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PERCOLATION AND DISORDER-RESISTANCE IN
CELLULAR AUTOMATA

BY JANKO GRAVNER1 AND ALEXANDER E. HOLROYD

University of California and Microsoft Research

We rigorously prove a form of disorder-resistance for a class of one-
dimensional cellular automaton rules, including some that arise as boundary
dynamics of two-dimensional solidification rules. Specifically, when started
from a random initial seed on an interval of length L, with probability tending
to one as L → ∞, the evolution is a replicator. That is, a region of space–
time of density one is filled with a spatially and temporally periodic pattern,
punctuated by a finite set of other finite patterns repeated at a fractal set of
locations. On the other hand, the same rules exhibit provably more complex
evolution from some seeds, while from other seeds their behavior is appar-
ently chaotic. A principal tool is a new variant of percolation theory, in the
context of additive cellular automata from random initial states.

1. Introduction. Cellular automata (CA) started from seeds, that is, finite per-
turbations of a quiescent state, have been the subject of much empirical analy-
sis, starting with [23]. The observed behavior falls roughly into four categories:
(a) the perturbation remains localized in the sense that it never affects sites outside
a bounded interval; (b) a periodic structure develops and spreads; (c) a replicating
(also called nested or fractal) structure develops, with a recursive (but sometimes
complicated) description; (d) unpredictable chaotic (or complex) growth generates
a space–time configuration with apparent characteristics of random fields. Many
CA are capable of behavior in multiple categories depending on the choice of seed,
and this is true even for some of the very simplest one-dimensional CA. An ex-
ample is the Exactly 1 rule, in which a cell is alive whenever exactly one of itself
and its two neighbors were alive at the previous generation. Exactly 1 is capable of
periodic, replicating, and chaotic behavior for different seeds; see [14].

If a particular CA is capable of chaotic behavior from some initial seed, it ap-
pears natural to conclude, by analogy with the second law of thermodynamics,
that such behavior should be generic for that CA, in the sense that almost all suf-
ficiently long seeds yield chaotic evolution. Shadowing results from dynamical
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systems [20], with their general message of stability of chaotic trajectories, would
also tend to support such a conclusion. Indeed, strong empirical evidence confirms
that chaotic behavior is prevalent for many CA including Exactly 1; see [14].

In this article, we exhibit a class of one-dimensional CA rules for which we
rigorously prove that the opposite conclusion holds. Typical (random) long seeds
self-organize into replicating structures, while exceptional seeds yield more com-
plex behavior, including apparently chaotic evolution.

We focus on one-dimensional range-2 CA rules with 3 states (although our
techniques in principle apply to more general one-dimensional rules). Thus, the
configuration of the CA at time t ∈ {0,1,2, . . .} is an element ξt = (ξt (x))x∈Z of
{0,1,2}Z, and for a given initial configuration ξ0, the evolution is given by

ξt+1(x) = f
(
ξt (x − 2), ξt (x − 1), ξt (x), ξt (x + 1), ξt (x + 2)

)
for all x, t and a fixed function f (the CA rule). (In many cases, the dependence
on ξt will actually be restricted to the range-1 neighborhood x − 1, x, x + 1.)
We sometimes write ξ(x, t) = ξt (x) for the state of ξ at the space–time point
(x, t) ∈ Z× [0,∞). In keeping with standard convention, diagrams of space–time
evolution are drawn with the space coordinate x increasing from left to right, and
the time coordinate t increasing from top to bottom.

A key supporting role will be played by the 1 Or 3 CA, a simple 2-state rule
denoted by λt , and defined as follows. The states are 0 and 1, and the evolution is

λt+1(x) = λt (x − 1) + λt (x) + λt (x + 1)mod 2.

As is well known [19], the additive structure of this rule enables many of its char-
acteristics to be fully understood. (See Figure 1 below for an illustration.)

We consider 3-state CA rules with the following special property. For any con-
figuration ξ , if we define λt (x) = 1[ξt (x) = 1] for all x, t , then λ evolves precisely
according to the 1 Or 3 CA. We also assume that state 0 is quiescent, that is, if
ξ0 ≡ 0 then ξ1 ≡ 0. We call any CA rule satisfying these two conditions a web
CA. The idea is that the 1s form an additive “web” which is not influenced by the
distinction between 0s and 2s, while the web may affect the 2s. As we will see

FIG. 1. Left: the configuration λ• of 1 Or 3, started from a single occupied cell, up to time t = 32.
Right: schematic depiction of a replicator. The striped regions are filled with a doubly periodic ether.
The thickness of the white “buffer zones” remains constant for all time.
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later, web CA also arise in analysis of two-dimensional solidification CA. We will
usually be interested in evolution from a seed, that is, an initial configuration ξ0
with finite support.

One of the simplest web CA, which we call Web-Xor, is defined by set-
ting ξt (x) = 2 if and only if λt (x) = 0 and there is a exactly one 2 among
ξt−1(x − 1), ξt−1(x + 1). (Together with the web CA condition, this is sufficient
to specify the rule.) Thus, 2s perform a 2-neighbor exclusive-or rule on the points
that are not occupied by 1s. Figure 2 illustrates the evolution of Web-Xor from

FIG. 2. Four configurations of Web-Xor. The first (top) example, a replicator with zero ether, starts
from a random string of 64 1s and 2s. The second and third examples, with respective seeds 12 and
11111012, are quasireplicators. The bottom example, with seed 1100112, is apparently chaotic.
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four different seeds. (States are always colored as: 0 white; 1 black or grey; 2
another color depending on the rule.) Our results imply that typical seeds result
in behavior similar to the first picture. More specifically, we will prove that for
certain classes of web CA, evolution from long random seeds yields with high
probability a space–time configuration that is periodic except within some finite
distance of an additive web. To state this conclusion precisely, we need some more
notation.

An ether is an element η of {0,2}Z2
that is periodic in both coordinates. Two

ethers are equivalent if one can be obtained from the other via some translation
of Z2. In a CA configuration ξ , we say that a set K ⊆ Z×[0,∞) is filled with η if ξ

agrees with some ether equivalent to η on K . Let λ• be the 1 Or 3 CA started from
the seed consisting of a single 1 at the origin, and let � = {(x, t) :λ•(x, t) = 1}
be its support. See Figure 1. Let �(r) ⊂ Z

2 be the set of space–time points at
�1-distance at most r from �.

For a given CA, we say that a seed ξ0 (or equivalently the resulting configura-
tion ξ ) is a replicator of thickness r and ether η if each bounded component of
Z

2 \ �(r) is filled with η. See Figure 1. It is a straightforward fact that �(r) has
density 0 as a subset of Z2 for any r . Therefore, in a replicator, the density of 2s
within the cone {(x, t) : |x| ≤ t} equals the density of the ether. Furthermore, it may
be shown that for any replicator (of any CA), the configuration ξ can be fully de-
scribed in terms of a finite set of local patterns that are repeated at infinitely many
locations prescribed by �. (This is the reason for the name replicator.) For more
details, we refer the reader to [11], where the concept was introduced.

Our results will apply to web CA rules satisfying two conditions which we
call diagonal-compliance and wide-compliance. The conditions state that flow of
information concerning the distinction between 0s and 2s is blocked by certain
local patterns of 1s. The formal statements of the conditions are straightforward
but somewhat technical, and we therefore postpone them to the next section. For
now, we note that Web-Xor is diagonal-compliant.

A uniformly random binary seed on [0,L] is an initial configuration ξ0 in which
ξ0(x) takes values 0,1 with equal probabilities independently for all x ∈ [0,L],
and 0 outside [0,L].

THEOREM 1.1 (Replication from random seeds). Consider a web CA that is
either diagonal-compliant or wide-compliant, started from a uniformly random
binary seed on [0,L]. There exist a random variable RL taking values in [0,∞],
and a random ether ηL (both deterministic functions of the seed), with the fol-
lowing properties. We have P(RL = ∞) → 0 as L → ∞, and indeed the sequence
(RL)L≥0 is tight. On the event RL < ∞, the configuration ξ is a replicator of thick-
ness RL + L and ether ηL. Furthermore, if any finite set of 0s in ξ0 are changed
into 2s, the same statement holds with the same RL and ηL.
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FIG. 3. Four examples of Piggyback evolution: two replicators (with enlarged regions showing dif-
ferent ethers) from random seeds of length 30; a quasireplicator with seed 11111; and an apparently
chaotic example with seed 100011011.

Web CA rules may be further classified in the following way, which has im-
plications for their production of ethers. A CA has no spontaneous birth (of 2s)
if whenever ξ0 contains no 2s, ξ1 also contains no 2s. Web-Xor has no sponta-
neous birth. Figure 3 shows four possible evolutions of a CA rule called Piggy-
back (to be defined in the next section) that is wide-compliant and has spontaneous
birth.
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THEOREM 1.2 (Trivial and nontrivial ethers). Assuming the conditions of The-
orem 1.1, RL can be chosen to have the following additional properties:

(i) If the CA rule has no spontaneous birth, then ηL ≡ 0 whenever RL < ∞.
(ii) Suppose that the CA rule has spontaneous birth. If for some deterministic

ether η we have RL < ∞ and ηL = η for some binary seed, then for uniformly
random binary seeds we have

lim inf
L→∞ P(RL < ∞ and ηL = η) > 0.

Given any particular seed, there is a simple procedure to compute the random
variable RL appearing in Theorems 1.1 and 1.2, and in particular to determine
whether it is finite. (See Sections 8 and 9 for details.) For many CA of interest,
including Piggyback, there are multiple nonequivalent ethers η for which the con-
dition of Theorem 1.2(ii) indeed holds, and which hence have asymptotically non-
trivial probabilities. The first two pictures in Figure 3 show two examples. Our
methods allow the computation of explicit rigorous lower bounds on asymptotic
probabilities of particular ethers. For example, in Piggyback, for the ether that re-
sults from the periodic initial state (00022222)∞, the lim inf in the theorem is at
least 0.1297, while (0)∞, (2)∞ and (00002022)∞ have lower bounds 0.5, 0.0398
and 0.0151, respectively. (In fact, more than 100 ethers have positive lim inf, and
we believe that there are infinitely many.)

As remarked earlier, many web CA provably exhibit more complex behavior
for certain exceptional seeds. One important class of behavior is formalized by the
following concept introduced in [11]. We call a seed ξ0 (or a configuration ξ ) a
quasireplicator with ether η if the following holds. For some exceptional set of
space–time points Q ⊇ �, each bounded component of Z2 \ Q is filled with η,
while for some a > 1, the set a−nQ converges as n → ∞ in Hausdorff metric to a
set of Hausdorff dimension strictly less than 2.

THEOREM 1.3 (Quasireplicators). For some diagonal-compliant and wide-
compliant web CA rules, including Web-Xor and Piggyback, there exist seeds that
are quasireplicators but not replicators.

Examples of (provable) quasireplicators include the second and third seeds in
Figure 2, and the third seed in Figure 3. Certain other seeds appear to be neither
replicators nor quasireplicators, but exhibit apparently chaotic behavior, although
proving this seems very challenging. The fourth examples in each figure are in
this category. In some very special cases, we can prove chaotic behavior in a cer-
tain conditional sense, even for an infinite family of seeds whose number grows
exponentially with their length. We discuss these issues further in the next section.

Theorem 1.1 describes the space–time configuration away from �, and more-
over states that this description is insensitive to 2s in the initial configuration.
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However, the result provides no information about the configuration close to �.
The next result addresses this. The forward cone of a space–time point (x, t) is
the set {(y, s) : |y − x| ≤ s − t}, and the forward cone of a set is the union of the
forward cones of its points.

THEOREM 1.4 (Stability). Consider a diagonal-compliant or wide-compliant
web CA, started from a uniformly random binary seed on [0,L]. With probabil-
ity converging to 1 as L → ∞, the configuration of ξ in the forward cone of
[0,L] × {�C logL�} is unchanged if any set of 0s in ξ0 are changed to 2s. Here, C

is an absolute constant. If the CA has no spontaneous birth, then with probability
converging to 1 the same cone contains no 2s.

