PERCOLATION AND DISORDER-RESISTANCE IN CELLULAR AUTOMATA

By Janko Gravner ${ }^{1}$ and Alexander E. Holroyd
University of California and Microsoft Research

Abstract

We rigorously prove a form of disorder-resistance for a class of onedimensional cellular automaton rules, including some that arise as boundary dynamics of two-dimensional solidification rules. Specifically, when started from a random initial seed on an interval of length L, with probability tending to one as $L \rightarrow \infty$, the evolution is a replicator. That is, a region of spacetime of density one is filled with a spatially and temporally periodic pattern, punctuated by a finite set of other finite patterns repeated at a fractal set of locations. On the other hand, the same rules exhibit provably more complex evolution from some seeds, while from other seeds their behavior is apparently chaotic. A principal tool is a new variant of percolation theory, in the context of additive cellular automata from random initial states.

1. Introduction. Cellular automata (CA) started from seeds, that is, finite perturbations of a quiescent state, have been the subject of much empirical analysis, starting with [23]. The observed behavior falls roughly into four categories: (a) the perturbation remains localized in the sense that it never affects sites outside a bounded interval; (b) a periodic structure develops and spreads; (c) a replicating (also called nested or fractal) structure develops, with a recursive (but sometimes complicated) description; (d) unpredictable chaotic (or complex) growth generates a space-time configuration with apparent characteristics of random fields. Many CA are capable of behavior in multiple categories depending on the choice of seed, and this is true even for some of the very simplest one-dimensional CA. An example is the Exactly 1 rule, in which a cell is alive whenever exactly one of itself and its two neighbors were alive at the previous generation. Exactly 1 is capable of periodic, replicating, and chaotic behavior for different seeds; see [14].

If a particular CA is capable of chaotic behavior from some initial seed, it appears natural to conclude, by analogy with the second law of thermodynamics, that such behavior should be generic for that CA, in the sense that almost all sufficiently long seeds yield chaotic evolution. Shadowing results from dynamical

[^0]systems [20], with their general message of stability of chaotic trajectories, would also tend to support such a conclusion. Indeed, strong empirical evidence confirms that chaotic behavior is prevalent for many CA including Exactly 1; see [14].

In this article, we exhibit a class of one-dimensional CA rules for which we rigorously prove that the opposite conclusion holds. Typical (random) long seeds self-organize into replicating structures, while exceptional seeds yield more complex behavior, including apparently chaotic evolution.

We focus on one-dimensional range-2 CA rules with 3 states (although our techniques in principle apply to more general one-dimensional rules). Thus, the configuration of the CA at time $t \in\{0,1,2, \ldots\}$ is an element $\xi_{t}=\left(\xi_{t}(x)\right)_{x \in \mathbb{Z}}$ of $\{0,1,2\}^{\mathbb{Z}}$, and for a given initial configuration ξ_{0}, the evolution is given by

$$
\xi_{t+1}(x)=f\left(\xi_{t}(x-2), \xi_{t}(x-1), \xi_{t}(x), \xi_{t}(x+1), \xi_{t}(x+2)\right)
$$

for all x, t and a fixed function f (the CA rule). (In many cases, the dependence on ξ_{t} will actually be restricted to the range-1 neighborhood $x-1, x, x+1$.) We sometimes write $\xi(x, t)=\xi_{t}(x)$ for the state of ξ at the space-time point $(x, t) \in \mathbb{Z} \times[0, \infty)$. In keeping with standard convention, diagrams of space-time evolution are drawn with the space coordinate x increasing from left to right, and the time coordinate t increasing from top to bottom.

A key supporting role will be played by the 1 Or 3 CA , a simple 2 -state rule denoted by λ_{t}, and defined as follows. The states are 0 and 1 , and the evolution is

$$
\lambda_{t+1}(x)=\lambda_{t}(x-1)+\lambda_{t}(x)+\lambda_{t}(x+1) \bmod 2 .
$$

As is well known [19], the additive structure of this rule enables many of its characteristics to be fully understood. (See Figure 1 below for an illustration.)

We consider 3 -state CA rules with the following special property. For any configuration ξ, if we define $\lambda_{t}(x)=\mathbf{1}\left[\xi_{t}(x)=1\right]$ for all x, t, then λ evolves precisely according to the $1 \operatorname{Or} 3 \mathrm{CA}$. We also assume that state 0 is quiescent, that is, if $\xi_{0} \equiv 0$ then $\xi_{1} \equiv 0$. We call any CA rule satisfying these two conditions a web $C A$. The idea is that the 1 s form an additive "web" which is not influenced by the distinction between 0 s and 2 s , while the web may affect the 2 s . As we will see

FIG. 1. Left: the configuration λ^{\bullet} of 1 Or 3, started from a single occupied cell, up to time $t=32$. Right: schematic depiction of a replicator. The striped regions are filled with a doubly periodic ether. The thickness of the white "buffer zones" remains constant for all time.
later, web CA also arise in analysis of two-dimensional solidification CA. We will usually be interested in evolution from a seed, that is, an initial configuration ξ_{0} with finite support.

One of the simplest web CA, which we call Web-Xor, is defined by setting $\xi_{t}(x)=2$ if and only if $\lambda_{t}(x)=0$ and there is a exactly one 2 among $\xi_{t-1}(x-1), \xi_{t-1}(x+1)$. (Together with the web CA condition, this is sufficient to specify the rule.) Thus, 2s perform a 2-neighbor exclusive-or rule on the points that are not occupied by 1s. Figure 2 illustrates the evolution of Web-Xor from

FIG. 2. Four configurations of Web-Xor. The first (top) example, a replicator with zero ether, starts from a random string of $641 s$ and $2 s$. The second and third examples, with respective seeds 12 and 11111012, are quasireplicators. The bottom example, with seed 1100112, is apparently chaotic.
four different seeds. (States are always colored as: 0 white; 1 black or grey; 2 another color depending on the rule.) Our results imply that typical seeds result in behavior similar to the first picture. More specifically, we will prove that for certain classes of web CA, evolution from long random seeds yields with high probability a space-time configuration that is periodic except within some finite distance of an additive web. To state this conclusion precisely, we need some more notation.

An ether is an element η of $\{0,2\}^{\mathbb{Z}^{2}}$ that is periodic in both coordinates. Two ethers are equivalent if one can be obtained from the other via some translation of \mathbb{Z}^{2}. In a CA configuration ξ, we say that a set $K \subseteq \mathbb{Z} \times[0, \infty)$ is filled with η if ξ agrees with some ether equivalent to η on K. Let λ^{\bullet} be the 1 Or 3 CA started from the seed consisting of a single 1 at the origin, and let $\Lambda=\left\{(x, t): \lambda^{\bullet}(x, t)=1\right\}$ be its support. See Figure 1. Let $\Lambda(r) \subset \mathbb{Z}^{2}$ be the set of space-time points at ℓ^{1}-distance at most r from Λ.

For a given CA, we say that a seed ξ_{0} (or equivalently the resulting configuration ξ) is a replicator of thickness r and ether η if each bounded component of $\mathbb{Z}^{2} \backslash \Lambda(r)$ is filled with η. See Figure 1 . It is a straightforward fact that $\Lambda(r)$ has density 0 as a subset of \mathbb{Z}^{2} for any r. Therefore, in a replicator, the density of 2 s within the cone $\{(x, t):|x| \leq t\}$ equals the density of the ether. Furthermore, it may be shown that for any replicator (of any CA), the configuration ξ can be fully described in terms of a finite set of local patterns that are repeated at infinitely many locations prescribed by Λ. (This is the reason for the name replicator.) For more details, we refer the reader to [11], where the concept was introduced.

Our results will apply to web CA rules satisfying two conditions which we call diagonal-compliance and wide-compliance. The conditions state that flow of information concerning the distinction between 0 s and 2 s is blocked by certain local patterns of 1s. The formal statements of the conditions are straightforward but somewhat technical, and we therefore postpone them to the next section. For now, we note that Web-Xor is diagonal-compliant.

A uniformly random binary seed on $[0, L]$ is an initial configuration ξ_{0} in which $\xi_{0}(x)$ takes values 0,1 with equal probabilities independently for all $x \in[0, L]$, and 0 outside $[0, L]$.

THEOREM 1.1 (Replication from random seeds). Consider a web CA that is either diagonal-compliant or wide-compliant, started from a uniformly random binary seed on $[0, L]$. There exist a random variable R_{L} taking values in $[0, \infty]$, and a random ether η_{L} (both deterministic functions of the seed), with the following properties. We have $\mathbf{P}\left(R_{L}=\infty\right) \rightarrow 0$ as $L \rightarrow \infty$, and indeed the sequence $\left(R_{L}\right)_{L \geq 0}$ is tight. On the event $R_{L}<\infty$, the configuration ξ is a replicator of thickness $R_{L}+L$ and ether η_{L}. Furthermore, if any finite set of $0 s$ in ξ_{0} are changed into $2 s$, the same statement holds with the same R_{L} and η_{L}.

Fig. 3. Four examples of Piggyback evolution: two replicators (with enlarged regions showing different ethers) from random seeds of length 30; a quasireplicator with seed 11111; and an apparently chaotic example with seed 100011011.

Web CA rules may be further classified in the following way, which has implications for their production of ethers. A CA has no spontaneous birth (of 2 s) if whenever ξ_{0} contains no $2 \mathrm{~s}, \xi_{1}$ also contains no 2 s . Web-Xor has no spontaneous birth. Figure 3 shows four possible evolutions of a CA rule called Piggyback (to be defined in the next section) that is wide-compliant and has spontaneous birth.

THEOREM 1.2 (Trivial and nontrivial ethers). Assuming the conditions of Theorem 1.1, R_{L} can be chosen to have the following additional properties:
(i) If the CA rule has no spontaneous birth, then $\eta_{L} \equiv 0$ whenever $R_{L}<\infty$.
(ii) Suppose that the CA rule has spontaneous birth. If for some deterministic ether η we have $R_{L}<\infty$ and $\eta_{L}=\eta$ for some binary seed, then for uniformly random binary seeds we have

$$
\liminf _{L \rightarrow \infty} \mathbf{P}\left(R_{L}<\infty \text { and } \eta_{L}=\eta\right)>0
$$

Given any particular seed, there is a simple procedure to compute the random variable R_{L} appearing in Theorems 1.1 and 1.2, and in particular to determine whether it is finite. (See Sections 8 and 9 for details.) For many CA of interest, including Piggyback, there are multiple nonequivalent ethers η for which the condition of Theorem 1.2(ii) indeed holds, and which hence have asymptotically nontrivial probabilities. The first two pictures in Figure 3 show two examples. Our methods allow the computation of explicit rigorous lower bounds on asymptotic probabilities of particular ethers. For example, in Piggyback, for the ether that results from the periodic initial state $(00022222)^{\infty}$, the liminf in the theorem is at least 0.1297 , while $(0)^{\infty},(2)^{\infty}$ and $(00002022)^{\infty}$ have lower bounds $0.5,0.0398$ and 0.0151 , respectively. (In fact, more than 100 ethers have positive liminf, and we believe that there are infinitely many.)

As remarked earlier, many web CA provably exhibit more complex behavior for certain exceptional seeds. One important class of behavior is formalized by the following concept introduced in [11]. We call a seed ξ_{0} (or a configuration ξ) a quasireplicator with ether η if the following holds. For some exceptional set of space-time points $Q \supseteq \Lambda$, each bounded component of $\mathbb{Z}^{2} \backslash Q$ is filled with η, while for some $a>1$, the set $a^{-n} Q$ converges as $n \rightarrow \infty$ in Hausdorff metric to a set of Hausdorff dimension strictly less than 2.

THEOREM 1.3 (Quasireplicators). For some diagonal-compliant and widecompliant web CA rules, including Web-Xor and Piggyback, there exist seeds that are quasireplicators but not replicators.

Examples of (provable) quasireplicators include the second and third seeds in Figure 2, and the third seed in Figure 3. Certain other seeds appear to be neither replicators nor quasireplicators, but exhibit apparently chaotic behavior, although proving this seems very challenging. The fourth examples in each figure are in this category. In some very special cases, we can prove chaotic behavior in a certain conditional sense, even for an infinite family of seeds whose number grows exponentially with their length. We discuss these issues further in the next section.

Theorem 1.1 describes the space-time configuration away from Λ, and moreover states that this description is insensitive to 2 s in the initial configuration.

However, the result provides no information about the configuration close to Λ. The next result addresses this. The forward cone of a space-time point (x, t) is the set $\{(y, s):|y-x| \leq s-t\}$, and the forward cone of a set is the union of the forward cones of its points.

THEOREM 1.4 (Stability). Consider a diagonal-compliant or wide-compliant web CA, started from a uniformly random binary seed on $[0, L]$. With probability converging to 1 as $L \rightarrow \infty$, the configuration of ξ in the forward cone of $[0, L] \times\{\lfloor C \log L\rfloor\}$ is unchanged if any set of $0 s$ in ξ_{0} are changed to $2 s$. Here, C is an absolute constant. If the CA has no spontaneous birth, then with probability converging to 1 the same cone contains no $2 s$.

We next discuss some ideas behind our proofs. Since in a web CA the web of 1s evolves according to $1 \operatorname{Or} 3$, it easily follows that all 1 s lie in $\Lambda(L)$. In the situation of Theorem 1.1, we will prove that immediately above each bounded component of $\mathbb{Z}^{2} \backslash \Lambda(L)$ there is a strip which blocks information flow. Furthermore, each such strip contains a spatially periodic configuration of 1 s , with the repeating unit being identical for all strips up to translation. This is a probabilistic statement, not a deterministic one, and the height of the strip is random. It will be proved using techniques of percolation theory. In contrast with classical percolation, the spacetime configuration λ of $1 \operatorname{Or} 3$ is not i.i.d., but has long-range dependence. We will make use of the key percolation result below, which we believe is interesting in its own right.

A path is a finite or infinite sequence π of space-time points $\left(x_{0}, t_{0}\right),\left(x_{1}, t_{1}\right)$, $\ldots,\left(x_{n}, t_{n}\right)(\ldots)$ with $t_{i+1}=t_{i}+1$ and $\left|x_{i+1}-x_{i}\right| \leq 1$ for all i. A path is diagonal if it satisfies $\left|x_{i+1}-x_{i}\right|=1$ for all i. Suppose λ_{0} is given, and let λ be the resulting configuration of $1 \operatorname{Or} 3$. We say that a path π is empty if $\lambda(x, t)=0$ for every (x, t) on π. A path is wide if it is empty and it makes no diagonal step between two 1 s , that is, it has no two consecutive points $(x, t),(y, t+1)$ with $|x-y|=1$ but $\lambda(y, t)=\lambda(x, t+1)=1$. (As suggested by the terminology, diagonal-compliance and wide-compliance of web CA refer to information flow being restricted to paths of the appropriate type.) We now assume that the initial configuration λ_{0} is uniformly random on \mathbb{Z}, that is, $\lambda_{0}(x)$ takes values 0,1 with equal probabilities independently for all $x \in \mathbb{Z}$.

