μ ∈ Mf (D),

Pμ
[
e−〈f,Xt 〉] = e−〈uf (·,t),μ〉,

where uf is the minimal, nonnegative solution u ∈ C(D × [0,∞)), (x, t) �→
u(x, t) twice continuously differentiable in x ∈D and once in t ∈ (0,∞), to

∂tu(x, t)= Lu(x, t)−ψ
(
x,u(x, t)

)
for all (x, t) ∈D × (0,∞),

(4.3)
u(x,0)= f (x) for all x ∈D.

If α and β are bounded, the minimal solution of (4.3) equals the unique solution
to (1.3) by Lemma A1 in [19]. Hence, the two definitions are consistent.

Now let β ∈ Cη(D) with λc = λc(L + β) < ∞ be not necessarily bounded
from above. By definition (1.9), there exists λ ∈ R and h ∈ C2,η(D), h > 0, such
that (L+ β)h= λh. Recall the definition of h-transforms from Section 2.1.3. An
(L,ψ;D)-superprocess can be defined by X = 1

h
Xh, where Xh is the (Lh0,ψ

h;D)
superprocess with βh = λ and αh = αh; cf. [19]. Since h is not necessarily
bounded from below, the process X may take values in the space of σ -finite mea-
sures M(D). While we have considered mainly finite measure-valued processes in
this article, it is natural to consider also processes with values in the space M(D)

via the branching property, and, as noted in Remark 3.3, in our results the space
of starting measures Mφ

f (D) can be enlarged to the space of all μ ∈ M(D) with
〈φ,μ〉<∞.
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Engländer and Pinsky [19] proved the skeleton decomposition for supercritical
superdiffusions with GQBMs long before [43]. We only record the existence of a
martingale function in the following lemma. Recall that Efin denotes the event of
extinction after a finite time.

LEMMA 4.3 (Engländer and Pinsky [19]). Let ψ be a GQBM and λc > 0. The
function x �→ w(x) := − logPδx (Efin) is strictly positive, belongs to C2,η(D) and
satisfies (1.6).

PROOF. By Theorem 3.1 and Corollary 4.2 in [19], w ∈ C2,η(D), w(x) > 0
for all x ∈D and

Pμ(Efin)= e−〈w,μ〉 for all μ ∈ Mc(D).(4.4)

Recall the notation from the beginning of Section 2.1.1. Let B ⊂⊂D be a domain
and μ ∈ Mf (D) with supp(μ) ⊆ B . Then the support of the exit measure X̃B

t

is Pμ-almost surely compact; see the discussion following (2.3). Since Efin is a

tail event, the Markov property and (4.4) yield Pμ[e−〈w̃,X̃B
t 〉] = e−〈w,μ〉. Choose

a sequence of functions wj ∈ C+
c (D) with wj ↑ w pointwise and a sequence

of domains Bk ⊂⊂ D, Bk ⊆ Bk+1, D = ⋃∞
k=1Bk . By Lemma A1 in [19] and

Lemma A.6 in the present article, ũBkwj
is increasing in j and k with limk→∞ ũBkwj

=
uwj

pointwise, and we obtain for all μ ∈ Mc(D),

Pμ
[
e−〈w,Xt 〉] = lim

j→∞ lim
k→∞Pμ

[
e−〈w̃j ,X̃

Bk
t 〉] = lim

k→∞ lim
j→∞Pμ

[
e−〈w̃j ,X̃

Bk
t 〉]

= lim
k→∞Pμ

[
e−〈w̃,X̃Bk

t 〉] = e−〈w,μ〉. �

In the remainder of this section, we choose w to be the function w(x) =
− logPδx (Efin) and let Z = (Zt )t≥0 be a strictly dyadic branching particle diffu-
sion, where the spatial motion is defined by (1.7) and the branching rate is given
by q = αw [in accordance with (1.8)].

One advantage of allowing unbounded α and β is that the setup is now invariant
under h-transforms: for any h ∈ C2,η(D), h > 0, ψh is a GQBM. Moreover,

wh(x) := − logPh
δx

(∃t ≥ 0 :
〈
1,Xh

t

〉 = 0
)

= − logPh(x)−1δx

(∃t ≥ 0 : 〈h,Xt 〉 = 0
)

(4.5)

= w(x)/h(x),

and Lemmas 2.10 and 2.11 remain valid for GQBMs and H(ψ)= {h ∈ C2,η(D) :
h > 0}. We record the following result.

THEOREM 4.4. Let ψ be a GQBM and suppose Assumption 2 holds and φα
is bounded. Let μ ∈Mφ

f (D).
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(i) For all f ∈ p(D) with f/φ bounded, the convergence in (1.16) holds
in L1(Pμ).