We next discuss some ideas behind our proofs. Since in a web CA the web of 1s
evolves according to 1 Or 3, it easily follows that all 1s lie in �(L). In the situation
of Theorem 1.1, we will prove that immediately above each bounded component
of Z

2 \ �(L) there is a strip which blocks information flow. Furthermore, each
such strip contains a spatially periodic configuration of 1s, with the repeating unit
being identical for all strips up to translation. This is a probabilistic statement, not
a deterministic one, and the height of the strip is random. It will be proved using
techniques of percolation theory. In contrast with classical percolation, the space–
time configuration λ of 1 Or 3 is not i.i.d., but has long-range dependence. We will
make use of the key percolation result below, which we believe is interesting in its
own right.

A path is a finite or infinite sequence π of space–time points (x0, t0), (x1, t1),

. . . , (xn, tn)(. . .) with ti+1 = ti + 1 and |xi+1 − xi | ≤ 1 for all i. A path is diagonal
if it satisfies |xi+1 − xi | = 1 for all i. Suppose λ0 is given, and let λ be the result-
ing configuration of 1 Or 3. We say that a path π is empty if λ(x, t) = 0 for every
(x, t) on π . A path is wide if it is empty and it makes no diagonal step between two
1s, that is, it has no two consecutive points (x, t), (y, t + 1) with |x − y| = 1 but
λ(y, t) = λ(x, t + 1) = 1. (As suggested by the terminology, diagonal-compliance
and wide-compliance of web CA refer to information flow being restricted to paths
of the appropriate type.) We now assume that the initial configuration λ0 is uni-
formly random on Z, that is, λ0(x) takes values 0,1 with equal probabilities inde-
pendently for all x ∈ Z.

THEOREM 1.5 (Subcriticality). Consider the 1 Or 3 CA from a uniformly ran-
dom initial configuration on Z. We have

P
(∃ an empty diagonal path from Z× {0} to (0, t)

)
< e−ct , t > 0,(1.1)

for some absolute constant c > 0. The same conclusion holds for the existence of
a wide path.

In contrast, we prove that empty paths do percolate.
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THEOREM 1.6 (Supercriticality). For the 1 Or 3 CA from a uniformly random
initial configuration on Z,

P
(∃ an infinite empty path from (0,0)

)
> 0.

We now briefly discuss background to our results. As remarked earlier, CA
that exhibit chaotic behavior for typical seeds but regular behavior for some seeds
are apparently very common. Empirical evidence strongly suggests that the one-
dimensional rules Exactly 1 [14], Perturbed Exactly 1 [11] and EEED [15] are
all in this category. It is natural to postulate a mechanism for this phenomenon,
whereby chaos nucleates from certain local patterns, and, once started, invades all
nonchaotic regions. It is tempting to conclude that this robustness of chaos might
be universal law, akin to the second law of thermodynamics.

To our knowledge, the first compelling evidence to the contrary was presented
in [13], where a CA later called Extended 1 Or 3 was introduced. This rule
arises naturally as the “2-layer extremal boundary dynamics” of a classical two-
dimensional CA rule, Box 13. Piggyback is also the 2-layer extremal boundary dy-
namics of a two-dimensional rule. See Section 2 for more information. Extremal
dynamics have been utilized very effectively in the analysis of Packard snowflake
CA in [12, 13].

Extended 1 Or 3 was proved in [11] to admit both replicators and quasirepli-
cators, and observed to generate apparent chaos from some seeds. Empirical evi-
dence was presented that long random seeds are replicators with high probability,
and thus that it is the ordered phase that is resistant to disorder. In this article, we
provide the first rigorous demonstration of this phenomenon. The classes of CA
that we consider are strongly inspired by Extended 1 Or 3. We have not succeeded
in proving that the conclusion of Theorem 1.1 holds in the case of Extended 1
Or 3, although this would follow if a certain natural conjecture (Conjecture 5.3)
were established.

We note that the disorder-resistance phenomenon under consideration is some-
what reminiscent of insensitivity of CA rules to random noise in the update rule,
as in [9, 16].

Much CA research has focused on evolution from carefully chosen initial
configurations—a notable rigorous example is [6]. In contrast, rigorous results for
CA from a random initial configurations are scarce, despite their potential im-
portance in understanding self-organization. Most such research has been focused
on nucleation, that is, random formation of centers that orchestrate a takeover of
the available space. Notable examples include bootstrap percolation [2, 17] and
excitable media models [8]. We also mention two previous works on additive dy-
namics started from a product measure, [18] and [7]; the latter finds an embedded
random walk by an argument somewhat related to the methods in Section 5.

In many cases, percolation with long range dependence is extremely challeng-
ing to analyze rigorously (see [1, 3, 10, 22], and references therein). Nevertheless,
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in our setting it turns out that the additivity of 1 Or 3 allows certain judiciously
chosen percolation arguments to be carried through with relative ease. Translating
results from an infinite random initial configuration to finite seeds also appears
daunting, since the number of random bits is now finite. However, additivity intro-
duces extensive periodicity and repetition into the configuration. With care, these
properties can be used to advantage. This extreme form of long-range dependence
provides the link between lack of percolation and evolution from random seeds,
and is also the reason for formation of ethers.

While our results provide a reasonably comprehensive picture of subcritical per-
colation behavior for certain path types (diagonal and wide), it should be empha-
sized that the behavior for paths of supercitical type (empty paths) in the evolution
from finite random seeds is not well understood. We discuss open questions and
prove some preliminary results in this direction in Section 6.

The article is organized as follows. In Section 2, we establish terminology, in-
cluding the formal definitions of diagonal-compliance and wide-compliance, we
introduce and discuss some further examples of CA having these properties, and
we discuss how Theorem 1.3 is proved. Sections 3–7 are concerned entirely with
properties of the additive rule 1 Or 3, from which properties of web CA are de-
duced later. In Section 3, we review properties (most of them well known) of 1 Or 3
started from a single occupied site, and in Section 4 we use additivity to deduce
basic properties of the evolution from random configurations. In Sections 5 and 6,
we prove the percolation results, Theorems 1.5 and 1.6, respectively, and discuss
other facts and open problems concerning percolation. In Section 7, we deduce
key results about evolution of 1 Or 3 from random seeds. Finally, we return to web
CA. In Section 8, we deduce Theorems 1.1 and 1.4, and in Section 9 we prove
Theorem 1.2 and show how to compute lower bounds on ether probabilities.

2. Definitions, examples and preliminary results.

2.1. Basic conventions. Throughout the paper, λ denotes the 1 Or 3 CA, while
ξ denotes a web CA. All our intervals will be subsets of Z or of Z× {t} for some
t ≥ 0. We adopt the convention that [a, b] = ∅ and [a, b] × {t} = ∅ whenever
b < a.

Throughout, a site or a cell will refer to an element of Z; a point will be an
element of space–time Z × [0,∞) ⊂ Z

2. The state of a CA ξ at cell x and time t

is denoted ξt (x) or ξ(x, t), depending on whether our focus is on time evolution or
the space–time configuration. When specifying a seed, we always assume that all
states left unspecified are 0. In diagrams of space–time evolution, state 0 is colored
white, state 1 is black or grey and state 2 is a different nongreyscale color for each
CA rule.

We say that a collection of {0,1}-valued random variables is uniformly random
if they are independent and take values 0 and 1 each with probability 1/2.
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2.2. Compliance. In this section, we formally introduce various families of
web CA. As mentioned already, these will have 3 states and range 2. Thus, the
state of a site is ξt (x) ∈ {0,1,2} for x ∈ Z and t ∈ [0,∞), and the evolution is
given by

ξt+1(x) = f
(
ξt (x − 2), ξt (x − 1), ξt (x), ξt (x + 1), ξt (x + 2)

)
for some function f .

We reiterate our standing assumption that the 1s of ξ behave as the 1 Or 3 CA.
More precisely, writing

δ(a) := 1[a = 1] = a mod 2, a = 0,1,2,

we assume that

δ
(
f (a, b, c, d, e)

) = δ(b) + δ(c) + δ(d)mod 2(2.1)

for all a, b, c, d, e. Thus, if we define

λt (x) := δ
(
ξt (x)

)
,(2.2)

then (2.1) implies that λ satisfies the 1 Or 3 CA rule. We sometimes call λ the first
level of the process. We call a CA rule that satisfies (2.1) and f (0,0,0,0,0) = 0
a web rule.

We now consider various further conditions that may be imposed on f . The
idea will be that the flow of information concerning the distinction between states
0 and 2 is blocked by 1s (in various locations). Throughout the following, we take
a, b, c, d, e and a′, b′, c′, d ′, e′ to be arbitrary satisfying δ(a) = δ(a′), δ(b) = δ(b′),
etc.

We say that the rule f is empty-compliant if

f (a, b, c, d, e) = f
(
a′, b, c, d, e′);

that is, a cell’s next state ξt+1(x) depends on nonadjacent cells ξt (x ± 2) only
through their first level. [Recall that by (2.1), the first level of the next state cannot
depend on the nonadjacent cells at all.] Similarly, we say that the rule is diagonal-
compliant if

f (a, b, c, d, e) = f
(
a′, b, c′, d, e′).

It will be convenient to express the next conditions in terms of the new first-level
states of the neighboring cells. Thus, we denote

� := δ(a) + δ(b) + δ(c)mod 2;
r := δ(c) + δ(d) + δ(e)mod 2,

so that if (a, b, c, d, e) = (ξt (x − 2), . . . , ξt (x + 2)) then (�, r) = (λt+1(x −
1), λt+1(x + 1)). We say that f is wide-compliant if it is empty-compliant and

c = r = 1 implies f (a, b, c, d, e) = f
(
a′, b, c, d ′, e′) and

c = � = 1 implies f (a, b, c, d, e) = f
(
a′, b′, c, d, e′).
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In a configuration λ of 1 Or 3, a path is said to be θ -free if it is empty and it con-
tains no point (x, t) whose 5-point neighborhood {(x ± 1, t), (x ± 1, t − 1), (x, t −
1)} contains θ or more 1s. Finally, we say a CA rule f is θ -free-compliant if it is
empty-compliant and

δ(b) + δ(c) + δ(d) + δ(�) + δ(r) ≥ θ

implies f (a, b, c, d, e) = f
(
a′, b′, c′, d ′, e′).

Recall the definition of no spontaneous birth from the Introduction; this is
equivalent to the condition that f (a, b, c, d, e) �= 2 whenever a, b, c, d, e ∈ {0,1}.

As suggested by the terminology, the behavior of cellular automata satisfying
the above conditions is constrained by paths of the appropriate types.

LEMMA 2.1 (Compliance). Consider a web CA that is empty-compliant
(resp.: diagonal-compliant, wide-compliant, or θ -free-compliant). Consider two
initial configurations ξ0, ξ

′
0 whose first levels agree [i.e., δ(ξ0(x)) = δ(ξ ′

0(x)) for
all x], and define the first-level dynamics λ via (2.2). Fix a point (y, t). If λ has no
empty path (resp.: empty diagonal, wide, or θ -free path) from any (x,0) at which
ξ0(x) �= ξ ′

0(x) to (y, t), then ξt (y) = ξ ′
t (y). Moreover, if the CA has no spontaneous

birth, then ξt (y) �= 2.

PROOF. Suppose, to the contrary, that ξt (y) �= ξt (y
′). We need to show that

there exists a path of the appropriate type from Z × {0} to (y, t). By induction, it
suffices to exhibit the final step on this path. This is a straightforward verification.

To prove the final claim in the no spontaneous birth case, consider the initial
state ξ ′

0 in which every 2 of ξ0 is changed to 0. Then ξt (y) = ξ ′
t (y) = 0. �

LEMMA 2.2 (3-free paths). In any configuration λ of 1 Or 3, any 3-free path
is wide. Any 3-free-compliant web CA rule is wide-compliant.

