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In this paper, we establish the existence of a stochastic flow of Sobolev
diffeomorphisms

R
d � x �−→ φs,t (x) ∈R

d , s, t ∈R

for a stochastic differential equation (SDE) of the form

dXt = b(t,Xt ) dt + dBt , s, t ∈R,Xs = x ∈R
d .

The above SDE is driven by a bounded measurable drift coefficient b :R ×
R

d → R
d and a d-dimensional Brownian motion B. More specifically,

we show that the stochastic flow φs,t (·) of the SDE lives in the space
L2(�;W1,p(Rd ,w)) for all s, t and all p ∈ (1,∞), where W1,p(Rd ,w) de-
notes a weighted Sobolev space with weight w possessing a pth moment with
respect to Lebesgue measure on R

d . From the viewpoint of stochastic (and
deterministic) dynamical systems, this is a striking result, since the dominant
“culture” in these dynamical systems is that the flow “inherits” its spatial
regularity from that of the driving vector fields.

The spatial regularity of the stochastic flow yields existence and unique-
ness of a Sobolev differentiable weak solution of the (Stratonovich) stochastic
transport equation⎧⎪⎨⎪⎩dtu(t, x) + (

b(t, x) · Du(t, x)
)
dt +

d∑
i=1

ei · Du(t, x) ◦ dBi
t = 0,

u(0, x) = u0(x),

where b is bounded and measurable, u0 is C1
b and {ei}di=1 a basis for Rd . It

is well known that the deterministic counterpart of the above equation does
not in general have a solution.

1. Introduction.

An overview. This article offers the following novel contributions to the exist-
ing theory of stochastic differential equations (SDEs):
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• Well-posedness of the initial value problem for singular SDEs driven by
bounded measurable drift vector fields and multidimensional Brownian mo-
tion. No regularity or even continuity hypotheses are imposed on the drift vector
fields. Furthermore, under these hypotheses, we construct a unique stochastic
flow of Sobolev diffeomorphisms for the singular SDE.

• The Sobolev flow of the singular SDE is employed as stochastic characteristics
in order to generate a unique Sobolev differentiable solution to the stochastic
transport equation with a bounded measurable drift coefficient. It is well known
that the associated deterministic transport equation is in general ill-posed even
with a differentiable drift; cf. [1, 7, 14].

From a dynamical systems perspective, the above result on singular SDEs is
striking since the predominant intuition in the current literature on stochastic (and
deterministic) dynamical systems is that the flow “inherits” its spatial regularity
from the driving vector fields. Indeed, in the stochastic setting, the flow is in
general even a little rougher in the space variable than the driving vector fields
([19, 23]). More specifically, it follows from work by Kunita ([19], pp. 178–179)
that a SDE with Ck,δ coefficients (δ ∈ (0,1]) generates a Ck,ε stochastic flow with
positive ε strictly less than δ. Here, the spatial Ck,δ regularity stands for k-times
differentiability with the kth Fréchet derivative δ-Hölder continuous.

In contrast with its deterministic counterpart, the singular stochastic trans-
port equation with multiplicative noise is well-posed due to the regularity of the
stochastic characteristics and of their occupation measure. The latter properties
have the effect of “smoothing out” the singularities of the drift coefficient. Need-
less to say, such an effect is not available in the singular deterministic setting.

The approach in the article is probabilistic, employing ideas from the Malliavin
calculus coupled with new probabilistic estimates. In particular, the arguments are
centered around a key relative compactness criteria for random variables developed
by Nualart, Malliavin and Da Prato. See the Appendix. The authors are not aware
of any other scenarios whereby the Malliavin calculus is employed to establish
almost sure spatial regularity of stochastic flows for SDEs.

Background and statement of results. In this article, we analyze the spatial reg-
ularity in the initial condition x ∈R

d for strong solutions Xx· to the d-dimensional
SDE

X
s,x
t = x +

∫ t

s
b

(
u,Xs,x

u

)
du + Bt − Bs, s, t ∈R.(1)

In the above SDE, the drift coefficient b :R×R
d → R

d is only Borel measurable
and bounded, and the equation is driven by standard Brownian motion B. in R

d .
More specifically, we construct a two-parameter pathwise Sobolev differen-

tiable stochastic flow

R×R×R
d � (s, t, x) �−→ φs,t (x) ∈ R

d
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for the SDE (1) such that each flow map

R
d � x �−→ φs,t (x) ∈ R

d

is a Sobolev diffeomorphism in the sense that

φs,t (·) and φ−1
s,t (·) ∈ L2(

�,W 1,p(
R

d;w))
(2)

for all s, t ∈ R and all p ∈ (1,∞). In (2) above, W 1,p(Rd,w) denotes a weighted
Sobolev space of mappings R

d → R
d with any measurable weight function

w :Rd → [0,∞) satisfying the integrability requirement∫
Rd

(
1 + |x|p)

w(x)dx < ∞.(3)

In particular, φs,t (·) is locally α-Hölder continuous for all α < 1. When the
SDE (1) is autonomous, we show further that the stochastic flow corresponds to a
Sobolev differentiable perfect cocycle on R

d . For precise statements of the above
results, see Theorem 3 and Corollary 5 in the next section.

A central objective of the article is to develop a new approach for constructing
a Sobolev differentiable stochastic flow for the SDE (1). Our approach is based on
Malliavin calculus ideas coupled with new probabilistic estimates on the spatial
weak derivatives of solutions of the SDE. A unique (and striking) feature of these
estimates is that they do not depend on the spatial regularity of the drift coeffi-
cient b.

The existence of a Sobolev differentiable stochastic flow for the SDE (1) is
exploited (Section 3) to obtain a unique weak solution u(t, x) of the (Stratonovich)
stochastic transport equation⎧⎪⎨⎪⎩dtu(t, x) + (

b(t, x) · Du(t, x)
)
dt +

d∑
i=1

ei · Du(t, x) ◦ dBi
t = 0,

u(0, x) = u0(x),

(4)

when b is just bounded and measurable, u0 ∈ C1
b(Rd), and {ei}di=1 a basis for Rd .

This result is interesting in view of the fact that the corresponding deterministic
transport equation is in general ill-posed; cf. [1, 7]. We also note that our result
holds without the existence of the divergence of b, and furthermore, our solutions
are spatially (and also Malliavin) Sobolev differentiable (cf. [14]).

SDEs with discontinuous coefficients and driven by Brownian motion (or more
general noise) have been an important area of study in stochastic analysis and other
related branches of mathematics. Important applications of this class of SDEs per-
tain to the modeling of the dynamics of interacting particles in statistical mechan-
ics and the description of a variety of other random phenomena in areas such as
biology or engineering. See, for example, [27] or [17] and the references therein.

Using estimates of solutions of parabolic PDEs and the Yamada–Watanabe prin-
ciple, the existence of a global unique strong solution to the SDE (1) was first es-
tablished by Zvonkin [32] in the one-dimensional case, when b is bounded and
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measurable. The latter work is a significant development in the theory of SDEs.
Subsequently, the result was generalized by Veretennikov [30] to the multidimen-
sional case. More recently, Krylov and Röckner employed local integrability cri-
teria on the drift coefficient b to obtain unique strong solutions of the SDE (1)
by using an argument of Portenko [27]. An alternative approach, which does not
rely on a pathwise uniqueness argument and which also yields the Malliavin dif-
ferentiability of solutions to (1) was recently developed in [22] and [21]. We also
refer to the recent article [5] for an extension of the previous results to a Hilbert
space setting. In [5], the authors employ techniques based on solutions of infinite-
dimensional Kolmogorov equations.

Another important issue in the study of SDEs with (bounded) measurable co-
efficients is the regularity of their solutions with respect to the initial data and the
existence of stochastic flows. See [19, 23] for more information on the existence
and regularity of stochastic flows for SDEs, and [24, 25] in the case of stochastic
differential systems with memory.

Using the method of stochastic characteristics, stochastic flows may be em-
ployed to prove uniqueness of solutions of stochastic transport equations under
weak regularity hypotheses on the drift coefficient b. See, for example, [14], where
the authors use estimates of solutions of backward Kolmogorov equations to show
the existence of a stochastic flow of diffeomorphisms with α′-Hölder continuous
derivatives for α′ < α, where b ∈ C([0,1];Cα

b (Rd)), and Cα
b (Rd) is the space of

bounded α-Hölder continuous functions. A similar result also holds true, when
b ∈ Lq([0,1];Lp(Rd)) for p,q such that p ≥ 2, q > 2, d

p
+ 2

q
< 1. See [12]. Here,

the authors construct, for any α ∈ (0,1), a stochastic flow of α-Hölder continu-
ous homeomorphisms for the SDE (1). Furthermore, it is shown in [12] that the
solution map

R
d � x �−→ Xx· ∈ Lp([0,1] × �;Rd)

of the SDE (1) is differentiable in the Lp(�)-sense for every p ≥ 2.
The approach used in [12] is based on a Zvonkin-type transformation [32] and

estimates of solutions of an associated backward parabolic PDE. We also mention
the recent related works [9, 10] and [2]. For an overview of this topic, the reader
may also consult the book [13].2 In this connection, it should be noted that our
method for constructing a stochastic flow for the SDE (1) is heavily dependent
on Malliavin calculus ideas together with some difficult probabilistic estimates
(cf. [21]).

Our paper is organized as follows: in Section 2 we introduce basic definitions
and notations and provide some auxiliary results that are needed to prove the exis-
tence of a Sobolev differentiable stochastic flow for the SDE (1). See Theorem 3

2After completing the preparation of this article, personal communication with Flandoli indicated
work in preparation with Fedrizzi [11] on similar issues regarding the regularity of stochastic flows
for SDEs, using a different approach.
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and Corollary 5 in Section 2. We also briefly discuss a specific extension of this
result to SDEs with multiplicative noise. In Section 3, we give an application of
our approach to the construction of a unique Sobolev differentiable solution to the
(Stratonovich) stochastic transport equation (4). The Appendix specifies the rela-
tive compactness criterion of DaPrato, Malliavin and Nualart that is central to the
construction of the Sobolev flow [6].

2. Existence of a Sobolev differentiable stochastic flow. Throughout this
paper, we denote by Bt = (B

(1)
t , . . . ,B

(d)
t ), t ∈ R, d-dimensional Brownian mo-

tion on the complete Wiener space (�,F,μ) where � := C(R;Rd) is given the
compact open topology and F is its μ-completed Borel σ -field with respect to
Wiener measure μ.

In order to describe the cocycle associated with the stochastic flow of our SDE,
we define the μ-preserving (ergodic) Wiener shift θ(t, ·) :� → � by

θ(t,ω)(s) := ω(t + s) − ω(t), ω ∈ �, t, s ∈ R.

The Brownian motion is then a perfect helix with respect to θ : that is,

Bt1+t2(ω) − Bt1(ω) = Bt2

(
θ(t1,ω)

)
for all t1, t2 ∈ R and all ω ∈ �. The above helix property is a convenient pathwise
expression of the fact that Brownian motion B has stationary ergodic increments.

Our main focus of study in this section is the d-dimensional SDE

X
s,x
t = x +

∫ t

s
b

(
u,Xs,x

u

)
du + Bt − Bs, s, t ∈ R, x ∈ R

d,(5)

where the drift coefficient b :R×R
d → R

d is a bounded Borel-measurable func-
tion.

It is known that the above SDE has a unique strong global solution Xs,x
. for

each x ∈ R
d ([30] or [21, 22]).

Here, we will establish the existence of a Sobolev-differentiable stochastic flow
of diffeomorphisms for the SDE (5).