(ii) If, in addition, Assumption 4 holds, then there exists a measurable set �0
with Pμ(�0) = 1, and on �0, the convergence in (1.16) holds for all �-almost
everywhere continuous f ∈ p(D) with f/φ bounded.

PROOF. LetXφ be an (Lφ0 ,ψ
φ;D)-superprocess. Since βφ = λc and αφ = φα

are bounded, Xφ satisfies the assumptions of Section 1.1. Moreover, Xφ satisfies
Assumption 1 by Lemma 4.3, Assumption 2 with φφ = 1 by Lemma 2.10(i) and
Assumption 3′′. Hence, Theorem 2.12(i) and Lemma 2.10(ii) yield the first part of
the claim. Lemmas 2.11, 2.10(ii), 3.4 and Theorem 2.12(ii) yield the second part.

�

The h-transforms are one way to relate two superprocesses to each other, an-
other is monotonicity.

LEMMA 4.5. Let ψβ and ψ̂
β̂

be two branching mechanisms as defined in

Section 1.1 with ψβ ≥ ψ̂
β̂

. Let X and X̂ be (L,ψβ;D)- and (L, ψ̂
β̂
;D)-super-

processes, respectively.

(i) For all μ ∈ Mf (D), f ∈ bp(D), t ≥ 0, Pμ[e−〈f,Xt 〉] ≥ Pμ[e−〈f,X̂t 〉].
(ii) Let w(x) = − logPδx (∃t ≥ 0 : 〈1,Xt 〉 = 0) and ŵ(x) = − logPδx (∃t ≥

0 : 〈1, X̂t 〉 = 0) for all x ∈D. Then w ≤ ŵ.

PROOF. Part (i) is proved in Appendix A.2. Part (ii) follows from part (i) and
the identity w(x)= limt→∞ limθ→∞ − logPδx [e−θ〈1,Xt 〉]. �

We saw in Example 4.2 that the SLLN describes the asymptotics of the mass in
compact sets, not necessarily the global growth. A second distinction between the
local and global behavior can be observed on the event {Wφ∞(X) = 0} \ Efin. En-
gländer and Turaev ([21], Problem 14), raised the question whether this event can
have positive probability. Suppose Assumption 2 holds. Engländer [14] observed
that if limt→∞ e−λct 〈f,Xt 〉 = 〈f, φ̃〉Wφ∞(X) in distribution for all f ∈ C+

c (D),
μ ∈ Mc(D), and if the support of X is transient, then

Pμ
(
Wφ∞(X)= 0

)
>Pμ(Efin) for all μ ∈ Mc(D),μ �≡ 0.(4.6)

Here the support of (X;Pμ) is recurrent if

Pμ
(
Xt(B) > 0 for some t ≥ 0|Ecfin

) = 1 for every open B ⊆D,B �= ∅,

and transient otherwise. See [19] for a detailed discussion of recurrence and tran-
sience of the support of superdiffusions.

We study three examples in this section. In the first example, α and β are
bounded, but w is unbounded. In the second example α is bounded, but β , φ
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and w are unbounded. Both examples are based on a recurrent motion but while
the support of the superprocess is recurrent in the second, it is transient in the
first example. The third example considers a large class of processes containing
super-Brownian motion with compactly supported growth rate β and instances of
non-symmetric underlying motions.

The domain for all these examples is D = Rd , and therefore, none of them is
covered in Liu et al.’s [46] article. Chen et al.’s [7] article is not applicable to the
first two examples since they are based on the inward-OU process as underlying
motion (because, as in Section 4.1, Q is unbounded) and not to the third because
the motion is non-symmetric (for some processes in the considered class), and the
variance parameter α is unbounded, whereas [7] requires α to be bounded.

The motivation for the first example comes from Example 5.1 in [19].

EXAMPLE 4.6. Let d ≥ 1, D = Rd , L= 1
2�−γ x ·∇ with γ > 0, β ∈ (0,∞)

constant, α(x) = e−γ ‖x‖2
, � ≡ 0. Then Theorem 1.2 applies with φ = 1, φ̃(x) =

(γ /π)d/2e−γ ‖x‖2
and λc = β . Moreover, w(x) = (β + γ d)eγ ‖x‖2

, the support of
X is transient and (4.6) holds.

There are two ways to prove (1.16) for this example. First, we perform an
h-transform with h(x)= (γ /π)−d/2eγ ‖x‖2

to obtain

Lh0 = 1
2�+ γ x · ∇, βh = β + γ d, αh = (π/γ )d/2.