PROOF. Assume that a 3-free path makes a leftward diagonal move on two
space–time points in state 0. Denote the states a, b, c at nearby points thus:

a b 0
0 c

We need to show that b and c cannot be both 1. However, if b = 1, then also a = 1,
but then c = 0 as the path is 3-free. This establishes the first claim. A similar
argument gives the second claim. �

We now state a simple but important lemma that says that, although the web
rules have range 2, empty-compliance ensures that the “light speed” is essen-
tially 1.
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LEMMA 2.3 (Light speed). Assume an empty-compliant web CA. The state
ξ(x, t) depends on the initial configuration ξ0 only through the states

λ0(x − t − 1), ξ0(x − t), . . . , ξ0(x + t), λ0(x + t + 1),

where λ is defined by (2.2).

PROOF. The given states determine the following states at time 1:

λ1(x − t), ξ1(x − t + 1), . . . , ξ1(x + t − 1), λ1(x + t).

Then we use induction. �

2.3. Examples of rules. We will introduce several examples of web CA, cho-
sen to represent various behaviors. Finding such rules is not particularly dif-
ficult, and we know of many others with similar characteristics. Let the func-
tion N1 (resp., N2) count the number of 1s (resp., 2s) among its arguments, and
N12 = N1 + N2.

Our first example is Web-Xor, whose update rule is given by

f (a, b, c, d, e) =
⎧⎨
⎩

1, (b + c + d)mod 2 = 1,

2, (b + c + d)mod 2 = 0 and N2(b, d) = 1,

0, otherwise.

It is easy to check that Web-Xor is diagonal-compliant and has no spontaneous
birth. Examples of its evolution are given in Figure 2. The top example represents
typical behavior: replication with zero ether from a long random seed. The middle
two examples are quasireplicators, one very simple and one similar to the one in
Theorem 8 of [11]. For many seeds including these two, quasireplication can be
rigorously proved via inductive schemes that completely characterize the configu-
ration at certain specified times. In more complicated cases, such schemes can be
very laborious to construct, while in other cases it may be difficult even to deter-
mine whether the seed is a quasireplicator. We will not give proofs of quasirepli-
cation; instead we refer the reader to [11] for two typical examples of inductive
schemes that feature in such arguments. We believe that the final example in Fig-
ure 2 is chaotic.

Even this simplest of rules displays a remarkable variety of behavior from “ex-
ceptional” seeds. Other interesting seeds that we have found include: 110010012
(a replicator with nontrivial pattern of 2s in the web), 110011112 (a quasirepli-
cator with scale factor a = 4), 111001112 (perhaps chaotic or a very complicated
quasireplicator), 10110112 (apparent chaos restricted to one side).
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FIG. 4. Modified Web-Xor with seeds 11111112 and 210001.

Modified Web-Xor also has no spontaneous birth, but the 2s obey a symmetric
two-point Or rule in the presence of 1s:

f (a, b, c, d, e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, (b + c + d)mod 2 = 1,

2, (b + c + d)mod 2 = 0, and
either N2(b, d) = 1 or[
N2(b, d) > 1 and N1(�, b, c, d, r) ≥ 1

]
,

0, otherwise.

As seen in Figure 4, this rule is capable of “mixed replication” with two different
ethers (top). Note that Theorem 1.1 implies that with high probability this does not
happen for long random seeds. The bottom example is apparently a quasireplicator,
although we have no proof, and it seems that the inductive methods of [11] do not
apply. Here and in the last example of Figure 2, it is plausible that the evolution
is driven by the advance of a front that lags behind the edge of the light cone by a
power law. We will discuss this phenomenon in Section 6.

In Web-adapted Rule 30, 2s evolve according to Rule 30 [24], except that 2s per-
form the three-point Or rule in the presence of 1s when a neighborhood occupation
number is small enough:

f (a, b, c, d, e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, (b + c + d)mod 2 = 1,

2, (b + c + d)mod 2 = 0 and N1(�, b, c, d, r) ≤ 2, and
either w30

[
δ2(b), δ2(c), δ2(d)

] = 1
or

[
N2(b, c, d) ≥ 1 and N1(�, b, c, d, r) ≥ 1

]
,

0, otherwise.
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FIG. 5. Chaotic behavior of Web-adapted Rule 30 with seed 100010201.

Here, w30 is the update rule for Rule 30, given by w30(a1, a2, a3) = (a1 +a2 +a3 +
a2a3)mod 2, and δ2(a) := 1[a = 2]. Web-adapted Rule 30 is 3-free-compliant (and
therefore wide-compliant) and has no spontaneous birth. See Figure 5 for an ex-
ample. One can prove that this instance is not a replicator, but is it chaotic? There
are no known methods to prove chaotic evolution, or even universally agreed def-
initions of the concept; however, suppose one accepts the reasonable premise that
Rule 30 generates a chaotic configuration ρ started from a single 1 [24]. Then the
example in Figure 5 is equally chaotic, in the sense that its evolution provably
features larger and larger regions of ρ, at specific locations that are easily charac-
terized. We will also show in Section 5 that an exponentially growing family of
seeds exhibit conditional chaos in the same sense.

The above rule may be modified in various ways so as to include spontaneous
birth, resulting in further rules where Theorem 1.1 applies, yet in which many
provable replicators have ethers with very long temporal period, perhaps too long
to be seen experimentally. In the interest of brevity, we omit the details. We briefly
discuss bounds on the period in Section 8.

A number of web rules arise naturally in analysis of two-dimensional CA, as we
now explain. Consider a binary CA ζt ∈ {0,1}Z2

, in which the new state of cell z is
given by a rule defined on the Moore neighborhood N (z) := {z′ ∈ Z

2 :‖z′ −z‖∞ ≤
1}. We assume that state 0 is quiescent, and that the CA solidifies, that is, ζt (z) = 1
implies ζt+1(z) = 1; the CA rule then only needs to specify when a z ∈ Z

2 becomes
occupied, that is, changes its state from 0 at time t to 1 at time t + 1. To each such
CA, we associate extremal boundary dynamics (EBD): assume that ζ0 vanishes
on Z × [1,∞) and let λt be given by ζt on Z × {t}. Observe that λt is a one-
dimensional CA whose space–time configuration is a lower bound on the final
configuration ζ∞ = ⋃

t≥0 ζt . Now assume that we extend the boundary layer to
width 2, which leads to the CA ξt ∈ {0,1,2}Z with the following rule: ξt (x) = 1
if ζt (x, t) = 1 (so that λt = ξt mod 2), ξt (x) = 2 if ζt (x, t) = 0 but ζt+1(x, t) = 1,
and ξt (x) = 0 otherwise. Again, ξt is a one-dimensional CA. As ζt (x, t − 1) = 1
exactly when either ξt−1(x) = 1 or ξt (x) = 2, ξt indeed determines two extremal
layers of ζt , and is thus called two-level EBD. The evolution of ξt also provides a
lower bound on ζ∞ and is often useful when the bound provided by λt “leaks” [13].
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To conform with the rest of the paper, we assume throughout that the EBD is the 1
Or 3 CA.

The natural setting for study of the issues addressed in this paper are general
web CA, a much larger class than the two-level EBD rules. The latter, however,
provide many interesting examples. In fact, the different ethers, quasireplicators
and (apparent) chaotic behavior were first observed in the two-level EBD generated
by the Box 13 solidification CA [13], in which z becomes occupied at time t + 1
when the number of occupied cells in N (z) at time t is 1 or 3. The corresponding
two-level EBD is called the Extended 1 Or 3 CA, and is given by

f (a, b, c, d, e) =
⎧⎨
⎩

1, (b + c + d)mod 2 = 1,

2, (b + c + d)mod 2 = 0 and N12(�, r, b, c, d) ∈ {1,3},
0, otherwise,

as is easy to check; therefore, this rule is equivalent to the one with the same name
introduced in [11]. This rule is 4-free-compliant, and is not covered by our main
theorems. However, we establish some rigorous results in Section 9.

For simplicity, assume that the two-dimensional CA ζ is isotropic, that is, that
its rule respects all isometries of the lattice Z

2. Then there is a convenient suf-
ficient condition that assures wide-compliance for its two-level EBD: when the
neighborhood configuration is

a 1 c

b 0 1
0 0 0

the next state at the center cell is independent of c (i.e., depends only on a and b).
This holds, for example, for the following solidification rule, which we call Per-
turbed Box 13. Given ζt , let occ1(z) [resp., occ∞(z)] count the number of occu-
pied cells among the four nearest neighbors of z [resp., in N (z)]; then z becomes
occupied if either

• occ1(z) = 2, or
• occ1(z) ≤ 1 and occ∞(z) ∈ {1,3}.

See Figure 6 for an example.
The resulting two-level EBD has the update rule

f (a, b, c, d, e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, (b + c + d)mod 2 = 1,

2, (b + c + d)mod 2 = 0, and
either N12(�, c, r) = 2
or

[
N12(�, c, r) ≤ 1 and N12(�, b, c, d, r) ∈ {1,3}],

0, otherwise.

We call this web CA Piggyback. It is easy to see that it is wide-compliant, and has
spontaneous birth. The top two examples in Figure 3 start from long random seeds
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FIG. 6. Perturbed Box 13 started from a seed in the square [0,16]2. Initially occupied cells are
black, and subsequently occupied cells are red or blue if they have state 1 or 2, respectively, in the
2-level EBD, and otherwise grey. Unoccupied cells are white.

and are replicators with different ethers. (We will have more to say about ethers for
Piggyback in Section 9.) The third example is provably nonreplicating, as it is a
quasireplicator. The bottom example appears to be chaotic. Like the bottom picture
in Figure 2, the evolution displays a tantalizing mixture of order and disorder.

Our results on Piggyback have rigorous implications for the two-dimensional
Perturbed Box 13 rule (and similarly in other cases where 2-level EBD satisfies
the conditions of Theorem 1.1). Here, we summarize some initial observations,
noting that further investigation is warranted. As suggested by Figure 6, the evo-
lution of Perturbed Box 13 from a seed in [0,L]2 is governed by four space–time
configurations of Piggyback in four quadrants with boundaries at 45◦ to the axes.
Depending on the behavior of each, we may make deductions about the final con-
figuration ζ∞. In the case of a replicator with the “solid” ether (2)∞, as in the
bottom quadrant in this example, clearly no further filling of the ether is possible
after the second level of the EBD. By Theorem 1.2, it follows that Perturbed Box
13 started from a uniformly random seed in [0,L]2 results in a final configuration
ζ∞ of density 1 in Z

2 with probability bounded away from 0 as L → ∞. Certain
other ethers of Piggyback can also be shown to fill in in a predictable manner,
resulting in a corresponding ether for Perturbed Box 13, as in the top quadrant.
A similar analysis can likely be carried through for certain simple quasireplicators
such as the one in the right quadrant. When Piggyback is a replicator with zero
ether, as in the left quadrant, it appears plausible that the subsequent filling-in by
Perturbed Box 13 results in a chaotic final configuration. See [12, 13] for detailed
analysis of the filling-in process for some other EBD.

We conclude by mentioning a natural rule that seems intractable by our current
methods. Web 1 Or 3 is the web CA in which 2s perform 1 Or 3 on the points not
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FIG. 7. Chaotic behavior of Web 1 Or 3 from a random seed of 32 sites.

occupied by 1s:

f (a, b, c, d, e) =
⎧⎨
⎩

1, (b + c + d)mod 2 = 1,

2, (b + c + d)mod 2 = 0 and N2(b, c, d)mod 2 = 1,

0, otherwise.

Figure 7 gives an example of an evolution from a random seed of 1s and 2s, with
an apparent message of near-criticality and chaos.

2.4. Generalizations. The simplest additive rule, Xor CA μt , is defined on the
state space {0,1}Z by

μt(x) = μt−1(x − 1) + μt−1(x + 1)mod 2.

One might consider μ, and not λ, to be the most natural candidate for the web
dynamics. However, while μ does have some points of interest (see, e.g., Proposi-
tion 6.5), many of the main issues we consider become trivial in this setting. For
example, μ either only occupies points satisfying a parity constraint or generates
an impenetrable web even for empty paths [5, 12].