THEOREM 1.5 (Subcriticality). Consider the 1 Or 3 CA from a uniformly random initial configuration on \mathbb{Z}. We have
(1.1) $\quad \mathbf{P}(\exists$ an empty diagonal path from $\mathbb{Z} \times\{0\}$ to $(0, t))<e^{-c t}, \quad t>0$,
for some absolute constant $c>0$. The same conclusion holds for the existence of a wide path.

In contrast, we prove that empty paths do percolate.

Theorem 1.6 (Supercriticality). For the 1 Or 3 CA from a uniformly random initial configuration on \mathbb{Z},

$$
\mathbf{P}(\exists \text { an infinite empty path from }(0,0))>0 .
$$

We now briefly discuss background to our results. As remarked earlier, CA that exhibit chaotic behavior for typical seeds but regular behavior for some seeds are apparently very common. Empirical evidence strongly suggests that the onedimensional rules Exactly 1 [14], Perturbed Exactly 1 [11] and EEED [15] are all in this category. It is natural to postulate a mechanism for this phenomenon, whereby chaos nucleates from certain local patterns, and, once started, invades all nonchaotic regions. It is tempting to conclude that this robustness of chaos might be universal law, akin to the second law of thermodynamics.

To our knowledge, the first compelling evidence to the contrary was presented in [13], where a CA later called Extended 1 Or 3 was introduced. This rule arises naturally as the "2-layer extremal boundary dynamics" of a classical twodimensional CA rule, Box 13. Piggyback is also the 2-layer extremal boundary dynamics of a two-dimensional rule. See Section 2 for more information. Extremal dynamics have been utilized very effectively in the analysis of Packard snowflake CA in [12, 13].

Extended 1 Or 3 was proved in [11] to admit both replicators and quasireplicators, and observed to generate apparent chaos from some seeds. Empirical evidence was presented that long random seeds are replicators with high probability, and thus that it is the ordered phase that is resistant to disorder. In this article, we provide the first rigorous demonstration of this phenomenon. The classes of CA that we consider are strongly inspired by Extended 1 Or 3. We have not succeeded in proving that the conclusion of Theorem 1.1 holds in the case of Extended 1 $\operatorname{Or} 3$, although this would follow if a certain natural conjecture (Conjecture 5.3) were established.

We note that the disorder-resistance phenomenon under consideration is somewhat reminiscent of insensitivity of CA rules to random noise in the update rule, as in $[9,16]$.

Much CA research has focused on evolution from carefully chosen initial configurations-a notable rigorous example is [6]. In contrast, rigorous results for CA from a random initial configurations are scarce, despite their potential importance in understanding self-organization. Most such research has been focused on nucleation, that is, random formation of centers that orchestrate a takeover of the available space. Notable examples include bootstrap percolation [2, 17] and excitable media models [8]. We also mention two previous works on additive dynamics started from a product measure, [18] and [7]; the latter finds an embedded random walk by an argument somewhat related to the methods in Section 5.

In many cases, percolation with long range dependence is extremely challenging to analyze rigorously (see [1, 3, 10, 22], and references therein). Nevertheless,
in our setting it turns out that the additivity of 1 Or 3 allows certain judiciously chosen percolation arguments to be carried through with relative ease. Translating results from an infinite random initial configuration to finite seeds also appears daunting, since the number of random bits is now finite. However, additivity introduces extensive periodicity and repetition into the configuration. With care, these properties can be used to advantage. This extreme form of long-range dependence provides the link between lack of percolation and evolution from random seeds, and is also the reason for formation of ethers.

While our results provide a reasonably comprehensive picture of subcritical percolation behavior for certain path types (diagonal and wide), it should be emphasized that the behavior for paths of supercitical type (empty paths) in the evolution from finite random seeds is not well understood. We discuss open questions and prove some preliminary results in this direction in Section 6.

The article is organized as follows. In Section 2, we establish terminology, including the formal definitions of diagonal-compliance and wide-compliance, we introduce and discuss some further examples of CA having these properties, and we discuss how Theorem 1.3 is proved. Sections 3-7 are concerned entirely with properties of the additive rule $1 \operatorname{Or} 3$, from which properties of web CA are deduced later. In Section 3, we review properties (most of them well known) of 1 Or 3 started from a single occupied site, and in Section 4 we use additivity to deduce basic properties of the evolution from random configurations. In Sections 5 and 6, we prove the percolation results, Theorems 1.5 and 1.6 , respectively, and discuss other facts and open problems concerning percolation. In Section 7, we deduce key results about evolution of 1 Or 3 from random seeds. Finally, we return to web CA. In Section 8, we deduce Theorems 1.1 and 1.4, and in Section 9 we prove Theorem 1.2 and show how to compute lower bounds on ether probabilities.

2. Definitions, examples and preliminary results.

2.1. Basic conventions. Throughout the paper, λ denotes the 1 Or 3 CA, while ξ denotes a web CA. All our intervals will be subsets of \mathbb{Z} or of $\mathbb{Z} \times\{t\}$ for some $t \geq 0$. We adopt the convention that $[a, b]=\varnothing$ and $[a, b] \times\{t\}=\varnothing$ whenever $b<a$.

Throughout, a site or a cell will refer to an element of \mathbb{Z}; a point will be an element of space-time $\mathbb{Z} \times[0, \infty) \subset \mathbb{Z}^{2}$. The state of a CA ξ at cell x and time t is denoted $\xi_{t}(x)$ or $\xi(x, t)$, depending on whether our focus is on time evolution or the space-time configuration. When specifying a seed, we always assume that all states left unspecified are 0 . In diagrams of space-time evolution, state 0 is colored white, state 1 is black or grey and state 2 is a different nongreyscale color for each CA rule.

We say that a collection of $\{0,1\}$-valued random variables is uniformly random if they are independent and take values 0 and 1 each with probability $1 / 2$.
2.2. Compliance. In this section, we formally introduce various families of web CA. As mentioned already, these will have 3 states and range 2 . Thus, the state of a site is $\xi_{t}(x) \in\{0,1,2\}$ for $x \in \mathbb{Z}$ and $t \in[0, \infty)$, and the evolution is given by

$$
\xi_{t+1}(x)=f\left(\xi_{t}(x-2), \xi_{t}(x-1), \xi_{t}(x), \xi_{t}(x+1), \xi_{t}(x+2)\right)
$$

for some function f.
We reiterate our standing assumption that the 1 s of ξ behave as the 1 Or 3 CA. More precisely, writing

$$
\delta(a):=\mathbf{1}[a=1]=a \bmod 2, \quad a=0,1,2,
$$

we assume that

$$
\begin{equation*}
\delta(f(a, b, c, d, e))=\delta(b)+\delta(c)+\delta(d) \bmod 2 \tag{2.1}
\end{equation*}
$$

for all a, b, c, d, e. Thus, if we define

$$
\begin{equation*}
\lambda_{t}(x):=\delta\left(\xi_{t}(x)\right) \tag{2.2}
\end{equation*}
$$

then (2.1) implies that λ satisfies the 1 Or 3 CA rule. We sometimes call λ the first level of the process. We call a CA rule that satisfies (2.1) and $f(0,0,0,0,0)=0$ a web rule.

We now consider various further conditions that may be imposed on f. The idea will be that the flow of information concerning the distinction between states 0 and 2 is blocked by 1 s (in various locations). Throughout the following, we take a, b, c, d, e and $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}$ to be arbitrary satisfying $\delta(a)=\delta\left(a^{\prime}\right), \delta(b)=\delta\left(b^{\prime}\right)$, etc.

We say that the rule f is empty-compliant if

$$
f(a, b, c, d, e)=f\left(a^{\prime}, b, c, d, e^{\prime}\right)
$$

that is, a cell's next state $\xi_{t+1}(x)$ depends on nonadjacent cells $\xi_{t}(x \pm 2)$ only through their first level. [Recall that by (2.1), the first level of the next state cannot depend on the nonadjacent cells at all.] Similarly, we say that the rule is diagonalcompliant if

$$
f(a, b, c, d, e)=f\left(a^{\prime}, b, c^{\prime}, d, e^{\prime}\right)
$$

It will be convenient to express the next conditions in terms of the new first-level states of the neighboring cells. Thus, we denote

$$
\begin{aligned}
& \ell:=\delta(a)+\delta(b)+\delta(c) \bmod 2 \\
& r:=\delta(c)+\delta(d)+\delta(e) \bmod 2
\end{aligned}
$$

so that if $(a, b, c, d, e)=\left(\xi_{t}(x-2), \ldots, \xi_{t}(x+2)\right)$ then $(\ell, r)=\left(\lambda_{t+1}(x-\right.$ 1), $\lambda_{t+1}(x+1)$). We say that f is wide-compliant if it is empty-compliant and

$$
\begin{array}{ll}
c=r=1 & \text { implies } f(a, b, c, d, e)=f\left(a^{\prime}, b, c, d^{\prime}, e^{\prime}\right) \\
c=\ell=1 & \text { implies } f(a, b, c, d, e)=f\left(a^{\prime}, b^{\prime}, c, d, e^{\prime}\right)
\end{array}
$$

In a configuration λ of $1 \operatorname{Or} 3$, a path is said to be θ-free if it is empty and it contains no point (x, t) whose 5-point neighborhood $\{(x \pm 1, t),(x \pm 1, t-1),(x, t-$ $1)\}$ contains θ or more 1 s . Finally, we say a CA rule f is θ-free-compliant if it is empty-compliant and

$$
\begin{aligned}
\delta(b)+\delta(c)+\delta & (d)+\delta(\ell)+\delta(r) \geq \theta \\
& \text { implies } f(a, b, c, d, e)=f\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}\right)
\end{aligned}
$$

Recall the definition of no spontaneous birth from the Introduction; this is equivalent to the condition that $f(a, b, c, d, e) \neq 2$ whenever $a, b, c, d, e \in\{0,1\}$.

As suggested by the terminology, the behavior of cellular automata satisfying the above conditions is constrained by paths of the appropriate types.

LEMMA 2.1 (Compliance). Consider a web CA that is empty-compliant (resp.: diagonal-compliant, wide-compliant, or θ-free-compliant). Consider two initial configurations $\xi_{0}, \xi_{0}^{\prime}$ whose first levels agree $\left[\right.$ i.e., $\delta\left(\xi_{0}(x)\right)=\delta\left(\xi_{0}^{\prime}(x)\right)$ for all $x]$, and define the first-level dynamics λ via (2.2). Fix a point (y, t). If λ has no empty path (resp.: empty diagonal, wide, or θ-free path) from any $(x, 0)$ at which $\xi_{0}(x) \neq \xi_{0}^{\prime}(x)$ to (y, t), then $\xi_{t}(y)=\xi_{t}^{\prime}(y)$. Moreover, if the CA has no spontaneous birth, then $\xi_{t}(y) \neq 2$.

Proof. Suppose, to the contrary, that $\xi_{t}(y) \neq \xi_{t}\left(y^{\prime}\right)$. We need to show that there exists a path of the appropriate type from $\mathbb{Z} \times\{0\}$ to (y, t). By induction, it suffices to exhibit the final step on this path. This is a straightforward verification.

To prove the final claim in the no spontaneous birth case, consider the initial state ξ_{0}^{\prime} in which every 2 of ξ_{0} is changed to 0 . Then $\xi_{t}(y)=\xi_{t}^{\prime}(y)=0$.

Lemma 2.2 (3-free paths). In any configuration λ of 1 Or 3, any 3-free path is wide. Any 3-free-compliant web CA rule is wide-compliant.

Proof. Assume that a 3-free path makes a leftward diagonal move on two space-time points in state 0 . Denote the states a, b, c at nearby points thus:

$$
\begin{array}{lll}
a & b & 0 \\
& 0 & c
\end{array}
$$

We need to show that b and c cannot be both 1 . However, if $b=1$, then also $a=1$, but then $c=0$ as the path is 3-free. This establishes the first claim. A similar argument gives the second claim.

We now state a simple but important lemma that says that, although the web rules have range 2 , empty-compliance ensures that the "light speed" is essentially 1 .

Lemma 2.3 (Light speed). Assume an empty-compliant web CA. The state $\xi(x, t)$ depends on the initial configuration ξ_{0} only through the states

$$
\lambda_{0}(x-t-1), \quad \xi_{0}(x-t), \ldots, \xi_{0}(x+t), \quad \lambda_{0}(x+t+1)
$$

where λ is defined by (2.2).

Proof. The given states determine the following states at time 1:

$$
\lambda_{1}(x-t), \quad \xi_{1}(x-t+1), \ldots, \xi_{1}(x+t-1), \quad \lambda_{1}(x+t) .
$$

Then we use induction.
2.3. Examples of rules. We will introduce several examples of web CA, chosen to represent various behaviors. Finding such rules is not particularly difficult, and we know of many others with similar characteristics. Let the function N_{1} (resp., N_{2}) count the number of 1 s (resp., 2 s) among its arguments, and $N_{12}=N_{1}+N_{2}$.

Our first example is Web-Xor, whose update rule is given by

$$
f(a, b, c, d, e)= \begin{cases}1, & (b+c+d) \bmod 2=1 \\ 2, & (b+c+d) \bmod 2=0 \text { and } N_{2}(b, d)=1 \\ 0, & \text { otherwise }\end{cases}
$$

It is easy to check that Web-Xor is diagonal-compliant and has no spontaneous birth. Examples of its evolution are given in Figure 2. The top example represents typical behavior: replication with zero ether from a long random seed. The middle two examples are quasireplicators, one very simple and one similar to the one in Theorem 8 of [11]. For many seeds including these two, quasireplication can be rigorously proved via inductive schemes that completely characterize the configuration at certain specified times. In more complicated cases, such schemes can be very laborious to construct, while in other cases it may be difficult even to determine whether the seed is a quasireplicator. We will not give proofs of quasireplication; instead we refer the reader to [11] for two typical examples of inductive schemes that feature in such arguments. We believe that the final example in Figure 2 is chaotic.

Even this simplest of rules displays a remarkable variety of behavior from "exceptional" seeds. Other interesting seeds that we have found include: 110010012 (a replicator with nontrivial pattern of 2 s in the web), 110011112 (a quasireplicator with scale factor $a=4$), 111001112 (perhaps chaotic or a very complicated quasireplicator), 10110112 (apparent chaos restricted to one side).

Fig. 4. Modified Web-Xor with seeds 11111112 and 210001.