In Example 4.2, we showed that Theorem 1.2 applies to the (Lh0,ψ
h;Rd)-super-

process. The (L,ψ;Rd)-superprocess can be recovered by an h-transform with
h2 = 1/h, and Lemma 2.10 yields that Assumption 2 is satisfied with the stated
φ, φ̃ and λc, and that (1.16) holds. Alternatively, we can deduce (1.16) by a direct
application of Theorems 1.2 and 2.13. Assumption 1 holds by Lemma 4.3, and
Assumption 3 holds since α and φ are bounded. To verify Assumption 4, we notice
that wh(x)= βh/αh = (β + γ d)(γ /π)d/2 by (4.1), and (4.5) yields

w(x)=wh(x)h(x)= (β + γ d)eγ ‖x‖2
for all x ∈ Rd .

Thus w is not bounded from above. The verification of (2.34) and (2.35) is the
same as in Example 4.2 since w/φ is of the same order and the ergodic motion
is the same. Hence the conditions hold with a(t) = eγ (1+δ)t for some δ > 0 and
K > 1 + δ.

To see that the support of X is transient, notice that the support is invariant
under h-transforms and the support of the (Lh0;ψh;Rd)-superprocess is transient
by Theorem 4.6 in [50] and Example 2 in [51].

Example 4.6 should be compared to Example 4.2 for a quadratic branching
mechanism. In both examples, the support of the superprocess is transient and
the event {Wφ∞(X) = 0} \ Efin has positive probability. Hence, in both examples,
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mass can escape to infinity which is reflected in the SLLN by virtue of the fact
that Wφ∞(X)= 0. However, the motion in Example 4.6 is recurrent and the SLLN
captures not only the local but also the global growth of mass.

The unbounded w in Example 4.6 can be interpreted as follows. Heuristically,
since the local growth rate β is bounded away from zero, on average a large pop-
ulation is generated everywhere in space. Risk for the branching process comes
from areas of a relatively large variance for the total mass process. In contrast,
when the variance parameter α is very small, then extinction is unlikely and w

becomes large.
The motivation for the next example comes from Example 10 in [17]. For B ∈

B(D), f1, f2 ∈ p(B), we write f1 � f2 if there are constants 0< c ≤ C <∞ such
that cf1(x)≤ f2(x)≤ Cf1(x) for all x ∈ B .

EXAMPLE 4.7. Let d ≥ 1, D = Rd , L= 1
2�− γ x · ∇ , β(x)= c1‖x‖2 + c2,

where γ, c1, c2 > 0, γ >
√

2c1, and write ϑ := 1
2(γ −

√
γ 2 − 2c1). Then Assump-

tion 2 holds with λc = c2 + dϑ , φ(x) = eϑ‖x‖2
and φ̃(x) = ce(ϑ−γ )‖x‖2

, where
c = (

γ−2ϑ
π

)d/2. Suppose that � ≡ 0 and α ∈ Cη(D) with α � 1/φ on Rd . Then
Theorem 4.4 applies, w � φ and the support of X is recurrent.

Let h(x)= eϑ‖x‖2
. Using −γ + 2ϑ = −

√
γ 2 − 2c2 and ϑ2 − γϑ + c1

2 = 0, we

observe that on Rd ,

Lh0 = 1
2�−

√
γ 2 − 2c1x · ∇, βh = ϑd + c2, αh(x)= h(x)α(x)� 1.

The (Lh0,ψ
h;Rd)-superprocess, denoted by Xh, satisfies Assumption 2 by Exam-

ple 4.1 with φh = 1, φ̃h � e(2ϑ−γ )‖x‖2
and λhc = ϑd + c2. Hence, Lemma 2.10(i)

shows thatX satisfies Assumption 2, φ, φ̃ and λc have been correctly identified and
φα is bounded. When we have verified Assumption 4 for Xh, then Lemma 2.11
will yield Assumption 4 for X, and the claim is established.

To this end, choose constants c3, c4 > 0 such that c3/h ≤ α ≤ c4/h. Let
ψ(x, z) := −βhz + c3z

2 and ψ(x, z) := −βhz + c4z
2, and denote by w and

w the martingale functions corresponding to the event of extinction after fi-
nite time for the (Lh0,ψ;Rd) and (Lh0,ψ;Rd)-superprocesses, respectively. Since
ψ ≤ψh ≤ψ , Lemma 4.5(ii) and (4.1) imply

βh/c3 =w(x)≥wh(x)≥w(x)= βh/c4 for all x ∈D.

Hence, wh � 1 = φh. Now the verification of (2.34) and (2.35) for Xh is the same
as in Example 4.1, and we can choose a(t) = √

(λc/γ + δ)t for some δ > 0 and
K = 1. Theorem 2.13 verifies Assumption 4.

