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DISORDER, ENTROPY AND HARMONIC FUNCTIONS
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We study harmonic functions on random environments with particular
emphasis on the case of the infinite cluster of supercritical percolation on Z

d .
We prove that the vector space of harmonic functions growing at most lin-
early is (d + 1)-dimensional almost surely. Further, there are no nonconstant
sublinear harmonic functions (thus implying the uniqueness of the corrector).
A main ingredient of the proof is a quantitative, annealed version of the Avez
entropy argument. This also provides bounds on the derivative of the heat
kernel, simplifying and generalizing existing results. The argument applies to
many different environments; even reversibility is not necessary.

1. Introduction. Since the work of Yau in 1975, where the Liouville property
for positive harmonic functions on complete manifolds with nonnegative Ricci
curvature was proved [79], the structure of various spaces of harmonic functions
has been at the heart of geometric analysis. Some years later, Yau conjectured
that the space of polynomial growth harmonic functions of fixed order is always
finite dimensional in open manifolds with nonnegative Ricci curvature. Extensive
literature has appeared on this conjecture and related problems. Understanding
progressed quickly (Yau’s conjecture was proved by Colding and Minicozzi [26])
and gave birth to many tools; see [61] for an introduction to the subject.

In the algebraic setting, bounded harmonic functions played a central role since
the introduction of the Poisson boundary by Furstenberg [41, 42]; see also the
survey [78]. Recently, the geometric approach made a remarkable appearance in
the algebraic realm when Kleiner proved that the space of harmonic functions with
fixed polynomial growth on the Cayley graph of a group with polynomial volume
growth is finite dimensional using the approach of [26]. He used this fact to provide
a new proof of Gromov’s theorem [55]; see [73] for a quantitative version of this
theorem.
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Another place where harmonic functions have played an important role recently
is in the proof of the central limit theorem on random graphs. A central element in
the proofs (see, e.g., [16, 43, 66, 74]) is the construction of a harmonic function h

on the cluster which is close to linear—the term χ(x) = h(x) − 〈x, v〉 is called the
corrector and once one shows that χ(x) = o(‖x‖), the proof may proceed.

The focus of this article is the case of random graphs. Classical tools of ge-
ometric analysis do not extend to this context in a straightforward way. Indeed,
a random environment is not regular at the microscopic scale. In order to under-
stand harmonic functions, one thus needs to make use only of the control of the
macroscopic behavior of the environment. Let us take supercritical percolation as
an example; see [44] for background and definitions.

For p ∈ (0,1), consider the random graph G = (V (G),E(G)) defined by
V (G) = V (Zd) and E(G) being a random set containing each edge of Zd with
probability p, independently of the other edges. It is classical that (in dimension
d ≥ 2) there exists pc(d) ∈ (0,1) such that for p < pc(d), there is almost surely
no infinite connected component (also called cluster), while for p > pc(d), there
is a unique infinite cluster. When p > pc(d), we denote this cluster by ω.

THEOREM 1. Let d ≥ 2, and let p > pc(d). Then with probability 1, the infi-
nite cluster ω has no nonconstant sublinear harmonic functions.

This immediately shows that the corrector χ is unique, as was conjectured by
Berger and Biskup [16], Question 3.

In more regular settings, claims of this sort have been proved using the follow-
ing strategy: try to show that two random walks starting at neighbors will couple
before time n with probability bigger than 1 − Cn−1/2. This fact is classical in the
case of the hypercubic lattice Z

d where an explicit coupling can be exhibited. In
the random context it is not clear how to construct an explicit coupling, but a num-
ber of approaches in the literature allows one to construct a coupling indirectly.
The known Gaussian heat kernel bounds [see (1) below] allow one to construct a
coupling that will fail with probability n−ε . Using also the central limit theorem
already mentioned, one could improve this to n−1/2+o(1). Nevertheless, getting the
precise n−1/2 seems difficult with these approaches. The approach we will apply
below not only gives the precise order n−1/2, but the proof is also significantly
simpler than those just suggested.

The proof uses an entropy argument similar to Avez [3] who showed that a Cay-
ley graph satisfies the Liouville property if the entropy of the random walk on it is
sublinear. In fact the “if” here is an “if and only if” as was shown by Kaimanovich
and Vershik [51] and, with a different approach, by Derriennic [33], but we will
not need the other direction. Two extensions of this result were known before: it
applies to random graphs [11], and it can be quantified [39], Section 5. It turns out
that the two generalizations can be applied simultaneously. Further, Theorem 1 is
but an example: the techniques work in great generality; even reversibility is not
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needed. Only stationarity of the walk and some weak (sub-)diffusivity are used.
Precise assumptions are detailed below.

The environment as viewed from the particle. To state the full result, we need to
define what we mean by “environment.” We are interested in environments which
are somehow translation invariant. This notion extends the transitivity condition
to the random context. Historically, this traces to the works of Papanicolaou and
Varadhan [70] and Kozlov [56] who studied random walk in random environments
on Z

d by translating the environment so that the walker remains at �0. In other
words, instead of having a walker move around in some environment, the walker
stays at the origin, and the environment moves “below” it, hence the name the en-
vironment as viewed from the particle. When the distribution of the environment
stays the same after a single step of this process, the environment is called station-
ary.

The notion was extended beyond Z
d in [62] who showed a similar phenomenon

for Galton–Watson trees: when you do a single step of random walk starting from
the root of the tree, the resulting random graph has the same distribution with
respect to the new position of the walker.

In such examples the most natural definition of “having the same distribution”
uses isomorphisms (in [62] this could be avoided due to the very simple structure of
trees, but it appears, e.g., in [1, 11]). The resulting definition looks a little abstract
at first, but in fact is very easy to verify in examples. For example, in the Z

d case,
the isomorphisms would be translations, while in the Galton–Watson case, they
would be a change of root followed by an arbitrary map. Let us give the details.

Consider a Markov chain (Xn)n≥0 taking values in some set V . The law of this
chain can be encoded by a function P :V × V → [0,1] where P(x, y) denotes
the probability to move from x to y. We always assume that our Markov chain
is irreducible, that is, that for any v,w ∈ V there is an n such that P n(v,w) > 0.
A rooted Markov chain is a triplet (P,V,ρ) where ρ ∈ V is some vertex that will
be called the root vertex. Two rooted Markov chains (P,V,ρ) and (P ′,V ′, ρ′) are
considered isomorphic if there is a one-to-one map φ :V → V ′ with φ(ρ) = ρ′
and P(x, y) = P ′(φ(x),φ(y)).

We define an environment as viewed from the particle, abbreviated as simply
environment, to be a random rooted Markov chain. Two environments are consid-
ered to have the same law if they are identical as measures on isomorphism classes
of rooted Markov chains (alternatively, if they can be coupled in such a way that
the resulting rooted Markov chains are isomorphic with probability 1).

DEFINITION 2. An environment (P,V,ρ) is called stationary if it has the
same law as (P,V,X1) where X1 is sampled from P(ρ, ·).

As we already remarked, stationary environments are very common, and we
provide ten examples in the end of Section 2. Most of these examples are em-
bedded in Z

d , and for these we could have used the definition of [56, 70]. Exam-
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ples 2.6, 2.8 and 2.10, however, are not embeddable into Z
d , so the isomorphism

cannot be taken to be a “translation,” though constructing it is still easy.
A very important subset of stationary environments is given by environments V

with the structure of a weighted graph [with the weight being a symmetric positive
function ν on every edge (v,w) ∈ E, and 0 on every pair (v,w) /∈ E]. In such case,
P is given by

P(v,w) = ν(v,w)

ν(v)
where ν(v) = ∑

x

ν(v, x).

These environments will be called random stationary graphs. This particular type
of Markov chain is also commonly called reversible. The reversible case has a rich
theory; see, for example, [1, 11] where one can also find many more examples.
To clearly distinguish between the reversible and nonreversible case, random sta-
tionary graphs will be denoted by (G, ν,ρ) where G is the graph, ν is the weight
function and ρ is the root.

The graph distance in G is denoted by dG(·, ·) and the ball of size r centered
at x by BG

x (r). We will also consider this distance in nonreversible setting, where
it is simply the smallest n such that P n(x, y) > 0 (in this case it may fail to be a
metric). Since the distinction between annealed and quenched statements will be
clear in the context, we will often drop the dependence on G in the notation. For
instance, PG

x , dG(·, ·) and BG
x (n) will become simply Px , d(·, ·) and Bx(n). For

the convenience of the reader, we collected the notation and conventions used in
this paper in the last section of the introduction (page 2340).

Nonconstant harmonic functions with minimal growth. Let P be a Markov
chain with state space V . Then a function h :V → R is called harmonic if h(Xn)

is a martingale, or in other words, if

h(x) = ∑
y

P (x, y)h(y) ∀x.

As already mentioned, harmonic functions have had a number of important ap-
plications recently. Let us expand on the particular application in Kleiner’s proof
of Gromov’s theorem [55]. It was known since the 1970s that in order to prove
Gromov’s theorem, it is enough to show that any group with polynomial volume
growth has a nontrivial finite-dimensional representation. Kleiner showed that any
group has a nontrivial linearly growing harmonic function, and that on groups
with polynomial growth, the dimension of the space polynomially growing har-
monic functions is finite. Since the group acts on harmonic functions on its Cayley
graph by translations, this provides a finite dimensional representation and proves
Gromov’s theorem. Shalom and Tao [73] showed that a quantitative version of
Kleiner’s proof can be performed. Further, they characterized the linearly grow-
ing harmonic functions (for groups with polynomial volume growth these are the
nonconstant harmonic functions with minimal growth [46], Theorem 6.1). They
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showed (personal communication) that when the group is nilpotent, any such func-
tion must be a character of the group (or the sum of a character and a constant),
in analogy to the Choquet–Deny theorem [25, 65]. For virtually nilpotent groups
this holds mutatis mutandis. We plan to analyze harmonic functions with minimal
growth in the context of Cayley graphs, especially of wreath products, in a future
paper.

We now return to the setting of this paper, that is, of stationary random graphs.
Using the entropy of the random walk, it is possible to bound from below the min-
imal growth of nonconstant harmonic functions in terms of the rate of escape of
the random walk. A particularly interesting case is provided by stationary envi-
ronments with diffusive behavior, for which the bound is often sharp. A stationary
environment (P,V,ρ) satisfies diffusive or subdiffusive behavior (DB) if

there exists C > 0 such that E
(
d(ρ,Xn)

2) ≤ Cn for every n.(DB)

Here and below E is the average over both the environment and over the walk (the
so-called annealed average). We may now state our main result.

THEOREM 3. Let (P,V,ρ) be a stationary environment such that
E(|Bρ(n)|) ≤ Cnd for some constants C,d < ∞ independent of n. If (P,V,ρ)

satisfies (DB), then for almost every environment, there are no nonconstant sub-
linear harmonic functions.

We say that h is a sublinear function if h(x) = o(d(ρ, x)) as d(ρ, x) → ∞.
Restricting to the case of percolation, it is also quite natural to ask what happens
with functions which are sublinear with respect to the Euclidean distance ‖x‖ (e.g.,
this is how the question is formulated in [16]). The result of Antal and Pisztora [2]
yields that graph and Euclidean distances are comparable on the infinite cluster,
and that therefore the previous question follows from Theorem 3.

As already stated, Theorem 3 applies to many different models, some of them
significantly less well understood than percolation. See a list of examples at the
end of Section 2.