Modified Web-Xor also has no spontaneous birth, but the 2 s obey a symmetric two-point $O r$ rule in the presence of 1 s :

$$
f(a, b, c, d, e)= \begin{cases}1, & (b+c+d) \bmod 2=1 \\
2, & (b+c+d) \bmod 2=0, \text { and } \\
& \begin{array}{l}
\text { either } N_{2}(b, d)=1 \text { or } \\
\\
{\left[N_{2}(b, d)>1 \text { and } N_{1}(\ell, b, c, d, r) \geq 1\right]} \\
0,
\end{array} \\
\text { otherwise. }\end{cases}
$$

As seen in Figure 4, this rule is capable of "mixed replication" with two different ethers (top). Note that Theorem 1.1 implies that with high probability this does not happen for long random seeds. The bottom example is apparently a quasireplicator, although we have no proof, and it seems that the inductive methods of [11] do not apply. Here and in the last example of Figure 2, it is plausible that the evolution is driven by the advance of a front that lags behind the edge of the light cone by a power law. We will discuss this phenomenon in Section 6.

In Web-adapted Rule 30, 2s evolve according to Rule 30 [24], except that 2 s perform the three-point $O r$ rule in the presence of 1 s when a neighborhood occupation number is small enough:

$$
f(a, b, c, d, e)= \begin{cases}1, & (b+c+d) \bmod 2=1 \\ 2, & (b+c+d) \bmod 2=0 \text { and } N_{1}(\ell, b, c, d, r) \leq 2, \text { and } \\ & \text { either } w_{30}\left[\delta_{2}(b), \delta_{2}(c), \delta_{2}(d)\right]=1 \\ \text { or }\left[N_{2}(b, c, d) \geq 1 \text { and } N_{1}(\ell, b, c, d, r) \geq 1\right] \\ 0, & \text { otherwise. }\end{cases}
$$

Fig. 5. Chaotic behavior of Web-adapted Rule 30 with seed 100010201.

Here, w_{30} is the update rule for Rule 30, given by $w_{30}\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+a_{2}+a_{3}+\right.$ $\left.a_{2} a_{3}\right) \bmod 2$, and $\delta_{2}(a):=\mathbf{1}[a=2]$. Web-adapted Rule 30 is 3-free-compliant (and therefore wide-compliant) and has no spontaneous birth. See Figure 5 for an example. One can prove that this instance is not a replicator, but is it chaotic? There are no known methods to prove chaotic evolution, or even universally agreed definitions of the concept; however, suppose one accepts the reasonable premise that Rule 30 generates a chaotic configuration ρ started from a single 1 [24]. Then the example in Figure 5 is equally chaotic, in the sense that its evolution provably features larger and larger regions of ρ, at specific locations that are easily characterized. We will also show in Section 5 that an exponentially growing family of seeds exhibit conditional chaos in the same sense.

The above rule may be modified in various ways so as to include spontaneous birth, resulting in further rules where Theorem 1.1 applies, yet in which many provable replicators have ethers with very long temporal period, perhaps too long to be seen experimentally. In the interest of brevity, we omit the details. We briefly discuss bounds on the period in Section 8.

A number of web rules arise naturally in analysis of two-dimensional CA , as we now explain. Consider a binary $\mathrm{CA} \zeta_{t} \in\{0,1\}^{\mathbb{Z}^{2}}$, in which the new state of cell z is given by a rule defined on the Moore neighborhood $\mathcal{N}(z):=\left\{z^{\prime} \in \mathbb{Z}^{2}:\left\|z^{\prime}-z\right\|_{\infty} \leq\right.$ $1\}$. We assume that state 0 is quiescent, and that the CA solidifies, that is, $\zeta_{t}(z)=1$ implies $\zeta_{t+1}(z)=1$; the CA rule then only needs to specify when a $z \in \mathbb{Z}^{2}$ becomes occupied, that is, changes its state from 0 at time t to 1 at time $t+1$. To each such CA, we associate extremal boundary dynamics (EBD): assume that ζ_{0} vanishes on $\mathbb{Z} \times[1, \infty)$ and let λ_{t} be given by ζ_{t} on $\mathbb{Z} \times\{t\}$. Observe that λ_{t} is a onedimensional CA whose space-time configuration is a lower bound on the final configuration $\zeta_{\infty}=\bigcup_{t \geq 0} \zeta_{t}$. Now assume that we extend the boundary layer to width 2 , which leads to the $\mathrm{CA} \xi_{t} \in\{0,1,2\}^{\mathbb{Z}}$ with the following rule: $\xi_{t}(x)=1$ if $\zeta_{t}(x, t)=1\left(\right.$ so that $\left.\lambda_{t}=\xi_{t} \bmod 2\right), \xi_{t}(x)=2$ if $\zeta_{t}(x, t)=0$ but $\zeta_{t+1}(x, t)=1$, and $\xi_{t}(x)=0$ otherwise. Again, ξ_{t} is a one-dimensional CA. As $\zeta_{t}(x, t-1)=1$ exactly when either $\xi_{t-1}(x)=1$ or $\xi_{t}(x)=2, \xi_{t}$ indeed determines $t w o$ extremal layers of ζ_{t}, and is thus called two-level EBD. The evolution of ξ_{t} also provides a lower bound on ζ_{∞} and is often useful when the bound provided by λ_{t} "leaks" [13].

To conform with the rest of the paper, we assume throughout that the EBD is the 1 Or 3 CA.

The natural setting for study of the issues addressed in this paper are general web CA, a much larger class than the two-level EBD rules. The latter, however, provide many interesting examples. In fact, the different ethers, quasireplicators and (apparent) chaotic behavior were first observed in the two-level EBD generated by the Box 13 solidification CA [13], in which z becomes occupied at time $t+1$ when the number of occupied cells in $\mathcal{N}(z)$ at time t is 1 or 3 . The corresponding two-level EBD is called the Extended 1 Or 3 CA, and is given by

$$
f(a, b, c, d, e)= \begin{cases}1, & (b+c+d) \bmod 2=1 \\ 2, & (b+c+d) \bmod 2=0 \text { and } N_{12}(\ell, r, b, c, d) \in\{1,3\} \\ 0, & \text { otherwise }\end{cases}
$$

as is easy to check; therefore, this rule is equivalent to the one with the same name introduced in [11]. This rule is 4 -free-compliant, and is not covered by our main theorems. However, we establish some rigorous results in Section 9.

For simplicity, assume that the two-dimensional CA ζ is isotropic, that is, that its rule respects all isometries of the lattice \mathbb{Z}^{2}. Then there is a convenient sufficient condition that assures wide-compliance for its two-level EBD: when the neighborhood configuration is

$$
\begin{array}{lll}
a & 1 & c \\
b & 0 & 1 \\
0 & 0 & 0
\end{array}
$$

the next state at the center cell is independent of c (i.e., depends only on a and b). This holds, for example, for the following solidification rule, which we call Perturbed Box 13. Given ζ_{t}, let $\mathrm{occ}_{1}(z)$ [resp., occ $\infty_{\infty}(z)$] count the number of occupied cells among the four nearest neighbors of z [resp., in $\mathcal{N}(z)]$; then z becomes occupied if either

- occl $_{1}(z)=2$, or
- $\operatorname{occ}_{1}(z) \leq 1$ and $\operatorname{occ}_{\infty}(z) \in\{1,3\}$.

See Figure 6 for an example.
The resulting two-level EBD has the update rule

$$
f(a, b, c, d, e)= \begin{cases}1, & (b+c+d) \bmod 2=1 \\
2, & (b+c+d) \bmod 2=0, \text { and } \\
& \begin{array}{l}
\text { either } N_{12}(\ell, c, r)=2 \\
\text { or }\left[N_{12}(\ell, c, r) \leq 1 \text { and } N_{12}(\ell, b, c, d, r) \in\{1,3\}\right] \\
\text { otherwise. }
\end{array}\end{cases}
$$

We call this web CA Piggyback. It is easy to see that it is wide-compliant, and has spontaneous birth. The top two examples in Figure 3 start from long random seeds

Fig. 6. Perturbed Box 13 started from a seed in the square $[0,16]^{2}$. Initially occupied cells are black, and subsequently occupied cells are red or blue if they have state 1 or 2 , respectively, in the 2-level EBD, and otherwise grey. Unoccupied cells are white.
and are replicators with different ethers. (We will have more to say about ethers for Piggyback in Section 9.) The third example is provably nonreplicating, as it is a quasireplicator. The bottom example appears to be chaotic. Like the bottom picture in Figure 2, the evolution displays a tantalizing mixture of order and disorder.

Our results on Piggyback have rigorous implications for the two-dimensional Perturbed Box 13 rule (and similarly in other cases where 2-level EBD satisfies the conditions of Theorem 1.1). Here, we summarize some initial observations, noting that further investigation is warranted. As suggested by Figure 6, the evolution of Perturbed Box 13 from a seed in $[0, L]^{2}$ is governed by four space-time configurations of Piggyback in four quadrants with boundaries at 45° to the axes. Depending on the behavior of each, we may make deductions about the final configuration ζ_{∞}. In the case of a replicator with the "solid" ether (2) ${ }^{\infty}$, as in the bottom quadrant in this example, clearly no further filling of the ether is possible after the second level of the EBD. By Theorem 1.2, it follows that Perturbed Box 13 started from a uniformly random seed in $[0, L]^{2}$ results in a final configuration ζ_{∞} of density 1 in \mathbb{Z}^{2} with probability bounded away from 0 as $L \rightarrow \infty$. Certain other ethers of Piggyback can also be shown to fill in in a predictable manner, resulting in a corresponding ether for Perturbed Box 13, as in the top quadrant. A similar analysis can likely be carried through for certain simple quasireplicators such as the one in the right quadrant. When Piggyback is a replicator with zero ether, as in the left quadrant, it appears plausible that the subsequent filling-in by Perturbed Box 13 results in a chaotic final configuration. See [12, 13] for detailed analysis of the filling-in process for some other EBD.

We conclude by mentioning a natural rule that seems intractable by our current methods. Web 1 Or 3 is the web CA in which 2s perform 1 Or 3 on the points not

FIG. 7. Chaotic behavior of Web 1 Or 3 from a random seed of 32 sites.
occupied by 1 s :

$$
f(a, b, c, d, e)= \begin{cases}1, & (b+c+d) \bmod 2=1 \\ 2, & (b+c+d) \bmod 2=0 \text { and } N_{2}(b, c, d) \bmod 2=1 \\ 0, & \text { otherwise }\end{cases}
$$

Figure 7 gives an example of an evolution from a random seed of 1 s and 2 s , with an apparent message of near-criticality and chaos.
2.4. Generalizations. The simplest additive rule, $\operatorname{Xor} \mathrm{CA} \mu_{t}$, is defined on the state space $\{0,1\}^{\mathbb{Z}}$ by

$$
\mu_{t}(x)=\mu_{t-1}(x-1)+\mu_{t-1}(x+1) \bmod 2 .
$$

One might consider μ, and not λ, to be the most natural candidate for the web dynamics. However, while μ does have some points of interest (see, e.g., Proposition 6.5), many of the main issues we consider become trivial in this setting. For example, μ either only occupies points satisfying a parity constraint or generates an impenetrable web even for empty paths [5, 12].

In the other direction, one might ask whether similar results hold if λ is replaced by an arbitrary additive rule. It is indeed likely that a more general theory could be developed in this setting. One complication is that predecessors of the all-0 state will no longer necessarily be unique (as they are for 1 Or 3-see Lemma 3.4) and as a result "mixed replicators" similar to the top example of Figure 4 may be the norm.

On the other hand, all our results generalize with appropriate minor changes in the definitions to CA with a quiescent state 0 , first-level state 1 and other states $2, \ldots, s$.
3. Additive dynamics from a single occupied site. Recall that λ^{\bullet} denotes 1 Or 3 started from a single 1 . In this section, we collect properties that we will need. All these results are elementary and many are well known. First is a rescaling property, illustrated in Figure 8.

FIG. 8. An illustration of Lemma 3.1, with $m=2$. Highlighted points comprise a "separated out" copy of λ^{\bullet}.

Lemma 3.1 (Rescaling). For any nonnegative integers a and m,

$$
\lambda_{a 2^{m}}^{\bullet}(x)= \begin{cases}\lambda_{a}^{\bullet}(y), & \text { if } x=2^{m} y \text { for } y \in \mathbb{Z} \\ 0, & \text { otherwise } .\end{cases}
$$

Proof. The case $m=1$ follows from additivity on observing that λ_{2}^{\bullet} is 10101 . For $m>1$, we apply the $m=1$ case iteratively.

Lemma 3.2 (Periodicity properties).
(i) For $t \geq 0, \lambda_{t}^{\bullet}(0)=\lambda_{t}^{\bullet}(\pm t)=1$ while $\lambda_{t}^{\bullet}(\pm(t-1))=t \bmod 2$.
(ii) For all $n \geq 0, \lambda_{2^{n}}^{\bullet}(x)=1$ exactly at $x=0, \pm 2^{n}$.
(iii) For all $n \geq 0, \lambda_{2^{n}+2^{n-1}}(x)=1$ exactly at $x=0, \pm 2^{n}, \pm\left(2^{n}+2^{n-1}\right)$.
(iv) For any $k \geq 1$, the sequence of edge configurations of λ^{\bullet} on $[t-k+1, t] \times$ $\{t\}$ is periodic (from $t=0$ on) with period equal to 2^{p} where $2^{p-1}<k \leq 2^{p}$.

Proof. Parts (ii) and (iii) follow from Lemma 3.1, and (iv) follows from (ii), with (i) as a special case. (See Figure 9.)

For some purposes, the following recursive description of λ^{\bullet} is useful, a variant of the one given [21]. See Figure 10 for an illustration. Given a space-time configuration A on $S_{n}=\left[0,2^{n}\right] \times\left[0,2^{n}-1\right]$, we say that A is placed at a space-time

FIG. 9. Evolution of λ^{\bullet} with highlighted boundary strip of width 8 and temporal period 8 .

FIG. 10. Recursive description of $\lambda^{\bullet}: B_{4}$ is composed of two copies of B_{3} (red), 2 copies of B_{2} (green) and two copies of \bar{B}_{2} (blue).
point s if the configuration in $s+S_{n}$ is the corresponding translate of A. Let B_{n} be the space-time configuration of λ^{\bullet} on S_{n}. Reflect B_{n} around its vertical bisector and denote the resulting configuration on S_{n} by \bar{B}_{n}.

Lemma 3.3 (Recursion). We have $B_{0}=10$ and $B_{1}=\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0\end{array}$. Moreover, for $n \geq 2, B_{n}$ is obtained by placing B_{n-1} at $(0,0)$ and at $\left(2^{n-1}, 2^{n-1}\right) ; B_{n-2}$ at $\left(0,2^{n-1}\right)$ and at $\left(0,2^{n-1}+2^{n-2}\right) ;$ and \bar{B}_{n-2} at $\left(2^{n-2}, 2^{n-1}\right)$ and at $\left(2^{n-2}, 2^{n-1}+\right.$ 2^{n-2}). All placements result in consistent state assignments at overlaps.

Proof. This follows easily from (i), (ii) and (iii) of Lemma 3.2.
Our results for seeds depend on the fact that λ^{\bullet} has certain a unique periodic configuration above every region of 0 s. This property does not hold for general additive rules.