The support of X is recurrent since the support is invariant under h-transforms
and the support of the (Lh0,ψ

h;Rd)-superprocess is recurrent according to Theo-
rem 4.4(b) in [19].
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The next example covers a large class of processes. The underlying motion is
a Brownian motion with or without a compactly supported drift term. Depending
on the choice of that drift, the motion can be symmetric or non-symmetric. For a
choice of b which makes L non-symmetric, see Example 13 in [17]. The article
by Chen et al. [7] excludes non-symmetric motions. The example is motivated by
Example 22 in [21] and Examples 12 and 13 in [17].

EXAMPLE 4.8. Let d ∈ {1,2},D = Rd , L= 1
2�+b ·∇ where all components

of b belong to C1,η(Rd) for some η ∈ (0,1] and are of compact support, β0 ∈
Cη(Rd) nonnegative and of compact support, β0 �= 0. There exists θ > 0 such that
λc(L+ θβ0) > 0, and we let β = θβ0, λc = λc(L+ β). We further write

!(x)= ‖x‖(1−d)/2e−
√

2λc‖x‖ for all x ∈ Rd \ {0}.
Let α ∈ Cη(D), α(x) > 0 for all x ∈ Rd and α � 1/! on Rd \ B for an open ball
B around the origin. Then Theorem 4.4 applies with φ, φ̃,w � ! on Rd \ B , and
the support of X is recurrent.

The existence of θ is proved in Theorems 4.6.3 and 4.6.4 of Pinsky’s book
[50] and L+ β − λc is critical by Theorem 4.6.7 in the same book. Denote by G
the Green’s function corresponding to the operator L− λc. Then φ � G(·,0) on
Rd \ B by Theorems 4.6.3 and 7.3.8 in [50]. Pinsky showed in Example 7.3.11
that the Green’s function G1 of 1

2�− λc satisfies G1(·,0) � ! on Rd \ B . Since
b is compactly supported, G1(·,0)�G(·,0) on Rd \ B , and the estimate for φ is
established. The same argument yields the same estimate for φ̃, and Assumption 2
holds. Moreover, φα is bounded.

To check Assumption 4 we use Theorem 2.13. An h-transform of the
(L,ψ;Rd)-superprocess with h = φ gives an (L

φ
0 ,ψ

φ;Rd)-superprocess, where

L
φ
0 corresponds to a conservative, positive recurrent motion and ψφ(x, z) =

−λcz + φ(x)α(x)z2. Since φα � 1, wφ � 1 by the same argument as in Ex-
ample 4.7. Hence (4.5) implies w/φ � 1 and conditions (i) and (ii) of Theo-
rem 2.13 have been verified in Examples 12 and 13 of [17] with a(t)= √

2‖β‖∞t ,
K > 1/

√
2λc. Since w is bounded and the underlying diffusion is recurrent, The-

orem 4.4 in [19] shows that the support of X is recurrent.

4.3. Bounded domains. In the situation that D is a bounded Lipschitz domain,
and L is a uniformly elliptic operator with smooth coefficients, Liu et al. [46] prove
the SLLN for a general branching mechanism with β any bounded, measurable
function on D and α and � as in Section 1.1.

However, the Wright–Fisher diffusion on domain D = (0,1) is a diffusion pro-
cess whose diffusion matrix a(x) = x(1 − x) is not uniformly elliptic. The pro-
cess has attracted a wide interest in the literature; see, for example, [4, 30, 32].
Fleischmann and Swart [30] studied the large-time behavior of the correspond-
ing superprocess with spatially independent, quadratic branching mechanism
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on [0,1]. They conjecture a SLLN for the process restricted to D = (0,1) (see
above (23) in [30]) but prove only convergence in L2. The Wright–Fisher diffu-
sion is not conservative, so the arguments in Section 4.1 are not applicable. How-
ever, Theorem 1.2 applies, and the following theorem proves the conjecture for
all Lebesgue-almost everywhere continuous test functions f ∈ p(D) with f/φ

bounded. (Fleischmann and Swart do not assume any continuity.)

THEOREM 4.9 (Super-Wright–Fisher diffusion). Let D = (0,1), β ∈ (1,∞),
α > 0, �≡ 0 and

L= 1

2
x(1 − x)

d2

dx2 = 1

2

d

dx
x(1 − x)

d

dx
+ 2x − 1

2

d

dx
.

Then Theorem 1.2 applies with φ(x)= 6x(1 − x), φ̃ = 1 and λc = β − 1.