DEFINITION 1. A map R × R × R
d � (s, t, x,ω) �−→ φs,t (x,ω) ∈ R

d is a
stochastic flow of homeomorphisms for the SDE (5) if there exists a universal set
�∗ ∈ F of full Wiener measure such that for all ω ∈ �∗, the following statements
are true:

(i) For any x ∈R
d , the process φs,t (x,ω), s, t ∈ R, is a strong global solution

to the SDE (5).
(ii) φs,t (x,ω) is continuous in (s, t, x) ∈ R×R×R

d .
(iii) φs,t (·,ω) = φu,t (·,ω) ◦ φs,u(·,ω) for all s, u, t ∈ R.
(iv) φs,s(x,ω) = x for all x ∈R

d and s ∈R.
(v) φs,t (·,ω) :Rd →R

d are homeomorphisms for all s, t ∈ R.
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A stochastic flow φs,t (·,ω) of homeomorphisms is said to be Sobolev-diffe-
rentiable if for all s, t ∈ R, the maps φs,t (·,ω) and φ−1

s,t (·,ω) are Sobolev-
differentiable in the sense described below.

From now on, we use | · | to denote the norm of a vector in R
d or a matrix

in R
d×d .

In order to prove the existence of a Sobolev differentiable flow for the SDE (5),
we need to introduce a suitable class of weighted Sobolev spaces. Fix p ∈ (1,∞)

and let w :Rd → (0,∞) be a Borel-measurable function satisfying∫
Rd

(
1 + |x|p)

w(x)dx < ∞.(6)

Let Lp(Rd,w) denote the Banach space of all Borel-measurable functions u =
(u1, . . . , ud) :Rd →R

d such that∫
Rd

∣∣u(x)
∣∣pw(x)dx < ∞(7)

and equipped with the norm

‖u‖Lp(Rd ,w) :=
[∫

Rd

∣∣u(x)
∣∣pw(x)dx

]1/p

.

Furthermore, denote by W 1,p(Rd,w) the linear space of functions u ∈ Lp(Rd,w)

with weak partial derivatives Dju ∈ Lp(Rd,w) for j = 1, . . . , d . We equip this
space with the complete norm

‖u‖1,p,w := ‖u‖Lp(Rd ,w) +
d∑

i,j=1

‖Djui‖Lp(Rd ,w).(8)

We will show that the strong solution X
s,.
t of the SDE (5) is in

L2(�,Lp(Rd,w)) when p ∈ (1,∞) (see Corollary 14). In fact, the SDE (5)
implies the following estimate:∣∣Xs,x

t

∣∣p ≤ cp

(|x|p + |t − s|p‖b‖p∞ + |Bt − Bs |p)
for all s, t ∈R, x ∈ R

d .
On the other hand, it is easy to see that the solutions X

s,.
t of SDE (5) are in gen-

eral not in Lp(Rd, dx) with respect to Lebesgue measure dx on R
d : just consider

the special trivial case b ≡ 0. This implies that solutions of the SDE (5) (if they
exist) may not belong to the Sobolev space W 1,p(Rd, dx),p ∈ (1,∞). However,
we will show that such solutions do indeed belong to the weighted Sobolev spaces
W 1,p(Rd,w) for p ∈ (1,∞).

REMARK 2. (i) Let w :Rd → (0,∞) be a weight function in Muckenhoupt’s
Ap-class (1 < p < ∞), that is a locally (Lebesgue) integrable function on R

d such
that

sup
(

1

λd(B)

∫
B

w(x)dx

)(
1

λd(B)

∫
B

(
w(x)

)1/(1−p)
dx

)p−1

=: cw,p < ∞,
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where the supremum is taken over all balls B in R
d and λd is Lebesgue mea-

sure on R
d . For example, the function w(x) = |x|γ is an Ap-weight iff −d <

γ < d(p − 1). Other examples of weights are given by positive superharmonic
functions. See, for example, [16] and [18] and the references therein. Denote by
H 1,p(Rd,w) the completion of C∞(Rd) with respect to the norm ‖ · ‖1,p,w in (8).
If w is a Ap-weight, then we have

W 1,p(
R

d,w
) = H 1,p(

R
d,w

)
for all 1 < p < ∞; see, for example, [16].

(ii) Let p0 = inf{q > 1 :w is a Aq -weight} and let u ∈ W 1,p(Rd,w). If p0 <

p/d , then u is locally Hölder continuous with any exponent α such that 0 < α <

1 − dp0/p.

We now state our main result in this section which gives the existence of a
Sobolev differentiable stochastic flow for the SDE (5).

THEOREM 3. In the SDE (5), assume that the drift coefficient b is Borel-
measurable and bounded. Then the SDE (5) has a Sobolev differentiable stochastic
flow φs,t :Rd →R

d, s, t ∈R: that is,

φs,t (·) and φ−1
s,t (·) ∈ L2(

�,W 1,p(
R

d,w
))

for all s, t ∈R and all p ∈ (1,∞).

REMARK 4. If w is a Ap-weight, then it follows from Remark 2(ii) that a
version of φs,t (·) is locally Hölder continuous for all 0 < α < 1 and all s, t .

The following corollary is a consequence of Theorem 3 and the helix property
of the Brownian motion.

COROLLARY 5. Consider the autonomous SDE

X
s,x
t = x +

∫ t

s
b

(
Xs,x

u

)
du + Bt − Bs, s, t ∈ R(9)

with bounded Borel-measurable drift b :Rd → R
d . Then the stochastic flow of the

SDE (9) has a version which generates a perfect Sobolev-differentiable cocycle
(φ0,t , θ(t, ·)) where θ(t, ·) :� → � is the μ-preserving Wiener shift. More specifi-
cally, the following perfect cocycle property holds for all ω ∈ � and all t1, t2 ∈ R:

φ0,t1+t2(·,ω) = φ0,t2

(·, θ(t1,ω)
) ◦ φ0,t1(·,ω).

We will prove Theorem 3 through a sequence of lemmas and propositions. We
begin by stating our main proposition.
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PROPOSITION 6. Let b :R×R
d →R

d be bounded and measurable. Let U be
an open and bounded subset of Rd . For each t ∈R and p > 1, we have

X·
t ∈ L2(

�;W 1,p(U)
)
.

We will prove Proposition 6 using two steps. In the first step, we show that
for a bounded smooth function b : [0,1] × R

d → R
d with compact support, it is

possible to estimate the norm of X·
t in L2(�,W 1,p(U)) independently of the size

of the spatial Jacobian b′ of b, with the estimate depending only on ‖b‖∞.
In the second step, we will approximate our bounded measurable coefficient b

by a sequence {bn}∞n=1 of smooth compactly supported functions as in step 1. We
then show that the corresponding sequence X

n,·
t of solutions is relatively compact

in L2(�) when integrated against a test function on R
d . By step 1, we use weak

compactness of the above sequence in L2(�,W 1,p(U)) to conclude that the limit
point X·

t of the above sequence must also lie in this space.
We now turn to the first step of our procedure. Note that if b is a compactly

supported smooth function, the corresponding solution of the SDE (1) is (strongly)
differentiable with respect to x, and the first-order spatial Jacobian ∂

∂x
Xx

t satisfies
the linearized random ODE⎧⎪⎪⎨⎪⎪⎩

d
∂

∂x
Xx

t = b′(t,Xx
t

) ∂

∂x
Xx

t dt,

∂

∂x
Xx

0 = Id .

(10)

In the above equation and throughout this section, Id is the d × d identity matrix
and b′(t, x) := ( ∂

∂xi
b(j)(t, x))1≤i,j≤d denotes the spatial Jacobian derivative of b.

A key estimate in the first step of the argument is provided by the following
proposition.

PROPOSITION 7. Assume that b is a smooth function with compact support.
Then for any p ∈ [1,∞) and t ∈ R, we have the following estimate for the solution
of the linearized equation (10):

sup
x∈Rd

E

[∣∣∣∣ ∂

∂x
Xx

t

∣∣∣∣p]
≤ Cd,p

(‖b‖∞
)
,

where Cd,p is an increasing continuous function depending only on d and p.

The proof of Proposition 7 relies on the following sequence of lemmas which
provide estimates on expressions depending on the Gaussian distribution and its
derivatives. To this end, we define P(t, z) := (2πt)d/2e−|z|2/2t , t > 0, where |z| is
the Euclidean norm of a vector z ∈ R

d .
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LEMMA 8. Let φ,h : [0,1] × R
d → R be measurable functions such that

|φ(s, z)| ≤ e−|z|2/3s and ‖h‖∞ ≤ 1. Also let α,β ∈ {0,1}d be multiindices such
that |α| = |β| = 1. Then there exists a universal constant C (independent of φ, h,
α and β) such that∣∣∣∣∫ 1

1/2

∫ t

t/2

∫
Rd

∫
Rd

φ(s, z)h(t, y)DαDβP (t − s, y − z) dy dz ds dt

∣∣∣∣ ≤ C.

Furthermore, there is a universal positive constant (also denoted by) C such that
for measurable functions g and h bounded by 1, we have∣∣∣∣∫ 1

1/2

∫ t

t/2

∫
Rd

∫
Rd

g(s, z)P (s, z)h(t, y)DαDβP (t − s, y − z) dy dz ds dt

∣∣∣∣ ≤ C

and∣∣∣∣∫ 1

1/2

∫ t

t/2

∫
Rd

∫
Rd

g(s, z)Dγ P (s, z)h(t, y)DαDβP (t − s, y − z) dy dz ds dt

∣∣∣∣ ≤ C.

PROOF. We will only give a proof of the first estimate in the lemma. The
proofs of the second and third estimates are left to the reader.

Denote the first integral in the lemma by I . Let l,m ∈ Z
d and define [l, l +

1) := [l(1), l(1) + 1) × · · · × [l(d), l(d) + 1) and similarly for [m,m + 1). Trun-
cate the functions φ,h by setting φl(s, z) := φ(s, z)1[l,l+1)(z) and hm(t, y) :=
h(t, y)1[m,m+1)(y).

In the first integral, we replace φ, h by φl , hm, respectively, and thus define

Il,m :=
∫ 1

1/2

∫ t

t/2

∫
Rd

∫
Rd

φl(s, z)hm(t, y)DαDβP (t − s, y − z) dy dz ds dt.

Therefore, we can write I = ∑
l,m∈Zd Il,m. Below, we let C be a generic constant

that may vary from line to line.
Assume ‖l−m‖∞ := maxi |l(i)−m(i)| ≥ 2. For z ∈ [l, l+1) and y ∈ [m,m+1)

we have |z − y| ≥ ‖l − m‖∞ − 1. If α �= β , we have that

DαDβP (t − s, z − y) = (z(i) − y(i))(z(j) − y(j))

(t − s)2 P(t − s, y − z)

for a suitable choice of i, j . Then we can find C such that∣∣DαDβP (t − s, z − y)
∣∣ ≤ Ce−(‖l−m‖∞−2)2/4.

If α = β , we have

(
Dα)2

P(t − s, y − z) =
(

(y(i) − z(i))2

t − s
− 1

)
P(t − s, y − z)

t − s

and similarly we find C such that∣∣(Dα)2
P(t − s, y − z)

∣∣ ≤ Ce−(‖l−m‖∞−2)2/4.
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In both cases we have |Il,m| ≤ Ce−|l|2/8e−(‖l−m‖∞−2)2/4 and it follows that∑
‖l−m‖∞≥2

|Il,m| ≤ C.

Assume ‖l − m‖∞ ≤ 1 and let φ̂l(s, u) and ĥm(t, u) be the Fourier transforms
in the second variable, defined by

ĥm(t, u) := (2π)−d/2
∫
Rd

h(t, x)e−i(u,x) dx

and similarly for φ̂l(s, u). By the Plancherel theorem we have that∫
Rd

φ̂l(s, u)2 du =
∫
Rd

φl(s, z)
2 dz ≤ Ce−|l|2/6

for all s ∈ [0,1] and ∫
Rd

ĥm(t, u)2 du =
∫
Rd

hm(t, y)2 dy ≤ 1.

We can write

Il,m =
∫ 1

1/2

∫ t

t/2

∫
Rd

φ̂l(s, u)ĥm(t,−u)u(i)u(j)(t − s)e−(t−s)|u|2/2 duds dt.(11)

To see this, start with the right-hand side. Then we have by Fubini’s theorem∫
Rd

ĥm(t,−u)φ̂l(s, u)uiuj (t − s)e−(t−s)|u|2/2 du

= (2π)−d
∫
Rd

∫
Rd

∫
Rd

hm(t, x)ei(u,x)φl(s, y)e−i(u,y)uiuj (t − s)

× e−(t−s)|u|2/2 dudx dy

=
∫
Rd

∫
Rd

hm(t, x)φl(s, y)(t − s)

×
[
(2π)−d

∫
Rd

ei(u,x−y)uiuj e−(t−s)|u|2/2 du

]
dx dy.