Whether (DB) follows from polynomial growth in the reversible case is an inter-
esting question. The Carne–Varopoulos bound [23, 77] gives that Eρ(d(ρ,Xn)) ≤
C

√
n logn, which would give (with the same proof as that of Theorem 3;

see Theorem 3′ in Section 2) that any stationary random graph with polyno-
mial volume growth has no nonconstant harmonic functions h with h(x) ≤
Cd(ρ, x)/

√
log d(ρ, x). Without stationarity the Carne–Varopoulos bound√

n logn cannot be improved, as was shown by Barlow and Perkins [10]. Kesten
gave a beautiful argument that a stationary random graph embedded in Z

d satis-
fies (DB); see, for example, [10], Section 2. But it does not seem to apply just
assuming polynomial growth.

The relation between entropy, harmonic functions and speed of the random walk
holds for more general environments (e.g., with larger growth). We defer to Sec-
tion 2 for a more complete account of this question.
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Polynomially growing functions. As in the case of manifolds, we are interested
in the dimension of the space of harmonic functions with prescribed polynomial
growth. Of course, one can encounter very different behavior depending on the
environment (like in the deterministic case). Hence we will assume that our en-
vironments satisfy volume doubling and the Poincaré inequality. Here is the pre-
cise formulation of our assumptions on the environment: let (G, ν,ρ) be a rooted
weighted graph.

(VD)G. (G, ν,ρ) satisfies the anchored volume doubling property (VD)G if
there exists 0 < CVD < ∞ such that the following holds. For every λ < ∞, there
exists n0 ∈ N such that for all n > n0, and for every x ∈ Bρ(λn),

ν
(
Bx(2n)

) ≤ CVDν
(
Bx(n)

)
,

where ν(B) is the total weight of the edges in the ball B.
(P )G. (G, ν,ρ) satisfies the anchored Poincaré inequality (P )G if there exists

CP < ∞ such that the following holds. For every λ < ∞, there exists n0 ∈ N such
that for all n > n0, for every x ∈ Bρ(λn) and every f : Bx(2n) →R,

∑
y∈Bx(n)

(
f (y) − f Bx(n)

)2
ν(y) ≤ CPn2

∑
(y,z)∈E(Bx(2n))

∣∣f (y) − f (z)
∣∣2ν(y, z),

where

f Bx(n) = 1

ν(Bx(n))

∑
y∈Bx(n)

f (y)ν(y).

Similar properties are classical in geometric analysis. They go back to the theory
developed by De Giorgi, Nash and Moser [35, 67–69] in the fifties and sixties
for uniformly elliptic second-order operators in divergence form. In the classic
context, they imply the Harnack principle and Gaussian bounds for the heat kernel.
While the definitions above have no randomness in them, they are tailored for the
random case: they take into consideration that in most examples of interest these
properties do not hold from every point since some unusual points always exist. For
this reason, the properties are required to hold for balls which are not too far from
our root ρ, relative to their size. This is reminiscent of Barlow’s good and very
good balls [6], but our requirements are much weaker, we only need the properties
to hold for “macroscopic balls,” balls whose distance to ρ is proportional to their
radius.

Let us remark on the appearance of the number 2 in Bx(2n) in both properties.
For the volume doubling property it is clear that these properties are equivalent
for all choices bigger than 1; that is, if one was to define a “3-volume doubling
property,” then it would be equivalent to the “2-volume doubling property” defined
above, though perhaps with different CVD and minimal n. The same holds for the
Poincaré inequality, under the assumption of volume doubling. This is well known
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in the standard settings (see, e.g., [49], Section 5), and the proof carries over to the
anchored case without any change.

With these definitions we can state the following easy but, we believe, concep-
tually important theorem. Note that the theorem is for a fixed graph (though the
most interesting applications are for random graphs).

THEOREM 4. Let (G, ν,ρ) be a rooted weighted graph. If (G, ν,ρ) satis-
fies (VD)G and (P )G, then for every k > 0, the space of harmonic functions with
|h(x)| ≤ Cd(ρ, x)k for all x far enough from ρ, is finite dimensional.

Further, the bound on the dimension depends only on k, CVD and CP, and not
on n0(λ).

This theorem represents a discrete anchored version of Yau’s conjecture except
that the Poincaré inequality must be assumed since it is not automatically satis-
fied (in Yau’s settings every manifold with nonnegative Ricci curvature satisfies
a Poincaré inequality [21] while in Kleiner’s, every group satisfies an appropri-
ate version of the Poincaré inequality; see, e.g., [71], Lemma 4.1.1). The proof of
this theorem follows the existing strategy developed in [26, 31, 55, 73, 75]. Let
us stress again that the interesting part is that it requires only macroscopic volume
growth and Poincaré inequality: the definitions of (VD)G and (P )G only examine
balls of radius n inside Bρ(λn) for some finite λ.

When we apply Theorem 4, the graph G will be random. Since the dimension
depends only on CVD and CP, then in particular, if these constants are not ran-
dom, neither is the bound. Thus, for example, in supercritical percolation there is
a constant A (depending only on the dimension d and the probability p) such that
CVD ≤ A and CP ≤ A almost surely (the minimal n is the only quantity which re-
ally changes between configurations). Hence for each k there is a number Dk such
that the dimension of harmonic functions of growth at most of order d(ρ, x)k is
smaller than Dk , almost surely. We discuss a few other examples of random graphs
satisfying CVD and CP in the end of Section 3, but in general one should keep in
mind that the Poincaré inequality restricts the behavior of random walk on the
graph significantly, so Theorem 4 applies in much less generality than Theorem 3.

Linearly growing functions. In the special case of environments which are
modifications of Zd , we can compare the dimension of harmonic functions with
a prescribed growth to the dimension of harmonic functions on Z

d . The simplest
perturbation of Zd is the supercritical cluster of percolation. We prove the follow-
ing theorem.

THEOREM 5. Let d ≥ 2. For p > pc(d), let ω be the unique infinite compo-
nent of percolation on Z

d . Then, the dimension of the vector space of harmonic
functions with growth at most linear on ω is equal to d + 1 almost surely.
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This theorem must be understood as a first step toward a bigger goal, which
would be to compute the dimension of all spaces of harmonic functions with pre-
scribed (polynomial) growth.

The properties of the supercritical percolation cluster used in this proof are
quite general: the d-dimensional volume growth and the Poincaré inequality (P )ω
proved (in stronger form) by Barlow [5] as well as the Gaussian bounds which
Barlow concludes from these, and an invariance principle [16, 66, 74]. All these
properties witness the close relation between macroscopic properties of the super-
critical percolation cluster and R

d . In some sense, it confirms the heuristic that this
cluster is an approximation of Zd .

Heat kernel estimates. Classically [35, 67–69], the kernels of symmetric dif-
fusions are known to have some Hölder regularity. In random environments, few
results are known on Hölder behavior: Conlon and Naddaf [27] and Delmotte and
Deuschel [32] treated the case of random conductance with a uniform elliptic-
ity condition; see also [43]. The entropy techniques developed for the proof of
Theorem 1 allow one to give a very short proof that the space derivative exists.
Moreover, it applies in a very general context. We present the case of percolation.

THEOREM 6. Let d ≥ 2 and p > pc(d). Let Pp be the measure of the infinite
cluster of percolation (denoted ω) on Z

d . There exist C3,C4 > 0 such that for
every n > 0 and x, x′, y at distance less than n of 0, if x and x′ are adjacent,

Ep

[(
pn(x, y) − pn−1

(
x′, y

))21{y∈ω}1{x and x′ are adjacent in ω}
]

≤ C3

nd+1 exp
[−C4d(x, y)2/n

]
,

where pn(y, x) := Py(Xn = x) and Xn is the random walk on ω.

Estimates for the heat kernel itself (i.e., not for the derivative) are well under-
stood, and are known as Gaussian estimates (GE). Heuristically, Gaussian esti-
mates are bounds of the form

C1

nd/2 exp
[−C2d(x, y)2/n

] ≤ Px[Xn = y] ≤ C3

nd/2 exp
[−C4d(x, y)2/n

]
.

A few caveats are in place, though. The lower bound cannot hold if there is any
kind of periodicity (as in Z

d or in subgraphs of it, such as supercritical percolation).
One should talk about continuous time random walk, lazy random walk, or replace
Px[Xn = y] with Px[Xn = y] + Px[Xn+1 = y]. Further, the lower bound does not
hold for x and y extremely far away—if d(x, y) > n, then the probability is just
zero (in the simple random walk case).

In the case of the infinite cluster of supercritical percolation, these bounds were
obtained for continuous time random walk in [6]. They also hold for simple ran-
dom walk, most of the details are filled in [9]. Again, one should be careful, as
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(with small probability) the environment in the neighborhood of ρ might be atyp-
ical, breaking these estimates for small n. Hence the formulation is as follows.
There exist strictly positive constants C1, C2, C3 and C4 such that for almost ev-
ery environment ω there exist random variables nx(ω), x ∈ Z

d so that for every
x, y ∈ ω and n > max{nx(ω),d(x, y)}

C1

nd/2 exp
[−C2d(x, y)2/n

] ≤ Px[Xn = y] + Px[Xn+1 = y]
(1)

≤ C3

nd/2 exp
[−C4d(x, y)2/n

]
.

Moreover, the random variables nx(ω) satisfy a stretched exponential estimate,
that is,

Pp

(
x ∈ ω,nx(ω) ≥ s

) ≤ ce−csε

(2)

for some ε > 0.
For the proof of Theorem 6 we only need the upper bound in (1). For the proof of

Theorem 5 we will also need the lower bound, but only in the regime |x−y| ≈ √
n,

that is, in the regime where the probabilities are of order n−d/2.

Organization of the paper. In the next section, we study the notion of mean
entropy of random walks on a stationary random graph to bound the total variation
between random walks starting at neighbors. We deduce Theorem 3. Section 3 con-
tains the proof that (VD)G and (P )G imply that the space of harmonic functions
of prescribed polynomial growth is finite dimensional, that is, Theorem 4. Sec-
tion 4 deals with the example of the supercritical percolation cluster and analyzes
the space of linearly growing harmonic functions. It is completely independent of
Section 3. Section 5 contains the proof of Theorem 6. Section 6 regroups some
open questions.

Notation. To make the distinction between the reversible and nonreversible
case clear, we call the general case “Markov chain” and denote it by (P,V ), where
V is the space and P :V × V → [0,1] are the transition probabilities, P(x, y)

being the probability to move from x to y. We often write P n which we interpret
as a matrix power—of course, P n(x, y) is also the probability that a random walk
starting from x will be at y after n steps.

Any reversible chain can be described as a random walk on a weighted graph.
If G is a graph and ν is a function on the edges of G taking values in [0,∞),
then the Markov chain is given by P(x, y) = ν(x, y)/

∑
z ν(x, z). Here and below,

ν(x, y) for two vertices x and y is the weight of the edge (x, y). In particular,
ν(x, y) = ν(y, x), and if (x, y) is not an edge of the graph, then we set ν(x, y) = 0.
We will always denote reversible Markov chains by (G, ν). We denote by E(G)

the set of edges of the graph G, and for a set of vertices S we denote by E(S) the
set of edges between the vertices of S. The notation x ∼ y for two vertices will
mean that (x, y) ∈ E(G), that is, that they are neighbors in the graph.
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We also consider ν as a measure. For a vertex x, we will denote ν(x) =∑
y∼x ν(x, y) while for a set of vertices S, we will denote ν(S) = ∑

x∈S ν(x).
Note that edges between two vertices of S are counted twice in this sum.