In the other direction, one might ask whether similar results hold if λ is replaced
by an arbitrary additive rule. It is indeed likely that a more general theory could be
developed in this setting. One complication is that predecessors of the all-0 state
will no longer necessarily be unique (as they are for 1 Or 3—see Lemma 3.4) and
as a result “mixed replicators” similar to the top example of Figure 4 may be the
norm.

On the other hand, all our results generalize with appropriate minor changes in
the definitions to CA with a quiescent state 0, first-level state 1 and other states
2, . . . , s.

3. Additive dynamics from a single occupied site. Recall that λ• denotes
1 Or 3 started from a single 1. In this section, we collect properties that we will
need. All these results are elementary and many are well known. First is a rescaling
property, illustrated in Figure 8.
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FIG. 8. An illustration of Lemma 3.1, with m = 2. Highlighted points comprise a “separated out”
copy of λ•.

LEMMA 3.1 (Rescaling). For any nonnegative integers a and m,

λ•
a2m(x) =

{
λ•

a(y), if x = 2my for y ∈ Z,

0, otherwise.

PROOF. The case m = 1 follows from additivity on observing that λ•
2 is 10101.

For m > 1, we apply the m = 1 case iteratively. �

LEMMA 3.2 (Periodicity properties).

(i) For t ≥ 0, λ•
t (0) = λ•

t (±t) = 1 while λ•
t (±(t − 1)) = t mod 2.

(ii) For all n ≥ 0, λ•
2n(x) = 1 exactly at x = 0,±2n.

(iii) For all n ≥ 0, λ•
2n+2n−1(x) = 1 exactly at x = 0,±2n,±(2n + 2n−1).

(iv) For any k ≥ 1, the sequence of edge configurations of λ• on [t −k +1, t]×
{t} is periodic (from t = 0 on) with period equal to 2p where 2p−1 < k ≤ 2p .

PROOF. Parts (ii) and (iii) follow from Lemma 3.1, and (iv) follows from (ii),
with (i) as a special case. (See Figure 9.) �

For some purposes, the following recursive description of λ• is useful, a variant
of the one given [21]. See Figure 10 for an illustration. Given a space–time con-
figuration A on Sn = [0,2n] × [0,2n − 1], we say that A is placed at a space–time

FIG. 9. Evolution of λ• with highlighted boundary strip of width 8 and temporal period 8.
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FIG. 10. Recursive description of λ•: B4 is composed of two copies of B3 (red), 2 copies of B2
(green) and two copies of B̄2 (blue).

point s if the configuration in s +Sn is the corresponding translate of A. Let Bn be
the space–time configuration of λ• on Sn. Reflect Bn around its vertical bisector
and denote the resulting configuration on Sn by B̄n.

LEMMA 3.3 (Recursion). We have B0 = 10 and B1 = 1 0 0
1 1 0 . Moreover, for

n ≥ 2, Bn is obtained by placing Bn−1 at (0,0) and at (2n−1,2n−1); Bn−2 at
(0,2n−1) and at (0,2n−1 + 2n−2); and B̄n−2 at (2n−2,2n−1) and at (2n−2,2n−1 +
2n−2). All placements result in consistent state assignments at overlaps.

PROOF. This follows easily from (i), (ii) and (iii) of Lemma 3.2. �

Our results for seeds depend on the fact that λ• has certain a unique periodic
configuration above every region of 0s. This property does not hold for general
additive rules.

LEMMA 3.4 (Predecessors of 0). For an arbitrary initial state λ0, suppose
that λt ≡ 0 on [a, b], but λt−1 �≡ 0 on [a − 1, b + 1]. Then λt−1 is a subword of the
periodic word (110)∞ on [a − 1, b + 1].

PROOF. Consider the four possible values for the pair λt−1(a − 1) and
λt−1(a). Once these states are fixed, the rest of λt−1 on [a − 1, b + 1] can be
determined sequentially. �

Fix an initial state for λ. A void is a finite inverted triangle of the form
⋃

i≥0([a+
i, b − i]× {t + i}), on which the configuration is identically 0, and that is maximal
with these properties with respect to inclusion. Its width is b − a + 1, and its start
time is t .

LEMMA 3.5 (Voids). In λ•, each void has width 2k −1 and start time divisible
by 2k−1 for some integer k ≥ 1. Furthermore, for every fixed k, the union of all
voids of width at least 2k − 1 has density 1 within the forward cone of (0,0).
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FIG. 11. Illustration of Proposition 3.6 with m = 2. The highlighted intervals at distance 22 above
two selected voids have the claimed periodic configuration.

PROOF. This is a straightforward application of Lemma 3.3. �

Finally, we deduce the following fact, which will be crucial for our results on
percolation and ethers. See Figure 11 for an illustration.

PROPOSITION 3.6 (Periodic interval above a void). In λ•, assume that [a, b]×
{t} is the top row of a void of width 2k − 1. For m < k, the state of interval [a −
2m,b + 2m] × {t − 2m} is a segment of the following infinite periodic string of
period 3 · 2m:

(1�1�0�)∞.(3.1)

Here, � represents a string of 2m − 1 consecutive 0s, and the segment begins
and ends with a full�.

PROOF. As t is divisible by 2k−1, and therefore by 2m, λ•
t on [a, b] × {t} is of

the form

�0� · · ·0�,

by Lemma 3.1. Then, by the same lemma, and Lemma 3.4 applied to λt/2m , the
configuration on [a − 2m,b + 2m] × {t − 2m} is either of the claimed type started
and ended with�, or all 0s. The latter possibility contradicts maximality of the
original void. �

4. Duality and randomness. When the initial configuration of 1 Or 3 is uni-
formly random (on some set), the resulting space–time configuration is of course
not uniformly random but has a high degree of dependence. Nevertheless, in this
section we show how to identify space–time sets on which the randomness is uni-
form. The additive structure of the CA rule ensures that the space–time configura-
tion is a linear function (modulo 2) of the initial states, and the idea is to find cases
where the associated matrix is upper triangular.
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Recall that λ•
t is the 1 Or 3 rule started with only the origin occupied. Let λA

t

denote the rule started with the set of initially occupied sites exactly equal to A ⊆
Z. We will extensively use the following version of cancellative duality.

LEMMA 4.1 (Duality). We have λA
t (x) = ∑

y∈A λ•
t (x − y)mod 2.

PROOF. This follows easily by additivity and induction on t . �

Observe that by symmetry and translation-invariance, λ•
t (x − y) = λ•

t (y − x) =
λ

{x}
t (y).

Suppose we have an ordered set S = {(xi, ti) : i = 1,2, . . . , n}, of space–time
points. A function F :S → Z is a dual assignment for S if for all i, j ∈ {1, . . . , n},

λ•(xj − F(xi, ti), tj
) =

{
1, if j = i,
0, if j < i.

(There is no restriction when j > i.) We think of F(·, ·) as sites in the initial config-
uration. The idea is that in order to determine λA(xi, ti), we need new information
about A at each successive i.

PROPOSITION 4.2 (Randomness via dual assignment). Suppose that the ini-
tial configuration λ0 of 1 Or 3 is uniformly random on some fixed set K ⊆ Z and
deterministic on KC . Let S be a fixed set of space–time points. If S has a dual
assignment whose image is contained in K , then λ is uniformly random on S.

PROOF. Writing

Ki = {
y ∈ K :λti (xi − y) = 1

}
,

K ′
i = {

y ∈ KC :λti (xi − y) = 1
}

and

ci = ∑
y∈K ′

i

λ0(y)mod 2,

we have by Lemma 4.1,

λ(xi, ti) = ∑
y∈Ki

λ0(y) + ci mod 2.

But Ki contains an element, F(xi, ti), that is not in
⋃

j<i Kj , therefore, λ(xi, ti) is
uniformly random conditional on (λ(xj , tj ) : j < i). �

A particularly useful special case is that a 1 adjacent to a string of 0s in λ•
heralds uniformly random intervals in the evolution from a random seed.
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FIG. 12. All empty diagonal paths from an interval at time 0 are highlighted in blue. The initial
configuration is uniformly random.

COROLLARY 4.3 (Random intervals). Fix integers a and L,k > 0. Let the
initial configuration λ0 be a uniformly random binary seed on [0,L], and suppose
that λ•

t on [a, a + k] is 1 followed by k 0s. Then for any x ∈ [−a,L − a − k], the
configuration λt is uniformly random on [x, x + k].

PROOF. By symmetry, λ•
t on [−a−k,−a] is k 0s followed by 1. To find a dual

assignment of [x, x + k] × {t}, order the set from left to right, and let F(y, t) =
y + a. Clearly, the image of this assignment is contained in [0,L]. Now apply
Proposition 4.2. �

5. Subcritical percolation. In this section, we prove Theorem 1.5, which
states that when 1 Or 3 is started from a uniformly random initial configuration
on Z, the probability of an empty diagonal or wide path from the initial interval
Z× {0} to the point (0, t) decays exponentially in t . See Figures 12 and 13 for the
diagonal and wide cases, respectively. Note the contrast with Figure 18 in the next
section for empty paths.

Our approach is to use dual assignments to control the probabilities of paths, but
the details of the argument are very different for the two types of path. A diagonal
path has 2 choices at each step, and any given point has state 0 with probability
1/2, suggesting a critical bound. To improve this to a subcritical bound, we con-
sider a leftmost path, and use special properties of λ. On the other hand, we control

FIG. 13. All wide paths from an interval at time 0 are highlighted in blue. The initial configuration
is uniformly random.
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wide paths via a random process of space–time intervals that terminates when an
interval has even length.

Later in the section we also discuss θ -free paths, and show that notwithstanding
Theorem 1.5, there is an exponential family of initial configurations for which
percolation by wide paths does occur.

5.1. Empty diagonal paths.

PROOF OF THEOREM 1.5, CASE OF EMPTY DIAGONAL PATHS. We may as-
sume without loss of generality that t is even, since the configuration at time 1 is
also uniformly random, and the probability in question is strictly less than 1 for
t = 1.

Fix a diagonal path π from (x,0) to (0, t). We will find an upper bound for the
probability that π is the leftmost empty diagonal path from Z×{0} to (0, t). To this
end, partition the steps of π into segments of length 2. During each such segment,
the path has one of the following forms: left–left, right–right, left–right or right–
left. When π makes a right-left move, that is (x, s) → (x + 1, s + 1) → (x, s + 2),
the leftmost property requires a 1 at (x − 1, s + 1); we call these points (which are
not on the path) the corner points of the path, and let N(π) be their number, that
is, the number of right–left segments that start at even times.

We will give a dual assignment F of the path together with the set of its corner
points (see Figure 14 for an illustration). Order points on the path with increasing
time, and place a corner point (x, s) in the ordering immediately after the point on
the path at the time s + 1. For every corner point (x, s), let F(x, s) = x − s + 1.
For every point (x, s) on the path, let F(x, s) be either x − s or x + s, according to
whether the path arrives to (x, s) from the right [i.e., from (x + 1, s − 1)] or from
the left [i.e., from (x − 1, s − 1)], respectively. We let F(x,0) = x.

To check that F is a dual assignment, we will use Lemma 3.2(i). Fix a point
(x, s) on the path. All positions assigned by F to points earlier in the order lie
in [x − s + 2, x + s] or [x − s, x + s − 2] according to whether the path arrives
to (x, s) from the right of left, so the required condition is satisfied for this point.
Now suppose (x −1, s +1) is a corner point arising from the moves (x, s) → (x +

FIG. 14. A leftmost diagonal path together with a dual assignment for the points of the path (white
discs) and the corner points (black discs). The dashed lines connect each point to its assigned position
in the initial configuration.
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1, s+1) → (x, s+2) in the path. This corner point is assigned to F(x−1, s+1) =
x − s − 1. We have F(x, s + 2) = x − s − 2, and all points earlier than (x, s + 2)

were assigned integers at least x − s. Since s +1 is odd, λ•(x −1− (x − s −1), s +
1) = λ•(s, s + 1) = 1. Finally, since s + 2 is even, λ•(x − (x − s − 1), s + 2) =
λ•(s + 1, s + 2) = 0, as required.