Now look at the expression in the square brackets. Substitute v = √
t − su to

get

(2π)−d
∫
Rd

ei(u,x−y)uiuj e−(t−s)|u|2/2 du

= (2π)−d(t − s)−d/2
∫
Rd

ei(v/
√

t−s,x−y) vi

√
t − s

vj

√
t − s

e−|v|2/2 dv

= (2π)−d(t − s)−d/2(t − s)−1
∫
Rd

ei(v,(x−y)/
√

t−s)vivj e−|v|2/2 dv.

Now put f (v) = e−|v|2/2 and p(v) = v(i)v(j). From properties of the Fourier trans-
form, we know that p̂f = DαDβf̂ and f̂ = f . This gives that the above expression
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is equal to

(2π)−d/2(t − s)−d/2(t − s)−1DαDβf

(
x − y√
t − s

)
= (t − s)−1DαDβP (t − s, x − y).

This proves equation (11).
Applying the inequality ab ≤ 1

2a2c + 1
2b2c−1 to (13) with a = φ̂l(s, u)u(i), b =

ĥm(t,−u)u(j) and c = e|l|2/12 we get

|Il,m| ≤ 1

2

∫ 1

1/2

∫ t

t/2

∫
Rd

φ̂l(s, u)2(
u(i))2

e|l|2/12e−(t−s)|u|2/2 duds dt

+ 1

2

∫ 1

1/2

∫ t

t/2

∫
Rd

ĥm(t,−u)2(
u(j))2

e−|l|2/12e−(t−s)|u|2/2 duds dt

≤ 1

2

∫ 1

1/2

∫ t

t/2

∫
Rd

φ̂l(s, u)2|u|2e|l|2/12e−(t−s)|u|2/2 duds dt

+ 1

2

∫ 1

1/2

∫ t

t/2

∫
Rd

ĥm(t,−u)2|u|2e−|l|2/12e−(t−s)|u|2/2 duds dt.

For the first term, integrate first with respect to t in order to get∫ 1

1/2

∫ t

t/2

∫
Rd

φ̂l(s, u)2|u|2e|l|2/12e−(t−s)|u|2/2 duds dt ≤ Ce−|l|2/12

and for the second term, integrate with respect to s first to get∫ 1

1/2

∫ t

t/2

∫
Rd

ĥm(t,−u)2|u|2e−|l|2/12e−(t−s)|u|2/2 duds dt ≤ Ce−|l|2/12,

which gives |Il,m| ≤ Ce−|l|2/12, and hence∑
‖l−m‖∞≤1

|Il,m| ≤ C.
�

Using the previous lemma we can show the following:

LEMMA 9. Let g,h : [0,1] × R
d → R be Borel-measurable and bounded by

1 and let r ≥ 0. As before we let α,β, γ be multiindices with length 1. Then there
exists a universal constant C such that∣∣∣∣∫ t

t0

∫ t1

t0

∫
Rd

∫
Rd

g(t2, z)P (t2 − t0, z)h(t1, y)

× DαDβP (t1 − t2, y − z)(t − t1)
r dy dz dt2 dt1

∣∣∣∣
≤ C(1 + r)−1(t − t0)

r+1
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and ∣∣∣∣∫ t

t0

∫ t1

t0

∫
Rd

∫
Rd

g(t2, z)D
γ P (t2 − t0, z)h(t1, y)

×DαDβP (t1 − t2, y − z)(t − t1)
r dy dz dt2 dt1

∣∣∣∣
≤ C(1 + r)−1/2(t − t0)

r+1/2.

PROOF. We begin by proving the first estimate in the lemma for t = 1, t0 = 0.
The following estimate holds for each integer k ≥ 0:∣∣∣∣∫ 2−k

2−k−1

∫ t

t/2

∫
Rd

∫
Rd

g(s, z)P (s, z)h(t, y)

× DαDβP (t − s, y − z)(1 − t)r dy dz ds dt

∣∣∣∣
≤ C

(
1 − 2−k−1)r2−k.

To see this, use the fact P(at, z) = a−d/2P(t, a−1/2z) and make the following
substitutions in the second estimate in Lemma 8: t ′ := 2kt and s′ := 2ks, z′ :=
2k/2z and y′ := 2k/2y, h̃(t, y) := (1−t)r

(1−2−k−1)r
h(t, y).

Summing the above inequalities over k gives∣∣∣∣∫ 1

0

∫ t

t/2

∫
Rd

∫
Rd

g(s, z)P (s, z)h(t, y)DαDβP (t − s, y − z)(1 − t)r dy dz ds dt

∣∣∣∣
≤ C(1 + r)−1.

Moreover, it is easy to see that∣∣∣∣∫ 1

0

∫ t/2

0

∫
Rd

∫
Rd

g(s, z)P (s, z)h(t, y)DαDβP (t − s, y − z)(1 − t)r dy dz ds dt

∣∣∣∣
≤ C

∫ 1

0

∫ t/2

0
(t − s)−1(1 − t)r ds dt ≤ C(1 + r)−1

and combining these bounds gives the first assertion of the lemma for t = 1, t0 = 0.
For general t and t0 use the change of variables t ′1 := t1−t0

t−t0
, t ′2 := t2−t0

t−t0
, y′ := (t −

t0)
−1/2y and z′ := (t − t0)

−1/2z.
The second assertion of the lemma is proved similarly. �

We now turn to the following key estimate (cf. [4], Proposition 2.2):

LEMMA 10. Let B be a d-dimensional Brownian Motion starting from the
origin and b1, . . . , bn be compactly supported continuously differentiable functions
bi : [0,1] ×R

d → R for i = 1,2, . . . , n. Let αi ∈ {0,1}d be a multiindex such that
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|αi | = 1 for i = 1,2, . . . , n. Then there exists a universal constant C (independent
of {bi}i , n, and {αi}i ) such that∣∣∣∣∣E

[∫
t0<t1<···<tn<t

(
n∏

i=1

Dαibi(ti , x + Bti )

)
dt1 · · · dtn

]∣∣∣∣∣
(12)

≤ Cn ∏n
i=1 ‖bi‖∞(t − t0)

n/2

�((n/2) + 1)
,

where � is the Gamma-function and x ∈ R
d . Here, Dαi denotes the partial deriva-

tive with respect to the j ′th space variable, where j is the position of the 1 in αi .

PROOF. Without loss of generality, assume that ‖bi‖∞ ≤ 1 for i = 1,2, . . . , n.
Using the Gaussian density, we write the left-hand side of the estimate (12) in the
form ∣∣∣∣∣

∫
t0<t1<···<tn<t

∫
Rdn

n∏
i=1

Dαibi(ti , x + zi)

× P(ti − ti−1, zi − zi−1) dz1 · · · dzn dt1 · · · dtn

∣∣∣∣∣.
Introduce the notation

Jα
n (t0, t, z0)

=
∫
t0<t1<···<tn<t

∫
Rdn

n∏
i=1

Dαibi(ti , x + zi)

× P(ti − ti−1, zi − zi−1) dz1 · · · dzn dt1 · · · dtn,

where α = (α1, . . . , αn) ∈ {0,1}nd . We shall show that |Jα
n (t0, t, z0)| ≤ Cn(t −

t0)
n/2/�(n/2 + 1), thus proving the proposition.
To do this, we will use integration by parts to shift the derivatives from the bi ’s

onto the Gaussian kernel. This will be done by introducing the alphabet

A(α) = {
P,Dα1P, . . . ,DαnP,Dα1Dα2P, . . . ,Dαn−1DαnP

}
,

where Dαi , DαiDαi+1 denotes the derivatives in z of P(t, z).
Take a string S = S1 · · ·Sn in A(α) and define

Iα
S (t0, t, z0)

=
∫
t0<···<tn<t

∫
Rdn

n∏
i=1

bi(ti , x + zi)

× Si(ti − ti−1, zi − zi−1) dz1 · · · dzn dt1 · · · dtn.
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We will need only a special type of strings: say that a string is allowed if, when all
the DαiP ’s are removed from the string, a string of the form P · DαsDαs+1P · P ·
Dαs+1Dαs+2P · · ·P · Dαr Dαr+1P for s ≥ 1, r ≤ n − 1 remains. Also, we will re-
quire that the first derivatives DαiP are written in an increasing order with respect
to i.

We now claim that

Jα
n (t0, t, z0) =

2n−1∑
j=1

εj I
α
Sj (t0, t, z0),

where each εj is either −1 or 1 and each Sj is an allowed string in A(α). To see
this, we proceed by induction on n ≥ 1.

The claim obviously holds for n = 1. Assume that it holds for n ≥ 1, and let b0

be another function satisfying the requirements of the lemma. Likewise with α0.
Then

J
(α0,α)
n+1 (t0, t, z0)

=
∫ t

t0

∫
Rd

Dα0b0(t1, x + z1)P (t1 − t0, z1 − z0)J
α
n (t1, t, z1) dz1 dt1

= −
∫ t

t0

∫
Rd

b0(t1, x + z1)D
α0P(t1 − t0, z1 − z0)J

α
n (t1, t, z1) dz1 dt1

−
∫ t

t0

∫
Rd

b0(t1, x + z1)P (t1 − t0, z1 − z0)D
α0Jα

n (t1, t, z1) dz1 dt1.

Notice that

Dα0Iα
S (t1, t, z1) = −I

(α0,α)

S̃
(t1, t, z1),

where

S̃ =
{

Dα0P · S2 · · ·Sn if S = P · S2 · · ·Sn,

Dα0Dα1P · S2 · · ·Sn if S = Dα1P · S2 · · ·Sn.

Here, S̃ is not an allowed string in A(α). So from the induction hypothesis

Dα0Jα
n (t0, t, z0) = ∑2n−1

j=1 −εj I
(α0,α)

S̃
(t0, t, z0). This gives

J
(α0,α)
n+1 =

2n−1∑
j=1

−εj I
(α0,α)

Dα0P ·Sj +
2n−1∑
j=1

εj IP ·S̃j .

It is easily checked that when Sj is an allowed string in A(α), both Dα0P · Sj and
P · S̃j are allowed strings in A(α0, α).

This proves the claim.
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For the rest of the proof of Lemma 10 we will bound Iα
S when S is an allowed

string; that is, we will show that there is a positive constant M such that

Iα
S (t0, t, z0) ≤ Mn(t − t0)

n/2

�((n/2) + 1)

for all integers n ≥ 1 and for each allowed string S in the alphabet A(α).
We proceed by induction on n ≥ 0: the case n = 0 is immediate, so assume

n > 0 and that this holds for all allowed strings of length less than n. We consider
the three cases:

(1) S = Dα1P · S′ where S′ is a string in A(α′) and α′ := (α2, . . . , αn);
(2) S = P · Dα1Dα2P · S′ where S′ is a string in A(α′) and α′ := (α3, . . . , αn);
(3) S = P · Dα1P · · ·DαmP · Dαm+1Dαm+2P · S′ where S′ is a string in A(α′)

and α′ := (αm+3, . . . , αn).

In all the above cases, S′ is an allowed string in the alphabet.

(1) We use the inductive hypothesis to bound Iα′
S′ (t1, t, z1) and the bound∫

Rd

∣∣DαP(t, z)
∣∣dz ≤ Ct−1/2(13)

to get∣∣Iα
S (t0, t, z0)

∣∣
=

∣∣∣∣∫ t

t0

∫
Rd

b1(t1, z1)D
α1P(t1 − t0, z1 − z0)I

α′
S′ (t1, t, z1) dz1 dt1

∣∣∣∣
≤ Mn−1

�((n + 1)/2)

∫ t

t0

(t − t1)
(n−1)/2

∫
Rd

∣∣Dα1P(t1 − t0, z1 − z0)
∣∣dz1 dt1

≤ Mn−1C

�((n + 1)/2)

∫ t

t0

(t − t1)
(n−1)/2(t1 − t0)

−1/2 dt1

= Mn−1C
√

π(t − t0)
k/2

�((n/2) + 1)
.