For a fixed graph or Markov chain we denote by E the expectation with respect
to the random walk on that fixed graph. When the starting point of the random
walk is specified, we will use subscripts and write for instance Eρ . The symbol
E is used to denote the expectation with respect to both the environment and the
random walk (the “annealed” average). Similarly, bold letters will usually denote
“quenched” objects, that is, objects related to an instance G of the environment.
The quantity d(x, y) will denote the graphical distance between two vertices x

and y of G, that is, the length of the shortest path in G between x and y, or, in the
nonreversible setting, the minimal n such that P n(x, y) > 0. The ball {y : d(x, y) ≤
r} will be denoted by Bx(r).

Constants which depend on the environments G are denoted ci , while constants
of the form Ci will refer to constants uniform in the environment. We will occa-
sionally write c or C for a constant—different appearances of c or C might be
different constants.

The cardinality of a set E will be denoted by |E|.
2. The entropy argument. The connection between entropy and random

walks was first exhibited by Avez [3] and then made famous in a celebrated pa-
per of Kaimanovich and Vershik [51]; see also Derriennic [33]. For any discrete
variable X the entropy is defined by

H(X) = ∑
x

φ
(
P(X = x)

)
where φ(0) = 0 and φ(t) = −t log t for any t > 0.

Conditional entropy can be defined by

H(X|Y) = E
[
H(X|Y = y)

] = ∑
y

P (Y = y)
∑
x

φ
(
P(X = x|Y = y)

)
.

It is then quite simple to show that H(X|Y) = H(X,Y ) − H(Y) and that
H(X|Y,Z) ≤ H(X|Y) for any three random variables X, Y and Z.

Consider a stationary environment (P,V,ρ) with law P. Conditionally on
(P,V,ρ), define the entropy of the random walk at times n,m started at ρ by

Hn,m(P,V,ρ) = H(Xn,Xm) = ∑
x,y∈V

φ
(
Pρ(Xn = x,Xm = y)

)
.

When n = m, we simply denote Hn,n(P,V,ρ) by Hn(P,V,ρ). In the random
context, we define the mean entropy (see [11]) by

Hn,m = E
[
Hn,m(P,V,ρ)

]
and Hn = E

[
Hn(P,V,ρ)

]
.

There are many ways of measuring the distance between two probability mea-
sures μ and ν on some set V , the most standard one being the total variation

‖μ − ν‖TV := 1

2

∑
x∈V

∣∣μ(x) − ν(x)
∣∣.
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In this article, we will use a less standard one. Define 
(μ,ν) by the formula


(μ,ν) :=
[∑
x∈V

(μ(x) − ν(x))2

μ(x) + ν(x)

]1/2

.(3)

Estimating the distance using 
 is stronger than via the total variation: by Cauchy–
Schwarz,

2‖μ − ν‖TV = ∑
x∈V

∣∣μ(x) − ν(x)
∣∣ = ∑

x∈V

√
μ(x) + ν(x)

|μ(x) − ν(x)|√
μ(x) + ν(x)

≤
√√√√(∑

x∈V

μ(x) + ν(x)

)(∑
x∈V

(μ(x) − ν(x))2

μ(x) + ν(x)

)
(4)

= √
2
(μ,ν).

This quantity has an advantage compared to the total variation: for any f :G →R,
we have (using Cauchy–Schwarz similarly)

∣∣μ(f ) − ν(f )
∣∣ ≤ 
(μ,ν)

(
μ

(
f 2) + ν

(
f 2))1/2

.(5)

With the total variation, one would obtain a similar but weaker inequality with the
L∞-norm in place of the L2-norm (the former can in principle be much larger
than the later). The reasons for using 
 (rather than, say, the total variation dis-
tance) will be discussed in more detail on page 2346, but most readers would be
better served by reading the paper linearly, that is, first see how 
 is used to prove
Theorem 3 and only then take a look at this discussion.

Let us introduce a convenient notation, used only in this section. Let L (Z)

denote the law of a random variable Z, that is, the measure on the space of values
of Z induced by it. If E is some event, then we will denote by L (Z|E ) the law of
Z conditioned on E happening.

With this notation, we are now in a position to state an important lemma, which
is a quantitative version of the following well-known fact: for any two random
variables X and Y , H(X,Y ) ≤ H(X) + H(Y) with equality holding if and only if
X and Y are independent.

LEMMA 7. For any two random variables X and Y ,∑
y

P (Y = y)
2(
L (X),L (X|Y = y)

) ≤ 2
(
H(X) + H(Y) − H(X,Y )

)
.(6)

PROOF. We first note that for t > 0,

2t log t ≥ (t − 1)2

t + 1
+ 2t − 2(7)
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[this can be seen by Taylor expanding t log t to the second order at 1, which gives

that t log t = t − 1 + (t−1)2

2t∗ for some t∗ in the interval between t and 1, so t∗ ≤
t + 1]. Denote

p(x) = P(X = x), p(y) = P(Y = y), p(x, y) = P(X = x,Y = y).

Then, the left-hand side of (6) is [recall the definition (3) of 
]

LHS = ∑
y

p(y)
∑
x

(p(x, y)/p(y) − p(x))2

p(x, y)/p(y) + p(x)

= ∑
y,x

p(x)p(y)

(
(p(x, y)/(p(x)p(y)) − 1)2

p(x, y)/(p(x)p(y)) + 1
+ 2

p(x, y)

p(x)p(y)
− 2

︸ ︷︷ ︸
0

)
,

where we were allowed to add the expression denoted by ︸︷︷︸
0

since summing over

x and y makes these terms cancel out (they are both equal to 2). Using (7) this
gives

LHS
(7)≤ 2

∑
x,y

p(x)p(y)

(
p(x, y)

p(x)p(y)
log

p(x, y)

p(x)p(y)

)

= 2
∑
x,y

p(x, y)
(
logp(x, y) − logp(x) − logp(y)

)

= 2
(−H(X,Y ) + H(X) + H(Y)

)
,

where in the last equality we used that
∑

y p(x, y) = p(x) and
∑

x p(x, y) = p(y).
�

We will always be interested in the particular case of random walks. In order to
lighten the notation, we set


n(x, y) : = 

(
L (Xn|X0 = x),L (Xn−1|X0 = y)

)
(8)

= 

(
L (Xn|X0 = x),L (Xn|X1 = y)

)
,

the last equality following by the Markov property [recall that L (X|E ) denotes
the law of X conditioned on E ]. Note that the second measure is the law of the
random walk after n − 1 steps, so the definition is not symmetric in x and y.

Lemma 7 is used to proved the following theorem.

THEOREM 8. Let (P,V,ρ) be a stationary environment. For every n > 0, we
have

E
(

n(ρ,X1)

2) ≤ 2(Hn − Hn−1)(9)

(as usual E is over both the environment and the randomness of X1).
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Before proving Theorem 8, we state a result from [11] concerning H1,n. We
isolate it from the rest of the proof because it is the only place where stationarity
is used (stationarity replaces transitivity as used in the context of groups).

LEMMA 9. Let (P,V,ρ) be a stationary environment. For every n > 0, we
have H1,n = Hn−1 + H1.

PROOF. Fix n > 0. A simple computation leads to

H1,n(P,V,ρ)

= ∑
x∼ρ,y∈G

φ
(
Pρ(X1 = x,Xn = y)

)

= ∑
x∼ρ

Pρ(X1 = x)
∑
y∈G

φ
(
Pρ(Xn = y|X1 = x)

) + ∑
x∼ρ

φ
(
Pρ(X1 = x)

)
,

which we simplify using the Markov property giving

Pρ(Xn = y|X1 = x) = Px(Xn−1 = y).

Taking the expectation with respect to the environment we obtain

H1,n = E

[∑
x∼ρ

Pρ(X1 = x)
∑
y∈G

φ
(
Px(Xn−1 = y)

)] +E

[∑
x∼ρ

φ
(
Pρ(X1 = x)

)]

= E
[
Hn−1(P,V,X1)

] +E
[
H1(P,V,ρ)

] = Hn−1 + H1,

where in the last equality we used the fact that (P,V,X1) has the same law as
(P,V,ρ) (this is not a property of entropy, it would hold for any function of the
environment). �

Before continuing, let us state one corollary of Lemma 9 which is not necessary
for the proof of Theorem 8 but does shed some light on the quantities involved.

COROLLARY 10. Hn − Hn−1 is decreasing.

In other words, the sequence Hn is concave.

PROOF. By Lemma 9,

Hn − Hn−1 = Hn − H1,n + H1 = E[Hn − H1,n] + H1.

The quantity Hn − H1,n can be written as the conditioned entropy −H(X1|Xn)

where Xn is the random walk at time n (this statement is quenched). This, however,
increases since

H(X1|Xn) = H(X1|Xn,Xn+1) ≤ H(X1|Xn+1),(10)
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where the equality is due to the fact that conditioned on Xn, knowing Xn+1 gives
you no information about what happened before time n; that is, by the Markov
property, conditional on Xn we have that X1 is independent of Xn+1. The inequal-
ity in (10) is a generic fact about entropy—conditioning on more information re-
duces the relative entropy [namely, H(X|Y,Z) ≤ H(X|Y) for any three random
variables X, Y and Z]. Hence Hn − H1,n decreases, and so does its expectation.

�

PROOF OF THEOREM 8. This is a direct corollary of Lemmas 9 and 7. Indeed,
by Lemma 7,

E
(

n(ρ,X1)

2) = ∑
x

P(X1 = x)

(
L (Xn),L (Xn|X1 = x)

)2

≤ 2(H1 + Hn − H1,n).

We now take expectation with respect to the environment and get from Lemma 9
that

E
(

n(ρ,X1)

2) ≤ 2E(H1 + Hn − H1,n) = 2(Hn − Hn−1). �

We are now in a position to prove Theorem 3.

PROOF OF THEOREM 3. We only need to prove that for almost every environ-
ment, h(ρ) = h(X1) a.s., for any sublinear harmonic function. Indeed, stationarity
would then imply that for almost every P , h(Xn) = h(Xn+1) a.s. for any sublinear
harmonic function. Since the Markov chain is irreducible, (Xn) can visit any ver-
tex, and we deduce that almost surely any sublinear harmonic function is constant.

For any harmonic function h with respect to the environment, we have for all x

and n,

h(x) = Ex

(
h(Xn)

)
.

We use this twice, once for x = ρ and once for an arbitrary x and n − 1. We get∣∣h(ρ) − h(x)
∣∣ = ∣∣Eρ

[
h(Xn)

] − Ex

[
h(Xn−1)

]∣∣
by (5) ≤ 
n(ρ, x)

√
Eρ

[
h2(Xn)

] + Ex

[
h2(Xn−1)

]
.

We use this with x = X1, integrate over X1 and get

Eρ

∣∣h(ρ) − h(X1)
∣∣ ≤ Eρ

[

n(ρ,X1)

√
Eρ

[
h2(Xn)

] + EX1

[
h2(Xn−1)

]]
(11)

by Cauchy–Schwarz ≤
√

2Eρ

[

n(ρ,X1)2

]
Eρ

[
h2(Xn)

]
,

where in the last line we also used that Eρ[EX1[h2(Xn−1)]] = Eρ[h2(Xn)].
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By assumption, the Markov chain has annealed polynomial growth. Therefore,
the entropy satisfies

Hn ≤ E
[
log

∣∣Bρ(n)
∣∣] ≤ logE

[∣∣Bρ(n)
∣∣] ≤ log

[
Cnd]

and is at most logarithmic (we used the fact that log is concave). Hence Hn −
Hn−1 ≤ c/n for infinitely many n. Using Theorem 8 and (DB) we get

E
[
n
n(ρ,X1)

2] +E
[
n−1d(Xn,ρ)2] ≤ C for infinitely many n.