PROOF. Let h(x)= 6x(1 − x). Fleischmann and Swart proved in Lemma 20
of [30] that the generator

Lh0 = 1

2

d

dx
x(1 − x)

d

dx
+ 1 − 2x

2

d

dx

corresponds to an ergodic diffusion with invariant law h(x)�(dx) on D. Using
βh = β − 1, we deduce that λc(Lh0 + βh) = β − 1, φh = 1, φ̃h = h and, using
Lemma 2.10, Assumption 2 for the (L,ψ;D) superprocess as well as the stated
identities for φ, φ̃ and λc are established. Assumption 1 holds by Lemma 4.3;
the boundedness of α and φ implies that Assumption 3 is satisfied. To verify As-
sumption 4, we notice that condition (i) of Theorem 2.13 is trivially satisfied for
Dt =D, and (2.33) for Dt =D and K = 1 has been proved in Lemma 20 of [30].
Hence Assumption 4 follows from Theorems 2.13 and Theorem 1.2 applies. �

APPENDIX

A.1. Feynman–Kac arguments. In this section, we prove an integral iden-
tity that is used several times in this article. Versions of this result appeared in
Lemma A.I.1.5 of [11] and Lemma 4.1.2 of [12], but the format and assumptions
are different. Like in the remainder of the article, (ξ = (ξt )t≥0 : (Px)x∈D) is a dif-
fusion as described in Section 1.1.

LEMMA A.1. Let T > 0 and either B = D or B ⊂⊂ D open. Write τ =
inf{t ≥ 0 : ξt /∈ B} and A=D if B =D; A= �B if B ⊂⊂D.

(i) Let f1 ∈ b(A), g1 :A × [0, T ] → R measurable and bounded from above
and f2, g2 ∈ b(A× [0, T ]). If for all (x, t) ∈A× [0, T ],

v(x, t)= Px
[
e

∫ t∧τ
0 (g1+g2)(ξr ,t−r) drf1(ξt∧τ )

]
(A.1)

+ Px

[∫ t∧τ
0

e
∫ s

0 (g1+g2)(ξr ,t−r) drf2(ξs, t − s) ds

]
,
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then, for all (x, t) ∈A× [0, T ],
v(x, t)= Px

[
e

∫ t∧τ
0 g1(ξr ,t−r) drf1(ξt∧τ )

]
+ Px

[∫ t∧τ
0

e
∫ s

0 g1(ξr ,t−r) dr(f2(ξs, t − s)+ g2(ξs, t − s)v(ξs, t − s)
)
ds

]
.

(ii) The statement of (i) remains valid when f1 ∈ bp(A), f2, g1, g2 :A ×
[0, T ] → R measurable with g1 bounded from above, g2 nonnegative, f2 non-
positive and g1 + g2 bounded from above. Notice that in this case, v might attain
the value −∞.

PROOF. For all t ≥ 0, write

Yt = e
∫ t∧τ

0 (g1+g2)(ξr ,t−r) drf1(ξt∧τ )

and

Zt =
∫ t∧τ

0
e

∫ s
0 (g1+g2)(ξr ,t−r) drf2(ξs, t − s) ds.

By assumption, v(x, t) = Px[Yt + Zt ] for all (x, t) ∈ A × [0, T ]. The Markov
property implies∫ t

0
Px

[
1{s<τ }e

∫ s
0 g1(ξr ,t−r) drg2(ξs, t − s)Pξs [Yt−s]

]
ds

=
∫ t

0
Px

[
1{s<τ }e

∫ s
0 g1(ξr ,t−r) drg2(ξs, t − s)e

∫ t∧τ
s (g1+g2)(ξr ,t−r) drf1(ξt∧τ )

]
ds.

If g2 is bounded, then Fubini’s theorem and the fundamental theorem of calculus
(FTC) for Lebesgue integrals imply that the right-hand side equals

Px

[
f1(ξt∧τ )e

∫ t∧τ
0 g1(ξr ,t−r) dr

∫ t∧τ
0

g2(ξs, t − s)e
∫ t∧τ
s g2(ξr ,t−r) dr ds

]
= Px

[
f1(ξt∧τ )e

∫ t∧τ
0 g1(ξr ,t−r) dr(e∫ t∧τ

0 g2(ξr ,t−r) dr − 1
)]
.

In the situation of (ii), the same identity can be obtained by truncating g2 before
the application of FTC and using the monotone convergence theorem afterwards.
The Markov property and Fubini’s theorem [in case (ii) its application is justified
by the nonpositivity of the integrand] yield∫ t

0
Px

[
1{s<τ }e

∫ s
0 g1(ξr ,t−r) drg2(ξs, t − s)Pξs [Zt−s]]ds

=
∫ t

0
Px

[
1{s<τ }e

∫ s
0 g1(ξr ,t−r) drg2(ξs, t − s)

×
∫ t∧τ
s

e
∫ u
s (g1+g2)(ξr ,t−r) drf2(ξu, t − u)du

]
ds
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= Px

[∫ t∧τ
0

e
∫ u

0 g1(ξr ,t−r) drf2(ξu, t − u)

×
∫ u

0
g2(ξs, t − s)e

∫ u
s g2(ξr ,t−r) dr ds du

]
.