Now, using Proposition 4.2,

P
(
an empty diagonal path from Z× {0} to (0, t) exists

)
≤ ∑

π

P
(
π is the leftmost empty diagonal path from Z× {0} to (0, t)

)

≤ ∑
π

(
1

2

)t+1+N(π)

,

where both sums are over all diagonal paths from Z × {0} to (0, t). Let Pt be the
last sum above. Then, by considering the last two steps of the path,

Pt+2 = ((1
2

)2 + (1
2

)2 + (1
2

)2 + (1
2

)3)
Pt ,

so, recalling that t is even, Pt = (1/2) · (7/8)t/2. �

As an aside, we mention that the assertion of Theorem 1.5 for diagonal paths
also holds when λ is replaced by the Xor CA μ, with a much simpler proof, since
the set of all space–time points that the origin is connected to by diagonal paths is
a rectangle.

5.2. Wide paths.

PROOF OF THEOREM 1.5, CASE OF WIDE PATHS. We will prove that

P
(∃ a wide path from (0,0) to Z× {t}|λ0(0) = 0

)
< e−ct(5.1)

for some c > 0. This clearly suffices by translation-invariance, since there are only
2t + 1 points at time 0 from which a path can reach (0, t). Therefore, we will
henceforth assume that λ0(0) = 0 and that λ0 is uniformly random elsewhere.

We recursively define intervals It = [Lt,Rt ] for t = −1,0, . . . , T , where T ≤
∞, as follows. Start with L−1 = R−1 = 0; then let I0 be the maximal subinterval of
Z containing 0 on which λ0 ≡ 0. If It = ∅, then we set T = t and there is no It+1.
Otherwise, if |It | ≥ 2, then It+1 is the interval [Lt + 1,Rt − 1] (which is ∅ when
|It | = 2). If |It | = 1, then It+1 is the maximal subinterval of Z containing Rt = Lt

on which λt+1 ≡ 0. Observe that for each t < T we have λt ≡ 0 on It , while
λt (Lt − 1) = λt (Rt + 1) = 1. This follows from the CA rule for λt by induction
on t ; the key observation is that if |It | = 1 then λt+1(Lt ) = 0 (see Figure 15).
Furthermore, any wide path started at (0,0) is within

⋃
t<T (It × {t}).
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FIG. 15. The process of intervals of zeros used to prove nonpercolation by wide paths. Here, the in-
terval lengths (|I0|, |I1|, . . . , |IT |) are (5,3,1,7,5,3,1,4,2,0). The witness points are highlighted.
The corresponding binary sequence (X1, . . . ,X2T +1) is shown below; it is obtained by reading the
states of the witness points in conventional text order on the page, except with the left (red) intervals
reversed. The dual assignment of witness points to initial positions is shown via dashed lines (witness
points in the top row are assigned to themselves).

We now define an ordered sequence of 2T +1 space–time points, which we call
witness points, associated with the above sequence of intervals. If |It | = 1, we call
t + 1 a refresh time; we also declare 0 a refresh time. Let 0 = τ0 < τ1 < · · · be the
refresh times. We build the sequence of witness points by appending certain points
at each refresh time τi , in order. Specifically, for every i, we append all points in
Iτi

× {τi}, with the exception of zi = (Lτi−1, τi), in the following order: points to
the left of zi in the right-to-left order, followed by points to the right of zi in the
left-to-right order. Let Xi = λ(si), where s1, . . . , s2T +1 are the witness points in
the order described. Write X for the random finite or infinite sequence given by
X = (X1, . . . ,X2T +1) if T < ∞ and X = (X1,X2, . . .) if T = ∞. Our goal is to
show that X is equal in distribution to a sequence of independent fair coin flips
stopped at a certain a.s. finite stopping time.

Let Y1, Y2, . . . be independent random variables taking values 0 and 1 with equal
probability. Partition this sequence into blocks of the form 0a10b1, where a, b ≥ 0,
and let S ≥ 1 be the location of the endpoint of the first such block of odd length.
Then S is a.s. finite and

P(S ≥ t) < e−ct ,(5.2)

since S is at most the waiting time for the pattern 11011. Write Y ′ := (Y1, . . . , YS).
We claim

X
d= Y ′.(5.3)

Once (5.3) is proved, the exponential bound (5.2) implies (5.1), since 2T + 1 d= S.
We now proceed to prove (5.3). Since P(S < ∞) = 1, the random variable Y ′

has countable support, thus it suffices to show that P(X = y) = P(Y ′ = y) for
any y with P(Y ′ = y) > 0. Choose such a y. The event {X = y} determines T
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FIG. 16. The sequence of principal voids V0,V1, . . . , V8, numbered from top to bottom; V0 and V1
each consist of a single point.

and I0, . . . , IT and, therefore, the locations of the witness points. It follows that
the event {X = y} is precisely the event that λ takes the specified values y on
these (deterministic) witness points. Now we use a dual assignment to show via
Proposition 4.2

P(X = y) = (1
2

)length of y
,

as required. Considering the witness points in their order, we assign to each (x, t)

either x + t or x − t , depending on whether it is to the right or left of zi in its
interval. (See Figure 15.) This is a dual assignment simply because λ•

t (±t) = 1
and λ•

t (x) = 0 for x ∈ [−t, t]C . �

5.3. θ -free paths. We now discuss various aspects of 3-free and 4-free paths.
The results of this subsection are not needed for the proofs of Theorems 1.1–1.4.

Since 3-free paths are wide (Lemma 2.2), the exponential bound (1.1) holds for
3-free paths and there are no infinite 3-free paths when λ0 is uniformly random on
Z. Do such paths exist started from special initial conditions? Indeed they do, as
shown by our next result.

Define the sequence of principal voids V0,V1, . . . of λ• according to Figure 16
(so that V2j and V2j+1 have width 2j+1 − 1 and respective start times 2 · 2j and
3 · 2j ). For L > 0, let WL

i = Vi ∩ (Vi + (L,0)) [the notation means that Vi is
translated by the vector (L,0)], and observe that Wi is filled with 0s when 1 Or 3
is started from any seed on [0,L].

See Figure 17 for an illustration of the next result, and of Corollary 5.2 below.

PROPOSITION 5.1 (Exceptional percolation). Assume λ0 is a seed on [0,L]
that vanishes outside 4Z, where L is a multiple of 4. Define the sets Wi = WL

i as
above. Let i be such that L ≤ 2�i/2� − 2. From every point in Wi there is a 3-free
path to some point in Wi+1. In particular, from any such point there is an infinite
3-free path.
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FIG. 17. Top: infinite 3-free paths (starting at time 64) in 1 Or 3 from a seed supported in 4Z.
Bottom: corresponding evolution of Web-adapted Rule 30, started 64 time units later with a single 2
added, and containing successively larger portions of Rule 30 evolution.

PROOF. For a maximal interval It ⊂ Z on which λt vanishes, define its suc-
cessor It+1 to be the maximal interval on which λt+1 vanishes and such that
It ∩ It+1 �= ∅; if such an interval does not exist, let It+1 = ∅.

Observe that λt vanishes outside 2Z at all even times t . Using this, it is easy
to verify by case-checking that every maximal interval of 0s has odd length at
every time. It follows that any nonempty maximal interval of 0s has a nonempty
successor. Similarly, since λt vanishes outside 4Z when t a multiple of 4, it is
easily verified that for any t , from every point in It × {t} there is a 3-free path to
some point in It+1 × {t + 1}.

Let the apex wi be the bottommost point of Wi (which is unique since L is
even). Clearly, from every point in Wi there is a 3-free path to wi . Moreover, by
the above, there is a 3-free path from wi to Z × {tWi+1}, where tWi+1 is the time
of the top interval of Wi+1. Finally, the condition L ≤ 2�i/2� − 2 ensures that this
top interval contains the intersection of the forward cone of wi with Z × {tWi+1}.

�

In fact, as a consequence of our next result, there are exponentially many (in L)
seeds on [0,L] whose forward cone contains an infinite 3-free path starting at
time 0. As a result, as discussed in Section 2 we can construct an exponential fam-
ily of binary seeds which, after a suitable replacement of some 0s by 2s, yield seeds
for the Web-adapted Rule 30 CA that are “as chaotic” as Rule 30. We now make
this precise. Let ET denote the configuration of Rule 30 started from a single 1 at
the origin, restricted to the region {(x, t) : |x| ≤ t ≤ T }, and with all 1s changed
to 2s.
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COROLLARY 5.2 (Chaos in Web-adapted Rule 30). There exist at least
c1 exp(c2L) binary seeds on [0,L] with the following property. Each of these seeds
has a location z ∈ [0,L] occupied by a 0; if this 0 is changed into a 2, the resulting
seed for Web-adapted Rule 30 generates a configuration that contains, for all T ,
a translated copy of ET within the first c3T time steps. Here, c1, c2, c3 are absolute
positive constants.

PROOF. Let k be an integer. Denote the interval directly above (and of the
same length as) the top interval of W 4k

i by J 4k
i . Suppose first that λ0 is an arbitrary

configuration that vanishes off 4Z on [0,4k−4], and then on [4k−3,4k] is chosen
to be either 0000 or 0001 so as to ensure that for all i the configuration in J 4k

i is
a subword of (110)∞. That this can be achieved follows from Lemma 3.4 and
additivity.

Let i be such that 4k ≤ 2�i/2� − 2, and consider the sequence of successor in-
tervals of the top interval of Wi . Using Proposition 5.1 (and its proof), all such
successors are nonempty, and the successor at the time of Jj (for j > i) consists
of a single point. Furthermore, this point is at most 4k away from the center of Jj

(for odd j ) or from the center of the left half of Jj (for even j ). These points will
form the starting points of the translated copies of ET .

Our set of binary configurations is the set of all resulting λt , where t is the
time of the top interval of Wi ; we define z to be the center (say) of this interval.
This gives an exponential family of configurations because the map on {0,1}Z
corresponding to one step of 1 Or 3 is injective when restricted to seeds. This is
easily verified (see Section 9 for more information).

To conclude, we need the following properties of Web-adapted Rule 30, which
are easily checked from its definition.

(i) If 1s are initially confined to sites in 4Z, and if at some time a maximal
interval of 0s and 2s contains at least one 2, so does its successor interval.

(ii) Initial states (110)∞112(110)∞ and 0∞20∞, with the 2 at the origin, result
in the same configuration on Z× [1,∞). �

We remark that a variant of Corollary 5.2 may be proved in which we allow any
finite set of 0s, in addition to the one at location z, to be changed to 2s. The only
change in the conclusion is that c3 now depends on the seed. This follows from two
additional observations. First, in 1 Or 3, from any given set of maximal intervals
of 0s in λ0, the number of successors cannot increase over time, and must thus
eventually stabilize. Second, if two Web-adapted Rule 30 seeds agree on [a, b],
and have 1s in a and b but no 1s outside [a, b], then their configurations agree on
the forward cone of [a, b].

We conclude this section with the following conjecture supported by computer
experiments.

CONJECTURE 5.3. The exponential bound (1.1) in Theorem 1.5 holds when
diagonal path is replaced by 4-free path.
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FIG. 18. All empty paths from an interval at time 0 are highlighted in blue.

6. Supercritical percolation. In this section, we consider empty paths from
random initial conditions, and in particular we prove the percolation result Theo-
rem 1.6. The results of this section are not needed for the proofs of Theorems 1.1–
1.4, but they are of independent interest and complement those of the previous
section. We also consider initial conditions where the randomness is restricted to
the half-line or a finite seed. Here, many questions are open, but we establish some
preliminary results. The questions we consider are relevant to further understand-
ing certain web CA behavior.

6.1. Percolation of empty paths. As Figure 18 suggests, the set of points
reachable by empty paths emanating from an interval at time 0 form an interval
at each subsequent time. With random initial conditions, this interval spreads lin-
early provided it survives. Proving this is the key to Theorem 1.6.

Suppose λ0 is given. The rightward Z-path from a space–time point (x, t) is
an infinite sequence of points (rs, s), s ≥ t defined as follows. Start with rt = x.
Inductively, let rs+1 be the largest integer y in (−∞, rs + 1] for which λs+1(y) is
0; or if there is no such y we take ru = −∞ for all u > s. Note that λ(rs, s) = 0
for all s > t for which rs is finite, but not necessarily for s = t . Analogously, we
define the leftward Z-path (�s, s), s ≥ t by reversing the space coordinate in the
definition.