Hence, by Fatou’s lemma, for almost every environment there exists c1 < ∞ such
that

Eρ

[
n
n(ρ,X1)

2] + Eρ

[
n−1d(Xn,ρ)2] ≤ c1 for infinitely many n,(12)

where this time the sequence of n for which it holds depends on the environment,
that is, is random.

Now, assume that h has sublinear growth. For any ε > 0, there exists a constant
K such that for all x ∈ V ,

h2(x) ≤ εd(x, ρ)2 + K.(13)

Putting (13) and (12) in (11), we deduce that for almost every environment, and
for every h harmonic and sublinear on it,

Eρ

(∣∣h(ρ) − h(X1)
∣∣) ≤ c2ε

1/2.

Letting ε go to 0, we deduce that h(ρ) = h(X1) almost surely for any sublinear
harmonic function. �

Inequality (11) relates the entropy to the value of possible harmonic functions
at Xn. Its use is not restricted to the case of diffusive environments with polyno-
mial growth. For instance, one can use this inequality to prove a characterization
of almost sure Liouville property for stationary random graphs (this was proved
in [11] using a more direct generalization of [51]). For completeness, we state the
result in [11] here.

COROLLARY 11 ([11]). Let (P,V,ρ) be a stationary environment. If Hn/n

converges to 0, then P has the Liouville property (i.e., has no nonconstant bounded
harmonic functions) almost surely.

We would like to emphasize why we use 
(μ,ν). Csiszár’s inequality [28, 29]
relates the total variation between two measures to their relative entropy. In our
context, an inequality involving the total variation can also be found, hence giv-
ing a bound on the best coupling (in time) between two random walks starting at
neighbors. For completeness, we state the inequality here [it is a consequence of
(4) applied to (9)]: for a stationary environment (P,V,ρ) and n > 0, we have

E
(∥∥L (Xn) − L (Xn|X1)

∥∥2
TV

) ≤ 4(Hn − Hn−1).
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Interestingly, this inequality is not strong enough for our applications, since con-
trolling the probability that two random walks merge before time n says nothing
about their behavior when they do not couple.

Other growth rates. The same argument as in Theorem 3 can also be used with
growth rates bigger than polynomial. A general statement would be the following.

THEOREM 3′ . Let P be the measure of a stationary environment (P,V,ρ).
For every (nonrandom) sequence (nk)k with nk → ∞, we have that P-a.s. there
does not exist a nonconstant harmonic function h :V →R such that

Eρ

[
h(Xnk

)2] · (Hnk
− Hnk−1) → 0.

In particular this holds for fixed transitive graphs, which is a version of a result
of [39], Section 5.

Examples. We finish this section by presenting a collection of examples.

EXAMPLE 2.1 (Random conductance). Consider the graph Z
d , and let ν be

given by a shift-invariant law (e.g., i.i.d. positive random variables). We assume
that the set of sites connected by edges with positive conductances is infinite. The
random walk induces a Markov process on the environment (cf. Kipnis and Varad-
han [54]), called the environment as seen from the particle. This process can be
made stationary by weighting each configuration proportionally to ν(ρ).

This model has been studied extensively. Under the assumption of uniform el-
lipticity: ∃α > 0 :P[α < ν(x, y) < 1/α] = 1, many things are known on the en-
vironment. First, the Poincaré inequality is a direct consequence of the Z

d case.
Second, Delmotte proved in [30] that the Poincaré inequality implies that there
exist c1, c2 > 0 such that

Pρ[Xn = x] <
c1

nd/2 e−c2d(x,ρ)2/t

(a corresponding lower bound also holds but is not needed for our purposes). Third,
an annealed invariance principle holds in the sense that the law of the paths under
the measure integrated over the environment scales to a nondegenerate Brownian
motion [54]. In particular, Theorem 3 applies in this case.

Once the assumption of uniform ellipticity is relaxed, matters get more com-
plicated. An example of random conductance models without uniform ellipticity
is the infinite cluster of percolation which we will discuss next. For an unusual
example of a transitive conductance model, see the work of Disertori, Spencer
and Zirnbauer [37] who reduced a supersymmetric hyperbolic sigma model to the
study of random walk on a certain (highly correlated) random environment.

EXAMPLE 2.2 (Infinite cluster of percolation). Consider the percolation mea-
sure with a parameter p such that there exists an infinite cluster with probability 1.



2348 BENJAMINI, DUMINIL-COPIN, KOZMA AND YADIN

See [44] for details about percolation. Set P0 to be the law of the infinite cluster
conditioned to contain 0. As in the previous example, the random walk on ω in-
duces a Markov chain on the space � of infinite subgraphs of Zd containing the
origin. When weighting each configuration proportionally to the number of neigh-
bors of the origin we obtain a stationary measure with respect to the shift along the
random walk.

Since the infinite cluster of percolation can be seen as a stationary random graph
with polynomial volume growth and since the random walk is diffusive [6, 53],
Theorem 3 applies, and we get Theorem 1.

EXAMPLE 2.3 (Centered random environments). This is our first nonre-
versible example. A centered random environment is, roughly speaking, a Markov
chain on Z

d such that the probabilities can be “decomposed” into a sum over
cycles. Such environments, even when nonreversible, are still heuristically quite
close to reversible, and in particular they have a stationary version which is related
to the usual version by an explicit reweighting, like in the reversible case [34], Sec-
tion 3. See Deuschel and Kösters [34] for a proof of a CLT, which implies (DB)—
of course, a CLT is much stronger than (DB). Hence, our results can be applied in
this context as well.

EXAMPLE 2.4 (Balanced random environments). This is another nonre-
versible example, which is “farther” from reversible than the previous one. A bal-
anced random environment is a Markov chain P with state space Z

d and near-
est neighbor movements, such that for every x ∈ Z

d and every unit vector ei ,
P(x, x + ei) = P(x, x − ei). It follows that Xn is a martingale, and hence (DB)
is an immediate corollary of the Azuma–Hoeffding inequality. The issue is there-
fore only stationarity. In the case that the environment μ is uniformly elliptic and
stationary and ergodic to the action of Zd (this is different from our notion of sta-
tionarity!), Lawler showed that there exists a stationary measure (in our sense) λ

which is mutually absolutely continuous with respect to μ; see [59], Theorem 3.
Hence our results apply to λ, and hence also to μ. Guo and Zeitouni weakened
the requirement of uniform ellipticity to just ellipticity, at the price of restricting
the environment to the i.i.d. case [45]. Berger and Deuschel [18] have removed the
requirement of ellipticity altogether in the i.i.d. case.

EXAMPLE 2.5 (Random environments with cut points). Under certain condi-
tions, one can prove that a random walk in nonreversible random environments
in Z

d , d large enough, has cut points, and deduce from that a CLT and the ex-
istence of a stationary environment, hence our techniques apply. See [20] for the
details.

Let us give one example which is not embedded in Z
d , and in fact has un-

bounded degrees.
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FIG. 1. A portion of the graphical Sierpinski gasket.

EXAMPLE 2.6 (Poisson point process). Examine a Poisson point process
in R

d . Add the point 0 (this is often called “the Palm process”), and let it be
the root. Construct a graph by some process invariant under translations of R

d .
For example, connect any two points by an edge with weight which depends on
their Euclidean distance [22] or construct the Delauney triangulation [40]. Give
each configuration a “probability proportional to the total weight of 0.” The result-
ing process is stationary and diffusive; see, for example, [22], Section 2.1 or [40],
Lemma A.1, for stationarity—subdiffusivity can be deduced from [10], Section 2,
or from the two previous papers. Hence our theorem applies.

The previous examples dealt with random walks which are diffusive. An inter-
esting situation, which cannot hold in the case of groups, is environments with
subdiffusive behavior. We give four examples of these.

EXAMPLE 2.7 (Graphical fractals). A graphical fractal is a graph which is
constructed like one of the classical fractals (the Sierpinski gasket, e.g.), but inside
out—bigger pieces of the graph are constructed from smaller pieces by connecting
them in a repeated fashion; see [4] for precise definitions and main properties.
See Figure 1 for an example, the graphical Sierpinski gasket. A graphical fractal
always has an invariant measure and is always diffusive or subdiffusive, and in
many examples is in fact subdiffusive; see, for example, [5]. Let us remark that
a significant part in the remarkable work of Barlow and Bass on the Sierpinski
carpet [7] has to do with the construction of a coupling. Therefore, a tool (like the
one described in this section) that gives easy proofs that couplings exist should be
useful.

EXAMPLE 2.8 (Critical Galton–Watson trees). The critical Galton–Watson
tree with any offspring distribution conditioned to survive is stationary (see [50,
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62, 64]) and subdiffusive. If the offspring distribution has finite variance, the dif-
fusivity exponent 1

3 was proved in [53]. Thus Theorem 3′ applies in this case, and
we get that it has no harmonic function of growth o(d(ρ, x)3/2).

This example is not so impressive since (as it is well known) this graph has
infinitely many cut-edges between the root and infinity, and therefore the only
harmonic functions (without any growth restrictions) are the constants. However,
the cut-edges argument fails after even slight variations, while Theorem 3 is robust.
Examples include taking a product of a Galton–Watson tree with a finite graph or
with itself. The same remark applies to the next example.

EXAMPLE 2.9 (Infinite incipient cluster). Consider critical percolation on Z
d

conditioned on the fact that the origin is connected to infinity [52]. Conditioning
on this event, which has probability 0 (proved in d = 2 and high d and conjectured
in the others), requires some care. Nevertheless, the object can be defined properly
using a limit process. For example, one may take pc + ε percolation, condition
on �0 being in the cluster and then take a limit of the resulting measures as ε → 0.
Since for each ε the measure is stationary (as usual after reweighting the configu-
rations proportionally to the degree of �0), so will be their limit if it exists (or any
subsequence limit in general). The limit is known to exist in two dimensions [48,
52] and in high dimensions [47, 76]. It was proved in [53, 57] that the random walk
is subdiffusive on this cluster (in high dimension the diffusivity exponent is 1

3 , as
on the tree). Since it is embedded in Z

d , it grows no faster than polynomially and
the results may be applied in this context.

EXAMPLE 2.10 (Graph limits and UIPQ). Let Gn be fixed or random finite
graphs. Take ρn to be a random vertex in Gn, selected according to the stationary
measure on Gn. Then the limit of (Gn,ρn), if it exists, is called the graph limit [15].
This limit is always stationary, [58], Section 1.3.

A particular case is provided by a uniformly chosen planar quadrangulation Gn

with n faces. The graph limit is known as the uniform infinite planar quadrangula-
tion. It is well known to be of polynomial growth [24]. In [12], it was proved to be
subdiffusive with diffusivity exponent bounded from above by 1

3 . Thus there are
no linear growth harmonic functions in this case either.

A remark on connectivity. We assumed throughout that the environment
(P,V,ρ) is irreducible, that is, that for any v,w ∈ V there is some n such
that P n(v,w) > 0. This assumption was only used once: we showed that a not-
necessarily-irreducible stationary environment satisfies that every harmonic func-
tion h has h(ρ) = h(X1) almost surely, and concluded, using irreducibility, that
h is constant. The assumption of irreducibility is of course necessary, as a dis-
connected graph always has bounded nonconstant harmonic functions, namely
functions which are constant on each component, but with different values.
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Nevertheless, in the nonreversible case, the assumption of irreducibility can be
weakened slightly: we only need to assume that for every v and w there exist n,m

and x such that P n(v, x) > 0 and P m(w,x) > 0. The proof is the same—since
h(ρ) = h(X1) almost surely then this gives that h(v) = h(x) = h(w) almost surely
and h is constant. The following stationary graph provides a simple example. Take
a 3-regular tree T . Choose a height function  (i.e., a function such that each vertex
has one neighbor with  bigger by one, and two neighbors with  smaller by one),
and orient all edges “up,” that is, in the direction of the larger . Of course, the
random walk on the resulting graph is so degenerate it can hardly be called random,
as each vertex has only one outgoing edge. But this is irrelevant at this point.
This environment is not irreducible in the usual sense, but does satisfy the weaker
assumption and hence our results apply (again, in this case it is simple to analyze
the harmonic functions directly). Taking the graph product with Z will yield a
slightly less trivial example.