Lemma 3.4 (Predecessors of 0). For an arbitrary initial state λ_{0}, suppose that $\lambda_{t} \equiv 0$ on $[a, b]$, but $\lambda_{t-1} \not \equiv 0$ on $[a-1, b+1]$. Then λ_{t-1} is a subword of the periodic word (110) ${ }^{\infty}$ on $[a-1, b+1]$.

Proof. Consider the four possible values for the pair $\lambda_{t-1}(a-1)$ and $\lambda_{t-1}(a)$. Once these states are fixed, the rest of λ_{t-1} on $[a-1, b+1]$ can be determined sequentially.

Fix an initial state for λ. A void is a finite inverted triangle of the form $\bigcup_{i \geq 0}([a+$ $i, b-i] \times\{t+i\}$), on which the configuration is identically 0 , and that is maximal with these properties with respect to inclusion. Its width is $b-a+1$, and its start time is t.

Lemma 3.5 (Voids). In λ^{\bullet}, each void has width $2^{k}-1$ and start time divisible by 2^{k-1} for some integer $k \geq 1$. Furthermore, for every fixed k, the union of all voids of width at least $2^{k}-1$ has density 1 within the forward cone of $(0,0)$.

Fig. 11. Illustration of Proposition 3.6 with $m=2$. The highlighted intervals at distance 2^{2} above two selected voids have the claimed periodic configuration.

Proof. This is a straightforward application of Lemma 3.3.
Finally, we deduce the following fact, which will be crucial for our results on percolation and ethers. See Figure 11 for an illustration.

Proposition 3.6 (Periodic interval above a void). In λ^{\bullet}, assume that $[a, b] \times$ $\{t\}$ is the top row of a void of width $2^{k}-1$. For $m<k$, the state of interval $[a-$ $\left.2^{m}, b+2^{m}\right] \times\left\{t-2^{m}\right\}$ is a segment of the following infinite periodic string of period $3 \cdot 2^{m}$:

$$
\begin{equation*}
(1 \square 1 \square 0 \square)^{\infty} \text {. } \tag{3.1}
\end{equation*}
$$

Here, \square represents a string of $2^{m}-1$ consecutive $0 s$, and the segment begins and ends with a full \square.

Proof. As t is divisible by 2^{k-1}, and therefore by $2^{m}, \lambda_{t}^{\bullet}$ on $[a, b] \times\{t\}$ is of the form

$$
\square 0 \square \cdots 0 \square
$$

by Lemma 3.1. Then, by the same lemma, and Lemma 3.4 applied to $\lambda_{t / 2^{m}}$, the configuration on $\left[a-2^{m}, b+2^{m}\right] \times\left\{t-2^{m}\right\}$ is either of the claimed type started and ended with \square, or all 0 s. The latter possibility contradicts maximality of the original void.
4. Duality and randomness. When the initial configuration of 1 Or 3 is uniformly random (on some set), the resulting space-time configuration is of course not uniformly random but has a high degree of dependence. Nevertheless, in this section we show how to identify space-time sets on which the randomness is uniform. The additive structure of the CA rule ensures that the space-time configuration is a linear function (modulo 2) of the initial states, and the idea is to find cases where the associated matrix is upper triangular.

Recall that λ_{t}^{\bullet} is the $1 \operatorname{Or} 3$ rule started with only the origin occupied. Let λ_{t}^{A} denote the rule started with the set of initially occupied sites exactly equal to $A \subseteq$ \mathbb{Z}. We will extensively use the following version of cancellative duality.

Lemma 4.1 (Duality). We have $\lambda_{t}^{A}(x)=\sum_{y \in A} \lambda_{t}^{\bullet}(x-y) \bmod 2$.
Proof. This follows easily by additivity and induction on t.
Observe that by symmetry and translation-invariance, $\lambda_{t}^{\bullet}(x-y)=\lambda_{t}^{\bullet}(y-x)=$ $\lambda_{t}^{\{x\}}(y)$.

Suppose we have an ordered set $S=\left\{\left(x_{i}, t_{i}\right): i=1,2, \ldots, n\right\}$, of space-time points. A function $F: S \rightarrow \mathbb{Z}$ is a dual assignment for S if for all $i, j \in\{1, \ldots, n\}$,

$$
\lambda^{\bullet}\left(x_{j}-F\left(x_{i}, t_{i}\right), t_{j}\right)= \begin{cases}1, & \text { if } j=i, \\ 0, & \text { if } j<i .\end{cases}
$$

(There is no restriction when $j>i$.) We think of $F(\cdot, \cdot)$ as sites in the initial configuration. The idea is that in order to determine $\lambda^{A}\left(x_{i}, t_{i}\right)$, we need new information about A at each successive i.

Proposition 4.2 (Randomness via dual assignment). Suppose that the initial configuration λ_{0} of 1 Or 3 is uniformly random on some fixed set $K \subseteq \mathbb{Z}$ and deterministic on K^{C}. Let S be a fixed set of space-time points. If S has a dual assignment whose image is contained in K, then λ is uniformly random on S.

Proof. Writing

$$
\begin{aligned}
& K_{i}=\left\{y \in K: \lambda_{t_{i}}\left(x_{i}-y\right)=1\right\} \\
& K_{i}^{\prime}=\left\{y \in K^{C}: \lambda_{t_{i}}\left(x_{i}-y\right)=1\right\}
\end{aligned}
$$

and

$$
c_{i}=\sum_{y \in K_{i}^{\prime}} \lambda_{0}(y) \bmod 2,
$$

we have by Lemma 4.1,

$$
\lambda\left(x_{i}, t_{i}\right)=\sum_{y \in K_{i}} \lambda_{0}(y)+c_{i} \bmod 2 .
$$

But K_{i} contains an element, $F\left(x_{i}, t_{i}\right)$, that is not in $\bigcup_{j<i} K_{j}$, therefore, $\lambda\left(x_{i}, t_{i}\right)$ is uniformly random conditional on ($\left.\lambda\left(x_{j}, t_{j}\right): j<i\right)$.

A particularly useful special case is that a 1 adjacent to a string of $0 s$ in λ^{\bullet} heralds uniformly random intervals in the evolution from a random seed.

FIG. 12. All empty diagonal paths from an interval at time 0 are highlighted in blue. The initial configuration is uniformly random.

Corollary 4.3 (Random intervals). Fix integers a and $L, k>0$. Let the initial configuration λ_{0} be a uniformly random binary seed on $[0, L]$, and suppose that λ_{t}^{\bullet} on $[a, a+k]$ is 1 followed by $k 0 s$. Then for any $x \in[-a, L-a-k]$, the configuration λ_{t} is uniformly random on $[x, x+k]$.

Proof. By symmetry, λ_{t}^{\bullet} on $[-a-k,-a]$ is k s followed by 1 . To find a dual assignment of $[x, x+k] \times\{t\}$, order the set from left to right, and let $F(y, t)=$ $y+a$. Clearly, the image of this assignment is contained in $[0, L]$. Now apply Proposition 4.2.
5. Subcritical percolation. In this section, we prove Theorem 1.5, which states that when 1 Or 3 is started from a uniformly random initial configuration on \mathbb{Z}, the probability of an empty diagonal or wide path from the initial interval $\mathbb{Z} \times\{0\}$ to the point $(0, t)$ decays exponentially in t. See Figures 12 and 13 for the diagonal and wide cases, respectively. Note the contrast with Figure 18 in the next section for empty paths.

Our approach is to use dual assignments to control the probabilities of paths, but the details of the argument are very different for the two types of path. A diagonal path has 2 choices at each step, and any given point has state 0 with probability $1 / 2$, suggesting a critical bound. To improve this to a subcritical bound, we consider a leftmost path, and use special properties of λ. On the other hand, we control

FIG. 13. All wide paths from an interval at time 0 are highlighted in blue. The initial configuration is uniformly random.
wide paths via a random process of space-time intervals that terminates when an interval has even length.

Later in the section we also discuss θ-free paths, and show that notwithstanding Theorem 1.5, there is an exponential family of initial configurations for which percolation by wide paths does occur.

5.1. Empty diagonal paths.

Proof of Theorem 1.5, case of empty diagonal paths. We may assume without loss of generality that t is even, since the configuration at time 1 is also uniformly random, and the probability in question is strictly less than 1 for $t=1$.

Fix a diagonal path π from $(x, 0)$ to $(0, t)$. We will find an upper bound for the probability that π is the leftmost empty diagonal path from $\mathbb{Z} \times\{0\}$ to $(0, t)$. To this end, partition the steps of π into segments of length 2 . During each such segment, the path has one of the following forms: left-left, right-right, left-right or rightleft. When π makes a right-left move, that is $(x, s) \rightarrow(x+1, s+1) \rightarrow(x, s+2)$, the leftmost property requires a 1 at $(x-1, s+1)$; we call these points (which are not on the path) the corner points of the path, and let $N(\pi)$ be their number, that is, the number of right-left segments that start at even times.

We will give a dual assignment F of the path together with the set of its corner points (see Figure 14 for an illustration). Order points on the path with increasing time, and place a corner point (x, s) in the ordering immediately after the point on the path at the time $s+1$. For every corner point (x, s), let $F(x, s)=x-s+1$. For every point (x, s) on the path, let $F(x, s)$ be either $x-s$ or $x+s$, according to whether the path arrives to (x, s) from the right [i.e., from $(x+1, s-1)$] or from the left [i.e., from $(x-1, s-1)$], respectively. We let $F(x, 0)=x$.

To check that F is a dual assignment, we will use Lemma 3.2(i). Fix a point (x, s) on the path. All positions assigned by F to points earlier in the order lie in $[x-s+2, x+s]$ or $[x-s, x+s-2]$ according to whether the path arrives to (x, s) from the right of left, so the required condition is satisfied for this point. Now suppose $(x-1, s+1)$ is a corner point arising from the moves $(x, s) \rightarrow(x+$

FIG. 14. A leftmost diagonal path together with a dual assignment for the points of the path (white discs) and the corner points (black discs). The dashed lines connect each point to its assigned position in the initial configuration.
$1, s+1) \rightarrow(x, s+2)$ in the path. This corner point is assigned to $F(x-1, s+1)=$ $x-s-1$. We have $F(x, s+2)=x-s-2$, and all points earlier than $(x, s+2)$ were assigned integers at least $x-s$. Since $s+1$ is odd, $\lambda^{\bullet}(x-1-(x-s-1), s+$ $1)=\lambda^{\bullet}(s, s+1)=1$. Finally, since $s+2$ is even, $\lambda^{\bullet}(x-(x-s-1), s+2)=$ $\lambda^{\bullet}(s+1, s+2)=0$, as required.

Now, using Proposition 4.2,

$$
\begin{aligned}
& \mathbf{P}(\text { an empty diagonal path from } \mathbb{Z} \times\{0\} \text { to }(0, t) \text { exists }) \\
& \quad \leq \sum_{\pi} \mathbf{P}(\pi \text { is the leftmost empty diagonal path from } \mathbb{Z} \times\{0\} \text { to }(0, t)) \\
& \quad \leq \sum_{\pi}\left(\frac{1}{2}\right)^{t+1+N(\pi)},
\end{aligned}
$$

where both sums are over all diagonal paths from $\mathbb{Z} \times\{0\}$ to $(0, t)$. Let P_{t} be the last sum above. Then, by considering the last two steps of the path,

$$
P_{t+2}=\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}\right) P_{t},
$$

so, recalling that t is even, $P_{t}=(1 / 2) \cdot(7 / 8)^{t / 2}$.
As an aside, we mention that the assertion of Theorem 1.5 for diagonal paths also holds when λ is replaced by the Xor CA μ, with a much simpler proof, since the set of all space-time points that the origin is connected to by diagonal paths is a rectangle.

5.2. Wide paths.

Proof of Theorem 1.5, case of wide paths. We will prove that

$$
\begin{equation*}
\mathbf{P}\left(\exists \text { a wide path from }(0,0) \text { to } \mathbb{Z} \times\{t\} \mid \lambda_{0}(0)=0\right)<e^{-c t} \tag{5.1}
\end{equation*}
$$

for some $c>0$. This clearly suffices by translation-invariance, since there are only $2 t+1$ points at time 0 from which a path can reach $(0, t)$. Therefore, we will henceforth assume that $\lambda_{0}(0)=0$ and that λ_{0} is uniformly random elsewhere.

We recursively define intervals $I_{t}=\left[L_{t}, R_{t}\right]$ for $t=-1,0, \ldots, T$, where $T \leq$ ∞, as follows. Start with $L_{-1}=R_{-1}=0$; then let I_{0} be the maximal subinterval of \mathbb{Z} containing 0 on which $\lambda_{0} \equiv 0$. If $I_{t}=\varnothing$, then we set $T=t$ and there is no I_{t+1}. Otherwise, if $\left|I_{t}\right| \geq 2$, then I_{t+1} is the interval $\left[L_{t}+1, R_{t}-1\right]$ (which is \varnothing when $\left|I_{t}\right|=2$). If $\left|I_{t}\right|=1$, then I_{t+1} is the maximal subinterval of \mathbb{Z} containing $R_{t}=L_{t}$ on which $\lambda_{t+1} \equiv 0$. Observe that for each $t<T$ we have $\lambda_{t} \equiv 0$ on I_{t}, while $\lambda_{t}\left(L_{t}-1\right)=\lambda_{t}\left(R_{t}+1\right)=1$. This follows from the CA rule for λ_{t} by induction on t; the key observation is that if $\left|I_{t}\right|=1$ then $\lambda_{t+1}\left(L_{t}\right)=0$ (see Figure 15). Furthermore, any wide path started at $(0,0)$ is within $\bigcup_{t<T}\left(I_{t} \times\{t\}\right)$.

FIG. 15. The process of intervals of zeros used to prove nonpercolation by wide paths. Here, the interval lengths $\left(\left|I_{0}\right|,\left|I_{1}\right|, \ldots,\left|I_{T}\right|\right)$ are $(5,3,1,7,5,3,1,4,2,0)$. The witness points are highlighted. The corresponding binary sequence $\left(X_{1}, \ldots, X_{2 T+1}\right)$ is shown below; it is obtained by reading the states of the witness points in conventional text order on the page, except with the left (red) intervals reversed. The dual assignment of witness points to initial positions is shown via dashed lines (witness points in the top row are assigned to themselves).