The result follows if M ≥ max{C√
π,1}.

(2) For this case, we can write

Iα
S (t0, t, z0)

=
∫ t

t0

∫ t

t1

∫
Rd

∫
Rd

b1(t1, z1)b2(t2, z2)P (t1 − t0, z1 − z0)

× Dα1Dα2P(t2 − t1, z2 − z1)I
α′
S′ (t2, t, z2) dz1 dz2 dt2 dt1.

We set h(t2, z2) := b2(t2, z2)I
α′
S′ (t2, z2)(t − t2)

1−n/2 so that by the inductive hy-
pothesis we have

‖h‖∞ ≤ Mn−2/�(n/2).
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Use the above estimate in the first assertion of Lemma 9 with g = b1 and integrate
with respect to t2 first, to get∣∣Iα

S (t0, t, z0)
∣∣ ≤ CMn−2(t − t0)

n/2

n�(n/2)

and the result follows if M ≥ max{C,1}.
(3) We have

Iα
S (t0, t, z0)

=
∫
t0<···tm+2<t

∫
R(m+2)d

P (t1 − t0, z1 − z0)

×
m+2∏
j=1

bj (tj , zj )

×
m∏

j=2

Dαj P (tj − tj−1, zj − zj−1)

× Dαm+1Dαm+2P(tm+2 − tm+1, zm+2 − zm+1)

× Iα′
S′ (tm+2, t, zm+2) dz1 · · · dzm+2 dt1 · · · dtm+2.

Set h(tm+2, zm+2) := bm+2(tm+2, zm+2)I
α′
S′ (tm+2, t, z)(t − tm+2)

(2+m−n)/2. Then
from the inductive hypothesis we have ‖h‖∞ ≤ Mn−m−2/�((n − m)/2). Define

A(tm, zm)

:=
∫ t

tm

∫ t

tm+1

∫
R2d

bm+1(tm+1, zm+1)h(tm+2, zm+2)(t − tm+2)
(n−m−2)/2

× DαmP (tm+1 − tm, zm+1 − z)Dαm+1Dαm+2

× P(tm+2 − tm+1, zm+2 − zm+1) dzm+1 dzm+2 dtm+1 dtm+2.

Then Lemma 9 implies that∣∣A(tm, zm)
∣∣ ≤ C(n − m)−1/2Mn−m−2(t − tm)(n−m−1)/2

�((n − m)/2)
.

Using this in

Iα
S (t0, t, z0) =

∫
t0<···tm+2<t

∫
R(m+2)d

P (t1 − t0, z1 − z0)

×
m∏

j=1

bj (tj , zj )

×
m−1∏
j=1

Dαj P (tj − tj−1, zj − zj−1)

× �(tm, zm)dz1 · · · dzm dt1 · · · dtm
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and using the bound (13) several times gives∣∣Iα
S (t0, t, z0)

∣∣
≤ Cm+1(n − m)−1/2 Mn−m−2

�((n − m)/2)

×
∫
t0<···tm<t

(t2 − t1)
−1/2 · · · (tm − tm−1)

−1/2(t − tm)(n−m−1)/2 dt1 · · · dtm

= Cm+1(n − m)−1/2 Mn−m−2π(m−1)/2�((n − m + 1)/2)

�((n − m)/2)�((n/2) + 1)
(t − t0)

n/2.

We can choose M so large that the result holds. This completes the induction
argument. �

REMARK 11. Assume ψ ∈ L∞([0,1] × �;Rd) is adapted to the filtration
generated by the Brownian motion. Then we can bound the Doleans–Dade ex-
ponential E(

∫ 1
0 ψ(u)dBu) in Lp(�) by an increasing continuous function of

‖ψ‖L∞([0,1]×�).
To see this, notice that Mt := E(

∫ t
0 ψ(u)dBu) is the unique solution to the linear

SDE

dMt = M(t)ψ(t) dBt , M0 = 1.

By Itô’s formula, we get

E
[
M

p
t

] = 1 + p(p − 1)

2

∫ t

0
E

[
Mp

u

∣∣ψ(u)
∣∣2]

du

≤ 1 + p(p − 1)

2
‖ψ‖L∞([0,1]×�)

∫ t

0
E

[
Mp

u

]
du;

and

E
[
M

p
t

] ≤ exp
{
tp(p − 1)‖ψ‖L∞([0,1]×�)

2

}
,

where we have used Grönwall’s lemma in the last inequality.

We are now ready to complete the proof of Proposition 7.

PROOF OF PROPOSITION 7. Let t ∈ [0,1]. Iterating the linearized equa-
tion (10), we obtain

∂

∂x
Xx

t = Id +
∞∑

n=1

∫
0<s1<···sn<t

b′(s1,X
x
s1

) · · ·b′(sn,Xx
sn

)
ds1 · · · dsn,
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where, as before, b′ stands for the spatial Jacobian matrix of b. Let p ∈ [1,∞) and
choose r, s ∈ [1,∞) such that sp = 2q for some integer q and 1

r
+ 1

s
= 1. Then by

Girsanov’s theorem and Hölder’s inequality

E

[∣∣∣∣ ∂

∂x
Xx

t

∣∣∣∣p]

= E

[∣∣∣∣Id +
∞∑

n=1

∫
0<s1<···sn<t

b′(s1, x + Bs1) · · ·b′(sn, x + Bsn) ds1 · · · dsn

∣∣∣∣p

× E
(∫ 1

0
b(u, x + Bu)dBu

)]

≤ C1
(‖b‖∞

)∥∥∥∥∥Id +
∞∑

n=1

∫
0<s1<···sn<t

b′(s1, x + Bs1) · · ·

× b′(sn, x + Bsn) ds1 · · · dsn

∥∥∥∥∥
p

Lps(�,Rd×d )

,

where C1 is a continuous increasing function as in Remark 11.
Then we obtain

E

∣∣∣∣ ∂

∂x
Xx

t

∣∣∣∣p
≤ C1

(‖b‖∞
)

×
∥∥∥∥∥Id +

∞∑
n=1

∫
0<s1<···sn<t

b′(s1, x + Bs1) · · ·

× b′(sn, x + Bsn) ds1 · · · dsn

∥∥∥∥∥
p

Lsp(�,Rd×d )

≤ C1
(‖b‖∞

)
×

(
1 +

∞∑
n=1

d∑
i,j=1

d∑
l1,...,ln−1=1

∥∥∥∥∫
0<s1<···<sn<t

∂

∂xl1

b(i)(s1, x + Bs1)

× ∂

∂xl2

b(l1)(s2, x + Bs2) · · ·

× ∂

∂xj

b(ln−1)(sn, x + Bsn)

× ds1 · · · dsn

∥∥∥∥
Lps(�,R)

)p

.
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Now consider the expression

A :=
∫

0<s1<···<sn<t

∂

∂xl1

b(i)(s1, x + Bs1)
∂

∂xl2

b(l1)(s2, x + Bs2) · · ·

× ∂

∂xln

b(ln)(sn, x + Bsn) ds1 · · · dsn.

Then, using (deterministic) integration by parts, repeatedly, it is easy to see that
A2 can be written as a sum of at most 22n terms of the form∫

0<s1<···<s2n<t
g1(s1) · · ·g2n(s2n) ds1 · · · ds2n,(14)

where gl ∈ { ∂
∂xj

b(i)(·, x + B·) : 1 ≤ i, j ≤ d}, l = 1,2, . . . ,2n. Similarly, by induc-

tion it follows that A2q
is the sum of at most 2q2qn terms of the form∫

0<s1<···<s2n<t
g1(s1) · · ·g2qn(s2qn) ds1 · · · ds2qn.(15)

Combining this with Lemma 10, we obtain the following estimate:∥∥∥∥∫
0<s1<···<sn<t

∂

∂xl1

b(i)(s1, x + Bs1)
∂

∂xl2

b(l1)(s2, x + Bs2) · · ·

× ∂

∂xj

b(ln−1)(sn, x + Bsn) ds1 · · · dsn

∥∥∥∥
L2q

(�,R)

≤
(

2q2qnC2qn‖b‖2qn∞ t2q−1n

�(2q−1n + 1)

)2−q

≤ 2qnCn‖b‖n∞
((2q−1n)!)2−q .

Then it follows that

E

[∣∣∣∣ ∂

∂x
Xx

t

∣∣∣∣p]
≤ C1

(‖b‖∞
)(

1 +
∞∑

n=1

dn+22qnCn‖b‖n∞
((2q−1n)!)2−q

)p

= Cd,p

(‖b‖∞
)
.

The right-hand side of this inequality is independent of x ∈ R
d , and the result

follows. �

For the rest of the paper, we will fix a bounded and measurable b : [0,1]×R
d →

R
d . It is proved in [30] (and [21]) that the corresponding SDE (5) has a unique

strong solution, denoted by Xs,x
. . Suppose bn : [0,1] ×R

d → R
d is a sequence of

compactly supported smooth functions such that bn(t, x) → b(t, x) dt × dx-a.e.
and for some positive constant M , |bn(t, x)| ≤ M < ∞ for all n, t, x. Denote by
Xn,s,x

. the solution of (5) when b is replaced by bn,n ≥ 1. We then have the fol-
lowing.

LEMMA 12. Fix s, t ∈ R and x ∈ R
d . Then the sequence X

n,s,x
t converges

weakly in L2(�;Rd) to X
s,x
t .
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PROOF. For simplicity, consider d = 1 and s = 0. We start by noting that the
set {

E
(∫ 1

0
h(u)dBu

)
:h ∈ C1

b(R)

}
spans a dense subspace of L2(�;R). So, it suffices to prove the convergence
E[Xn,x

t E(
∫ 1

0 h(u)dBu)] → E[Xx
t E(

∫ 1
0 h(u)dBu)].

By the Cameron–Martin theorem, we have

E

[
Xx

t E
(∫ 1

0
h(u)dBu

)]
=

∫
�

Xx
t (ω + h)dμ(ω).

The function (u, x) �→ b(u, x) + h′(u) is still bounded, and so Xx
t (· + h) must co-

incide with the solution to (5) when b is replaced by b + h′. Hence, by uniqueness
in law of (5), we may write

E

[
Xx

t E
(∫ 1

0
h(u)dBu

)]
= E

[
(x + Bt)E

(∫ 1

0

[
b(u, x + Bu) + h′(u)

]
dBu

)]
and similarly for X

n,x
t . We thus get

E

[
X

n,x
t E

(∫ 1

0
h(u)dBu

)]
− E

[
Xx

t E
(∫ 1

0
h(u)dBu

)]

= E

[
(x + Bt)

(
E

(∫ 1

0

[
bn(u, x + Bu) + h′(u)

]
dBu

)

− E
(∫ 1

0

[
b(u, x + Bu) + h′(u)

]
dBu

))]
.

Using the inequality |ea − eb| ≤ |ea + eb||a − b|, Hölder’s inequality and
Burkholder–Davis–Gundy inequality we find a constant C such that the above is
bounded by

C

(
E

[(
E

(∫ 1

0

[
bn(u, x + Bu) + h′(u)

]
dBu

)

+ E
(∫ 1

0

[
b(u, x + Bu) + h′(u)

]
dBu

))4])1/4

×
(
E

[(∫ 1

0

(
bn(u, x + Bu) − b(u, x + Bu)

)2
du

)2

+
(∫ 1

0

(
b(u, x + Bu) + h′(u)

)2

−(
bn(u, x + Bu) + h′(u)

)2
du

)4])1/4

.
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From Remark 11, since bn is uniformly bounded we get that {E(
∫ 1

0 [bn(u, x +
Bu) + h′(u)]dBu)}n is bounded in L4(�), so that the first factor above is uni-
formly bounded. The second factor converges to zero by bounded convergence.

�

We can actually strengthen the above lemma to get the following theorem.

THEOREM 13. For any fixed s, t ∈ R and x ∈ R
d , the sequence {Xn,s,x

t }∞n=1
converges strongly in L2(�;Rd) to X

s,x
t .