LEMMA 6.1 (Properties of Z-paths). Suppose λ is 1 Or 3 from any initial
configuration.

(i) Suppose λ(0,0) = 0 and let (rt , t), t ≥ 0 be the rightward Z-path from
(0,0). If x ≤ rt and λ(x, t) = 0 then there is a empty path from (−∞,0] × {0} to
(x, t).

(ii) Fix an interval [a, b] with a ≤ b. Let (�t , t) be the leftward Z-path from
(a,0), and (rt , t) the rightward Z-path from (b,0). Suppose that �s ≤ rs for every
s ≤ t . Then for any y ∈ [�t , rt ] with λt (y) = 0, there is an empty path from [a −
2, b + 2] × {0} to (y, t).
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(iii) Under the assumptions of (ii), suppose also that λ0(a) = λ0(b) = 0. Then
for any y ∈ [�t , rt ] with λt (y) = 0, there is an empty path from [a, b]×{0} to (y, t).

(iv) Conversely, if there is an empty path from [a, b] × {0} to some (y, t), then
�s ≤ rs for all s ≤ t , and �t ≤ y ≤ rt .

PROOF. We omit the proof of (i), as it is similar to the proof of (iii), which
proceeds by induction as follows. The argument reduces to verifying (iii) at time
t = 1. Assume �1 ≤ r1 and take y ∈ [�1, r1] ⊆ [a − 1, b + 1] with λ1(y) = 0. Then
there exists an x ∈ {y − 1, y, y + 1} with λ0(x) = 0. It remains to verify that x can
be chosen to be in [a, b]. If y ∈ [a + 1, b − 1] this is clear; if y ∈ {b, b + 1}, we
may take x = b and if y ∈ {a, a + 1} we may take x = a.

The above argument also proves (ii): we verify the claim at time t = 1 and then
use (iii). The last claim (iv) is an easy consequence of definitions of empty and
Z-paths. �

The key fact in establishing percolation of empty paths is that rt has drift 1/4.
The proof is somewhat similar to that of nonpercolation for wide paths, Theo-
rem 1.5.

LEMMA 6.2 (Drift). Suppose that the initial configuration λ0 is uniformly
random on Z \ {0} and λ0(0) = 0. Let (rt , t), t ≥ 0 be the rightward Z-path from
(0,0). For every ε > 0, there exists a constant c = c(ε) > 0 so that P(|rt − t/4| >
εt) < e−ct .

PROOF. We first describe an exploration process that determines the rightward
Z-path from the origin (0,0). We designate (0,0) to be the first refresh point.
Now we examine the states of the points (1,1), (0,1), (−1,1), (−2,1), . . . , in this
order, until we find the first point with state 0. Let G be the number of points
examined, and call them witness points. Since the states of these witness points
are 01 · · ·1 (from left to right), certain states at the immediately following time
steps are determined. Specifically, the pattern 01 · · ·1 is immediately followed by
patterns of the same form, but with the length decreasing by 2 at each step and
centered at the same location, ending with either 01 or 0 according to whether
G was even or odd. (See Figure 19.) We designate the location of the 0 in this
last pattern to be the next refresh point. It is (1 − �G/2�, �G/2�). Now iterate the
process starting at the new refresh point. Note that the rightward Z-path from (0,0)

consists precisely of the 0s at the left ends of the 01 · · ·1 patterns, including the
refresh points. Observe also that the Z-path is determined by the locations of the
refresh points, and that these are determined by examination of the witness points.

Now consider the above exploration process for the initial configuration that is
uniformly random on Z \ {0} and 0 at 0. Let (Xi)i≥1 be the sequence of states of
the witness points, in the order that they are examined by the exploration process.
We claim that (Xi)i≥1 is uniformly random. It suffices to check that (X1, . . . ,Xn)
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FIG. 19. The rightward Z-path (solid lines) from the origin, together with its refresh points (cir-
cled), and witness points (highlighted in red). A dual assignment of the witness points to initial posi-
tions is indicated by the dashed lines. The states of the witness points in the order they are examined
are shown below.

is uniformly random. This follows from Proposition 4.2, by the dual assignment in
which a witness point (x, t) is assigned to x + t if it is the rightmost witness point
in its 01 · · ·1 pattern, and otherwise to x − t . See Figure 19.

Let Gi be the number of witness points examined in the row immediately be-
low the ith refresh point. Then (Gi) are i.i.d. Geometric(1/2) random variables.
Furthermore, the sequence of refresh points is a random walk on Z

2 with steps
(1 − �Gi/2�, �Gi/2�). As E�Gi/2� = 2/3 and E�Gi/2� = 4/3, each step has ex-
pectation vector (1/3,4/3). The proof is concluded by standard large deviation
estimates. �

PROOF OF THEOREM 1.6. For L to be chosen later, consider the leftward path
(�t , t) started at (−L,0) and the rightward path (rt , t) started at (0,L). Then, by a
union bound and symmetry,

P(�t < rt ∀t) ≥ P(�t ≤ −1 and rt ≥ 1 ∀t) ≥ 1 − 2P(rt ≤ 0 for some t ).

By Lemma 6.2, for L large enough we have P(rt ≤ 0 for some t ) ≤ 1/3. Call a site
x ∈ Z good if an infinite empty path starts at (x,0). Thus, by Lemma 6.1(ii),

P
([−L − 2,L + 2] contains some good site

) ≥ P(�t < rt ∀t) ≥ 1/3.

Consequently, by translation-invariance, P(0 is good) ≥ 1/[3(2L + 5)]. �

6.2. Empty paths for half-lines and seeds. How do empty paths behave when
the initial configuration is a random seed? This question is largely unresolved.
(In contrast, the next section will provide detailed answers for diagonal and wide
paths.) A first step would be to understand the case of a uniformly random half-
line, for which the following conjecture is natural given Lemma 6.2.
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CONJECTURE 6.3. Suppose the initial condition λ0 is uniformly random on
[1,∞) and 0 elsewhere. Let (rt , t), t ≥ 0 be the rightward Z-path from (0,0). Then
rt/t → 1/4 as t → ∞.

We prove that a much weaker statement holds deterministically: for an initial
configuration supported in a half-line, empty paths penetrate arbitrarily far into its
forward cone.

LEMMA 6.4 (Unbounded penetration). Assume that the initial condition λ0
has no 1s outside [1,∞). Let (rt , t) be the rightward Z-path from (0,0). Then
supt (rt + t) = ∞.

PROOF. We first observe that for any initial configuration λ0 of 1 Or 3, if (x, t)

has state 0 and t ≥ 1 then at least one of the three points (x, t − 1), (x ± 1, t − 1)

has state 0 also. Iterating this, we see that there must be an empty path from Z×{0}
to (x, t). We call any such path an ancestral path of (x, t).

Now, under the conditions of the lemma, note that for any m ≥ 0, the sequence
of configurations on the intervals [−t,−t + m + 1] × {t} is periodic in t starting
from some time tp depending on m and λ0. For a ≥ 0, define the leftward diago-
nal Da := {(a − t, t) : t ≥ 0}. Then λ cannot be identically 1 on two consecutive
diagonals Da and Da+1, and also cannot be identically 1 on Da and identically 0
on Da+1. (Indeed, in either case we deduce that λ is also 1 on Da−1, leading to a
contradiction by induction.)

Fix m ≥ 0. We will show that for some t there an empty path from (−∞,0] ×
{0} to {(−t + m + 1, t), (−t + m, t)}, which suffices by Lemma 6.1. To verify
this claim, we may assume that the periodic orbit commences initially, that is,
that tp = 0. There must be a time t with either λt (−t + m + 1) = 0 or λt (−t +
m) = 0; by periodicity there must be infinitely many such times. Now take the
leftmost ancestral path of one of these two points. Suppose this path does not start
on (−∞,0] × {0}. Then, if t is large enough, the path has a diagonal segment
longer than the period of the orbit; additionally, all states immediately to the left
of such a segment must be 1. By periodicity, we have, for some a ∈ [0,m + 1],
infinite diagonals Da and Da+1 on which λ is identically 1 and 0, respectively.
This is in contradiction with our observations above. �

We remark that the supremum in the above lemma cannot be replaced with a
limit; a counterexample is λ0 ≡ 1 on [2,∞) and λ0(1) = 0.

Returning to our earlier question on seeds, Figure 20 (top) shows the set of all
points on empty paths from (−1,0), when λ0 is a random seed on [0,25]. We
believe that for typical long seeds, the right frontier of this set lags behind the right
edge of the forward cone of the seed by a nontrivial power of t in the limit t → ∞.
This is a natural guess, since the frontier has speed 1 in the voids, but presumably
speed 1/4 on the fractal set occupied by randomness. It appears plausible that such
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FIG. 20. The set of all points (blue) on empty paths starting from certain initial points, in 1 Or 3
started from three different seeds: two apparent power-law cases, and a devil’s staircase.

a process is a driving force behind the evolution of some exceptional seeds for web
CA, including the examples in Figures 2 (bottom), 4 (bottom) and possibly 7.

We believe that similar power law behavior holds for some specific small seeds.
One example is shown in Figure 20 (middle): the seed is 1000̂00001, and empty
paths from the middle 0̂ are highlighted. However, some seeds exhibit entirely
different behavior. The bottom picture shows the empty paths from the two 0̂s in
the seed 1000̂00001000̂00001. Despite apparent initial similarity to the previous
case, here the rightmost point (rt , t) reachable at time t has rt/t bounded strictly
between 0 and 1 at t → ∞. Indeed, the rescaled path 2−n{(rt , t) : t ≥ 0} converges
as n → ∞ to a variant of the Cantor function or “devil’s staircase.” This may be
proved by an inductive scheme.

As a preliminary step toward the power law behavior postulated above, we prove
a version in a simplified setting. Recall from Section 2 that μ denotes the Xor ad-
ditive cellular automaton rule. Given a configuration μ ∈ {0,1}Z×[0,∞), we define
the χ -path starting from a point (x,0) to be the sequence of points ((xt , t) : t ≥ 0)
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FIG. 21. The χ -path from the origin in the Xor cellular automaton, together with the construction
used in its analysis. The strips S(2) (pink) and S(3) \ S(2) (orange) are shaded.

given by x0 = x and

xt+1 =
{

xt , μ(xt , t) = 1;
xt + 1, μ(xt , t) = 0.

In other words, the path makes a down step from a 1, and a diagonal step from a 0.
This is intended as a simplified model for a rightward Z-path, which moves with
speed 1 in 0s, but with a slower speed in a random configuration.

PROPOSITION 6.5 (Power law for Xor). Let μ be the Xor CA with initial con-
figuration μ0 equal to 1 on the two-point set {−1,0} and 0 elsewhere. The χ -path
((xt , t))t≥0 starting from (0,0) satisfies

xt = t − �
(
t log 2/ log 3)

as t → ∞.

PROOF. We first note some easy facts about μ. Denote the interval of points
R(k, t) := ((i, t) : t −2k < i ≤ t) on the right side of the forward cone of the origin.
For any k ≥ 1, the state-vectors (μ(z) : z ∈ R(k, t)) on these intervals form a pe-
riodic sequence in t with period 2k−1. Furthermore, the sequence of state-vectors
on the intervals R(k + 1, t) \ R(k, t) consists precisely of the all-0 vector repeated
2k−1 times followed by the first 2k−1 state-vectors for R(k, t) (all repeated with
period 2k). See Figure 21 for an illustration of the case k = 2.

Let Ek := min{t ≥ 0 : (xt , t) /∈ R(k, t)}; this is the time at which the χ -path
leaves the diagonal strip S(k) := ⋃

t R(k, t). This can only happen at a down step,
which can occur only at a 1 of μ in the leftmost diagonal of S(k). It follows that
Ek is divisible by 2k−1; write Ek = 2k−1ek . For example (referring to Figure 21),
we have e2 = 3 and e3 = 4.