We now define an ordered sequence of $2 T+1$ space-time points, which we call witness points, associated with the above sequence of intervals. If $\left|I_{t}\right|=1$, we call $t+1$ a refresh time; we also declare 0 a refresh time. Let $0=\tau_{0}<\tau_{1}<\cdots$ be the refresh times. We build the sequence of witness points by appending certain points at each refresh time τ_{i}, in order. Specifically, for every i, we append all points in $I_{\tau_{i}} \times\left\{\tau_{i}\right\}$, with the exception of $z_{i}=\left(L_{\tau_{i}-1}, \tau_{i}\right)$, in the following order: points to the left of z_{i} in the right-to-left order, followed by points to the right of z_{i} in the left-to-right order. Let $X_{i}=\lambda\left(s_{i}\right)$, where $s_{1}, \ldots, s_{2 T+1}$ are the witness points in the order described. Write X for the random finite or infinite sequence given by $X=\left(X_{1}, \ldots, X_{2 T+1}\right)$ if $T<\infty$ and $X=\left(X_{1}, X_{2}, \ldots\right)$ if $T=\infty$. Our goal is to show that X is equal in distribution to a sequence of independent fair coin flips stopped at a certain a.s. finite stopping time.

Let Y_{1}, Y_{2}, \ldots be independent random variables taking values 0 and 1 with equal probability. Partition this sequence into blocks of the form $0^{a} 10^{b} 1$, where $a, b \geq 0$, and let $S \geq 1$ be the location of the endpoint of the first such block of odd length. Then S is a.s. finite and

$$
\begin{equation*}
\mathbf{P}(S \geq t)<e^{-c t} \tag{5.2}
\end{equation*}
$$

since S is at most the waiting time for the pattern 11011. Write $Y^{\prime}:=\left(Y_{1}, \ldots, Y_{S}\right)$. We claim

$$
\begin{equation*}
X \stackrel{d}{=} Y^{\prime} . \tag{5.3}
\end{equation*}
$$

Once (5.3) is proved, the exponential bound (5.2) implies (5.1), since $2 T+1 \stackrel{d}{=} S$.
We now proceed to prove (5.3). Since $\mathbf{P}(S<\infty)=1$, the random variable Y^{\prime} has countable support, thus it suffices to show that $\mathbf{P}(X=y)=\mathbf{P}\left(Y^{\prime}=y\right)$ for any y with $\mathbf{P}\left(Y^{\prime}=y\right)>0$. Choose such a y. The event $\{X=y\}$ determines T

FIG. 16. The sequence of principal voids $V_{0}, V_{1}, \ldots, V_{8}$, numbered from top to bottom; V_{0} and V_{1} each consist of a single point.
and I_{0}, \ldots, I_{T} and, therefore, the locations of the witness points. It follows that the event $\{X=y\}$ is precisely the event that λ takes the specified values y on these (deterministic) witness points. Now we use a dual assignment to show via Proposition 4.2

$$
\mathbf{P}(X=y)=\left(\frac{1}{2}\right)^{\text {length of } y},
$$

as required. Considering the witness points in their order, we assign to each (x, t) either $x+t$ or $x-t$, depending on whether it is to the right or left of z_{i} in its interval. (See Figure 15.) This is a dual assignment simply because $\lambda_{t}^{\bullet}(\pm t)=1$ and $\lambda_{t}^{\bullet}(x)=0$ for $x \in[-t, t]^{C}$.
5.3. θ-free paths. We now discuss various aspects of 3 -free and 4 -free paths. The results of this subsection are not needed for the proofs of Theorems 1.1-1.4.

Since 3-free paths are wide (Lemma 2.2), the exponential bound (1.1) holds for 3 -free paths and there are no infinite 3 -free paths when λ_{0} is uniformly random on \mathbb{Z}. Do such paths exist started from special initial conditions? Indeed they do, as shown by our next result.

Define the sequence of principal voids V_{0}, V_{1}, \ldots of λ^{\bullet} according to Figure 16 (so that $V_{2 j}$ and $V_{2 j+1}$ have width $2^{j+1}-1$ and respective start times $2 \cdot 2^{j}$ and $\left.3 \cdot 2^{j}\right)$. For $L>0$, let $W_{i}^{L}=V_{i} \cap\left(V_{i}+(L, 0)\right)$ [the notation means that V_{i} is translated by the vector ($L, 0$)], and observe that W_{i} is filled with 0 s when 1 Or 3 is started from any seed on $[0, L]$.

See Figure 17 for an illustration of the next result, and of Corollary 5.2 below.
Proposition 5.1 (Exceptional percolation). Assume λ_{0} is a seed on $[0, L]$ that vanishes outside $4 \mathbb{Z}$, where L is a multiple of 4 . Define the sets $W_{i}=W_{i}^{L}$ as above. Let i be such that $L \leq 2^{\lfloor i / 2\rfloor}-2$. From every point in W_{i} there is a 3 -free path to some point in W_{i+1}. In particular, from any such point there is an infinite 3-free path.

FIG. 17. Top: infinite 3-free paths (starting at time 64) in 1 Or 3 from a seed supported in $4 \mathbb{Z}$. Bottom: corresponding evolution of Web-adapted Rule 30, started 64 time units later with a single 2 added, and containing successively larger portions of Rule 30 evolution.

Proof. For a maximal interval $I_{t} \subset \mathbb{Z}$ on which λ_{t} vanishes, define its successor I_{t+1} to be the maximal interval on which λ_{t+1} vanishes and such that $I_{t} \cap I_{t+1} \neq \varnothing$; if such an interval does not exist, let $I_{t+1}=\varnothing$.

Observe that λ_{t} vanishes outside $2 \mathbb{Z}$ at all even times t. Using this, it is easy to verify by case-checking that every maximal interval of 0 s has odd length at every time. It follows that any nonempty maximal interval of 0 s has a nonempty successor. Similarly, since λ_{t} vanishes outside $4 \mathbb{Z}$ when t a multiple of 4 , it is easily verified that for any t, from every point in $I_{t} \times\{t\}$ there is a 3-free path to some point in $I_{t+1} \times\{t+1\}$.

Let the apex w_{i} be the bottommost point of W_{i} (which is unique since L is even). Clearly, from every point in W_{i} there is a 3-free path to w_{i}. Moreover, by the above, there is a 3 -free path from w_{i} to $\mathbb{Z} \times\left\{t_{W_{i+1}}\right\}$, where $t_{W_{i+1}}$ is the time of the top interval of W_{i+1}. Finally, the condition $L \leq 2^{\lfloor i / 2\rfloor}-2$ ensures that this top interval contains the intersection of the forward cone of w_{i} with $\mathbb{Z} \times\left\{t_{W_{i+1}}\right\}$.

In fact, as a consequence of our next result, there are exponentially many (in L) seeds on $[0, L]$ whose forward cone contains an infinite 3 -free path starting at time 0. As a result, as discussed in Section 2 we can construct an exponential family of binary seeds which, after a suitable replacement of some 0 s by 2 s , yield seeds for the Web-adapted Rule 30 CA that are "as chaotic" as Rule 30. We now make this precise. Let \mathcal{E}_{T} denote the configuration of Rule 30 started from a single 1 at the origin, restricted to the region $\{(x, t):|x| \leq t \leq T\}$, and with all 1s changed to 2 s .

Corollary 5.2 (Chaos in Web-adapted Rule 30). There exist at least $c_{1} \exp \left(c_{2} L\right)$ binary seeds on $[0, L]$ with the following property. Each of these seeds has a location $z \in[0, L]$ occupied by a 0 ; if this 0 is changed into a 2 , the resulting seed for Web-adapted Rule 30 generates a configuration that contains, for all T, a translated copy of \mathcal{E}_{T} within the first $c_{3} T$ time steps. Here, c_{1}, c_{2}, c_{3} are absolute positive constants.

Proof. Let k be an integer. Denote the interval directly above (and of the same length as) the top interval of $W_{i}^{4 k}$ by $J_{i}^{4 k}$. Suppose first that λ_{0} is an arbitrary configuration that vanishes off $4 \mathbb{Z}$ on $[0,4 k-4]$, and then on $[4 k-3,4 k]$ is chosen to be either 0000 or 0001 so as to ensure that for all i the configuration in $J_{i}^{4 k}$ is a subword of (110) ${ }^{\infty}$. That this can be achieved follows from Lemma 3.4 and additivity.

Let i be such that $4 k \leq 2^{\lfloor i / 2\rfloor}-2$, and consider the sequence of successor intervals of the top interval of W_{i}. Using Proposition 5.1 (and its proof), all such successors are nonempty, and the successor at the time of J_{j} (for $j>i$) consists of a single point. Furthermore, this point is at most $4 k$ away from the center of J_{j} (for odd j) or from the center of the left half of J_{j} (for even j). These points will form the starting points of the translated copies of \mathcal{E}_{T}.

Our set of binary configurations is the set of all resulting λ_{t}, where t is the time of the top interval of W_{i}; we define z to be the center (say) of this interval. This gives an exponential family of configurations because the map on $\{0,1\}^{\mathbb{Z}}$ corresponding to one step of 1 Or 3 is injective when restricted to seeds. This is easily verified (see Section 9 for more information).

To conclude, we need the following properties of Web-adapted Rule 30, which are easily checked from its definition.
(i) If 1 s are initially confined to sites in $4 \mathbb{Z}$, and if at some time a maximal interval of 0 s and 2 s contains at least one 2 , so does its successor interval.
(ii) Initial states $(110)^{\infty} 112(110)^{\infty}$ and $0^{\infty} 20^{\infty}$, with the 2 at the origin, result in the same configuration on $\mathbb{Z} \times[1, \infty)$.

We remark that a variant of Corollary 5.2 may be proved in which we allow any finite set of 0 s , in addition to the one at location z, to be changed to 2 s . The only change in the conclusion is that c_{3} now depends on the seed. This follows from two additional observations. First, in 1 Or 3, from any given set of maximal intervals of 0 s in λ_{0}, the number of successors cannot increase over time, and must thus eventually stabilize. Second, if two Web-adapted Rule 30 seeds agree on $[a, b]$, and have 1s in a and b but no 1s outside [a,b], then their configurations agree on the forward cone of $[a, b]$.

We conclude this section with the following conjecture supported by computer experiments.

Conjecture 5.3. The exponential bound (1.1) in Theorem 1.5 holds when diagonal path is replaced by 4 -free path.

FIG. 18. All empty paths from an interval at time 0 are highlighted in blue.
6. Supercritical percolation. In this section, we consider empty paths from random initial conditions, and in particular we prove the percolation result Theorem 1.6. The results of this section are not needed for the proofs of Theorems 1.11.4 , but they are of independent interest and complement those of the previous section. We also consider initial conditions where the randomness is restricted to the half-line or a finite seed. Here, many questions are open, but we establish some preliminary results. The questions we consider are relevant to further understanding certain web CA behavior.
6.1. Percolation of empty paths. As Figure 18 suggests, the set of points reachable by empty paths emanating from an interval at time 0 form an interval at each subsequent time. With random initial conditions, this interval spreads linearly provided it survives. Proving this is the key to Theorem 1.6.

Suppose λ_{0} is given. The rightward Z-path from a space-time point (x, t) is an infinite sequence of points $\left(r_{s}, s\right), s \geq t$ defined as follows. Start with $r_{t}=x$. Inductively, let r_{s+1} be the largest integer y in $\left(-\infty, r_{s}+1\right]$ for which $\lambda_{s+1}(y)$ is 0 ; or if there is no such y we take $r_{u}=-\infty$ for all $u>s$. Note that $\lambda\left(r_{s}, s\right)=0$ for all $s>t$ for which r_{s} is finite, but not necessarily for $s=t$. Analogously, we define the leftward Z-path $\left(\ell_{s}, s\right), s \geq t$ by reversing the space coordinate in the definition.

Lemma 6.1 (Properties of Z-paths). Suppose λ is 1 Or 3 from any initial configuration.
(i) Suppose $\lambda(0,0)=0$ and let $\left(r_{t}, t\right), t \geq 0$ be the rightward Z-path from $(0,0)$. If $x \leq r_{t}$ and $\lambda(x, t)=0$ then there is a empty path from $(-\infty, 0] \times\{0\}$ to (x, t).
(ii) Fix an interval $[a, b]$ with $a \leq b$. Let $\left(\ell_{t}, t\right)$ be the leftward Z-path from $(a, 0)$, and $\left(r_{t}, t\right)$ the rightward Z-path from $(b, 0)$. Suppose that $\ell_{s} \leq r_{s}$ for every $s \leq t$. Then for any $y \in\left[\ell_{t}, r_{t}\right]$ with $\lambda_{t}(y)=0$, there is an empty path from $[a-$ $2, b+2] \times\{0\}$ to (y, t).
(iii) Under the assumptions of (ii), suppose also that $\lambda_{0}(a)=\lambda_{0}(b)=0$. Then for any $y \in\left[\ell_{t}, r_{t}\right]$ with $\lambda_{t}(y)=0$, there is an empty path from $[a, b] \times\{0\}$ to (y, t).
(iv) Conversely, if there is an empty path from $[a, b] \times\{0\}$ to some (y, t), then $\ell_{s} \leq r_{s}$ for all $s \leq t$, and $\ell_{t} \leq y \leq r_{t}$.

Proof. We omit the proof of (i), as it is similar to the proof of (iii), which proceeds by induction as follows. The argument reduces to verifying (iii) at time $t=1$. Assume $\ell_{1} \leq r_{1}$ and take $y \in\left[\ell_{1}, r_{1}\right] \subseteq[a-1, b+1]$ with $\lambda_{1}(y)=0$. Then there exists an $x \in\{y-1, y, y+1\}$ with $\lambda_{0}(x)=0$. It remains to verify that x can be chosen to be in $[a, b]$. If $y \in[a+1, b-1]$ this is clear; if $y \in\{b, b+1\}$, we may take $x=b$ and if $y \in\{a, a+1\}$ we may take $x=a$.

The above argument also proves (ii): we verify the claim at time $t=1$ and then use (iii). The last claim (iv) is an easy consequence of definitions of empty and Z-paths.

The key fact in establishing percolation of empty paths is that r_{t} has drift $1 / 4$. The proof is somewhat similar to that of nonpercolation for wide paths, Theorem 1.5.

Lemma 6.2 (Drift). Suppose that the initial configuration λ_{0} is uniformly random on $\mathbb{Z} \backslash\{0\}$ and $\lambda_{0}(0)=0$. Let $\left(r_{t}, t\right), t \geq 0$ be the rightward Z-path from $(0,0)$. For every $\varepsilon>0$, there exists a constant $c=c(\varepsilon)>0$ so that $\mathbf{P}\left(\left|r_{t}-t / 4\right|>\right.$ $\varepsilon t)<e^{-c t}$.

Proof. We first describe an exploration process that determines the rightward Z-path from the origin $(0,0)$. We designate $(0,0)$ to be the first refresh point. Now we examine the states of the points $(1,1),(0,1),(-1,1),(-2,1), \ldots$, in this order, until we find the first point with state 0 . Let G be the number of points examined, and call them witness points. Since the states of these witness points are $01 \cdots 1$ (from left to right), certain states at the immediately following time steps are determined. Specifically, the pattern $01 \cdots 1$ is immediately followed by patterns of the same form, but with the length decreasing by 2 at each step and centered at the same location, ending with either 01 or 0 according to whether G was even or odd. (See Figure 19.) We designate the location of the 0 in this last pattern to be the next refresh point. It is $(1-\lfloor G / 2\rfloor,\lceil G / 2\rceil)$. Now iterate the process starting at the new refresh point. Note that the rightward Z-path from $(0,0)$ consists precisely of the 0 s at the left ends of the $01 \cdots 1$ patterns, including the refresh points. Observe also that the Z-path is determined by the locations of the refresh points, and that these are determined by examination of the witness points.