PROOF. For simplicity, consider the special case s = 0. We first give a sketch
of the proof that {Xn,x

t }∞n=1 is relatively compact in L2(�;Rd). We notice that by
Corollary 27, it is enough to find a constant C > 0 such that

sup
n

E
[∣∣DθX

n,x
t − Dθ ′Xn,x

t

∣∣2] ≤ C
∣∣θ − θ ′∣∣(16)

for θ, θ ′ ∈ [0, t] and

sup
n

sup
θ∈[0,t]

E
[∣∣DθX

n,x
t

∣∣2] ≤ C.(17)

We begin by noticing that the Malliavin derivative satisfies the linearized equation

DθX
n,x
t = Id +

∫ t

θ
b′[(u,Xn,x

u

)
DθX

n,x
u

]
du,

which is the same equation as for ∂
∂x

X
n,x
t when we let θ = 0. The above inequali-

ties can then be obtained in a similar manner as for the bounds developed in Propo-
sition 7. Indeed, we may iterate the above linearized equation to obtain

DθX
n,x
t = Id +

∞∑
k=1

∫
θ<u1<···uk<t

b′
n

(
u1,X

n,x
u1

) · · ·b′
n

(
uk,X

n,x
uk

)
du1 · · · duk.

As in the proof of Proposition 7 with p = 2, we get the bound

E
[∣∣DθX

n,x
t

∣∣2] ≤ Cd,2
(‖b‖∞

)
,

where the right-hand side is independent of n, θ, t and x. This proves (17).
Suppose now that θ < θ ′, and write

DθX
n,x
t − Dθ ′Xn,x

t

=
∫ t

θ
b′
n

(
u,Xn,x

u

)
DθX

n,x
u du −

∫ t

θ ′
b′
n

(
u,Xn,x

u

)
Dθ ′Xn,x

u du

=
∫ θ ′

θ
b′
n

(
u,Xn,x

u

)
DθX

n,x
u du +

∫ t

θ ′
b′
n

(
u,Xn,x

u

)(
DθX

n,x
u − Dθ ′Xn,x

u

)
du

= DθX
n,x
θ ′ − Id +

∫ t

θ ′
b′
n

(
u,Xn,x

u

)(
DθX

n,x
u − Dθ ′Xn,x

u

)
du.
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Iterating the above linear equation, we get

DθX
n,x
t − Dθ ′Xn,x

t

=
(
Id +

∞∑
k=1

∫
θ ′<u1<···<uk<t

b′
n

(
u1,X

n,x
u1

) · · ·b′
n

(
uk,X

n,x
uk

)
du1 · · · duk

)

× (
DθX

n,x
θ ′ − Id

)
.

On the other hand, note that

DθX
n,x
θ ′ − Id =

∞∑
k=1

∫
θ<u1<···<uk<θ ′

b′
n

(
u1,X

n,x
u1

) · · ·b′
n

(
uk,X

n,x
uk

)
du1 · · · duk

and so

E
[∣∣DθX

n,x
t − Dθ ′Xn,x

t

∣∣2]
≤ E

[∣∣∣∣∣Id +
∞∑

k=1

∫
θ ′<u1<···<uk<t

b′
n(u1, x + Bu1) · · ·

× b′
n(uk, x + Buk

) du1 · · · duk

∣∣∣∣∣
2

×
∣∣∣∣∣

∞∑
k=1

∫
θ<u1<···<uk<θ ′

b′
n(u1, x + Bu1) · · ·

× b′
n(uk, x + Buk

) du1 · · · duk

∣∣∣∣∣
2

× E
(

d∑
j=1

∫ 1

0
b(j)
n (u,Bu) dBu

)]
.

By a similar argument as in the proof of Proposition 7, we get

E
[∣∣DθX

n,x
t − Dθ ′Xn,x

t

∣∣2] ≤ Cd,2
(‖b‖∞

)∣∣θ ′ − θ
∣∣,

which proves (16).
Let {Xnk,s,x

t }k≥1 be a subsequence of {Xn,s,x
t }n≥1. Applying the above com-

pactness criterion to this subsequence, we have that this subsequence is relatively
compact in L2(�,Rd). Thus, we can extract a further subsequence which by
Lemma 12 must converge strongly to the limit X

s,x
t . Since L2(�;Rd) is a Banach

space, the full sequence must converge strongly to X
s,x
t . �

As a consequence of Proposition 7 and the above discussion, we obtain the
following result.
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COROLLARY 14. Let Xs,x
. be the unique strong solution to the SDE (5) and

q > 1 an integer. Then there exists a constant C = C(d,‖b‖∞, q) < ∞ such that

E
[∣∣Xs1,x1

t1
− X

s2,x2
t2

∣∣q] ≤ C
(|s1 − s2|q/2 + |t1 − t2|q/2 + |x1 − x2|q)

for all s1, s2, t1, t2, x1, x2.
In particular, there exists a continuous version of the random field (s, t, x) �−→

X
s,x
t with Hölder continuous trajectories of Hölder constant α < 1

2 in s, t and
α < 1 in x, locally (see [19]).

PROOF. Retain the above notation. Without loss of generality, let 0 ≤ s1 <

s2 < t1 < t2. Then

X
n,s1,x1
t1

− X
n,s2,x2
t2

= x1 − x2 +
∫ t1

s1

bn

(
u,Xn,s1,x1

u

)
du −

∫ t2

s2

bn

(
u,Xn,s2,x2

u

)
du

+ (Bt1 − Bs1) − (Bt2 − Bs2)

= x1 − x2 +
∫ s2

s1

bn

(
u,Xn,s1,x1

u

)
du +

∫ t1

s2

bn

(
u,Xn,s1,x1

u

)
du

−
∫ t1

s2

bn

(
u,Xn,s2,x2

u

)
du −

∫ t2

t1

bn

(
u,Xn,s2,x2

u

)
du

+ (Bt1 − Bt2) + (Bs2 − Bs1)

= x1 − x2 +
∫ s2

s1

bn

(
u,Xn,s1,x1

u

)
du −

∫ t2

t1

bn

(
u,Xn,s2,x2

u

)
du

+
∫ t1

s2

(
bn

(
u,Xn,s1,x1

u

) − bn

(
u,Xn,s1,x2

u

))
du

+
∫ t1

s2

(
bn

(
u,Xn,s1,x2

u

) − bn

(
u,Xn,s2,x2

u

))
du

+ (Bt1 − Bt2) + (Bs2 − Bs1).

So, due to the uniform boundedness of bn,n ≥ 1, we get

E
[∣∣Xn,s1,x1

t1
− X

n,s2,x2
t2

∣∣q]
≤ Cq

(
|x1 − x2|q + |s1 − s2|q/2 + |t1 − t2|q/2

(18)

+ E

[∣∣∣∣∫ t1

s2

(
bn

(
u,Xn,s1,x1

u

) − bn

(
u,Xn,s1,x2

u

))
du

∣∣∣∣q]

+ E

[∣∣∣∣∫ t1

s2

(
bn

(
u,Xn,s1,x2

u

) − bn

(
u,Xn,s2,x2

u

))
du

∣∣∣∣q])
.
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Using the fact that X
n,·,s
t is a stochastic flow of diffeomorphisms (see, e.g., [19]),

the mean value theorem and Proposition 7, we get

E

[∣∣∣∣∫ t1

s2

(
bn

(
u,Xn,s1,x1

u

) − bn

(
u,Xn,s1,x2

u

))
du

∣∣∣∣q]
= |x1 − x2|q

× E

[∣∣∣∣∫ t1

s2

∫ 1

0

(
b′
n

(
u,Xn,s1,x1+τ(x2−x1)

u

) ∂

∂x
Xn,s1,x1+τ(x2−x1)

u

)
dτ du

∣∣∣∣q]
≤ |x1 − x2|q

×
∫ 1

0
E

[∣∣∣∣∫ t1

s2

(
b′
n

(
u,Xn,s1,x1+τ(x2−x1)

u

) ∂

∂x
Xn,s1,x1+τ(x2−x1)

u

)
du

∣∣∣∣q]
dτ(19)

= |x1 − x2|q

×
∫ 1

0
E

[∣∣∣∣ ∂

∂x
X

n,s1,x1+τ(x2−x1)
t1

− ∂

∂x
Xn,s1,x1+τ(x2−x1)

s2

∣∣∣∣q]
dτ

≤ Cq |x1 − x2|q sup
t∈[s1,1],x∈Rd

E

[∣∣∣∣ ∂

∂x
X

n,s1,x
t1

∣∣∣∣q]
≤ Cd,q

(‖b‖∞
)|x1 − x2|q.

Finally, we observe that estimation of the last term of the right-hand side of (18)
can be reduced to the previous case (19) by applying the Markov property, since

E

[∣∣∣∣∫ t1

s2

(
bn

(
u,Xn,s1,x2

u

) − bn

(
u,Xn,s2,x2

u

))
du

∣∣∣∣q]

≤
∫ t1

s2

E
[∣∣bn

(
u,Xn,s1,x2

u

) − bn

(
u,Xn,s2,x2

u

)∣∣q]
du

=
∫ t1

s2

E
[
E

[∣∣bn

(
u,Xn,s2,y

u

) − bn

(
u,Xn,s2,x2

u

)∣∣q]|
y=X

n,s1,x2
s2

]
du

≤ CE
[∣∣Xn,s1,x2

s2
− x2

∣∣q] = CE
[∣∣Xn,s1,x2

s2
− Xn,s1,x2

s1

∣∣q]
≤ Mq |s2 − s1|q/2

for a positive constant Mq < ∞.
Therefore, we have

E
[∣∣Xn,s1,x1

t1
− X

n,s2,x2
t2

∣∣q] ≤ Cq

(|s1 − s2|q/2 + |t1 − t2|q/2 + |x1 − x2|q)
for a constant Cq independent of n.

To complete the proof of the corollary, we use the fact that X
n,s1,x1
t1

→ X
s1,x1
t1

and X
n,s2,x2
t2

→ X
s2,x2
t2

strongly in L2(�;Rd) as n → ∞ (Theorem 13), together
with Fatou’s lemma applied to a.e. convergent subsequences of {Xn,s1,x1

t1
}∞n=1 and

{Xn,s2,x2
t2

}∞n=1. �



SOBOLEV FLOWS FOR SDES WITH SINGULAR COEFFICIENTS 1559

This concludes step one of our program. We next proceed to step 2.
For simplicity, we consider s = 0, that is, we look at the sequence {Xn,x

t }n≥1 :=
{Xn,0,x

t }n≥1 and Xx
t := X

0,x
t . The following lemma establishes convergence of the

above sequence.

LEMMA 15. For any ϕ ∈ C∞
0 (Rd;Rd) and t ∈ [0,1], the sequence〈

Xn
t , ϕ

〉 = ∫
Rd

〈
X

n,x
t , ϕ(x)

〉
Rd dx

converges to 〈Xt,ϕ〉 in L2(�,R).

PROOF. Denote by Ds the Malliavin derivative (see the Appendix) and by U

the compact support of ϕ. By noting the inequalities

E
[∣∣Ds

〈
Xn

t , ϕ
〉∣∣2] = E

[∣∣〈DsX
n
t , ϕ

〉∣∣2] ≤ ‖ϕ‖2
L2(Rd )

|U | sup
x∈U

E
[∣∣DsX

n,x
t

∣∣2]
and

E
[∣∣Ds

〈
Xn

t , ϕ
〉
L2(Rd ) − Ds′

〈
Xn

t , ϕ
〉∣∣2]

= E
[∣∣〈DsX

n
t − Ds′Xn

t , ϕ
〉∣∣2]

≤ ‖ϕ‖2
L2(Rd )

|U | sup
x∈U

E
[∣∣DsX

n,x
t − Ds′Xn,x

t

∣∣2]
we can invoke Corollary 27 in the Appendix to obtain a subsequence 〈Xn(k)

t , ϕ〉
converging in L2(�,R) as k → ∞. Denote the limit by Y(ϕ).