In order to leave the strip S(k +1), the path must first leave S(k), and then leave
S(k +1)\S(k). By the above observations on periodicity, and the fact that the path
moves diagonally on 0s, we deduce that

ek+1 =
⌊
ek

2

⌋
+ ek.
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The proof is complete using induction and obvious monotonicity properties of the
χ -path. �

Among many unresolved questions, we do not know whether an analogue of
Proposition 6.5 holds when the χ -path is defined similarly in terms of the 1 Or 3
CA λ rather than μ.

7. Additive dynamics from random seeds. Our goal in this section is to
transfer the nonpercolation results for infinite random initial configurations to ran-
dom seeds. The proofs exploit an intriguing interplay between randomness and
periodicity in the configuration started from a random seed.

LEMMA 7.1 (Random edge-intervals). Assume λ0 is a uniformly random bi-
nary seed on [0,L]. For a fixed t , the state on the interval [t, t + L] × {t} is uni-
formly random.

PROOF. This is an immediate consequence of Lemma 3.2(i) and Corollary 4.3.
�

LEMMA 7.2 (Edge-periodicity). For any λ0 which is 0 on [L+1,∞), and any
k ≥ 1, the sequence of edge configurations (λ(i, t) : i = t + L − k + 1, . . . , t + L)

is periodic in t , with period at most 2k.

PROOF. This follows from Lemmas 3.2(iv) and 4.1. �

Our first result establishes that, in subcritical cases, paths from the initial state do
not reach far into the forward cone of [0,L] × {0}. This is illustrated in Figure 22,
in which L = 25 and all points on paths from Z × {0} are again depicted in blue
(only one layer of points outside the forward cone is colored blue, as all such are
trivially reachable from Z× {0}).

PROPOSITION 7.3 (Percolation into the cone). Suppose λ0 is a uniformly ran-
dom binary seed on [0,L]. The probability that there is an empty diagonal path
from Z×{0} to the forward cone of [0,L]× {�C logL�} goes to 0 as L → ∞. The
same is true for wide paths. Here, C is an absolute constant.

PROOF. Let k be a positive integer to be chosen later satisfying 2k + 1 < L.
Call a space–time point (x, t) bad if there exists an empty diagonal path from
Z× {t − k} to (x, t). If the state on the interval I (x, t) := [x − k, x + k] × {t − k}
is uniformly random, then Theorem 1.5 implies that P((x, t) is bad) ≤ exp(−ck)

for an absolute constant c > 0.
We define an infinite set of points S via Figure 23. This set has the following

properties: (i) any path from Z×{0} to the forward cone of [0,L]×{2k} must pass
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FIG. 22. Illustrations of the set of all points reached by paths starting within an initial random
seed. Top: empty diagonal paths; bottom: wide paths.

through a point in S; and (ii) for every (x, t) ∈ S, the state on the interval I (x, t)

defined above is uniformly random, either trivially or by Lemma 7.1.
We wish to bound the probability that S contains a bad point by a union bound.

The set S is infinite, but Lemma 7.2 implies that the states of the relevant intervals
I (x, t) for (x, t) in the diagonal “arms” of S repeat with period at most 2(2k + 2).
Thus, besides the at most L points on the top section of S, there are only 8(2k + 2)

distinct cases to consider. Hence,

P(S contains a bad point) ≤ (L + 16k + 16)e−ck.

The proof is completed by taking k = �C′ logL� for a suitably large C′ (the argu-
ment for wide paths is identical). �

Similarly, we next show that to each void of λ• there corresponds a periodic
strip that blocks diagonal and wide paths. Fix a void V of λ•, and an integer L ≥ 0.

FIG. 23. An illustration of the proof of Proposition 7.3. The outline of the forward cone of
[0,L] × {0} is shown by the solid line (here L = 16). Points in the set S are shown as black discs.
Any path from the top row to the region below S must pass through S. For each point in S, the top
row of the associated triangle (of size k = 3) has a uniformly random state (three such triangles are
shaded).
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FIG. 24. Perturbed void (dark blue), with L = 5, of the void with top interval [1,15] × {16}. The
perturbed void is filled with 0s for any seed included in the interval of six red points. The forward
cone of this interval is outlined.

Define the perturbed void V to be the triangular region

WL(V ) = V ∩ (
V + (L,0)

)
.

See Figure 24 for an example. Note that WL(V ) = ∅ unless the width of V ex-
ceeds L. Further, fix an integer m ≥ 1, assume that the top interval of WL(V ) is
[a, b] × {t}, and define the following interval above WL(V ):

JL,m(V ) = [
a − 2m,b + 2m] × t − 2m.

[We set JL,m(V ) = ∅ when WL(V ) = ∅.]

LEMMA 7.4 (Periodic and random intervals above voids). Suppose the initial
configuration λ0 vanishes outside [0,L]. Let m be a nonnegative integer. Let V be
a void of λ• of width at least L and at least 2m.

(i) λ vanishes on WL(V ).
(ii) There exists a string A of length 3 · 2m, depending on m and λ0 but not

on V , such that the configuration of λ on JL,m(V ) is a subword of A∞.
(iii) Now suppose that 2m+1 ≤ L and that λ0 is uniformly random on [0,L].

Then every interval of length 2m in JL,m(V ) has uniformly random state.

PROOF. Claim (i) is a simple consequence of Lemma 4.1, (ii) follows from
Proposition 3.6 and Lemma 4.1, and (iii) from Proposition 3.6 and Corollary 4.3.
(See Figure 25.) �

PROPOSITION 7.5 (Percolation into voids). Assume the conditions in Lem-
ma 7.4(iii). Let cross(m) be the event that there exists a void V for which there
is either an empty diagonal or a wide path from JL,m(V ) to WL(V ). Then

P
(
cross(m)

) ≤ exp
(−c2m)

for some universal constant c.
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FIG. 25. Illustration of Lemma 7.4(ii) with the seed 110100111 on [0,8] and m = 2 and the same
two voids as in Figure 11; the repeating string is A = 010110101111.

PROOF. Using Theorem 1.5, and Lemma 7.4(ii) and (iii), this follows by
a similar argument to the proof of Proposition 7.3. The key point is that by
Lemma 7.4(ii), only 3 · 2m distinct cases need to be considered in the union bound.

�

8. Replication and ethers in web cellular automata. We can now prove
Theorems 1.1 and 1.4 from the Introduction.

PROOF OF THEOREM 1.4. This is an immediate consequence of Proposi-
tion 7.3 and Lemma 2.1. �

PROOF OF THEOREM 1.1. Consider a uniformly random binary seed on
[0,L]. In the context of Proposition 7.5, let M be the smallest m with 2m+1 ≤ L,
for which cross(m) does not occur. If such an m does not exist, let M = ∞. By
Proposition 7.5, M is tight as L → ∞.

If M = ∞, take RL = ∞. Assume now that M < ∞. Then there exists a string
A′ of 0s and 2s of length of 3 · 2m so that the top row of WL is a segment of
(A′)∞ for every void. This holds because the first level configuration λ is periodic
with the required period on a strip above WL, by Lemma 7.4, while the absence of
relevant paths makes the top row also periodic by Lemma 2.1. Moreover, by the
same results, the periodic pattern is the same for all voids.

Consider the CA ξ started with a periodic configuration B∞, for some string
B of length σ . The evolution is periodic in time after some initial burn-in time
interval: let TB be the first time t such that ξt equals ξs for some s > t . Let
burnin(σ ) = maxB TB . Our random distance RL is burnin(3 · 2M) + 1, and
the proof is finished by Lemma 2.3 (which requires the +1). �

As remarked earlier, Theorem 1.1 implies that the union of the regions that
are filled by a translate of the ether has density 1 within the forward cone of the
seed. Therefore, on the event that RL < ∞ the set of nonzero points has a rational
density within the same forward cone. We do not know whether the same holds for
every seed.
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For an arbitrary web CA satisfying the conditions of Theorem 1.1,
lim supL→∞ P(RL ≥ r) decays at least as fast as a power law in r . This is eas-
ily seen from the above proof, using the fact that burnin(σ ) ≤ 2σ . In cases when
the dynamics restricted to 0s and 2s is additive, including Web-Xor, Modified Web-
Xor and Piggyback, one can easily show that the decay is exponential. Identical
remarks apply to the temporal period of the ether ηL.

9. Bounds on ether probabilities. In this section, we prove Theorem 1.2,
and explain how explicit lower bounds on ether probabilities are proved. We also
indicate how some ethers can be ruled out for certain rules.

For m ≥ 0, we call the string A in Lemma 7.4(ii) the level-2m link of the seed λ0.
(Note that the choice of A is unique up to periodic shifts.) Fix an integer k ≥ 1 and
a binary string A. Consider 1 Or 3 with initial periodic configuration λ0 = A∞. If
there is no empty diagonal (resp., wide, θ -free) path from Z×{0} to Z×{k −1} in
the resulting configuration λ, then we say that A is a blocker to depth k for diagonal
(resp., wide, θ -free) paths. If λk−1 �≡ 0, then we say that A is nondegenerate to
depth k.

Fix an m ≥ 1, and let λ0 be a uniformly random seed on [0,L], with L ≥ 2m+1.
For diagonal and wide paths, Proposition 7.5 implies that

P
(
the level-2m link of λ0 is a blocker to depth 2m

) ≥ 1 − exp
(−c2m)

,

for some universal constant c.
Further, consider a web CA ξt with an ether η ∈ {0,2}Z2

. The signature of η is
a string B such that, for some t , η(·, t) equals a (spatial) translation of B∞, and is
the first in the lexicographic order among shortest such strings. Observe that two
ethers are equivalent if and only if they have the same signature. We say that a
binary string A produces η with signature B if the initial state ξ0 = A∞ makes ξt

equal to a translation of B∞ at some time t .

LEMMA 9.1 (Blockers). Let ξt be a diagonal-compliant (resp.: wide-
compliant, or θ -free-compliant) web CA. Further, let A be a string that is a blocker
to depth 2m for diagonal (resp.: wide, or θ -free) paths and produces an ether η. If
a seed ξ0 results in the level-2m link A, then ξ is a replicator with ether η. If, in
addition, the CA ξt has no spontaneous birth, then η ≡ 0.

PROOF. The first claim follows by the same arguments as in the proof of The-
orem 1.1. The last claim follows by Lemma 2.1. �

Denote by Seeds[a,b] the set of binary seeds that vanish outside [a, b], and by
Seeds = ⋃

a≤b Seeds[a,b] the set of all binary seeds. Let g : {0,1}Z → {0,1}Z
be the map determined by one step of the 1 Or 3 rule (i.e., the map λ0 �→ λ1).
It is well known (and easy to prove) that, for a ≤ b, the map g is injective from
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Seeds[a,b] to Seeds[a−1,b+1] and, therefore, the restriction g|Seeds is injective.
We say that a binary seed λ0 has a predecessor if it is in the image of g|Seeds.
More generally, λ0 has k predecessors, for k ≥ 1, if it is in the image of the kth
iteration (g|Seeds)k ; in that case, (g|Seeds)−k(λ0) contains a unique seed called
the kth predecessor of λ0. We denote by Predk the set of all seeds that have k

predecessors. The following lemma follows immediately from the properties of
g|Seeds.

LEMMA 9.2 (Predecessors of random seeds). Assume λ0 is a uniformly ran-
dom binary seed on [0,L] and that 1 ≤ k ≤ L/2. Then P(Predk) = 1/4k . More-
over, conditioned on Predk , the kth predecessor of λ0 is a uniform binary seed on
[k,L − k].

LEMMA 9.3 (Predecessors and links). For m ≥ 0, a seed λ0 has 2m predeces-
sors if and only if its level-2m link is 0.

PROOF. If λ0 has 2m predecessors, then its level-2m link is 0 by Lem-
mas 3.2(ii) and 4.1.