Now consider the above exploration process for the initial configuration that is uniformly random on $\mathbb{Z} \backslash\{0\}$ and 0 at 0 . Let $\left(X_{i}\right)_{i \geq 1}$ be the sequence of states of the witness points, in the order that they are examined by the exploration process. We claim that $\left(X_{i}\right)_{i \geq 1}$ is uniformly random. It suffices to check that $\left(X_{1}, \ldots, X_{n}\right)$

FIG. 19. The rightward Z-path (solid lines) from the origin, together with its refresh points (circled), and witness points (highlighted in red). A dual assignment of the witness points to initial positions is indicated by the dashed lines. The states of the witness points in the order they are examined are shown below.
is uniformly random. This follows from Proposition 4.2, by the dual assignment in which a witness point (x, t) is assigned to $x+t$ if it is the rightmost witness point in its $01 \cdots 1$ pattern, and otherwise to $x-t$. See Figure 19.

Let G_{i} be the number of witness points examined in the row immediately below the i th refresh point. Then $\left(G_{i}\right)$ are i.i.d. Geometric $(1 / 2)$ random variables. Furthermore, the sequence of refresh points is a random walk on \mathbb{Z}^{2} with steps $\left(1-\left\lfloor G_{i} / 2\right\rfloor,\left\lceil G_{i} / 2\right\rceil\right)$. As $\mathbf{E}\left\lfloor G_{i} / 2\right\rfloor=2 / 3$ and $\mathbf{E}\left\lceil G_{i} / 2\right\rceil=4 / 3$, each step has expectation vector $(1 / 3,4 / 3)$. The proof is concluded by standard large deviation estimates.

Proof of Theorem 1.6. For L to be chosen later, consider the leftward path $\left(\ell_{t}, t\right)$ started at $(-L, 0)$ and the rightward path $\left(r_{t}, t\right)$ started at $(0, L)$. Then, by a union bound and symmetry,

$$
\mathbf{P}\left(\ell_{t}<r_{t} \forall t\right) \geq \mathbf{P}\left(\ell_{t} \leq-1 \text { and } r_{t} \geq 1 \forall t\right) \geq 1-2 \mathbf{P}\left(r_{t} \leq 0 \text { for some } t\right) .
$$

By Lemma 6.2, for L large enough we have $\mathbf{P}\left(r_{t} \leq 0\right.$ for some $\left.t\right) \leq 1 / 3$. Call a site $x \in \mathbb{Z} \operatorname{good}$ if an infinite empty path starts at ($x, 0$). Thus, by Lemma 6.1(ii),

$$
\mathbf{P}([-L-2, L+2] \text { contains some good site }) \geq \mathbf{P}\left(\ell_{t}<r_{t} \forall t\right) \geq 1 / 3 .
$$

Consequently, by translation-invariance, $\mathbf{P}(0$ is good $) \geq 1 /[3(2 L+5)]$.
6.2. Empty paths for half-lines and seeds. How do empty paths behave when the initial configuration is a random seed? This question is largely unresolved. (In contrast, the next section will provide detailed answers for diagonal and wide paths.) A first step would be to understand the case of a uniformly random halfline, for which the following conjecture is natural given Lemma 6.2.

COnJECTURE 6.3. Suppose the initial condition λ_{0} is uniformly random on $[1, \infty)$ and 0 elsewhere. Let $\left(r_{t}, t\right), t \geq 0$ be the rightward Z-path from $(0,0)$. Then $r_{t} / t \rightarrow 1 / 4$ as $t \rightarrow \infty$.

We prove that a much weaker statement holds deterministically: for an initial configuration supported in a half-line, empty paths penetrate arbitrarily far into its forward cone.

Lemma 6.4 (Unbounded penetration). Assume that the initial condition λ_{0} has no $1 s$ outside $[1, \infty)$. Let $\left(r_{t}, t\right)$ be the rightward Z-path from $(0,0)$. Then $\sup _{t}\left(r_{t}+t\right)=\infty$.

Proof. We first observe that for any initial configuration λ_{0} of $1 \operatorname{Or} 3$, if (x, t) has state 0 and $t \geq 1$ then at least one of the three points $(x, t-1),(x \pm 1, t-1)$ has state 0 also. Iterating this, we see that there must be an empty path from $\mathbb{Z} \times\{0\}$ to (x, t). We call any such path an ancestral path of (x, t).

Now, under the conditions of the lemma, note that for any $m \geq 0$, the sequence of configurations on the intervals $[-t,-t+m+1] \times\{t\}$ is periodic in t starting from some time t_{p} depending on m and λ_{0}. For $a \geq 0$, define the leftward diagonal $D_{a}:=\{(a-t, t): t \geq 0\}$. Then λ cannot be identically 1 on two consecutive diagonals D_{a} and D_{a+1}, and also cannot be identically 1 on D_{a} and identically 0 on D_{a+1}. (Indeed, in either case we deduce that λ is also 1 on D_{a-1}, leading to a contradiction by induction.)

Fix $m \geq 0$. We will show that for some t there an empty path from $(-\infty, 0] \times$ $\{0\}$ to $\{(-t+m+1, t),(-t+m, t)\}$, which suffices by Lemma 6.1. To verify this claim, we may assume that the periodic orbit commences initially, that is, that $t_{p}=0$. There must be a time t with either $\lambda_{t}(-t+m+1)=0$ or $\lambda_{t}(-t+$ $m)=0$; by periodicity there must be infinitely many such times. Now take the leftmost ancestral path of one of these two points. Suppose this path does not start on $(-\infty, 0] \times\{0\}$. Then, if t is large enough, the path has a diagonal segment longer than the period of the orbit; additionally, all states immediately to the left of such a segment must be 1 . By periodicity, we have, for some $a \in[0, m+1]$, infinite diagonals D_{a} and D_{a+1} on which λ is identically 1 and 0 , respectively. This is in contradiction with our observations above.

We remark that the supremum in the above lemma cannot be replaced with a limit; a counterexample is $\lambda_{0} \equiv 1$ on $[2, \infty)$ and $\lambda_{0}(1)=0$.

Returning to our earlier question on seeds, Figure 20 (top) shows the set of all points on empty paths from $(-1,0)$, when λ_{0} is a random seed on [0,25]. We believe that for typical long seeds, the right frontier of this set lags behind the right edge of the forward cone of the seed by a nontrivial power of t in the limit $t \rightarrow \infty$. This is a natural guess, since the frontier has speed 1 in the voids, but presumably speed $1 / 4$ on the fractal set occupied by randomness. It appears plausible that such

FIG. 20. The set of all points (blue) on empty paths starting from certain initial points, in 1 Or 3 started from three different seeds: two apparent power-law cases, and a devil's staircase.
a process is a driving force behind the evolution of some exceptional seeds for web CA, including the examples in Figures 2 (bottom), 4 (bottom) and possibly 7.

We believe that similar power law behavior holds for some specific small seeds. One example is shown in Figure 20 (middle): the seed is $1000 \widehat{0} 0001$, and empty paths from the middle $\widehat{0}$ are highlighted. However, some seeds exhibit entirely different behavior. The bottom picture shows the empty paths from the two $\widehat{0}$ s in the seed $1000 \widehat{0} 0001000 \widehat{0} 0001$. Despite apparent initial similarity to the previous case, here the rightmost point $\left(r_{t}, t\right)$ reachable at time t has r_{t} / t bounded strictly between 0 and 1 at $t \rightarrow \infty$. Indeed, the rescaled path $2^{-n}\left\{\left(r_{t}, t\right): t \geq 0\right\}$ converges as $n \rightarrow \infty$ to a variant of the Cantor function or "devil's staircase." This may be proved by an inductive scheme.

As a preliminary step toward the power law behavior postulated above, we prove a version in a simplified setting. Recall from Section 2 that μ denotes the Xor additive cellular automaton rule. Given a configuration $\mu \in\{0,1\}^{\mathbb{Z} \times[0, \infty)}$, we define the χ-path starting from a point $(x, 0)$ to be the sequence of points $\left(\left(x_{t}, t\right): t \geq 0\right)$

FIG. 21. The χ-path from the origin in the Xor cellular automaton, together with the construction used in its analysis. The strips $S(2)$ (pink) and $S(3) \backslash S(2)$ (orange) are shaded.
given by $x_{0}=x$ and

$$
x_{t+1}= \begin{cases}x_{t}, & \mu\left(x_{t}, t\right)=1 \\ x_{t}+1, & \mu\left(x_{t}, t\right)=0\end{cases}
$$

In other words, the path makes a down step from a 1 , and a diagonal step from a 0 . This is intended as a simplified model for a rightward Z-path, which moves with speed 1 in 0 s , but with a slower speed in a random configuration.

Proposition 6.5 (Power law for Xor). Let μ be the Xor CA with initial configuration μ_{0} equal to 1 on the two-point set $\{-1,0\}$ and 0 elsewhere. The χ-path $\left(\left(x_{t}, t\right)\right)_{t \geq 0}$ starting from $(0,0)$ satisfies

$$
x_{t}=t-\Theta\left(t^{\log 2 / \log 3}\right) \quad \text { as } t \rightarrow \infty
$$

Proof. We first note some easy facts about μ. Denote the interval of points $R(k, t):=\left((i, t): t-2^{k}<i \leq t\right)$ on the right side of the forward cone of the origin. For any $k \geq 1$, the state-vectors $(\mu(z): z \in R(k, t))$ on these intervals form a periodic sequence in t with period 2^{k-1}. Furthermore, the sequence of state-vectors on the intervals $R(k+1, t) \backslash R(k, t)$ consists precisely of the all- 0 vector repeated 2^{k-1} times followed by the first 2^{k-1} state-vectors for $R(k, t)$ (all repeated with period 2^{k}). See Figure 21 for an illustration of the case $k=2$.

Let $E_{k}:=\min \left\{t \geq 0:\left(x_{t}, t\right) \notin R(k, t)\right\}$; this is the time at which the χ-path leaves the diagonal strip $S(k):=\bigcup_{t} R(k, t)$. This can only happen at a down step, which can occur only at a 1 of μ in the leftmost diagonal of $S(k)$. It follows that E_{k} is divisible by 2^{k-1}; write $E_{k}=2^{k-1} e_{k}$. For example (referring to Figure 21), we have $e_{2}=3$ and $e_{3}=4$.

In order to leave the strip $S(k+1)$, the path must first leave $S(k)$, and then leave $S(k+1) \backslash S(k)$. By the above observations on periodicity, and the fact that the path moves diagonally on 0 s, we deduce that

$$
e_{k+1}=\left\lfloor\frac{e_{k}}{2}\right\rfloor+e_{k}
$$

The proof is complete using induction and obvious monotonicity properties of the χ-path.

Among many unresolved questions, we do not know whether an analogue of Proposition 6.5 holds when the χ-path is defined similarly in terms of the $1 \operatorname{Or} 3$ CA λ rather than μ.
7. Additive dynamics from random seeds. Our goal in this section is to transfer the nonpercolation results for infinite random initial configurations to random seeds. The proofs exploit an intriguing interplay between randomness and periodicity in the configuration started from a random seed.

Lemma 7.1 (Random edge-intervals). Assume λ_{0} is a uniformly random binary seed on $[0, L]$. For a fixed t, the state on the interval $[t, t+L] \times\{t\}$ is uniformly random.

Proof. This is an immediate consequence of Lemma 3.2(i) and Corollary 4.3.

LEMMA 7.2 (Edge-periodicity). For any λ_{0} which is 0 on $[L+1, \infty$), and any $k \geq 1$, the sequence of edge configurations $(\lambda(i, t): i=t+L-k+1, \ldots, t+L)$ is periodic in t, with period at most $2 k$.

Proof. This follows from Lemmas 3.2(iv) and 4.1.
Our first result establishes that, in subcritical cases, paths from the initial state do not reach far into the forward cone of $[0, L] \times\{0\}$. This is illustrated in Figure 22, in which $L=25$ and all points on paths from $\mathbb{Z} \times\{0\}$ are again depicted in blue (only one layer of points outside the forward cone is colored blue, as all such are trivially reachable from $\mathbb{Z} \times\{0\}$).

Proposition 7.3 (Percolation into the cone). Suppose λ_{0} is a uniformly random binary seed on $[0, L]$. The probability that there is an empty diagonal path from $\mathbb{Z} \times\{0\}$ to the forward cone of $[0, L] \times\{\lfloor C \log L\rfloor\}$ goes to 0 as $L \rightarrow \infty$. The same is true for wide paths. Here, C is an absolute constant.

Proof. Let k be a positive integer to be chosen later satisfying $2 k+1<L$. Call a space-time point (x, t) bad if there exists an empty diagonal path from $\mathbb{Z} \times\{t-k\}$ to (x, t). If the state on the interval $I(x, t):=[x-k, x+k] \times\{t-k\}$ is uniformly random, then Theorem 1.5 implies that $\mathbf{P}((x, t)$ is bad $) \leq \exp (-c k)$ for an absolute constant $c>0$.

We define an infinite set of points S via Figure 23. This set has the following properties: (i) any path from $\mathbb{Z} \times\{0\}$ to the forward cone of $[0, L] \times\{2 k\}$ must pass

FIG. 22. Illustrations of the set of all points reached by paths starting within an initial random seed. Top: empty diagonal paths; bottom: wide paths.
through a point in S; and (ii) for every $(x, t) \in S$, the state on the interval $I(x, t)$ defined above is uniformly random, either trivially or by Lemma 7.1.

We wish to bound the probability that S contains a bad point by a union bound. The set S is infinite, but Lemma 7.2 implies that the states of the relevant intervals $I(x, t)$ for (x, t) in the diagonal "arms" of S repeat with period at most $2(2 k+2)$. Thus, besides the at most L points on the top section of S, there are only $8(2 k+2)$ distinct cases to consider. Hence,

$$
\mathbf{P}(S \text { contains a bad point }) \leq(L+16 k+16) e^{-c k}
$$

The proof is completed by taking $k=\left\lfloor C^{\prime} \log L\right\rfloor$ for a suitably large C^{\prime} (the argument for wide paths is identical).

Similarly, we next show that to each void of λ^{\bullet} there corresponds a periodic strip that blocks diagonal and wide paths. Fix a void V of λ^{\bullet}, and an integer $L \geq 0$.

FIg. 23. An illustration of the proof of Proposition 7.3. The outline of the forward cone of $[0, L] \times\{0\}$ is shown by the solid line (here $L=16$). Points in the set S are shown as black discs. Any path from the top row to the region below S must pass through S. For each point in S, the top row of the associated triangle (of size $k=3$) has a uniformly random state (three such triangles are shaded).