3. Polynomial growth harmonic functions. In this section we prove The-
orem 4. The proof boils down to the observation that macroscopic Poincaré in-
equality and volume growth estimates are sufficient. The strategy follows the lines
of Shalom and Tao [73, 75], where a quantitative version of Gromov’s theorem on
groups of polynomial growth (any group of polynomial growth is virtually nilpo-
tent) is proved. The proof is inspired by an elegant proof of this theorem due to
Kleiner [55] utilizing spaces of harmonic functions with polynomial growth in a
crucial way. We start with a very general inequality, called the reverse Poincaré
inequality, which holds in any graph. For the sake of completeness, we prove it in
our context.

PROPOSITION 12 (Reverse Poincaré inequality). For any weighted graph
(G, ν) and any function h :G →R harmonic on a ball Bx(2n),

∑
(y,z)∈E(Bx(n))

(
h(z) − h(y)

)2
ν(y, z) ≤ 4

n2

∑
y∈Bx(2n)

h(y)2ν(y)(14)

for every x ∈ G and n > 0.

PROOF. For this proof, we denote the quantity f (x) by fx . Let h :G → R

be harmonic on Bx(2n), and let φ be a function such that φy = 1 for y ∈ Bx(n),
φy = 0 for y /∈ Bx(2n − 1) and |φy − φz| ≤ 1/n for all y ∼ z. For example,

φy := min
(

1,2 − d(y, x)

n

)
for any y ∈ Bx(2n).

We have
∑

E(Bx(n))

(hy − hz)
2ν(y, z) = ∑

E(Bx(n))

1

2

(
φ2

y + φ2
z

)
(hy − hz)

2ν(y, z).(15)
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To make the calculation a little shorter we represent the sum on the right-hand side
of (15) as a sum of 1

2φ2
y(hy − hz)

2 over directed edges. Denote by E∗ the set of
directed edges in Bx(2n), that is, both (y, z) and (z, y) appear in E∗ and are dif-
ferent. For an edge (y, z) ∈ E∗, a straightforward (if a little lengthy) computation
shows that φ2

y(hz − hy)
2 is equal to the quantity

(
hzφ

2
z − hyφ

2
y

)
(hz − hy) − hz(φz − φy)

2(hz − hy) − 2hzφy(φz − φy)(hz − hy).

We start by dealing with the first term. Rearranging the sum [using the fact that
hφ2 vanishes outside Bx(2n − 1) to add the missing terms on the boundary] gives

∑
E∗

(
hzφ

2
z − hyφ

2
y

)
(hz − hy)ν(y, z) = 2

∑
y∈Bx(2n−1)

hyφ
2
y

(∑
z∼y

(hy − hz)ν(z, y)

)
.

Since h is harmonic, this sum equals 0.
For the second term, since |hz(hz − hy)| ≤ 3

2h2
z + 1

2h2
y and |φz − φy | ≤ 1/n, we

have that each summand is bounded by (3h2
z + h2

y)/(2n2). When summing over
E∗ we obtain∣∣∣∣∑

E∗
hz(φz − φy)

2(hz − hy)ν(y, z)

∣∣∣∣ ≤ 2

n2

∑
y∈Bx(2n)

h2
yν(y).

For the third term, note that∣∣hzφy(φz − φy)(hz − hy)
∣∣ ≤ 1

4(hy − hz)
2φ2

y + h2
z(φz − φy)

2.(16)

So, ∑
E∗

∣∣hzφy(φz − φy)(hz − hy)
∣∣ν(z, y)

by (16) ≤ 1

4

∑
E∗

(hy − hz)
2φ2

yν(y, z) + ∑
E∗

h2
z(φz − φy)

2ν(y, z)

≤ 1

4

∑
E∗

(hy − hz)
2φ2

yν(y, z) + 1

n2

∑
Bx(2n)

h2
yν(y)

using the bound |φz − φy | ≤ 1
n

for every y ∼ z. Putting the bound on the different
terms together leads to

∑
E∗

(hy − hz)
2φ2

yν(y, z) ≤ 1

2

∑
E∗

(hy − hz)
2φ2

yν(y, z) + 4

n2

∑
Bx(2n)

h2
yν(y),

which gives

∑
E(Bx(n))

(hz − hy)
2ν(y, z) ≤ 1

2

∑
E∗

(hz − hy)
2φ2

yν(y, z) ≤ 4

n2

∑
Bx(2n)

h2
yν(y).

�
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LEMMA 13. Let (G, ν,ρ) be a rooted graph satisfying the volume doubling
condition (VD)G. Then there exists c > 0 such that the following holds. For any
λ < ∞, there exist Mλ and n0 such that for all n > n0, there is a covering of
the ball Bρ(λn) by k < Mλ balls By1(n), . . . ,Byk

(n) satisfying that every point
x ∈ Bρ(n) belongs to at most c balls Byi

(2n).
Furthermore, c depends only on the volume doubling constant CVD, and Mλ

depends only on λ and CVD.

We call a covering with this property proper.

PROOF. Let λ and G be as above. Let n be large enough so that (VD)G holds
for 2λ and n/2. Given this, we can choose a maximal family of disjoint balls
By1(n/2), . . . ,Byk

(n/2) with yj ∈ Bρ(λn) for all j :

• Since the family {Byj
(n/2)} is maximal, every vertex in Bρ(λn) must be within

distance ≤ n from one of the yj , so Bρ(λn) is covered by By1(n), . . . ,Byk
(n).

• For any x ∈ Bρ(λn), if x ∈ Byj
(2n), then Byj

(n/2) ⊂ Bx(3n). Using volume
doubling we see that ν(Bx(3n)) ≤ C4

VDν(Byj
(n/2)), hence (since these balls

are disjoint) we have that the number of yj such that x ∈ Byj
(2n) is at most

C4
VD.

• Using the volume doubling similarly, we get that ν(Bρ((λ + 1)n)) ≤
Cν(Byj

(n/2)) for any j (the constant is C�log2(λ+1)�+2
VD ). Since these balls are

all disjoint and fully contained in Bρ((λ + 1)n), we get

k min
j

ν
(
Byj

(n/2)
) ≤ ν

(⋃
j

Byj
(n/2)

)
≤ ν

(
Bρ

(
(λ + 1)n

))

≤ C min
j

ν
(
Byj

(n/2)
)
,

and we get that the number of balls k is bounded by the same C. �

LEMMA 14. Let (G, ν,ρ) be a rooted graph satisfying (P )G. Then there exists
a c > 0 such that for every ε > 0 and n large enough, and for every proper covering
of Bρ(n) by balls of radius εn, if h :G → R is harmonic and has 0 mean on all the
balls of the covering, then∑

z∈Bρ(n)

h(z)2ν(z) ≤ cε2
∑

z∈Bρ(4n)

h(z)2ν(z).(17)

Further, c depends only on CP, the constant in the Poincaré inequality and on
the constants in the definition of a proper cover.

PROOF. Fix n large enough so that (P )G holds true for λ = 1/ε and εn, that
is, such that for every x ∈ Bρ(n) and f a map on Bρ(n),∑
y∈Bx(εn)

(
f (y) − f Bx(εn)

)2
ν(y) ≤ CP(εn)2

∑
(y,z)∈E(Bx(2εn))

∣∣f (y) − f (z)
∣∣2ν(y, z).
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Let h :G →R be the harmonic function and By1(εn), . . . ,Byk
(εn) be the proper

covering of Bρ(n) from the statement of the lemma. The hypothesis asserts that
hByi

(εn) = 0 for every i, so that Poincaré inequality implies

∑
Byi

(εn)

h2(z)ν(z) = ∑
Byi

(εn)

(
h(z) − hByi

(εn)

)2
ν(z)

≤ CPε2n2
∑

E(Byi
(2εn))

(
h(z) − h(t)

)2
ν(z, t).

Since the Byi
(2εn) have uniformly bounded overlap (each point belong to at most c

balls), and since Byi
(2εn) ⊂ Bρ(2n), we find

∑
Bρ(n)

h2(z)ν(z)

(18)
≤ cCPε2n2

∑
E(Bρ(2n))

(
h(z) − h(t)

)2
ν(z, t).

Using the reverse Poincaré inequality (Proposition 12) for the larger ball, we con-
clude

∑
Bρ(n)

h2(z)ν(z) ≤ 4cCPε2
∑

Bρ(4n)

h2(z)ν(z),(19)

which implies the claim with the constant in the statement of the lemma be-
ing 4cCP. �

PROOF OF THEOREM 4. We aim to prove that the space of harmonic functions
u such that |u(x)| ≤ Cd(ρ, x)k for every x ∈ G is finite dimensional. Consider a
rooted graph G satisfying (VD)G and (P )G. Let c be large enough so that the two
previous lemmas hold true. On the set of harmonic functions on Bρ(n), a scalar
product between two functions can be defined by

〈f,g〉n = ∑
Bρ(n)

f (x)g(x)ν(x).

Consider d harmonic functions u1, . . . , ud on G and set V = span(u1, . . . , ud).
Our goal is to compare 〈·, ·〉n and 〈·, ·〉4n for these functions.

Let ε > 0 be some parameter to be fixed later. For n large enough, there exists
a proper covering By1(εn), . . . ,ByM

(εn) of Bρ(n) by M = M1/ε balls. Therefore
there is a codimension d − M vector space V0 ⊂ V of harmonic functions with
mean 0 on each of the balls Byi

(εn). Let v1, . . . , vd be an orthogonal basis of V

for 〈·, ·〉4n such that v1, . . . , vd−M is a basis of V0. Examine the Gram matrix of
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{vi}, that is, the d × d matrix whose entries are 〈vi, vj 〉n. Then

det
[{〈vi, vj 〉n}

i,j

] ≤
d∏

i=1

〈vi, vi〉n

≤
d−M∏

1

cε2〈vi, vi〉4n

d∏
i=d−M+1

〈vi, vi〉4n

= (
cε2)d−M det

[{〈vi, vj 〉4n

}
i,j

]
,

where in the first line we have used Hadamard’s inequality, in the second
Lemma 14 and in the last, the fact that (vi) is orthogonal for 〈·, ·〉4n. Now, the
ratio of two Gram determinants is preserved by linear operations on vectors, so we
can return from the basis {vi} (which was specific to n) to our “original” basis {ui}.
We get

det
[{〈ui, uj 〉n}

i,j

] ≤ (
cε2)d−M det

[{〈ui, uj 〉4n

}
i,j

]
.

Iterating the reasoning, we find for every r > 0

det
[{〈ui, uj 〉n}

i,j

] ≤ [(
cε2)d−M]r det

[{〈ui, uj 〉4rn

}
i,j

]
.

The growth of our harmonic functions ensures that every entry of the matrix is
smaller than [C(4rn)k]2ν(Bρ(4rn)) ≤ C(4rn)2k+c. Hence we can write

det
[{〈ui, uj 〉n}

i,j

] ≤ d!n(2k+c)dCd((
c1ε

2)d−M4(2k+c2)d
)r

.