As above, the FTC implies that the right-hand side equals

Px

[∫ t∧τ
0

e
∫ u

0 g1(ξr ,t−r) drf2(ξu, t − u)
(
e

∫ u
0 g2(ξr ,t−r) dr − 1

)
du

]
.

Since v(x, t) = Px[Yt + Zt ] for all (x, t) ∈ A × [0, T ], we conclude that in the
situation of (i),

Px

[∫ t∧τ
0

e
∫ s

0 g1(ξr ,t−r) dr(f2(ξs, t − s)+ g2(ξs, t − s)v(ξs, t − s)
)
ds

]
= Px

[
f1(ξt∧τ )e

∫ t∧τ
0 g1(ξr ,t−r) dr(e∫ t∧τ

0 g2(ξr ,t−r) dr − 1
)

+
∫ t∧τ

0
e

∫ s
0 (g1+g2)(ξr ,t−r) drf2(ξs, t − s) ds

]
.

In the situation of (ii), this use of linearity is justified since none of the summed
integrals can take the value +∞. Since f1 is bounded and g1, g1 +g2 are bounded
from above, the first term on the right can be written as the difference of two finite
integrals and (A.1) yields the claim. �

A.2. Monotonicity. In this section, a generalized version of the mild equa-
tion (1.3) is studied. For the exit measures X̃B

t from Section 2.1.1, we establish
the monotonicity in the domain, and we prove Lemma 4.5. As a by-product, we
re-prove the existence and uniqueness of the solutions to (1.3) and (2.7).

To this end, we assume only that β is bounded above, not necessarily from
below. More specifically, the setup is as follows. Let β :D → R be measurable
with β̄ = max{supx∈D β(x),0} < ∞, α ∈ bp(D), � a kernel from D to (0,∞)

such that x �→ ∫
(0,∞)(y ∧ y2)�(x, dy) belongs to bp(D), and let (ξ ;P) be a dif-

fusion as described in Section 1.1. We denote by lbp(D× [0,∞)) the space of all
functions f ∈ p(D × [0,∞)) with ‖f ‖∞,T := supt∈[0,T ] ‖f (·, t)‖∞ < ∞ for all
T > 0.

For f ∈ bp(D) and g ∈ lbp(D × [0,∞)), we are interested in solutions to the
integral equation

u(x, t)+
∫ t

0
Ss

[
ψ0

(·, u(·, t − s)
)]
(x) ds = Stf (x)+

∫ t

0
Ss

[
g(·, t − s)

]
(x) ds,

(A.2)
(x, t) ∈D × [0,∞),

where Stf (x)= Px[e
∫ t

0 β(ξs) dsf (ξt )] for f ∈ p(D). A similar analysis to ours has
been carried out by Dynkin (Chapter 4, Sections 1 and 3 in [11]) for the case β = 0
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and g = 0. The greater generality of (A.2) allows us to handle the general setup of
the present article and to prove Lemma 4.5.

Note that z �→ ψ0(x, z), defined in (1.1) is increasing, convex and nonnegative.
In particular, any nonnegative solution u to (A.2), satisfies

0 ≤ u(x, t)≤ eβ̄t‖f ‖∞ +
∫ t

0
eβ̄s

∥∥g(·, t − s)
∥∥∞ ds for all (x, t) ∈D×[0,∞).

Hence any nonnegative solution to (A.2) is an element of lbp(D× [0,∞)). More-
over, ψ0 is locally Lipschitz continuous in the sense that for every fixed c > 0,
there exists L(c) ∈ [0,∞) such that∣∣ψ0(x, z1)−ψ0(x, z2)

∣∣ ≤ L(c)|z1 − z2| for all z1, z2 ∈ [0, c], x ∈D.(A.3)

We use the following version of Gronwall’s lemma. For a proof see Theorem A.5.1
in [25].

LEMMA A.2 (Gronwall’s lemma). Let T > 0, C,ρ ≥ 0 and h ∈ b([0, T ]). If

h(t)≤ C + ρ

∫ t

0
h(s) ds for all t ∈ [0, T ],

then h(t)≤ Ceρt for all t ∈ [0, T ].

Lemmas A.3 and A.4 in the case β = 0 and g = 0 are Theorems 4.1.1 and 4.3.1
in [12].