FIG. 24. Perturbed void (dark blue), with $L=5$, of the void with top interval $[1,15] \times\{16\}$. The perturbed void is filled with $0 s$ for any seed included in the interval of six red points. The forward cone of this interval is outlined.

Define the perturbed void V to be the triangular region

$$
W_{L}(V)=V \cap(V+(L, 0))
$$

See Figure 24 for an example. Note that $W_{L}(V)=\varnothing$ unless the width of V exceeds L. Further, fix an integer $m \geq 1$, assume that the top interval of $W_{L}(V)$ is $[a, b] \times\{t\}$, and define the following interval above $W_{L}(V)$:

$$
J_{L, m}(V)=\left[a-2^{m}, b+2^{m}\right] \times t-2^{m} .
$$

[We set $J_{L, m}(V)=\varnothing$ when $W_{L}(V)=\varnothing$.]
Lemma 7.4 (Periodic and random intervals above voids). Suppose the initial configuration λ_{0} vanishes outside $[0, L]$. Let m be a nonnegative integer. Let V be a void of λ^{\bullet} of width at least L and at least 2^{m}.
(i) λ vanishes on $W_{L}(V)$.
(ii) There exists a string A of length $3 \cdot 2^{m}$, depending on m and λ_{0} but not on V, such that the configuration of λ on $J_{L, m}(V)$ is a subword of A^{∞}.
(iii) Now suppose that $2^{m+1} \leq L$ and that λ_{0} is uniformly random on $[0, L]$. Then every interval of length 2^{m} in $J_{L, m}(V)$ has uniformly random state.

Proof. Claim (i) is a simple consequence of Lemma 4.1, (ii) follows from Proposition 3.6 and Lemma 4.1, and (iii) from Proposition 3.6 and Corollary 4.3. (See Figure 25.)

Proposition 7.5 (Percolation into voids). Assume the conditions in Lemma 7.4(iii). Let cross (m) be the event that there exists a void V for which there is either an empty diagonal or a wide path from $J_{L, m}(V)$ to $W_{L}(V)$. Then

$$
\mathbf{P}(\operatorname{cross}(m)) \leq \exp \left(-c 2^{m}\right)
$$

for some universal constant c.

FIG. 25. Illustration of Lemma 7.4(ii) with the seed 110100111 on $[0,8]$ and $m=2$ and the same two voids as in Figure 11; the repeating string is $A=010110101111$.

Proof. Using Theorem 1.5, and Lemma 7.4(ii) and (iii), this follows by a similar argument to the proof of Proposition 7.3. The key point is that by Lemma 7.4(ii), only $3 \cdot 2^{m}$ distinct cases need to be considered in the union bound.
8. Replication and ethers in web cellular automata. We can now prove Theorems 1.1 and 1.4 from the Introduction.

Proof of Theorem 1.4. This is an immediate consequence of Proposition 7.3 and Lemma 2.1.

Proof of Theorem 1.1. Consider a uniformly random binary seed on $[0, L]$. In the context of Proposition 7.5 , let M be the smallest m with $2^{m+1} \leq L$, for which $\operatorname{cross}(m)$ does not occur. If such an m does not exist, let $M=\infty$. By Proposition $7.5, M$ is tight as $L \rightarrow \infty$.

If $M=\infty$, take $R_{L}=\infty$. Assume now that $M<\infty$. Then there exists a string A^{\prime} of 0 s and 2 s of length of $3 \cdot 2^{m}$ so that the top row of W_{L} is a segment of $\left(A^{\prime}\right)^{\infty}$ for every void. This holds because the first level configuration λ is periodic with the required period on a strip above W_{L}, by Lemma 7.4, while the absence of relevant paths makes the top row also periodic by Lemma 2.1. Moreover, by the same results, the periodic pattern is the same for all voids.

Consider the CA ξ started with a periodic configuration B^{∞}, for some string B of length σ. The evolution is periodic in time after some initial burn-in time interval: let T_{B} be the first time t such that ξ_{t} equals ξ_{s} for some $s>t$. Let burnin $(\sigma)=\max _{B} T_{B}$. Our random distance R_{L} is burnin $\left(3 \cdot 2^{M}\right)+1$, and the proof is finished by Lemma 2.3 (which requires the +1).

As remarked earlier, Theorem 1.1 implies that the union of the regions that are filled by a translate of the ether has density 1 within the forward cone of the seed. Therefore, on the event that $R_{L}<\infty$ the set of nonzero points has a rational density within the same forward cone. We do not know whether the same holds for every seed.

For an arbitrary web CA satisfying the conditions of Theorem 1.1, $\lim \sup _{L \rightarrow \infty} \mathbf{P}\left(R_{L} \geq r\right)$ decays at least as fast as a power law in r. This is easily seen from the above proof, using the fact that burnin $(\sigma) \leq 2^{\sigma}$. In cases when the dynamics restricted to 0 s and 2 s is additive, including Web-Xor, Modified WebXor and Piggyback, one can easily show that the decay is exponential. Identical remarks apply to the temporal period of the ether η_{L}.
9. Bounds on ether probabilities. In this section, we prove Theorem 1.2, and explain how explicit lower bounds on ether probabilities are proved. We also indicate how some ethers can be ruled out for certain rules.

For $m \geq 0$, we call the string A in Lemma 7.4(ii) the level- 2^{m} link of the seed λ_{0}. (Note that the choice of A is unique up to periodic shifts.) Fix an integer $k \geq 1$ and a binary string A. Consider $1 \operatorname{Or} 3$ with initial periodic configuration $\lambda_{0}=A^{\infty}$. If there is no empty diagonal (resp., wide, θ-free) path from $\mathbb{Z} \times\{0\}$ to $\mathbb{Z} \times\{k-1\}$ in the resulting configuration λ, then we say that A is a blocker to depth k for diagonal (resp., wide, θ-free) paths. If $\lambda_{k-1} \not \equiv 0$, then we say that A is nondegenerate to depth k.

Fix an $m \geq 1$, and let λ_{0} be a uniformly random seed on $[0, L]$, with $L \geq 2^{m+1}$. For diagonal and wide paths, Proposition 7.5 implies that

$$
\mathbf{P}\left(\text { the level }-2^{m} \text { link of } \lambda_{0} \text { is a blocker to depth } 2^{m}\right) \geq 1-\exp \left(-c 2^{m}\right)
$$

for some universal constant c.
Further, consider a web CA ξ_{t} with an ether $\eta \in\{0,2\}^{\mathbb{Z}^{2}}$. The signature of η is a string B such that, for some $t, \eta(\cdot, t)$ equals a (spatial) translation of B^{∞}, and is the first in the lexicographic order among shortest such strings. Observe that two ethers are equivalent if and only if they have the same signature. We say that a binary string A produces η with signature B if the initial state $\xi_{0}=A^{\infty}$ makes ξ_{t} equal to a translation of B^{∞} at some time t.

Lemma 9.1 (Blockers). Let ξ_{t} be a diagonal-compliant (resp.: widecompliant, or θ-free-compliant) web CA. Further, let A be a string that is a blocker to depth 2^{m} for diagonal (resp.: wide, or θ-free) paths and produces an ether η. If a seed ξ_{0} results in the level- 2^{m} link A, then ξ is a replicator with ether η. If, in addition, the $C A \xi_{t}$ has no spontaneous birth, then $\eta \equiv 0$.

Proof. The first claim follows by the same arguments as in the proof of Theorem 1.1. The last claim follows by Lemma 2.1.

Denote by Seeds ${ }_{[a, b]}$ the set of binary seeds that vanish outside $[a, b]$, and by Seeds $=\bigcup_{a \leq b}$ Seeds $[a, b]$ the set of all binary seeds. Let $g:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z}}$ be the map determined by one step of the $1 \operatorname{Or} 3$ rule (i.e., the map $\lambda_{0} \mapsto \lambda_{1}$). It is well known (and easy to prove) that, for $a \leq b$, the map g is injective from

Seeds ${ }_{[a, b]}$ to Seeds ${ }_{[a-1, b+1]}$ and, therefore, the restriction $\left.g\right|_{\text {Seeds }}$ is injective. We say that a binary seed λ_{0} has a predecessor if it is in the image of $\left.g\right|_{\text {seeds }}$. More generally, λ_{0} has k predecessors, for $k \geq 1$, if it is in the image of the k th iteration $\left(\left.g\right|_{\text {seeds }}\right)^{k}$; in that case, $\left(\left.g\right|_{\text {seeds }}\right)^{-k}\left(\lambda_{0}\right)$ contains a unique seed called the $k t h$ predecessor of λ_{0}. We denote by Pred_{k} the set of all seeds that have k predecessors. The following lemma follows immediately from the properties of $\left.g\right|_{\text {seeds }}$.

Lemma 9.2 (Predecessors of random seeds). Assume λ_{0} is a uniformly random binary seed on $[0, L]$ and that $1 \leq k \leq L / 2$. Then $\mathbf{P}\left(\operatorname{Pred}_{k}\right)=1 / 4^{k}$. Moreover, conditioned on Pred_{k}, the kth predecessor of λ_{0} is a uniform binary seed on [$k, L-k]$.

LEMMA 9.3 (Predecessors and links). For $m \geq 0$, a seed λ_{0} has 2^{m} predecessors if and only if its level- 2^{m} link is 0 .

Proof. If λ_{0} has 2^{m} predecessors, then its level- 2^{m} link is 0 by Lemmas 3.2(ii) and 4.1.

Conversely, assume that $\lambda_{0} \in$ Seed $_{[0, L]}$ is given by a string S of length $L+1$. If n is large enough so that $2^{n}>2 L$ and $2^{n}>2^{m+1}$, the configuration of $\lambda_{2^{n}}$ on $[0, L]$ is S, again by Lemma 3.2(ii) and additivity. Recall that the level- 2^{m} link is the same for all voids, on the left and on the right of the vertical line $x=0$. If this link is 0 , the configuration on $[0, L]$ at time $2^{n}-2^{m}$ provides a seed λ_{0}^{\prime}, such that $g^{2^{m}}\left(\lambda_{0}^{\prime}\right)=\lambda_{0}$.

Lemma 9.4 (Ether probabilities). Suppose some seed $S_{0} \in$ Seed $_{[0, s-1]}$ is a replicator with some ether η, and is such that for some $m \geq 1$, the level -2^{m} link is a blocker to depth 2^{m}. Let ξ_{0} be a uniformly random binary seed on $[0, L]$. Then

$$
\liminf _{L \rightarrow \infty} \mathbf{P}\left(\xi_{0} \text { is a replicator with ether } \eta\right) \geq 2^{-s-2^{m+1}}
$$

Proof. Assume a seed S_{1} with support in [s, ∞) has 2^{m} predecessors. Form a seed S by adding the configurations of S_{0} and S_{1}. Then, by Lemmas 9.3 and 4.1, S has the same level-2 2^{m} link as S_{0} and, therefore, by Lemma 9.1, is a replicator with the same ether η. In the rest of the proof, we apply this fact to random seeds.

Suppose now ξ_{0} is a uniformly random seed in Seeds ${ }_{[0, L]}$, with L large enough so that $L-s \geq 2^{m+1}$. Let ξ_{0}^{\prime} (resp., $\xi_{0}^{\prime \prime}$) be the random seed that agrees with ξ_{0} on $[0, s-1]$ (resp., $[s, L]$) and vanishes elsewhere. Then
$\mathbf{P}(S$ is a replicator with ether $\eta) \geq \mathbf{P}\left(\xi_{0}^{\prime}=S_{0}\right.$, and $\xi_{0}^{\prime \prime}$ has 2^{m} predecessors $)$

$$
\begin{aligned}
& =\mathbf{P}\left(\xi_{0}^{\prime}=S_{0}\right) \cdot \mathbf{P}\left(\xi_{0}^{\prime \prime} \text { has } 2^{m} \text { predecessors }\right) \\
& =2^{-s} \cdot 4^{-2^{m}}
\end{aligned}
$$

TABLE 1
Some nonequivalent ethers that provably emerge for Extended 1 or 3 from a long random seed with positive asymptotic probability. Each ether is generated from the initial condition obtained by repeating its signature indefinitely. Here, $[k]$ stands for an interval of $k 0 s$. The last column is a rigorous lower bound for the liminf of the probability in Theorem 1.2. The lower bounds sum to just over 0.826

Ether signature	Temporal period	Spatial period	Density of 2s	Lower bound
0	1	1	0	0.6061
02	1	2	$1 / 2$	0.0471
0002	2	4	$1 / 2$	0.0333
$[7] 2$	4	8	$3 / 8$	0.0664
$[5] 202$	4	8	$3 / 8$	0.0189
$[15] 2$	8	16	$5 / 16$	0.0193
$[13] 202$	8	16	$11 / 32$	0.0079
$[11] 20002$	8	16	$5 / 16$	0.0024
$[9] 2000202$	8	16	$3 / 8$	0.0085
$[9] 2020202$	8	16	$3 / 8$	0.0006
$[7] 200020202$	8	16	$13 / 32$	0.0045
$[7] 202020202$	8	16	$7 / 16$	0.0105
$[5] 2[5] 20202$	8	16	$7 / 16$	0.0006

where the last equality follows from Lemma 9.2.
Proof of Theorem 1.2. This is immediate from Lemmas 9.1 and 9.4 and the proof of Theorem 1.1.

Recall that Extended 1 Or 3 is not diagonal- or wide-compliant. However, it is 4 -free compliant, and this allows us to prove the following lower bounds.

ThEOREM 9.5 (Replication and ether probabilities for Extended 1 Or 3). Let ξ be the Extended 1 Or 3 web CA, started from a uniformly random binary seed on $[0, L]$. Then

$$
\liminf _{L \rightarrow \infty} \mathbf{P}(\xi \text { is a replicator }) \geq 0.826
$$

Moreover, lower bounds on $\liminf _{L \rightarrow \infty} \mathbf{P}(\xi$ is a replicator with ether $\eta)$ for certain ethers η are as in Table 1.

For an ether η, its reflection around the time axis is denoted by $\bar{\eta}$. Then η is symmetric if $\bar{\eta}$ is equivalent to η. Assume that B is the signature of η and \bar{B} its reflection. A sufficient condition for symmetry of η is that the reflection \bar{B} is a periodic shift of B. However, this is not a necessary condition: the ether with signature $B=[7] 200020202$ is symmetric as the fourth iteration of the 1 Or 3 rule
applied on B^{∞} yields a translation of \bar{B}^{∞}. Thus, the only nonsymmetric ether in Table 1 is the one with signature [9]2000202. In nonsymmetric cases, our tables combine the frequencies of an ether and its reflection.