We now fix ε2 to be 4−4k−2c2/c1. If d > 2M , this implies
(
c1ε

2)d−M4(2k+c2)d = 4(2k+c2)(2M−d) < 1,

and the right-hand side would converges to 0. We deduce that det[{〈ui, uj 〉n}i,j ] =
0, and that the ui restricted to the ball of radius n form a dependent family. Since
this is true for every n large enough, we easily deduce that (ui) is a linearly depen-
dent family. The result holds for any family of d harmonic functions with growth
bounded by Cd(·, ρ)k . It implies that the dimension of the vector space of har-
monic functions with such growth is smaller or equal to 2M . �

EXAMPLE 3.1 (Infinite cluster of percolation). The infinite cluster of perco-
lation satisfies (VD)ω and (P )ω almost surely [6]. Therefore, spaces of harmonic
functions with prescribed polynomial growth are finite dimensional.

EXAMPLE 3.2 (Random conductance). Random conductances with uniform
elliptic conditions also satisfy (VD)ω and (P )ω deterministically. Therefore,
spaces of harmonic functions with prescribed polynomial growth are finite dimen-
sional.
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EXAMPLE 3.3 (Wedges). Let f be some slowly varying function from
[0,∞) → [0,∞). Define the wedge with respect to d and f to be

W := {
x ∈ Z

d : |xd | ≤ f
(|x1| + · · · + |xd−1|)}.

Then it is well-known and not difficult to see that W (with the graph structure in-
herited from Z

d ) satisfies volume doubling and Poincaré inequality. Under some
weak conditions on f and d (which we will not detail here, as that would take us
too off-topic) so would percolation on W . Hence both W and supercritical perco-
lation on it have a finite dimensional space of harmonic functions.

4. Linearly growing harmonic functions on the infinite cluster of perco-
lation. In this section, we fix d ≥ 2 and p > pc(d). As before, we denote the
infinite cluster of percolation by ω, and we draw it in R

d in such a way that ρ co-
incides with the origin. The graph ω can be thought of as an approximation of Zd .
In particular, macroscopic properties of the cluster are the same as those of Rd .
For instance, the random walk satisfies an invariance principle (CLT)ω [16, 66,
74]: define

B̃n(t) := 1√
n
(Xtn),

where for noninteger tn we define Xtn as the linear interpolation between X�tn�
and X�tn�; that is, Xtn = X�tn�(tn − �tn�) + X�tn�(�tn� − tn). There exists σ(d)

such that the law of (B̃n(t),0 < t < ∞) converges weakly to the law of a Brownian
motion with variance σ(d) as n → ∞. The main step in the proof in all three
papers [16, 66, 74] is the construction of a d-dimensional space of linearly growing
harmonic functions {fv}v∈Rd such that fv has slope v, that is, fv(x) = 〈v, x〉 +
o(|x|). Let us state this as a theorem.

THEOREM 15 ([16, 66, 74]). Let d ≥ 2, and p > pc(d). Let ω be the infinite
cluster of percolation on Z

d with parameter p. Then, there exists χ :ω →R
d such

that x �→ x + χ(x) is harmonic on ω, and

lim
n→∞

1

n
sup

x∈Bρ(n)

∣∣χ(x)
∣∣ = 0 a.s.(20)

This (random) function is called the corrector.

With the constant functions, we get a (d + 1)-dimensional space of harmonic
functions with (sub-)linear growth. Our aim in this section is to prove Theorem 5
from the introduction, namely that there are no other harmonic functions of linear
growth.

Proof outline. Let h be a harmonic function with linear growth. Define
hn :Rd → R such that hn(x) = h(nx)/n. In order to prove Theorem 5, we first
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show that (hn) forms a precompact family (one can say that h has a scaling limit).
The second step is to identify the possible limits. For this, we use the average
property at the discrete level and the invariance principle to prove that limits are
harmonic on R

d . If the space of limits is at most d-dimensional, one can then use
the absence of nonconstant sublinear harmonic functions to show that the space of
harmonic functions with linear growth is (d + 1)-dimensional.

Properties of the supercritical cluster. Recall that the infinite supercritical
cluster of percolation ω can be seen as a stationary random graph with polyno-
mial growth. It is well-known that the system is ergodic with respect to the shift
by X1, see, for example, [16], Theorem 3.1. Typical balls have the same growth
as in the ambient space Z

d in the following sense: there exists constants c and C

such that for any finite λ, any n > n0(ω) sufficiently large and any x ∈ Bρ(λn)

cnd ≤ ν
(
Bx(n)

) ≤ Cnd.(21)

Clearly, (21) implies volume doubling (V D)ω. Moreover, the graph satisfies (P )ω
almost surely. Both properties were proved by Barlow [6]. Actually, Barlow proved
quantitatively stronger versions of (21) and (P )ω: he obtained the volume growth
estimates and the Poincaré inequality for every ball of radius larger than C logn in
Bρ(n). These improved versions allow to prove Harnack inequalities and Gaussian
estimates (1) on the heat kernel. In [6], these results are stated for continuous time
random walk, but they hold also for simple random walk, as was explained in [9],
Section 2. We do not need the full force of Gaussian estimates here—in particular
we do not need far off-diagonal lower bounds which are particularly difficult—so
let us make a list of corollaries from these Gaussian estimates which we will use.

COROLLARY 16. For every λ < ∞, every n ∈ N, n > n0(ω) sufficiently large
and every x ∈ Bρ(λn),

Px(Xn2 = y) ≤ Cn−d exp
[−Cd(x, y)2/n2]

for any y.(22)

In both [6, 9] the results are formulated with |x − y| instead of d(x, y), but by
the results of Antal and Pisztora [2], this is the same. This immediately implies

Ex

[
d(Xn2, x)2] ≤ c3n

2(23)

for some constant c3 depending on the environment.
The lower bound has some periodicity requirements since Px(Xt = y) = 0

whenever t + ∑
(xi − yi) is odd.

COROLLARY 17. For every λ < ∞, every n ∈ N sufficiently large and every
x ∈ B(λn),

Px(Xn2 = y) ≥ Cn−d

for any y ∈ Bx(n) such that n2 + ∑
(xi − yi) is even.
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In the proof we will need in a few places space ergodicity. We start with a
lemma that encapsulates this for us.

LEMMA 18. Let f (x, y,ω) be some positive translation-invariant variable,
that is, f (x + s, y + s,ω + s) = f (x, y,ω), with M := Ef (0,X1,ω) < ∞. Then
for every λ > 0 and for almost every environment ω, there exists n0 such that for
all n > n0 and for any a ∈ Bρ(λn),∑

(x,y)∈E(Ba(n))

f (x, y,ω)ν(x, y) ≤ C · M · nd.

PROOF. We wish to apply the ergodic theorem for Zd actions (see, e.g., [72],
Theorem 2.6, page 40). We let the probability space be {0,1}Zd

with the product
measure and let the probability preserving maps Ti from the statement of the the-
orem to be translations of coordinates. Clearly the Ti commute. Further, each Ti

has only trivial invariant subsets—indeed, if A is invariant under some Ti , then we
can ε-approximate A by an event B depending only on finitely many coordinates
and then apply T n

i for n sufficiently large so that B and T n
i B are independent. We

get that |P(A) − P(A)2| ≤ 3ε. Since ε is arbitrary, P(A) must be equal to 0 or 1.
Fix v to be one of the d vectors of the standard basis of Zd and define a function

F : {0,1}Zd →R by

F(ξ) =
{

f
(
ρ, v,ω(ξ)

)
, ρ, v ∈ ω(ξ),

0, otherwise,

where ω(ξ) is the infinite cluster (possibly equal to the empty set). The ergodic
theorem implies

lim
n→∞

1

(2n)d

∑
−n−1≤i1,...,id≤n

F
(
T

i1
1 · · ·T id

d ξ
) = E(F ) almost surely

(the theorem in [72] is formulated for Zd+ actions, but the two-sided version above
follows from the one-sided version by applying the one-sided result 2d times, for
each choice of T ±1

1 , . . . , T ±1
d , and combining the results). Summing the above over

all v in the standard basis element v enables us to go from F to f and to obtain

lim
n→∞

1

|E(Qn)|
∑

(x,y)∈E(Qn))

f (x, y,ω) ≤ CM,

where Qn = [−n − 1, n]d and C is some universal constant.
Let us now generalize this to cubes centered around an arbitrary a ∈ Bρ(λn).

Fix some N,C′ sufficiently large such that

P

(
∃n > N,

∑
(x,y)∈E(Qn)

f (x, y,ω) > C′Mnd

)
< μ,
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where μ will be defined in the next paragraph (as a function of λ). Define ω to
be good if the event involved in the previous displayed equation does not happen,
and define b ∈ Z

d to be good if translating ω by −b gives a good configuration.
Using ergodicity once again, there exists almost surely n0 = n0(ω) < ∞ such that
for any n ≥ n0, ∣∣{good b ∈ Qn}

∣∣ > (1 − 2μ)|Qn|.
In particular, the number of sites in Bρ(λn) ⊂ Qλn which are not good is less than
2μ|Qλn| for n ≥ n0. If μ = μ(λ) is chosen sufficiently small and n ≥ n0, then there
cannot be any good-free ball of radius n in Bρ(λn). Hence, for any a ∈ Bρ(λn),
there is a cube b + Q2n ⊃ Ba(n) centered around a good point b. This implies that
for n ≥ max{n0,N},∑

(x,y)∈E(Ba(n))

f (x, y,ω) ≤ ∑
(x,y)∈E(b+Q2n)

f (x, y,ω) ≤ C′M · (2n)d.

(The assumption n ≥ N enables us to use the fact that b is good.) Adding the terms
ν(x, y) only changes the constant. �

Recall the hn from the proof sketch on page 2356. There we defined hn(x) =
h(nx)/n which is a priori only defined on the contracted infinite cluster. For
simplicity let us extend it to all R

d , for example, by extending h to Z
d by

taking the value at the closest point of the infinite cluster, and then to R
d by

defining h(x) = ∑
y∈Zd h(y)φy(x) where φy is some partition of unity such that

suppφy ⊂ y + [−2
3 , 2

3 ]d . Once h is extended to all Rd , so is hn.

PROPOSITION 19. For almost every environment ω, any harmonic function h

on ω with linear growth satisfies that for every compact K ⊂ R
d , the sequence

(hn)|K is uniformly bounded and equicontinuous.

PROOF. Fix a harmonic map h with (at most) linear growth on an environment
ω. There exists A > 0 such that |h(x)| ≤ A|x|. We only need to prove equiconti-
nuity on the ball, as this property passes to subsets. To do so, we prove that for
any η > 0, there exists δ > 0 such that (h(a) − h(b))2 ≤ ηn2 for any two points
a, b ∈ Bρ(n) at distance δn of each other, when n is large enough (it is easy to see
that our procedure for extending h to R

d allows to prove the needed estimates only
for a and b in ω). For this reason, we will always assume that n is large enough so
that the Poincaré inequality (P )ω and the d-dimensional volume growth (21) hold
true for λ = 2.

Let δ, ε > 0 to be fixed later (think of ε � δ) and a, b ∈ Bρ(n) with d(a, b) ≤
δn. Let B be some ball of radius 2δn containing both Ba(δn) and Bb(δn)—for ex-
ample, around the middle point of [ab]. Let h be the average 1

ν(B)

∑
x∈B h(x)ν(x).

Since |h(a)−h(b)| ≤ |h(a)−h|+ |h(b)−h|, it is enough to estimate these terms.
Let us focus on estimating |h(a) − h| (the other term is symmetric).
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Set E to be the event that |X(εn)2 − a| ≥ δn. Note that

Pa(E ) ≤ Ea(|X(εn)2 − a|2)
(δn)2

(23)≤ c3(εn)2

(δn)2 = c3(ε/δ)
2,

where the Markov inequality was used in the first inequality and the quenched
diffusive behavior (23) in the second.