LEMMA A.3 (Uniqueness). Let f, f̂ ∈ bp(D), g, ĝ ∈ lbp(D × [0,∞)), and
suppose that u and û are nonnegative solutions to (A.2) for (f, g) and (f̂ , ĝ),
respectively. Then for every T > 0, there exists a constant C > 0 such that

‖u− û‖∞,T ≤ C
(‖f − f̂ ‖∞ + ‖g − ĝ‖∞,T

)
.

In particular, the solution to (A.2) is unique.

PROOF. Fix T > 0, and let c ≥ max{‖u‖∞,T ,‖û‖∞,T }. Then (A.3) yields∣∣ψ0
(
x, û(x, t)

) −ψ0
(
x,u(x, t)

)∣∣ ≤ L(c)
∣∣û(x, t)− u(x, t)

∣∣
for all (x, t) ∈D × [0, T ].

Writing h(x, t) = |u(x, t) − û(x, t)| and M = eβ̄T , (A.2) implies that for all
(x, t) ∈D × [0, T ],

h(x, t)≤M‖f − f̂ ‖∞ +MT ‖g − ĝ‖∞,T +
∫ t

0
ML(c)

∥∥h(·, s)∥∥∞ ds.

Lemma A.2 yields the claim. �
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LEMMA A.4 (Existence). Let f ∈ bp(D) and g ∈ lbp(D × [0,∞)). There
exists a nonnegative solution u ∈ lbp(D × [0,∞)) to (A.2).

PROOF. Fix T > 0 and let M = eβ̄T . For k ∈ [0,∞) and u ∈ lbp(D×[0, T ]),
that is, u ∈ p(D×[0, T ]) with ‖u‖∞,T <∞, we define for all (x, t) ∈D×[0, T ],

Fku(x, t)= e−ktStf (x)+
∫ t

0
e−ksSs

[
g(·, t − s)

]
(x) ds

+
∫ t

0
e−ksSs

[
ku(·, t − s)−ψ0

(·, u(·, t − s)
)]
(x) ds.

Let c ≥ M‖f ‖∞ + MT ‖g‖∞,T and k ≥ L(c). Write v(x, t) = eβ̄t‖f ‖∞ +∫ t
0 e

β̄s ds‖g‖∞,T for all x ∈D, t ∈ [0, T ]. We show the following:

(i) 0 ≤ Fk0 ≤ v on D × [0, T ].
(ii) If 0 ≤ u1 ≤ u2 ≤ v on D × [0, T ], then Fku1 ≤ Fku2 on D × [0, T ].

(iii) Fkv ≤ v on D × [0, T ].
Indeed, Fk0(x, t)= e−ktStf (x)+ ∫ t

0 e
−ksSs[g(·, t − s)](x) ds ∈ [0, v(x, t)] since

f and g are nonnegative and k ≥ 0. For (ii), we use that v(x, t)≤ c for all (x, t) ∈
D × [0, T ] and (A.3) to obtain

Fku2(x, t)− Fku1(x, t)

=
∫ t

0
e−ksSs

[
k(u2 − u1)(·, t − s)

− (
ψ0

(·, u2(·, t − s)
) −ψ0

(·, u1(·, t − s)
))]
(x) ds

≥
∫ t

0
e−ksSs

[(
k −L(c)

)
(u2 − u1)(·, t − s)

]
(x) ds ≥ 0.

To show (iii), we use that ψ0 is nonnegative and the definition of v and Fubini’s
theorem to obtain

Fkv(x, t) ≤ e−kt eβ̄t‖f ‖∞ +
∫ t

0
e−kseβ̄s‖g‖∞,T ds

+
∫ t

0
e−kseβ̄sk

(
eβ̄(t−s)‖f ‖∞ +

∫ t−s
0

eβ̄r dr‖g‖∞,T

)
ds

=
(
e−kt +

∫ t

0
ke−ks ds

)
eβ̄t‖f ‖∞

+
(∫ t

0
e(β̄−k)s ds +

∫ t

0
ke−ks

∫ t

s
eβ̄r dr ds

)
‖g‖∞,T

= v(x, t).

In the next step, we construct a solution to (A.2) via a Picard iteration. Let u0 = 0
and un = Fkun−1 for all n ∈ N. We show by induction that 0 ≤ un−1 ≤ un ≤ v on
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D×[0, T ] for all n ∈ N. For n= 1, this is statement (i). The induction step follows
from (ii)–(iii). In particular, (un)n∈N0 has a pointwise limit u which is a fixed point
of Fk by the dominated convergence theorem. Lemma A.1(i) applied to g1 = β ,
which is bounded from above, and the bounded functions g2 = −k, f1 = f and
f2(x, t)= g(x, t)+ ku(x, t)−ψ0(x, u(x, t)), shows that u solves (A.2). �

Choosing g = 0, Lemmas A.3 and A.4 imply the existence of a unique solution
to (1.3) and (2.7). The following lemma will be used in the proof of Lemma 4.5.