Similar to the proof of Lemma 12 one can show that E[〈Xn
t , ϕ〉E(

∫ 1
0 h(u)dBu)]

converges to E[〈Xt,ϕ〉E(
∫ 1

0 h(u)dBu)] for all h ∈ C1
b(R;Rd). We then get that

〈Xn
t , ϕ〉 converges weakly to 〈Xt,ϕ〉, and so, by uniqueness of the limits, we can

conclude that

Y(ϕ) = 〈Xt,ϕ〉.
To see that the full sequence converges, we assume that there exist an ε > 0 and a
subsequence 〈Xn(k)

t , ϕ〉 such that∥∥〈
X

n(k)
t , ϕ

〉 − 〈Xt,ϕ〉∥∥ ≥ ε

for every k. Applying the above procedure to 〈Xn(k)
t , ϕ〉 gives a further subse-

quence converging to 〈Xt,ϕ〉 thus giving a contradiction. �

We are now able to finalize the proof of Proposition 6.

PROOF OF PROPOSITION 6. Using Proposition 7, we have

sup
n

sup
x∈Rd

E

[∣∣∣∣ ∂

∂x
X

n,x
t

∣∣∣∣p]
< ∞.
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Hence, there exists a subsequence of ∂
∂x

X
n(k),x
t converging in the weak topology of

L2(�,Lp(U)) to an element Y . Then we have for any A ∈F and ϕ ∈ C∞
0 (U ;Rd)

E
[
1A

〈
Xt,ϕ

′〉] = lim
k→∞E

[
1A

〈
X

n(k)
t , ϕ′〉]

= − lim
k→∞E

[
1A

〈
∂

∂x
X

n(k)
t , ϕ

〉]
= −E

[
1A〈Y,ϕ〉].

Hence, we have for ϕ ∈ C∞
0 : 〈

Xt,ϕ
′〉 = −〈Y,ϕ〉(20)

P -a.s. Finally, we need to show that there exists a measurable set �0 ⊂ � with full
measure such that X·

t has a weak derivative on this subset. To this end, choose a
sequence {ϕn} in C∞(U ;Rd) dense in W

1,2
0 (U ;Rd). Choose a measurable subset

�n of � with full measure such that (20) holds on �n with ϕ replaced by ϕn. Then
�0 := ⋂

n≥1 �n satisfies the desired property. �

We now return to the weighted Sobolev spaces. Using the same techniques as
in the above lemma, we prove the following.

LEMMA 16. For all p ∈ (1,∞), we have

X·
t ∈ L2(

�,W 1,p(
R

d,w
))

.

PROOF. For simplicity, we consider the case d = 1. It suffices to show that
E[(∫ | ∂

∂x
Xx

t |pw(x)dx)2/p] < ∞. To this end, let X
n,x
t denote the sequence ap-

proximating Xx
t as in the previous lemma. Assume first that p ≥ 2. Then by

Hölder’s inequality w.r.t. the Wiener measure μ, we have

E

[(∫ ∣∣∣∣ ∂

∂x
X

n,x
t

∣∣∣∣pw(x)dx

)2/p]

≤
(
E

∫ ∣∣∣∣ ∂

∂x
X

n,x
t

∣∣∣∣pw(x)dx

)2/p

≤
(∫

w(x)dx

)p/2(
sup
x∈R

E

∣∣∣∣ ∂

∂x
X

n,x
t

∣∣∣∣p)2/p

.

For 1 < p ≤ 2, by Hölder’s inequality w.r.t. w(x)dx, we have

E

[(∫ ∣∣∣∣ ∂

∂x
X

n,x
t

∣∣∣∣pw(x)dx

)2/p]
≤

(∫
w(x)dx

)(4−p)/2

sup
x∈Rd

E

[∣∣∣∣ ∂

∂x
X

n,x
t

∣∣∣∣2]
.

In both cases, we can find a subsequence of ∂
∂x

X
n,x
t converging to an element

Y ∈ L2(�,Lp(Rd,w)) in the weak topology. In particular for every A ∈ F and
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f ∈ Lq(Rd,w) (q is the Sobolev conjugate of p) we have

lim
k→∞E

[
1A

∫
∂

∂x
X

n(k),x
t f (x)w(x)dx

]
= E

[
1A

∫
Y(x)f (x)w(x)dx

]
by choosing f such that f w ∈ Lq(R, dx) [e.g., put f (x) = e−w(x)ϕ(x) for ϕ ∈
C∞

0 (R)]. It follows that Y must coincide with the weak derivative of Xx
t . This

proves the lemma. �

We now complete the proof of our main theorem in this section (Theorem 3)
and its corollary.

PROOF OF THEOREM 3. Denote by R×R×R
d � (s, t, x) �−→ φs,t (x) ∈ R

d

the continuous version of the solution map (s, t, x) �−→ X
s,x
t provided by Corol-

lary 14. Let �∗ be the set of all ω ∈ � such that the SDE (5) has a unique spatially
Sobolev differentiable family of solutions. Then by completeness of the proba-
bility space (�,F,μ), it follows that �∗ ∈ F and μ(�∗) = 1. Furthermore, by
uniqueness of solutions of the SDE (5), it is easy to check that the following two-
parameter group property

φs,t (·,ω) = φu,t (·,ω) ◦ φs,u(·,ω), φs,s(x,ω) = x,(21)

holds for all s, u, t ∈ R, all x ∈ R
d and all ω ∈ �∗. Finally, we apply Lemma 16

and use the relation φs,t (·,ω) = φ−1
t,s (·,ω), to complete the proof of the theorem.

�

PROOF OF COROLLARY 5. Let �∗ denote the set of full Wiener measure in-
troduced in the above proof of Theorem 3. We claim that θ(t, ·)(�∗) = �∗ for
all t ∈ R. To see this, let ω ∈ �∗ and fix an arbitrary t1 ∈ R. Then from the au-
tonomous SDE (9) it follows that

X
t1,x
t+t1

(ω) = x +
∫ t+t1

t1

b
(
Xt1,x

u (ω)
)
du + Bt+t1(ω) − Bt1(ω), t1, t ∈R.(22)

By the helix property of B and a simple change of variable the above relation
implies

X
t1,x
t+t1

(ω) = x +
∫ t

0
b

(
X

t1,x
u+t1

(ω)
)
du + Bt

(
θ

(
t1(ω)

))
, t ∈ R.(23)

The above relation implies that the SDE (9) admits a Sobolev differentiable fam-
ily of solutions when ω is replaced by θ(t1,ω). Hence, θ(t1,ω) ∈ �∗. Thus
θ(t1, ·)(�∗) ⊆ �∗, and since t1 ∈ R is arbitrary, this proves our claim. Further-
more, using uniqueness in the integral equation (22) it follows that

X
t1,x
t2+t1

(ω) = X
0,x
t2

(
θ(t1,ω)

)
(24)
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for all t1, t2 ∈ R, all x ∈ R
d and ω ∈ �∗. To prove the following cocycle property

for all ω ∈ �∗:

φ0,t1+t2(·,ω) = φ0,t2

(·, θ(t1,ω)
) ◦ φ0,t1(·,ω)

we rewrite the identity (24) in the form

φt1,t1+t2(x,ω) = φ0,t2

(
x, θ(t1,ω)

)
, t1, t2 ∈ R, x ∈ R

d,ω ∈ �∗,(25)

replace x by φ0,t1(x,ω) in the above identity and invoke the two-parameter flow
property (21). This completes the proof of Corollary 5. �

Finally, we give an extension of Theorem 3 to a class of nondegenerate
d-dimensional Itô-diffusions.

THEOREM 17. Consider the time-homogeneous Rd -valued SDE

dXx
t = b

(
Xx

t

)
dt + σ

(
Xx

t

)
dBt , Xx

0 = x ∈ R
d,0 ≤ t ≤ 1,(26)

where the coefficients b :Rd → R
d and σ :Rd → R

d × R
dare Borel measurable.

Suppose that σ(x) has an inverse σ−1(x) for all x ∈ R
d . Further assume that

σ−1 :Rd →R
d ×R

d is continuously differentiable such that

∂

∂xk

σ−1
lj = ∂

∂xj

σ−1
lk

for all l, k, j = 1, . . . , d . In addition, require that the function � :Rd →R
d defined

by

�(x) :=
∫ 1

0
σ−1(tx) · x dt

possesses a Lipschitz continuous inverse �−1 :Rd → R
d . Let D� :Rd →

L(Rd,Rd) and D2� :Rd → L(Rd × R
d,Rd) be the existing corresponding

derivatives of �.
Assume that the function b∗ :Rd →R

d given by

b∗(x) := D�
(
�−1(x)

)[
b

(
�−1(x)

)]
+ 1

2
D2�

(
�−1(x)

)[
d∑

i=1

σ
(
�−1(x)

)[ei],
d∑

i=1

σ
(
�−1(x)

)[ei]
]

is bounded and Borel measurable, where ei , i = 1, . . . , d , is a basis of Rd .
Then there exists a stochastic flow (s, t, x) �−→ φs,t (x) of the SDE (26) such

that

φs,t (·) ∈ L2(
�,Wp(

R
d,w

))
for all 0 ≤ s ≤ t ≤ 1 and all p > 1.
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PROOF. Because of our assumptions, we see that �−1 is twice continuously
differentiable and that

D�(y)σ(y) = Id

for all y ∈ R
d .

Then Itô’s lemma applied to (5) implies that

dY x
t = D�

(
�−1(

Yx
t

))[
b

(
�−1(

Yx
t

))]
+ 1

2
D2�

(
�−1(

Yx
t

))
×

[
d∑

i=1

σ
(
�−1(

Yx
t

))[ei],
d∑

i=1

σ
(
�−1(

Yx
t

))[ei]
]

dt + dBt ,

Y x
0 = �(x), 0 ≤ t ≤ 1,

where Yx
t = �(Xx

t ). Because of Theorem 3 and a chain rule for functions in
Sobolev spaces (see, e.g., [31]) there exists a stochastic flow (s, t, x) �−→ φs,t (x)

of the SDE (26) such that φs,t (·) ∈ L2(�,Wp(Rd,w)) for all 0 ≤ s ≤ t ≤ 1 and
all p > 1. �

3. Application to the stochastic transport equation. In this section, we will
study the stochastic transport equation⎧⎪⎨⎪⎩dtu(t, x) + (

b(t, x) · Du(t, x)
)
dt +

d∑
i=1

ei · Du(t, x) ◦ dBi
t = 0,

u(0, x) = u0(x),

(27)

where e1, . . . , ed is the canonical basis of R
d , b : [0,1] × R

d → R
d is a given

bounded measurable vector field and u0 :Rd → R is a given initial data. The
stochastic integration is understood in the Stratonovich sense.

In [19], it is proved that for smooth data and a sufficiently regular vector field b,
(27) has an explicit solution u(t, x) = u0(φ

−1
t (x)) where φt (x) is the flow map

generated by the strong solutions (Xx
t )t≥0 of the SDE (5). In fact, this solution of

the transport equation is strong in the sense that u(t, ·) is differentiable everywhere
in x almost surely for all t , and it satisfies the integral equation

u(t, x) +
∫ t

0
Du(s, x) · b(s, x) ds +

d∑
i=1

∫ t

0
ei · Du(s, x) ◦ dBi

s = u0(x)

almost surely, for every t .
We shall use the following notion of weak solution (cf. Definition 12 in [14]).

DEFINITION 18. Let b be bounded and measurable and u0 ∈ L∞(Rd).
A weak solution of the transport equation (27) is a stochastic process u ∈ L∞(�×
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[0,1] ×R
d) such that, for every t , the function u(t, ·) is weakly differentiable a.s.

with sup0≤s≤1,x∈Rd E[|Du(s, x)|4] < ∞ and for every test function θ ∈ C∞
0 (Rd),

the process
∫
Rd θ(x)u(t, x) dx has a continuous modification which is an Ft -semi-

martingale satisfying∫
Rd

θ(x)u(t, x) dx =
∫
Rd

θ(x)u0(x) dx

−
∫ t

0

∫
Rd

Du(s, x) · b(s, x)θ(x) dx ds(28)

+
d∑

i=1

∫ t

0

(∫
Rd

u(s, x)Diθ(x) dx

)
◦ dBi

s,

where Du(t, x) is the weak derivative of u(t, x) in the following space-variable.