Now, we have∣∣h(a) − h
∣∣2 ≤ (

Ea

[∣∣h(X(εn)2) − h
∣∣])2

≤ 2
(
Ea

[∣∣h(X(εn)2) − h
∣∣1E

])2 + 2
(
Ea

[∣∣h(X(εn)2) − h
∣∣1E c

])2
.

We first deal with the first term on the right:(
Ea

[∣∣h(X(εn)2) − h
∣∣1E

])2 ≤ Ea

[(∣∣h(X(εn)2)
∣∣ + |h|)2] · Pa(E )

≤ (
2Ea

[
h(X(εn)2)

2] + 2h
2) · Pa(E )

since h(x) ≤ A|x| ≤ 2A
(
Ea

[|X(εn)2 |2] + (1 + 2δ)2n2) · Pa(E )

by (23) ≤ 2A
(
c3

(
1 + ε2) + (1 + 2δ)2)

n2 · c3
ε2

δ2 = c5n
2 ε2

δ2 ,

where Cauchy–Schwarz was used in the first inequality.
For the second term, the heat kernel upper bound (22) shows that Pa(X(εn)2 =

x) ≤ C6/(εn)d for any x ∈ Bρ(n) and n large enough. Therefore,(
Ea

[∣∣h(X(εn)2) − h
∣∣1E c

])2 ≤ Ea

[∣∣h(X(εn)2) − h
∣∣21E c

]

≤ C6

(εn)d

∑
x∈Ba(δn)

∣∣h(x) − h
∣∣2ν(x)

≤ C6

(εn)d

∑
x∈B

∣∣h(x) − h
∣∣2ν(x).

Poincaré’s inequality implies

Ea

[∣∣h(X(εn)2) − h
∣∣1E c

]2 ≤ CPC6

(εn)d
(2δn)2

∑
(x,y)∈E(B ′)

∣∣h(x) − h(y)
∣∣2ν(x, y),

where B ′ is the ball with same center as B and radius 4δn.
Now, the quantity 
n introduced in (9) controls the gradient of a harmonic

function. Indeed, the same reasoning as the one used to derive (11) implies that∣∣h(x) − h(y)
∣∣2 ≤ (

Ex

[∣∣h(Xn)
∣∣2] + Ey

[∣∣h(Xn−1)
∣∣2])


n(x, y)2

for every n. Using the bound |h(z)| ≤ A|z|, diffusivity and taking the liminf, we
obtain ∣∣h(x) − h(y)

∣∣2 ≤ c7 lim inf
n→∞ n
n(x, y)2,
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where c7 does not depend on the points x, y (though it does depend on h

through A). Denote this lim inf by 
∞(x, y)2. We get

(
Ea

[∣∣h(X(εn)2) − h
∣∣1E c

])2 ≤ δ2

εd

c8

nd−2

∑
(x,y)∈E(B)


∞(x, y)2ν(x, y).

We next note that E
∞(ρ,X1)
2 < ∞. Indeed, the infinite cluster of percolation is

a subgraph of Zd , it has uniform polynomial growth and Hn ≤ C1 logn for every n.
Theorem 8 implies that E[
n(ρ,X1)

2] ≤ C2/n for an infinite number of n. Using
Fatou’s lemma, we obtain that E[
∞(ρ,X1)

2] < ∞. Thus we may use Lemma 18
for the function f = 
2∞ and get (with the fact that B ′ has radius 4δn),

Ea

[∣∣h(X(εn)2) − h
∣∣1E c

]2 ≤ c9
δd+2

εd
n2.

Putting together the estimates for the two terms, we obtain

(
h(a) − h(b)

)2 ≤ n2
(

c3
ε2

δ2 + c9
δd+2

εd

)
,

which implies the claim provided δ = ε(d+1)/(d+2). �

LEMMA 20. For almost every environment ω, for any harmonic function h on
ω with linear growth, any subsequential limit of hn is linear.

PROOF. Let nk be a sequence such that hnk
converges uniformly on compact

subsets of Rd , and denote the limit by . Let now Bt be a Brownian motion with
variance σ(d), where σ(d) comes from the invariance principle for random walk
on ω, see page 2356. Our first goal is to derive a mean-value property anchored at
the origin. Namely, we wish to prove that

E0
[
(Bt )

] = (0) for any t > 0.(24)

To see (24) note that h is harmonic and hence Eρ[h(Xt)] = h(ρ) or equivalently

E0
[
hn(Xn2t /n)

] = hn(0).

The central limit theorem (Theorem 15) allows to control h(Xt) in a ball of ra-
dius ≈ √

t . Namely, because Xn2t /n converges weakly to Bt , and because  is
continuous (as a locally uniform limit of the hnk

), for any K > 0,∣∣E0
[
(Xn2t /n) · 1{|X

n2t
/n|<K}

] − E0
[
(Bt ) · 1{|Bt |<K}

]∣∣ → 0,

where the convergence is as n → ∞. The Gaussian bounds (22) and the linear
bounds on hn and  allow to control h(Xt) outside that ball,∣∣E0

[
hn(Xn2t /n) · 1{|X

n2t
/n|≥K}

]∣∣ ≤ ε(K) for any n sufficiently large,

where ε(K) → 0 as K → ∞. A similar estimate holds for (Bt). This shows (24).
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We now extend (24) from 0 to all points u using Lemma 18. Let us recall that
weak convergence is metrizable. For example, it is equivalent to convergence in
the Lévy–Prokhorov distance metric (e.g., [38], Section 11.3), especially Theo-
rem 11.3.3. We will not need any property of the Lévy–Prokhorov metric except
that it is equivalent to weak convergence.

Now fix t , and fix also some ε and some n0. Consider a vertex x in the cluster
to be good if the Gaussian estimates (22) hold for all n > n0 and if the Lévy–
Prokhorov distance between Xn2t /n (started from x) and Bt (started from x/n)
is smaller than ε, again for all n > n0. If n0 is sufficiently large (depending on t

and ε), the probability of x being good will be larger than 1 − ε. For the Gaussian
estimates this follows directly from (22) while for the Lévy–Prokhorov distance
this follows from the equivalence of Lévy–Prokhorov convergence and weak con-
vergence. Fix therefore n0 to satisfy this property.

Now use Lemma 18 with the function f being f (x, y) = 1{x is bad} (the y vari-
able is simply ignored) and with some arbitrary λ. We get that for sufficiently
large n, the number of bad x in Bρ(λn) is bounded by C(λ)nd

P(0 is bad) ≤
C(λ)εnd . Define

Bn := {
u ∈ R

d : |u| ≤ λ,un is bad
}

(where as usual we in fact take the point of the infinite cluster closest to un and
check whether it is bad). Since the measure of Bn is smaller than Cε, we see that,
except for a set of measure smaller than Cε, every u ∈ R

d with |u| ≤ λ satisfies
that unk is good for infinitely many nk (it does not matter that nk itself depends on
the environment here). But ε (both for the error and for the measure of the bad set)
was arbitrary. Taking ε → 0 and then λ → ∞ we see that for almost every u ∈ R

d

there is a sequence n′
k = n′

k(u) (a subsequence of nk) such that:

1. The Gaussian estimates hold for Xn′
k

started from un′
k .

2. The Lévy–Prokhorov distance between X(n′
k)

2t /n′
k started from un′

k and
Brownian motion started from u goes to zero.

Using again the equivalence of Lévy–Prokhorov convergence and weak conver-
gence we get that random walk started from un′

k converges to Brownian motion
started from u. We can now repeat the argument that led to (24) literally and get

Eu

[
(Bt )

] = (u)

for almost every u. Since  is continuous, this in fact holds everywhere. Since t

was arbitrary, (Bt ) is a continuous martingale, from any starting point.
The lemma is now proved. Using the strong Markov property we get that (u) is

equal to its average over a sphere of arbitrary radius around u, in other words, we
have established the mean-value property hence  is (continuously) harmonic and
has a linear bound. It is well known that harmonic functions with at most linear
growth on R

d are the affine maps (take the partial derivative along one direction,
it is a bounded harmonic map on R

d , and thus a constant map). �
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PROOF OF THEOREM 5. Let d ≥ 2. The constant functions on ω are obviously
harmonic. The projections of x + χ(x) where χ is the corrector (see Theorem 15)
on each coordinate provide us with d linearly independent functions. These func-
tions have linear growth. Therefore, the space of linear growth harmonic functions
is at least (d + 1)-dimensional. Thus we need to show that any harmonic function
of linear growth is of the form h(x + χ(x)).

The first step is to apply Theorem 8 and get that E(
n(ρ,X1)
2) ≤ 2(Hn −

Hn−1) and in particular is ≤ C/n on a subsequence. Hence, by Fatou’s lemma,
there is a random subsequence nk such that Eρ[
nk

(ρ,X1)
2] ≤ C/nk .

Now, let h be a harmonic function on ω with (at most) linear growth and with
h(0) = 0. Proposition 19 allows us to extract a sequence mk such that (hmk

) con-
verges uniformly on any compact subset of R

d to a continuous function h̃, and
further one may take mk to be a subsequence of any given sequence, so we may
assume mk is a subsequence of �n1/2

k �. By Lemma 20 h̃ is linear. We get that,
f (x) := h(x) − h̃(x + χ(x)) is a harmonic function on ω with the following addi-
tional property: for every ε > 0 there exists k0 ∈ N such that for all k > k0,

∣∣f (x)
∣∣ ≤ εmk for any x ∈ ω with d(x, ρ) <

1

ε
mk.

that is, it is sublinear on a sequence of (space) scales. A simple calculation with
the Gaussian upper bounds (22) and the fact that h has a linear bound shows that
it is also sublinear on a sequence of time scales, that is,

Eρ

[
f (Xn)

2] ≤ εn ∀n ∈ [1
2m2

k,2m2
k

]
, k > k′

0.(25)

Since the mk were approximate square roots of a subsequence of the nk , we may
find a subsequence n′

k of nk for which E[f (Xn′
k
)2] ≤ εn′

k .
We now repeat the argument of Theorem 3: Equation (11) still holds for every n:

Eρ

∣∣f (ρ) − f (X1)
∣∣ ≤

√
2Eρ

[

n(ρ,X1)2

]
Eρ

[
f 2(Xn)

]
.

For our n′
k we have E[
2] ≤ C/n′

k , and with (25) we get Eρ |f (ρ) − f (X1)| ≤√
Cε. Since ε was arbitrary, f must be constant. Since f (0) = 0 that constant is

zero and h = h̃(x + χ(x)). Therefore, any harmonic function with growth at most
linear and equal to 0 at 0 belongs to a vector space of dimension d and the result
follows. �

A natural extension of the supercritical bond percolation setting is to look at
random environments on Z

d , such as the random conductance model. See [8, 17,
19, 74] for the existence of the corrector in different cases of this model. Similar
results can probably be obtained in this setting.
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5. Heat kernel derivative estimates. Our purpose in this section is to prove
Theorem 6 which gives an upper bound for the (discrete) derivative of the heat
kernel, pn(x, y) − pn−1(x

′, y), for x ∼ x′, where pn(x, y) := Px(Xn = y).
We start with a lemma true on any graph. It relates the infinity norm of the

gradient of the heat kernel to the infinity norm of the heat kernel and the entropy.

LEMMA 21. Let G be a graph of maximal degree d . Then for any x, x′, y ∈ G

with x ∼ x′,
(
p2n(x, y) − p2n−1

(
x′, y

))2

(26)
≤ 4d(d + 1) · 
n

(
x, x′)2 · max

a,b∈Bx(2n) :
d(a,b)≥d(x,y)/2

pn(a, b) · max
a,b∈Bx(2n)

pn(a, b),

where 
n is defined in (8).