LEMMA A.5 [Monotonicity in (f, g)]. Let f, f̂ ∈ bp(D), g, ĝ ∈ lbp(D ×
[0,∞)) with f ≤ f̂ and g ≤ ĝ and denote by u and û the unique solutions to (A.2)
corresponding to (f, g) and (f̂ , ĝ), respectively. Then u≤ û.

PROOF. Since the solution is unique according to Lemma A.3, the claim fol-
lows immediately from the construction of the solution via Picard iteration in the
proof of Lemma A.4. �

PROOF OF LEMMA 4.5(i). According to (1.3), uf is the unique solution
to (A.2) with g = 0. Moreover, (1.3) for ûf and Lemma A.1(i) applied to g1 = β ,
g2 = β̂ − β , f1 = f and f2(x, t)= −ψ̂0(x, ûf (x, t)) implies that ûf satisfies

ûf (x, t)= Stf (x)+
∫ t

0
Ss

[−ψ̂0
(·, ûf (·, t − s)

) + (β̂ − β)ûf (·, t − s)
]
(x) ds

= Stf (x)−
∫ t

0
Ss

[
ψ0

(·, ûf (·, t − s)
)]
(x) ds

+
∫ t

0
Ss

[
ψβ

(·, ûf (·, t − s)
) − ψ̂

β̂

(·, ûf (·, t − s)
)]
(x) ds.

In particular, ûf solves (A.2) with g(x, t)= ψβ(x, ûf (x, t))− ψ̂
β̂
(x, ûf (x, t))≥

0. Now Lemma A.5 yields the claim. �

The following lemma is used in the proofs of Theorem 2.3 and Lemma 4.3.

LEMMA A.6 (Monotonicity in B). Let B ⊂⊂ D and f ∈ bp(D) such that
the support of f , supp(f ), is compactly embedded in B . There exists a unique
nonnegative solution uBf ∈ lbp(D × [0,∞)) to

u(x, t)= Px
[
e

∫ t∧τB
0 β(ξs) dsf (ξt∧τB )

]
(A.4)

− Px

[∫ t∧τB
0

e
∫ s

0 β(ξr ) drψ0
(
ξs, u(ξs, t − s)

)
ds

]
.

Moreover, if B1 and B2 are domains with supp(f )⊆ B1 ⊆ B2, then uB1
f ≤ u

B2
f .
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PROOF. Let T > 0, c ≥ eβ̄T ‖f ‖∞, k ≥ L(c) and for u ∈ lbp(D × [0, T ]),
define

Fku(x, t)

= Px
[
e

∫ t
0 [β(ξs)−k]dsf (ξt )1{t<τB }

]
+

∫ t

0
Px

[
e

∫ s
0 [β(ξr )−k]dr[ku(ξs, t − s)−ψ0

(
ξs, u(ξs, t − s)

)]
1{s≤τB }

]
ds.

Since kz − ψ0(x, z) ≥ kz − L(c)z ≥ 0 for all z ∈ [0, c], Fku is increasing in B

for all u with u(x, t) ≤ eβ̄t‖f ‖∞ =: v(x, t). As in Lemmas A.3 and A.4, the
unique solution to (A.4) can be obtained as a pointwise limit of the increasing
sequence u0 = 0, un+1 = Fkun with un ≤ v for all n. Denote by u(1)n and u(2)n the
iterates for the operators F (1)

k , F (2)
k corresponding to B1 and B2, respectively. We

show by induction that u(1)n ≤ u
(2)
n for every n. For n= 0 this is trivial. For the in-

duction step we first use the induction hypothesis and monotonicity of F (1)
k [see (ii)

in the proof of Lemma A.4] and then the monotonicity of Fk in B to deduce

u
(1)
n+1 = F

(1)
k u(1)n ≤ F

(1)
k u(2)n ≤ F

(2)
k u(2)n = u

(2)
n+1. �

For B ⊂⊂ D, the tuple (L,ψ∗
β∗;B) satisfies the assumptions of Section 1.1,

where the motion is killed at the boundary of B . Hence, Lemma A.6 implies
that the (L,ψ∗

β∗;D)-superprocess can be obtained as a distributional limit of
(L,ψ∗

β∗;B)-superprocesses using an increasing sequence of compactly embed-
ded domains to approximate D; cf. the argument before Corollary 6.2 in [43] or
Lemma A2 and Theorem A1 in [19].
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