Our definition of a weak solution for (27) differs slightly from that in [14] due
to the fact that we do not require any regularity on the coefficient b except Borel
measurability and boundedness. To compensate for it, the expression depends on
the weak derivative of u(t, x).

It is easy to see that equation (28) can be written in the equivalent Itô form.

LEMMA 19. A process u ∈ L∞(� × [0,1] × R
d) is a weak solution of the

transport equation (27) if and only if, for every t , the function u(t, ·) is weakly dif-
ferentiable a.s. with sup0≤s≤1,x∈Rd E[|Du(s, x)|4] < ∞, and for every test func-
tion θ ∈ C∞

0 (Rd), the process
∫
Rd θ(x)u(t, x) dx has a continuous Ft -adapted

modification satisfying the following equation a.s.:∫
Rd

θ(x)u(t, x) dx =
∫
Rd

θ(x)u0(x) dx

−
∫ t

0

∫
Rd

Du(s, x) · b(s, x)θ(x) dx ds

+
d∑

i=1

∫ t

0

(∫
Rd

u(s, x)Diθ(x) dx

)
dBi

s

+ 1

2

∫ t

0

∫
Rd

u(s, x)�θ(x) dx ds.

The main result of this section is the following existence and uniqueness theo-
rem for solutions of the stochastic transport equation (27).

THEOREM 20. Let b be bounded and Borel measurable. Suppose u0 ∈
C1

b(Rd). Then there exists a unique weak solution u(t, x) to the stochastic trans-
port equation (27). For each t > 0 and all p ∈ (1,∞), the weak solution u(t, ·)
belongs a.s. to W 1,p(Rd,w), the weighted Sobolev space introduced in Section 1.
Moreover, for fixed t and x, u(t, ·, x) is Malliavin-differentiable.
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REMARK 21. As noted in [14], the deterministic transport equation is gener-
ally ill-posed under the conditions of Theorem 20. It is remarkable that Brownian
forcing on the transport equation induces uniqueness and regularity of the solution.

We shall prove Theorem 20 using a sequence bn : [0,1] × R
d → R

d of uni-
formly bounded smooth functions with compact support converging almost every-
where to b. We then study the corresponding sequence of solutions of the transport
equation (27) when b is replaced by bn.

For the rest of this section, we denote by φt the flow of the SDE (5) driven by
the vector field b, and by φn,t the flow of the SDE (5) with bn in place of b.

We begin with the following lemma.

LEMMA 22. Let u0 ∈ C1
b(Rd) and f ∈ L1(Rd). Then the sequence(∫
Rd

u0
(
φ−1

n,s (x)
)
f (x) dx

)
n≥1

converges to
∫
Rd u0(φ

−1
s (x))f (x) dx in L2(�) for every s ∈ [0,1].

PROOF. Consider∥∥∥∥∫
Rd

u0
(
φ−1

n,s (x)
)
f (x) dx −

∫
Rd

u0
(
φ−1

s (x)
)
f (x) dx

∥∥∥∥
L2(�)

≤
∫
Rd

∥∥u0
(
φ−1

n,s (x)
) − u0

(
φ−1

s (x)
)∥∥

L2(�)

∣∣f (x)
∣∣dx.

We have ‖u0(φ
−1
n,s (x)) − u0(φ

−1
s (x))‖L2(�) ≤ ‖Du0‖∞‖φ−1

n,s (x) − φ−1
s (x)‖L2(�)

which goes to zero for every s and x. Now∥∥u0
(
φ−1

n,s

) − u0
(
φ−1

s

)∥∥
L2(�)|f | ≤ 2‖u0‖∞|f | ∈ L1(

R
d)

and the result follows by dominated convergence. �

We also need the following result (see Theorem 2 in [15] and also [28, 29]).

THEOREM 23. Let U be open subset of Rd and f ∈ W 1,d(U) be a homeomor-
phism. Then f satisfies the Lusin’s condition, that is,

E ⊂ U, |E| = 0 �⇒ ∣∣f (E)
∣∣ = 0.

Here, |A| stands for the Lebesgue measure of a set A.
Moreover, for every measurable function g :U −→ [0,∞) and a measurable set

E ⊂ U the following change of variable formula is valid:∫
E
(g ◦ f )|detJf |dx =

∫
f (E)

g(y) dy,

where detJf is the determinant of the Jacobian of f .
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REMARK 24. The random diffeomorphisms φt(·), φ−1
t (·) ∈ W

1,p
loc (Rd) a.s.

and satisfy the conditions of Theorem 23 on each bounded and open subset U
of Rd .

We are now ready to prove Theorem 20:

PROOF OF THEOREM 20. (1) Existence of a weak solution. We consider the
approximation {bn} of b as described prior to Lemma 12. Then we know that there
exists a unique strong solution to the transport equation (27) when b is replaced
by bn, which is given by un(t, x) = u0(φ

−1
n,t (x)), n ≥ 1. In particular, un is a dif-

ferentiable, weak L∞-solution, such that for every θ ∈ C∞(Rd)∫
Rd

θ(x)un(t, x) dx =
∫
Rd

θ(x)u0(x) dx

−
∫ t

0

∫
Rd

Dun(s, x) · bn(s, x)θ(x) dx ds

(29)

+
d∑

i=1

∫ t

0

(∫
Rd

un(s, x)Diθ(x) dx

)
dBi

s

+ 1

2

∫ t

0

∫
Rd

un(s, x)�θ(x) dx ds.

Let us now define u(t, x) := u0(φ
−1
t (x)) so that u ∈ L∞(� × [0,1] × R

d), and
u(t, ·) is weakly differentiable, a.s. We now let n go to infinity to get that u(t, x)

is a solution of the transport equation.
The following two limits exist in L2(�) by Lemma 22 and dominated conver-

gence: ∫
Rd

θ(x)un(t, x) dx →
∫
Rd

θ(x)u(t, x) dx,∫ t

0

∫
Rd

un(s, x)�θ(x) dx ds →
∫ t

0

∫
Rd

u(s, x)�θ(x) dx ds.

By the Itô isometry, we have

d∑
i=1

∫ t

0

(∫
Rd

un(s, x)Diθ(x) dx

)
dBi

s →
d∑

i=1

∫ t

0

(∫
Rd

u(s, x)Diθ(x) dx

)
dBi

s

in L2(�). Finally, we claim that∫ t

0

∫
Rd

Dun(s, x) · bn(s, x)θ(x) dx ds

→
∫ t

0

∫
Rd

Du(s, x) · b(s, x)θ(x) dx ds
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in L2(�). To see this, observe that(∫ t

0

∫
Rd

Dun(s, x) · bn(s, x)θ(x) dx ds

)
n

is convergent in L2(�) because of the convergence of the other terms in
equality (29). Then the claim is proved once we show that

∫ t
0

∫
Rd Dun(s, x) ·

bn(s, x)θ(x) dx ds converges weakly to
∫ t

0
∫
Rd Du(s, x) · b(s, x)θ(x) dx ds. Then

the strong and weak limit must coincide.
To prove weak convergence, we write the difference in three parts, namely:∫ t

0

∫
Rd

Dun(s, x) · bn(s, x)θ(x) dx ds −
∫ t

0

∫
Rd

Du(s, x) · b(s, x)θ(x) dx ds

=
∫ t

0

∫
Rd

Dun(s, x) · bn(s, x)θ(x) dx ds

−
∫ t

0

∫
Rd

Dun(s, x) · b(s, x)θ(x) dx ds

+
∫ t

0

∫
Rd

Du0
(
φ−1

n,s (x)
)
Dφ−1

n,s (x) · b(s, x)θ(x) dx ds

−
∫ t

0

∫
Rd

Du0
(
φ−1

s (x)
)
Dφ−1

n,s (x) · b(s, x)θ(x) dx ds

+
∫ t

0

∫
Rd

Du0
(
φ−1

s (x)
)
Dφ−1

n,s (x) · b(s, x)θ(x) dx ds

−
∫ t

0

∫
Rd

Du0
(
φ−1

s (x)
)
Dφ−1

s (x) · b(s, x)θ(x) dx ds

= (i)n + (ii)n + (iii)n.

We shall deal with these terms separately.
(α): the first term (i)n converges to 0 strongly in L2(�) as n → ∞, since by

Hölder’s inequality and Fubini’s theorem

E
[
(i)2

n

] = E

[(∫ t

0

∫
Rd

Dun(s, x) · (
bn(s, x) − b(s, x)

)
θ(x) dx ds

)2]
≤

∫ t

0

∫
Rd

E
[∣∣Dun(s, x)

∣∣2]∣∣bn(s, x) − b(s, x)
∣∣2∣∣θ(x)

∣∣dx‖θ‖L1(R).

We have that

E
[∣∣Dun(s, x)

∣∣2] ≤ ‖Du0‖2∞E
[∣∣Dφ−1

n,s (x)
∣∣2]

,

which is uniformly bounded in n, s and x by Proposition 7. Then, using dominated
convergence, we obtain limn→∞(i)n = 0.
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(β): the second term converges strongly to 0 in L2(�), because of the following
estimates:

E
[
(ii)2

n

] ≤ ‖b‖2∞

× E

(∫ t

0

∫
Rd

∣∣Du0
(
φ−1

n,s (x)
) − Du0

(
φ−1

s (x)
)∣∣∣∣Dφ−1

n,s (x)
∣∣∣∣θ(x)

∣∣dx ds

)2

≤ ‖b‖2∞t‖θ‖L1(Rd )

×
∫ t

0

∫
Rd

E
[∣∣Du0

(
φ−1

n,s (x)
) − Du0

(
φ−1

s (x)
)∣∣2∣∣Dφ−1

n,s (x)
∣∣2]∣∣θ(x)

∣∣dx ds

≤ ‖b‖2∞t‖θ‖L1(Rd )

×
∫ t

0

∫
Rd

(
E

[∣∣Du0
(
φ−1

n,s (x)
) − Du0

(
φ−1

s (x)
)∣∣4])1/2

× (
E

[∣∣Dφ−1
n,s (x)

∣∣4])1/2∣∣θ(x)
∣∣dx ds

≤ ‖b‖2∞t‖θ‖L1(Rd ) sup
k,r,y

(
E

[∣∣Dφ−1
k,r (y)

∣∣4])1/2

×
∫ t

0

∫
Rd

(
E

[∣∣Du0
(
φ−1

n,s (x)
) − Du0

(
φ−1

s (x)
)∣∣4])1/2∣∣θ(x)

∣∣dx ds.

The above estimates are consequences of Hölder’s inequality. Since Du0 is
bounded and continuous, the right-hand side of the above inequality converges
to 0 by dominated convergence.

(γ ): for the last term, let X ∈ L2(�) and consider

E
[
(iii)nX

]
=

∫ t

0
E

[∫
Rd

Du0
(
φ−1

s (x)
)(

Dφ−1
n,s (x) − Dφ−1

s (x)
) · b(s, x)θ(x)X dx

]
ds.

Now, for each s, since Du0, b and θ are bounded and Dφ−1
s is the weak limit

of Dφ−1
n,s , this expression tends to 0 as n → ∞.

(2) Uniqueness of weak solutions. Let us assume that u is a weak solution to the
stochastic transport equation (28) (with sup0≤s≤1,x∈Rd E[|Du(s, x)|4] < ∞). We
will show that

u(t, x) = u0
(
φ−1

t (x)
)

a.e.

This will guarantee uniqueness of the weak solution to the transport equation. So,
let V be a bounded and open subset of Rd and consider for the locally integrable
function u(t, ·) on R

d its mollification

uε(t, x) = (u ∗ ηε)(x) =
∫
Rd

u(t, y)ηε(x − y)dy

with respect to the standard mollifier η.
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We observe that uε satisfies the equation

uε(t, x) = u0,ε(x) −
∫ t

0
(b · Du)ε(s, x) ds −

∫ t

0
(Du)ε(s, x) ◦ dBs.