Conversely, assume that λ0 ∈ Seeds[0,L] is given by a string S of length L+ 1.
If n is large enough so that 2n > 2L and 2n > 2m+1, the configuration of λ2n on
[0,L] is S, again by Lemma 3.2(ii) and additivity. Recall that the level-2m link is
the same for all voids, on the left and on the right of the vertical line x = 0. If this
link is 0, the configuration on [0,L] at time 2n − 2m provides a seed λ′

0, such that
g2m

(λ′
0) = λ0. �

LEMMA 9.4 (Ether probabilities). Suppose some seed S0 ∈ Seeds[0,s−1] is a
replicator with some ether η, and is such that for some m ≥ 1, the level-2m link is
a blocker to depth 2m. Let ξ0 be a uniformly random binary seed on [0,L]. Then

lim inf
L→∞ P(ξ0 is a replicator with ether η) ≥ 2−s−2m+1

.

PROOF. Assume a seed S1 with support in [s,∞) has 2m predecessors. Form
a seed S by adding the configurations of S0 and S1. Then, by Lemmas 9.3 and 4.1,
S has the same level-2m link as S0 and, therefore, by Lemma 9.1, is a replicator
with the same ether η. In the rest of the proof, we apply this fact to random seeds.

Suppose now ξ0 is a uniformly random seed in Seeds[0,L], with L large enough
so that L − s ≥ 2m+1. Let ξ ′

0 (resp., ξ ′′
0 ) be the random seed that agrees with ξ0 on

[0, s − 1] (resp., [s,L]) and vanishes elsewhere. Then

P(S is a replicator with ether η) ≥ P
(
ξ ′

0 = S0, and ξ ′′
0 has 2m predecessors

)
= P

(
ξ ′

0 = S0
) · P

(
ξ ′′

0 has 2m predecessors
)

= 2−s · 4−2m

,
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TABLE 1
Some nonequivalent ethers that provably emerge for Extended 1 or 3 from a long random seed with

positive asymptotic probability. Each ether is generated from the initial condition obtained by
repeating its signature indefinitely. Here, [k] stands for an interval of k 0s. The last column is a

rigorous lower bound for the lim inf of the probability in Theorem 1.2. The lower bounds sum to just
over 0.826

Ether Temporal Spatial Density Lower
signature period period of 2s bound

0 1 1 0 0.6061
02 1 2 1/2 0.0471
0002 2 4 1/2 0.0333
[7]2 4 8 3/8 0.0664
[5]202 4 8 3/8 0.0189
[15]2 8 16 5/16 0.0193
[13]202 8 16 11/32 0.0079
[11]20002 8 16 5/16 0.0024
[9]2000202 8 16 3/8 0.0085
[9]2020202 8 16 3/8 0.0006
[7]200020202 8 16 13/32 0.0045
[7]202020202 8 16 7/16 0.0105
[5]2[5]20202 8 16 7/16 0.0006

where the last equality follows from Lemma 9.2. �

PROOF OF THEOREM 1.2. This is immediate from Lemmas 9.1 and 9.4 and
the proof of Theorem 1.1. �

Recall that Extended 1 Or 3 is not diagonal- or wide-compliant. However, it is
4-free compliant, and this allows us to prove the following lower bounds.

THEOREM 9.5 (Replication and ether probabilities for Extended 1 Or 3). Let
ξ be the Extended 1 Or 3 web CA, started from a uniformly random binary seed
on [0,L]. Then

lim inf
L→∞ P(ξ is a replicator) ≥ 0.826.

Moreover, lower bounds on lim infL→∞ P(ξ is a replicator with ether η) for cer-
tain ethers η are as in Table 1.

For an ether η, its reflection around the time axis is denoted by η̄. Then η is
symmetric if η̄ is equivalent to η. Assume that B is the signature of η and B̄ its
reflection. A sufficient condition for symmetry of η is that the reflection B̄ is a
periodic shift of B . However, this is not a necessary condition: the ether with sig-
nature B = [7]200020202 is symmetric as the fourth iteration of the 1 Or 3 rule
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applied on B∞ yields a translation of B̄∞. Thus, the only nonsymmetric ether in
Table 1 is the one with signature [9]2000202. In nonsymmetric cases, our tables
combine the frequencies of an ether and its reflection.

PROOF OF THEOREM 9.5. Throughout the proof, fix a positive integer m ≥ 1
and assume that L ≥ 3 · 2m. Using the same notation as in Proposition 3.6, assume
that for some a ≥ 0, the configuration of λ• at some time t on I = [a +L,a +L−
1 + 3 · 2m] × {t} is exactly the string A0 = 1�1�0�. For ease of reference,
we will assume A∞

0 is positioned on Z so that A0 is the configuration in [0,3 ·
2n − 1].

Our main tool is the map � :ZL+1
2 → Z

3·2m

2 that takes as argument an initial
binary seed λ0 supported on [0,L] and outputs the configuration of λ on I . This is
a linear map that assigns to every seed with support in [0,L] its level-2m link. The
matrix of � (in the standard basis) has row i given by the segment [i +2m,L+ i +
2m] of A∞

0 , i = 0, . . . ,3 · 2m − 1. (All matrix and vector coordinate indices start
at 0.) It is easy to see that the matrix has rank 2m+1 and, therefore, its image has
cardinality 22m+1

. The kernel of �∗ has basis vectors yk , k = 0, . . . ,2m − 1, given
by yk

i = 1[i mod 2m = k], i = 0, . . . ,3 · 2m − 1. Therefore, the image of � is the
set

�
(
Z

L+1
2

) = {
b ∈ Z

3·2m

2 :bi + b2m+i + b2m+1+i = 0,∀i = 0, . . . ,2m − 1
}
.

A vector in Z
3·2m

2 is naturally identified with a binary string of length 3 ·2m and we
will do so for the rest of the proof. Let Nn be the number of strings in �(ZL+1

2 ) that
are nondegenerate to depth 2m. Further, let Nb the number of strings in �(ZL+1

2 )

that are nondegenerate and blockers, for 4-free paths, to the same depth 2m. Ob-
serve that, for L large enough, �(ZL+1

2 ) does not depend on L, and consequently
neither do Nn and Nb.

Now suppose that ξ0 is a uniform random binary seed on [0,L] and let pL be
the probability that ξ is a replicator. We claim that

lim inf
L→∞ pL ≥ Nb

Nn

.(9.1)

Recall that Pred1 is the event that ξ0 has a predecessor; by Lemma 9.3, PredC
1

is exactly the event that �(ξ0) is nondegenerate to depth 2m. Furthermore, condi-
tioned on Pred1, the first predecessor of ξ0 is a uniformly random binary seed on
[1,L − 1]. Therefore,

pL ≥ P
(
�(ξ0) is a blocker to depth 2m | PredC

1
)
P

(
PredC

1
)

+ P(ξ is a replicator | Pred1)P(Pred1)(9.2)

= Nb

Nn

· 3

4
+ pL−2

1

4
.
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Now (9.1) follows by taking lim inf as L → ∞ of the first and last expressions
of (9.2). The particular bound was obtained by a computer for m = 4: all 232 vec-
tors in the range of � were checked for blocking and nondegeneracy, and the
resulting tallies were Nn = 3,221,225,472 and Nb = 2,663,229,504. This com-
pletes the proof for replication probability.

The proof for a lower bound for a particular ether η is identical except in the
definition of Nb, which is now the number of strings in �(ZL+1

2 ) that are blockers
and nondegenerate to the level 2m, and produce η. For example, the result for the
zero ether was Nb = 1,952,489,232. �

Table 1 suggests that spatial and temporal periods of Extended 1 Or 3 ethers are
powers of 2, and that the ether (2)∞ never appears. This is addressed in our next
two results.

LEMMA 9.6 (Periodic configurations). Assume that λ0 is a spatially periodic
configuration whose period σ divides 3 · 2n, and that λt = λ0 for some t . Then σ

divides 2n. Moreover, for σ ≥ 1 the temporal period equals σ/2.

PROOF. By Lemmas 3.1 and 4.1, we may assume n = 1, and then we check
that any λ0 of period 3 leads to a constant configuration in a single time step. The
last assertion follows from Lemma 3.1 and the following two easily checked facts:
(1) if λ0 is periodic with period at most 2, then λ0 = λ1; and (2) if λ0 is periodic
with period exactly 4, then λ0 �= λ1. �

PROPOSITION 9.7 (Possible ethers). Assume ξt is the Extended 1 or 3 CA.
Suppose that ξ0 is a replicator with ether η, and that its level-2m link is a blocker
to depth 2m for 4-free paths. Then η has spatial period that is a power of 2. Also,
the signature of η is either 0 or it is of the form [a1]2[a2]2 · · · [ak]2, where k ≥ 1
and each [ai] is a string of 0s of odd length ai . In particular, η �≡ 2.

PROOF. The first claim follows from the previous lemma and Theorem 7.4, so
we proceed to prove the second claim. If λt ≡ 0, but λt−1 �≡ 0, then there are, up
to translation, exactly two possibilities for λt−1 and λt−2:

· · ·111100111100 · · · · · ·010001010001 · · ·
· · ·011011011011 · · · · · ·011011011011 · · ·

Assume that the seed ξ0 is such that δ(ξ0) has exactly k predecessors. (Recall
that δ(a) := 1[a = 1].) Then, for any n, the state of δ(ξ) on [C − 1,2n − C + 1] ×
{2n −k−2,2n −k−1} is a segment of one of the two configurations above. (Here,
C is a constant that depends only on L.) By considering 4-free paths, we see that
the left configuration implies ξ2n−k ≡ 0 on [C,2n −C], while for right one implies
that one ξ2n−k vanishes outside 6Z ∩ [C,2n − C] (after a suitable translation). As
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TABLE 2
Ten ethers that emerge from long random seeds for Piggyback with positive asymptotic probability.

The conventions of Table 1 apply

Ether Temporal Spatial Density Lower
signature period period of 2s bound

0 1 1 0 0.5
2 1 1 1 0.0398
02 1 2 1/2 0.0142
0002 2 4 1/2 0.0258
[7]2 4 8 3/8 0.0099
[4]2022 4 8 1/2 0.0303
00020222 4 8 1/2 0.0209
00022222 4 8 5/8 0.1297
0002000200022222 8 16 11/16 0.0362
0002000200202002 8 16 9/16 0.0216

2s evolve according to the 1 Or 3 rule in the absence of 1s, the positions of 2s
started from a subset of 2Z are a subset of 2Z at all even times (by Lemma 3.1).
The claimed form of the signature follows. �

Lower bounds for ether probabilities can also be obtained for Piggyback, with
the same proof as for Theorem 9.5.

THEOREM 9.8 (Ether probabilities for Piggyback). Let ξt be the Piggyback
web CA, started from a uniformly random seed of 0s and 1s on [0,L]. Lower
bounds on

lim inf
L→∞ P(ξ is a replicator with ether η)

are as in Table 2.

The computer search with m = 4 yielded 117 different ethers for Piggyback
with provably positive asymptotic probability, with their combined probabilities at
least 0.914. The ethers listed in Table 2 are the ten with largest lower bounds. The
only nonsymmetric ether among these ten has signature [4]2022. [The initial state
(00020222)∞ generates its translated reflection in two steps.] We do not know
whether the asymptotic probability for the zero ether is exactly 1/2.

Open problems. As the earlier discussions indicate, this topic offers a rich
supply of open questions. We highlight a small selection.

(i) In the 1 Or 3 cellular automaton started from a uniformly random binary
string on the half-line [0,∞), what is the growth rate of the maximum integer rt
for which there is an empty path from (−∞,0) × {0} to (rt , t)? Is it the case that
rt/t → 1/4 as t → ∞?
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(ii) What can be said about percolation in the space–time configuration of
other one-dimensional cellular automata started in an invariant measure? For ex-
ample, the uniformly random binary string on Z is invariant for permutative rules
(see [4] for a definition), including Rule 30. Do there exist infinite diagonal, wide
or empty paths?

(iii) Are there infinitely many different ethers for replicators in the Piggyback
cellular automaton? Is there an algorithm that decides whether a given ether occurs
in some replicator?

(iv) For two-dimensional Box 13 solidification CA (see Section 2 and [13])
started from a uniform random seed in [0,L]2, does the final configuration have
rational density with probability converging to 1 as L → ∞?
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