Proof of Theorem 9.5. Throughout the proof, fix a positive integer $m \geq 1$ and assume that $L \geq 3 \cdot 2^{m}$. Using the same notation as in Proposition 3.6, assume that for some $a \geq 0$, the configuration of λ^{\bullet} at some time t on $I=[a+L, a+L-$ $\left.1+3 \cdot 2^{m}\right] \times\{t\}$ is exactly the string $A_{0}=1 \square 1 \square 0 \square$. For ease of reference, we will assume A_{0}^{∞} is positioned on \mathbb{Z} so that A_{0} is the configuration in $[0,3$. $\left.2^{n}-1\right]$.

Our main tool is the map $\Phi: \mathbb{Z}_{2}^{L+1} \rightarrow \mathbb{Z}_{2}^{3 \cdot 2^{m}}$ that takes as argument an initial binary seed λ_{0} supported on $[0, L]$ and outputs the configuration of λ on I. This is a linear map that assigns to every seed with support in $[0, L]$ its level- 2^{m} link. The matrix of Φ (in the standard basis) has row i given by the segment $\left[i+2^{m}, L+i+\right.$ 2^{m}] of $A_{0}^{\infty}, i=0, \ldots, 3 \cdot 2^{m}-1$. (All matrix and vector coordinate indices start at 0 .) It is easy to see that the matrix has rank 2^{m+1} and, therefore, its image has cardinality $2^{2^{m+1}}$. The kernel of Φ^{*} has basis vectors $y^{k}, k=0, \ldots, 2^{m}-1$, given by $y_{i}^{k}=\mathbf{1}\left[i \bmod 2^{m}=k\right], i=0, \ldots, 3 \cdot 2^{m}-1$. Therefore, the image of Φ is the set

$$
\Phi\left(\mathbb{Z}_{2}^{L+1}\right)=\left\{b \in \mathbb{Z}_{2}^{3 \cdot 2^{m}}: b_{i}+b_{2^{m}+i}+b_{2^{m+1}+i}=0, \forall i=0, \ldots, 2^{m}-1\right\}
$$

A vector in $\mathbb{Z}_{2}^{3 \cdot 2^{m}}$ is naturally identified with a binary string of length $3 \cdot 2^{m}$ and we will do so for the rest of the proof. Let N_{n} be the number of strings in $\Phi\left(\mathbb{Z}_{2}^{L+1}\right)$ that are nondegenerate to depth 2^{m}. Further, let N_{b} the number of strings in $\Phi\left(\mathbb{Z}_{2}^{L+1}\right)$ that are nondegenerate and blockers, for 4 -free paths, to the same depth 2^{m}. Observe that, for L large enough, $\Phi\left(\mathbb{Z}_{2}^{L+1}\right)$ does not depend on L, and consequently neither do N_{n} and N_{b}.

Now suppose that ξ_{0} is a uniform random binary seed on $[0, L]$ and let p_{L} be the probability that ξ is a replicator. We claim that

$$
\begin{equation*}
\liminf _{L \rightarrow \infty} p_{L} \geq \frac{N_{b}}{N_{n}} \tag{9.1}
\end{equation*}
$$

Recall that Pred_{1} is the event that ξ_{0} has a predecessor; by Lemma 9.3, Pred_{1}^{C} is exactly the event that $\Phi\left(\xi_{0}\right)$ is nondegenerate to depth 2^{m}. Furthermore, conditioned on Pred ${ }_{1}$, the first predecessor of ξ_{0} is a uniformly random binary seed on [1, $L-1$]. Therefore,

$$
\begin{align*}
p_{L} \geq & \mathbf{P}\left(\Phi\left(\xi_{0}\right) \text { is a blocker to depth } 2^{m} \mid \operatorname{Pred}_{1}^{C}\right) \mathbf{P}\left(\operatorname{Pred}_{1}^{C}\right) \\
& +\mathbf{P}\left(\xi \text { is a replicator } \mid \operatorname{Pred}_{1}\right) \mathbf{P}\left(\operatorname{Pred}_{1}\right) \tag{9.2}\\
= & \frac{N_{b}}{N_{n}} \cdot \frac{3}{4}+p_{L-2} \frac{1}{4} .
\end{align*}
$$

Now (9.1) follows by taking liminf as $L \rightarrow \infty$ of the first and last expressions of (9.2). The particular bound was obtained by a computer for $m=4$: all 2^{32} vectors in the range of Φ were checked for blocking and nondegeneracy, and the resulting tallies were $N_{n}=3,221,225,472$ and $N_{b}=2,663,229,504$. This completes the proof for replication probability.

The proof for a lower bound for a particular ether η is identical except in the definition of N_{b}, which is now the number of strings in $\Phi\left(\mathbb{Z}_{2}^{L+1}\right)$ that are blockers and nondegenerate to the level 2^{m}, and produce η. For example, the result for the zero ether was $N_{b}=1,952,489,232$.

Table 1 suggests that spatial and temporal periods of Extended 1 Or 3 ethers are powers of 2 , and that the ether (2) ${ }^{\infty}$ never appears. This is addressed in our next two results.

LEMMA 9.6 (Periodic configurations). Assume that λ_{0} is a spatially periodic configuration whose period σ divides $3 \cdot 2^{n}$, and that $\lambda_{t}=\lambda_{0}$ for some t. Then σ divides 2^{n}. Moreover, for $\sigma \geq 1$ the temporal period equals $\sigma / 2$.

Proof. By Lemmas 3.1 and 4.1, we may assume $n=1$, and then we check that any λ_{0} of period 3 leads to a constant configuration in a single time step. The last assertion follows from Lemma 3.1 and the following two easily checked facts: (1) if λ_{0} is periodic with period at most 2 , then $\lambda_{0}=\lambda_{1}$; and (2) if λ_{0} is periodic with period exactly 4 , then $\lambda_{0} \neq \lambda_{1}$.

Proposition 9.7 (Possible ethers). Assume ξ_{t} is the Extended 1 or 3 CA. Suppose that ξ_{0} is a replicator with ether η, and that its level- 2^{m} link is a blocker to depth 2^{m} for 4 -free paths. Then η has spatial period that is a power of 2 . Also, the signature of η is either 0 or it is of the form $\left[a_{1}\right] 2\left[a_{2}\right] 2 \cdots\left[a_{k}\right] 2$, where $k \geq 1$ and each $\left[a_{i}\right]$ is a string of 0 s of odd length a_{i}. In particular, $\eta \not \equiv 2$.

Proof. The first claim follows from the previous lemma and Theorem 7.4, so we proceed to prove the second claim. If $\lambda_{t} \equiv 0$, but $\lambda_{t-1} \not \equiv 0$, then there are, up to translation, exactly two possibilities for λ_{t-1} and λ_{t-2} :

$$
\begin{array}{ll}
\cdots 111100111100 \cdots & \cdots 010001010001 \cdots \\
\cdots 011011011011 \cdots & \cdots 011011011011 \cdots
\end{array}
$$

Assume that the seed ξ_{0} is such that $\delta\left(\xi_{0}\right)$ has exactly k predecessors. (Recall that $\delta(a):=\mathbf{1}[a=1]$.) Then, for any n, the state of $\delta(\xi)$ on $\left[C-1,2^{n}-C+1\right] \times$ $\left\{2^{n}-k-2,2^{n}-k-1\right\}$ is a segment of one of the two configurations above. (Here, C is a constant that depends only on L.) By considering 4 -free paths, we see that the left configuration implies $\xi_{2^{n}-k} \equiv 0$ on [C, $\left.2^{n}-C\right]$, while for right one implies that one $\xi_{2^{n}-k}$ vanishes outside $6 \mathbb{Z} \cap\left[C, 2^{n}-C\right]$ (after a suitable translation). As

TABLE 2
Ten ethers that emerge from long random seeds for Piggyback with positive asymptotic probability. The conventions of Table 1 apply

Ether signature	Temporal period	Spatial period	Density of 2s	Lower bound
0	1	1	0	0.5
2	1	1	1	0.0398
02	1	2	$1 / 2$	0.0142
0002	2	4	$1 / 2$	0.0258
$[7] 2$	4	8	$3 / 8$	0.0099
$[4] 2022$	4	8	$1 / 2$	0.0303
00020222	4	8	$1 / 2$	0.0209
00022222	4	8	$5 / 8$	0.1297
0002000200022222	8	16	$11 / 16$	0.0362
0002000200202002	8	16	$9 / 16$	0.0216

2 s evolve according to the 1 Or 3 rule in the absence of 1 s , the positions of 2 s started from a subset of $2 \mathbb{Z}$ are a subset of $2 \mathbb{Z}$ at all even times (by Lemma 3.1). The claimed form of the signature follows.

Lower bounds for ether probabilities can also be obtained for Piggyback, with the same proof as for Theorem 9.5.

Theorem 9.8 (Ether probabilities for Piggyback). Let ξ_{t} be the Piggyback web CA, started from a uniformly random seed of $0 s$ and $1 s$ on $[0, L]$. Lower bounds on

$$
\liminf _{L \rightarrow \infty} \mathbf{P}(\xi \text { is a replicator with ether } \eta)
$$

are as in Table 2.
The computer search with $m=4$ yielded 117 different ethers for Piggyback with provably positive asymptotic probability, with their combined probabilities at least 0.914 . The ethers listed in Table 2 are the ten with largest lower bounds. The only nonsymmetric ether among these ten has signature [4]2022. [The initial state $(00020222)^{\infty}$ generates its translated reflection in two steps.] We do not know whether the asymptotic probability for the zero ether is exactly $1 / 2$.

Open problems. As the earlier discussions indicate, this topic offers a rich supply of open questions. We highlight a small selection.
(i) In the 1 Or 3 cellular automaton started from a uniformly random binary string on the half-line $[0, \infty)$, what is the growth rate of the maximum integer r_{t} for which there is an empty path from $(-\infty, 0) \times\{0\}$ to $\left(r_{t}, t\right)$? Is it the case that $r_{t} / t \rightarrow 1 / 4$ as $t \rightarrow \infty$?
(ii) What can be said about percolation in the space-time configuration of other one-dimensional cellular automata started in an invariant measure? For example, the uniformly random binary string on \mathbb{Z} is invariant for permutative rules (see [4] for a definition), including Rule 30. Do there exist infinite diagonal, wide or empty paths?
(iii) Are there infinitely many different ethers for replicators in the Piggyback cellular automaton? Is there an algorithm that decides whether a given ether occurs in some replicator?
(iv) For two-dimensional Box 13 solidification CA (see Section 2 and [13]) started from a uniform random seed in $[0, L]^{2}$, does the final configuration have rational density with probability converging to 1 as $L \rightarrow \infty$?

Acknowledgements. J. Gravner gratefully acknowledges the hospitality of the Theory Group at Microsoft Research, where most of this work was completed. We thank the referee for a very careful reading and some useful comments.

REFERENCES

[1] Balister, P. N., Bollobás, B. and Stacey, A. M. (2000). Dependent percolation in two dimensions. Probab. Theory Related Fields 117 495-513. MR 1777130
[2] Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364 26672701. MR2888224
[3] Basu, R. and Sly, A. (2012). Dependent percolation in two dimensions. Available at arXiv:1204.2931.
[4] Boyle, M. and Lee, B. (2007). Jointly periodic points in cellular automata: Computer explorations and conjectures. Experiment. Math. 16 293-302. MR2367319
[5] Brummitt, C. D., Delventhal, H. and Retzlaff, M. (2008). Packard snowflakes on the von Neumann neighborhood. J. Cell. Autom. 3 57-79. MR2394604
[6] Cook, M. (2004). Universality in elementary cellular automata. Complex Systems 15 1-40. MR2211290
[7] Eloranta, K. and Nummelin, E. (1992). The kink of cellular automaton Rule 18 performs a random walk. J. Stat. Phys. 69 1131-1136. MR1192037
[8] Fisch, R., Gravner, J. and Griffeath, D. (1993). Metastability in the Greenberg-Hastings model. Ann. Appl. Probab. 3 935-967. MR1241030
[9] GÁCs, P. (2001). Reliable cellular automata with self-organization. J. Stat. Phys. 103 45-267. MR1828729
[10] GÁcs, P. (2004). Compatible sequences and a slow Winkler percolation. Combin. Probab. Comput. 13 815-856. MR2102411
[11] Gravner, J., Gliner, G. and Pelfrey, M. (2011). Replication in one-dimensional cellular automata. Phys. D 240 1460-1474. MR2831796
[12] Gravner, J. and Griffeath, D. (2006). Modeling snow crystal growth. I. Rigorous results for Packard's digital snowflakes. Experiment. Math. 15 421-444. MR2293594
[13] Gravner, J. and Griffeath, D. (2009). Asymptotic densities for Packard Box rules. Nonlinearity 22 1817-1846. MR2525812
[14] Gravner, J. and Griffeath, D. (2011). The one-dimensional Exactly 1 cellular automaton: Replication, periodicity, and chaos from finite seeds. J. Stat. Phys. 142 168-200. MR2749714
[15] Gravner, J. and Griffeath, D. (2012). Robust periodic solutions and evolution from seeds in one-dimensional edge cellular automata. Theoret. Comput. Sci. 466 64-86. MR2997424
[16] Gray, L. F. (2001). A reader's guide to P. Gács's "positive rates" paper: "Reliable cellular automata with self-organization" [J. Statist. Phys. 103 (2001) 45-267; MR1828729 (2002c:82058a)]. J. Stat. Phys. 103 1-44. MR1828728
[17] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195-224. MR1961342
[18] Lind, D. A. (1984). Applications of ergodic theory and sofic systems to cellular automata. Phys. D 10 36-44. MR0762651
[19] Martin, O., Odlyzko, A. M. and Wolfram, S. (1984). Algebraic properties of cellular automata. Comm. Math. Phys. 93 219-258. MR0742194
[20] Pilyugin, S. Yu. (1999). Shadowing in Dynamical Systems. Lecture Notes in Math. 1706. Springer, Berlin. MR1727170
[21] Willson, S. J. (1984). Cellular automata can generate fractals. Discrete Appl. Math. 8 91-99. MR0739602
[22] Winkler, P. (2000). Dependent percolation and colliding random walks. Random Structures Algorithms 16 58-84. MR1728353
[23] Wolfram, S. (1983). Statistical mechanics of cellular automata. Rev. Modern Phys. 55 601644. MR0709077
[24] Wolfram, S. (1986). Random sequence generation by cellular automata. Adv. in Appl. Math. 7 123-169. MR0845373

Department of Mathematics
University of California
DAVIS, CALIFORNIA 95616
USA
E-MAIL: gravner@math.ucdavis.edu

Microsoft Research
1 Microsoft Way
REDMOND, WASHINGTON 98052
USA
E-MAIL: holroyd@microsoft.com

[^0]: Received May 2013; revised January 2014.
 ${ }^{1}$ Supported in part by NSF Grant DMS-02-04376 and the Republic of Slovenia's Ministry of Science program P1-285.

 MSC2010 subject classifications. 60K35, 37B15.
 Key words and phrases. Additivity, cellular automaton, replicator, quasireplicator, ether, percolation.