Then using the Itô–Ventzell formula applied to uε and φt(x) (see [19]) gives

uε

(
t, φt (x)

)
(30)

= u0,ε(x) +
∫ t

0

(
(Du)ε

(
s, φs(x)

) · b(
s, φs(x)

) − (b · Du)ε
(
s, φs(x)

))
ds.

Now let τ ∈ L∞(�) and θ be a smooth function with compact support in
V ⊆ R

d . Denote by χV the indicator function of V . Then it follows from (30)
that

E

[
τ

∫
V

θ(x)uε

(
t, φt (x)

)
dx

]
= E

[
τ

∫
V

θ(x)u0,ε(x) dx

]
(31)

+ E

[
τ

∫ t

0

∫
V

θ(x)
(
(Du)ε

(
s, φs(x)

) · b(
s, φs(x)

)
(32)

− (b · Du)ε
(
s, φs(x)

))
dx ds

]
.

Using Theorem 23 applied to φ−1
t (·), we obtain

E

[
τ

∫ t

0

∫
V

θ(x)
(
(Du)ε

(
s, φs(x)

) · b(
s, φs(x)

) − (b · Du)ε
(
s, φs(x)

))
dx ds

]
= E

[
τ

∫ t

0

∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)

× (
(Du)ε(s, x) · b(s, x) − (b · Du)ε(s, x)

)
(33)

× ∣∣det
(
Jφ−1

s (x)
)∣∣dx ds

]
= I1 + I2,

where

I1 := E

[
τ

∫ t

0

∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)(

(Du)ε(s, x) · b(s, x)
)

(34)
× ∣∣det

(
Jφ−1

s (x)
)∣∣dx ds

]
and

I2 := −E

[
τ

∫ t

0

∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)
(b · Du)ε(s, x)

(35)
× ∣∣det

(
Jφ−1

s (x)
)∣∣dx ds

]
.
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Since V is bounded, there exists a n ∈N such that V ⊂ �V ⊂ W := (−n,n)d . Then
we get ∥∥(Du)ε

∥∥
L2(φs(V )) ≤ ‖Du‖L2(φs(W)),∥∥(b · Du)ε

∥∥
L2(φs(V )) ≤ ‖b · Du‖L2(φs(W))(36)

≤ ‖b‖∞‖Du‖L2(φs(W)).

Using (36), Hölder’s inequality, Fubini’s theorem and Theorem 23, we obtain

I1 ≤ CE

[∫ t

0

(∫
Rd

(
χφs(V )(x)θ

(
φ−1

s (x)
)
b(s, x)

∣∣det
(
Jφ−1

s (x)
)∣∣)2

dx

)1/2

×
(∫

Rd
χφs(W)(x)

∣∣Du(s, x)
∣∣2 dx

)1/2

ds

]

≤ C

∫ t

0
E

[∫
Rd

(
χφs(V )(x)θ

(
φ−1

s (x)
)
b(s, x)

∣∣det
(
Jφ−1

s (x)
)∣∣)2

dx

]1/2

× E

[∫
Rd

χφs(W)(x)
∣∣Du(s, x)

∣∣2 dx

]1/2

ds

≤ C

∫ t

0
E

[∫
Rd

χφs(V )(x)
∣∣det

(
Jφ−1

s (x)
)∣∣2 dx

]1/2

× E

[∫
Rd

χφs(W)(x)
∣∣Du(s, x)

∣∣2 dx

]1/2

ds(37)

≤ C

∫ t

0

(∫
Rd

E
[
χφs(V )(x)

]1/2
E

[∣∣det
(
Jφ−1

s (x)
)∣∣4]1/2

dx

)1/2

×
(∫

Rd
E

[
χφs(W)(x)

]1/2
E

[∣∣Du(s, x)
∣∣4]1/2

dx

)1/2

ds

≤ C sup
0≤s≤1,x∈Rd

E
[∣∣det

(
Jφ−1

s (x)
)∣∣4]1/2 sup

0≤s≤1,x∈Rd

E
[∣∣Du(s, x)

∣∣4]1/2

×
∫ t

0

(∫
Rd

E
[
χφs(V )(x)

]1/2
dx

)
ds

≤ C

∫ t

0

(∫
Rd

E
[
χφs(V )(x)

]1/2
dx

)
ds

for a constant C depending on the sizes of V , θ and b, since

sup
0≤s≤1,x∈Rd

E
[∣∣det

(
Jφ−1

s (x)
)∣∣4] ≤ M < ∞

because of Proposition 7 applied to φ−1
s (x).
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Further, it follows from Girsanov’s theorem, Hölder’s inequality and the sym-
metry of the distribution of the Brownian motion that∫ t

0

∫
Rd

E
[
χφs(W)(x)

]1/2
dx ds

=
∫ t

0

∫
Rd

(
μ

(
φ−1

s (x) ∈ W
))1/2

dx ds

≤ C

∫ t

0

∫
Rd

(
μ(Bs + x ∈ W)

)1/4
dx ds(38)

= C

∫ t

0

∫
Rd

(
μ

(
Bs + x ∈ (−n,n)d

))1/4
dx ds

≤ C

∫ t

0

(
2

∫ ∞
0

(
1 − �

(−n + y√
s

))1/4

dy

)d

ds,

where � is the standard normal distribution function.
On the other hand, we know that

1 − �(x) ≤ 1

2πx
exp

(−x2/2
)

for all x > 0 (see [3]).
So,∫ t

0

∫
Rd

E
[
χφs(W)(x)

]1/2
dx ds

≤ C

∫ t

0

(
2

∫ n

0

(
1 − �

(−n + y√
s

))1/4

dy

+ 2
∫ ∞
n

(
1 − �

(−n + y√
s

))1/4

dy

)d

ds

≤ K

∫ t

0

((∫ n

0

(
1 − �

(−n + y√
s

))1/4

dy

)d

(39)

+
(∫ ∞

n

(
1 − �

(−n + y√
s

))1/4

dy

)d)
ds

≤ M

(
1 +

∫ t

0

(∫ ∞
n

( √
s

2π(y − n)
exp

(−(y − n)2/2s
))1/4

dy

)d

ds

)

= M

(
1 +

∫ t

0

(∫ ∞
0

( √
s

2πy
exp

(−y2/2s
))1/4

dy

)d

ds

)

= M

(
1 +

∫ t

0

(∫ ∞
0

√
s

(
1

2πy
exp

(−y2/2
))1/4

dy

)d

ds

)
≤ L < ∞.
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Furthermore, since

(Du)ε −→ Du in L
p
loc

(
R

d)
for all p > 1 and since∫

Rd

(
χφs(V )(x)θ

(
φ−1

s (x)
)
b(s, x)

∣∣det
(
Jφ−1

s (x)
)∣∣)2

dx < ∞ a.e.

because of the above estimates, we obtain∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)(

(Du)ε(s, x) · b(s, x)
)∣∣det

(
Jφ−1

s (x)
)∣∣dx

−→
∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)(

(Du)(s, x) · b(s, x)
)∣∣det

(
Jφ−1

s (x)
)∣∣dx

for ε ↘ 0μ × ds-a.e.
On the other hand, the latter expression w.r.t. ε is dominated by the integrable

term (∫
Rd

(
χφs(V )(x)θ

(
φ−1

s (x)
)
b(s, x)

∣∣det
(
Jφ−1

s (x)
)∣∣)2

dx

)1/2

×
(∫

Rd
χφs(W)(x)

∣∣Du(s, x)
∣∣2 dx

)1/2

.

So, using dominated convergence it follows from (37) and (39) that

I1 = I1(ε)

−→ E

[
τ

∫ t

0

∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)(

(Du)(s, x) · b(s, x)
)

(40)

× ∣∣det
(
Jφ−1

s (x)
)∣∣dx ds

]
as ε ↘ 0.

Similarly, we also get

I2 = I2(ε)

−→ −E

[
τ

∫ t

0

∫
Rd

χφs(V )(x)θ
(
φ−1

s (x)
)
(b · Du)(s, x)(41)

× ∣∣det
(
Jφ−1

s (x)
)∣∣dx ds

]
as ε ↘ 0

and

E

[
τ

∫
V

θ(x)uε

(
t, φt (x)

)
dx

]
−→ E

[
τ

∫
V

θ(x)u
(
t, φt (x)

)
dx

]
(42)

as ε ↘ 0.
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In addition, because of the assumptions on u0 it is clear that

E

[
τ

∫
V

θ(x)u0,ε(x) dx

]
−→ E

[
τ

∫
V

θ(x)u0(x) dx

]
as ε ↘ 0.

Altogether we can conclude that

E

[
τ

∫
Rd

θ(x)u
(
t, φt (x)

)
dx

]
= E

[
τ

∫
Rd

θ(x)u0(x) dx

]
for all τ ∈ L∞(�) and compactly supported smooth functions θ . Hence,

u
(
t, φt (x)

) = u0(x)

μ × dx-a.e.
Since φ−1

t (·) satisfies the Lusin condition in Theorem 23 on bounded open sub-
sets, we can find a �∗ with μ(�∗) = 1 such that for all ω ∈ �∗

u(t, x) = u0
(
φ−1

t (x)
)
dx-a.e.

Due to the continuity of u with respect to time, the latter relation also holds uni-
formly in t .

Finally, the Malliavin differentiability of (a version) of u(t, x) is a consequence
of the fact that φ−1

t (x) is Malliavin differentiable (see [21]) and of the chain rule
for Malliavin derivatives (see [26]). �

APPENDIX

The following result which is due to [6] provides a compactness criterion for
subsets of L2(�;Rd) using Malliavin calculus. See, for example, [20, 26] or [8]
for more information about Malliavin calculus.

THEOREM 25. Let {(�,A,P );H } be a Gaussian probability space, that is
(�,A,P ) is a probability space and H a separable closed subspace of Gaus-
sian random variables of L2(�), which generate the σ -field A. Denote by D the
derivative operator acting on elementary smooth random variables in the sense
that

D
(
f (h1, . . . , hn)

) =
n∑

i=1

∂if (h1, . . . , hn)hi, hi ∈ H,f ∈ C∞
b

(
R

n)
.

Further, let D1,2 be the closure of the family of elementary smooth random vari-
ables with respect to the norm

‖F‖1,2 := ‖F‖L2(�) + ‖DF‖L2(�;H).
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Assume that C is a self-adjoint compact operator on H with dense image. Then
for any c > 0, the set

G = {
G ∈ D1,2 :‖G‖L2(�) + ∥∥C−1DG

∥∥
L2(�;H) ≤ c

}
is relatively compact in L2(�).

In order to formulate compactness criteria useful for our purposes, we need the
following technical result which also can be found in [6].

LEMMA 26. Let vs, s ≥ 0 be the Haar basis of L2([0,1]). For any 0 < α <

1/2 define the operator Aα on L2([0,1]) by

Aαvs = 2kαvs if s = 2k + j

for k ≥ 0,0 ≤ j ≤ 2k and

Aα1 = 1.

Then for all β with α < β < (1/2), there exists a constant c1 such that

‖Aαf ‖ ≤ c1

{
‖f ‖L2([0,1]) +

(∫ 1

0

∫ 1

0

|f (t) − f (t ′)|2
|t − t ′|1+2β

dt dt ′
)1/2}

.

A direct consequence of Theorem 25 and Lemma 26 is now the following com-
pactness criterion which is essential for the proof of Theorem 13 and Lemma 15.

COROLLARY 27. Let Xn ∈ D1,2, n = 1,2, . . . , be a sequence of F1-measu-
rable random variables such that there are constants α > 0 and C > 0 with

sup
n

E
[‖Xn‖2] ≤ C,

sup
n

E
[‖DtXn − Dt ′Xn‖2] ≤ C

∣∣t − t ′
∣∣α

for 0 ≤ t ′ ≤ t ≤ 1 and

sup
n

sup
0≤t≤1

E
[‖DtXn‖2] ≤ C,

where Dt denotes Malliavin differentiation. Then the sequence Xn, n = 1,2, . . . ,

is relatively compact in L2(�;Rd) (Dt stands for the Malliavin derivative).
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