PROOF. Markov’s property gives that

p2n(x, y) − p2n−1
(
x′, y

) = ∑
a∈G

(
pn(x, a) − pn−1

(
x′, a

))
pn(a, y).

Let us split the sum on a ∈ G into two sums I + II, where I is the sum over
a ∈ Bx(d(x, y)/2), and II on the remaining a. Using Cauchy–Schwarz we can
write

I 2 ≤
( ∑

a∈Bx(d(x,y)/2)

(
pn(x, a) − pn−1

(
x′, a

))2
)( ∑

a∈Bx(d(x,y)/2)

pn(a, y)2
)
.

For the first term, bound the denominator in the definition of 
n by its maximum
and get

∑
a∈Bx(d(x,y)/2)

(
pn(x, a) − pn−1

(
x′, a

))2

≤ 
n

(
x, x′)2 · max

a∈Bx(d(x,y)/2)

{
pn(x, a) + pn−1

(
x′, a

)}
.

For the second term write
∑

a∈Bx(d(x,y)/2)

pn(a, y)2 ≤
(

max
a∈Bx(d(x,y)/2)

pn(a, y)
)

·
( ∑

a∈Bx(d(x,y)/2)

pn(a, y)

)

≤
(

max
a∈Bx(d(x,y)/2)

pn(a, y)
)

·
( ∑

a∈Bx(d(x,y)/2)

d · pn(y, a)

)

≤ d ·
(

max
a∈Bx(d(x,y)/2)

pn(a, y)
)
.
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Together we get

I 2 ≤ d · 
n

(
x, x′)2 · max

a∈Bx(d(x,y)/2)

{
pn(x, a) + pn−1

(
x′, a

)}
(27)

× max
a∈Bx(d(x,y)/2)

pn(a, y).

Now, the second maximum in the right-hand side of (27) is a maximum on a
smaller set than the first maximum in (26) [note that points in Bx(d(x, y)/2) are
at distance larger than d(x, y)/2 from y]. Similarly, the first maximum is smaller
than (1+d) times the second maximum of (26). Therefore, the product of maxima
is smaller than

(d + 1) · max
a,b∈Bx(2n) :

d(a,b)≥d(x,y)/2

pn(a, b) · max
a,b∈Bx(2n)

pn(a, b).

The estimate for II is similar:

II2 ≤ d ·
n

(
x, x′)2 · max

a /∈Bx(d(x,y)/2)

{
pn(x, a)+pn−1

(
x′, a

)} · max
a /∈Bx(d(x,y)/2)

pn(a, y).

It is easy to obtain the same bound again, except the estimates are reversed (i.e.,
what was bounded by the first term before is now bounded by the second term).
We sum up:

(
p2n(x, y) − p2n−1

(
x′, y

))2 = (I + II)2 ≤ 2
(
I 2 + II2)

≤ 4d(d + 1) · 
n

(
x, x′)2 · max

a,b∈Bx(2n) :
d(a,b)≥d(x,y)/2

pn(a, b)

× max
a,b∈Bx(2n)

pn(a, b). �

In Section 2 it was always enough to discuss behavior (say of Hn − Hn−1) on
a sequence nk . Here it is no longer enough and we need an estimate that holds for
all n. Hence we prove:

LEMMA 22. For supercritical percolation, Hn − Hn−1 ≤ C/n for every n,
where C is a constant depending only on d and p.

PROOF. The heat kernel estimates (1) show, after a little calculation, that

Hn = d

2
logn + O(1) ∀n > n0(ω).(28)

For n ≤ n0(ω) we can use a much rougher bound, say Hn ≤ d log(2n) which fol-
lows from the fact that for any cluster ω the distribution of Rn is supported on the
cube {−n, . . . , n}d and any measure has entropy smaller than the entropy of the
uniform measure on its support. Since n0(ω) has a stretched exponential tail, we
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can integrate over the environment and get that Hn = d
2 logn + O(1). This means

that Hn − Hn/2 ≤ C for some C. Using the fact that Hn − Hn−1 is decreasing
(Corollary 10 on page 2344) proves the lemma. �

PROOF OF THEOREM 6. As before, percolation can be seen as a stationary
random graph, and it is sufficient to prove

E
((

p2n(ρ, x) − p2n−1(X1, x)
)2 · 1{x∈ω}

) ≤ C′
3

nd+1 exp
(−C′

4d(x, ρ)2/n
)
,

where C′
3 and C′

4 depend only on d and the percolation probability p.
Again we use the variables ny(ω) from (1) and (2). Take ε to be given by the

stretched exponential bound (2) for ny(ω). Note that we can restrict ourselves to
|x| ≤ n1/2+ε/3, since in the regime |x| ≥ n1/2+ε/3, the heat kernel decreases fast
enough so that one can tune the constant C′

4 in order to obtain the result for free.
Fix therefore |x| ≤ n1/2+ε/3. Let N(ω) = max{ny(ω) :y ∈ Bρ(n)}. The Gaussian
estimates (1) imply that for a.e. environment ω such that x ∈ ω, whenever n ≥
N(ω), we have

max
a,b∈Bρ(2n) :

d(a,b)>d(ρ,x)/2

pn(a, b) ≤ C3

nd/2 exp
[−C4d(x, ρ)2/n

]
and

(29)

max
a,b∈Bρ(2n)

pn(a, b) ≤ C3

nd/2 .

Averaging (26) on the environments satisfying N(ω) ≤ n (for which we have (29)),
we find

E
[(

p2n(ρ, x) − p2n−1(X1, x)
)2 · 1{x∈ω}1{N(ω)≤n}

]

≤ 4d(d + 1) ·E[

n(ρ,X1)

2] · C2
3

nd
exp

[−C4d(x, ρ)2/n
]
.

We now apply Theorem 8 to bound E[
2
n] by 2(Hn − Hn−1). Recall also that

Lemma 22 says that for supercritical percolation Hn − Hn−1 ≤ C/n for all n.
Together these give

E
[(

p2n(ρ, x) − p2n−1(X̃1, x)
)2 · 1{x∈ω}1{N(ω)≤n}

] ≤ C

nd+1 exp
[−C4d(x, ρ)2/n

]
.

We do not need to control the behavior of the gradient on {N(ω) > n} since this
event has probability at most Cnde−nε

. Hence in the regime |x| ≤ n1/2+ε/3 we
find

E
[(

p2n(ρ, x) − p2n−1(X̃1, x)
)2 · 1{x∈ω}1{N(ω)>n}

]

≤ Pp

(
N(ω) > n

) ≤ C

nd+1 exp
[−C4d(x, ρ)2/n

]
.
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Putting all the pieces together, we obtain the result. �

The proof involved only Gaussian estimates at mesoscopic scale and the entropy
argument. It extends to other contexts such as random conductances satisfying the
uniform elliptic condition (see Example 2.1). One may then get, using convolution,
annealed second space-derivative and first time-derivative estimates for the heat
kernel using the first space-derivative estimates. We refer to Section 5 of [32] for
more details.

6. Open questions. This article must be understood as an introduction and
some initial steps in the subject. There are many natural questions on harmonic
functions which remain open. We present few of them in this section.

Minimal growth harmonic functions. The question of minimal growth har-
monic functions was implicitly studied in the literature: the failure of the Liouville
property corresponds to a special case of minimal growth. When the Liouville
property is true, it becomes interesting to determine the minimal growth. Even the
deterministic case (i.e., transitive or Cayley graphs) has interesting phenomenol-
ogy, and we plan to analyze some examples in a future paper. Note that groups
always admit linear growth harmonic functions [55, 73, 75]. This is no longer the
case for stationary random graphs. When the random walk is subdiffusive (note
that the random walk on Cayley graphs is at least diffusive, a result due to Er-
schler; see Lee and Peres [60]), Theorem 3′ (page 2347) implies a phenomenon
which is specific to random environments.

COROLLARY 23. Let (G, ν,ρ) be a stationary random graph with polynomial
growth such that the random walk is (strictly) subdiffusive. Then, almost surely
there do not exist linear growth harmonic functions.

Therefore graphical fractals, UIPQ, critical Galton–Watson trees conditioned to
survive and the incipient infinite cluster (IIC) do not admit linear growth harmonic
functions. We mention that it was already proved [11] that the uniform infinite
planar triangulation is almost surely Liouville. There are no nonconstant harmonic
functions on the critical Galton–Watson tree or on the IIC, as both have infinitely
many cut vertices. Indeed, the Galton–Watson tree is well known to be one-ended
and hence, as a tree, must have infinitely many cut vertices. The existence of cut
points for the IIC is essentially known, but we did not find a reference and includ-
ing a full proof would take us too far off-topic.

QUESTION 1. Do there exist nonconstant harmonic functions with polyno-
mial growth on the UIPQ?

If such functions exist, we may ask the following question:
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QUESTION 2. What is the minimal growth of a nonconstant harmonic func-
tion on the UIPQ?

Space of harmonic functions with polynomial growth. Cayley graphs with
polynomial growth automatically satisfy the volume doubling property and the
Poincaré inequality, thus implying that spaces of harmonic functions with pre-
scribed polynomial growth are finite dimensional. The possibility of such behavior
in the case of stationary random graphs of polynomial volume growth is a legiti-
mate question. For example:

QUESTION 3. Is the space of harmonic functions with some prescribed poly-
nomial growth on the UIPQ finite dimensional?

Dimension of spaces of harmonic functions. The computation of the dimension
of spaces of harmonic functions does not restrict to the case of linear growth har-
monic functions. For a graph G and k > 0, let dk[G] be the dimension of the space
of harmonic functions with growth bounded by a polynomial of degree k.

The similarity between Z
d and the infinite cluster of percolation might extend

to the dimension of the space of harmonic functions with arbitrary polynomial
growth. More precisely, we ask the following question:

QUESTION 4. Are the families (dk[ω])k>0 and (dk[Zd ])k>0 equal almost
surely?

In particular, an interesting intermediate step toward this question would be to
show that there is no harmonic function with noninteger growth.

It is natural to ask if an invariance principle for the random walk in the random
environment ω implies that the sequence (dk[ω]) coincides with (dk[Zd ]). On Z

d ,
diffusivity and the invariance principle are robust under rough isometry. There-
fore, one can ask if (dk[G])k≥0 is invariant under rough isometry for these kind
of graphs. This is not true in general. For instance, the Liouville property is not
invariant under rough isometry; see [63] for the first example or [14] for a simpler
one.

More generally, one can ask whether a small perturbation of a Cayley graph
modifies drastically the harmonic functions on it. For instance, consider percola-
tion on a Cayley graph G such that pu(G) (the infimum of the values for which
there exists a unique infinite cluster) is strictly smaller than 1. Fix p > pu(G), and
set ω(G) to be the unique infinite cluster of the percolation with parameter p.

QUESTION 5. Are the dimensions of spaces of harmonic functions with a
given growth equal for G and ω(G)?
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Note that the question, in the case of bounded harmonic functions on the infinite
percolation cluster for nonamenable Cayley graphs, was addressed in [13].

In the context of Cayley graphs, the space of harmonic functions with a certain
growth rate is crucial in the study of the underlying group. Indeed, the latter acts on
harmonic functions naturally. In the random setting, we do not have this interpreta-
tion. Nevertheless, an interesting question is to understand what information on the
random graph is encoded in the sequence (dk[G])k≥0. In particular, the following
question would be a first step in this direction:

QUESTION 6. Consider a random subgraph G of Zd . What are the require-
ments to ensure that (dk[G])k≥0 equals (dk[Zd ])k≥0?
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